3,295 Matching Annotations
  1. May 2021
    1. The AR may act upstream of both ZBTB46 and the NGF, and downregulates ZBTB46 and the NGF before ADT.

      AR inhibits NGF.

    2. These findings suggest a mechanism whereby ADT upregulated ZBTB46 enhances NGF transcription through direct physical interaction with the NGF-regulatory sequence.

      NGF increases the amount of ZBTB46.

    3. We hypothesized that ZBTB46 upregulates NGF expression in prostate cancer cells by acting as a transcriptional activator and binding to a ZBTB46 binding element (ZBE) in the NGF regulatory sequence.

      ZBTB46 increases the amount of NGF.

    4. Moreover, ZBTB46 binding signals were enriched in C4-2 and LNCaP cells in response to CSS containing medium or MDV3100, supporting the hypothesis that ADT increased ZBTB46 upregulates NGF expression.

      ZBTB46 increases the amount of NGF.

    5. These findings suggest a mechanism whereby ADT upregulated ZBTB46 enhances NGF transcription through direct physical interaction with the NGF-regulatory sequence.

      ZBTB46 increases the amount of NGF.

    6. We further knocked-down AR in AR positive LNCaP cells using AR small interfering RNA, and found that knockdown of AR increased ZBTB46 and NGF expressions.

      AR decreases the amount of NGF.

    7. NGF physically interacts with CHRM4 after ADT.

      CHRM4 binds NGF.

    8. To determine the possible interaction between NGF and CHRM4, AR positive cells were subjected to ADT followed by an immunoprecipitation (IP)-Western blot analysis.

      CHRM4 binds NGF.

    9. These observations confirm that the NGF physically interacts with CHRM4.

      CHRM4 binds NGF.

    10. We demonstrated that the NGF physically interacts with CHRM4 and that the NGF mediates NEPC differentiation dependent on CHRM4.

      CHRM4 binds NGF.

    11. The NGF was reported to promote prostate cancer cell metastasis XREF_BIBR, XREF_BIBR, yet the mechanisms and functions of NGF in NEPC differentiation have not been clearly elucidated.
    12. In prostate cancer, the NGF stimulates NTRK1 downstream of p38-MAPK activation to promote cell migration, invasion, and metastasis 11.
    13. In prostate cancer, the NGF stimulates NTRK1 downstream of p38-MAPK activation to promote cell migration, invasion, and metastasis 11.
    14. In prostate cancer, the NGF stimulates NTRK1 downstream of p38-MAPK activation to promote cell migration, invasion, and metastasis 11.

      NGF activates NTRK1.

    15. Pharmacologic NGF blockade and NGF knockdown markedly inhibited CHRM4 mediated NEPC differentiation and AKT-MYCN signaling activation.

      NGF activates CHRM4.

    16. These results are consistent with the notion that the NGF upregulates CHRM4, through which it activates AKT-MYCN signaling after ADT.

      NGF activates CHRM4.

    17. Taken together, our findings support a model wherein ADT or AR inhibitor treatment stimulates ZBTB46 expression, which upregulates NGF mediated CHRM4 stimulation; this plays a pivotal role in integrating AKT and MYCN signals to promote therapeutic resistance and neuroendocrine differentiation of prostate cancer.

      NGF activates CHRM4.

    18. Activated NGF upregulates CHRM4 and links AKT signaling activation and MYCN stimulation to enhance NEPC reprogramming.

      NGF activates CHRM4.

    19. In prostate cancer, the NGF stimulates NTRK1 downstream of p38-MAPK activation to promote cell migration, invasion, and metastasis 11.

      NGF activates cell migration.

    20. Indeed, involvement of the NGF in pancreatic cancer was demonstrated to increase cell proliferation and survival through activation of mitogen activated protein kinase (MAPK) via the NTRK1 receptor 8.
    21. Notably, overexpression of the NGF in cells promoted cell proliferation regardless of CSS containing medium treatment, whereas NGF-knockdown in AR negative PC3 and ADT-resistance C4-2-MDVR cells reduced cell proliferation and colony formation compared to cells carrying the control vector.
    22. In prostate cancer, the NGF stimulates NTRK1 downstream of p38-MAPK activation to promote cell migration, invasion, and metastasis 11.

      NGF activates p38.

    23. Indeed, it is clear that many types of tumors have the potential to secrete NGF, which induces peripheral nerve infiltration into the tumor microenvironment, thereby promoting tumor growth and metastasis XREF_BIBR, XREF_BIBR.
    24. In addition, the NGF stimulates nerve infiltration into solid tumors and acts as a mediator of pain through activation of NTRK1 in the endings of sensory neurons 65.
    25. Here, we show that an androgen deprivation therapy (ADT)-stimulated transcription factor, ZBTB46, upregulated NGF via ZBTB46 mediated-transcriptional activation of NGF.

      ZBTB46 activates NGF.

    26. ZBTB46 upregulated NGF is associated with NEPC differentiation.

      ZBTB46 activates NGF.

    27. These results indicate that ADT increased NGF promotes NEPC differentiation and suggest that NGF expression is likely regulated by ZBTB46.
    1. Pharmacologic NGF blockade and NGF knockdown markedly inhibited CHRM4 mediated NEPC differentiation and AKT-MYCN signaling activation.

      NGF activates CHRM4.

    2. Here, we show that an androgen deprivation therapy (ADT)-stimulated transcription factor, ZBTB46, upregulated NGF via ZBTB46 mediated-transcriptional activation of NGF.

      ZBTB46 activates NGF.

