4,539 Matching Annotations
  1. Apr 2021
    1. As shown in XREF_FIG, LPS + ATP promoted the expression of NLRP3 and pro-IL-1beta in THP-1 cells; however, real-time PCR revealed that after treatment with CAPE for 12 h, mRNA levels of NLRP3 and IL-1beta in THP-1 cells were similar to control (XREF_FIG), indicating that CAPE does not affect the transcription of NLRP3 and IL-1beta.

      lipopolysaccharide increases the amount of NLRP3.

    2. As shown in XREF_FIG, LPS + ATP promoted the expression of NLRP3 and pro-IL-1beta in THP-1 cells; however, real-time PCR revealed that after treatment with CAPE for 12 h, mRNA levels of NLRP3 and IL-1beta in THP-1 cells were similar to control (XREF_FIG), indicating that CAPE does not affect the transcription of NLRP3 and IL-1beta.

      ATP increases the amount of NLRP3.

    1. The knockdown of NLRP3 significantly reduces the proliferation, clonogenicity, invasion and migration in both Ishikawa and HEC-1A cells, while in contrast, NLRP3 overexpression enhances the proliferation, migration and invasion in both Ishikawa and HEC-1A cells and furthermore, increases caspase-1 activation and the release of IL-1beta in endometrial cancer cells.

      NLRP3 inhibits Neoplasm Invasiveness.

    2. The knockdown of NLRP3 significantly reduces the proliferation, clonogenicity, invasion and migration in both Ishikawa and HEC-1A cells, while in contrast, NLRP3 overexpression enhances the proliferation, migration and invasion in both Ishikawa and HEC-1A cells and furthermore, increases caspase-1 activation and the release of IL-1beta in endometrial cancer cells.

      NLRP3 inhibits IL1B.

    3. The knockdown of NLRP3 significantly reduces the proliferation, clonogenicity, invasion and migration in both Ishikawa and HEC-1A cells, while in contrast, NLRP3 overexpression enhances the proliferation, migration and invasion in both Ishikawa and HEC-1A cells and furthermore, increases caspase-1 activation and the release of IL-1beta in endometrial cancer cells.

      NLRP3 inhibits CASP1.

    4. The knockdown of NLRP3 significantly reduces the proliferation, clonogenicity, invasion and migration in both Ishikawa and HEC-1A cells, while in contrast, NLRP3 overexpression enhances the proliferation, migration and invasion in both Ishikawa and HEC-1A cells and furthermore, increases caspase-1 activation and the release of IL-1beta in endometrial cancer cells.

      NLRP3 inhibits cell population proliferation.

    5. proposed that significant cell death was observed only when P2X7R and NLRP3 inflammasome were both inhibited by ATP and MCC950, a specific inhibitor of NLRP3 inflammasome, and further research into safety manipulation of NLRP3 inflammasome without enhancing significant dose dependent side effects is required.

      ATP inhibits NLRP3.

    6. TXNIP knockdown or targeting by miR-20b resulted in a pro tumorigenic phenotype with increased cell proliferation, inhibited cell senescence reduced cell cycle modulators (p16 and p21), and decreased NLRP3 inflammasome associated proteins (NLRP3 and cleaved caspase-1).

      TXNIP activates NLRP3.

    7. The knockdown of NLRP3 significantly reduces the proliferation , clonogenicity , invasion and migration in both Ishikawa and HEC-1A cells , while in contrast , NLRP3 overexpression enhances the proliferation , migration and invasion in both Ishikawa and HEC-1A cells and furthermore , increases caspase-1 activation and the release of IL-1beta in endometrial cancer cells .

      NLRP3 activates Neoplasm Invasiveness.

    8. The knockdown of NLRP3 significantly reduces the proliferation, clonogenicity, invasion and migration in both Ishikawa and HEC-1A cells, while in contrast, NLRP3 overexpression enhances the proliferation, migration and invasion in both Ishikawa and HEC-1A cells and furthermore, increases caspase-1 activation and the release of IL-1beta in endometrial cancer cells.

      NLRP3 activates Neoplasm Invasiveness.

    9. NLRP3 inflammasome activation induced IL-1beta and IL-18 in lung cancer may work through mechanisms other than the caspase-1 pathway, indicating that NLRP3 inflammasome can mediate the release of IL-1beta and IL-18 through caspase-1-dependent or -independent pathways.

