Reviewer #2 (Public Review):
In this manuscript, the authors set out to provide a comprehensive meta-analysis of associations between masculinized phenotypes and fitness-relevant outcomes (mating, reproduction, and offspring viability), so as to assess the current state of evidence for hypotheses of sexual selection on human males across high- and low-fertility populations. I enjoyed reading this manuscript, which is well organized and very clearly written. I also appreciated the depth of the analyses reported by the authors. Overall, I am pleased with this research and think it will make a valuable contribution to the literature on human sexual selection and masculinity more generally.
I do not have any major concerns regarding the methods and results. However, I think the paper would greatly benefit from introducing greater nuance into the theoretical framework and conclusions, which I believe will meaningfully change some of the takeaways presented in the discussion. I have provided references throughout to aid the authors in this effort during revision, though they should certainly not feel compelled to cite each reference provided. I would also appreciate that the authors provide some estimates of (a priori) statistical power when they make claims regarding statistical power in the interpretation of results.
Major comments:
The authors have done a very nice job of efficiently introducing the reader to mainstream hypotheses regarding sexual selection on human male phenotypes, particularly those emphasized within evolutionary psychology. I recognize that the authors' primary contribution is empirical and that they have in large part followed the typical presentation of these hypotheses in previous literature. However, given that this paper may be an important point of reference for future research in this area, I would like to encourage the authors to address some important nuances in greater detail that are frequently overlooked.
(i) The authors argue that "Sexual selection is commonly argued to have acted more strongly on male traits as a consequence of greater variance in males' reproductive output (3) and male-biased operational sex ratio, i.e. a surplus of reproductively available males relative to fertile females (e.g. 4)". This argument then leads to a discussion of why formidability as indexed by strength and other potential indicators of physical dominance are expected to be under selection in males. However, recent work in sexual selection theory has begun to emphasize the importance of the co-evolution of male offspring care and reproductive competition, leading in many cases to opposite predictions compared to classical models of OSR. In particular, more recent models predict that males should often increase rather than decrease offspring care relative to mating effort when men are in relative abundance. These predictions have received support in recent empirical studies in human populations, and help to explain otherwise puzzling patterns such as e.g. the association between male-biased sex ratios and monogamy + low reproductive skew across many taxa. Please see
Kokko, H., & Jennions, M. D. (2008). Parental investment, sexual selection and sex ratios. Journal of evolutionary biology, 21(4), 919-948.
Schacht, R., Rauch, K. L., & Mulder, M. B. (2014). Too many men: the violence problem?. Trends in Ecology & Evolution, 29(4), 214-222.
Schacht, R., & Borgerhoff Mulder, M. (2015). Sex ratio effects on reproductive strategies in humans. Royal Society open science, 2(1), 140402.
Considering these models, one might expect that a variety of behavioral and psychological phenotypes would be under male-specific sexual selection that are simply not considered in the present study. One might also expect that appropriate proxies of male fitness will also vary across populations, independently of the presence/absence of contraception. The authors argue that they selected mating-based proxies of reproductive behaviors and attitudes under the assumption that "preferences for casual sex, number of sexual partners, and age at first sexual intercourse (earlier sexual activity allows for a greater lifetime number of sexual partners)... correlated with reproductive success in men under ancestral conditions". Yet, in large-scale industrialized societies that have undergone a demographic transition, high status males are often observed to invest more in offspring care and the production of intergenerationally transferable wealth at the expense of greater fertility, which may be an adaptive response to shifting demands in relation to competition for status.
Shenk, M. K., Kaplan, H. S., & Hooper, P. L. (2016). Status competition, inequality, and fertility: implications for the demographic transition. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1692), 20150150.
In general, long-run fitness may often not map so simply onto promiscuous sexual behavior in such a straightforward way. Measures such as age at first intercourse may also be confounded with environmental heterogeneity among participants, which could instead indicate environmentally induced plasticity within individuals' lifetimes toward a faster pace of life.