    3. Here, we show that an androgen deprivation therapy (ADT)-stimulated transcription factor, ZBTB46, upregulated NGF via ZBTB46 mediated-transcriptional activation of NGF.
    1. It was recently shown that MAVS recruits NLRP3 to the mitochondria for activation in response to non crystalline activators and that microtubule driven trafficking of the mitochondria is necessary for NLRP3 and ASC complex assembly and activation.

      MAVS translocates to the mitochondrion.

    2. It was recently shown that MAVS recruits NLRP3 to the mitochondria for activation in response to non crystalline activators and that microtubule driven trafficking of the mitochondria is necessary for NLRP3 and ASC complex assembly and activation.

      NLRP3 translocates to the mitochondrion.

    3. By triggering the phosphorylation of the autophagy inducer ULK1, RIPK2 induces autophagy of disrupted mitochondria (mitophagy), preventing the accumulation of ROS and NLRP3 inflammasome activation.

      RIPK2 leads to the phosphorylation of ULK1.

    4. Conversely, others have shown that overexpression of NLRP7 inhibited pro-IL-1beta synthesis and secretion.

      NLRP7 inhibits IL1B.

    5. Some studies have suggested that NLRP12 may negatively regulate the NF-kappaB pathway.

      NLRP12 inhibits NFkappaB.

    6. IFNgamma functions via signal transducer and activator of transcription 1 (STAT1) and can not induce NLRC5 expression in the absence of STAT1.

      IFNG increases the amount of NLRC5.

    7. It was recently shown that MAVS recruits NLRP3 to the mitochondria for activation in response to non crystalline activators and that microtubule driven trafficking of the mitochondria is necessary for NLRP3 and ASC complex assembly and activation.

      STS binds NLRP3.

    8. NOD1 and 2 both interact with RIPK2, via a CARD-CARD homotypic interaction.

      RIPK2 binds NOD1.

    9. In Alzheimer 's disease, amyloid-beta aggregates were shown to activate NLRP3 ex vivo in primary macrophages and microglia.

      APP activates NLRP3.

    10. The possibility of a role for NOD2 in non bacterial infections has also been suggested, with NOD2 having been shown to induce an IFNbeta driven antiviral response following recognition of single stranded viral RNA.

      NOD2 activates IFNB1.

    11. IL-1beta produced downstream of the NLRP3 inflammasome, which is also stimulated by islet amyloid polypeptide, promotes beta-cell dysfunction, and cell death, linking NLRP3 activation to insulin resistance.

      IAPP activates NLRP3.

    12. Moreover, it was recently reported that bacterial acylated lipopeptides (acLP) activated NLRP7 and stimulated formation of an NLRP7-ASC-caspase-1 inflammasome.

      AEBP1 activates NLRP7.

    13. NLRX1 has been shown to enhance ROS production when it is overexpressed, following Chlamydia and Shigella infection, as well as in response to TNFalpha and poly (I : C).
    14. A recent study by Zhong et al. suggested that particulate stimuli might induce mitochondrial production of reactive oxygen species (ROS), which triggers a calcium influx mediated by transient receptor potential melastatin 2 (TRPM2) to activate NLRP3.

      TRPM3 activates NLRP3.

    15. A recent study by Zhong et al. suggested that particulate stimuli might induce mitochondrial production of reactive oxygen species (ROS), which triggers a calcium influx mediated by transient receptor potential melastatin 2 (TRPM2) to activate NLRP3.

      TRPM3 activates calcium(2+).

    16. Ceballos-Olvera et al. demonstrated that while IL-18 and pyroptosis are both essential for host resistance, the production of IL-1beta by NLRP3 was deleterious, as it triggered excessive neutrophil recruitment and exacerbated the disease.

      NLRP3 activates IL1B.

    17. Mutations in NLRP3 were reported to induce an overproduction of IL-1beta that triggers the subsequent development of severe inflammation.

      NLRP3 activates IL1B.

    18. Other NLRs such as NOD1, NOD2, NLRP10, NLRX1, NLRC5, and CIITA do not directly engage the inflammatory caspases, but instead activate nuclear factor-kappaB (NF-kappaB), mitogen activated protein kinases (MAPKs), and interferon (IFN) regulatory factors (IRFs) to stimulate innate immunity.
    19. A recent study by Zhong et al. suggested that particulate stimuli might induce mitochondrial production of reactive oxygen species (ROS), which triggers a calcium influx mediated by transient receptor potential melastatin 2 (TRPM2) to activate NLRP3.

      TRPM2 activates NLRP3.

    20. By triggering the phosphorylation of the autophagy inducer ULK1, RIPK2 induces autophagy of disrupted mitochondria (mitophagy), preventing the accumulation of ROS and NLRP3 inflammasome activation.

      RIPK2 activates autophagy.

    21. Nlrp6 - / - mice had increased numbers of immune cells in their circulation, as well as enhanced activation of MAPK and NF-kappaB signaling, though Toll like receptor (TLR) activation, suggesting that NLRP6 may suppress TLR pathways after the recognition of pathogens to prevent amplified inflammatory pathology.

      TLR activates NFkappaB.

