4 Matching Annotations
  1. Jan 2024
    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment:

      This important study represents a comprehensive computational analysis of Plasmodium falciparum gene expression, with a focus on var gene expression, in parasites isolated from patients; it assesses changes that occur as the parasites adapt to short-term in vitro culture conditions. The work provides technical advances to update a previously developed computational pipeline. Although the findings of the shifts in the expression of particular var genes have theoretical or practical implications beyond a single subfield, the results are incomplete and the main claims are only partially supported.

      The authors would like to thank the reviewers and editors for their insightful and constructive assessment. We particularly appreciate the statement that our work provides a technical advance of our computational pipeline given that this was one of our main aims. To address the editorial criticisms, we have rephrased and restructured the manuscript to ensure clarity of results and to support our main claims. For the same reason, we removed the var transcript differential expression analysis, as this led to confusion.

      Public Reviews:

      Reviewer #1:

      The authors took advantage of a large dataset of transcriptomic information obtained from parasites recovered from 35 patients. In addition, parasites from 13 of these patients were reared for 1 generation in vivo, 10 for 2 generations, and 1 for a third generation. This provided the authors with a remarkable resource for monitoring how parasites initially adapt to the environmental change of being grown in culture. They focused initially on var gene expression due to the importance of this gene family for parasite virulence, then subsequently assessed changes in the entire transcriptome. Their goal was to develop a more accurate and informative computational pipeline for assessing var gene expression and secondly, to document the adaptation process at the whole transcriptome level.

      Overall, the authors were largely successful in their aims. They provide convincing evidence that their new computational pipeline is better able to assemble var transcripts and assess the structure of the encoded PfEMP1s. They can also assess var gene switching as a tool for examining antigenic variation. They also documented potentially important changes in the overall transcriptome that will be important for researchers who employ ex vivo samples for assessing things like drug sensitivity profiles or metabolic states. These are likely to be important tools and insights for researchers working on field samples.

      One concern is that the abstract highlights "Unpredictable var gene switching..." and states that "Our results cast doubt on the validity of the common practice of using short-term cultured parasites...". This seems somewhat overly pessimistic with regard to var gene expression profiling and does not reflect the data described in the paper. In contrast, the main text of the paper repeatedly refers to "modest changes in var gene expression repertoire upon culture" or "relatively small changes in var expression from ex vivo to culture", and many additional similar assessments. On balance, it seems that transition to culture conditions causes relatively minor changes in var gene expression, at least in the initial generations. The authors do highlight that a few individuals in their analysis showed more pronounced and unpredictable changes, which certainly warrants caution for future studies but should not obscure the interesting observation that var gene expression remained relatively stable during transition to culture.

      Thank you for this comment. We were happy to modify the wording in the abstract to have consistency with the results presented by highlighting that modest but unpredictable var gene switching was observed while substantial changes were found in the core transcriptome. Moreover, any differences observed in core transcriptome between ex vivo samples from naïve and pre-exposed patients are diminished after one cycle of cultivation making inferences about parasite biology in vivo impossible.

      Therefore, – to our opinion – the statement in the last sentence is well supported by the data presented.

      Line 43–47: “Modest but unpredictable var gene switching and convergence towards var2csa were observed in culture, along with differential expression of 19% of the core transcriptome between paired ex vivo and generation 1 samples. Our results cast doubt on the validity of the common practice of using short-term cultured parasites to make inferences about in vivo phenotype and behaviour.” Nevertheless, we would like to note that this study was in a unique position to assess changes at the individual patient level as we had successive parasite generations. This comparison is not done in most cross-sectional studies and therefore these small, unpredictable changes in the var transcriptome are missed.

      Reviewer #2:

      In this study, the authors describe a pipeline to sequence expressed var genes from RNA sequencing that improves on a previous one that they had developed. Importantly, they use this approach to determine how var gene expression changes with short-term culture. Their finding of shifts in the expression of particular var genes is compelling and casts some doubt on the comparability of gene expression in short-term culture versus var expression at the time of participant sampling. The authors appear to overstate the novelty of their pipeline, which should be better situated within the context of existing pipelines described in the literature.

      Other studies have relied on short-term culture to understand var gene expression in clinical malaria studies. This study indicates the need for caution in over-interpreting findings from these studies.

      The novel method of var gene assembly described by the authors needs to be appropriately situated within the context of previous studies. They neglect to mention several recent studies that present transcript-level novel assembly of var genes from clinical samples. It is important for them to situate their work within this context and compare and contrast it accordingly. A table comparing all existing methods in terms of pros and cons would be helpful to evaluate their method.

      We are grateful for this suggestion and agree that a table comparing the pros and cons of all existing methods would be helpful for the general reader and also highlight the key advantages of our new approach. A table comparing previous methods for var gene and transcript characterisation has been added to the manuscript and is referenced in the introduction (line 107).

      Author response table 1.

      Comparison of previous var assembly approaches based on DNA- and RNA-sequencing.

      Reviewer #3:

      This work focuses on the important problem of how to access the highly polymorphic var gene family using short-read sequence data. The approach that was most successful, and utilized for all subsequent analyses, employed a different assembler from their prior pipeline, and impressively, more than doubles the N50 metric.

      The authors then endeavor to utilize these improved assemblies to assess differential RNA expression of ex vivo and short-term cultured samples, and conclude that their results "cast doubt on the validity" of using short-term cultured parasites to infer in vivo characteristics. Readers should be aware that the various approaches to assess differential expression lack statistical clarity and appear to be contradictory. Unfortunately, there is no attempt to describe the rationale for the different approaches and how they might inform one another.

      It is unclear whether adjusting for life-cycle stage as reported is appropriate for the var-only expression models. The methods do not appear to describe what type of correction variable (continuous/categorical) was used in each model, and there is no discussion of the impact on var vs. core transcriptome results.

      We agree with the reviewer that the different methods and results of the var transcriptome analysis can be difficult to reconcile. To address this, we have included a summary table with a brief description of the rationale and results of each approach in our analysis pipeline.

      Author response table 2.

      Summary of the different levels of analysis performed to assess the effect of short-term parasite culturing on var and core gene expression, their rational, method, results, and interpretation.

      Additionally, the var transcript differential expression analysis was removed from the manuscript, because this study was in a unique position to perform a more focused analysis of var transcriptional changes across paired samples, meaning the per-patient approach was more suitable. This allowed for changes in the var transcriptome to be identified that would have gone unnoticed in the traditional differential expression analysis.

      We thank the reviewer for his highly important comment about adjusting for life cycle stage. Var gene expression is highly stage-dependent, so any quantitative comparison between samples does need adjustment for developmental stage. All life cycle stage adjustments were done using the mixture model proportions to be consistent with the original paper, described in the results and methods sections:

      • Line 219–221: “Due to the potential confounding effect of differences in stage distribution on gene expression, we adjusted for developmental stage determined by the mixture model in all subsequent analyses.”

      • Line 722–725: “Var gene expression is highly stage dependent, so any quantitative comparison between samples needs adjustment for developmental stage. The life cycle stage proportions determined from the mixture model approach were used for adjustment.“

      The rank-expression analysis did not have adjustment for life cycle stage as the values were determined as a percentage contribution to the total var transcriptome. The var group level and the global var gene expression analyses were adjusted for life cycle stages, by including them as an independent variable, as described in the results and methods sections.

      Var group expression:

      • Line 321–326: “Due to these results, the expression of group A var genes vs. group B and C var genes was investigated using a paired analysis on all the DBLα (DBLα1 vs DBLα0 and DBLα2) and NTS (NTSA vs NTSB) sequences assembled from ex vivo samples and across multiple generations in culture. A linear model was created with group A expression as the response variable, the generation and life cycle stage as independent variables and the patient information included as a random effect. The same was performed using group B and C expression levels.“

      • Line 784–787: “DESeq2 normalisation was performed, with patient identity and life cycle stage proportions included as covariates and differences in the amounts of var transcripts of group A compared with groups B and C assessed (Love et al., 2014). A similar approach was repeated for NTS domains.”

      Gobal var gene expression:

      • Line 342–347: “A linear model was created (using only paired samples from ex vivo and generation 1) (Supplementary file 1) with proportion of total gene expression dedicated to var gene expression as the response variable, the generation and life cycle stage as independent variables and the patient information included as a random effect. This model showed no significant differences between generations, suggesting that differences observed in the raw data may be a consequence of small changes in developmental stage distribution in culture.”

      • Line 804–806: “Significant differences in total var gene expression were tested by constructing a linear model with the proportion of gene expression dedicated to var gene expression as the response variable, the generation and life cycle stage as an independent variables and the patient identity included as a random effect.“

      The analysis of the conserved var gene expression was adjusted for life cycle stage:

      • Line 766–768: “For each conserved gene, Salmon normalised read counts (adjusted for life cycle stage) were summed and expression compared across the generations using a pairwise Wilcoxon rank test.”

      And life cycle stage estimates were included as covariates in the design matrix for the domain differential expression analysis:

      • Line 771–773: “DESeq2 was used to test for differential domain expression, with five expected read counts in at least three patient isolates required, with life cycle stage and patient identity used as covariates.”

      Reviewer #1:

      1. In the legend to Figure 1, the authors cite "Deitsch and Hviid, 2004" for the classification of different var gene types. This is not the best reference for this work. Better citations would be Kraemer and Smith, Mol Micro, 2003 and Lavstsen et al, Malaria J, 2003.

      We agree and have updated the legend in Figure 1 with these references, consistent with the references cited in the introduction.

      1. In Figures 2 and 3, each of the boxes in the flow charts are largely filled with empty space while the text is nearly too small to read. Adjusting the size of the text would improve legibility.

      We have increased the size of the text in these figures.

      1. My understanding of the computational method for assessing global var gene expression indicates an initial step of identifying reads containing the amino acid sequence LARSFADIG. It is worth noting that VAR2CSA does not contain this motif. Will the pipeline therefore miss expression of this gene, and if so, how does this affect the assessment of global var gene assessment? This seems relevant given that the authors detect increased expression of var2csa during adaptation to culture.

      To address this question, we have added an explanation in the methods section to better explain our analysis. Var2csa was not captured in the global var gene expression analysis, but was analyzed separately because of its unique properties (conservation, proposed role in regulating var gene switching, slightly divergent timing of expression, translational repression).

      • Line 802/3: “Var2csa does not contain the LARSFADIG motif, hence this quantitative analysis of global var gene expression excluded var2csa (which was analysed separately).”
      1. In Figures 4 and 7, panels a and b display virtually identical PCA plots, with the exception that panel A displays more generations. Why are both panels included? There doesn't appear to be any additional information provided by panel B.

      We agree and have removed Figure 7b for the core transcriptome PCA as it did not provide any new information. The var transcript differential analysis (displayed in Figure 4) has been removed from the manuscript.

      1. On line 560-567, the authors state "However, the impact of short-term culture was the most apparent at the var transcript level and became less clear at higher levels." What are the high levels being referred to here?

      We have replaced this sentence to make it clearer what the different levels are (global var gene expression, var domain and var type).

      • Line 526/7: “However, the impact of short-term culture was the most apparent at the var transcript level and became less clear at the var domain, var type and global var gene expression level.”

      Reviewer #2:

      The authors make no mention or assessment of previously published var gene assembly methods from clinical samples that focus on genomic or transcriptomic approaches. These include:

      https://pubmed.ncbi.nlm.nih.gov/28351419/

      https://pubmed.ncbi.nlm.nih.gov/34846163/

      These methods should be compared to the method for var gene assembly outlined by the co-authors, especially as the authors say that their method "overcomes previous limitations and outperforms current methods" (128-129). The second reference above appears to be a method to measure var expression in clinical samples and so should be particularly compared to the approach outlined by the authors.

      Thank you for pointing this out. We have included the second reference in the introduction of our revised manuscript, where we refer to var assembly and quantification from RNA-sequencing data. We abstained from including the first paper in this paragraph (Dara et al., 2017) as it describes a var gene assembly pipeline and not a var transcript assembly pipeline.

      • Line 101–105: “While approaches for var assembly and quantification based on RNA-sequencing have recently been proposed (Wichers et al., 2021; Stucke et al., 2021; Andrade et al., 2020; TonkinHill et al., 2018, Duffy et al., 2016), these still produce inadequate assembly of the biologically important N-terminal domain region, have a relatively high number of misassemblies and do not provide an adequate solution for handling the conserved var variants (Table S1).”

      Additionally, we have updated the manuscript with a table (Table S1) comparing these two methods plus other previously used var transcript/gene assembly approaches (see comment to the public reviews).

      But to address this particular comment in more detail, the first paper (Dara et al., 2017) is a var gene assembly pipeline and not a var transcript assembly pipeline. It is based on assembling var exon 1 from unfished whole genome assemblies of clinical samples and requires a prior step for filtering out human DNA. The authors used two different assemblers, Celera for short reads (which is no longer maintained) and Sprai for long reads (>2000bp), but found that Celera performed worse than Sprai, and subsequently used Sprai assemblies. Therefore, this method does not appear to be suitable for assembling short reads from RNA-seq.

      The second paper (Stucke et al. 2021) focusses more on enriching for parasite RNA, which precedes assembly. The capture method they describe would complement downstream analysis of var transcript assembly with our pipeline. Their assembly pipeline is similar to our pipeline as they also performed de novo assembly on all P. falciparum mapping and non-human mapping reads and used the same assembler (but with different parameters). They clustered sequences using the same approach but at 90% sequence identity as opposed to 99% sequence identity using our approach. Then, Stucke et al. use 500nt as a cut-off as opposed to the more stringent filtering approach used in our approach. They annotated their de novo assembled transcripts with the known amino acid sequences used in their design of the capture array; our approach does not assume prior information on the var transcripts. Finally, their approach was validated only for its ability to recover the most highly expressed var transcript in 6 uncomplicated malaria samples, and they did not assess mis-assemblies in their approach.

      For the methods (619–621), were erythrocytes isolated by Ficoll gradient centrifugation at the time of collection or later?

      We have updated the methods section to clarify this.

      • Line 586–588: “Blood was drawn and either immediately processed (#1, #2, #3, #4, #11, #12, #14, #17, #21, #23, #28, #29, #30, #31, #32) or stored overnight at 4oC until processing (#5, #6, #7, #9, #10, #13, #15, #16, #18, #19, #20, #22, #24, #25, #26, #27, #33).”

      Was the current pipeline and assembly method assessed for var chimeras? This should be described.

      Yes, this was quantified in the Pf 3D7 dataset and also assessed in the German traveler dataset. For the 3D7 dataset it is described in the result section and Figure S1.

      • Line 168–174: “However, we found high accuracies (> 0.95) across all approaches, meaning the sequences we assembled were correct (Figure 2 – Figure supplement 1b). The whole transcript approach also performed the best when assembling the lower expressed var genes (Figure 2 – Figure supplement 1e) and produced the fewest var chimeras compared to the original approach on P. falciparum 3D7. Fourteen misassemblies were observed with the whole transcript approach compared to 19 with the original approach (Table S2). This reduction in misassemblies was particularly apparent in the ring-stage samples.” - Figure S1:

      Author response image 1.

      Performance of novel computational pipelines for var assembly on Plasmodium falciparum 3D7: The three approaches (whole transcript: blue, domain approach: orange, original approach: green) were applied to a public RNA-seq dataset (ENA: PRJEB31535) of the intra-erythrocytic life cycle stages of 3 biological replicates of cultured P. falciparum 3D7, sampled at 8-hour intervals up until 40hrs post infection (bpi) and then at 4-hour intervals up until 48 (Wichers al., 2019). Boxplots show the data from the 3 biological replicates for each time point in the intra-erythrocytic life cycle: a) alignment scores for the dominantly expressed var gene (PF3D7_07126m), b) accuracy scores for the dominantly var gene (PF3D7_0712600), c) number of contigs to assemble the dominant var gene (PF3D7_0712600), d) alignment scores for a middle ranking expressed vargene (PF3D7_0937800), e) alignment scores for the lowest expressed var gene (PF3D7_0200100). The first best blast hit (significance threshold = le-10) was chosen for each contig. The alignment score was used to evaluate the each method. The alignment score represents √accuracy* recovery. The accuracy is the proportion of bases that are correct in the assembled transcript and the recovery reflects what proportion of the true transcript was assembled. Assembly completeness of the dominant vargene (PF3D7 071200, length = 6648nt) for the three approaches was assessed for each biological f) biological replicate 1, g) biological replicate 2, h) biological replicate 3. Dotted lines represent the start and end of the contigs required to assemble the vargene. Red bars represent assembled sequences relative to the dominantly whole vargene sequence, where we know the true sequence (termed “reference transcript”).

      For the ex vivo samples, this has been discussed in the result section and now we also added this information to Table 1.

      • Line 182/3: “Remarkably, with the new whole transcript method, we observed a significant decrease (2 vs 336) in clearly misassembled transcripts with, for example, an N-terminal domain at an internal position.”

      • Table 1:

      Author response table 3.

      Statistics for the different approaches used to assemble the var transcripts. Var assembly approaches were applied to malaria patient ex vivo samples (n=32) from (Wichers et al., 2021) and statistics determined. Given are the total number of assembled var transcripts longer than 500 nt containing at least one significantly annotated var domain, the maximum length of the longest assembled var transcript in nucleotides and the N50 value, respectively. The N50 is defined as the sequence length of the shortest var contig, with all var contigs greater than or equal to this length together accounting for 50% of the total length of concatenated var transcript assemblies. Misassemblies represents the number of misassemblies for each approach. **Number of misassemblies were not determined for the domain approach due to its poor performance in other metrics.

      Line 432: "the core gene transcriptome underwent a greater change relative to the var transcriptome upon transition to culture." Can this be shown statistically? It's unclear whether the difference in the sizes of the respective pools of the core genome and the var genes may account for this observation.

      We found 19% of the core transcriptome to be differentially expressed. The per patient var transcript analysis revealed individually highly variable but generally rather subtle changes in the var transcriptome. The different methods for assessing this make it difficult to statistically compare these two different results.

      The feasibility of this approach for field samples should be discussed in the Discussion.

      In the original manuscript we reflected on this already several times in the discussion (e.g., line 465/6; line 471–475; line 555–568). We now have added another two sentences at the end of the paragraph starting in line 449 to address this point. It reads now:

      • Line 442–451: “Our new approach used the most geographically diverse reference of var gene sequences to date, which improved the identification of reads derived from var transcripts. This is crucial when analysing patient samples with low parasitaemia where var transcripts are hard to assemble due to their low abundancy (Guillochon et al., 2022). Our approach has wide utility due to stable performance on both laboratory-adapted and clinical samples. Concordance in the different var expression profiling approaches (RNA-sequencing and DBLα-tag) on ex vivo samples increased using the new approach by 13%, when compared to the original approach (96% in the whole transcript approach compared to 83% in Wichers et al., 2021. This suggests the new approach provides a more accurate method for characterising var genes, especially in samples collected directly from patients. Ultimately, this will allow a deeper understanding of relationships between var gene expression and clinical manifestations of malaria.”

      MINOR

      The plural form of PfEMP1 (PfEMP1s) is inconsistently used throughout the text.

      Corrected.

      404-405: statistical test for significance?

      Thank you for this suggestion. We have done two comparisons between the original analysis from Wichers et al., 2021 and our new whole transcript approach to test concordance of the RNAseq approaches with the DBLα-tag approach using paired Wilcoxon tests. These comparisons suggest that our new approach has significantly increased concordance with DBLα-tag data and might be better at capturing all expressed DBLα domains than the original analysis (and the DBLα-approach), although not statistically significant. We describe this now in the result section.

      • Line 352–361: “Overall, we found a high agreement between the detected DBLα-tag sequences and the de novo assembled var transcripts. A median of 96% (IQR: 93–100%) of all unique DBLα-tag sequences detected with >10 reads were found in the RNA-sequencing approach. This is a significant improvement on the original approach (p= 0.0077, paired Wilcoxon test), in which a median of 83% (IQR: 79–96%) was found (Wichers et al., 2021). To allow for a fair comparison of the >10 reads threshold used in the DBLα-tag approach, the upper 75th percentile of the RNA-sequencingassembled DBLα domains were analysed. A median of 77.4% (IQR: 61–88%) of the upper 75th percentile of the assembled DBLα domains were found in the DBLα-tag approach. This is a lower median percentage than the median of 81.3% (IQR: 73–98%) found in the original analysis (p= 0.28, paired Wilcoxon test) and suggests the new assembly approach is better at capturing all expressed DBLα domains.”

      Figure 4: The letters for the figure panels need to be added.

      The figure has been removed from the manuscript.

      Reviewer #3:

      It is difficult from Table S2 to determine how many unique var transcripts would have enough coverage to be potentially assembled from each sample. It seems unlikely that 455 distinct vars (~14 per sample) would be expressed at a detectable level for assembly. Why not DNA-sequence these samples to get the full repertoire for comparison to RNA? Why would so many distinct transcripts be yielded from fairly synchronous samples?

      We know from controlled human malaria infections of malaria-naive volunteers, that most var genes present in the genomic repertoire of the parasite strain are expressed at the onset of the human blood phase (heterogenous var gene expression) (Wang et al., 2009; Bachmann et al, 2016; Wichers-Misterek et al., 2023). This pattern shifts to a more restricted, homogeneous var expression pattern in semi-immune individuals (expression of few variants) depending on the degree of immunity (Bachmann et al., 2019).

      Author response image 2.

      In this cohort, 15 first-time infections are included, which should also possess a more heterogenous var gene expression in comparison to the pre-exposed individuals, and indeed such a trend is already seen in the number of different DBLa-tag clusters found in both patient groups (see figure panel from Wichers et al. 2021: blue-first-time infections; grey–pre-exposed). Moreover, Warimwe et al. 2013 have shown that asymptomatic infections have a more homogeneous var expression in comparison to symptomatic infections. Therefore, we expect that parasites from symptomatic infections have a heterogenous var expression pattern with multiple var gene variants expressed, which we could assemble due to our high read depth and our improved var assembly pipeline for even low expressed variants.

      Moreover, the distinct transcripts found in the RNA-seq approach were confirmed with the DBLα tag data. To our opinion, previous approaches may have underestimated the complexity of the var transcriptome in less immune individuals.

      Mapping reads to these 455 putative transcripts and using this count matrix for differential expression analysis seems very unlikely to produce reliable results. As acknowledged on line 327, many reads will be mis-mapped, and perhaps most challenging is that most vars will not be represented in most samples. In other words, even if mapping were somehow perfect, one would expect a sparse matrix that would not be suitable for statistical comparisons between groups. This is likely why the per-patient transcript analysis doesn't appear to be consistent. I would recommend the authors remove the DE sections utilizing this approach, or add convincing evidence that the count matrix is useable.

      We agree that this is a general issue of var differential expression analysis. Therefore, we have removed the var differential expression analysis from this manuscript as the per patient approach was more appropriate for the paired samples. We validated different mapping strategies (new Figure S6) and included a paragraph discussing the problem in the result section:

      • Line 237–255: “In the original approach of Wichers et al., 2021, the non-core reads of each sample used for var assembly were mapped against a pooled reference of assembled var transcripts from all samples, as a preliminary step towards differential var transcript expression analysis. This approach returned a small number of var transcripts which were expressed across multiple patient samples (Figure 3 – Figure supplement 2a). As genome sequencing was not available, it was not possible to know whether there was truly overlap in var genomic repertoires of the different patient samples, but substantial overlap was not expected. Stricter mapping approaches (for example, excluding transcripts shorter than 1500nt) changed the resulting var expression profiles and produced more realistic scenarios where similar var expression profiles were generated across paired samples, whilst there was decreasing overlap across different patient samples (Figure 3 – Figure supplement 2b,c). Given this limitation, we used the paired samples to analyse var gene expression at an individual subject level, where we confirmed the MSP1 genotypes and alleles were still present after short-term in vitro cultivation. The per patient approach showed consistent expression of var transcripts within samples from each patient but no overlap of var expression profiles across different patients (Figure 3 – Figure supplement 2d). Taken together, the per patient approach was better suited for assessing var transcriptional changes in longitudinal samples. It has been hypothesised that more conserved var genes in field isolates increase parasite fitness during chronic infections, necessitating the need to correctly identify them (Dimonte et al., 2020, Otto et al., 2019). Accordingly, further work is needed to optimise the pooled sample approach to identify truly conserved var transcripts across different parasite isolates in cross-sectional studies.” - Figure S6:

      Author response image 3.

      Var expression profiles across different mapping. Different mapping approaches Were used to quantify the Var expression profiles of each sample (ex Vivo (n=13), generation I (n=13), generation 2 (n=10) and generation 3 (n=l). The pooled sample approach in Which all significantly assembled van transcripts (1500nt and containing3 significantly annotated var domains) across samples were combined into a reference and redundancy was removed using cd-hit (at sequence identity = 99%) (a—c). The non-core reads of each sample were mapped to this pooled reference using a) Salmon, b) bowtie2 filtering for uniquely mapping paired reads with MAPQ and c) bowtie2 filtering for uniquely mapping paired reads with a MAPQ > 20. d) The per patient approach was applied. For each patient, the paired ex vivo and in vitro samples were analysed. The assembled var transcripts (at least 1500nt and containing3 significantly annotated var domains) across all the generations for a patient were combined into a reference, redundancy was removed using cd-hit (at sequence identity: 99%), and expression was quantified using Salmon. Pie charts show the var expression profile With the relative size of each slice representing the relative percentage of total var gene expression of each var transcript. Different colours represent different assembled var transcripts with the same colour code used across a-d.

      For future cross-sectional studies a per patient analysis that attempts to group per patient assemblies on some unifying structure (e.g., domain, homology blocks, domain cassettes etc) should be performed.

      Line 304. I don't understand the rationale for comparing naïve vs. prior-exposed individuals at ex-vivo and gen 1 timepoints to provide insights into how reliable cultured parasites are as a surrogate for var expression in vivo. Further, the next section (per patient) appears to confirm the significant limitation of the 'all sample analysis' approach. The conclusion on line 319 is not supported by the results reported in figures S9a and S9b, nor is the bold conclusion in the abstract about "casting doubt" on experiments utilizing culture adapted

      We have removed this comparison from the manuscript due to the inconsistencies with the var per patient approach. However, the conclusion in the abstract has been rephrased to reflect the fact we observed 19% of the core transcript differentially expressed within one cycle of cultivation.

