816 Matching Annotations
  1. Jul 2021
    1. Mutations in the TrkA gene cause a related disorder, HSAN IV, which produces a phenotype similar to HSAN V. xref These TrkA gene mutations result in defective binding of NGF to TrkA and, as a result, the inhibition of NGF-induced TrkA phosphorylation and downstream signaling cascades. xref

      NGF binds NTRK1.

    2. In cultured rodent DRG neurons, for example, Nav1.7 activation is increased via Erk1/2 signaling, and activation of p38 MAPK can directly phosphorylate Nav1.8 leading to an increase in Nav1.8 current density in DRG neurons. xref , xref However, whether these changes to sodium channel activation properties occur downstream of NGF-TrkA signaling, or as part of other signaling pathways, was not explored in these studies.

      NGF binds NTRK1.

    3. While numerous studies have demonstrated a role for NGF-TrkA signaling in the modulation of nociceptive ion channel activity, there is also evidence that NGF-p75NTR signaling can contribute to sensory neuron excitability. xref , xref - xref For example, NGF-mediated activation of p75NTR has been shown to increase ceramide levels in a TrkA-independent manner in cell culture, and studies in rodents have shown that ceramide likely mediates NGF-induced sensitization of isolated sensory neurons in vitro and possibly NGF-induced pain-related behaviors in vivo. xref , xref , xref

      NGF binds NTRK1.

    4. While numerous studies have demonstrated a role for NGF-TrkA signaling in the modulation of nociceptive ion channel activity, there is also evidence that NGF-p75NTR signaling can contribute to sensory neuron excitability. xref , xref - xref For example, NGF-mediated activation of p75NTR has been shown to increase ceramide levels in a TrkA-independent manner in cell culture, and studies in rodents have shown that ceramide likely mediates NGF-induced sensitization of isolated sensory neurons in vitro and possibly NGF-induced pain-related behaviors in vivo. xref , xref , xref

      NGF binds NGFR.

    1. BDNF binding to TrkB evokes receptor dimerization and initial phosphorylation of tyrosine residues within the autoregulatory loop of the kinase domain (human TrkB Tyr 706/707 ) followed by autophosphorylation of cytoplasmic conserved tyrosine residues (human TrkB Tyr 515 , Tyr 816 ) xref .

      BDNF binds NTRK2.

    2. BDNF binding to TrkB evokes receptor dimerization and initial phosphorylation of tyrosine residues within the autoregulatory loop of the kinase domain (human TrkB Tyr 706/707 ) followed by autophosphorylation of cytoplasmic conserved tyrosine residues (human TrkB Tyr 515 , Tyr 816 ) xref .

      BDNF binds NTRK2.

    3. Pretreatment of cells with a pharmacological Trk inhibitor K252a led to suppression of BDNF- or GSB-106-induced activation of Erk1/2 and Akt (Fig.  xref D), thus suggesting that the pro-survival signaling evoked by GSB-106 in serum withdrawn SH-SY5Y cells requires TrkB activation.

      BDNF activates ERK.

    4. Pretreatment of cells with a pharmacological Trk inhibitor K252a led to suppression of BDNF- or GSB-106-induced activation of Erk1/2 and Akt (Fig.  xref D), thus suggesting that the pro-survival signaling evoked by GSB-106 in serum withdrawn SH-SY5Y cells requires TrkB activation.

      BDNF activates ERK.

    5. Pretreatment of cells with a pharmacological Trk inhibitor K252a led to suppression of BDNF- or GSB-106-induced activation of Erk1/2 and Akt (Fig.  xref D), thus suggesting that the pro-survival signaling evoked by GSB-106 in serum withdrawn SH-SY5Y cells requires TrkB activation.

      BDNF activates AKT.

    6. Pretreatment of cells with a pharmacological Trk inhibitor K252a led to suppression of BDNF- or GSB-106-induced activation of Erk1/2 and Akt (Fig.  xref D), thus suggesting that the pro-survival signaling evoked by GSB-106 in serum withdrawn SH-SY5Y cells requires TrkB activation.