    22. Other NLRs such as NOD1, NOD2, NLRP10, NLRX1, NLRC5, and CIITA do not directly engage the inflammatory caspases, but instead activate nuclear factor-kappaB (NF-kappaB), mitogen activated protein kinases (MAPKs), and interferon (IFN) regulatory factors (IRFs) to stimulate innate immunity.
    23. The exact mechanism of NLRP3 activation by uric acid crystals is still unknown, but monosodium urate and calcium pyrophosphate dihydrate crystals were found to induce NLRP3 and caspase-1 activation and the subsequent processing of IL-1beta and IL-18.
    24. The exact mechanism of NLRP3 activation by uric acid crystals is still unknown, but monosodium urate and calcium pyrophosphate dihydrate crystals were found to induce NLRP3 and caspase-1 activation and the subsequent processing of IL-1beta and IL-18.
    25. The exact mechanism of NLRP3 activation by uric acid crystals is still unknown, but monosodium urate and calcium pyrophosphate dihydrate crystals were found to induce NLRP3 and caspase-1 activation and the subsequent processing of IL-1beta and IL-18.
    26. The exact mechanism of NLRP3 activation by uric acid crystals is still unknown, but monosodium urate and calcium pyrophosphate dihydrate crystals were found to induce NLRP3 and caspase-1 activation and the subsequent processing of IL-1beta and IL-18.
    27. A recent study by Zhong et al. suggested that particulate stimuli might induce mitochondrial production of reactive oxygen species (ROS), which triggers a calcium influx mediated by transient receptor potential melastatin 2 (TRPM2) to activate NLRP3.
    28. The exact mechanism of NLRP3 activation by uric acid crystals is still unknown, but monosodium urate and calcium pyrophosphate dihydrate crystals were found to induce NLRP3 and caspase-1 activation and the subsequent processing of IL-1beta and IL-18.
    29. The exact mechanism of NLRP3 activation by uric acid crystals is still unknown, but monosodium urate and calcium pyrophosphate dihydrate crystals were found to induce NLRP3 and caspase-1 activation and the subsequent processing of IL-1beta and IL-18.
    30. The exact mechanism of NLRP3 activation by uric acid crystals is still unknown, but monosodium urate and calcium pyrophosphate dihydrate crystals were found to induce NLRP3 and caspase-1 activation and the subsequent processing of IL-1beta and IL-18.
    31. The exact mechanism of NLRP3 activation by uric acid crystals is still unknown, but monosodium urate and calcium pyrophosphate dihydrate crystals were found to induce NLRP3 and caspase-1 activation and the subsequent processing of IL-1beta and IL-18.
    32. Ceramide, a specific product from the metabolism of long-chain saturated fatty acids, and the saturated free fatty acid, palmitate, have been shown to induce IL-1beta in an NLRP3 dependent fashion [Ref.

      ceramide activates IL1B.

    33. Crystalline cholesterol was proposed to cause atherosclerosis by acting as a danger signal and initiating inflammation through the NLRP3 inflammasome.
    34. A recent study by Zhong et al. suggested that particulate stimuli might induce mitochondrial production of reactive oxygen species (ROS), which triggers a calcium influx mediated by transient receptor potential melastatin 2 (TRPM2) to activate NLRP3.

      dioxygen activates calcium(2+).

  2. Apr 2021
    1. Translocation of merlin to the nucleus allows merlin to bind and inhibit the E3 ubiquitin ligase CRL4 DCAF1 (DDB1- and Cul4 Associated Factor 1).

      NF2 translocates to the nucleus.

    2. Notably, NF2 transfection into these cells induced YAP1 phosphorylation at Ser127, YAP1 retention in the cytoplasm and consequent reduction of YAP1 nuclear localization.

      NF2 leads to the phosphorylation of YAP1 on S127.

    3. Previously, we showed that activation of ErbB2 and ErbB3 receptors in primary rat Schwann cells by neuregulin-1 induced merlin phosphorylation at Ser518 via PKA.

      ERBB3 leads to the phosphorylation of NF2 on S518.

    4. Previously, we showed that activation of ErbB2 and ErbB3 receptors in primary rat Schwann cells by neuregulin-1 induced merlin phosphorylation at Ser518 via PKA.

      ERBB3 leads to the phosphorylation of NF2 on S518.

    5. Previously, we showed that activation of ErbB2 and ErbB3 receptors in primary rat Schwann cells by neuregulin-1 induced merlin phosphorylation at Ser518 via PKA.

      ERBB2 leads to the phosphorylation of NF2 on S518.

    6. We reported that merlin associates with beta 1 -integrin in primary Schwann cells and undifferentiated Schwann cell and neuron co-cultures, and in primary Schwann cell cultures, laminin-1 stimulated integrin signaled though PAK1 and caused merlin Ser518 phosphorylation and inactivation of its tumor suppressor function.

      Integrins leads to the phosphorylation of NF2 on S518.

    7. Merlin is phosphorylated at Ser10, Thr230 and Ser315 by Akt (also known as protein kinase B, PKB) and controls merlin 's proteasome mediated degradation by ubiquitination to prevent its interaction with binding partners.

      AKT phosphorylates NF2 on T230.

    8. Merlin is phosphorylated at Ser10, Thr230 and Ser315 by Akt (also known as protein kinase B, PKB) and controls merlin 's proteasome mediated degradation by ubiquitination to prevent its interaction with binding partners.

      AKT phosphorylates NF2 on S315.

    9. Merlin is phosphorylated at Ser10, Thr230 and Ser315 by Akt (also known as protein kinase B, PKB) and controls merlin 's proteasome mediated degradation by ubiquitination to prevent its interaction with binding partners.

      AKT phosphorylates NF2 on S10.

    10. Loss of merlin results in integrin mediated activation of mTORC1 through PAK1, which promotes cell cycle progression by inducing translation of cyclin-D1 mRNA and cyclin-D1 expression.

      PAK1 inhibits cell cycle.

    11. Loss of merlin in mesotheliomas has been linked not only to increased proliferation, but also increased invasiveness, spreading and migration.
    12. Adenoviral transduction of NF2 in Meso-17 and Meso-25 cell lines decreased invasion through Matrigel membranes compared to cells transduced with empty vector.
    13. Second, similar to NF2 schwannomas, mesothelioma cells with NF2 inactivation, exhibit activated PAK1 and AKT, and re-expression of merlin in merlin-null human mesothelioma cells (Meso-17) decreases PAK1 activity.