      Line 372/391 (and for the other LMM descriptions). I believe you mean to say response variable, rather than explanatory variable. Explanatory variables are on the right hand side of the equation.

      Thank you for spotting this inaccuracy, we changed it to “response variable” (line 324, line 343, line 805).

      Line 467. Similar to line 304, why would comparisons of naïve vs. prior-exposed be informative about surrogates for in vivo studies? Without a gold-standard for what should be differentially expressed between naïve and prior-exposed in vivo, it doesn't seem prudent to interpret a drop in the number of DE genes for this comparison in generation 1 as evidence that biological signal for this comparison is lost. What if the generation 1 result is actually more reflective of the true difference in vivo, but the ex vivo samples are just noisy? How do we know? Why not just compare ex vivo vs generation 1/2 directly (as done in the first DE analysis), and then you can comment on the large number of changes as samples are less and less proximal to in vivo?

      In the original paper (Wichers et al., 2021), there were differences between the core transcriptome of naïve vs previously exposed patients. However, these differences appeared to diminish in vitro, suggesting the in vivo core transcriptome is not fully maintained in vitro.

      We have added a sentence explaining the reasoning behind this analysis in the results section:

      • Lines 414–423: “In the original analysis of ex vivo samples, hundreds of core genes were identified as significantly differentially expressed between pre-exposed and naïve malaria patients. We investigated whether these differences persisted after in vitro cultivation. We performed differential expression analysis comparing parasite isolates from naïve (n=6) vs pre-exposed (n=7) patients, first between their ex vivo samples, and then between the corresponding generation 1 samples. Interestingly, when using the ex vivo samples, we observed 206 core genes significantly upregulated in naïve patients compared to pre-exposed patients (Figure 7 – Figure supplement 3a). Conversely, we observed no differentially expressed genes in the naïve vs pre-exposed analysis of the paired generation 1 samples (Figure 7 – Figure supplement 3b). Taken together with the preceding findings, this suggests one cycle of cultivation shifts the core transcriptomes of parasites to be more alike each other, diminishing inferences about parasite biology in vivo.”

      Overall, I found the many DE approaches very frustrating to interpret coherently. If not dropped in revision, the reader would benefit from a substantial effort to clarify the rationale for each approach, and how each result fits together with the other approaches and builds to a concise conclusion.

      We agree that the manuscript contains many different complex layers of analysis and that it is therefore important to explain the rationale for each approach. Therefore, we now included the summary Table 3 (see comment to public review). Additionally, we have removed the var transcript differential expression due to its limitations, which we hope has already streamlined our manuscript.

  2. Jul 2023
    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Please find our point-to-point response to the reviewer’s comments below, where we marked all changes implemented in the manuscript in italics.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      With the emergence and spread of resistance to Artemisinin (ART), a key component of current frontline malaria combination therapies, there is a growing effort to understand the mechanisms that lead to ART resistance. Previous work has shown that ART resistant parasites harbour mutations in the Kelch13 protein, which in turn leads to reduced endocytosis of host haemoglobin. The digestion of haemoglobin is thought to be critical for the activation of the artemisinin endoperoxide bridge, leading to the production of free radicals and parasite death. However, the mechanisms by which the parasites endocytose host cell haemoglobin remain poorly understood.

      Previous work by the authors identified several proteins in the proximity of K13 using proximity-based labelling (BioID) (Birnbaum et al. 2020). The authors then went on to characterise several of these proteins, showing that when proteins including EPS15, AP2mu, UBP1 and KIC7 are disrupted, this leads to ART resistance and defects in endocytosis leading to the hypothesis that these two processes are inextricably linked.

      In this manuscript, Schmidt et al. set themselves the task of characterising more K13 component candidates identified in their previous work (Birnbaum et al. 2020) that were not previously validated or characterised. They chose 10 candidates and investigated their localisations, and colocalisation with K13, and their involvement in endocytosis and in vitro ART resistance, 2 processes mediated by K13 and some members of the K13 compartments

      The authors show that of their 10 candidates, only 4 can be co-localised with K13. Then, using a combination of targeted gene disruption (TGD) as well as knock sideways (KS), they characterised these 4 proteins found in the K13 compartment. They show that MyoF and KIC12 are involved in endocytosis and are important for parasite growth, however their disruption does not lead to a change in ART sensitivity. The authors also confirm the findings of their previous publication (Birnbaum et al. 2020), using a slightly different TGD

      (note from the authors: we apologise if this has not properly transpired from the manuscript but the difference between the TGDs is substantial and relevant: one has less than 3% of the protein left and hence can be considered to fully inactivate MCA2 and has a growth defect whereas the other contains about two thirds of the protein (1344 amino acids/~66% are left), has no growth defect, although it lacks the MCA2 domain (hence that domain can not be critical for the growth defect)),

      that MCA2 is involved in ART resistance, however they did not check whether its disruption impacts haemoglobin uptake. They also show that KIC11 is not involved in mediating haemoglobin uptake or ART resistance. To finish, the authors used AlphaFold to identify new domains in the proteins of the K13 compartment. This led them to the conclusion that vesicle trafficking domains are enriched in proteins of the K13 compartment involved in endocytosis and in vitro ART resistance.

      The majority of the experiments conducted by the authors are performed to a good standard in biological and technical replicates, with the correct controls. Their findings provide confirmation that their 4 candidate genes seem to be important for parasite growth, and show that some of their candidates are involved in endocytosis. While the KD and KS approaches employed by the authors to study their candidate genes each have their own advantages and can be excellent tools for studying a large sets or genes, this manuscript highlights the many limitations of these approaches. For example, the large tag used for the KS approach can mislocalise proteins or disrupt their function (as is the case for MyoF), resulting in spurious results, or indeed the inability to generate the tagged line (as is the case for MCA2). The KS approach also makes the results of a protein with a dual localisation, like KIC12, extremely difficult to interpret.

      We thank the reviewer for this thorough and insightful review.

      The limitations mentioned above were addressed in the response to the main points and a general detailed response in regards to the systems used for this research are added at the end of this rebuttal. Briefly summarised here: while we agree that there are limitations of the system used, we are convinced that

      • the advantages of using a large tag in most cases outweighs the drawbacks as it permits to track the inactivation of the target, if need be on the individual cell level

      • while not optimal for MyoF, the partial inactivation actually helps in its functional study as detailed in major point 23&28 or reviewer#3 major point 11: it shows a consistent correlation of the phenotype with different causes and degrees of inactivation (this is now better illustrated in Figure 1L1M). Further, regarding the concern of the large tag: the effect of the tag based on localisation was overestimated in the review by what seems to have been a mix up comparing numbers from MyoF with a number from MCA2 (there is a difference, but it is only small) (see reviewer#1 major point #23).

      • KS is the optimal method for most of the assays in this work (e.g. bloated food vacuole assays and RSAs); these assays would be impossible or difficult to use with other inactivation systems currently used in P. falciparum research (see details in the response to the specific points and after the rebuttal)

      In regards to the difficulty to interpret KIC12 data: this is only true for measuring absolute essentiality, everything else we believe we actually have the optimal method. If not KS, which method targets a specific pool of a protein with a dual localisastion? Again, our assays targeting the K13 pool and revealing the specific function would have been difficult or impossible with any other system.

      Ultimately the question is whether any other system would have resulted in a different conclusion on the function of the proteins studied. At present we are confident this would not be the case and other systems probably would not have delivered the specific functional data shown in this work. Clearly, more in depth work will provide more nuanced and detailed insights into the proteins analysed in this work and this likely will also include the use of other systems for specific aspects they are most suitable for. However, this (e.g. different complementations in a diCre cKO) is complex and therefore beyond what fits into this work which had the goal to assess which proteins are true positives for the K13 compartment and to place them into functional groups in regards to endocytosis.

      Moreover, the manuscript is disjointed at times, with the authors choosing to conduct certain experiments for only a subset of genes, but not for others. For example, considering that the aim of this paper was to identify more proteins involved in ART resistance and endocytosis, it is confusing why the authors do not perform the endocytosis assays for all their selected proteins, and why they do not do this for the proteins they identify in their domain search. There is significant room for improvement for this manuscript, and a generally interesting question.

      The reviewer remarks that not every experiment was done for every target. Based on the rebuttal we tried to amend this but also note that there was some sentiment by the reviewers to better stick to the point and not make the manuscript more disjointed. We attempted to balance that as much as possible and hope we were able to honour both aspects (amendments were done as detailed in the point by point response below).

      In regards to endocytosis and choice of targets: We did do endocytosis assays for all proteins that showed a growth phenotype upon inactivation in this work. We therefore assume the reviewer here refers to major point #40 asking for endocytosis assays with KIC4 and KIC5 (which were not studied in this manuscript) as well as MCA2 (point 17). We fully agree with the reviewer that this would fill a gap in the work on K13 compartment proteins but such assays are difficult with TGDs (there are issues with non-comparable samples and compensatory effects) and proteins that are not essential (and hence likely have a smaller impact on endocytosis when truncated). We nevertheless now carried them out, but due to the limitations to do this with these lines would be hesitant to draw definite conclusions (see major point 17 and 40 for details and outcomes).

      But in it's current format, other than confirming that MCA2 is involved in ART resistance (which was already known from the Birnbaum paper), the authors do not further expand our understanding of the link between ART resistance and endocytosis in this manuscript.

      We would like to point out that the importance of the K13 compartment and endocytosis goes beyond ART resistance (see e.g. also newly published papers on the K13 compartment in Toxoplasma, (Wan et al., 2023; Koreny et al., 2023)). Endocytosis is an essential and prominent process in blood stages. However, in contrast to processes such as invasion, our understanding about endocytosis is only rudimentary. Hence, this manuscript provides important insights on an emerging topic that in our opinion deserves more attention:

      • it identifies novel proteins at the K13 compartment and provides 2 new proteins in endocytosis (MyoF and KIC12); getting an as complete as possible list of proteins involved in the process will be critical to study and understand it

      • it leads to the realisation that not all growth-relevant proteins detected at the K13 compartment are needed for endocytosis

      • it provides domains and stage specificity of function for several K13 compartment proteins, overall bolstering the model of endocytosis in ART resistance and providing a framework critical to direct future studies on endocytosis and their detailed mechanistic function at the cytostome

      • the identified vesicle trafficking domains (for instance now also found in UBP1) are expected to strengthen the support for the role of endocytosis of the K13 compartment; this and also the above points are important as (based on the current literature) there still seems to be prominent sentiment in the field that (in part due to the involvement of UBP1 and K13) the cause of ART resistance is due to various unclearly defined stress response pathways

      • with MyoF it also shows the first protein in connection with the K13 compartment that acts downstream of the generation of hemoglobin-filled containers in the parasite and provides the first protein that explains the suspected involvement of actin in endocytosis (so far this was only based on CytD studies)

      Overall we therefore believe this manuscript contains critical information and a framework for future studies on endocytosis and the K13 compartment. We hope the relevance of endocytosis as one of the most prominent and essential processes in the parasites and the connection to various aspects linked with many commercial drugs (in addition to the role of endocytosis in ART resistance), is adequately explained in the introduction. We also would like to mention that the main focus of the work is reflected in the title of the manuscript which does not mention ART susceptibility.

      Major Comments

      1) line 31: please change defined to characterised - defined suggests that novel proteins were identified in this study, which is not the case.

      We apologise, but we do not fully understand this comment. We did identify novel proteins not before known to be at the K13 compartment (MCA2 (admittedly this one was likely but had not previously been verified), MyoF, KIC11 and KIC12). In our view "further defining the composition of the K13 compartment" therefore is an accurate statement. Additionally, the identification of previously not-discovered domains, the stage-specificity and function of these proteins helped to further define the K13 compartment.

      If the reviewer is referring to the fact that the proteins analysed in this study were taken from a previously generated list of hits, we would like to stress that the presence in such a list (obtained from a BioID, but also if from an IP etc) can not be equalled for them to be true positives, they are merely candidates that still need to be experimentally validated. This is what we did in this work to find out which further proteins from the list can be classified as K13 compartment proteins (for hits with lower FDRs this is even more relevant as illustrated by the fact that 6 of the here analysed hits were not at the K13 compartment). In an attempt to address this comment in the manuscript, we changed the wording of this sentence to (line 31): "Here we further defined the composition of the K13 compartment by analysing more hits from a previous BioID, showing that MyoF and MCA2 as well as Kelch13 interaction candidate (KIC) 11 and 12 are found at this site."

      2) line 37: please change 'second' to "another". As explained further below, the authors identified 3 classes of proteins (confer ART resistance + involved in HCCU, involved in HCCU only, or involved in neither).

      We realized that the groups description wasn’t clear in the abstract. Please see response to major comment #41 for a detailed answer to this (endocytosis is an overarching criterion, ART resistance is a subgroup and applies only to those proteins with a function in endocytosis in ring stages). To clarify this (see also major point #8) we added an explanation on the influence of stage-specificity of endocytosis on ART susceptibility to the introduction (line 76): In contrast to K13 which is only needed for endocytosis in ring stages (the stage relevant for in vitro ART resistance), some of these proteins (AP2µ and UBP1) are also needed for endocytosis in later stage parasites (Birnbaum et al., 2020). At least in the case of UBP1, this is associated with a higher fitness cost but lower resistance compared to K13 mutations (Behrens et al., 2021; Behrens et al., 2023). Hence, the stage-specificity of endocytosis functions is relevant for in vitro ART resistance: proteins influencing endocytosis in trophozoites are expected to have a high fitness cost whereas proteins not needed for endocytosis in rings would not be expected to influence resistance.” The abstract was changed in response to this and other comments and hope it is now clearer in regards to the groups.

      3) Line 40: You define KIC11 as essential but according to your data some parasites are still alive and replicating 2 cycles after induction of the knock sideways. Please consider changing "essential" to "important for asexual parasite growth".

      We fully agree with the reviewer, we reworded the sentence as suggested.

      4) Line 40: please change 'second group' to 'this group'

      We reworded this part of the abstract and it know reads: (line 38): “While this strengthened the link of the K13 compartment to endocytosis, many proteins of this group showed unusual domain combinations and large parasite-specific regions, indicating a high level of taxon-specific adaptation of this process.”

      5) line 41: state here that despite it being essential, it is unknown what it is involved in.

      With the newly added data we show that this protein either has a function in invasion or very early ring development although we did not see any evidence for the latter. We therefore changed the sentence to (line 43): “We here identified the first protein of this group that is important for asexual blood stage development and showed that it likely is involved in invasion*..” *

      6) Line 50: the authors should state here that there is actually a reversal in this trend over the last few years.

      Done as suggested.

      7) Line 54: please separate out the references for each of the two statements made in this line (a: that ART resistance is widespread in SEA, and b: that ART resistance is now in Africa) Reference 14 also seems to reference ART resistance in Amazonia - which is not covered by the statement made by the authors (in which case the authors should state ART is now present in Africa and South America). The authors should also reference PMID: 34279219 for their statement that ART resistance is now found in Africa (albeit a different mutation to the one found in SEA).

      Done as suggested.

      8) Line 65: it is also worth mentioning here that there are other mutations in proteins other than K13, such as AP2mu and UBP1 (PMID: 24994911;24270944) that can lead to ART resistance.

      As suggested by the reviewer, we included a sentence about non-K13 mutations linked with reduced ART susceptibility in the introduction (line 74): Beside K13 mutations in other genes, such as Coronin (Demas et al., 2018) UBP1 (Borrmann et al., 2013; Henrici et al., 2020b; Birnbaum et al., 2020; Simwela et al., 2020) or AP2µ (Henriques et al., 2014; Henrici et al., 2020b)* have also been linked with reduced ART susceptibility." *

      We here also added data on fitness cost that is related to this and is also relevant for the issue of proteins with a stage-specific function in endocytosis, making a transition for this statement which might help clarifying the grouping of K13 compartment proteins (see also major point #2).

      9) Line 80, 86: ref 43 is misused. Reference 43 refers to Maurer's clefts trafficking which takes place in the erythrocyte cytosol and is not involved in haemoglobin uptake as far as I know. Please replace ref 43 with one showing the role of actin in haemoglobin uptake.

      We thank the reviewer for pointing this out, Ref 43 was removed from the manuscript.

      10) Line 98: the authors state here that they 'identified' further candidates from the K13 proxiome. This suggests that they identified new proteins in this paper, when in fact the list was already generated in ref 26. All they did was characterise proteins from that list that were not previously characterised. The authors should therefore remove identified from this statement.

      We agree with the reviewer that we did not identify further candidates, we identified new K13 compartment proteins from the list of potential K13 compartment proteins. We therefore changed “identified further candidates” into “identified further K13 compartment proteins” (line 116). Please see also response to major comment #1.

      11) Line 107-108: it is not clear from this sentence why these proteins were left out of the initial analysis in Ref 26. A sentence here explaining this would be valuable for the reader.

      This is a good point. One reason why we did not analyse more in our previous publication was that we had to stop somewhere and adding more would have been very difficult to fit into what was already a packed paper. However, as shown in this work, the list does contain further interesting candidates (e.g. K13 compartment proteins that are involved in endocytosis).

      We altered the relevant part of the introduction to highlight that we previously analysed the top hits, clarifying that the 'remaining' hits analysed in this work were further down in the list. This now reads: (line 113)“We reasoned that due to the high number of proteins that turned out to belong to the K13 compartment when validating the top hits of the K13 BioID (Birnbaum et al., 2020), the remaining hits of these experiments might contain further proteins belonging to the K13 compartment.” We hope this clarifies that we simply moved further down in the candidate list.

      12) Line 117-123: The authors say that PF3D7_0204300, PF3D7_1117900 and PF3D7_1016200 were not studied because they were not in the top 10 hits. However, the current organisation of Supplementary Table 1 shows all 3 proteins among the top 10 hits (MyoF, KIC12, UIS14 and 0907200 being after them). I think the authors should reorganise their table. It is also unclear according to what the proteins in the table are ranked. Could the authors indicate the metric used for the ranking?

      We thank the reviewer for alerting us to this. The issue here is that the 3 non-analysed proteins belong to a 'lower stringency' group comprising hits significant with FDRThe information about ranking is now also included as “Table legend” in the revised manuscript and the Table heading has been changed to: List of putative K13 compartment proteins, proteins selected for further characterization in this manuscript are highlighted.”

      13) Line 129-141: Can the authors be clearer with their explanations of the identification of mutation Y1344Stop? One dataset (ref 61) shows that 52% of African parasites have a mutation in MCA2 in position 1344 leading to a STOP codon. But another dataset (ref 62) shows that the next base is also mutated, reverting the stop codon. That should have been seen in the first dataset as well. Could the authors please clarify.

      This mutation was first spotted in the MalariaGEN database (https://www.malariagen.net) (MalariaGEN et al., 2021), which allows online accessing of the data by using the “variant catalogue” tool, which is in a table format of frequency rather than in a sequence context. Hence, only after further research later on it became evident to us, that this mutation does not occur alone when looking at individual MCA2 sequences from patient samples in (Wichers et al., 2021b). We hope this is accurately reflected in our results section.

      14) Line 147: the authors say that MCA2 is expressed throughout the intraerythrocytic cycle as shown by live cell imaging. In Birnbaum et al 2020 fig 4I, the authors show that MCA2 is mainly expressed between 4 and 16hpi. But in Figure 1B of this manuscript there is a clear multiplication of MCA2 signal between trophozoite and schizont. How do the authors explain this discrepancy? Could expression of the truncated MCA2 be different than the full length? This cannot be assessed as expression and localisation of the full-length HA tag MCA2 is not shown in Schizonts.

      The key difference lies in transcription vs protein expression (usually protein levels peak after mRNA levels peak and - depending on turnover - protein levels can stay high even after mRNA levels have declined). Figure 4 of the Birnbaum et al paper presents transcriptomic data, but with a peak in trophozoites (The axis label in Fig. 4l of that publication is a bit confusing, as hour 0 is at the top, 48 h at the bottom; it is clearer in Fig. S13 of that paper) which would fit very well with the multiplication of the signal between trophozoites and schizonts mentioned by the reviewer. So, overall, the temporal peaks of transcripts and protein of that protein fit well.

      For the signal in rings: Likely the protein has a turnover rate that is sufficiently low for some protein to be taken into the new cycle after re-invasion. Also different transcriptomic datasets e.g. (Otto et al., 2010; Wichers et al., 2019; Subudhi et al., 2020) available on plasmoDB show some mRNA present across the complete asexual development cycle, with each dataset showing maximum peak at a slightly different stage.

      Even when located in foci and hence aiding detection of small amounts of protein (as is the case for MCA2-Y1344-GFP), the MCA2 signal in rings is not strong. For MCA2-TGD, the GFP signal is dispersed and therefore likely below our detection limit, while the same amount of protein concentrated at the K13 compartment is visible as foci in the MCA2-Y1344 cell line. Please note that MCA2-TGD has only 2.8% of the protein left whereas MCA2-Y1344 has 66.5% left and based on our manuscript is almost fully functional, hence fitting the different locations between the two versions.

      Overall we believe this shows that there are actually no significant discrepancies of the expression of the different MCA2 versions.

      15) Line 158: would it not have been more useful for the authors to have episomally expressed MCA2-3xHA in their MCA2Y1344STOP-GFPENDO line to make sure that the truncated protein is indeed going to the correct compartment? The experiments done by the authors suggests that the MCA2Y1344STOP goes to the right location but does not really confirm it.

      We appreciate the reviewers caution here. However, considering that MCA2Y1344STOP-GFPendo co-locates with mCherryK13 and endogenously HA-tagged full length MCA2 does the same to a similar extent, there is in our opinion little doubt that MCA2 is found at the K13 compartment and that this is similar with both constructs. If there are minor differences, these might as well occur if MCA2 is episomally (as suggested in the comment) instead of endogenously expressed. Given the limited insight, we therefore decided against the episomal overexpression (which due to its size of > 6000bp may also be somewhat less straight forward than it may sound).

      16) Line 191: it is stated that MCA2 confers resistance independently of the MCA domain, however in both the MCA2-TGD and MCA2Y1344STOP-GFPENDO parasites, the MCA domain is deleted, and for both parasites, there is resistance (albeit to a lower level in the MCA2Y1344STOP-GFPENDO line). Therefore, how can the authors state that the ART resistance is independent of the MCA domain? This statement should be that resistance is dependent on the loss of the MCA domain.

      We agree that this can’t be categorically excluded. However, a ~5 fold difference in ART sensitivity was observed between the parasites with MCA2 truncated at amino acid 57 compared to those with MCA at amino acid 1344 even though both do not contain the MCA2 domain. Hence, at least this difference is not dependent on the MCA2 domain. The larger construct missing the MCA domain shows only a very moderate reduction in RSA survival, again suggesting the MCA domain is not the main factor. We amended our statement in an attempt to more accurately reflect the data (line 487): This considerable reduction in ART susceptibility in the parasites with the truncation at MCA2 position 57 compared to the parasites still expressing 1344 amino acids of MCA2, despite both versions of the protein lacking the MCA domain, indicates that the influence on ART resistance is not, or only partially due to the MCA domain.” We would be hesitant to state the reviewer's conclusion that “resistance is dependent on the loss of the MCA domain”, as the larger construct missing the MCA2 domain has a milder RSA effect compared to MCA2-TGD, which suggests the reduction in ART susceptibility is independent of the MCA domain. These considerations also agree with the fact that the parasites with the longer MCA2 version (in contrast to the MCA2-TGD) do not have any detectable growth defect which indicates that the protein can fulfil its function without the MCA2 domain.

      17) Line 192: Why did the authors not check if MCA2 is involved in endocytosis? They state later on in the manuscript that they did not do endocytosis assays with TGD lines, however if the authors include the correct controls, this could be easily done. It would also be really interesting to see whether endocytosis gets progressively worse going from WT to MCA2Y1344STOP to MAC2TGD. This experiment (as well as doing endocytosis assays for KIC4 and KIC5 TGD lines) would drastically increase the impact of this study. These experiments would not take more than 3 weeks to perform, and would not require the generation of new lines.

      So far were very hesitant to do bloated FV assays with TGDs (even though TGDs were available for the genes encoding MCA2 and KIC4 and KIC5). The reason for this was:

      1. the fact that these proteins could be disrupted indicated either redundancy or only a partial effect on endocytosis which might lead to only small effects that likely are difficult to pick up in an assay scoring for the rather absolute phenotype of bloated vs non-bloated. Using the refined assay measuring FV size could partly amend this but we note that also FV without hemoglobin have a certain size, reducing the relative effect if there are smaller differences.
      2. a TGD line does not permit tightly controlled inactivation of the target which makes comparing the outcome of bloated food vacuole assays difficult if there are smaller growth and stage differences to the 3D7 control.
      3. in contrast to conditional inactivation parasites, the TGD lines had ample times to adapt to loss of the target protein (compensatory mechanisms are well known for endocytosis, for instance in clathrin mediated endocytosis loss of individual components can be compensated (Chen and Schmid, 2020)). We nevertheless see the reviewer's point that this should at least be attempted and now conducted these assays (see also major point 40). For MCA2 (as requested in this point), the data is shown in Figure S5C-E. This assay showed that in MCA2-TGD, MCA2Y1344STOP-GFPendo (similar to the 3D7 control) >95% of parasites developed bloated food vacuoles. Additionally, we also measured the parasite and food vacuole size of individual cells in an attempt to solve some of the problems with TGDs with such assays. In order to specifically solve problem 2 mentioned above, we analysed the food vacuoles of similarly sized parasites, however, they were non-distinguishable between the three lines. Of note, in agreement with the reduced parasite proliferation rate (Birnbaum et al., 2020) a general effect on parasite and food vacuole size was observed for MCA2-TGD parasites, indicating reduced development speed in these parasites. Hence, it is possible that a potential endocytosis reduction was accompanied by a slowed growth, and the comparison of similarly sized parasites may have obscured the effect. It is therefore not sure if there indeed is no endocytosis phenotype, although we can exclude a strong effect in trophozoites.