      BDNF activates AKT.

    1. In another study, the heat shock-like protein Clusterin was shown to increase AKT2 activity and promote the motility of both normal and malignant prostate cells via an inhibitory activity on PTEN-S380 phosphorylation and consequent inactivation of PTEN xref .

      PTEN is phosphorylated on S380.

    2. Another study demonstrated that phosphorylation of PTEN on tyrosine 240 by FGFR2 promotes chromatin binding through an interaction with Ki-67, which facilitates the recruitment of RAD51 to promote DNA repair xref . xref summarises these novel functions and signalling axes of nuclear PTEN.

      FGFR2 phosphorylates PTEN on Y240.

    1. The present study is a prospective, single-blinded, randomized, placebo-controlled cross-over study to investigate the effects of intravenously administered LPS (Escherichia coli O113, 2 ng/kg) on tryptophan and kynurenine metabolites over 48 h and their association with interleukin-6 (IL-6) and C-reactive protein (CRP).

      CRP binds IL6.

  2. May 2021
    1. Since the activated PI3K/AKT pathway was reported to cross-talk with stimulated muscarinic receptor signaling xref , xref , and activated AKT is associated with MYCN expression in contributing to NEPC transformation xref , we hypothesized that stimulation of the NGF–CHRM4 axis might upregulate AKT-MYCN signaling in prostate cancer.

      CHRM4 binds NGF.

    2. Since we showed that upregulated NGF cannot increase expression of CHRM1 and CHRM3 (Fig.  xref ; Supplementary Fig.  xref ), this result suggests that NGF–CHRM4 might be a unique signaling pathway involved in neuroendocrine differentiation of prostate cancer that differs from canonical acetylcholine–CHRM pathways.

      CHRM4 binds NGF.

    3. Our study demonstrated that inhibition of AR signaling decreases activation of the NGF–CHRM4 axis, which is associated with neuroendocrine differentiation of prostate cancer, suggesting that current hormonal therapy designed to suppress AR functions may predispose prostate cancer to NEPC development.

      CHRM4 binds NGF.

    1. The kinase activity of TAK1 leads to phosphorylation events that activate AP-1 and NF-κB. In parallel to cIAP-induced ubiquitination of RIPK2, XIAP’s enzymatic activity results in the formation of polyubiquitin chains on RIPK2, serving as a platform to engage another E3 ligase complex known as the Linear Ubiquitin Assembly Complex (LUBAC) ( xref , xref ).

      RIPK2 is ubiquitinated.

    2. Despite this focus, much of the nature of the NOD1 and 2 interaction with these structures remains unknown, although recent findings suggest that NOD2 directly binds MDP with high affinity ( xref ), with the N-glycosylated form specific to the mycobacterial cell wall triggering an exceptionally strong immunogenic response compared to N-acetyl MDP ( xref ).

      DPEP1 binds NOD2.

    3. Few ligands have been found for NLRP1 to date, and include bacterial products such as lethal toxin (LT) produced by Bacillus anthracis which activates murine NLRP1b ( xref ), muramyl dipeptide (MDP), a component of bacterial peptidoglycan that activates human NLRP1; and reduced levels of cytosolic ATP ( xref – xref ).

      peptidoglycan activates NLRP1.

  3. Apr 2021
    1. For example, in confluent human umbilical vein endothelial cells, merlin suppressed recruitment of Rac to the plasma membrane, and its silencing promoted recruitment of Rac1 to sites of extracellular matrix adhesion, and promoted cell growth ( xref ).

      RAC translocates to the plasma membrane.

    2. Merlin is phosphorylated at Ser10, Thr230 and Ser315 by Akt (also known as protein kinase B, PKB) and controls merlin’s proteasome-mediated degradation by ubiquitination to prevent its interaction with binding partners ( xref , xref ).