      NF2 inhibits PAK1.

    14. Soon after merlin was cloned, evidence that merlin inhibits another important member of the Rho GTPases family, Ras, was reported in v-Ha-Ras-transformed NIH3T3cells in which merlin overexpression counteracted the oncogenic role of Ras.

      NF2 inhibits RHOA.

    15. Merlin re-expression in Nf2 -/- Schwann cells similarly reduced the transport of growth factor receptors ErbB2 and ErbB3, insulin like growth factor 1 receptor (IGF1R) and platelet derived growth factor receptor (PDGFR).

      NF2 inhibits ERBB3.

    16. Merlin re-expression in Nf2 -/- Schwann cells similarly reduced the transport of growth factor receptors ErbB2 and ErbB3, insulin like growth factor 1 receptor (IGF1R) and platelet derived growth factor receptor (PDGFR).

      NF2 inhibits ERBB2.

    17. In sum, multiple lines of evidence have established a feedback regulation loop with merlin being phosphorylated at Ser518 (growth permissive form) via activated Rho small GTPases Rac1 and Cdc42 through PAK, and in turn, merlin associating with PAK to inhibit Rac1 and Cdc42 signaling (XREF_FIG).

      NF2 inhibits CDC42.

    18. Collectively, these results indicate that merlin inhibits cell growth by contact inhibition in part by binding CD44 and negatively regulating CD44 function (XREF_FIG).

      NF2 inhibits CD44.

    19. Merlin inactivation of Src signaling was also shown in CNS glial cells, where merlin competitively inhibits Src binding to ErbB2 thereby preventing ErbB2 mediated Src phosphorylation and downstream mitogenic signaling.

      NF2 inhibits SRC.

    20. In the NF2 -/- breast cancer MDA-MB-231 cell line, merlin re-expression inhibited YAP and TEAD activity that was eliminated by LATS1/2 silencing.

      NF2 inhibits TEAD.

    21. Loss of merlin results in integrin mediated activation of mTORC1 through PAK1, which promotes cell cycle progression by inducing translation of cyclin-D1 mRNA and cyclin-D1 expression.

      NF2 inhibits Integrins.

    22. Loss of merlin activated mTORC1 signaling independently of Akt or ERK in these tumor cells; however, the molecular mechanism connecting merlin loss to mTORC1 activation remains to be elucidated.

      NF2 inhibits ERK.

    23. Loss of merlin activated mTORC1 signaling independently of Akt or ERK in these tumor cells; however, the molecular mechanism connecting merlin loss to mTORC1 activation remains to be elucidated.

      NF2 inhibits AKT.

    24. Furthermore, merlin overexpression in Tr6BC1 mouse schwannoma cells inhibited the binding of fluorescein labeled hyaluronan to CD44 and inhibited subcutaneous tumor growth in immunocompromised mice, and overexpression of a merlin mutant lacking the CD44 binding domain was unable to inhibit schwannoma growth.

      NF2 inhibits fluorescein.

    25. Further studies showed that wild-type merlin is transported throughout the cell by microtubule motors and merlin mutants or depletion of the microtubule motor kinesin-1 suppressed merlin transport and was associated with accumulation of yorkie, a Drosophila homolog of the hippo pathway transcriptional co-activator Yes associated protein (YAP), in the nucleus.

      Mutated NF2 inhibits transport.

    26. In a similar fashion, NF2 mutations increased the resistance to dihydrofolate reductase inhibitors methotrexalate and pyremethamine as well as the JNK inhibitor JNK-9L.
    27. The disrupted cell-contact inhibition signaling and merlin phosphorylation correlated with increased expression of NOTCH1 and its downstream target gene, HES1, which represses the transcription factor E2F in cell-contact growth arrest.
    28. Binding of merlin unphosphorylated at Ser518 with the cytoplasmic tail of CD44 mediates contact inhibition at high cell density.
    29. Loss of merlin activated mTORC1 signaling independently of Akt or ERK in these tumor cells; however, the molecular mechanism connecting merlin loss to mTORC1 activation remains to be elucidated.

      mTORC1 inhibits ERK.

    30. First, protein kinase C potentiated phosphatase inhibitor (CPI-17), which is frequently overexpressed in mesothelioma tumors, inhibits merlin phosphatase MYPT1-PP1delta, providing one potential pathway by which merlin 's tumor suppressor function might be inactivated through maintenance of phosphorylation at Ser518.

      PKC inhibits NF2.

    31. First, protein kinase C potentiated phosphatase inhibitor (CPI-17), which is frequently overexpressed in mesothelioma tumors, inhibits merlin phosphatase MYPT1-PP1delta, providing one potential pathway by which merlin 's tumor suppressor function might be inactivated through maintenance of phosphorylation at Ser518.

      PKC inhibits Phosphatase.

    32. Loss of merlin results in integrin mediated activation of mTORC1 through PAK1, which promotes cell cycle progression by inducing translation of cyclin-D1 mRNA and cyclin-D1 expression.

      Integrins inhibits mTORC1.

    33. HDAC inhibitors disrupt the PP1-HDAC interaction facilitating Akt dephosphorylation and decrease human meningioma and schwannoma cell proliferation and schwannoma growth in an allograft model and meningioma growth in an intracranial xenograft model.
    34. The mTORC1 inhibitor rapamycin selectively inhibited proliferation of seven merlin-null mesothelioma cell lines, but not merlin positive cell lines, suggesting a potential pharmacological target for merlin deficient mesotheliomas.

      sirolimus inhibits NF2.

