4,539 Matching Annotations
  1. Jul 2021
    1. The S100A8 knockdown using shRNA revealed that COX-2 and PGE 2 expression was regulated by S100A8, which suggested that the intracellular increase of microglial S100A8 levels upregulated COX-2 expression and PGE2 secretion, contributing to neuronal death under hypoxic conditions.

      S100A8 increases the amount of PTGS2.

    1. In another study, the heat shock-like protein Clusterin was shown to increase AKT2 activity and promote the motility of both normal and malignant prostate cells via an inhibitory activity on PTEN-S380 phosphorylation and consequent inactivation of PTEN xref .

      PTEN is phosphorylated on S380.

    2. Another study demonstrated that phosphorylation of PTEN on tyrosine 240 by FGFR2 promotes chromatin binding through an interaction with Ki-67, which facilitates the recruitment of RAD51 to promote DNA repair xref . xref summarises these novel functions and signalling axes of nuclear PTEN.

      FGFR2 phosphorylates PTEN on Y240.

    3. This PTEN/ARID4B/PI3K signalling axis identifies a novel player in the PTEN mediated suppression of the PI3K pathway and provides a new opportunity to design novel therapeutics to target this axis to promote the tumour suppressive functions of PTEN.

      PTEN inhibits PI3K.

    1. Nonetheless, transcripts of genes associated with IL-17 production, such as IL17F, RORC, IL23R, and CCR6, were significantly decreased in CD8 + CD103 + CD49a + relative to CD8 + CD103 + CD49a - Trm cells, whereas transcripts for IFN-gamma were elevated (XREF_FIG D-E).

      IL23R inhibits ITGAE.

    2. Nonetheless, transcripts of genes associated with IL-17 production, such as IL17F, RORC, IL23R, and CCR6, were significantly decreased in CD8 + CD103 + CD49a + relative to CD8 + CD103 + CD49a - Trm cells, whereas transcripts for IFN-gamma were elevated (XREF_FIG D-E).

      IL23R inhibits ITGA1.

    3. Nonetheless, transcripts of genes associated with IL-17 production, such as IL17F, RORC, IL23R, and CCR6, were significantly decreased in CD8 + CD103 + CD49a + relative to CD8 + CD103 + CD49a - Trm cells, whereas transcripts for IFN-gamma were elevated (XREF_FIG D-E).

      IL17F inhibits ITGAE.

    4. Nonetheless, transcripts of genes associated with IL-17 production, such as IL17F, RORC, IL23R, and CCR6, were significantly decreased in CD8 + CD103 + CD49a + relative to CD8 + CD103 + CD49a - Trm cells, whereas transcripts for IFN-gamma were elevated (XREF_FIG D-E).

      IL17F inhibits ITGA1.

    5. Nonetheless, transcripts of genes associated with IL-17 production, such as IL17F, RORC, IL23R, and CCR6, were significantly decreased in CD8 + CD103 + CD49a + relative to CD8 + CD103 + CD49a - Trm cells, whereas transcripts for IFN-gamma were elevated (XREF_FIG D-E).

      CCR6 inhibits ITGAE.

    6. Nonetheless, transcripts of genes associated with IL-17 production, such as IL17F, RORC, IL23R, and CCR6, were significantly decreased in CD8 + CD103 + CD49a + relative to CD8 + CD103 + CD49a - Trm cells, whereas transcripts for IFN-gamma were elevated (XREF_FIG D-E).

      CCR6 inhibits ITGA1.

    7. Moreover, IL-15 stimulation potentiated TCR dependent expression of IL-17 and IFN-gamma by epidermal CD8 + CD103 + CD49a - and IFN-gamma by CD8 + CD103 + CD49a + Trm cells, respectively (XREF_FIG D), substantiating effectual gamma chain receptor signaling in both subsets.

      CD8 increases the amount of IL17A.

    8. Moreover, IL-15 stimulation potentiated TCR dependent expression of IL-17 and IFN-gamma by epidermal CD8 + CD103 + CD49a - and IFN-gamma by CD8 + CD103 + CD49a + Trm cells, respectively (XREF_FIG D), substantiating effectual gamma chain receptor signaling in both subsets.