      Based on the RSA results at least rings can be expected to have a reduced endocytosis in the MCA2-TGD. Apart from options 1-3 mentioned above, it is therefore possible there is an effect restricted to rings, although in that case the reduced growth in trophozoites would be due to other functions of MCA2. Overall, we can conclude that the MCA2-TGD parasites do not have a strongly reduced endocytosis, but given the fact that the parasites are viable, this is not surprising. Whether the MCA2-TGD has no effect at all on endocytosis we would be very hesitant to postulate based on these results.

      18) The authors should consider re-organising the MCA2 section, first showing that the 3xHA tagged line colocalises with K13, then performing the new truncation.

      We attempted to re-organise as suggested but because we now included additional fluorescence microscopy images of schizont and merozoites (in response to reviewer 2 major comment 3) the main figure would become even larger. To prevent this, we kept the 3xHA data in the supplement.

      19) Line 197: Once again ref 43 is not correct to illustrate that actin/myosin is involved in endocytosis

      We thank the reviewer for pointing this out – we removed Ref 43.

      20) Line 202: the authors state that MyoF localises near the food vacuole from ring stage/trophs onwards. However, how can this statement be made in schizonts based on these images (Fig. 2A), where it doesn't look like MyoF is anywhere near the FV? This statement can only be made for schizonts if co-localised with a FV marker (which is done in Fig. 2B), however, based on the number of MyoF foci, it appears that this was not done for schizonts. Please either remove the statement that MyoF is near the food vacuole from trophs onwards (because it is only seen near the FV up until trophs) or show the data in Fig. 2B of schizonts to substantiate these claims.

      This is a valid point. We originally did not focus on schizonts because most markers end up in some focal area in the forming merozoite but other proteins (such as e.g. K13) also have one or more additional foci at the FV, making interpretation unclear, particularly if the schizont is still organizing to become fully segmented. This is why we generally focused the K13 co-localisations on the trophozoite stage to obtain the clearest information on endocytosis. However, given the fact that this manuscript gives the first localization of MyoF in P. falciparum parasites, we now provide a comprehensive time course (Figure 1C, S1A) including schizonts, which show quite a complex pattern: while the MyoF-GFP localization in trophozoites appeared as multiple foci close to K13 and also the FV, the MyoF-GFP pattern changes in late schizonts (fully segmented) and merozoites, appearing as elongated foci no longer close to K13 or the FV. Of note, this pattern has been previously reported for MyoE in P. berghei (Wall et al., 2019).

      We therefore revised the statement about MyoF localization in schizont to better reflect the observed localization: (line 175): In late schizonts and merozoite the MyoF-GFP signal was not associated with K13, but showed elongated GFP foci (Figure 1C, S2A) reminiscent of the MyoE signal previously reported in P. berghei schizonts (Wall et al., 2019).”

      21) Line 204-206: what does this statement bring to the paper? Is it to show that it is the real localisation of MyoF because 2 tag cell line show the same localisation? I don't think this is needed, especially as later in the manuscript an HA-tag MyoF line is used and show similar localisation.

      We see the reviewers point, but prefer to keep this data included in the supplement, particularly because potential differences in the location of tagged MyoF were a major concern.

      Related to the tag issue: in order to get a better understanding of the effect of C-terminally tagging with different sized tags we now performed a more detailed analysis of the MyoF-3xHA cell line (Figure S2F-G), showing that this cell line shows a growth rate similar to the 3D7 wild type parasites, and has less vesicles than the 2x-FKBP-GFP-2xFKBP cell line, but still slightly, but significantly more than 3D7 parasites. Overall, this indicates that the smaller 3xHA tag has less effect on the parasite, than the larger 2x-FKBP-GFP-2xFKBP tag (see also new Figure 1L, showing a correlation of level of inactivation and the endocytosis phenotype for MyoF).

      22) Line 212: The overlap of K13 with MyoF in Figure 2C 3rd panel (1st trophozoite panel) is not obvious, especially as the MyoF signal seems inexistant. I would advise the authors to replace with a better image. Also, why are there no images of schizonts shown in Figure 2C?

      As suggested we exchanged the trophozoite image of panel Figure 2 C (now Figure 1C) and expanded this panel with images covering the complete asexual development cycle including schizonts in response to this and the previous points. As indicated above (point 20), schizont stages are complex to interpret. While late schizonts likely are not very relevant for endocytosis this is the first description of the location of the protein in this parasite and we therefore now provide a more thorough representation of the MyoF location across asexual stages in Figure1C and S2A.

      23) Line 217: the spatial association of MyoF with K13 is very different when it is tagged with GFP and when it is tagged with 3xHA. The way the authors word it here, it seems that there is agreement with the two datasets, when this is not in fact the case (59% overlap for MyoF-GFP and only 16% overlap with MyoF-3xHA). These data suggest that the GFP and the multiple FKBP tags are doing something to the protein and therefore maybe the ensuing results using this line should not be trusted or be taken with a pinch of salt.

      We agree with the reviewer that the location of this MyoF-GFP in the cell might differ due to the partial inactivation but in contrast to this comment, the data does not indicate any large differences. It seems the reviewer mixed something up (the 59% mentioned might come from the MCA2 figure?). The data with the two lines with differently tagged MyoF co-localised with K13 are actually quite comparable: GFP-tagged vs HA-tagged MyoF overlapping with K13 was 8% vs 16% full overlap, 12% vs 19% partially overlapping foci, 36% vs 63% foci that were touching but not overlapping (compare what now is Figure 1D and Figure S2C). Only in the 'no overlap' there is a much smaller proportion in the HA-tagged line. However, given that these are IFAs which on the one hand are more sensitive to see small protein pools but on the other hand also have pitfalls due to fixing of the cells (e.g. tiny increase in focus size due to fixing could increase the number of touching foci that in live cells might be close but did not touch), some variation can be expected to the live cells. We agree though that the partly reduced functionality of MyoF might be the reason for the consistent tendency of a lower overlap even though the difference is much less than indicated in the comment. We added "with a tendency for higher overlap with K13 which might be due to the partial inactivation of the GFP-tagged MyoF" to the sentence "IFA confirmed the focal localisation of MyoF and its spatial association with mCherry-K13 foci"

      While we expect the fact that the difference between these parasites is only small somewhat reduces the "pinch of salt" with the MyoF line, we do agree that the partial functional inactivation of the GFP-tagged MyoF line may have some impact. However, we do not think that this means the results with the MyoF-GFP line are untrustworthy. On the contrary, it provides insights into its function that in some ways is equivalent to a knock down or TGD. Overall all the MyoF lines show: few vesicles occur in the MyoF-HA-line, more in the MyoF-GFP line and even more after knock sideways of MyoF-GFP. Importantly the severity of this phenotype correlates with the growth rates in these lines. Hence, together with the bloated food vacuole assays, this provides consistent data indicating that MyoF has a role in the transport of HCC to the FV and its level of activity correlates with the number of vesicles and growth. To better highlight this, it is now summarised in Figure 1M.

      24) Line 219: the authors state here that they could not detect MyoF-GFP in rings, when in Figure 2C they show MyoF-GFP in rings, and also show that they could detect MyoF in Sup Fig. 3B with the 3xHA tagged line. Is this a labelling mistake in Figure 2C? If the authors could indeed not see MoyF-GFP in rings, this statement should have been made when Figure 2A was presented, and not so late in the manuscript, which causes confusion.

      We thank the reviewer for pointing this out. We now provide a detailed time course (see also previous points) which shows that there is no detectable MyoF-GFP signal during ring stage development until the stage where the parasites starts the transition to trophozoites (i.e. MyoF-GFP signal could only be observed in parasites already containing hemozoin). In addition to the extended time course in Figure 1C (previously 2C) we included a panel of example ring stage images below to further highlight this. We also changed the labelling of the parasite with MyoF-GFP signal the reviewer mentions in Figure 1C to “late ring stage” (it already contains hemozoin) to clarify this.

      The description of Figure 1A is now changed to: (line 153) *“The tagged MyoF was detectable as foci close to the food vacuole from the stage parasites turned from late rings to young trophozoite stage onwards, while in schizonts multiple MyoF foci were visible (Figure 1A, S2A).” *

      Please see our answer to major comment #45 where we provide an explanation for the difference between MyoF-3xHA and MyoF-GFP signal in ring stage parasites.

      [Figure MyoF]

      25) Line 237: Showing a DNA marker (DAPI, Hoecht) for Figure 2E, and subsequent figures using mislocalisation to the nucleus, would help the reader assess efficiency of the mislocalisation.

      Please see response to major comment #64 for a detailed answer on why we did not include DNA staining in the imaging used to assess mislocalization upon knock-sideways.

      26) Line 254-256: authors should show the results of the bloating assay for parental 3D7 parasites (+ and - rapalog) to see whether the MyoF line - rapalog has increased baseline bloating. This applies to all subsequent FV bloating assays.

      We did do several controls for bloated assays (including +/- rapalog of an irrelevant knock sideways line as well as using a chemical insult for which the control was 3D7 without treatment) in previous work (Birnbaum et al., 2020), which indicated that there is no effect of rapalog to reduce bloating. Although these controls are more stringent, we nevertheless did a 3D7 +/- rapalog control and added this to the manuscript (Figure S2I). As it is not possible to do this side by side with the assays that are already in the manuscript and the +/- rapalog 3D7 cells consistently showed no or very low numbers of cells without bloating (and stringent controls in the past equally did not show an effect), we believe adding this control once suffices.

      27) Line 254-257: The authors say that because fewer parasites show a bloated food vacuole upon inactivation of MyoF it means that less hemoglobin reached the food vacuole. I understand the authors statement, however, shouldn't they look at the size of the food vacuole, instead of the number of parasites with bloated FV, to make such a statement? This has been done for KIC12 so why not doing it for MyoF?

      This was now done and is provided as Figure 1J-K, S2J. The results confirm the assessment scoring bloated vs non-boated food vacuoles.

      28) Line 259-261: these results would be difficult to interpret namely because the authors have dying parasites, which is exacerbated with the protein being knocked sideways. The authors should mention the pitfalls their knock sideways and tagging design here. Line 260-261: RSA is an assay relying on measuring parasite growth 1 cycle after a challenge with ART for 6 hours.

      Fortunately, this concern is unfounded, as the survival (measured by parasitemia after one cycle) of the same sample + and - DHA is assessed, isolating the DHA effect independent of potential growth defects which are cancelled out. Hence, if there were parasites dying in the MyoF line (please note that they might not actually die, but simply grow more slowly), this factor applies for both the + and - ART condition. As we are testing for a decreased susceptibility to ART which would manifest as an increased survival in RSA surfacing above 1%, antagonistic effects of reduced MyoF function and ART treatment would not result in detectable differences as without effect, the RSA survival is always close to zero.

      The same applies for the knock sideways where we assess the survival of +rapalog between +ART and -ART. If the reduced MyoF activity of the knock sideways leads to a decreased survival, this applies to both +ART and -ART. Please also note that rapalog was lifted after the DHA pulse (see e.g. Figure S2K).

      That effects on growth are cancelled out is nicely illustrated for proteins where there is a stronger and more rapid effect on growth upon their conditional inactivation. For instance when KIC7 is knocked aside, there is a considerable increased of RSA survival, even though continued inactivation of KIC7 would have a severe growth defect (Birnbaum et al., 2020). Vice versa, a growth defect alone does not result in reduced RSA susceptibility as evident from knock sideways of an unrelated protein or using a chemical insult (Figure 4H in (Birnbaum et al., 2020) or simply slowing the ring stage by e.g. reducing EXP1 levels (Mesén-Ramírez et al., 2019). Hence, a growth reduction is not expected to alter the RSA outcome. And even if it did, it would only lead to an underestimation of the readout if growth is too severely affected (which would be obvious in the + rapalog without DHA sample, which was not the case).

      In that respect it is valuable to have the rapid kinetics of knock sideways which permit inactivation of a protein before severe growth defects occur (although the only partial responsiveness of MyoF clearly is not the most optimal). In contrast, the absolute loss of a gene (as is the case if diCre is used) prevents (or at least makes it extremely difficult as the timing would need to exactly hit sufficient protein reduction without killing the parasite until the end of the RSA) using this system in these experiments (again see (Mesén-Ramírez et al., 2021) where in a EXP1 diCre based knock out RSA was only possible because we complemented with a lowly, episomally expressed EXP1 copy to have parasites with only a partial phenotype to do this assay).

      29) Line 261-263: the authors sate that MyoF has a function in endocytosis but at a different step compared to K13 compartment proteins. I am not sure what they mean here. Can this be clarified?

      The different steps in endocytosis are explained in the introduction and we now tried to further clarify this (line 98). So far VPS45 (Jonscher et al., 2019), Rbsn5 (Sabitzki et al., 2023), Rab5b (Sabitzki et al., 2023), the phosphoinositide-binding protein PX1 (Mukherjee et al., 2022), the host enzyme peroxiredoxin 6 (Wagner et al., 2022) and K13 and some of its compartment proteins (Eps15, AP2µ, KIC7, UBP1) (Birnbaum et al., 2020) have been reported to act at different steps in the endocytic uptake pathway of hemoglobin. While inactivation of VPS45, Rbsn5, Rab5b, PX1 or actin resulted in an accumulation of hemoglobin filled vesicles (Lazarus et al., 2008; Jonscher et al., 2019; Mukherjee et al., 2022; Sabitzki et al., 2023), indicative of a block during endosomal transport (late steps in endocytosis), no such vesicles were observed upon inactivation of K13 and its compartment proteins (Birnbaum et al., 2020), suggesting a role of these proteins during initiation of endocytosis (early steps in endocytosis).

      VPS45 has not apparent spatial connection to the K13 compartment but the fact that MyoF does - and its inactivation also results in vesicle accumulation - indicates that it is downstream of vesicle initiation, providing the first connection from the initiation phase to the transport phase. More evidence for these different steps of endocytosis has been published in a recent preprint from our lab, where we simultaneously inactivated a protein of both “endocytosis steps” (Sabitzki et al., 2023).

      To clarify this in the results as requested, we changed the statement to: (line 256) Overall, our results indicate a close association of MyoF foci with the K13 compartment and a role of MyoF in endocytosis albeit not in rings and at a step in the endocytosis pathway when hemoglobin-filled vesicles had already formed and hence is subsequent to the function of the other so far known K13 compartment proteins.”

      30) Do the authors mean that it is involved in endocytosis but not in ART resistance? If so, this is a very difficult statement to make since the parasites are dying. Is there any evidence of point mutations in MyoF in the field?

      We split this point to address all issues raised here. Please see response to point 29 which clarifies that this was meant in a different way and our response to point 28 which explains why the dying parasite issue is not expected to affect the RSA (please also note that we do not have evidence of actually dying parasites in the MyoF-2xFKBP-GFP-2xFKBP line, most likely the growth is slowed).

      The mutation issue is interesting. In fact evidence exists that MyoF mutations may be associated with resistance (Cerqueira et al., 2017) (please note that there it is still called MyoC) but in a recent preprint from our lab we did not find any evidence for a significantly changed RSA survival in 12 tested mutations in the corresponding gene (Behrens et al., 2023).

      To clarify this we added the following statement to the discussion (line 709): "Of note, mutations in myoF have previously been found to be associated with reduced ART susceptibility (Cerqueira et al., 2017), but 12 mutations tested in the laboratory strain 3D7 did not result in increased RSA survival (Behrens et al., 2023)*. *

      31) Line 298: the authors state that there is no growth defect in the first cycle when rapalog is added to the KIC11 line, however based on Figure 3D, there is evidently a 25% reduction in growth compared to - rapalog at day 1 post treatment, and a 60% reduction by day 2, which is still within the 1st growth cycle. The authors should either revise their statement or provide an explanation for these findings. The authors should also explain why their Giemsa data in Fig. 3E is not in accordance with their FACS data.

      We think there is a misunderstanding here, as our figure legend was not detailed enough and we apologise if this had been misleading. The growth effect is restricted to invasion or possibly the first hours of ring stage development (see point 4&5, reviewer 2), which in asynchronous cultures more rapidly takes effect as the culture also contains schizonts that immediately generate cells that re-invade but can't due to inactivation of KIC11 (due to the rapid action of the knock sideways, KIC11 is already inactivated). In contrast, in highly synchronous cultures, this effect can only be evident once the parasites reached the schizont stage (starting with rings this takes close to 2 days). We now clarify that Figure 2E (previously Figure 3D) shows growth data obtained with an asynchronous parasite culture, while in Figure 2F the growth assay is performed with tightly synchronized (4h window) parasites as stated in the Figure legend.

      We now explicitly state in each Figure legend and for each growth experiment throughout the manuscript whether we used asynchronous or synchronized parasites for growth assays.

      Related to this, the incorrect y-axis label of what is now Figure 2E mentioned in major comment #58 is now corrected.

      32) Line 301: KIC11 could also be important very early for establishment of the ring stage for example for establishment of the PV. Also, was mislocalisation assessed in rapalog-treated parasites at 72 hours or in cycle 3?

      This is a valid point and this has now been addressed. We performed an invasion/egress assay revealing similar schizont rupture rates, but significantly reduced numbers of newly formed ring stage parasites (Figure 2H, S3G), indicating an effect of KIC11 inactivation either on invasion or possibly the first hours of ring stage development. A very similar point was raised by Reviewer 2, please see reviewer 2; major comment #4. This is now also reflected in line 302, which now reads: ”… indicating an invasion defect or an effect on parasite viability in merozoites or early rings but no effect on other parasite stages (Figure 2F-H, Figure S3F-G).”

      We further included an assessment of mislocalization 80 hours after the induction of knock-sideways by addition of rapalog in Figure S3E which showed mislocalization of KIC11 to the nucleus.

      33) Line 311: the authors should change the sentence from 'not related to endocytosis' to 'not related to endocytosis or ART resistance'.

      Done as suggested.

      34) Line 323-325: Authors say that a nuclear GFP signal can be observed in early schizonts for KIC12. According to the pictures provided in Figure 4A and Figure S5A it is not very obvious. Also faint cytoplasmic GFP signal could only be background as we can see that exposure is higher for schizont pictures

      We changed the sentence (line 339) to: “…nuclear signal and a faint uniform cytoplasmic GFP signal was detected in late trophozoites and early schizonts and these signals were absent in later schizonts and merozoites (Figure 3A, Figure S4A,B).” in order to emphasize that the nuclear signal disappears early during schizont development.

      35) Line 326-328: The authors say that kic12 transcriptional profile indicate mRNA levels peak (no s at peak) in merozoites. Should they show live cell imaging of merozoites then? Because from the Figure 4A schizont pictures where schizonts are almost fully segmented no signal can be observed.

      The observation that mRNA levels of early ring stage expressed proteins tend to increase already in mature schizonts and merozoites is well established (e.g. (Bozdech et al., 2003)). A very good example for this are exported proteins of which most show a transcription peak in schizonts but the proteins are only detected in rings see e.g. (Marti et al., 2004). Hence, our observation for KIC12 is quite typical.

      We originally did not include merozoites, as in the last row of Figure 3B fully developed merozoites within a schizont with already ruptured PVM are shown and no GFP signal can be detected in these parasites. We now provide images of free merozoites in Figure S4A-B showing again no detectable GFP signal.

      We thank the reviewer for pointing out the typo, "peak" has been corrected.

      36) Line 347: The authors state that using the Lyn mislocaliser the nuclear pool of KIC12 is inactivated by mislocalisation to the PPM. This tends to suggest that only the nuclear pool of KIC12 is mislocalised. How is it possible that only the nuclear pool is mislocalised?

      The Lyn mislocaliser is at the PPM which is continuous with the cytostomal neck where the K13 compartment likely is found. The effect of the Lyn mislocalizer on the KIC12 protein pool localizing at the K13 compartment is therefore somewhat unclear. For this reason we already had the following statement in the original submission (line 400): “Foci were still detected in the parasite periphery and it is unclear whether these remained with the K13 compartment or were also in some way affected by the Lyn-mislocaliser.” We would like to stress here that the same does not apply to the nuclear mislocaliser, which is only a trafficking signal delivering KIC12 to the nucleus and hence likely does not affect the nuclear pool of KIC12, only the K13 compartment pool (the main interest of this manuscript).

      We realised that the statement towards the end of this paragraph was unnecessarily ambiguous in regards to the K13 compartment pool of KIC12 which might have caused some confusion about the function of this pool of KIC12 and therefore modified it to (line 374): "Due to the possible influence on the K13 compartment located foci of KIC12 with the Lyn mislocaliser, a clear interpretation in regard to the functional importance of the nuclear pool of KIC12 other than that it confirms the importance of this protein for asexual blood stages is not possible. In contrast, the results with the nuclear mislocaliser indicate that the K13 located pool of KIC12 is important for efficient parasite growth.". It is also important to note that this limitation does not apply to the NLS knock sideways in regard to the K13 compartment and that the endocytosis function of this pool of KIC12 seems solid which with this statement is enforced.

      37) Line 368-369: Effect was also only partial for MyoF. Why didn't you measure the same metrics for MyoF?

      This was now done and is provided as Figure 1J-K, S2J, confirming our previous interpretation, see also point #27 which raises the same point.

      38) Line 379: you don't know if all proteins acting later in endocytosis will have an increased number of vesicles as a phenotype

      This is based on our current definition as stated in the introduction. It assumes a directional vesicular transport of hemoglobin to the food vacuole where inhibition of early stages will prevent transport before HCC-filled autonomous vesicular containers have formed and entered the cell. In contrast later inhibition stops such containers from further transport, leading to their accumulation. Such an accumulation is visible after VPS45-inactivation and other proteins (Jonscher et al., 2019; Mukherjee et al., 2022; Sabitzki et al., 2023) or treatment with cytochalasin D (Lazarus et al., 2008). While it is possible that there may be smaller intermediates formed at the K13 compartment that later on unite or fuse with the compartment evident after VPS45 inactivation and these might be missed due to small size (i.e. inhibition of a step between K13 compartment and an early endosome or equivalent), this would still be upstream of the VPS45 induced containers and hence would be earlier. We therefore believe that based on the framework given in the introduction (see also (Spielmann et al., 2020)) to assume that a phenotype manifesting as reduced food vacuole bloating without formation of detectable vesicles likely signifies inhibition of the process early whereas reduced bloating but with vesicles signifies inhibition later in the process.

      39) Line 413-414: The authors state that no growth defect was observed upon KS of 1365800. Is growth alone enough to say that there is no impact on endocytosis?

      This is an interesting point. The endocytosis proteins we studied so far indicate that efficient impairment of endocytosis manifests as a severe growth defect. Hence, lack of a growth defect can be assumed to be an indicator for absence of an important role for endocytosis (or any other growth relevant process). Clearly there is a gradual response, such as seen in the different MyoF versions resulting in proportional growth and vesicle appearance phenotypes. Hence, a protein with a minor role might have slipped our attention but then it probably is also not a very important protein in endocytosis.

      To further strengthen our assessment of PF3D7_1365800 importance for asexual blood stage development, we now also generated a cell line expressing the PPM Mislocalizer, enabling knock sideways to the PPM. This was done because this protein consistently has a focus at the nucleus that may be within the nucleus. Again this revealed no growth defect upon inactivation (Figure S7D).

      40) Line 432: in this section, the authors state that KIC4 and KIC5 seem to have domains that may suggest these proteins are involved in endocytosis, based on the alpha fold data that is publicly available. Considering the authors have TGD-SLI versions of these lines (Birnbaum et al. 2020) and have already confirmed in this previous publication that they confer resistance to ART; it would make sense to look at endocytosis for these genes. This would be a relatively simple and straightforward experiment, taking no longer than two to three weeks, and would require no additional reagents or line generation. Doing these experiments would add a lot more weight to this final section. The authors later state that KIC4 and 5 are TGD lines, so not the best for endocytosis assays. It is unclear why this would be difficult to do if an adequate control is contained in the experiment (such as parental 3D7). It explains why they did not perform the MCA2 endocytosis assays further up, but in my opinion, an attempt at doing these assays is important and would significantly increase the impact of this paper. Identical as major comment #17.

      As stated in the manuscript and above, we were originally hesitant to do these assays due to the fact that we can't induce inactivation which is less ideal than comparing the identical parasite population split into plus and minus and is further complicated by the likely smaller effect as the TGDs still permitted growth. However, we see the point of the reviewer and now performed these assays using 3D7 as controls and taking extra care to account for stage differences between the TGD lines and 3D7. However, there was no significant difference in the bloated food vacuole assays with these cell lines. Due to the reasons mentioned in major point 17, we are not sure this indeed means these proteins have no role in endocytosis. One possible reason why we were able to obtain these TGDs may have been because the effect on endocytosis is less than in the essential proteins (or is ring stage specific) and in a TGD an endocytosis defect may therefore not be detectable with our assays (see details and further possible explanations in response to point 17).

      In an attempt to address the TGD issue, we generated knock sideways cell lines for KIC4 and KIC5. Unfortunately, the mislocalization of KIC5 to the nucleus was inefficient (see figure below). As this did not result in a growth defect (in contrast to the clear KIC5-TGD growth defect (Birnbaum et al., 2020)), this line is not suitable to study a potential role of this protein in endocytosis. Therefore, we performed the bloated food vacuole assay only with KIC4-2xFKBP-GFP-2xFKBPendo+1xNLSmislocaliser parasites. However, this revealed no effect on HHC uptake, which is in line with the normal growth of KIC4-TGD parasites (Birnbaum et al., 2020) and suggests that this protein could only have a minor or redundant role in endocytosis (it is the line that shows the smallest effect in RSA). As the KIC4 and KIC5 knock sideway lines did not permit any conclusions, we did not include them into the revised manuscript but they can be found here:

      [Figure KIC4 knock sideways & KIC5 knocksideways]

      Figure legend: (A) Live-cell microscopy of knock sideways (+ rapalog) and control (without rapalog) KIC4-2xFKBP-GFP-2xFKBPendo+ 1xNLS mislocaliser parasites 4 and 20 hours after the induction of knock-sideways by addition of rapalog. Scale bar, 5 µm. Relative growth of asynchronous KIC4-2xFKBP-GFP-2xFKBPendo+1xNLSmislocaliser plus rapalog compared with control parasites over five days. Three independent experiments were performed. Growth of knock sideways (+ rapalog) compared to control (without rapalog) KIC4-2xFKBP-GFP-2xFKBPendo+1xNLSmislocaliser (blue) or KIC5-2xFKBP-GFP-2xFKBPendo+1xNLSmislocaliser (red) parasites over five days. Mean relative parasitemia ± SD is shown. (B) Live-cell microscopy of knock sideways (+ rapalog) and control (without rapalog) KIC5-2xFKBP-GFP-2xFKBPendo+1xNLSmislocaliser parasites 4 and 20 hours after the induction of knock-sideways by addition of rapalog. Scale bar, 5 µm. Growth of asynchronous KIC5-2xFKBP-GFP-2xFKBPendo+ 1xNLSmislocaliser plus rapalog compared with control parasites over five days. Four independent experiments were performed. __(C) __Bloated food vacuole assay with KIC4-2xFKBP-GFP-2xFKBPendo+1xNLSmislocaliser parasites 8 hours after inactivation of KIC4 (+rapalog). Cells were categorized as with ‘bloated FV’ or ‘non-bloated FV’ and percentage of cells with bloated FV is displayed; n = 3 independent experiments with each n=19-30 (mean 21.4) parasites analysed per condition. Representative DIC are displayed. Area of the FV, area of the parasite and area of FV divided by area of the corresponding parasites were determined. Mean of each independent experiment indicated by coloured symbols, individual datapoints by grey dots. Data presented according to SuperPlot guidelines (Lord et al., 2020); Error bars represent mean ± SD. P-value determined by paired t-test. Area of FV of individual cells plotted versus the area of the corresponding parasite. Line represents linear regression with error indicated by dashed line.