    35. Merlin expression in Meso-17 and Meso-25 cells decreased FAK Tyr397 phosphorylation and consequently disrupted FAK-Src and PI3K interaction, providing a mechanism for the observed enhancement of invasion and spreading caused by merlin inactivation.

      Modified NF2 leads to the dephosphorylation of PTK2 on Y397.

    36. Accordingly, merlin was shown to reduce the levels of ErbB2 and ErbB3 receptor levels at the plasma membrane.

      NF2 decreases the amount of ERBB3.

    37. Accordingly, merlin was shown to reduce the levels of ErbB2 and ErbB3 receptor levels at the plasma membrane.

      NF2 decreases the amount of ERBB3.

    38. Accordingly, merlin was shown to reduce the levels of ErbB2 and ErbB3 receptor levels at the plasma membrane.

      NF2 decreases the amount of ERBB2.

    39. In sub-confluent primary Schwann cells, we found that merlin binds to paxillin and mediates merlin localization at the plasma membrane and association with beta1-integrin and ErbB2, modifying the organization of the actin cytoskeleton in a cell density dependent manner.

      NF2 binds PXN.

    40. Moreover, in cultured Schwann cells, merlin interaction with Amot was demonstrated by co-immunoprecipitation of the endogenous proteins.

      AMOT binds NF2.

    41. Moreover, co-immunoprecipitation experiments revealed that merlin interacts with YAP1, although the interaction is not direct.

      YAP1 binds NF2.

    42. Merlin inactivation of Src signaling was also shown in CNS glial cells, where merlin competitively inhibits Src binding to ErbB2 thereby preventing ErbB2 mediated Src phosphorylation and downstream mitogenic signaling.

      SRC binds ERBB2.

    43. Merlin interacts with tubulin and acetylated-tubulin and stabilizes the microtubules by attenuating tubulin turnover -- lowering the rates of microtubule polymerization and depolymerization.

      Tubulin binds NF2.

    44. Merlin inhibits PI3K activity by binding phosphatidylinositol 3-kinase enhancer-L (PIKE-L), the GTPase that binds and activates PI3K.

      GTPase binds PI3K.

    45. In various cell types, the binding of hyaluronan to CD44 stimulates Tiam1 dependent Rac1 signaling and cytoskeleton mediated tumor cell migration.
    46. In various cell types, the binding of hyaluronan to CD44 stimulates Tiam1 dependent Rac1 signaling and cytoskeleton mediated tumor cell migration.

      RAC1 activates cell migration.

    47. Pharmacological or genetic inhibition of Rac1 in Nf2 -/- MEFs reduced the Wnt signaling activation to basal levels as assessed by reporter assay of transactivation of the nuclear beta-catenin-dependent T-cell factor 4 transcription factor.

      RAC1 activates Wnt.

    48. In sub-confluent primary Schwann cells, we found that merlin binds to paxillin and mediates merlin localization at the plasma membrane and association with beta1-integrin and ErbB2, modifying the organization of the actin cytoskeleton in a cell density dependent manner.

      PXN bound to NF2 activates NF2.

    49. In sub-confluent primary Schwann cells, we found that merlin binds to paxillin and mediates merlin localization at the plasma membrane and association with beta1-integrin and ErbB2, modifying the organization of the actin cytoskeleton in a cell density dependent manner.

      PXN bound to NF2 activates localization.

    50. FAK silencing decreased schwannoma cell proliferation and was associated with increased levels of total and nuclear p53.
    51. In a similar fashion, NF2 mutations increased the resistance to dihydrofolate reductase inhibitors methotrexalate and pyremethamine as well as the JNK inhibitor JNK-9L.
    52. Furthermore, it was shown that overactive PAK and LIMK pathway activity contributed to cell proliferation through cofilin phosphorylation and auroraA activation.
    53. Interestingly, it was shown that schwannoma cells release insulin like growth factor binding protein 1 which in beta1-integrin dependent manner activates Src and FAK signaling.

      IGFBP1 activates PTK2.

    54. Interestingly, it was shown that schwannoma cells release insulin like growth factor binding protein 1 which in beta1-integrin dependent manner activates Src and FAK signaling.

      IGFBP1 activates SRC.

    55. Moreover, neuregulin survival signaling through the ErbB2 and ErbB3 receptor activates PI3K in rat Schwann cells through the activation of Akt and inhibition of Bad, a pro apoptotic Blc-2 family protein.

      ERBB3 activates PI3K.

    56. ErbB2 activation in mouse Nf2 deficient spinal cord neural progenitor cells was shown to be caused by Rac mediated retention of the receptor at the plasma membrane.

      ERBB2 activates NF2.

    57. Silencing DCAF1 in Meso-33, merlin deficient mesothelioma cells reduced their proliferation by arresting the cell cycle in G1 phase.
    58. Significantly, silencing of DCAF1 in schwannoma cells isolated from NF2 patients also reduced their proliferation.
    59. Silencing DCAF1 in Meso-33, merlin deficient mesothelioma cells reduced their proliferation by arresting the cell cycle in G1 phase.

      DCAF1 activates cell cycle.

    60. Furthermore, Amot silencing attenuated Rac1 and Ras and MAPK signaling pathway.

      AMOT activates RAC1.

    61. Silencing of Amot in Nf2 -/- Schwann cells (SC4) selectively reduced cell proliferation because it did not change the proliferation rate of SC4 with merlin re-expression.
    62. Furthermore, Amot silencing attenuated Rac1 and Ras and MAPK signaling pathway.

      AMOT activates RAS.