      NLRP3 activates IL1B.

    10. Epistasis analysis revealed that NLRP3 variants together with polymorphisms in inflammasome related genes modulate both the frequency of inflammasome activation and the process of IL-1beta and IL-18 maturation thatinfluence HPV infection outcome and cervical cancer progression (XREF_TABLE).

      NLRP3 activates IL1B.

    11. NLRP3 inflammasome activation induced IL-1beta and IL-18 in lung cancer may work through mechanisms other than the caspase-1 pathway, indicating that NLRP3 inflammasome can mediate the release of IL-1beta and IL-18 through caspase-1-dependent or -independent pathways.

      NLRP3 activates IL18.

    12. Epistasis analysis revealed that NLRP3 variants together with polymorphisms in inflammasome related genes modulate both the frequency of inflammasome activation and the process of IL-1beta and IL-18 maturation thatinfluence HPV infection outcome and cervical cancer progression (XREF_TABLE).

      NLRP3 activates IL18.

    13. The knockdown of NLRP3 significantly reduces the proliferation, clonogenicity, invasion and migration in both Ishikawa and HEC-1A cells, while in contrast, NLRP3 overexpression enhances the proliferation, migration and invasion in both Ishikawa and HEC-1A cells and furthermore, increases caspase-1 activation and the release of IL-1beta in endometrial cancer cells.

      NLRP3 activates cell population proliferation.

    14. Among the known human chemokines, a co-regulated set of four (chemokine (C-C motif) ligand (CCL)-4, CCL-5, chemokine (C-X-C motif) ligand (CXCL)-9, CXCL-10) chemokines is upregulated in primary PDA carcinoma and PDA liver metastasis, which regulates CD8 + T cell infiltration, activates T cells, and promotes NLRP3 mediated T cell priming and enhances anti-tumor CD8 + T cell cytotoxic activity for an effective immune checkpoint therapy response.

      2'-deoxyadenosine 5'-monophosphate activates NLRP3.

    1. Hence, a possible model for the interaction of SARS-CoV-2 and TLR4 is outlined in Section 11 and the graphical abstract (XREF_FIG) in which SARS-CoV-2 may activate TLR4 in the heart and lungs to cause aberrant TLR4 signalling in favour of the proinflammatory MyD88 dependent (canonical) pathway rather than the alternative TRIF and TRAM dependent anti-inflammatory and interferon pathway.

      SARS-CoV-2 activates TLR4.

    2. Hence , a possible model for the interaction of SARS-CoV-2 and TLR4 is outlined in Section 11 and the graphical abstract ( Figure 1 ) in which SARS-CoV-2 may activate TLR4 in the heart and lungs to cause aberrant TLR4 signalling in favour of the proinflammatory MyD88-dependent ( canonical ) pathway rather than the alternative TRIF / TRAM-dependent anti-inflammatory and interferon pathway .

      SARS-CoV-2 activates TLR4.

    3. Hence , a possible model for the interaction of SARS-CoV-2 and TLR4 is outlined in Section 11 and the graphical abstract ( Figure 1 ) in which SARS-CoV-2 may activate TLR4 in the heart and lungs to cause aberrant TLR4 signalling in favour of the proinflammatory MyD88-dependent ( canonical ) pathway rather than the alternative TRIF / TRAM-dependent anti-inflammatory and interferon pathway .

      SARS-CoV-2 activates TLR4.

    4. This would potentially serve 3 simultaneous benefits : ( a ) it would increase the compliance of the lung alveoli and prevent their collapse ; ( b ) confer antiviral actions by shielding and preventing infection of naive cells , especially if TLR4 is proven to be an entry receptor or contributes to ACE2 upregulation ; and ( c ) block TLR4 to reduce inflammation and excessive cytokine production .

      TLR4 activates ACE2.

    5. This would potentially serve 3 simultaneous benefits : ( a ) it would increase the compliance of the lung alveoli and prevent their collapse ; ( b ) confer antiviral actions by shielding and preventing infection of naive cells , especially if TLR4 is proven to be an entry receptor or contributes to ACE2 upregulation ; and ( c ) block TLR4 to reduce inflammation and excessive cytokine production .