      41) Line 490-493: the authors state that the K13 compartment proteins fall in two groups, some that are involved in ART resistance AND endocytosis, and some that have different functions. However, in this manuscript the authors have demonstrated 3 flavours that K13 compartment proteins can come in: • Some that confer ART resistance and are involved in HCCU (MCA2) • Some that are involved in HCCU but not ART resistance (MyoF & KIC12) • Some that are involved in neither (KIC11) The authors should therefore revise this statement.

      We agree that this was not well phrased. To account for the fact that not all endocytosis proteins confer increased RSA survival to the parasites when inactivated we changed this statement (line 604): "This analysis suggests that proteins detected at the K13 compartment can be classified into at least two groups of which one comprises proteins involved in endocytosis or in vitro ART resistance whereas the other group might have different functions yet to be discovered.

      Generally, we believe that endocytosis is the overarching criterion and we therefore would like to keep the definitions of the main groups (endocytosis or not). As indicated by the title, the focus of the manuscript is on the K13 compartment for which so far endocytosis is the only experimentally associated function. That this group contains proteins that do not confer reduced ART susceptibility when conditionally inactivated (KIC12 and MyoF) is explained by their stage-specificity, making this a subgroup of the overarching endocytosis group.

      We realise that with the endocytosis data on the KIC4, KIC5 and MCA2 TGD there is now also a subgroup we were unable to demonstrate an endocytosis effect in trophozoites although they show changes in RSA survival. However, as indicated above, we would be hesitant to fully exclude some role of these proteins in endocytosis in rings. Particularly as a comparably small reduction in endocytosis protein activity or abundance is sufficient to increase RSA survival (Behrens et al., 2023). A principal classification of "endocytosis or ART resistance" or "neither endocytosis nor ART resistance" still accounts for this and therefore seems to us to be the most useful, particularly also in light of our domain identification that then can be linked with one or the other group.

      42) Line 508: the authors state that they expanded the repertoire of K13 compartments, when in fact they functionally analysed them - they did not do another BioID to identify more candidates.

      We respectfully disagree with the reviewer in this point, we did expand the repertoire of known K13 compartment proteins. Only independently experimentally validated proteins from proximity biotinylation experiments can be considered part of the K13 compartment (or any other cellular site or complex). Without validation of the location, the identified proteins can only be considered candidates. This is highlighted in this manuscript by the finding that several proteins of the list did not localize at the K13 compartment.

      43) Line 570-572: has anyone ever tested whether CytoD or JAS treatment in rings, is sufficient to mediate ART resistance? Something similar to what was done in PMID 21709259 with protease inhibitors. If not this would be a pretty interesting experiment for the authors to do that could shed more light on the MyoF data. It would take maybe 2 weeks to do and not require the generation of any new lines. This would clarify whether other Myosins other than MyoF are involved in endocytosis, as is suggested by previous publications (PMID: 17944961).

      We now included this experiment. In agreement with a lacking need of MyoF in rings and no effect on RSA survival, there was no increased survival of the parasites in RSA (neither on 3D7 nor on K13 C580Y parasites) after cytD treatment (new part in Figure 1M). We thank the reviewer for pointing out that this experiment might also inform on whether other myosins influence endocytosis in ring stages. We added (line 250): Similarly, also incubation with the actin destabilising agent Cytochalasin D (Casella et al., 1981), had no effect on RSA survival in 3D7 or K13C580Y (Birnbaum et al., 2020) parasites, indicating an actin/myosin independent endocytosis pathway in ring stage parasites (Figure 1M) and speaking against other myosins taking over the MyoF endocytosis function in rings.”

      44) Line 608: inhibitors targeting the metacaspase domain of MCA2 may inadvertently inactivate other essential parts of the protein. They authors should acknowledge this possibility in the text.

      The inhibitors used in the cited studies (Kumari et al., 2018) are validated metacaspase inhibitors, such as Z-FA-FMK (Lopez-Hernandez et al., 2003). Activity against the other parts of PfMCA2 - which apart from the MCA domain shows no homology to other proteins - is therefore unlikely.

      45) Line 624-625: the authors state that MyoF is 'lowly expressed in rings' - indeed this is the case in their MyoF-2xFKBP-GFP-2xFKBP line which the authors established has defects due to the tag, but it appears from their MyoF-3xHA tagged line that it is expressed in rings. The authors should therefore revise their statement, and be careful of making claims based on their defective line and using fluorescence imaging as their only metric. If they do want to make the statement that it is not there in rings, they should also do a western blot, which is much more sensitive since it amplifies the signal compared to an image of one parasite.

      This comment is related to major point #24. We also would like to stress that while the MyoF-GFP line already shows a phenotype, the impression of defectiveness based on its location is due to a mix up (see major point #23).

      We now provide a comprehensive time course of the MyoF-GFP signal (Figure 1C, S2A) showing that there is no detectable MyoF-GFP signal until the transition from ring to trophozoite stage. As this is all under the endogenous promoter, we do not think the partial functional inactivation of the tagging is the reason for the absence of the signal. If anything, we would have expected adding a stably folded structure such as GFP to increase the stability of the protein. The main reason for the discrepancy of MyoF signal in rings between the GFP-tagged line (of note there is also no detectable MyoF-GFP signal in MyoF-2xFKBP-GFP ring stage parasites (Figure S2B)) and the HA-tagged line likely is that IFA is much more sensitive than live GFP detection (similar to the high sensitivity the reviewer mentions in regards to WB). This discrepancy therefore is likely due to the fact that the lowly expressed MyoF only become apparent with the HA-tagged line due to the IFA. We therefore believe that MyoF is 'lowly expressed in rings' is an appropriate description of our results obtained with three different cell lines (MyoF-2xFKBP-GFP-2xFKBP, MyoF-2xFKBP-GFP and MyoF-3xHA). We hope this is sufficiently well reflected in the manuscript where we write ‘a low level of expression of MyoF in ring stage parasites.’ not that it is ‘not there in rings’ (line 174).

      46) Line 635: arguably this is the 3rd variety and not the 2nd (the authors already mentioned 2 types - ones that are involved in HCCU AND ART and those involved in HCCU only). See comment for line 490-493 above.

      See response for major comment #41, we now consistently used "or" instead of "and". See line 490-493 how this was resolved for what previously was line 635.

      47) Line 785: Bloated food vacuole assay/E64 hemoglobin uptake assay method specify that a concentration of 33mM E64protease inhibitor was used. However, in reference 44, cited in the manuscript, a concentration of 33µM E64 was used. Please confirmed if this is just a typo or if 1000x E64 concentration was used which renders the experiment invalid.

      We thank the reviewer for pointing this out, we corrected this typo and will look out for symbol font conversion errors for the resubmission.

      48) Line 788: it is unclear from this section what is considered a bloated food vacuole - is there an area above which the FV is considered bloated? Do the authors do these measurements manually or use an addon in FIJI/ImageJ? What is the cutoff for if a FV is bloated? Please clarify. Additionally, for the representative images + rapalog for Figures 2H and 4H, it would be useful to see where the authors delineate the FV (add a white circle showing what is actually measured).

      The bloated FV assay is well established (Jonscher et al., 2019; Birnbaum et al., 2020; Sabitzki et al., 2023). Although the bloating of the FV is a human judgment call, it is actually quite obvious: bloating appears as an easily spotted bulging of the FV in DIC. As also minor bloating is scored as 'bloated', it is a very conservative assay. Using an-add on to measure this is not straight forward. It is unclear how this bulging effect of the FV in DIC could be spotted by a software and due to the obviousness to human operators, potentially lengthy and complicated efforts to design appropriate machine learning options were not undertaken. The situation faced by the scorer of the assay is evident from Figure S4F-G which contains close to 50 "on rapalog" cells and close to 50 control cells, giving representative cells from all replicas of bloated FV assays with KIC12. Please note that these images shows the most complicated situation as far as bloated assays go, because the phenotype is not 100% (see Figure 3F) compared to e.g. KIC7 inactivation which leads to lack of bloating in almost all cells (see (Birnbaum et al., 2020) Figure 3E) but nevertheless the difference is still obvious. We are aware that in such situations (less than absolute inhibition) this assay scoring of "yes" or "no" is a surrogate for the actual level of inhibition and may be more subjective. This is why in this case we also did the FV size measurements (which are less dependent on human judgment) to further support this and give a better quantifiable measure. Of note, the bloated food vacuole judgments are done "blinded", i.e. the examiner does not know which sample they are looking at.

      In response to this reviewer's point we now also added the FV size refinement of the assay for MyoF inactivation which is one of the cases where inhibition of bloating is not in 100% of the cells (see major comment #27). Please also note here the advantage of the rapidly acting knock sideways technique for these assays which shows the sum of effect 8 h after initiating inactivation and for which we carefully control size of the cells which shows that there is no significant growth reduction over the assay time, excluding secondary effects due to a generally reduced viability. Compared to slower acting systems suggested to have been used instead (see introductory part and significance of this review), the rapid speed of knock sideways reduces the risk of potential pleiotropic or compensatory effects due to the time needed for proteins to be depleted if the gene or mRNA is targeted instead.

      The suggestion to include a ‘white circle’ (raised also as minor comment#27) is useful as an aid to see the food vacuole. However, in contrast to the Figures in (Birnbaum et al., 2020) (where we did add such a circle), we here included the DHE staining images in the figure, labelling the parasite cytosol which readily shows the FV (the FV corresponds to the region where there is no DHE staining). As this shows the position of the FV we would prefer to not obscure the DIC images with additional features to permit the reader to see the difference between bloated or non-bloated food vacuoles and keeping the image as natural as possible.

      49) Line 863-864: this sentence seems to be out of place.

      We thank the reviewer for pointing this out, the details of nucleus staining were moved to the correct part.

      50) Line 875: the authors state that there is a light blue wedge, when the circle consists of grey and black wedges. Please revise this.

      This has been corrected.

      51) Line 1059-1061: it is unclear whether the individual growth curves are different clones or whether they are just the same experiment repeated? If it is the latter, then why are they not combined, as is traditionally done?

      These are the individual replicates of the growth curves shown in Figure 1G of the same cell lines done on a different occasion. We always try to show as much of the primary data as possible and believe that showing individual data points from the different experiments is better than only the combined values which obscure the actual course of each experiment.

      52) Line 919-924: the authors mention a blue and red line, but there is only a black line in figure 3D. Moreover, the experiment of using the LYN mislocaliser was only done for KIC12 according to the manuscript. Additionally, the y axis of the figure states relative growth day 4[%] compared to rapalog, but then on the x axis there are several days. In the text it says there is no growth defect until the second cycle, but from this graph it appears the growth defect is evident as early as 1 day post rapalog treatment. Can the authors please clarify and correct the issues pointed out.

      We thank the reviewer for pointing this out, this was due to a copy & paste error in the figure legend that was now amended. We also fixed the incorrect axis label. For the last part (growth defect) please see detailed answer to Major comment#31 raising the same concern for KIC11 (in synchronous parasites the defect only takes effect once the cells reached the relevant stage whereas in asynchronous cultures there are always cells in the relevant stage that due to the rapid effect of the knock sideways already have a growth phenotype).

      53) Figure 1 panel B & C: the label of the figure where the signal from MCA2Y1344STOP-GFP is shown with the DAPI signal overlayed is deceptive since it suggests that this is the signal of full length MCA2. Please change the label of this panel from MAC2/DAPI to MCA2Y1344STOP/DAPI. The same is true for Panel C for the image labeled MCA2/K13 - please change this to MCA2Y1344STOP/K13.

      Done as requested.

      54) Figure 2B: what stages are these parasites? Please state this in the figure. Based on the MyoF pattern, it looks like rings in the upper panel and trophs in the bottom pannel. Why were schizonts not shown?

      Both are trophozoites (early trophozoite in top panel and late trophozoite in bottom panel). This is now labelled in what now is figure 1B. As stated above, schizont stages are less relevant for the topic of this manuscript and in order to prevent the manuscript from getting more disjointed and keeping it more focussed on the main topic, we decided to not include a schizont in the manuscript. Nevertheless, we included an example image below.

      [Figure MyoF_p40px schizont]

      55) Figure 2D&F: it is not very meaningful when growth assays are shown as a final bar after 4 days of growth. It is much more useful and informative to see a growth curve instead (as is shown in the supplementary), since it shows if the defect is apparent in the first growth cycle or later. With the way the data is currently shown, this is not apparent. I would advise the authors to switch the graph in 2F out of a combined graph of all the biological replicates growth curves for S3D - showing error bars.

      While we in principle fully agree with the reviewer in showing the course of the full experiment (which is available in Figure S2E), the key here is to show the overall difference. Hence, we would like to keep this comparison of the overall effect on growth in what now is Figure 1E and G. It is part of the argument to the doubts this reviewer raises to the function of MyoF (mainly in the overall assessment and the significance statement) to show that the phenotype is actually very consistent (partial inactivation through tagging or further inactivation using knock sideways increases endocytosis phenotypes, correlating with parasite viability).

      Please also note, that the growth curves upon knock sideways shown in Figure 1G, S2E are performed with asynchronous parasite cultures, which doesn’t allow us to draw direct conclusions about growth cycle effects.

      Nevertheless, we now also included the suggested combined data representation in Figure S2E.

      56) Figure 3: why were the calculation of FV area, parasite area and FV/parasite area only done for KIC12 and not done for MyoF? It would be interesting to see if any of these values are different for MyoF - whether the parasites are smaller in area and therefore FV smaller. Please present them Figure 2. Images should be already available and would not require further experiments to be done, only the analysis.

      This now has been done (confirming our results) and is included as Figure 1J-K, S2J. This point was also raised as major comment #37, please also see detailed answer there.

      57) Figure 3B: why is there no spatial association assessment for KIC11 and K13 as was done for the MCA2 and MyoF? The authors should show a pie chart showing the degree of association here as was done for the other proteins.

      This is now included in Figure 2C.

      58) Figure 3D: The y axis of the figure states relative growth day 4[%] compared to rapalog, but then on the x axis the experiment takes place over several days. Is this a typo in the y axis? Additionally, the authors state in line 287-290 that the growth defect upon addition of rapalog is only seen in the second cycle, but from this graph it appears the growth defect is already evident 1 day post rapalog addition. The figure legend also does not make sense for this figure since it mentions a blue and a red line, when there is only a black line present. The legend also mentions the LYN mislocaliser which was used for KIC12 not KIC 11 (see above).

      We apologise for the inadequate legend and colour issues, this was amended. This point was also raised in major comment #31 and #52, please find detailed answer there.

      59) Figure 3E: the colour for Control and Rapalog 4 hpi are very similar and very hard to discern. Please choose an alternative colour or add a pattern to one of the samples. The y axis is also missing a label. Is this supposed to be parasitemia (%)?

      We thank the reviewer for pointing this out, the missing label is now included and the colour has been adapted to make them better distinguishable.

      60) Figure 4A: the ring shown in this figure does not appear to be a ring (it is far too large and appears to have multiple nuclei?). Do the authors have any other representative images to show instead?

      This is in fact a ring, but we realize that we accidentally included an incorrect size bar in the ring image of Figure 4A (now Figure 3A) (size bar for 63x objective instead of the correct one for the 100x objective), we apologise for this oversight. We don’t think this parasite has multiple nuclei, instead the Hoechst signal shows the often elongated nucleus seen in rings that can appear as two foci in Giemsa stained smears which leads to the typical diagnostic feature of P. falciparum rings in diagnostics. In order to exclude any doubts about the nuclear localization of KIC12 in rings, we here attached a panel with more examples of KIC12-2xFKBP-GFP-2xFKBP ring stage parasites.

      [Figure KIC12]

      61) Figure 4B: why is there no spatial association assessment for KIC12 and K13 as was done for the MCA2 and MyoF? The authors should show a pie chart showing the degree of association here as was done for the other proteins. This should be done for the different life cycle stages considering the changing localisation of KIC12.

      This is now provided in Figure S4A. As suggested by the reviewer, we independently quantified the association for ring stage, early trophozoite and late trophozoites stage. As there is no KI12 signal in schizonts, we did not include a quantification for this stage.

      62) Figures 4C&E: it is extremely important to show the DNA stain in both these samples considering that a portion of KIC12 is in the nucleus! Please add the DAPI signal for these figures (as for all other figures!).

      Please see major comment #64 for a detailed answer why we did not include DNA staining in the imaging used to assess mislocalization upon knock-sideways.

      63) Figure 4E: this figure should be presented before 4D (considering the line being presented in 4E is used in an experiment in 4D). The authors should switch the order of these two.

      We see the point the reviewer is raising here, Figure 4D (now Figure 3D) also contains the data with the Lyn mislocaliser while we first talk about the NLS mislocaliser. This permits a better comparison between the two mislocaliser lines. However, first explaining the Lyn-mislocaliser and then going back to the NLS would make it rather complicated for the reader to follow the storyline and therefore we would like to keep the order as it is. We realise that this means the reader has to go back one figure part for seeing the Lyn growth data, but believe this is worth the benefit that the data is there compared to the NLS result.

      64) It is unclear why in many of the fluorescence images the authors do not show the DAPI signal - particularly when colocalising with K13 and when doing the knock sideways experiments. Please add these images to the figures - I would assume they have already been taken, so would simply involved adding the images to the panel.

      We did not include DNA staining (DAPI or Hoechst) for any of the images used to assess the efficacy of mislocalization, as we would prefer to keep the parasites as representative of a viable parasites in culture as possible. Hence they were imaged without DNA stain (these stains are toxic). We would like to point out that a DNA stain is not necessary, as the mislocaliser already marks the nucleus (in the case of the NLS mislocaliser), actually even somewhat more accurately, as it fills the entire nuclear space rather than only the DNA which is marked by DAPI or Hoechst.

      For LYN this admittedly is not the case, there the mislocaliser marks the plasma membrane. However, we think the proper control for efficient mislocalisation is the comparison between the GFP-tagged protein of interest and the mCherry mislocaliser to show mislocalisation, as previously done in our lab (e.g. (Birnbaum et al., 2017; Jonscher et al., 2019; Birnbaum et al., 2020)).

      Due to their toxicity, we also avoided nuclear staining in some other parts of the manuscript when we were of the opinion that a nucleus signal was not necessary.

      65) Throughout the manuscript, there is no western blot confirming the correct size of their modified proteins. This should be provided.

      We did perform Western blot analysis for both MCA2 cell lines. MCA2 is the only gene-product for which we generated a disruption for this work, and together with the severe truncation from previous work, we provided a Western blot-based confirmation of the correct size.

      The MCA2 disruptions are at least partially dispensable for in vitro parasite growth, hence if degradation occurred, this might not have been noticed. In that case we considered it relevant to show that the truncations were of the expected size. The other proteins in the main figures are essential for growth. Hence, if the tagging approach would lead to unexpected changes in protein integrity (which we assume is what was intended by this concern to be assessed with a Western blot), the parasites expressing the tagged MyoF, KIC11 and KIC12 would - due to their importance for asexual blood stage development - not have been obtained. Hence, we can assume the integrity of the tagged protein is very unlikely to have been affected in a functionally relevant way.

      66) None of the figures are appropriate for individuals with colour blindness, limiting their accessibility to the paper. Please change the colour schemes for all fluorescent images using magenta/green or an alternative colour combination appropriate for colourblind individuals.

      We thank the reviewer for this comment. This has now been amended, individual channels of fluorescence microscopy images are now shown in greyscale, while the overlay was changed to green/magenta.

      Minor Comments

      1) line 29: remove 'are'.

      Done.

      2) Line 29: the text says "HCCU is critical for parasite survival but is poorly understood, with the K13 compartment proteins are among the few proteins so far functionally linked to this process." The sentence should be: 'HCCU is critical for parasite survival but is poorly understood, with the K13 compartment proteins among the few proteins so far functionally linked to this process."

      Done.

      3) line 44: remove 'the'

      Done.

      4) Line 48: consider mentioning here that malaria is caused by the parasite Plasmodium - otherwise the first mention of parasite in line 52 is confusing for the non-specialist reader.

      Done.

      5) Line 49: estimated malaria-related death and case numbers are from the 2021 WHO World malaria report. You cite the 2020 WHO World malaria report.

      We now cite the newest WHO report.

      6) Line 53: please insert the word 'have' between now and also.

      Done.

      7) Line 54: please change 'was linked' to is linked

      Done

      8) Line 72: I would specify that free heme is toxic to the parasite. Especially as you mention that hemozoin is nontoxic.

      Sentence would be "where digestion results in the generation of free heme, toxic to the parasite, which is further converted into nontoxic hemozoin"

      Done.

      9) Line 90: authors should either say "in previous works" or "in a previous work"

      The text has been altered to say: “ in a previous work”.

      10) Line 91: "We designated these proteins as K13 interaction candidates (KICs)"

      Done.

      11) Line 95: please change 'rate' to number

      Done.

      12) Line 109: Please include a coma before (ii).

      Done.

      13) Line 112: as shown by Rudlaff et al in the paper you are citing, PPP8 is actually associated with the basal complex. You can say that "(ii) were either linked or had been shown to localise to the inner membrane complex (IMC) or the basal complex (PF3D7...).

      Done.

      14) Line 114: Protein PF3D7_1141300 is called APR1 in the manuscript but ARP1 in Supplementary Table 1. Please correct.

      Done.

      15) Line 131: please define SNP - this is the first use of the acronym.

      Done.

      16) Line 133-134: South-East Asia instead of "South Asia"

      Done.

      17) Line 135: please explain what TGD is - it is referred to over and over again in the manuscript without ever being explained.

      We apologise for this oversight. We now explain what is meant with TGD at the suggested point of the manuscript.

      18) Line 145: change 'Western blot' to western blot - only Southern blot is capitalised since it is named after an individual, while the other techniques are not.

      To the best of our knowledge this issue has not been resolved, some Journals capitalize the “W” (e.g. Science), while others don’t (e.g. Nature). We would prefer to continue to capitalize the “W”, as this is consistent with the original publication from (Burnette, 1981), but if there are strong objections, we would be happy to change this____.

      19) Line 152: add "the" between 'and spatial'

      Done.

      20) Line 158: please define SLI as selected linked integration, since it is the first use of the acronym.

      Done.

      21) Line 178: introduce a coma after protein. Sentence should be "Proliferation assays with the MCAY1344STOP-GFPendo parasites which express a larger portion of this protein, yet still lacking the MCA domain (Figure 1), indicated no growth ...

      Done.

      22) Line 195: the authors could mention that MyoF was previously called MyoC in the Birnbaum 2020 paper. I wanted to check back in the Birnbaum 2020 paper and could not find MyoF

      Good point, this was done.

      23) Line 200: "Expression and localisation of the fusion protein was analysed by fluorescent microscopy". Why expression was not analysed also by western Blot same as for MCA2?

      Please see major comment #64 for a detailed answer.

      24) Line 204: I could not find any mention of MyoF (Pf3D7_1329100) in reference 65. Please remove reference 65 if not correct. Also reference 66 looks at Plasmodium chabaudii transcriptomes so I would specify that "This expression pattern is in agreement with the transcriptional profile of its Plasmodium chabaudii orthologue"

      Reference 65 (Wichers et al., 2019) provides an RNAseq transcriptome dataset for asexual blood stage development of 3D7 (originating from the same source as the 3D7 used in this study). While Ref 66 (Subudhi et al., 2020) indeed contain transcriptomic data from P. chabaudi, the authors also provide a nice 2h window RNAseq transcriptome dataset for asexual blood stage development of Plasmodium falciparum. Both datasets are therefore suitable as reference for the statement about myoF transcription pattern. Both datasets are also easily accessible and show the pattern in a graph in PlasmoDB.

      25) Line 208: Please indicate a reference for P40 being a marker of the food vacuole

      Done.

      26) Line 220-224: The authors should consider changing to " Taken together these results show that MyoF is in foci that are mainly close to K13 and, at times, overlapping, indicating that MyoF is found in a regular close spatial association with the K13 compartment."

      The suggested wording introduces "mainly" for "frequently" and likely was in part motivated by the discrepancy in location between cell lines that we hope we now could clarify to be only minor (see major point #23). We therefore think the original wording appropriately summarises the findings (line 178): “*Taken together these results show that MyoF is in foci that are frequently close or overlapping with K13, indicating that MyoF is found in a regular close spatial association with the K13 compartment and at times overlaps with that compartment.” *

      27) Line 255: In Figure 2H, and subsequent figures showing bloated FV assay, I would delineate the food vacuole with dashed line as in Birnbaum et al. 2020 to help the reader understanding where the food vacuole is.

      In contrast to the Figures in Birnbaum et al. 2020, we here included the DHE staining (parasite cytosol) in images of bloated FV assays which visualizes the FV. We therefore decided to avoid any further marking, to keep the image as unprocessed as possible (see also major point 48).