    63. Furthermore, Amot silencing attenuated Rac1 and Ras and MAPK signaling pathway.

      AMOT activates MAPK.

    64. In various cell types, the binding of hyaluronan to CD44 stimulates Tiam1 dependent Rac1 signaling and cytoskeleton mediated tumor cell migration.

      CD44 bound to hyaluronic acid activates RAC1.

    65. In various cell types, the binding of hyaluronan to CD44 stimulates Tiam1 dependent Rac1 signaling and cytoskeleton mediated tumor cell migration.

      CD44 bound to hyaluronic acid activates TIAM1.

    66. First, protein kinase C potentiated phosphatase inhibitor (CPI-17), which is frequently overexpressed in mesothelioma tumors, inhibits merlin phosphatase MYPT1-PP1delta, providing one potential pathway by which merlin 's tumor suppressor function might be inactivated through maintenance of phosphorylation at Ser518.

      PPP1R14A activates NF2.

    67. First, protein kinase C potentiated phosphatase inhibitor (CPI-17), which is frequently overexpressed in mesothelioma tumors, inhibits merlin phosphatase MYPT1-PP1delta, providing one potential pathway by which merlin 's tumor suppressor function might be inactivated through maintenance of phosphorylation at Ser518.

      PPP1R14A activates Phosphatase.

    68. In various cell types, the binding of hyaluronan to CD44 stimulates Tiam1 dependent Rac1 signaling and cytoskeleton mediated tumor cell migration.

      TIAM1 activates cell migration.

    69. We recently showed that PI3K inhibition in merlin deficient mouse Schwann cells selectively decreased their proliferation.
    70. In primary rat Schwann cells, CD44 was shown to constitutively associate with the heterodimer receptor tyrosine kinase ErbB2 and ErbB3 and CD44 enhanced neuregulin induced ErbB2 activating phosphorylation.

      NRG activates ERBB2.

    71. Moreover, neuregulin survival signaling through the ErbB2 and ErbB3 receptor activates PI3K in rat Schwann cells through the activation of Akt and inhibition of Bad, a pro apoptotic Blc-2 family protein.

      NRG activates PI3K.

    72. In the canonical hippo pathway, mammalian Ste20 like kinases (Mst1/2; hippo homolog) phosphorylate large tumor suppressor kinases (LATS 1/2), which in turn phosphorylate and inactivate YAP and TAZ, blocking their role as TEAD and MEAD transcription factor co-activators.

      LATS activates TAZ.

    73. SOS is a GEF that activates Ras by catalyzing the nucleotide exchange.

      GEF activates RAS.

    74. Translocation of merlin to the nucleus allows merlin to bind and inhibit the E3 ubiquitin ligase CRL4 DCAF1 (DDB1- and Cul4 Associated Factor 1).

      NF2 translocates to the nucleus.

    75. Notably, NF2 transfection into these cells induced YAP1 phosphorylation at Ser127, YAP1 retention in the cytoplasm and consequent reduction of YAP1 nuclear localization.

      NF2 leads to the phosphorylation of YAP1 on S127.

    76. Previously, we showed that activation of ErbB2 and ErbB3 receptors in primary rat Schwann cells by neuregulin-1 induced merlin phosphorylation at Ser518 via PKA.

      ERBB3 leads to the phosphorylation of NF2 on S518.

    77. Previously, we showed that activation of ErbB2 and ErbB3 receptors in primary rat Schwann cells by neuregulin-1 induced merlin phosphorylation at Ser518 via PKA.

      ERBB3 leads to the phosphorylation of NF2 on S518.

    78. Previously, we showed that activation of ErbB2 and ErbB3 receptors in primary rat Schwann cells by neuregulin-1 induced merlin phosphorylation at Ser518 via PKA.

      ERBB2 leads to the phosphorylation of NF2 on S518.

    79. We reported that merlin associates with beta 1 -integrin in primary Schwann cells and undifferentiated Schwann cell and neuron co-cultures, and in primary Schwann cell cultures, laminin-1 stimulated integrin signaled though PAK1 and caused merlin Ser518 phosphorylation and inactivation of its tumor suppressor function.

      Integrins leads to the phosphorylation of NF2 on S518.

    80. Merlin is phosphorylated at Ser10, Thr230 and Ser315 by Akt (also known as protein kinase B, PKB) and controls merlin 's proteasome mediated degradation by ubiquitination to prevent its interaction with binding partners.

      AKT phosphorylates NF2 on T230.

    81. Merlin is phosphorylated at Ser10, Thr230 and Ser315 by Akt (also known as protein kinase B, PKB) and controls merlin 's proteasome mediated degradation by ubiquitination to prevent its interaction with binding partners.

      AKT phosphorylates NF2 on S315.

    82. Merlin is phosphorylated at Ser10, Thr230 and Ser315 by Akt (also known as protein kinase B, PKB) and controls merlin 's proteasome mediated degradation by ubiquitination to prevent its interaction with binding partners.

      AKT phosphorylates NF2 on S10.

    83. Loss of merlin results in integrin mediated activation of mTORC1 through PAK1, which promotes cell cycle progression by inducing translation of cyclin-D1 mRNA and cyclin-D1 expression.

      PAK1 inhibits cell cycle.

    84. Loss of merlin in mesotheliomas has been linked not only to increased proliferation, but also increased invasiveness, spreading and migration.
    85. Adenoviral transduction of NF2 in Meso-17 and Meso-25 cell lines decreased invasion through Matrigel membranes compared to cells transduced with empty vector.
    86. Second, similar to NF2 schwannomas, mesothelioma cells with NF2 inactivation, exhibit activated PAK1 and AKT, and re-expression of merlin in merlin-null human mesothelioma cells (Meso-17) decreases PAK1 activity.