      AKT phosphorylates NF2 on T230.

    3. Merlin is phosphorylated at Ser10, Thr230 and Ser315 by Akt (also known as protein kinase B, PKB) and controls merlin’s proteasome-mediated degradation by ubiquitination to prevent its interaction with binding partners ( xref , xref ).

      AKT phosphorylates NF2 on S315.

    4. Merlin is phosphorylated at Ser10, Thr230 and Ser315 by Akt (also known as protein kinase B, PKB) and controls merlin’s proteasome-mediated degradation by ubiquitination to prevent its interaction with binding partners ( xref , xref ).

      AKT phosphorylates NF2 on S10.

    5. In sub-confluent primary Schwann cells, we found that merlin binds to paxillin and mediates merlin localization at the plasma membrane and association with β1-integrin and ErbB2, modifying the organization of the actin cytoskeleton in a cell density-dependent manner ( xref ).

      NF2 binds PXN.

    6. HDAC inhibitors disrupt the PP1-HDAC interaction facilitating Akt dephosphorylation and decrease human meningioma and schwannoma cell proliferation and schwannoma growth in an allograft model and meningioma growth in an intracranial xenograft model ( xref , xref , xref ).

      AKT binds HDAC and PPP1.

    7. For example, in confluent human umbilical vein endothelial cells, merlin suppressed recruitment of Rac to the plasma membrane, and its silencing promoted recruitment of Rac1 to sites of extracellular matrix adhesion, and promoted cell growth ( xref ).

      RAC translocates to the plasma membrane.

    8. Merlin is phosphorylated at Ser10, Thr230 and Ser315 by Akt (also known as protein kinase B, PKB) and controls merlin’s proteasome-mediated degradation by ubiquitination to prevent its interaction with binding partners ( xref , xref ).

      AKT phosphorylates NF2 on T230.

    9. Merlin is phosphorylated at Ser10, Thr230 and Ser315 by Akt (also known as protein kinase B, PKB) and controls merlin’s proteasome-mediated degradation by ubiquitination to prevent its interaction with binding partners ( xref , xref ).

      AKT phosphorylates NF2 on S315.

    10. Merlin is phosphorylated at Ser10, Thr230 and Ser315 by Akt (also known as protein kinase B, PKB) and controls merlin’s proteasome-mediated degradation by ubiquitination to prevent its interaction with binding partners ( xref , xref ).

      AKT phosphorylates NF2 on S10.

    11. In sub-confluent primary Schwann cells, we found that merlin binds to paxillin and mediates merlin localization at the plasma membrane and association with β1-integrin and ErbB2, modifying the organization of the actin cytoskeleton in a cell density-dependent manner ( xref ).

      NF2 binds PXN.

    12. HDAC inhibitors disrupt the PP1-HDAC interaction facilitating Akt dephosphorylation and decrease human meningioma and schwannoma cell proliferation and schwannoma growth in an allograft model and meningioma growth in an intracranial xenograft model ( xref , xref , xref ).

      AKT binds HDAC and PPP1.

    13. For example, in confluent human umbilical vein endothelial cells, merlin suppressed recruitment of Rac to the plasma membrane, and its silencing promoted recruitment of Rac1 to sites of extracellular matrix adhesion, and promoted cell growth ( xref ).

      RAC translocates to the plasma membrane.

    14. Merlin is phosphorylated at Ser10, Thr230 and Ser315 by Akt (also known as protein kinase B, PKB) and controls merlin’s proteasome-mediated degradation by ubiquitination to prevent its interaction with binding partners ( xref , xref ).

      AKT phosphorylates NF2 on T230.

    15. Merlin is phosphorylated at Ser10, Thr230 and Ser315 by Akt (also known as protein kinase B, PKB) and controls merlin’s proteasome-mediated degradation by ubiquitination to prevent its interaction with binding partners ( xref , xref ).