      28) Line 265-266: Here the title says that KIC11 is a K13 compartment associated protein, but the title of Figure 3 says KIC11 is a K13 compartment protein. I noticed that you make the difference between K13 compartment protein et K13 compartment associated protein for MyoF for example which is not clearly associated with the K13 compartment. Which one is it for KIC11?

      The interpretation of the reviewer is correct, we indeed graded this subconsciously based on level of overlap. Based on the newly added quantification shown in Figure 2C, we describe KIC11 now as K13 compartment protein.

      29) Line 309-310: indicate a reference for your statement "which is in contrast to previously characterised essential K13 compartment proteins".

      Done, we now included Birnbaum et al. 2020 as reference for this.

      30) Line 377: Figure 4I, please correct 1st panel Y axis legend

      Done.

      31) Line 404: replace "dispensability" with dispensable

      Done.

      32) Line 416: can the authors provide any speculation as to why they observed these proteins as hits in the BioID experiments?

      As some of these proteins were less well or less consistently enriched, they could be background of the experiment. Alternatively, some could be proteins that only transiently interact with the K13 compartment.

      33) Line 451: Where the "97% of proteins containing these domains also contain an Adaptin_N domain and function in vesicle adaptor complexes as subunit a" come from. Do you have a reference?

      The statement now includes references and reads (with small changes to original submission): "More than 97% of proteins containing these domains also contain an Adaptin_N (IPR002553) domain (Blum et al., 2021) and in this combination typically function in vesicle adaptor complexes as subunit α (Hirst and Robinson, 1998; Traub et al., 1999) (Figure 5D) but no such domain was detectable in KIC5."

      34) Line 465-467: the same could be said for KIC4 as it also has a VHS domain.

      The critical issue is the combination of domains and their position within the protein. While KIC4 also contains a VHS domain, the VHS domain in KIC4 is N-terminal, not in a central position and it is also not the first structural domain to be identified in KIC4. The similarity to adaptin domains was already described ((Birnbaum et al., 2020) and annotated in PlasmoDB) and these domains are also involved in vesicle formation and trafficking. These aspects of the statement can therefore not be extended to KIC4. With regards to VHS domains being involved in vesicle trafficking, this is already stated in line 538: «KIC4 contained an N-terminal VHS domain (IPR002014), followed by a GAT domain (IPR004152) and an Ig-like clathrin adaptor α/β/γ adaptin appendage domain (IPR008152) (Figure 5A-C, Figure S8). This is an arrangement typical for GGAs (Golgi-localised gamma ear-containing Arf-binding proteins) which are vesicle adaptors first found to function at the trans-Golgi (Dell’Angelica et al., 2000; Hirst et al., 2000)

      35) Line 477-479: Can be rephrased to "However, we found this protein as being likely dispensable for intra-erythrocytic parasite development and no colocalisation with K13 could be demonstrated, suggesting a limited role for PF3D7_1365800 in endocytosis. Or something like that. Makes it clearer.

      We rephrased this sentence and it now reads (line 592): However, we found this protein as being likely dispensable for intra-erythrocytic parasite development and no colocalisation with K13 was observed, suggesting PF3D7_1365800 is not needed for endocytosis“.

      36) Line 535: Have AP-2a or AP-2b been shown to be at the K13 compartment?

      AP2m is at the K13 compartment (Birnbaum et al., 2020). Adaptor complexes are heterotetramers and their subunits do not typically function on their own and this is conserved across evolutionarily distant organisms. In agreement that this is also the case in P. falciparum, Henrici et al. (Henrici et al., 2020a) showed that both, AP-2a and AP-2b, were present in an AP2µ Co-IP, indicating that the AP2 complex consist of the ‘classical’ subunits in P. falciparum. Therefore, the presence of all subunits at the K13 compartment is very likely, although this has only been experimentally confirmed for AP2µ. Of note, for Toxoplasma gondii the presence of AP-2a and AP-2b at the micropore has been experimentally confirmed (Wan et al., 2023; Koreny et al., 2023) and interaction suggested by presence in the same IP as DRPC (Heredero-Bermejo et al., 2019).

      37) Line 569: reference 43 is wrong

      We thanks the reviewer for pointing this out – we removed Ref 43.

      38) Line 746: typo "ot" instead of or.

      Changed.

      39) Line 801: method for Domain Identification using AlphaFold specify that RMSDs of under 5Å over more than 60 amino acids are listed in the results. However, there is a typo in Figure 5B for KIC5 where it says "RMSD 4.0 Å over 8 aa". Please correct.

      Done. In addition, we have now applied a more stringent cut-off of 4Å over more than 60 amino acids to ensure a higher reliability of our hits. This decision was based on results from our preprint (Behrens and Spielmann, 2023). Because of this the phosphatase domain in KIC12 is no longer included in this manuscript and accordingly the following sentence has been deleted. In KIC12 we identified a potential purple acid phosphatase (PAP) domain. However, with the high RMSD of 4.9 Å, the domain might also be a divergent similar fold, such as a C2 domain, which targets proteins to membranes.”

      40) Line 856: In Figure 1E, please use the same Y axis legend as in Figure 2D "relative growth at day 4 [%] compared with 3D7"

      Done.

      41) Figure S1: Some PCR gels check for integration are presented as 5', 3' and ori whereas other gels are presented as ori, 5' and 3'. This is confusing.

      We agree that ideally the order of sample loading should be consistent and we apologise for this. The explanation for this is that these gels were run by different people at different times before we were able to better standardize the loading scheme. However, in the interest of not unnecessarily using resources for something that has a similar meaning, we would prefer not to repeat these PCRs and re-run them only for consistency reasons (as the conclusion is not affected by the different loading schemes).

      42) Figure S1: Why was the expression of only MCA2 was verified by Western blot? What about the other proteins?

      See response to major comment 56.

      43) Line 493: Considering KIC11 was not involved in HCCU or ART resistance it might be worth mentioning in this section that it is of note that there are no domains detected that would be involved in endocytosis.

      We agree that this is the case, however it is also the case for all other proteins that either are not involved in endocytosis and/or lowered susceptibility to ART. We therefore now added a summary statement addressing this in line 602: In contrast, the K13 compartment proteins where no role in ART resistance (based on RSA) or endocytosis was detected, KIC1, KIC2, KIC6, KIC8, KIC9 and KIC11, do not contain such domains (Figure 5E).” We did not add this at the suggested part of the manuscript as at that point the domain search results are not yet introduced and doing this each time for all the individual proteins would disconnect the flow of the manuscript.

      44) Line 503-506: is it wise to generate more drugs that target a pathway that is already highly susceptible to mutations? The authors should add a statement explaining how this might be avoided.

      The only protein for which mutations do not have a large fitness cost is K13 (see also our preprint on fitness cost of ubp1 mutation (Behrens et al., 2023) and even with K13 the level of resistance seems to be limited by amino acid deprivation when endocytosis is reduced (Mesén-Ramírez et al., 2021). We therefore do not think that this pathway is particularly prone for mutations. Further, the number of commercial drugs targeting the "endproduct" of endocytosis (hemoglobin digestion and detoxification of heme) highlight it as the most prominent vulnerability for drug-based intervention if we go by number of commercially available drugs acting on things associated with a single process.

      45) Throughout, scale bars are stated in the figure legends at the end of the legend. This is a slightly confusing format. The authors should consider stating the scale bar for each sub-legend where a fluorescence image is taken.

      Done.

      ** Referees cross-commenting**

      After reading reviewer 2 and 3's comments, I think there are significant overlaps in the key points raised in terms of questions about fusion proteins and their potential partial mis-localisation, better descripton of results and target selection. Overall I think we agree that the work has potential, but in its current form does not represent a major advance. It would be immensely helpful if the manuscript would be carefully edited for a better flow and linear description of results.

      We now rearranged the manuscript for better flow but would like to highlight that the many requests for smaller experimental issues (and "better description of results") worked somewhat in the opposite way of a more linear description. We hope the rearranged version acceptably balances these two issues. The issues raised in regards to target selection and potential partial mis-localisation are addressed in our responses mainly to this reviewer. Please also see comments on systems used at the end of the rebuttal.

      Reviewer #1 (Significance (Required)):

      The authors set out to test whether other proteins that are in the vicinity of K13 are involved in mediating ART resistance and endocytosis. This is an interesting question. However, other than MCA2 which was already known to be involved in mediating ART resistance (and was not tested for its involvement in endocytosis), none of their candidate proteins seem to be involved in mediating both these functions. The authors show that the other proteins tested appear important for parasite growth, with KIC12 and MyoF involved in mediating endocytosis. While these findings are novel, the KS approach used by the authors casts some doubt over the findings, and would mean that these findings would have to be re-tested with a more reliable approach, such as the GlmS system or generating a conditional knockout using the DiCre system. Despite not advancing our understanding of ART resistance, or identifying further players involved in this process, this manuscripts provides two candidates that are involved in mediating endocytosis and a further candidate that appears to be important for parasite growth. Further work on these proteins will be required to understand their exact roles. As stated above, there is currently limited interest for these results (limited to researchers working on endocytosis in apicomplexan parasites and possibly the wider endocytosis field from an evolutionary perspective), however with further work, this could increase the impact and interest of this work substantially.

      The authors do not describe any novel methods/approaches within this work.

      In the significance statement the reviewer indicates that other systems would have been more reliable for the work here. This is addressed in our response above and in a detailed considerations on the properties of conditional inactivation systems at the end of the rebuttal. The systems used in this work were not only chosen because they permit rapid targeting of many different proteins, but because they have merits that are beneficial for our assays. In fact many of the functional assays in this manuscript are difficult or impossible to carry with the suggested conditional inactivation systems (please note that we have extensive experience with the systems considered preferable:

      • DiCre (Birnbaum et al., 2017; Mesén-Ramírez et al., 2019; Mesén-Ramírez et al., 2021; Wichers et al., 2022; Kimmel et al., 2023)

      • glmS (Wichers et al., 2021c; Wichers et al., 2021a; Wichers et al., 2022; Wichers-Misterek et al., 2023)).

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In a previous publication the Spielmann lab identified the molecular mechanism of ART resistance in P. falciparum by connecting reduced levels of the protein K13 to decreased endocytosis (uptake of hemoglobin from the RBC cytosol), which results in reduced ART susceptibility. Using quantitative BioID the authors further identified proteins belonging to a K13 compartment, highlighting an unusual endocytosis mechanism.

      In the present manuscript the authors follow up on this work and closely examine ten more proteins of the K13/Eps15-related "proxiome". They successfully link MCA2 to ART resistance in vitro, while the proteins MyoF and KIC12 are involved in endocytosis but do not confer in vitro ART resistance when impaired. They further characterize one candidate (KIC11) that partially colocalizes with K13 in trophozoites but to a lesser degree in schizonts. Growth assays suggest an important function for KIC11 in late stages of the intraerythrocytic developmental cycle. Five analyzed proteins however do not colocalize with the K13 compartment, while a sixth was refractory to endogenous tagging.

      Using AlphaFold predictions of the KIC protein structures the author identify domains in most constituents of the K13 compartment, highlighting vesicle trafficking-related features that were not identified on primary sequence level before.

      The combination of functional data together with structure predictions leads them to propose a refinement of the K13 compartment as being divided into proteins participating in endocytosis and proteins that have an unknown function.

      We thank the reviewer for the assessment of the manuscript and the constructive comments.

      Major comments:

      1) -Table 1 is missing

      We apologise for this mistake; Table 1 is now included.

      2) -Lines 117-123: Given the total list of uncharacterized candidates encompasses 13 proteins, can the author gives the reason why only the top 10 and not all 13 were characterized in this study?

      A similar point has been raised by Reviewer 1 in major comment #12, please see our response there for an explanation why we chose which targets.

      3) -Line 174: 20% of observed MCA2 foci show no overlap with K13 and 21% only partially overlap, can the author confirm that the observed MCA2 foci in schizonts are the ones that co-localize with K13. (Addition of a schizont stage image in Fig 1C would be sufficient).

      We now extended Figure 4C with images of MCA2-Y1344STOP-GFP+mCherryK13 parasites covering the schizont and merozoite stage, showing that the majority of the MCA2 foci in schizonts are also mCherry-K13 positive.

      4) -The localization and observed phenotype of KIC11 is interesting but unfortunately the authors do not explore it further. Does KIC11 localize with markers of e.g. the secretory organelles (micronemes or rhoptries) in schizonts and could therefore be involved in RBC invasion?

      While we intended to focus mainly on the endocytosis aspect of these proteins, we see the reviewer's point and now generated new cell lines enabling assessment of spatial association of KIC11 with markers for rhoptry (ARO), micronemes (AMA1), and inner membrane complex (IMC1c). This revealed that the KIC11-GFP signal in schizonts does not overlap with apical organelle markers and the signal does not resemble a typical apical localization. In addition, we assessed all three organelle markers after inactivating KIC11 by knock sideways which showed that KIC11 inactivation has no apparent effect on the appearance of these markers, suggesting no major alterations in schizont morphology in respect to apical markers. These results are now presented as Figure S3A and in line 304 of the results.

      5) Can the author distinguish if KIC11 is involved in RBC invasion or in establishment of the ring-stage parasite?

      In order to look into this, we performed egress/invasion assays, quantifying schizont and ring stage parasites in tightly synchronized parasites at two different time points (pre-egress: 38-42 hpi & post-egress: 46-50 hpi). This revealed a significant decrease in newly formed ring stage parasite per ruptured schizont in parasites with inactivated KIC11, while the egress efficacy remained unaffected. This indicated an invasion or very early ring stage development defect (new Figure 2H, Figure S3G). To further determine at which point exactly the phenotype occurs (ie during invasion or early after invasion) would require extensive experimentation that goes beyond the scope of this study (e.g. invasion assays using video microscopy with a representative number of parasites or sophisticated flow based quantification assays). We hope by excluding egress and gross changes of apical organelles as well as no indication for similar number of early rings (indicating it is invasion or a very early ring-establishment phenotype) will sufficiently narrow down the phenotype for labs interested in invasion to more definitely answer this question.

      Minor comments:

      1) Table S1: Please add the criterion for the order of proteins (abundance in "proxiome"?) in the table as a separate column. I would also suggest adding a new column that highlights the 10 proteins investigated in this study as I found the color-coding slightly confusing.

      Done as suggested: we now include the “average log2 Ratio normalized Kelch13” values from the four DiQ-BioID experiments performed with K13 in (Birnbaum et al., 2020), as well as the suggested column to highlight the investigated proteins. Please also see reviewer 1 major point # 12 for additional information on the selection criteria and how this was added to the manuscript.

      2) -154-155: There is a discrepancy between the text and Fig1C regarding the % of partial overlapping and non-overlapping foci.

      We thank the reviewer for pointing this out, this was corrected.

      3) -The y-axis label is missing in Fig 3E

      Done.

      4) -Fig 4I left graph, the superscript 2 is missing in μm2

      We thank the reviewer for pointing this out, this is now changed.

      5) -Did the author colocalize KIC11 in schizonts with other proteins found in the K13 compartment group of proteins not involved in endocytosis/ART resistance? This may help to further subgroup these proteins.

      This is an interesting point but would actually be technically challenging to do. For this we would need to generate a KIC11endo parasite line for each of these KICs and then do co-localisation in schizonts. However, the outcome of this likely would not be very clear. The reason for this is as follows. There are foci of KIC11 that do overlap with K13 in schizonts. One can expect that these foci show KIC11 at the K13 compartment and that the other KICs would overlap with KIC11 in these K13 foci in schizonts. Hence, we would also need to see K13 to find the non-K13 compartment KIC11 foci and see if these contained the KIC of interest. This is technically challenging because it would mean we would need a third fluorescent protein which is not that trivial to do. Due to the difficulty to do this and the large amount of work involved and the already considerable amount of data in this manuscript, we believe this will be better suited for a different study.

      6) -As a general comment: to make the beautiful IFAs more accessible to a broader readership, I would encourage the authors to switch the color-coding to green/magenta/blue or an equivalent color system or add grayscale images.

      This was done as suggested, all fluorescence images are now provided as greyscale images and the overlays are shown in magenta/green.

      Reviewer #2 (Significance (Required)):

      Characterizing the molecular components involved in Plasmodium endocytosis will not only reveal interesting biology in these highly adapted parasites, but will more importantly lead to a better understanding and potentially open new avenues for intervention of ART resistance. The here presented manuscript is a carefully executed follow-up on previous work done in Dr. Spielmann's lab focusing on the K13 compartment. The authors use established assays to characterize novel components and reveal three new players in endocytosis with one mediating ART resistance in vitro. The proposition that parts of the K13 compartment have a function other than endocytosis is interesting, but will have to await more data from future studies. Taken together this manuscript adds significantly to our understanding of endocytosis in P. falciparum.

      This work is of interest for cell and molecular biologists working on Apicomplexa, but especially for the Plasmodium community.

      We thank the reviewer for this positive assessment.

      I am a cell and molecular biologist working on Toxoplasma gondii

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary: The authors characterized 4 proteins from P. falciparum via cellular (co-)localization, endocytosis, parasite growth, and artemisinin resistance assays. These proteins have been identified as candidates for Kelch13 compartment and a possible role in endocytosis in their previously work with quantitative BioID for potential proximity to K13 and Eps15 (Birnbaum et al. 2020). In the current work, additional 6 proteins were not confirmed as being associated to the K13 compartment. This experimental work was complemented by an in-silico analysis of protein domains based on AlphaFold algorithm. For this protein structure evaluation all proteins were chosen, which were experimentally confirmed to be linked to the K13 compartment in the current publication and previous work. With the work 3 novel proteins linked to artemisinin resistance or endocytosis could be functionally described (KIC12, MCA2, and MyoF) and a number of hypotheses were generated.

      We thank the reviewer for the assessment of the manuscript and the constructive comments.

      Major comments:

      The quality of the presented work is solid, the experimental design is adequate, and methods are presented clearly. The publication contains a lot of results both presented in text and in the figures and it is not always straight forward for the reader to follow the descriptions due to many details presented and a lack of context for some of these experiments.

      We thank the reviewer for this overall positive assessment.

      We now reordered the results section in an attempt to increase the flow of the manuscript. We also made changes to improve the context for the results. Given the further (very valid) requests for data on schizonts and invasion, there was an increased danger for a less linear manuscript that we hope to have acceptably managed with the re-arrange.

      Specific suggestions for consideration by the authors to improve the manuscript. Abstract: 1) R 31: Mention how the 4 proteins were identified as candidates, you need to refer to previous work to clarify this

      To clarify this the sentence was changed to (line 31): "Here we further defined the composition of the K13 compartment by analysing more hits from a previous BioID, showing that MyoF and MCA2 as well as Kelch13 interaction candidate (KIC) 11 and 12 are found at this site."

      2) R38: "Second group of proteins" is confusing - different from the 4 mentioned above? Significance to endocytosis unclear. Please unify terminology in the manuscript, see also comment below on proxiome.

      We changed the wording to clarify the group issue in the abstract as follows line 34: "Functional analyses, tests for ART susceptibility as well as comparisons of structural similarities using AlphaFold2 predictions of these and previously identified proteins showed that canonical vesicle trafficking and endocytosis domains were frequent in proteins involved in resistance or endocytosis (or both), comprising one group of K13 compartment proteins, While this strengthened the link of the K13 compartment to endocytosis, many proteins of this group showed unusual domain combinations and large parasite-specific regions, indicating a high level of taxon-specific adaptation of this process. Another group of K13 compartment proteins did not influence endocytosis or ART susceptibility and lacked detectable vesicle trafficking domains. We here identified the first protein of this group that is important for asexual blood stage development and showed that it likely is involved in invasion.”

      3) Abstract can only be understood after reading the full publication

      We attempted to amend this by expanding the abstract, particularly the changes highlighted in the previous two points.

      Results: 4) Table 1 is missing from the submitted materials

      We apologise for this mistake. Table 1 is now included.

      5) Consider to shorten and stratify the result section to focus on the significant data

      We rearranged the results in an attempt to streamline this section and are now starting with MyoF in the revised manuscript. However, as highlighted by the requests from reviewer 1, many details need to be available to support our conclusions. For instance the fact that GFP-tagging partially inactivated MyoF asked for further data to support our conclusion (HA-tagged version, showing that the location of the GFP-tagged version was consistent with the HA-tagged version, showing to what extent the different constructs affected growth and correlated with number of vesicles and bloating, see new figure 1M) or that KIC12 has two locations. Overall, we are therefore hesitant to remove data or description from the result part.

      6) Unclear how the localization and functionalization assays might be impaired by the fusion proteins Significance of ART resistance assay is not clear, in presence of strong growth effects due to inactivation or truncation of genes/proteins

      As indicated also in the example given in the previous point (this reviewer #5), the use of different cell lines (GFP-tagged live cells and small epitope tag in IFA) for targets with an indication for an effect of the tagging confirm that the location we assigned is reasonable. In the case of MyoF, the HA-tagged line, the partial inactivation due to GFP and the further inactivation in the GFP-tagged line by knock sideways show plausible increase of phenotypes (vesicle accumulation and bloated FV assays). Thereby the GFP-tagged line can be seen as a partial inactivation line that further supports our conclusions and overall this paints a consistent picture of the function of this protein in endocytosis (see new Figure 1M better illustrating this). Please note that the difference in location shown by this line compared to the HA-tagged proteins is only small (see also reviewer 1 major point 23ff). See also general discussion on tags at the end of this rebuttal.

      Significance of ART resistance assay: The ‘ART resistance assay’ is done comparing +/- ART (DHA) in identical parasites (originating from the same culture and the same condition). Hence, any growth effects are cancelled out and effects in reducing ART susceptibility would - if at all - be underestimated (see more detailed response to point 28, reviewer 1 and controls in Birnbaum et al., 2020 where we tested an unrelated essential protein, unrelated chemical insult and rapalog on 3D7 and did not detect any effect on RSA survival).

      MCA 7) Stratify results, order by significance of findings, it appears to be described in chronological order, improve readability/flow, eg ART resistance if mentioned in r138, but only reported in r183ff

      We attempted to stratify, but then the reason for generating the partial MCA2 disruption parasite line becomes very arbitrary and would leave the reader wondering why we at all truncated the protein at two thirds of the protein. Hence, we do not see a way around this chronological reporting. However, this part is now not at the start of the experimental results section anymore, possibly making it overall a bit more palatable.

      MyoF 8) R195 to 197 - consider moving to discussion as it is distracting here

      This was shortened and additional information (asked for by reviewer 1, major point 22) to clarify that MyoF was previously called MyoC, was added (line 147): “The presence of MyosinF (MyoF; PF3D7_1329100 previously also MyoC), in the K13 proxiome could indicate an involvement of actin/myosin in endocytosis in malaria parasites. "

      9) Term proxiome is introduced above, but not used in result section - suggest to unify language, eg r195 uses "K13 compartment DiQ-BioIDs" instead, which is not very convenient for the reader

      We carefully reviewed this and made this more consistent.

      10) What is the enrichment factor? Please provide for this and the following proteins, eg in Table 1

      The enrichment factor is log2 enrichment over control and this is now provided in table S1 (see also detailed answer for Reviewer 1 major point 12).

      11) R225 to 243 - overall significance of the growth experiments with mislocaliser is not clear, consider removing from manuscript or explain relevance more clearly

      See also point 28, reviewer 1: This experiment is actually quite important. It shows that if we conditionally inactivate the GFP-tagged MyoF, the growth is further reduced, as stated in line 208. It might have been confusing that the mislocalisation is only partial, but this is equivalent to a partial knock down and hence is useful. This becomes even more relevant with the specific assays following in the next paragraph: while the tagging of MyoF already resulted in vesicles, conditional inactivation with KS generated even more vesicles, showing that the same phenotype was rapidly increased when MyoF was further inactivated by a different means and this also correlated with growth. Hence, this is actually a very consistent phenotype that despite some shortcomings of the tools available to analyse this protein (due to the partial inactivation by the GFP tag) in our eyes looks very convincing. We now added a graph showing the correlation of growth and phenotypes to illustrate this (Figure 1L).

      We also tried to make this clearer by changing line 200 to: Hence, conditional inactivation of MyoF further reduced growth despite the fact that the tag on MyoF already led to a substantial growth defect, indicating an important role for MyoF during asexual blood stage development.” And line 208 to:“ This was even more pronounced upon conditional inactivation of MyoF by KS (Figure 1H), suggesting this is due to a reduced function of MyoF.”

      12) KIC11/KIC12 Enrichment factor?

      The enrichment (’average log2 Ratio normalized Kelch13 from Birnbaum et al. 2020’) is 1.65 for KIC11 and 1.32 for KIC12, which is now also explicitly shown in column D of Table S1.

      ** Referees cross-commenting**

      I would like to applaud reviewer #1 for a great, very thorough review and lots of detailed suggestions. I agree with the conclusions mentioned in the significance evaluation from reviewer #1 and #2: the work presented does not contain novel methods and the scope is rather narrow with the current results. (I am working on clinical studies with novel antimalarial agents)

      Reviewer #3 (Significance (Required)):

      On the one hand side, the authors have wrapped up some of the remaining protein candidates of the K13 compartment and could verify 4 of 10 proteins. The work is of interest for the scientific community working on endocytosis and malaria drug resistance mechanisms. Overall, the conclusions and findings from the previous work, Birnbaum et al. 2020, could be confirmed and extended mainly using the methods previously described. On the other hand, the authors made use of progress in protein structure predictions and identified domains linking the K13 compartment proteins to putative functions. The overlaid protein folds of the newly identified domains in figure 5 look convincing, but I can't comment on the technical details or cut-off used for this in-silico analysis.

      Extended general remarks on the systems used for this work:

      Mainly reviewer 1 suggest (in the general comments and the significance statement) that other systems would have been better suited to use for this work, namely glmS and diCre and also has concerns about the large tag which is seconded by a comment of reviewer 3. In light of this we here provide some extended considerations on the properties for conditional systems and tagging in regards to the goals of this work.