      NF2 inhibits PAK1.

    87. Soon after merlin was cloned, evidence that merlin inhibits another important member of the Rho GTPases family, Ras, was reported in v-Ha-Ras-transformed NIH3T3cells in which merlin overexpression counteracted the oncogenic role of Ras.

      NF2 inhibits RHOA.

    88. Merlin re-expression in Nf2 -/- Schwann cells similarly reduced the transport of growth factor receptors ErbB2 and ErbB3, insulin like growth factor 1 receptor (IGF1R) and platelet derived growth factor receptor (PDGFR).

      NF2 inhibits ERBB3.

    89. Merlin re-expression in Nf2 -/- Schwann cells similarly reduced the transport of growth factor receptors ErbB2 and ErbB3, insulin like growth factor 1 receptor (IGF1R) and platelet derived growth factor receptor (PDGFR).

      NF2 inhibits ERBB2.

    90. In sum, multiple lines of evidence have established a feedback regulation loop with merlin being phosphorylated at Ser518 (growth permissive form) via activated Rho small GTPases Rac1 and Cdc42 through PAK, and in turn, merlin associating with PAK to inhibit Rac1 and Cdc42 signaling (XREF_FIG).

      NF2 inhibits CDC42.

    91. Collectively, these results indicate that merlin inhibits cell growth by contact inhibition in part by binding CD44 and negatively regulating CD44 function (XREF_FIG).

      NF2 inhibits CD44.

    92. Merlin inactivation of Src signaling was also shown in CNS glial cells, where merlin competitively inhibits Src binding to ErbB2 thereby preventing ErbB2 mediated Src phosphorylation and downstream mitogenic signaling.

      NF2 inhibits SRC.

    93. In the NF2 -/- breast cancer MDA-MB-231 cell line, merlin re-expression inhibited YAP and TEAD activity that was eliminated by LATS1/2 silencing.

      NF2 inhibits TEAD.

    94. Loss of merlin results in integrin mediated activation of mTORC1 through PAK1, which promotes cell cycle progression by inducing translation of cyclin-D1 mRNA and cyclin-D1 expression.

      NF2 inhibits Integrins.

    95. Loss of merlin activated mTORC1 signaling independently of Akt or ERK in these tumor cells; however, the molecular mechanism connecting merlin loss to mTORC1 activation remains to be elucidated.

      NF2 inhibits ERK.

    96. Loss of merlin activated mTORC1 signaling independently of Akt or ERK in these tumor cells; however, the molecular mechanism connecting merlin loss to mTORC1 activation remains to be elucidated.

      NF2 inhibits AKT.

    97. Furthermore, merlin overexpression in Tr6BC1 mouse schwannoma cells inhibited the binding of fluorescein labeled hyaluronan to CD44 and inhibited subcutaneous tumor growth in immunocompromised mice, and overexpression of a merlin mutant lacking the CD44 binding domain was unable to inhibit schwannoma growth.

      NF2 inhibits fluorescein.

    98. Further studies showed that wild-type merlin is transported throughout the cell by microtubule motors and merlin mutants or depletion of the microtubule motor kinesin-1 suppressed merlin transport and was associated with accumulation of yorkie, a Drosophila homolog of the hippo pathway transcriptional co-activator Yes associated protein (YAP), in the nucleus.

      Mutated NF2 inhibits transport.

    99. In a similar fashion, NF2 mutations increased the resistance to dihydrofolate reductase inhibitors methotrexalate and pyremethamine as well as the JNK inhibitor JNK-9L.
    100. The disrupted cell-contact inhibition signaling and merlin phosphorylation correlated with increased expression of NOTCH1 and its downstream target gene, HES1, which represses the transcription factor E2F in cell-contact growth arrest.
    101. Binding of merlin unphosphorylated at Ser518 with the cytoplasmic tail of CD44 mediates contact inhibition at high cell density.
    102. Loss of merlin activated mTORC1 signaling independently of Akt or ERK in these tumor cells; however, the molecular mechanism connecting merlin loss to mTORC1 activation remains to be elucidated.

      mTORC1 inhibits ERK.

    103. First, protein kinase C potentiated phosphatase inhibitor (CPI-17), which is frequently overexpressed in mesothelioma tumors, inhibits merlin phosphatase MYPT1-PP1delta, providing one potential pathway by which merlin 's tumor suppressor function might be inactivated through maintenance of phosphorylation at Ser518.

      PKC inhibits NF2.

    104. First, protein kinase C potentiated phosphatase inhibitor (CPI-17), which is frequently overexpressed in mesothelioma tumors, inhibits merlin phosphatase MYPT1-PP1delta, providing one potential pathway by which merlin 's tumor suppressor function might be inactivated through maintenance of phosphorylation at Ser518.

      PKC inhibits Phosphatase.

    105. Loss of merlin results in integrin mediated activation of mTORC1 through PAK1, which promotes cell cycle progression by inducing translation of cyclin-D1 mRNA and cyclin-D1 expression.

      Integrins inhibits mTORC1.

    106. HDAC inhibitors disrupt the PP1-HDAC interaction facilitating Akt dephosphorylation and decrease human meningioma and schwannoma cell proliferation and schwannoma growth in an allograft model and meningioma growth in an intracranial xenograft model.
    107. The mTORC1 inhibitor rapamycin selectively inhibited proliferation of seven merlin-null mesothelioma cell lines, but not merlin positive cell lines, suggesting a potential pharmacological target for merlin deficient mesotheliomas.

      sirolimus inhibits NF2.

