4,539 Matching Annotations
  1. Jul 2021
    1. Consistent with GzmB dependent elevation of neutrophil elastase activity in EBA, we identified GzmB dependent infiltration of neutrophils, a predominant source of neutrophil elastase 32, in EBA mice and GzmB dependent elevation of strong neutrophil chemoattractant MIP-2, a mouse homolog of human IL-8 33.

      GZMB activates CXCL2.

    2. Consistent with GzmB dependent elevation of neutrophil elastase activity in EBA, we identified GzmB dependent infiltration of neutrophils, a predominant source of neutrophil elastase 32, in EBA mice and GzmB dependent elevation of strong neutrophil chemoattractant MIP-2, a mouse homolog of human IL-8 33.

      GZMB activates ELANE.

    1. 33 Thus, a strong rationale suggests that exercise induced changes in nitric oxide may mediate an inhibition of IDO activity, possibly leading to a chronic downregulation and stabilization of the KYN pathway as reported by Zimmer et al. 23 The mechanisms underlying both acute and chronic exercise induced elevations in the metabolic flux towards KA could be driven by KAT expression in different tissues or cell types.

      nitric oxide inhibits IDO1.

  2. May 2021
    1. We found that CSS treated cells had increased levels of the NGF and were associated with higher neuroendocrine marker expressions compared to cells cultured in fetal bovine serum (FBS)-containing medium; however, AR ligand (dihydrotestosterone (DHT))-treated cells had reduced levels of NGF and neuroendocrine markers.

      AR inhibits NGF.

    2. Since the activated PI3K/AKT pathway was reported to cross-talk with stimulated muscarinic receptor signaling xref , xref , and activated AKT is associated with MYCN expression in contributing to NEPC transformation xref , we hypothesized that stimulation of the NGF–CHRM4 axis might upregulate AKT-MYCN signaling in prostate cancer.

      CHRM4 binds NGF.

    3. Since we showed that upregulated NGF cannot increase expression of CHRM1 and CHRM3 (Fig.  xref ; Supplementary Fig.  xref ), this result suggests that NGF–CHRM4 might be a unique signaling pathway involved in neuroendocrine differentiation of prostate cancer that differs from canonical acetylcholine–CHRM pathways.

      CHRM4 binds NGF.

    4. Our study demonstrated that inhibition of AR signaling decreases activation of the NGF–CHRM4 axis, which is associated with neuroendocrine differentiation of prostate cancer, suggesting that current hormonal therapy designed to suppress AR functions may predispose prostate cancer to NEPC development.

      CHRM4 binds NGF.

    5. Taken together, our findings support a model wherein ADT or AR inhibitor treatment stimulates ZBTB46 expression, which upregulates NGF mediated CHRM4 stimulation; this plays a pivotal role in integrating AKT and MYCN signals to promote therapeutic resistance and neuroendocrine differentiation of prostate cancer.

      NGF activates CHRM4.

    6. ZBTB46 directly binds to the regulatory sequence of the NGF and upregulates NGF expression We hypothesized that ZBTB46 upregulates NGF expression in prostate cancer cells by acting as a transcriptional activator and binding to a ZBTB46-binding element ( ZBE ) in the NGF regulatory sequence .

      ZBTB46 activates NGF.

    1. The kinase activity of TAK1 leads to phosphorylation events that activate AP-1 and NF-κB. In parallel to cIAP-induced ubiquitination of RIPK2, XIAP’s enzymatic activity results in the formation of polyubiquitin chains on RIPK2, serving as a platform to engage another E3 ligase complex known as the Linear Ubiquitin Assembly Complex (LUBAC) ( xref , xref ).

      RIPK2 is ubiquitinated.

    2. It was recently shown that MAVS recruits NLRP3 to the mitochondria for activation in response to non crystalline activators and that microtubule driven trafficking of the mitochondria is necessary for NLRP3 and ASC complex assembly and activation.

      MAVS translocates to the mitochondrion.

    3. It was recently shown that MAVS recruits NLRP3 to the mitochondria for activation in response to non crystalline activators and that microtubule driven trafficking of the mitochondria is necessary for NLRP3 and ASC complex assembly and activation.

      NLRP3 translocates to the mitochondrion.

    4. Despite this focus, much of the nature of the NOD1 and 2 interaction with these structures remains unknown, although recent findings suggest that NOD2 directly binds MDP with high affinity ( xref ), with the N-glycosylated form specific to the mycobacterial cell wall triggering an exceptionally strong immunogenic response compared to N-acetyl MDP ( xref ).

      DPEP1 binds NOD2.

    5. Nlrp6 - / - mice had increased numbers of immune cells in their circulation, as well as enhanced activation of MAPK and NF-kappaB signaling, though Toll like receptor (TLR) activation, suggesting that NLRP6 may suppress TLR pathways after the recognition of pathogens to prevent amplified inflammatory pathology.

      TLR activates NFkappaB.