      CD8 increases the amount of TCR.

    9. This functional dichotomy was evident in the comparison of distinct immune mediated skin diseases, with skin biopsies from vitiligo patients showing a predominance of cytotoxic CD8 + CD103 + CD49a + Trm cells while skin biopsies from psoriasis patients featured the accumulation of the IL-17 producing CD8 + CD103 + CD49a - counterparts.

      IL17A activates CD8.

    10. Nonetheless, transcripts of genes associated with IL-17 production, such as IL17F, RORC, IL23R, and CCR6, were significantly decreased in CD8 + CD103 + CD49a + relative to CD8 + CD103 + CD49a - Trm cells, whereas transcripts for IFN-gamma were elevated (XREF_FIG D-E).

      IL23R activates IL17A.

    11. Nonetheless, transcripts of genes associated with IL-17 production, such as IL17F, RORC, IL23R, and CCR6, were significantly decreased in CD8 + CD103 + CD49a + relative to CD8 + CD103 + CD49a - Trm cells, whereas transcripts for IFN-gamma were elevated (XREF_FIG D-E).

      IL17F activates IL17A.

    12. Nonetheless, transcripts of genes associated with IL-17 production, such as IL17F, RORC, IL23R, and CCR6, were significantly decreased in CD8 + CD103 + CD49a + relative to CD8 + CD103 + CD49a - Trm cells, whereas transcripts for IFN-gamma were elevated (XREF_FIG D-E).

      CCR6 activates IL17A.

    13. Corroborating transcriptional profiles, CD8 + CD103 + CD49a - Trm cells produced IL-17 while CD8 + CD103 + CD49a + Trm cells excelled in IFN-gamma production upon stimulation with phorbol 12-myristate 13-acetate and ionomycin (XREF_FIG A-6C).

      Trm activates IL17A.

    14. Here, we identify CD49a expression as a marker delineating a subpopulation ofCD8 + Trm cells in human skin that specifically localize to thebasal layer of epidermis, preferentially produce IFN-gamma, and display high cytotoxic capacity upon stimulation.

      Trm activates IFNG.

    1. The kinase activity of TAK1 leads to phosphorylation events that activate AP-1 and NF-κB. In parallel to cIAP-induced ubiquitination of RIPK2, XIAP’s enzymatic activity results in the formation of polyubiquitin chains on RIPK2, serving as a platform to engage another E3 ligase complex known as the Linear Ubiquitin Assembly Complex (LUBAC) ( xref , xref ).

      RIPK2 is ubiquitinated.

    2. It was recently shown that MAVS recruits NLRP3 to the mitochondria for activation in response to non crystalline activators and that microtubule driven trafficking of the mitochondria is necessary for NLRP3 and ASC complex assembly and activation.

      MAVS translocates to the mitochondrion.

    3. It was recently shown that MAVS recruits NLRP3 to the mitochondria for activation in response to non crystalline activators and that microtubule driven trafficking of the mitochondria is necessary for NLRP3 and ASC complex assembly and activation.

      NLRP3 translocates to the mitochondrion.

    4. Despite this focus, much of the nature of the NOD1 and 2 interaction with these structures remains unknown, although recent findings suggest that NOD2 directly binds MDP with high affinity ( xref ), with the N-glycosylated form specific to the mycobacterial cell wall triggering an exceptionally strong immunogenic response compared to N-acetyl MDP ( xref ).

      DPEP1 binds NOD2.

    5. Nlrp6 - / - mice had increased numbers of immune cells in their circulation, as well as enhanced activation of MAPK and NF-kappaB signaling, though Toll like receptor (TLR) activation, suggesting that NLRP6 may suppress TLR pathways after the recognition of pathogens to prevent amplified inflammatory pathology.

      TLR activates NFkappaB.

    6. Few ligands have been found for NLRP1 to date, and include bacterial products such as lethal toxin (LT) produced by Bacillus anthracis which activates murine NLRP1b ( xref ), muramyl dipeptide (MDP), a component of bacterial peptidoglycan that activates human NLRP1; and reduced levels of cytosolic ATP ( xref – xref ).

      peptidoglycan activates NLRP1.