    108. Merlin expression in Meso-17 and Meso-25 cells decreased FAK Tyr397 phosphorylation and consequently disrupted FAK-Src and PI3K interaction, providing a mechanism for the observed enhancement of invasion and spreading caused by merlin inactivation.

      Modified NF2 leads to the dephosphorylation of PTK2 on Y397.

    109. Accordingly, merlin was shown to reduce the levels of ErbB2 and ErbB3 receptor levels at the plasma membrane.

      NF2 decreases the amount of ERBB3.

    110. Accordingly, merlin was shown to reduce the levels of ErbB2 and ErbB3 receptor levels at the plasma membrane.

      NF2 decreases the amount of ERBB3.

    111. Accordingly, merlin was shown to reduce the levels of ErbB2 and ErbB3 receptor levels at the plasma membrane.

      NF2 decreases the amount of ERBB2.

    112. In sub-confluent primary Schwann cells, we found that merlin binds to paxillin and mediates merlin localization at the plasma membrane and association with beta1-integrin and ErbB2, modifying the organization of the actin cytoskeleton in a cell density dependent manner.

      NF2 binds PXN.

    113. Moreover, in cultured Schwann cells, merlin interaction with Amot was demonstrated by co-immunoprecipitation of the endogenous proteins.

      AMOT binds NF2.

    114. Moreover, co-immunoprecipitation experiments revealed that merlin interacts with YAP1, although the interaction is not direct.

      YAP1 binds NF2.

    115. Merlin inactivation of Src signaling was also shown in CNS glial cells, where merlin competitively inhibits Src binding to ErbB2 thereby preventing ErbB2 mediated Src phosphorylation and downstream mitogenic signaling.

      SRC binds ERBB2.

    116. Merlin interacts with tubulin and acetylated-tubulin and stabilizes the microtubules by attenuating tubulin turnover -- lowering the rates of microtubule polymerization and depolymerization.

      Tubulin binds NF2.

    117. Merlin inhibits PI3K activity by binding phosphatidylinositol 3-kinase enhancer-L (PIKE-L), the GTPase that binds and activates PI3K.

      GTPase binds PI3K.

    118. In various cell types, the binding of hyaluronan to CD44 stimulates Tiam1 dependent Rac1 signaling and cytoskeleton mediated tumor cell migration.
    119. In various cell types, the binding of hyaluronan to CD44 stimulates Tiam1 dependent Rac1 signaling and cytoskeleton mediated tumor cell migration.

      RAC1 activates cell migration.

    120. Pharmacological or genetic inhibition of Rac1 in Nf2 -/- MEFs reduced the Wnt signaling activation to basal levels as assessed by reporter assay of transactivation of the nuclear beta-catenin-dependent T-cell factor 4 transcription factor.

      RAC1 activates Wnt.

    121. In sub-confluent primary Schwann cells, we found that merlin binds to paxillin and mediates merlin localization at the plasma membrane and association with beta1-integrin and ErbB2, modifying the organization of the actin cytoskeleton in a cell density dependent manner.

      PXN bound to NF2 activates NF2.

    122. In sub-confluent primary Schwann cells, we found that merlin binds to paxillin and mediates merlin localization at the plasma membrane and association with beta1-integrin and ErbB2, modifying the organization of the actin cytoskeleton in a cell density dependent manner.

      PXN bound to NF2 activates localization.

    123. FAK silencing decreased schwannoma cell proliferation and was associated with increased levels of total and nuclear p53.
    124. In a similar fashion, NF2 mutations increased the resistance to dihydrofolate reductase inhibitors methotrexalate and pyremethamine as well as the JNK inhibitor JNK-9L.
    125. Furthermore, it was shown that overactive PAK and LIMK pathway activity contributed to cell proliferation through cofilin phosphorylation and auroraA activation.
    126. Interestingly, it was shown that schwannoma cells release insulin like growth factor binding protein 1 which in beta1-integrin dependent manner activates Src and FAK signaling.

      IGFBP1 activates PTK2.

    127. Interestingly, it was shown that schwannoma cells release insulin like growth factor binding protein 1 which in beta1-integrin dependent manner activates Src and FAK signaling.

      IGFBP1 activates SRC.

    128. Moreover, neuregulin survival signaling through the ErbB2 and ErbB3 receptor activates PI3K in rat Schwann cells through the activation of Akt and inhibition of Bad, a pro apoptotic Blc-2 family protein.

      ERBB3 activates PI3K.

    129. ErbB2 activation in mouse Nf2 deficient spinal cord neural progenitor cells was shown to be caused by Rac mediated retention of the receptor at the plasma membrane.

      ERBB2 activates NF2.

    130. Silencing DCAF1 in Meso-33, merlin deficient mesothelioma cells reduced their proliferation by arresting the cell cycle in G1 phase.
    131. Significantly, silencing of DCAF1 in schwannoma cells isolated from NF2 patients also reduced their proliferation.
    132. Silencing DCAF1 in Meso-33, merlin deficient mesothelioma cells reduced their proliferation by arresting the cell cycle in G1 phase.

      DCAF1 activates cell cycle.

    133. Furthermore, Amot silencing attenuated Rac1 and Ras and MAPK signaling pathway.

      AMOT activates RAC1.

    134. Silencing of Amot in Nf2 -/- Schwann cells (SC4) selectively reduced cell proliferation because it did not change the proliferation rate of SC4 with merlin re-expression.
    135. Furthermore, Amot silencing attenuated Rac1 and Ras and MAPK signaling pathway.

      AMOT activates RAS.

    136. Furthermore, Amot silencing attenuated Rac1 and Ras and MAPK signaling pathway.

      AMOT activates MAPK.