4,539 Matching Annotations
  1. Apr 2021
    1. First, protein kinase C potentiated phosphatase inhibitor (CPI-17), which is frequently overexpressed in mesothelioma tumors, inhibits merlin phosphatase MYPT1-PP1delta, providing one potential pathway by which merlin 's tumor suppressor function might be inactivated through maintenance of phosphorylation at Ser518.

      PPP1R14A activates NF2.

    2. First, protein kinase C potentiated phosphatase inhibitor (CPI-17), which is frequently overexpressed in mesothelioma tumors, inhibits merlin phosphatase MYPT1-PP1delta, providing one potential pathway by which merlin 's tumor suppressor function might be inactivated through maintenance of phosphorylation at Ser518.

      PPP1R14A activates Phosphatase.

    3. In the canonical hippo pathway, mammalian Ste20 like kinases (Mst1/2; hippo homolog) phosphorylate large tumor suppressor kinases (LATS 1/2), which in turn phosphorylate and inactivate YAP and TAZ, blocking their role as TEAD and MEAD transcription factor co-activators.

      LATS activates TAZ.

    1. H&E staining results also show that knockdown of PTEN potentiated the effect of BMP9 on increasing trabecular bone, and knockdown of Wnt10b exhibited a reversal effect and almost diminished the effect of PTEN knockdown on enhancing BMP9 induced bone formation (XREF_FIG).

      PTEN inhibits GDF2.

    2. Taken together, our findings suggest that the inhibitory effect of PTEN on BMP9-induced osteogenic differentiation may be mediated through reducing the expression of Wnt10b, and PTEN may inhibit Wnt10b by partly disturbing the interaction between CREB and BMP/Smad signaling.

      PTEN inhibits WNT10B.

    3. In this study , we demonstrate that the inhibitory effect of PTEN on BMP9-induced osteogenic differentiation can be partially reversed by Wnt10b , and the expression of Wnt10b can be inhibited by PTEN through disturbing the interaction between CREB and BMP / Smad signaling at least .

      PTEN inhibits WNT10B.

    4. H&E staining results also show that knockdown of PTEN potentiated the effect of BMP9 on increasing trabecular bone, and knockdown of Wnt10b exhibited a reversal effect and almost diminished the effect of PTEN knockdown on enhancing BMP9 induced bone formation (XREF_FIG).

      WNT10B inhibits PTEN.

    5. In this study, we demonstrate that the inhibitory effect of PTEN on BMP9 induced osteogenic differentiation can be partially reversed by Wnt10b, and the expression of Wnt10b can be inhibited by PTEN through disturbing the interaction between CREB and BMP and Smad signaling at least.

      PTEN decreases the amount of WNT10B.

    6. In this study, we determined whether Wnt10b could reverse the inhibitory effect of PTEN on the BMP9 induced osteogenic process in MSCs and dissect the possible relationship between PTEN and Wnt10b during the osteoblastic commitment initialized by BMP9 in progenitor cells.

      WNT10B activates PTEN.

    1. Mutant p53 can itself disrupt the balance between stem cell proliferation and differentiation as well as sequester p63 or p73 thereby hindering apoptosis, augmenting proliferation, and driving chemoresistance and metastasis typical of cancer stem cells.

      Mutated TP53 inhibits TP63.

    1. Specifically, PTEN antagonized the PI3K and AKT signaling and downstream effector FoxO3a phosphorylation and subsequently enhanced nuclear translocation of FoxO3a to drive proautophagy gene program, but these changes were diminished upon PTEN inhibition.

      PTEN leads to the dephosphorylation of FOXO3.

    2. Mechanistically, blockage of PTEN could enhance FoxO3a phosphorylation modification to restrict its nuclear translocation and ATG transcription via activating the PI3K and AKT pathway, leading to the suppression of the autophagic program.

      PTEN leads to the dephosphorylation of FOXO3.

    3. Inhibition of PTEN Ameliorates Secondary Hippocampal Injury and Cognitive Deficits after Intracerebral Hemorrhage : Involvement of AKT / FoxO3a / ATG-Mediated Autophagy Spontaneous intracerebral hemorrhage ( ICH ) commonly causes secondary hippocampal damage and delayed cognitive impairments , but the mechanisms remain elusive .

      PTEN activates Neurocognitive Disorders.

    1. In another study, the heat shock-like protein Clusterin was shown to increase AKT2 activity and promote the motility of both normal and malignant prostate cells via an inhibitory activity on PTEN-S380 phosphorylation and consequent inactivation of PTEN xref .

      PTEN is phosphorylated on S380.

    2. Another study demonstrated that phosphorylation of PTEN on tyrosine 240 by FGFR2 promotes chromatin binding through an interaction with Ki-67, which facilitates the recruitment of RAD51 to promote DNA repair xref . xref summarises these novel functions and signalling axes of nuclear PTEN.

      FGFR2 phosphorylates PTEN on Y240.

    3. This PTEN/ARID4B/PI3K signalling axis identifies a novel player in the PTEN mediated suppression of the PI3K pathway and provides a new opportunity to design novel therapeutics to target this axis to promote the tumour suppressive functions of PTEN.

      PTEN inhibits PI3K.

    1. Furthermore, IR induced RAC1 expression and activity via the activation of PI3K/AKT signaling pathway, and then enhancing cell proliferation, survival, migration and metastasis and increasing levels of epithelial-to-mesenchymal transition (EMT) markers, which facilitated the cell survival and invasive phenotypes.

      Radiation, Ionizing increases the amount of RAC1.

    2. As exhibited in xref , RAC1 overexpression led to the up-regulation of GST-RAC1, RAC1, PAK1, p-PAK1, LIMK1, p-LIMK1, Cofilin, and p-Cofilin in A549 and PC9 cells, while the opposite pattern of these genes was found in the A549 and PC9 cells after Rac1 knockdown.

      GST binds RAC1.

    3. Furthermore , IR induced RAC1 expression and activity via the activation of PI3K / AKT signaling pathway , and then enhancing cell proliferation , survival , migration and metastasis and increasing levels of epithelial-to-mesenchymal transition ( EMT ) markers , which facilitated the cell survival and invasive phenotypes .

      Radiation, Ionizing activates RAC1.

    4. Furthermore, IR induced RAC1 expression and activity via the activation of PI3K and AKT signaling pathway, and then enhancing cell proliferation, survival, migration and metastasis and increasing levels of epithelial-to-mesenchymal transition (EMT) markers, which facilitated the cell survival and invasive phenotypes.

      RAC1 activates Neoplasm Metastasis.

    5. As exhibited in XREF_FIG, RAC1 overexpression led to the up-regulation of GST-RAC1, RAC1, PAK1, p-PAK1, LIMK1, p-LIMK1, Cofilin, and p-Cofilin in A549 and PC9 cells, while the opposite pattern of these genes was found in the A549 and PC9 cells after Rac1 knockdown.

      RAC1 activates RAC1.

    6. As exhibited in XREF_FIG, RAC1 overexpression led to the up-regulation of GST-RAC1, RAC1, PAK1, p-PAK1, LIMK1, p-LIMK1, Cofilin, and p-Cofilin in A549 and PC9 cells, while the opposite pattern of these genes was found in the A549 and PC9 cells after Rac1 knockdown.

      RAC1 activates PAK1.