      We would like to point out that we do have experience with the systems considered better-suited by the reviewer (one of the first authors has extensively used glmS (Wichers et al., 2021c; Wichers et al., 2021a; Wichers et al., 2022; Wichers-Misterek et al., 2023) and our lab was one of the first to adopt the diCre system in P. falciparum parasites and we regularly us it (Birnbaum et al., 2017; Mesén-Ramírez et al., 2019; Kimmel et al., 2023)). Clearly, these methods have a lot of strengths but there are a number of issues to be considered for the assays we use in this work (see the next section on conditional inactivation systems). In a nutshell, we believe diCre would give a more reliable readout of the absolute level of "essentiality" (i.e. importance for growth) but is unsuitable or at least difficult to use for the assays that reveal the function of our interest in this work. GlmS basically combines the drawbacks of diCre and knock sideways and hence for most targets is not expected to give a better readout of level of "essentiality" but is similarly difficult to use for our specific assays. The fact that both of these systems are possible to use without adding a tag to the target may be an advantage but without tag one loses some very important features that can be critical to understand the outcome with a given system (see considerations on the tag further below).

      Conditional inactivation systems:

      1. __ speed of inactivation:__ glms acts on mRNA and diCre on the gene level, which makes them slower than techniques acting directly on the protein such as DD or KS. With diCre, mRNA and protein is still left, even if the gene is very rapidly excised. For instance for Kelch13 it takes 3-4 days after excising the gene until protein levels have waned enough that this manifests in a reduced growth (Birnbaum et al., 2017). While in some instances diCre permits same cycle analyses if the protein has a very rapid turn-over (e.g. Rab5a, (Birnbaum et al., 2017)), control in a few hours is still difficult. For vesicle accumulation and bloated food vacuole assays, which are done over comparably short time frames and with specific stages, it is rather challenging to hit the correct time of induction to have all the cells at the correct stage with suitably (and uniformly, ie all cells) sufficiently reduced target protein levels during the assay time. Slow acting systems are also more prone to secondary effects. The more immediate the inactivation, the closer it is to the core of the affected function. With vesicle trafficking processes this is particularly relevant as all vesicle trafficking in a cell is interconnected and there are always recycling pathways that maintain the membrane and protein homeostasis of individual compartments. Particularly for endocytosis there seem to be compensatory capacities at least in other organisms (see e.g. (Chen and Schmid, 2020)). One reason why knock sideways was developed is that it permitted to avoid compensatory changes when vesicle adaptors are inactivated (Robinson et al., 2010).

      The comparably short time frame for malaria parasites to go through different stages during blood stage development also is an issue relevant for inactivation speed. The advantage of speed and the danger of obscured phenotypes is highlighted by our work on VPS45 which showed that in trophozoites this protein is involved in the transport of hemoglobin to the FV whereas in late stages it also has a role in secretory processes. Both of these functions we were able to specifically assess in the same growth cycle using KS to rapidly inactivate the protein (Bisio et al., 2020) but with a slower system would have been more complicated to dissect.

      Speed of effect with glmS: unless the KS does not work well, glmS is slower acting than KS (it does not target the already synthesised protein which can remain in the cell) and also often suffers from only partial inactivation, hence the benefit of using it here is unclear. The option to have an untagged protein is a plus, however it also is a minus, as assessing efficiency (particularly in live cells e.g. for bloated assays etc a fluorescent tag is the only direct option to assess inactivation of target) is critical to ensure the phenotype manifests at the stage of interest.

      lethality/absolute phenotypic effects are detrimental to some assays to study the functions we are interested in for this work: no RSA can be conducted, if the gene is lost and the parasites die. Again, with diCre, one could attempt to hit the point when the parasites have lost sufficient amounts of the target protein when they are placed under ART but then the parasites need to continue growing for ~3 days, which is not possible if the cKO is lethal except for very slowly turning over proteins. However, in that latter case, the parasites likely still had full functionality of the target protein at the beginning of the RSA, when the drug pulse happens and there would be no effect. Knock sideways solves these problems by permitting knock sideways inactivation only under ART (or with a few hours pre-incubation depending on the inactivation speed) to not yet affect growth in a severe manner but inhibiting the process the protein is involved in. It may be possible to use glmS for RSAs, but the slow speed would complicate it (it would not permit control of target protein levels in a matter of a few hours to inactivate the target protein and then re-install it).

      None-absolute inactivation is also a strength for some functional assays. While we really like using diCre, in the case of EXP1 it made it necessary to complement the exp1 cKO parasites with low levels of EXP1 to be able to do functional assays without killing the parasites (Mesén-Ramírez et al., 2019; Mesén-Ramírez et al., 2021). While the lethality issue does not apply to glmS (like knock sideways, it also can be tuned), it is unclear what would be gained over knock sideways. Knockdown levels with glmS vary from gene to gene and cannot be predicted, it is in most cases considerably slower than KS, it requires glucosamine which becomes toxic at higher concentrations and might introduce off target effects and tracking protein levels during the assay would equally need GFP tagging.

      Integration of properties of conditional systems

      Given the above discussed properties, several factors have to be considered to be able to use a system for a given assay. Stage-specific transcription is one example. For diCre a protein not expressed in e.g. rings permits to remove the gene and the protein is never made in that parasite development cycle. We exploited this for instance for two proteins only expressed from the trophozoite stage onwards (Kimmel et al., 2023). However, if lethal (absolute effect problem), this also means one can also only see the phenotype on onset of expression of the target (e.g. if in mitosis, the first nuclear division in case the protein is absolutely essential for the process). This is just one example of such issues. Expression timing, turnover of the protein and homogeneity of stage-specific loss of protein will all influence how clearly the phenotype can be determined. All this will decide the exact time of loss/inactivation of the target protein to levels generating a phenotype and ideally therefore can be monitored during an assay (see considerations on tagging).

      For these reasons vesicle accumulation or bloated food vacuole assays are difficult with slow systems as ideally the target should rapidly be inactivated at the trophozoite stage and the result monitored before the cells have moved to the schizont stage. For this a well responding knock sideways is ideal as the protein can be rapidly taken away (sometimes within seconds) to visualise the immediate, direct effect in the cell.

      As shown for KIC11, there is also no disadvantage of using KS for proteins with other assays or proteins that result in different phenotypes. It permits stage-specific same cycle inactivation without having to worry about the turnover of mRNA and protein (Fig. 2F,G). Thus, besides the advantages of knock sideways for endocytosis related assays and RSAs, we also see no disadvantage of using knock sideways for the functional study of KIC11 which has a role other than endocytosis. KS also permits to specifically target the K13 pool of KIC12, something impossible or very difficult to do with other systems. Hence, we are of the opinion that the system for inactivation was adequate for most of the proteins analysed in this manuscript.

      Large tag: we agree that GFP-tagging can be a disadvantage but in our opinion its benefits often outweigh the drawbacks because it permits easy and immediate (on individual cell level, if need be) monitoring of the presence/location of the target protein (e.g. after KS, but given the discrepancy of the timing between gene excision and protein loss, it might be even more important for techniques such as diCre). No fixing/permeabilisation (prone to artifacts, prevents immediate view of cells) to detect a target with specific antibodies or via a small tag is needed with GFP. Similarly, the use of Western blots to do this is time consuming and impractical if monitoring of left-over protein in the course of an assay such as a bloated food vacuole assay is needed.

      In many cases, adding GFP has no negative effect. In addition, if the bulky folded structure of GFP is tolerated, it usually also tolerates the 2 to 4 12kDa FKBP domains in our standard tag. We also typically add a linker. This approach has worked for a large number of different proteins, including many essential ones for which we would not otherwise have obtained the integration cell lines (Birnbaum et al., 2017; Jonscher et al., 2019; Hoeijmakers et al., 2019; Birnbaum et al., 2020; Kimmel et al., 2023; Sabitzki et al., 2023). Hence, whenever a cell line is obtained with it, this tag in most cases is not a disadvantage. Admittedly an exception in this is MyoF and to some extent maybe MCA2 (we would like to stress that in the case of MCA2 the reason for not being able to obtain the full length tagged cell line is unclear: the protein can be severely truncated to less than 3% of its amino acid sequence and a GFP-tag is tolerated on the version with 2/3s of the protein left, which gives no good reason why the full length was not obtained; a potential reason could be a dominant negative effect). However, we obtained the full length with a small tag detected by IFA for both, MyoF and MCA2 and the location of these agreed well with the GFP tagged versions, indicating that the GFP-tagged versions are useful to show the location of these proteins in live cells.

      There are also tricks to attempt monitoring the effect of e.g. diCre without tagging the target. For instance, if a fluorescent protein is connected to excision without actually being fused to the target (ie excision of the gene leads to its expression of e.g. GFP), which would avoid adding a tag to the target itself. However, the problem with this is that expression of GFP does only show excision, but mRNA producing the target protein and left over target protein may still be there in the cell. All in all, the GFP-tag on the target, while with some drawbacks, is still our preferred method to control to monitor the target protein in the cell (in principle permitting quantification of ablation efficiency on the individual cell level).

      Conclusion on these considerations for this manuscript

      Based on these considerations we do not see the immediate benefit of changing the system for the conclusions drawn from this study and are unsure if they are indeed better suited for this work as suggested. While a more exact readout of "essentiality" might be possible with the diCre system we are of the opinion this is less important than learning the function of a protein which - as outlined above - we believe to be considerably more difficult with diCre and even more so with glmS considering our target functions. The same applies to target specific cellular pools of a protein as done here for KIC12. Clearly MyoF is one example where the employed systems shows limitations, but with the new Figure part showing consistency in phenotype with degree of inactivation (importantly with two different forms of inactivation) and the clarification that the location of the GFP-tagged and HA-tagged versions are actually quite similar in location, we do not think employing an extra system is warranted for the conclusions of this work. Admittedly, the apparent lack of need in ring stags might give an opening to attack MyoF using diCre (by excision before its major expression peak), but depending on lethality this might preclude extended analyses (possibly vesicle assays, for sure not RSAs).

      In the end the question is, if our approach provides the function of target analysed in this work and based on the data in our manuscript and the arguments in the rebuttal, we are reasonably confident that this is the case. It is not very likely the other mentioned techniques would result in a different conclusion on the function of the here studied proteins. In fact, we expect other commonly used techniques to be less suitable for the key assays in this work.

      References used in our responses to the reviewers’ comments:

      Behrens, H.M., Schmidt, S., Peigney, D., Sabitzki, R., Henshall, I., May, J., et al. (2023) Impact of different mutations on Kelch13 protein levels, ART resistance and fitness cost in Plasmodium falciparum parasites. bioRxiv 2022.05.13.491767.

      Behrens, H.M., Schmidt, S., and Spielmann, T. (2021) The newly discovered role of endocytosis in artemisinin resistance. Med Res Rev med.21848.

      Behrens, H.M., and Spielmann, T. (2023) Identification of domains in Plasmodium falciparum proteins of unknown function using DALI search on Alphafold predictions. bioRxiv 2023.06.05.543710.

      Birnbaum, J., Flemming, S., Reichard, N., Soares, A.B., Mesén-Ramírez, P., Jonscher, E., et al. (2017) A genetic system to study Plasmodium falciparum protein function. Nat Methods 14: 450–456.

      Birnbaum, J., Scharf, S., Schmidt, S., Jonscher, E., Hoeijmakers, W.A.M., Flemming, S., et al. (2020) A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites. Science (80- ) 367: 51–59.

      Bisio, H., Chaabene, R. Ben, Sabitzki, R., Maco, B., Baptiste Marq, J., Gilberger, T.W., et al. (2020) The zip code of vesicle trafficking in apicomplexa: Sec1/munc18 and snare proteins. MBio 11: 1–21.

      Blum, M., Chang, H.Y., Chuguransky, S., Grego, T., Kandasaamy, S., Mitchell, A., et al. (2021) The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49: D344–D354.

      Borrmann, S., Straimer, J., Mwai, L., Abdi, A., Rippert, A., Okombo, J., et al. (2013) Genome-wide screen identifies new candidate genes associated with artemisinin susceptibility in Plasmodium falciparum in Kenya. Sci Rep 3.

      Bozdech, Z., Llinás, M., Pulliam, B.L., Wong, E.D., Zhu, J., and DeRisi, J.L. (2003) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 1: e5.

      Burnette, W.N. (1981) “Western Blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112: 195–203.

      Casella, J.F., Flanagan, M.D., and Lin, S. (1981) Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature 293: 302–305.

      Cerqueira, G.C., Cheeseman, I.H., Schaffner, S.F., Nair, S., McDew-White, M., Phyo, A.P., et al. (2017) Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance. Genome Biol 18: 78.

      Chen, Z., and Schmid, S.L. (2020) Evolving models for assembling and shaping clathrin-coated pits. J Cell Biol 219.

      Dell’Angelica, E.C., Puertollano, R., Mullins, C., Aguilar, R.C., Vargas, J.D., Hartnell, L.M., and Bonifacino, J.S. (2000) GGAs: A family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J Cell Biol 149: 81–93.

      Demas, A.R., Sharma, A.I., Wong, W., Early, A.M., Redmond, S., Bopp, S., et al. (2018) Mutations in Plasmodium falciparum actin-binding protein coronin confer reduced artemisinin susceptibility. Proc Natl Acad Sci 201812317.

      Henrici, R.C., Edwards, R.L., Zoltner, M., Schalkwyk, D.A. van, Hart, M.N., Mohring, F., et al. (2020a) The plasmodium falciparum artemisinin susceptibility-associated ap-2 adaptin μ subunit is clathrin independent and essential for schizont maturation. MBio 11.

      Henrici, R.C., Schalkwyk, D.A. van, and Sutherland, C.J. (2020b) Modification of pfap2μ and pfubp1 Markedly Reduces Ring-Stage Susceptibility of Plasmodium falciparum to Artemisinin in Vitro. Antimicrob Agents Chemother 64.

      Henriques, G., Hallett, R.L., Beshir, K.B., Gadalla, N.B., Johnson, R.E., Burrow, R., et al. (2014) Directional selection at the pfmdr1, pfcrt, pfubp1, and pfap2mu loci of Plasmodium falciparum in Kenyan children treated with ACT. J Infect Dis 210: 2001–2008.

      Heredero-Bermejo, I., Varberg, J.M., Charvat, R., Jacobs, K., Garbuz, T., Sullivan, W.J., and Arrizabalaga, G. (2019) TgDrpC, an atypical dynamin-related protein in Toxoplasma gondii, is associated with vesicular transport factors and parasite division. Mol Microbiol 111: 46–64.

      Hirst, J., Lui, W.W.Y., Bright, N.A., Totty, N., Seaman, M.N.J., and Robinson, M.S. (2000) A family of proteins with γ-adaptin and VHS domains that facilitate trafficking between the trans-golgi network and the vacuole/lysosome. J Cell Biol 149: 67–79.

      Hirst, J., and Robinson, M.S. (1998) Clathrin and adaptors. Biochim Biophys Acta - Mol Cell Res 1404: 173–193.

      Hoeijmakers, W.A.M., Miao, J., Schmidt, S., Toenhake, C.G., Shrestha, S., Venhuizen, J., et al. (2019) Epigenetic reader complexes of the human malaria parasite, Plasmodium falciparum. Nucleic Acids Res 47: 11574–11588.

      Jonscher, E., Flemming, S., Schmitt, M., Sabitzki, R., Reichard, N., Birnbaum, J., et al. (2019) PfVPS45 Is Required for Host Cell Cytosol Uptake by Malaria Blood Stage Parasites. Cell Host Microbe 25: 166-173.e5.

      Kimmel, J., Schmitt, M., Sinner, A., Jansen, P.W.T.C., Mainye, S., Ramón-Zamorano, G., et al. (2023) Gene-by-gene screen of the unknown proteins encoded on Plasmodium falciparum chromosome 3. Cell Syst 14: 9-23.e7.

      Koreny, L., Mercado-Saavedra, B.N., Klinger, C.M., Barylyuk, K., Butterworth, S., Hirst, J., et al. (2023) Stable endocytic structures navigate the complex pellicle of apicomplexan parasites. Nat Commun 14: 2167.

      Kumari, V., Singh, A.P., Singh, J., Sharma, R., Akhter, M., Mishra, P.K., et al. (2018) Biochemical characterization of unusual cysteine protease of P. falciparum, metacaspase-2 (MCA-2). Mol Biochem Parasitol 220: 28–41.

      Lazarus, M.D., Schneider, T.G., and Taraschi, T.F. (2008) A new model for hemoglobin ingestion and transport by the human malaria parasite Plasmodium falciparum. J Cell Sci 121: 1937–1949.

      Lopez-Hernandez, F.J., Ortiz, M.A., Bayon, Y., and Piedrafita, F.J. (2003) Z-FA-fmk inhibits effector caspases but not initiator caspases 8 and 10, and demonstrates that novel anticancer retinoid-related molecules induce apoptosis via the intrinsic pathway. Mol Cancer Ther 2: 255–263.

      Lord, S.J., Velle, K.B., Mullins, R.D., and Fritz-Laylin, L.K. (2020) SuperPlots: Communicating reproducibility and variability in cell biology. J Cell Biol 219.

      MalariaGEN, Ahouidi, A., Ali, M., Almagro-Garcia, J., Amambua-Ngwa, A., Amaratunga, C., et al. (2021) An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome open Res 6: 42.

      Marti, M., Good, R.T., Rug, M., Knuepfer, E., and Cowman, A.F. (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306: 1930–3.

      Mesén-Ramírez, P., Bergmann, B., Elhabiri, M., Zhu, L., Thien, H. von, Castro-Peña, C., et al. (2021) The parasitophorous vacuole nutrient pore is critical for drug access in malaria parasites and modulates the fitness cost of artemisinin resistance. Cell Host Microbe 0: 283.

      Mesén-Ramírez, P., Bergmann, B., Tran, T.T., Garten, M., Stäcker, J., Naranjo-Prado, I., et al. (2019) EXP1 is critical for nutrient uptake across the parasitophorous vacuole membrane of malaria parasites. PLoS Biol 17: e3000473.

      Mukherjee, A., Crochetière, M.-È., Sergerie, A., Amiar, S., Thompson, L.A., Ebrahimzadeh, Z., et al. (2022) A Phosphoinositide-Binding Protein Acts in the Trafficking Pathway of Hemoglobin in the Malaria Parasite Plasmodium falciparum. MBio 13.

      Otto, T.D., Wilinski, D., Assefa, S., Keane, T.M., Sarry, L.R., Böhme, U., et al. (2010) New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq. Mol Microbiol 76: 12–24.

      Robinson, M.S., Sahlender, D.A., and Foster, S.D. (2010) Rapid Inactivation of Proteins by Rapamycin-Induced Rerouting to Mitochondria. Dev Cell 18: 324–331.

      Sabitzki, R., Schmitt, M., Flemming, S., Jonscher, E., Hoehn, K., Froehlke, U., and Spielmann, T. (2023) Identification of a Rabenosyn-5 like protein and Rab5b in host cell cytosol uptake reveals conservation of endosomal transport in malaria parasites. bioRxiv 2023.04.05.535711.

      Simwela, N. V., Hughes, K.R., Roberts, A.B., Rennie, M.T., Barrett, M.P., and Waters, A.P. (2020) Experimentally engineered mutations in a ubiquitin hydrolase, UBP-1, modulate in vivo susceptibility to artemisinin and chloroquine in plasmodium berghei. Antimicrob Agents Chemother 64.

      Spielmann, T., Gras, S., Sabitzki, R., and Meissner, M. (2020) Endocytosis in Plasmodium and Toxoplasma Parasites. Trends Parasitol 36: 520–532.

      Subudhi, A.K., O’Donnell, A.J., Ramaprasad, A., Abkallo, H.M., Kaushik, A., Ansari, H.R., et al. (2020) Malaria parasites regulate intra-erythrocytic development duration via serpentine receptor 10 to coordinate with host rhythms. Nat Commun 11.

      Traub, L.M., Downs, M.A., Westrich, J.L., and Fremont, D.H. (1999) Crystal structure of the α appendage of AP-2 reveals a recruitment platform for clathrin-coat assembly. Proc Natl Acad Sci U S A 96: 8907–8912.

      Wagner, M.P., Formaglio, P., Gorgette, O., Dziekan, J.M., Huon, C., Berneburg, I., et al. (2022) Human peroxiredoxin 6 is essential for malaria parasites and provides a host-based drug target. Cell Rep 39: 110923.

      Wall, R.J., Zeeshan, M., Katris, N.J., Limenitakis, R., Rea, E., Stock, J., et al. (2019) Systematic analysis of Plasmodium myosins reveals differential expression, localisation, and function in invasive and proliferative parasite stages. Cell Microbiol 21.

      Wan, W., Dong, H., Lai, D.-H., Yang, J., He, K., Tang, X., et al. (2023) The Toxoplasma micropore mediates endocytosis for selective nutrient salvage from host cell compartments. Nat Commun 14: 977.

      Wichers-Misterek, J.S., Binder, A.M., Mesén-Ramírez, P., Dorner, L.P., Safavi, S., Fuchs, G., et al. (2023) A Microtubule-Associated Protein Is Essential for Malaria Parasite Transmission. MBio .

      Wichers, J.S., Gelder, C. van, Fuchs, G., Ruge, J.M., Pietsch, E., Ferreira, J.L., et al. (2021a) Characterization of Apicomplexan Amino Acid Transporters (ApiATs) in the Malaria Parasite Plasmodium falciparum. mSphere 6.

      Wichers, J.S., Mesén-Ramírez, P., Fuchs, G., Yu-Strzelczyk, J., Stäcker, J., Thien, H. von, et al. (2022) PMRT1, a Plasmodium -Specific Parasite Plasma Membrane Transporter, Is Essential for Asexual and Sexual Blood Stage Development. MBio 13.

      Wichers, J.S., Scholz, J.A.M., Strauss, J., Witt, S., Lill, A., Ehnold, L.-I., et al. (2019) Dissecting the Gene Expression, Localization, Membrane Topology, and Function of the Plasmodium falciparum STEVOR Protein Family. MBio 10: e01500-19.

      Wichers, J.S., Tonkin-Hill, G., Thye, T., Krumkamp, R., Kreuels, B., Strauss, J., et al. (2021b) Common virulence gene expression in adult first-time infected malaria patients and severe cases. Elife 10.

      Wichers, J.S., Wunderlich, J., Heincke, D., Pazicky, S., Strauss, J., Schmitt, M., et al. (2021c) Identification of novel inner membrane complex and apical annuli proteins of the malaria parasite Plasmodium falciparum. Cell Microbiol 23: e13341.

  3. May 2022
    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2021-01219

      Corresponding author(s): Rajan, Akhila

      1) General Statements [optional]

      This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.

      The goal of this study is to:

      • Define how prolonged exposure to a high-sugar diet (HSD) regime alters both the lipid landscape and feeding behavior.
      • Determine how changes in lipid classes within the adipose tissue regulates feeding behavior. Key findings:

      In this study, by taking an unbiased systems level and genetic approach, we reveal that phospholipid status of the fat tissue controls global satiety sensing.

      Impact of Key findings:

      By uncovering a critical role for adipose tissue phospholipid balance as a key regulator of organismal feeding, our work raises the possibility that the rate-limiting enzymes in phospholipid synthesis, including Pect, are potential targets for therapeutic interventions for obesity and feeding disorders.

      Peer review comments:

      This study has immensely benefited from the thoughtful peer-review of three reviewers. As per their recommendations, we have performed a major revision by performing additional experiments (see summary table below in next section) and strived to address the major concerns raised. Based on our reading, there were two major concerns that overlapped between all three reviewers raised. They are as follows:

      • Does the genetic disruption of Pect in fly fat body alter phospholipid levels? Two reviewers (#2 and #3) recommended that we perform lipidomic analyses on adult flies with adipose tissue specific knockdown of For the revised version, we have completed this lipidomic experiment, and present results as a new main Figure 6, Supplemental S7 and S9.
      • Is the dampened HSD induced hunger-driven feeding (HDF) behavior because of increased baseline feeding (#1 and #3)? In addition, reviewer #1, asked us whether HSD flies experience an energy-deficit? In other words, we were asked to uncouple whether what we observed was HSD-driven allostasis or indeed, as we had interpreted, that HSD dampened hunger-driven feeding response.

      Hence, they recommended that we:

      1. Re-analyze our hunger-driven feeding datasets and present non-normalized data (also requested by Reviewer #3) and show baseline feeding behavior on HSD. To address this, we have completed this analysis and present our results in Figure 1B-D and S1.
      2. Determine whether the HSD fed flies display an energy deficit on starvation. To this end, we performed an assayed starvation-induced fat mobilization on HSD, results for this are now presented on Figure 1E-G and S2. Conclusions after the revision:

      First, it is important to note here that the additional experiments have not caused a significant revision of the major conclusions of the original version of our study. In fact, we hope that the revised version provides clarity and further substantiation to our original arguments.

      • The lipidomics experiments on Pect fat-specific knock-down flies show that reducing Pect in fat-body causes a significant reduction in certain PE lipid species (PE 36.2 specifically- Figure 6B). This is consistent with a prior report on lipidomics of the Pect null allele by Tom Clandinin’s group (PMID: 30737130). Furthermore, we note that when Pect is knocked down in the fat body, there is a significant increase in two other classes of phospholipids LPC and LPE (Figure 6A). Together, this suggests that an imbalance in phospholipid composition in the absence of Pect activity in fat.
      • The starvation-induced fat mobilization experiments show that despite being fed a prolonged HSD, adult flies sense starvation and effectively mobilize fat stores, at a level comparable to Normal food (NF) fed adult flies, suggesting that even despite HSD exposure, adult flies experience an energy deficit on starvation.
      • In our non-normalized data, we find that the baseline feeding events are not significantly altered between HSD and NF-fed flies (Figure 1D). This suggests that the effects we observe are not due to an increase in the “denominator”, but a dampening of hunger-driven feeding on HSD. With regard to our original version, all three peer-reviewers found that the study was interesting, significant, important, and novel – Reviewer #1: “The work is potentially novel and interesting”; #2 : “I find the study to be potentially very important - the authors combine a longitudinal study that would be difficult in any other model with the powerful genetic tools available in the fly. The conclusions are mostly convincing”; #3: “This manuscript demonstrates how fat body Pect levels affect HSD induced changes in hunger-driven feeding response. I agree with all the reviewers points; potentially very interesting”. But had requested that we provide further substantiation and clarification.