      AKT phosphorylates NF2 on S315.

    16. Merlin is phosphorylated at Ser10, Thr230 and Ser315 by Akt (also known as protein kinase B, PKB) and controls merlin’s proteasome-mediated degradation by ubiquitination to prevent its interaction with binding partners ( xref , xref ).

      AKT phosphorylates NF2 on S10.

    17. In sub-confluent primary Schwann cells, we found that merlin binds to paxillin and mediates merlin localization at the plasma membrane and association with β1-integrin and ErbB2, modifying the organization of the actin cytoskeleton in a cell density-dependent manner ( xref ).

      NF2 binds PXN.

    18. HDAC inhibitors disrupt the PP1-HDAC interaction facilitating Akt dephosphorylation and decrease human meningioma and schwannoma cell proliferation and schwannoma growth in an allograft model and meningioma growth in an intracranial xenograft model ( xref , xref , xref ).

      AKT binds HDAC and PPP1.

    1. Taken together, our findings suggest that the inhibitory effect of PTEN on BMP9-induced osteogenic differentiation may be mediated through reducing the expression of Wnt10b, and PTEN may inhibit Wnt10b by partly disturbing the interaction between CREB and BMP/Smad signaling.

      PTEN inhibits WNT10B.

    2. Taken together, our findings suggest that the inhibitory effect of PTEN on BMP9-induced osteogenic differentiation may be mediated through reducing the expression of Wnt10b, and PTEN may inhibit Wnt10b by partly disturbing the interaction between CREB and BMP/Smad signaling.

      PTEN inhibits WNT10B.

    1. In another study, the heat shock-like protein Clusterin was shown to increase AKT2 activity and promote the motility of both normal and malignant prostate cells via an inhibitory activity on PTEN-S380 phosphorylation and consequent inactivation of PTEN xref .

      PTEN is phosphorylated on S380.

    2. Another study demonstrated that phosphorylation of PTEN on tyrosine 240 by FGFR2 promotes chromatin binding through an interaction with Ki-67, which facilitates the recruitment of RAD51 to promote DNA repair xref . xref summarises these novel functions and signalling axes of nuclear PTEN.

      FGFR2 phosphorylates PTEN on Y240.

    3. In another study, the heat shock-like protein Clusterin was shown to increase AKT2 activity and promote the motility of both normal and malignant prostate cells via an inhibitory activity on PTEN-S380 phosphorylation and consequent inactivation of PTEN xref .

      PTEN is phosphorylated on S380.

    4. Another study demonstrated that phosphorylation of PTEN on tyrosine 240 by FGFR2 promotes chromatin binding through an interaction with Ki-67, which facilitates the recruitment of RAD51 to promote DNA repair xref . xref summarises these novel functions and signalling axes of nuclear PTEN.

      FGFR2 phosphorylates PTEN on Y240.

    1. Furthermore, IR induced RAC1 expression and activity via the activation of PI3K/AKT signaling pathway, and then enhancing cell proliferation, survival, migration and metastasis and increasing levels of epithelial-to-mesenchymal transition (EMT) markers, which facilitated the cell survival and invasive phenotypes.

      Radiation, Ionizing increases the amount of RAC1.

    2. As exhibited in xref , RAC1 overexpression led to the up-regulation of GST-RAC1, RAC1, PAK1, p-PAK1, LIMK1, p-LIMK1, Cofilin, and p-Cofilin in A549 and PC9 cells, while the opposite pattern of these genes was found in the A549 and PC9 cells after Rac1 knockdown.

      GST binds RAC1.

    1. However, CRP- induced expression of CXCL8 was CD32-dependent as it was blunted by the antibody against CD32, whereas CRP-induced MMP9 was blocked by the antibody to CD64, demonstrating that differential signaling mechanisms for CRP in regulating CXCL8 and MMP9 expression in RA-FLSs.

      CRP increases the amount of CXCL8.