    6. Few ligands have been found for NLRP1 to date, and include bacterial products such as lethal toxin (LT) produced by Bacillus anthracis which activates murine NLRP1b ( xref ), muramyl dipeptide (MDP), a component of bacterial peptidoglycan that activates human NLRP1; and reduced levels of cytosolic ATP ( xref – xref ).

      peptidoglycan activates NLRP1.

  3. Apr 2021
    1. For example, in confluent human umbilical vein endothelial cells, merlin suppressed recruitment of Rac to the plasma membrane, and its silencing promoted recruitment of Rac1 to sites of extracellular matrix adhesion, and promoted cell growth ( xref ).

      RAC translocates to the plasma membrane.

    2. We reported that merlin associates with beta 1 -integrin in primary Schwann cells and undifferentiated Schwann cell and neuron co-cultures, and in primary Schwann cell cultures, laminin-1 stimulated integrin signaled though PAK1 and caused merlin Ser518 phosphorylation and inactivation of its tumor suppressor function.

      Integrins leads to the phosphorylation of NF2 on S518.

    3. Merlin is phosphorylated at Ser10, Thr230 and Ser315 by Akt (also known as protein kinase B, PKB) and controls merlin’s proteasome-mediated degradation by ubiquitination to prevent its interaction with binding partners ( xref , xref ).

      AKT phosphorylates NF2 on T230.

    4. Merlin is phosphorylated at Ser10, Thr230 and Ser315 by Akt (also known as protein kinase B, PKB) and controls merlin’s proteasome-mediated degradation by ubiquitination to prevent its interaction with binding partners ( xref , xref ).

      AKT phosphorylates NF2 on S315.

    5. Merlin is phosphorylated at Ser10, Thr230 and Ser315 by Akt (also known as protein kinase B, PKB) and controls merlin’s proteasome-mediated degradation by ubiquitination to prevent its interaction with binding partners ( xref , xref ).

      AKT phosphorylates NF2 on S10.

    6. In sum, multiple lines of evidence have established a feedback regulation loop with merlin being phosphorylated at Ser518 (growth permissive form) via activated Rho small GTPases Rac1 and Cdc42 through PAK, and in turn, merlin associating with PAK to inhibit Rac1 and Cdc42 signaling (XREF_FIG).

      NF2 inhibits CDC42.

    7. Furthermore, merlin overexpression in Tr6BC1 mouse schwannoma cells inhibited the binding of fluorescein labeled hyaluronan to CD44 and inhibited subcutaneous tumor growth in immunocompromised mice, and overexpression of a merlin mutant lacking the CD44 binding domain was unable to inhibit schwannoma growth.

      NF2 inhibits fluorescein.

    8. Further studies showed that wild-type merlin is transported throughout the cell by microtubule motors and merlin mutants or depletion of the microtubule motor kinesin-1 suppressed merlin transport and was associated with accumulation of yorkie, a Drosophila homolog of the hippo pathway transcriptional co-activator Yes associated protein (YAP), in the nucleus.

      Mutated NF2 inhibits transport.

    9. First, protein kinase C potentiated phosphatase inhibitor (CPI-17), which is frequently overexpressed in mesothelioma tumors, inhibits merlin phosphatase MYPT1-PP1delta, providing one potential pathway by which merlin 's tumor suppressor function might be inactivated through maintenance of phosphorylation at Ser518.

      PKC inhibits NF2.

    10. First, protein kinase C potentiated phosphatase inhibitor (CPI-17), which is frequently overexpressed in mesothelioma tumors, inhibits merlin phosphatase MYPT1-PP1delta, providing one potential pathway by which merlin 's tumor suppressor function might be inactivated through maintenance of phosphorylation at Ser518.

      PKC inhibits Phosphatase.

    11. Merlin expression in Meso-17 and Meso-25 cells decreased FAK Tyr397 phosphorylation and consequently disrupted FAK-Src and PI3K interaction, providing a mechanism for the observed enhancement of invasion and spreading caused by merlin inactivation.

      Modified NF2 leads to the dephosphorylation of PTK2 on Y397.

    12. In sub-confluent primary Schwann cells, we found that merlin binds to paxillin and mediates merlin localization at the plasma membrane and association with beta1-integrin and ErbB2, modifying the organization of the actin cytoskeleton in a cell density dependent manner.

      NF2 binds PXN.

    13. In sub-confluent primary Schwann cells, we found that merlin binds to paxillin and mediates merlin localization at the plasma membrane and association with β1-integrin and ErbB2, modifying the organization of the actin cytoskeleton in a cell density-dependent manner ( xref ).

      NF2 binds PXN.

    14. HDAC inhibitors disrupt the PP1-HDAC interaction facilitating Akt dephosphorylation and decrease human meningioma and schwannoma cell proliferation and schwannoma growth in an allograft model and meningioma growth in an intracranial xenograft model ( xref , xref , xref ).

      AKT binds HDAC and PPP1.