      We sincerely hope that the peer-reviewers find that our revised version with additional new experimental datasets, improved data visualization, and the presentation of non-normalized raw data points, makes this study clear, compelling, and well-substantiated.

      • Point-by-point description of the revisions This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      Below we summarize in Part A, the key experiments that were performed to address the major concerns. In Part B, we provide a point-point response to each reviewer with embedded datasets.

      Part a:

      We performed several new experiments, including:

      • To address the primary concern of Reviewer #1 regarding whether the HSD flies have a similar energy deficit to Normal food (NF) fed flies, we performed analysis of stored neutral fat Triacylglycerol (TAG) reserves and how HSD fed flies mobilized fat stores on starvation. We present these results in Figure 1E-G, S2. These results show that HSD-flies despite accumulating more TAG (S2), breakdown a similar amount of fat reserves as NF-fed flies on starvation at any time-point (Figure 1E-G). This suggests that HSD-fed flies do sense and respond to energy deficit.
      • To address concerns of reviewer #2 and #3 on whether Pect genetic manipulation affects specific phospholipid classes, we performed lipidomic analyses. The table below summarizes the new 3 new figures and 4 supplemental figures (blue text are all new figure numbers and figure panels) and three new Supplementary files as per reviewer’s request.

      Figure #

      Main point

      New datasets in revision

      Companion Supplement

      1

      HSD alters feeding behavior, but flies still breakdown TAG on starvation.

      TAG storage and breakdown over longitudinal HSD shows that HSD and NF fed flies show similar levels of TAG breakdown on starvation, despite consistently elevated TAG on HSD. This supports the idea that flies do sense starvation even on HSD, but there is a uncoupling of the feeding behavior after Day 14. Revised the data representation of Figure 1 to show non-normalized data over time. S1 and S2 companions are new in the revision. Panels 1D to 1E are new for the revision.

      S1- Raw data of feeding events plotted.

      S2 Elevated TAG at all time points.

      2

      HSD causes insulin resistance

      S3A added to show that insulin transcript levels remain the same in response to reviewer #3’s concerns.

      S3

      3

      Phospholipid concentration raw data from lipidomic on Day 7 and Day 14 HSD suggest that PC, PE levels are increased on Day 14 HSD.

      Figure 3 revamped to show new data visualization and non-normalized raw data to address Reviewer #2’s major concerns. S4A and S4B added. In addition Supplementary File 1 and 2 provided with raw lipidomics data as per reviewer #2’s request.

      S4.

      S4A- non normalized raw data of all other lipid classes on HSD.

      S4B- fatty acid species data on Day 14 added as per request of rev.#2.

      4

      HSD regulate Apo-I levels in the IPCs and phenocopies Pect KD.

      Added Figure 4A to show that HSD phenocopies Pect-KD in terms of delivery to brain

      S5 showing the validation of the Apo-I antibody.

      S6 validation of Pect KD and over-expression and Pect mRNA levels dysregulation on HSD.

      5

      Pect RNAi is insulin resistant

      N/A

      N/A

      6

      Pect knockdown shows significant increase in LPC and LPE, and a non-significant reduction in PC, PE levels. Specifically, the PE lipid class PE36.2 is downregulated.

      Fig 6, S7, S9 are completely new based on reviewer #2 and #3 requests. In addition Supplementary File 3 provided with raw lipidomics data as per reviewer #2’s request

      S7, S8, S9#.

      S7- new Pect KD other classes

      S8- new PE classes for day 14 and Pect associated classes.

      S9- Pect OE lipidomics

      7

      Pisd and Pect activity in adipocytes are required for hunger-driven feeding behavior in normal diets

      Pisd RNAi data was moved from supplement to main figure.

      N/A

      Note on revised text: We have revised text not only in the results section, but also as per reviewer #2’s recommendation, we have revamped our introduction and discussion as well. Since the manuscript has been significantly revised to include a main figure 6, fully altered Figure 1 and 3, multiple new supplemental figures, the changes in text are extensive. Hence, they are unmarked in the main text. Nonetheless, we hope that the reviewers will be able to evaluate these changes, as we have provided the specific locations in text and embed key figures in the point-point response below.

      __Part B: __Point-Point responses to reviewer comments.

      Reviewer #1 comments in Blue, author response in black.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, Kelly et al. show that the difference between the feeding behavior of fed and starved flies (hunger-driven feeding; HDF) is absent in animals fed a high-sugar diet (HSD) for two weeks or more. The disappearance of HDF with HSD coincides with changes in phospholipid profiles caused by HSD. Furthermore, RNAi-mediated downregulation of Pect in the fat body-a key enzyme in the PE biosynthesis pathway-phenocopies physiological effects of HSD. Moreover, downregulation or overexpression in the fat body abolishes or induces HDF, respectively, abolishes or induces HDF, respectively, independent of HSD treatment.

      Overall, the manuscript is well-written and the phenotypes are clear. However, I have major concerns regarding the authors' interpretation of the data and their conclusion. Most importantly, while it is clear that the authors' high-sugar dietary treatment affects feeding behavior and physiology, I am not convinced that the changes can be considered "hunger-driven"-which is central to the main point of the manuscript. Therefore, it is my recommendation that the authors substantially revise the manuscript by either showing additional/re-analyzed data that rule out alternative hypotheses, or rewriting the manuscript keeping alternative interpretations in mind.

      We are thankful to this reviewer for their thoughtful critique, and constructive and specific suggestions on how we can redress these concerns. We have taken on board the concerns of this reviewer regarding our interpretation of whether the changes in feeding behavior can be considered hunger-driven or not. Based on their advice, we have made significant changes by addressing: i) does HSD increased baseline feeding- we now show non-normalized raw data and data supports conclusion that baseline feeding is not higher; ii) whether HSD- fed flies can sense an energy deficit at levels similar to NF fed flies- we show that HSD flies sense energy deficit. We have provided detailed response below, and we hope the reviewer finds the additional datasets and re-analyzed data are consistent with the interpretation that prolonged HSD dampens starvation induced feeding. In addition to this key concern this reviewer has made a many other salient points that we have addressed with additional data or by clarifying the text.

      Major comments: 1) The data do not sufficiently show that the long-term HSD regime disrupts "hunger-sensing." The manuscript should address alternative hypotheses by showing raw instead of normalized data, rewriting the manuscript with a new central conclusion, or running additional experiments that actually show a defect in hunger-driven response. a. The main results that the authors rely on for the argument is that the ratio of feeding events that the starved and non-starved flies eat is different between the groups fed normal or HSD. However, because the authors only show normalized data (normalized to non-starved flies; Fig. 1), it is difficult to tell whether the change is due to a chronically increased feeding in non-starved HSD flies-maybe in perpetual hunger-like allostasis-or dampened starvation response. Indeed, the data shown in Fig S1 show that flies fed HSD for as short as 5 days show more frequent feeding events compared to age-matched controls fed normal food. It is possible that because the HSD-fed flies eat more than NF-fed flies, even without being starved, the ratio of starved/non-starved feeding is lower in the HSD-fed group-due to changes in the denominator, rather than the numerator.

      We have taken onboard this concern regarding presenting only normalized data, and that clouded the interpretation and left open other possibilities. In the completely revised figure 1 and S1. We now show non-normalized data, as a function of time. First we note that HSD-fed flies, do not show higher baseline feeding that NF fed flies, except on Day 10 of HSD, when there is a modest but significant elevation (Figure 1D).

      Nonetheless, on Day 10 HSD, flies still display increased hunger-driven feeding HDF (Figure 1C), it is only after Day 14 HSD that HSD dampens the starvation induced feeding.

      1. It is also possible that the HSD-fed flies are simply not in as big an energy deficit physiologically, due to the increased fat deposits they've accumulated (as the authors show later in the manuscript). It may take longer for the fat HSD flies to reach substantial energy deficiency than the NF flies, but they still may eventually be able to appropriately respond to hunger, just like NF flies. In such case, it would be a misnomer to call this behavioral change a 'defect in hunger-driven feeding behavior.' Maybe an experiment with a dose-response curve of "hunger driven feeding response" as a function of duration of starvation would help? Prompted by this reviewers question, we asked whether HSD fed flies, that have a higher baseline neutral fat store (Triacylglycerol-TAG) level, and if HSD-fed flies can sense energy deficit. For this, we revisited the longitudinal assays for neutral fat triacylglycerol (TAG) storage that our lab had generated, along with the HSD-HDF studies. We now present this evidence as Figure 1E-1G and Figure S2. Overall, our experiments point to the idea that adult flies fed HSD, are able to sense and mobilize TAG stores effectively throughout the 28-day time point that we analysed.

      First as shown in Figure S2, flies fed HSD display an increase in TAG levels. But it is to be noted that while TAG stores increase, the increase is not linear with time. This suggests that adult flies exposed to HSD store excess energy as TAG, but the increased TAG stores stay within a certain range despite the length of HSD exposure. This suggests that adult flies on HSD still display TAG homeostasis.

      Next, to directly address the reviewers point about HSD fed flies not sensing an energy deficit, we subject HSD-fed flies to an overnight starvation, same regime as used in the overnight feeding experiments, and asked whether they mobilize TAG. We noted that flies exposed to HSD breakdown TAG throughout the 28-day exposure at statistically significant levels for Day 3- Day 28, except on 14 and 21 days (Figure 1F). While there is TAG mobilization on Day 14 and 21, the difference is not statistically significant. Nonetheless, we note the same levels TAG breakdown for normal lab food (NF) fed flies on Day 14 and 21 (Figure 1E). Overall, HSD fed flies sense and display energy deficit, as measured by TAG store mobilization, throughout the 28 days of HSD exposure, at levels comparable to NF-fed flies (Figure 1G).

      Taken together, these results suggest that while HSD-fed flies experience an energy deficit on starvation, at levels comparable to NF-fed flies, throughout the 28-day time point assayed. But, their starvation driven feeding-response is dampened by Day 14 and by Day 28, the HSD-fed flies display more feeding events than HSD starved flies. These results are consistent with the interpretation that in HSD-fed flies the starvation-induced feeding behavior becomes desynchronized from the starvation induced TAG-mobilization, suggesting that there is an absence of hunger-driven feeding.

      2) How can you be sure that lower Dilp5 immunofluorescence is indicative of increased Dilp5 secretion? Wouldn't decreased production of dilp5 also have the same results?

      It has been shown previously in HSD fed larvae are hyperinsulinemic, i.e., they have 55% increase in circulating Dilp2 ( PMID: 22567167). Additionally, we have shown that ectopic activation of the insulin-producing neurons by expressing TRPA1, an ion channel that activates neurons, reduces Dilp5 accumulation without a change in Dilp5 mRNA levels (PMID: 32976758), suggesting that reduced Dilp5 accumulation, without alterations to mRNA levels is a proxy for increased secretion. Now, in response to this concern, in the revised manuscript, we have added qPCR data of Dilp2 and 5 (Figure S3A), which show no difference in expression levels after 14 days on HSD. Therefore, there is no dip in Dilp5 mRNA production. Given that Dilp2 and Dilp5 mRNA levels remain the same, but we see reduced Dilp5 accumulation, we interpret this to mean that Dilp5 secretion is increased.

      1. Also, the authors should state in the main text that it is Dilp5, not just any Dilp. Thanks for this suggestion and we have fixed this and referred to Dilp5 specifically throughout the text in the results section.

      3) Data presentation: a. Sometimes the data are normalized to NF (Fig 4B-C), sometimes not (ex. Fig 4A, S4C). Unless there is a specific rationale for the data transformation, it would be more appropriate to show untransformed data (ex. Fig 4A, S4C), especially as the authors use two-way ANOVA to determine significance. Only showing the differences implies comparison against a hypothetical mean (i.e. μ0=0), not between two group means.

      We thank the reviewers for bringing this issue to our attention. We updated all the figures to show untransformed data in the revised manuscript.

      1. Some figures show both individual data points and summary statistics (mean, SD, ... ex. Fig 2A)-which I believe is ideal-but some show only one or the other (ex. Fig 2B, no summary statistics; Fig. 3, no data points. The manuscript would read more convincing if data visualization is consistent across figures. We thank the reviewers for their feedback. We have made changes to all the figures in the revised manuscript to improve visual consistency.

      Minor comments: 1) High sugar diet: what is the actual sugar concentration in the NF v. HSD diets? The authors write that the HSD diet contains "30% more sugar" than the NF, but providing the final sugar concentrations-sucrose or others-would be informative for other scientists studying the effect of high sugar diets.

      We thank the reviewer for their suggestion and now we have updated the methods to include this sentence. After 7 days, flies were either maintained on normal diet or moved to a high sugar diet (HSD), composed of the same composition as normal diet but with an additional 300g of sucrose per liter”.

      1. Additionally, the definition of HSD is inconsistent. Main text (Page 5, line 17) states that their HSD is "60% more sugar than normal media," whereas the figure legend (Fig 1) and the Methods state that the HSD contains "30% more sugar." We apologize for this egregious typo in the figure legend! We have now fixed this to say 30% HSD. Only 30% HSD was used throughout this study.

      2) Starvation medium: please provide justification for why the authors used 1% sucrose/agar for starvation medium, instead of plain agar/water that most labs use. At least clarify and provide a reference for the claim that the 1% sucrose/agar "is a minimal food media to elicit a starvation response."

      We are very grateful for this reviewer identifying this this methods description error and bring it to our attention. We used 0% sucrose agar for overnight starvation in this study as most labs do. The error occurred because we were using another manuscript from the lab to help draft the methods section (PMID: 29017032). In that study, where we assayed the effect of chronic starvation our lab used: “1% sucrose agar for 5 days at 25C”. However, in this current study, because we are testing acute effects of overnight starvation, we are using 0% sucrose agar.

      3) Pect mRNA level is higher with HSD. This is surprising because not only, as authors mention, is increased PC32.2 with HSD suggests lower Pect activity, but also because Pect RNAi phenocopies long-term HSD in HDF behavior, lipid morphology, FOXO accumulation in fat body. The authors speculate that the data "likely shown an upregulation in an attempt to mediate the Pect dysregulation occurring at the protein level." If that were true, a western blot may be informative. Zhao and Wang (2020, PLoS Genetics) generated a Pect antibody that seems compatible with western blot applications. That being said, I don't think such data is critical for the manuscript. I mention this simply as a suggestion for the authors. a. page 8, line 22-23, did you mean to write "Given how PC32.2 is elevated after 14 days of exposure to HSD, we assumed that Pect levels would be low for flies under HSD," not "high?" Otherwise the subsequent 2 sentences don't make sense.

      We agree that the most confusing aspect of the study was that Pect mRNA levels being very high on Day 14 HSD, but nonetheless the effects of Pect-KD phenocopied HSD. To resolve this, we have now performed lipidomic analyses on whole adult flies, when Pect is knocked-down (KD) by RNAi in the fat tissue. We now present a new dataset in Figure 6. Two striking changes occur. They are:

      1. Pect-KD shows increase in the phospholipid classes LPC and LPE (Figure 6A). In contrast, LPE is significantly downregulated on HSD Day 14 (Figure 3).
      2. Pect-KD shows a significant reduction in specific class of PE 36.2 (Figure 6B). Our data regarding increase in PE 36.2 agree with a previous lipidomic analyses of Pect mutant retina (PMID: 30737130). In contrast, PE 36.2 trends upwards on 14 day HSD (Figure S7C) though not significantly. On 14-day HSD consistent with extreme upregulation of Pect mRNA fed flies (Figure S6A; Pect mRNA 200-250 fold), PE trends upwards on 14-day HSD (Figure 3) and PE 36.2 trends higher (Figure S7C). We note that on the surface of it PE and LPE per se are contrasting between 14-day HSD lipidome and fat-specifc Pect-KD. But there is a significant commonality that under both states there is an imbalance of phospholipids classes PE and LPE. Hence, we propose that maintaining the compositional balance of phospholipid classes PE and LPE is critical to hunger-driven feeding and insulin sensitivity. Hence, either increase or decrease, of these key phospholipid species, may lead to abnormal hunger-driven feeding.

      We agree that a western blot would be informative as well, but we were unable to obtain the reagent from Dr. Wang’s group, precluding us from performing this request. See email snapshot.

      To ensure that we appropriately discuss and clarify this issue, we have now included a section in the discussion - Page 14 Lines 26-34- under the subtitle “The implications of relationship between Pect levels and HSD”. We have pasted an excerpt from that subsection below for this reviewers assessment.

      Also, we note that over-expression of Pect cDNA in the fat-body does not alter phospholipid balance (Figure S9) and indeed improves HDF on HSD (Figure 7B). While this may appear inconsistent, it is critical to note that over-expression of Pect cDNA using UAS/Gal4 only increases Pect mRNA expression by 7-fold (Figure S6A), whereas HSD causes its upregulation by 250-fold (Figure S6B). Hence, we speculate that an increased ‘basal’ level of Pect such as by that provided by a cDNA over-expression in fat, may be protective to the negative effects of HSD (Figure 7B) without affecting overall phospholipid levels (Figure S9) , but extreme upregulation Pect on HSD affects the PE and LPE balance (Figure 3).”

      Reviewer #1 (Significance (Required)):

      The work is potentially novel and interesting, but at this stage it's difficult to interpret what the phenotype signifies. Although the manuscript could be revised simply by modifying the text, experimentally addressing the concerns would significantly improve the work.

      In sum, we hope we have addressed the key concern for Reviewer #1 as to whether the behavior we report here is indeed a dampening of starvation-induced feeding, or an effect of increase in baseline feeding. We hope that by reviewing our non-normalized data, they can appreciate that it is the former. Also, we hope that Reviewer #1 appreciates that we have strived to address the concerns by additional experiments, to clarify our findings and improve the impact of the work.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      This intriguing manuscript by Kelly and colleagues uses the fruit fly Drosophila melanogaster as a model to understand how diet-induced obesity alters the feeding response over time. In particular, the authors findings indicate that chronic exposure to a high-sugar diet significantly alters the starvation-induced feeding response. These behavioral studies are complemented by a lipidomics approach that reveals how a chronic high sugar affects many lipid species, including phospholipids. The authors then pursue mechanistic studies that indicate phospholipid metabolism within the fat body appears to remotely affect insulin secretion from the insulin producing cells. Moreover, the changes in phospholipid abundance are associated with changes in insulin-signaling, including increased insulin secretion from the IPCs and elevated levels of FOXO within the nucleus.

      I find the study to be potentially very important - the authors combine a longitudinal study that would be difficult in any other model with the powerful genetic tools available in the fly. The conclusions are mostly convincing, but a few follow-up experiments are required:

      We are grateful for the reviewers constructive, detail-oriented, and balanced feedback, and their recognition of the value of this study. Now, we have performed additional experiments to address the key concerns raised by all reviewers. We hope that on reading the revised version of our study, that the reviewer continues to feel positive about the message of this study and its potential impact.

      1. The key conclusions from the manuscript assume that manipulation of Pect expression levels alters phosphatidylethanolamine (PE) levels. However, the authors make no attempt to verify that the genetic experiments described herein actually affect PE levels. At a minimum, changes in PE levels should be verified for the Pect knockdown and overexpression lines. Similarly, there is no evidence that manipulation of either EAS or Pcyt2 induces the expected metabolic effects. I'm not asking that the longitudinal feeding experiments be repeated, simply that the authors measure the relevant lipid species, preferably with a targeted LC-MS approach.

      Prompted by this reviewer, we performed targeted LC-MS on whole adult flies, on normal diet, to assess lipid levels for fat-specific Pect-KD and overexpression. We decided to focus on Pect, as its knock-down even on normal diet causes a dampened hunger-driven feeding behavior (Figure 7A) and phenocopied a 14-day HSD feeding phenotype.

      We now present a new dataset in Figure 6. Two striking changes occur:

      They are:

      Pect-KD shows a significant reduction in specific class of PE 36.2 (Figure 6B). Our data regarding decrease in PE 36.2 agree with a previous lipidomic analyses of Pect mutant retina (PMID: 30737130). It is to be noted that though overall levels of all PE species trend downwards, like the Clandinin lab study on Pect (PMID: 30737130), we did not find a significant change in the overall PC and PE levels.

      • Pect-KD shows increase in the phospholipid classes LPC and LPE (Figure 6A). In contrast, LPE is significantly downregulated on HSD Day 14 (Figure 3). On 14-day HSD consistent with extreme upregulation of Pect mRNA fed flies (Figure S6A; Pect mRNA 200-250 fold), PE trends upwards on 14-day HSD (Figure 3) and PE 36.2 trends higher (Figure S7C). We note that on the surface of it PE and LPE per se are contrasting between 14-day HSD lipidome and fat-specifc Pect-KD. But there is a significant commonality that under both states there is an imbalance of phospholipids classes PE and LPE. Hence, we propose that maintaining the compositional balance of phospholipid classes PE and LPE is critical to hunger-driven feeding and insulin sensitivity. Hence, either increase or decrease, of these key phospholipid species, may lead to abnormal hunger-driven feeding.

      Finally, fat-specific Pect-OE did not cause significant changes to lipid species (Figure S9). This could either be due to the fact that in fat-specific Pect-OE flies under normal food and that we were assaying whole body lipid levels and not fat-specific lipid changes. But to counter that, even a 60% reduction in Pect mRNA levels (Figure S6A), was sufficient to produce an effect on whole body phospholipid balance (Figure 6). Hence, we speculate that by maintaining a basally higher (7-fold higher Pect mRNA level Figure S6A), might allow 14-day HSD-fed flies to buffer the negative effects of HSD and we predict that it might take longer to disrupt the phospholipid balance and HDF response.

      We have now included a section in the discussion - Page 14 Lines 26-34- under the subtitle “The implications of relationship between Pect levels and HSD”. We have pasted an excerpt from that subsection below for this reviewers assessment.

      Also, we note that over-expression of Pect cDNA in the fat-body does not alter phospholipid balance (Figure S9) and indeed improves HDF on HSD (Figure 7B). While this may appear inconsistent, it is critical to note that over-expression of Pect cDNA using UAS/Gal4 only increases Pect mRNA expression by 7-fold (Figure S6A), whereas HSD causes its upregulation by 250-fold (Figure S6B). Hence, we speculate that an increased ‘basal’ level of Pect such as by that provided by a cDNA over-expression in fat, may be protective to the negative effects of HSD (Figure 7B) without affecting overall phospholipid levels (Figure S9), but extreme upregulation Pect on HSD affects the PE and LPE balance (Figure 3).”

      A central hypothesis in the study is that the HSD over a period of 14 days results in insulin resistant and that these changes are leading to changes in hunger dependent feeding. I would encourage the authors to determine if Foxo mutants are resistant to these HSD-induced effects on HFD.

      We thank the reviewers for this suggestion. However, given that dFOXO nuclear localization rather than expression levels regulate insulin sensitivity, we feel that disrupting dFOXO levels via mutation or knockdown will produce a plethora of indirect effects including developmental abnormalities (PMID: 24778227, PMID: 16179433, PMID: 29180716, PMID: 12893776). Our data suggest that chronic HSD treatment and Pect affect insulin sensitivity in fat tissue. However, we feel that investigating whether insulin sensitivity/FOXO signaling in fat tissue regulates feeding behavior is outside the scope of our work.

      1. In lines 25-30, the authors draw the conclusion that an increase in unsaturated fatty acid species is associated with the HSD and that these changes results in a more fluid lipid environment. While I agree with the model, the manuscript contains no evidence to support such a model. Either test the hypothesis or move the last line of the section to the discussion.

      We thank the reviewer for this important and insightful comment. We agree that the data we presented and discussed in the original version is at the moment speculative. Addressing the hypothesis that increase in unsaturated fatty acid species result in a more fluid lipid environment will require us to build tools and expertise. Hence, this hypothesis is better suited for exploration in a future study. Given this, we have moved this out of the results section into the Discussion section titled “HSD and fat-specific PECT-KD causes changes to phospholipid profile” (See excerpt below from page 13, lines 24-35).

      In addition to changes in phospholipid classes, we found that HSD caused an increase in the concentration of PE and PC species with double bonds (Figure S4C and S4D). Double bonds create kinks in the lipid bilayer, leading to increased lipid membrane fluidity which impacts vesicle budding, endocytosis, and molecular transport14,92. Hence it is possible that a mechanism by which HSD induces changes to signaling is by altering the membrane biophysical properties, such as by increased fluidity, which would have a significant impact on numerous biological processes including synaptic firing and inter-organ vesicle transport.”

      Also, as per the reviewer’s guidance, given that we are speculating here, we have also shifted this dataset from Main figure 4 to supplement S4C and S4D.

      In addition, lines 25-30 state that FFAs are increased after 14 days of a HSD. Figure 3A shows the exact opposite - FFAs are significantly decreased in 14 day fed animals despite being elevated in the 7 day fed animals. This is an interesting result that warrants discussion. Moreover, I would encourage to examine the lipidomic data more carefully to ensure that the text accurately portrays the lipid profiles.

      We apologize for misstating that FFAs are decreased on 14-day HSD in the lines 25-30. It was an error and we have corrected this. We agree with the reviewer that the reduction of FFA on Day 14-HSD is an intriguing and unexpected observation that needs to be emphasized and further discussed. To this end, we have added figure S4B, wherein we have provided the difference in FFA concentration (by species) after days 7 and 14.

      Furthermore, we have discussed what the potential meaning of reduced FFA at Day 14 implies in page 12, lines 19-27 of the Discussion section titled “HSD and fat-specific PECT-KD causes changes to phospholipid profile”. We have stated the following-

      We speculate that this reduction in FFA maybe due to their involvement in TAG biogenesis (PMID: 13843753). We were interested to see if the decrease in FFA correlated to a particular lipid species, as PE and PC are made from DAGs with specific fatty acid chains. However, further analysis of FFAs at the species level did not reveal any distinct patterns. The majority of FFA chains decreased in HSD, including 12.0, 16.0, 16.1, 18.0, 18.1, and 18.2 (Figure S4B). This data was more suggestive of a global decrease in FFA, likely being converted to TAG and DAG, rather than a specific fatty acid chain being depleted.”

      The processed lipidomics data should also be included as supplementary data table so that they can be independently analyzed by the reader.