      TLR4 activates ACE2.

    6. For instance , ( 1 ) evidence that TLR4 has the strongest protein-protein interaction with the spike glycoprotein of SARS-CoV-2 compared to other TLRs [ 30 ] , together with ( 2 ) evidence that SARS-COV-2 strongly induces interferon-stimulated gene ( ISG ) expression in an immunopathogenic context in the respiratory tract [ 31 ] ; ( 3 ) evidence that ISG activation results in increased expression of ACE2 [ 32 ] and ( 4 ) evidence that pulmonary surfactants in the lung prevent viral infection by blocking TLR4 [ 33 ] suggest a possible mechanism in which the virus may be binding to and activating TLR4 to increase expression of ACE2 which promotes viral entry .

      TLR4 activates viral process.

    7. For instance , ( 1 ) evidence that TLR4 has the strongest protein-protein interaction with the spike glycoprotein of SARS-CoV-2 compared to other TLRs [ 30 ] , together with ( 2 ) evidence that SARS-COV-2 strongly induces interferon-stimulated gene ( ISG ) expression in an immunopathogenic context in the respiratory tract [ 31 ] ; ( 3 ) evidence that ISG activation results in increased expression of ACE2 [ 32 ] and ( 4 ) evidence that pulmonary surfactants in the lung prevent viral infection by blocking TLR4 [ 33 ] suggest a possible mechanism in which the virus may be binding to and activating TLR4 to increase expression of ACE2 which promotes viral entry .

      TLR4 activates viral process.

    8. TLR4 activation by LPS on cardiomyocytes leads to subsequent reduction in myocardial contractility [XREF_BIBR, XREF_BIBR], and the predominant view in the literature is that TLR4 activation on cardiac structural fibroblasts and cardiac macrophages leads to a profibrotic and proinflammatory response, respectively [XREF_BIBR, XREF_BIBR].

      lipopolysaccharide activates TLR4.

    9. TLR4 activation by LPS on cardiomyocytes leads to subsequent reduction in myocardial contractility [ 77 , 81 ] , and the predominant view in the literature is that TLR4 activation on cardiac structural fibroblasts and cardiac macrophages leads to a profibrotic and proinflammatory response , respectively [ 78 , 82 ] .

      lipopolysaccharide activates TLR4.

    10. TLR4 activation by LPS on cardiomyocytes leads to subsequent reduction in myocardial contractility [ 77 , 81 ] , and the predominant view in the literature is that TLR4 activation on cardiac structural fibroblasts and cardiac macrophages leads to a profibrotic and proinflammatory response , respectively [ 78 , 82 ] .

      lipopolysaccharide activates TLR4.

    1. Downregulation of voltage dependent anion channels (VDAC), which are required for ROS production, or ROS scavengers impaired and reversed NLRP3 mediated caspase-1 activation and IL-1beta release in response to NLRP3 activators nigericin, MSU, alum, and silica.

      NLRP3 activates CASP1.

    1. For instance, ubiquitination of NLRP3 by FBXL12, TRIM1, ARIH2 or the dopamine induced E3 ligase MARCH7 promotes the proteasomal degradation of NLRP3 in resting macrophages, whereas deubiquitylation of NLRP3 LRR domain on K63 by BRCC3 triggers ASC oligomerization and inflammasome activation (XREF_FIG).

      ARIH2 ubiquitinates NLRP3.

    2. For instance, ubiquitination of NLRP3 by FBXL12, TRIM1, ARIH2 or the dopamine-induced E3 ligase MARCH7 promotes the proteasomal degradation of NLRP3 in resting macrophages ( xref ), whereas deubiquitylation of NLRP3 LRR domain on K63 by BRCC3 triggers ASC oligomerization and inflammasome activation ( xref , xref ) ( xref ).

      FBXL12 ubiquitinates NLRP3.

    3. For instance, ubiquitination of NLRP3 by FBXL12, TRIM1, ARIH2 or the dopamine induced E3 ligase MARCH7 promotes the proteasomal degradation of NLRP3 in resting macrophages, whereas deubiquitylation of NLRP3 LRR domain on K63 by BRCC3 triggers ASC oligomerization and inflammasome activation (XREF_FIG).

      FBXL12 ubiquitinates NLRP3.