    1. Mutations in the TrkA gene cause a related disorder, HSAN IV, which produces a phenotype similar to HSAN V. xref These TrkA gene mutations result in defective binding of NGF to TrkA and, as a result, the inhibition of NGF-induced TrkA phosphorylation and downstream signaling cascades. xref

      NGF phosphorylates NTRK1.

    2. Mutations in the TrkA gene cause a related disorder, HSAN IV, which produces a phenotype similar to HSAN V. XREF_BIBR These TrkA gene mutations result in defective binding of NGF to TrkA and, as a result, the inhibition of NGF induced TrkA phosphorylation and downstream signaling cascades.

      NGF binds NTRK1.

    3. Upon binding of NGF to the extracellular region of TrkA, the receptor dimerizes, autophosphorylates, and initiates signaling events by docking and phosphorylating downstream targets. xref – xref The NGF-TrkA complex is internalized into endosomes where it can be retrogradely transported, recycled, or degraded. xref Immediate pro-nociceptive effects resulting from NGF/TrkA signaling (such as modulation of ion channel activity) occur in the peripheral nociceptor terminal, while longer-term effects (such as modification of gene expression) occur in the soma following retrograde axonal transport of the NGF/TrkA complex to the DRG. xref , xref Three major signaling cascades initiated by TrkA activation include the phospholipase C-γ (PLCγ) pathway, the mitogen-activated protein kinase (MAPK)/Erk pathway, and the phosphoinositide 3-kinase (PI3K) pathway. xref

      NGF binds NTRK1.

    4. NGF null mice have a severe loss of sympathetic and sensory neurons, particularly in the population of peptidergic small- and medium-diameter DRG neurons. xref Animals lacking TrkA receptors show a phenotype similar to NGF null mice, underscoring the importance of NGF-TrkA signaling for the development of the nociceptive system. xref , xref

      NGF binds NTRK1.

    5. Mutations in the TrkA gene cause a related disorder, HSAN IV, which produces a phenotype similar to HSAN V. xref These TrkA gene mutations result in defective binding of NGF to TrkA and, as a result, the inhibition of NGF-induced TrkA phosphorylation and downstream signaling cascades. xref

      NGF binds NTRK1.

    6. In cultured rodent DRG neurons, for example, Nav1.7 activation is increased via Erk1/2 signaling, and activation of p38 MAPK can directly phosphorylate Nav1.8 leading to an increase in Nav1.8 current density in DRG neurons. xref , xref However, whether these changes to sodium channel activation properties occur downstream of NGF-TrkA signaling, or as part of other signaling pathways, was not explored in these studies.

      NGF binds NTRK1.

    7. While numerous studies have demonstrated a role for NGF-TrkA signaling in the modulation of nociceptive ion channel activity, there is also evidence that NGF-p75NTR signaling can contribute to sensory neuron excitability. xref , xref - xref For example, NGF-mediated activation of p75NTR has been shown to increase ceramide levels in a TrkA-independent manner in cell culture, and studies in rodents have shown that ceramide likely mediates NGF-induced sensitization of isolated sensory neurons in vitro and possibly NGF-induced pain-related behaviors in vivo. xref , xref , xref

      NGF binds NTRK1.

    8. XREF_BIBR Immediate pro nociceptive effects resulting from NGF and TrkA signaling (such as modulation of ion channel activity) occur in the peripheral nociceptor terminal, while longer-term effects (such as modification of gene expression) occur in the soma following retrograde axonal transport of the NGF and TrkA complex to the DRG.

      NGF binds NTRK1.

    9. While numerous studies have demonstrated a role for NGF-TrkA signaling in the modulation of nociceptive ion channel activity, there is also evidence that NGF-p75NTR signaling can contribute to sensory neuron excitability. xref , xref - xref For example, NGF-mediated activation of p75NTR has been shown to increase ceramide levels in a TrkA-independent manner in cell culture, and studies in rodents have shown that ceramide likely mediates NGF-induced sensitization of isolated sensory neurons in vitro and possibly NGF-induced pain-related behaviors in vivo. xref , xref , xref

      NGF binds NGFR.