      We thank the reviewer for this suggestion. As per the reviewers request, we have included the raw data as an attachment in our supplementary material (Supplementary Files 1-3.), so that interested readers can use the datasets generated in this study for future work and further analysis.

      Beyond these experimental suggestions, the manuscript needs significant editing for clarity. While I won't provide a comprehensive list, the authors need to provide accurate descriptions and annotation of genotypes (including w[1118], which is written as W1118), typos, and formatting. I've listed a few examples below:

      1. Page 3, Line 1 and 2: "...have been shown to impact feeding behavior and metabolism that leads to..." This is an awkward and grammatically incorrect sentence.
      2. Page 3, Lines 7-32 is one very large paragraph but contains concepts that should be broken down over at least three paragraphs.
      3. Page 3, Line 25: A description of the reaction catalyzed by Pect would be helpful for a manuscript focused on Pecte activity.
      4. Page 4, Line 10: "previously characterized method of eliciting diet induced feeding behavior." As stated in the text, the method is previously described yet the manuscript characterizing the method isn't cited.
      5. Figure legend 3 contains a random assortment of capitalized lipid species. Also, the names of lipid species are inappropriately broken into multiple names. Please use correct nomenclature throughout the manuscript.

      The list above is nowhere near comprehensive. The manuscript requires significant editing.

      We are grateful to the reviewer for drawing our attention to these errors. We have made significant edits to the revised manuscript to address the above-mentioned concerns, as well as made additional textual changes throughout and copyedited it. We hope that the reviewer will find the manuscript reads better and the clarity and preciseness is significantly improved.

      Reviewer #2 (Significance (Required)):

      I find the study to be potentially very important - the authors combine a longitudinal study that would be difficult in any other model with the powerful genetic tools available in the fly. The findings will significantly advance our understanding of how lipid metabolism links dietary nutrition with feeding behavior.

      Once again, we are grateful for this reviewer’s thoughtful critique and encouraging words regarding our work and its potential impact.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary: This manuscript uses Drosophila to investigate how diet-induced obesity and the changes in the lipid metabolism of the fat boy modulate hunger-driven feeding (HDF) response. The authors first demonstrate that chronic exposure (14 days) of high sugar diet (HSD) suppresses HDF response. Through lipidome analysis, the authors identify a specific class of lipids to be elevated upon chronic HSD feeding. This coincided with the changes in expression of Pect, an enzyme that regulates the biosynthesis of these lipids. Modulating the expression of Pect specifically in the fat body affected HDF response.

      We thank this reviewer for their rigorous and thoughtful critique and for identifying a key issue with our original study pertaining to a gap in how Pect mRNA levels on 14-day HSD are elevated but the Pect-KD phenocopies the HDF. Now by performing whole-body adult fly lipidomic on fat-specific Pect-KD we have resolved this issue and provided clarity on role of Pect in maintaining phospholipid homeostasis and thus subsequently impacts hunger-driven feeding. We hope the reviewer finds that the revised manuscript provides further clarity to the functional link between Pect’s role in fat-body and hunger-driven feeding.

      Major comments: The author claim that the HDF response in HSD is distinct between early (5d, 7d) and chronic (day 14) HSD feeding. However, the data seem to indicate that HDF response is significantly decreased at all time points in HSD. For example, at day 5 HDF response was increased only 3-fold in HSD (Figure 1C) compared to around 50-fold increase in NF (Figure 1B). The scale of the Y-axis in Figure 1B and 1C is an order of magnitude different. Including the starved data (NFstv and HSDstv) in Figure S1, normalized to NF fed group, would better visualize the overall trends. Related to this, having the source data for the actual number of feeding events would be useful (e.g., to see the baseline changes in feeding in different time points in Figure 1 and the effect of genetic manipulations in Figure 7).

      As per the reviewers request, we now have modified our graphs to show source data (Figure S1) and show the raw feeding events.

      Then in the non-normalized graphs we plot, over a longitudinal time course, baseline and hunger-driven feeding events (Figure 1B-D). We also show that HSD fed flies do not display increased baseline feeding (Figure 1D) suggesting that the effect we see on HDF are no clouded by increased baseline feeding.

      Yes, the reviewer makes an important point that HDF response on HSD fed flies is of a lower magnitude than NF fed flies. We think that is a biologically meaningful observation, as it suggests that flies have a remarkably fine-tuned ability to coordinate food-intake with nutrient store levels.

      ­­Now we have included a paragraph in the Discussion, Page 11 Lines 23-27, that say the following to ensure the readers appreciate this salient point raised by this reviewer.

      *It is to be noted that the HDF response of HSD-fed flies (Figure 1C, Days 3-10) is of lower order of magnitude than the NF-fed flies. This suggests that that in addition to sensing an energy deficit and mobilizing fat stores (Figure 1F, 1G, S1), HSD fed flies calibrate their starvation-induced feeding to compensate only for the lost amount of fat. Overall, this suggests that flies have a remarkably fine-tuned ability to coordinate food-intake with nutrient store levels. *

      The association between fat body Pect level and phospholipid levels is not clear. Day 14 of HSD feeding shows high expression of Pect in the fat body and elevated levels of PC32.0 and PC32.2. The authors assume the high expression of Pect in the fat body is due to the compensatory response, but there are no data indicating downregulation of Pect levels at the earlier time points of HSD feeding. A previous study demonstrated that Pect mutant flies have lower levels of PC32.0 but higher PC32.2 (PMID: 30737130).

      We agree that one puzzling aspect of the original version of this study was that Pect mRNA levels being very high on Day 14 HSD, but nonetheless the effects of Pect-KD phenocopied HSD. To resolve this, prompted by Reviewer #2 and #3 concerns, for this revised version we have now performed lipidomic analyses on whole adult flies, when Pect is knocked down (KD) by RNAi in the fat tissue. We now present a new dataset in Figure 6. Two striking changes occu. They are:

      1. Pect-KD shows increase in the phospholipid classes LPC and LPE (Figure 6A). In contrast, LPE is significantly downregulated on HSD Day 14 (Figure 3).
      2. Pect-KD shows a significant reduction in specific class of PE 36.2 (Figure 6B). Our data regarding increase in PE 36.2 agree with a previous lipidomic analyses of Pect mutant retina (PMID: 30737130). In contrast, PE 36.2 trends upwards on 14 day HSD (Figure S7C) though not significantly. On 14-day HSD consistent with extreme upregulation of Pect mRNA fed flies (Figure S6A; Pect mRNA 200-250 fold), PE trends upwards on 14-day HSD (Figure 3) and PE 36.2 trends higher (Figure S7C). We note that on the surface of it PE and LPE per se are contrasting between 14-day HSD lipidome and fat-specifc Pect-KD. But there is a significant commonality that under both states there is an imbalance of phospholipids classes PE and LPE. Hence, we propose that maintaining the compositional balance of phospholipid classes PE and LPE is critical to hunger-driven feeding and insulin sensitivity. Hence, either increase or decrease, of these key phospholipid species, may lead to abnormal hunger-driven feeding.

      On day 14, HDF response was increased 70-fold in w1118 flies in NF (Figure 1B; w1118), but only 2.5-fold in lpp>LucRNAi control flies in NF (Figure 7A). This suggests that lpp-gal4 driver lines have a significant effect on HDF response. Using a different fat-body specific Gal4 line would be necessary to validate conclusions.

      Regards reduced HDF magnitude, in our experience using UAS-Gal4 reduces HDF response magnitude consistently and cannot be compared to w1118 which is more robust. To account for background differences, we use Uas-Gal4 with control RNAi. It clearly shows differences in HDF response on starvation, but Pect and Pisd RNAi does not (Figure 7A). Hence, given that this experiment internally controls for any changes in HDF response for UAS-Gal4>RNAi, we conclude that HDF response in disrupted in Pect and PISD KD (Figure 7).

      We only presented the Lpp-driver in our study, as this driver is the only fat-specific driver that has no leaky expression in other tissues, and is specific to fat as apolpp promoter used to generate this Gal4 line is only expressed in fat tissue (Eaton and colleagues, PMID: 22844248). Other widely used fat-specific drivers, including the pumpless-Gal4 (ppl-Gal4) driver has leaky expression in gut or other tissues (See Table 2 of this detailed study by Dr. Drummond- Barbosa https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642949/). If the reviewer is aware of a fat-specific Gal4 line, other than Lpp-Gal4, which has a highly specific expression in the fat tissue without leaky expression in other tissues, then we are happy to take onboard the reviewer’s suggestion and try that fat-specific Gal4 that they suggest.

      HSD feeding promotes Pect expression (Figure S3C) and global changes in phospholipid levels (Figure 3, 4). Therefore, shouldn't Pect overexpression (not Pect RNAi) in a normal diet mimic HSD feeding state and promote loss of HDF response? Conversely shouldn't knockdown of Pect in HSD rescue loss of HDF response?

      We agree that a puzzling aspect is that Pect mRNA levels are significantly elevated in HSD Day-14, but Pect-KD showed displays the inappropriate HDF response. As we have described in our response to this reviewer on Page 19, we believe that Pect-KD and HSD disrupt PE and LPE balance overall but in different ways. Whereas Pect-OE using cDNA expression in fat body does not cause a significant change to any lipid class (Figure S9), and our results suggest that basally higher level of PECT is likely to be protective on HSD with respect to HDF(Figure 7B).

      To ensure that we appropriately discuss and clarify this issue, we have now included a section in the discussion - Page 14 Lines 26-33- under the subtitle “The implications of relationship between Pect levels and HSD”. We have pasted an excerpt from that subsection below for this reviewers assessment.

      Also, we note that over-expression of Pect cDNA in the fat-body does not alter phospholipid balance (Figure S9) and indeed improves HDF on HSD (Figure 7B). While this may appear inconsistent, it is critical to note that over-expression of Pect cDNA using UAS/Gal4 only increases Pect mRNA expression by 7-fold (Figure S6A), whereas HSD causes its upregulation by 250-fold (Figure S6B). Hence, we speculate that an increased ‘basal’ level of Pect such as by that provided by a cDNA over-expression in fat, may be protective to the negative effects of HSD (Figure 7B) without affecting overall phospholipid levels (Figure S9) , but extreme upregulation Pect on HSD affects the PE and LPE balance (Figure 3).”

      We would have liked to test Pect protein expression on HSD, but since we were unable to access antibodies for Pect published in a prior study (PMID: 33064773) from Dr. Wang’s lab (see Page 10-11, of response to Reviewer #1). Hence, we were unable to test how the proteins levels of Pect correlate with the 250-fold increase mRNA expression.

      In conclusion, we hope the reviewer appreciates that our results regarding Pect function are consistent with the main conclusion that achieving the right phospholipid balance between PE and LPE, is critical for an organism to display an appropriate HDF response.

      Minor comments: All graphs should plot individual data points and showed as box and whisker plot as much as possible.

      Thanks for this suggestion, we have added individual data points to the vast majority of figures in the paper. We have made exceptions to graphs such as seen in figure 1 and FigureS4B-D where we find individual data points add an unnecessary layer of complexity. We hope these changes provide additional clarity and strength to the claims made in this manuscript.

      Data for day 14 missing in Figure S4A and S4B.

      We have provided Day 14 for the PC composition and PE composition, due to changes in Figures, they are now S7A and S7B.

      Reviewer #3 (Significance (Required)):

      The interactions between diet-induced obesity, peripheral tissue homeostasis and feeding behavior is an interesting topic that can be addressed using Drosophila. This manuscript demonstrates how fat body Pect levels affect HSD induced changes in hunger-driven feeding response. However, at this point, the functional association between fat body Pect level, global phospholipid level, and loss of hunger-driven feeding response in chronic HSD feeding is not clear.

      We hope the revised data, and discussion of the paper, provides well-substantiated functional association on the importance of maintaining phospholipid balance, driven by Pect enzyme, as a critical regulator of hunger-driven feeding behavior. As stated in the revised discussion, the key take home message of our manuscript is that on prolonged HSD exposure PC, PE and LPE levels are dysregulated, the loss of phospholipid homeostasis coincided with a loss of hunger-driven feeding. Following this lead on phospholipid imbalance, we then uncovered a critical requirement for the activity of the rate-limiting PE enzyme PECT within the fat tissue in controlling hunger-driven feeding.

  4. Jul 2020
    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their comments and outline below how we plan to address them.


      Reviewer #1 (Evidence, reproducibility and clarity (Required)): **Summary:** Provide a short summary of the findings and key conclusions (including methodology and model system(s) where appropriate). The authors here describe a method to modify bacterial artificial chromosomes (BAC) harbouring gene loci from eukaryotes. When wanting to modify a BAC an antibiotic selection cassette is often included alongside the desired mutation/modification to increase the number of successful recombinants in E.coli. Traditionally, this is removed in a second recombination process to leave only the desired modification. The novelty in the procedure described herein is to add a synthetic intron consensus sequence around the selection cassette, which eliminates the need for the subsequent removal of the antibiotic cassette from the BAC before transfection into mammalian cells, saving time and resources. The technique is clever in its simplicity and appears to function for a number of gene loci. The authors validated the correct functioning of the modified BACs for a number of genes using three main assays - transcript level, protein level and localisation. **Major comments:** *Are the key conclusions convincing?* The conclusion that the method described generates functional modified BACs is valid. *Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether?* While the method is successfully employed in this study, its efficiency is not quantified in relation to the state-of-the-art as described in the introduction. One assumes it would be more efficient, but this has not been tested empirically in the paper. Does the inclusion of the synthetic intron sequence have an effect on the efficiency of modifying BACs compared to a more typical two-step positive/negative antibiotic selection cassette? *

      • *

      This is a good point that we did not directly address. In general, the efficiency is similar to that of integrating any cassette with selectable marker, as has been published (Poser et al 2008), and therefore also higher than the two-step counterselection method, which requires such a cassette integration in the first step alone. We will include new data specifically addressing the efficiency of our new method (see specifics below)

      The functionality of this approach rests entirely on the ability of the target cell to correctly splice out the synthetic intron. The authors are aware of this potential problem as highlighted in the lines below, but do not make efforts to explicitly test splicing. On lines 224-225, the authors state "We cannot exclude that a small portion of synthetic introns within individual cells are misspliced". On lines 230-231 it is stated that "mis-spliced mRNAs are probably minimal and degraded by nonsense-mediated decay". On lines 215-217, the authors describe an "investigation of transgenic lines at the single-cell level" that suggests "the synthetic intron is correctly spliced out in all the cells of the population". How do the authors reach this conclusion? U2OS and HeLa cells are considered very "robust" and may not show detectable consequences when stressed with an increased level of nonsense-mediated decay. Further, many genes maintain a high level of expression that buffers them against small changes in transcription/splicing. The synthetic intron might have a bigger impact on more tightly regulated genes, so assessing the splicing rate would be essential if the authors wish to advocate their technique as generally applicable.

      • *

      We will assay for splicing efficiency as outlined below.

      The ability of the synthetic intron to be removed from final transcripts depends on functioning splicing machinery. The authors might emphasise this issue, as spliceosome mutations are important fields of study and might not be compatible with this method.

      • *

      We can add this in the text

      The authors used un-directed integration of each BAC under study. Therefore, it is hard to assess what effect the synthetic intron has, as the authors only ever assess the downstream levels of the correctly spliced, translated and localised protein. The authors themselves state that this can lead to clonal variations in expression of up to 2-fold and on line 250 that this variation "could compensate for synthetic intron effects", but make no effort to test this. Again, lines 267-268 highlight the potential dangers of potential effects of the synthetic introns, but do not test these. \Would additional experiments be essential to support the claims of the paper? Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation.* If not already performed, a large number of bacterial colonies should be screened for the correct modification and frequency of correct ones reported. This frequency - reported for at least three different modifications - would estimate what sort of efficiency this method provides. The modified region of each BAC should be sequenced and the results reported. The rate of exactly modified clones is important, in case of spontaneous or low fidelity integration of the antibiotic cassette. The percentage of transcripts that have the synthetic intron correctly spliced out should be measured for some of the BAC constructs used in the study. A direct head-to-head comparison of this newer method compared to other techniques, or even the authors' own previous two-step approach is necessary to assess the benefits of this method. Preferably, the experiment would be run in parallel with and without antibiotic selection applied, to show that it drastically improves chances of finding a correct clone. *

      We will generate 3 new mutations in BACs and analyze both the efficiency of integration by PCR and accuracy via sequencing. In practice, we have observed that the efficiency is similar to any other cassette integration, such as a GFP tag (Poser et al Nature Methods 2008) or a counterselection cassette (Bird et al Nature Methods 2012) (80-90%). Integrating a mutation via the second step of the counterselection method introduces a further 20% decrease in efficiencies on average.

      \Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments.* Repeating the transformation of the BAC and targeting cassette and assessing the recombination efficiency and sequencing should only require existing reagents and take less than a week or two to complete. Quantitative RT-PCR to assess the percentage of transcripts that have the synthetic intron spliced out would take a little more work. However, this should not be a considerable investment in time or resources for a standard microbiology laboratory and could be completed within a few weeks using modern techniques, such as that described in Londoño et al. 2016. Repeating all the experiments in parallel would be considerable work and would only be strictly necessary if the authors wish to emphasise the benefits of their method over the many others already in wide use. *

      • *

      We will use quantitative PCR to estimate the fraction of transcripts that correctly splice out the artificial intron for two clonal cell lines characterized in the study: RNAi-resistant AurA-GFP (Fig 4), and GTSE1-14A (newly introduced; see below). While the exact method described in Londoño et al 2016 will not be applicable due to the larger size of the artificial intron, we believe we can adapt it to detect different splicing events.

      \Are the data and the methods presented in such a way that they can be reproduced?* Barring the omission of Table S1, which presumably includes exact information on the BACs modified and sequences used etc., there is sufficient other data and methods to allow the experiments to be repeated. Targeting the ESI procedure to the middle of exons is likely to have a bigger impact for smaller exons as the authors mention on lines 99-100. Making it clear which exon sizes for each gene were successfully targeted in this study would help give some idea of how significant a problem this might be. Perhaps Table S1 contains this information, but it was not provided. It would also help reviewers check the design strategies. *

      We apologize for inadvertently failing to upload Table S1 on bioRxiv. It has been uploaded now as part of this submission process. This table indeed contains BAC and target sequence information, including the size of the targeted exon (and the 2 “new” resulting exons). Targeted exons range in size from 138bp to 1537bp, and “new” exons are as small as 48bp.

      \Are the experiments adequately replicated and statistical analysis adequate?* The replication and statistically analysis of the data as presented appear adequate. Figure Legends should state the statistic used to generate error bars. *

      This will be updated

      \*Minor comments:** Specific experimental issues that are easily addressable. Are the promoters used in the vectors described universally functional? For example, is the PGK promoter functional in yeast? *

      • *

      The PGK promoter contained in the cassettes is a mammalian promoter, which has also been reported to work in flies.

      \Are prior studies referenced appropriately?* The manuscript may benefit from the referencing of BAC modification techniques from a wider variety of groups, such as those using CRISPR-guided recombineering (Pyne et al. 2015). *

      We will add citations of more techniques

      \Are the text and figures clear and accurate?* The body text is very clear save minor typographical or grammatical errors. Regarding figures, some of the coloured text in Figure 1 is somewhat illegible when printed in grayscale. Line 278 - The acronyms LAP and NLAP are not defined/explained. Antibody section starting Line 282 may fit better next to Western Blot section. Figure 2C - The blot images would benefit from arrows to indicate expected sizes of proteins. Figure 3A - the graph may benefit from a dashed line at 100% to highlight that values are normalised to controls. Figure 4 - The differences between panels B & C are unclear. Figure 4E - The legend could provide a little more detail on cell cycle stage/status of the captured cells. *

      All of the above will be addressed accordingly

      \Do you have suggestions that would help the authors improve the presentation of their data and conclusions?* Lines 23-27 are somewhat unclear and feel out of context. Perhaps the authors could clarify this as a further advantage of using BACs instead of endogenous gene modifications. *

      Thanks for the input, we will clarify this.

      While not affecting the factual content of the paper, I would advocate that the authors format the method described in Figure S3 into a more detailed text based layout similar to that seen in a typical Nature Methods article. However, this may depend on the format required by any eventual publishing journal.

      • *

      We prefer the graphical protocol, but will discuss whether to add a text protocol with the journal editor.

      That all of the work the paper was carried out in human cell lines and using human genes is a further caveat, but the authors admit this in the discussion and one would assume that most mammalian cells would respond similarly in their ability to splice out the synthetic intron. Reviewer #1 (Significance (Required)): \Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field.* This work is a formal description of a newer method that could be useful for many of those employing bacterial artificial chromosomes in numerous studies, such as gene regulation. *Place the work in the context of the existing literature (provide references, where appropriate).* This work builds on methodology previously published by the authors - a counter-selection two-step procedure (Bird et al. 2011). It sets out to formally describe a method merely mentioned as "BAC intronization" in a later paper by some of the authors (Zheng et al. 2014). Other alternative one-step procedures are also available, but present a different set of challenges (Lyozin et al. 2014). Some newer approaches, such as those using CRISPR-guided recombineering (Pyne et al. 2015) or systems that combine CRISPR and positive/negative selection cassettes (Wang et al. 2016) may be slightly more efficient, but are also more complex in their design. Bird et al. 2011 DOI: 10/dv776q Pyne et al. 2015 DOI: 10/f7jx92 Wang et al. 2016 DOI: 10/f89db5 Zheng et al. 2014 DOI: 10/f5pkr6 *State what audience might be interested in and influenced by the reported findings.* As a technology paper this work should have interest from a broad field of research. While the use of BACs could sometimes be considered more traditional in light of the explosion in CRISPR-based genome editing capabilities, it is definitely seeing a resurgence as the limitations of CRISPR in modifying large regions of genome become more apparent. Therefore, technologies that accelerate the modification of BACs could prove increasingly useful. As category of audience, all those involved in significant recombineering or gene/genome engineering would potentially benefit. *Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.* Synthetic genomics, synthetic biology, cancer cell biology, gene and genome engineering REFEREES CROSS COMMENTING I would agree with reviewer two's assessment that we both view the paper in a similar light. Reviewer #2 (Evidence, reproducibility and clarity (Required)): This is a methods-focused paper that presents a strategy to efficiently introduce mutations into a bacterial artificial transgene using synthetic introns. BAC-based methods have been an effective strategy for introducing trans genes into human cells to achieve near-endogenous expression, including extensive work from these authors. However, generating mutations and changes within the internal coding sequence presents some challenges for how to target these mutations and select for the mutated form. Here, the authors describe a way to overcome this by introducing synthetic introns into an adjacent sequence. This allows them to introduce a selectable marker and conduct the molecular biology without creating complications downstream for the functionality of the protein. This method is carefully described and presented. The authors also provide clear validation by using this to create RNAi-resistant versions of multiple different mitotic factors as well as creating targeted mutants that alter the functional properties of a protein. This work clearly takes advantage of other ongoing studies from these labs (including mutants and cell lines that appear to also have been described elsewhere), but the ability to combine these in a single paper and clearly describe the method provides a helpful advance and validation. Based on the description and data presented, I think that things are clear and carefully validated. As such, I do not have technical comments or concerns and I would be comfortable with this paper appearing in an appropriate journal in its present form. Reviewer #2 (Significance (Required)): This is a solid methods paper, but for considering the nature of the impact and significance of this paper, there are several things to note: 1.The BAC-based method does appear to be a powerful and effective strategy. However, beyond the work of Mitocheck and the authors that are part of this paper, this has not seen widespread adoption. It is possible that this current method may increase its usage due to the value of the targeted mutations within the coding sequence, but at present it is not a broadly used strategy. *

      We agree that using BACs as transgenes has not seen widespread adoption as a tool on the broader cell biology community (although certainly beyond members of the Mitocheck consortium). This is likely because many erroneously think that it is a technique for specialist laboratories. We are trying to change this! For reasons outlined below, there is still an increasing desire for conditional analysis of mutated genes under physiological expression/regulation frequently not attainable via directed Cas9-based mutation. A major aim of this paper is thus to further simplify the methods for generating modified BAC transgenes.

      2.This BAC-based approach (and also RNAi) are becoming increasingly replaced by the use of CRISPR/Cas9 genome editing. The absence of Cas9-based strategies in this paper limits the potential impact and reach of this paper. The authors do mention the possibility of using a similar synthetic intron strategy for use with Cas9 in the Discussion, and appear to have conducted some experiments. If possible, it would substantially increase the value of this paper if this data and strategy were also included in the Results section (acknowledging that this may still be a work in progress).

      While some uses of BAC transgenes are in some cases better replaced by CRISPR/Cas9 techniques (i.e. GFP tagging), there are several occasions where using BACs are preferable: As stated in the text, RNAi-resistant BACs allow for conditional analysis of recessive mutations. Mutations in essential genes that are lethal will prevent growth and recovery of viable cells if integrated into the genome via Cas9. Additionally, deleterious mutations are prone to accumulate suppressive changes in chromosome integrity or gene expression during the procedure of selecting and expanding Cas9-modified cells for analysis, particularly in the genomically instable cancer cell lines frequently employed.

      We use both BACs and CRISPR/Cas9 in our lab according to our needs.

      We do have an ongoing project to apply this intronization technique to enable more efficient selection of CRISPR/Cas9 integrations. Preliminary results suggest that it works to allow selection of point mutations, but it is still being optimized, including a redesign of the cassette, and is not ready for publication.

      3.The method is solid and well-validated, but there are no new results or insights presented in this paper from the work that is described (this is fine, just commenting for considering the right journal fit).

      As “biological insights” gained as a result of this technique we had cited a couple studies that made use of the technique already (to functionally analyze a microcephaly-associated mutation in the centriolar protein CPAP at the single cell level in HeLa cells and neural progenitor cells (Zheng et al 2014, Gabirel et al 2016)). As a response to this critique to include “new biology” in this paper, we will add new unpublished data investigating a specific question: Is the cell-cycle-regulated disruption of the EB1-GTSE1 (microtubule plus-end tracking proteins) interaction in mitosis required for chromosome segregation fidelity? We have generated a GTSE1 mutant with 14 phosphosites mutated to alanine using this technique. We will present the effect on chromosome segregation.

      REFEREES CROSS COMMENTING It appears that both reviewers are largely on the same page regarding this paper.