(ii) Related to this point, the authors discussion of the relationship between testosterone and male phenotypes is somewhat over-simplified, although again in keeping with much of the previous literature in evolutionary psychology. While it was long emphasized that testosterone is a mechanism of aggression per se, recent work has shown that testosterone is better understood as a mechanism for increasing status-seeking, competitive behavior, which can greatly vary in form across socioecological contexts.
Eisenegger, C., Haushofer, J., & Fehr, E. (2011). The role of testosterone in social interaction. Trends in cognitive sciences, 15(6), 263-271.
Unfortunately, most of the fWHR and 2D:4D literature has ignored these findings and continues to focus solely on aggression even in WEIRD student samples, where we can be certain that aggression is generally not a viable strategy for attaining and maintaining social status. To my knowledge, only a few studies have explicitly tested this more nuanced hypothesis regarding associations between masculinized phenotypes and differing forms of status-seeking behavior, both of which have found support for ecologically contingent effects in regards to fWHR. Martin et al. (2019) predicted and found support in bonobos for higher fWHR predicting higher scores on an affiliative measure of social rank among both males and females, consistent with the importance of relationship strength and social network centrality for competitive advantage among bonobos. Similarly, Hahn et al. (2017) found that fWHR in human males consistently predicts prosocial behavior and leadership in large-scale institutions. This is consistent with the fact that leadership traits, rather than aggression and formidability per se, are often important predictors of status in human societies (and in contexts of relatively higher SES within those societies).
Hahn, T., Winter, N. R., Anderl, C., Notebaert, K., Wuttke, A. M., Clément, C. C., & Windmann, S. (2017). Facial width-to-height ratio differs by social rank across organizations, countries, and value systems. PLoS One, 12(11), e0187957.
Martin, J. S., Staes, N., Weiss, A., Stevens, J. M. G., & Jaeggi, A. V. (2019). Facial width-to-height ratio is associated with agonistic and affiliative dominance in bonobos (Pan paniscus). Biology Letters, 15(8), 20190232.
In regard to the male-male competition hypothesis, as noted in the previous comment, we might therefore expect sexual selection to occur on a variety of male traits other than formidability related measures, as well as to be highly population-specific-rather than there being some universal optimum for "masculine" traits-given that what constitutes an adaptive male phenotype likely varies across populations in regard to both male-male competition and female choice. Finally, it should be noted that testosterone is by no means the only sex hormone relevant to considering patterns of human sexual dimorphism. Please see Dunsworth (2020) for a discussion of the centrality of estrogen in proximally explaining sexual dimorphism in body size
Dunsworth, H. M. (2020). Expanding the evolutionary explanations for sex differences in the human skeleton. Evolutionary Anthropology, 29, 108-116.
(iii) The authors should provide more references to (and brief discussion of) mixed results regarding the degree of sexual dimorphism in facial and digit ratio metrics. While they cite a few studies in the introduction, one might leave the text with the impression that there is clear enough evidence for 2D:4D being influenced by (pre-natal) sex hormones and being a sexually dimorphic phenotype. However, these results have been strongly challenged, not only be ref 14 and 20 in the main text, but also various other studies e.g.
Barrett, E., Thurston, S. W., Harrington, D., Bush, N. R., Sathyanarayana, S., Nguyen, R., ... & Swan, S. (2020). Digit ratio, a proposed marker of the prenatal hormone environment, is not associated with prenatal sex steroids, anogenital distance, or gender-typed play behavior in preschool age children. Journal of Developmental Origins of Health and Disease, 1-10.
Richards, G. (2017). What is the evidence for a link between digit ratio (2D: 4D) and direct measures of prenatal sex hormones?. Early Human Development.
Richards, G., Browne, W. V., Aydin, E., Constantinescu, M., Nave, G., Kim, M. S., & Watson, S. J. (2020). Digit ratio (2D: 4D) and congenital adrenal hyperplasia (CAH): Systematic literature review and meta-analysis. Hormones and Behavior, 126, 104867.
Richards, G., Browne, W. V., & Constantinescu, M. (2021). Digit ratio (2D: 4D) and amniotic testosterone and estradiol: An attempted replication of Lutchmaya et al.(2004). Journal of Developmental Origins of Health and Disease.
Similarly, not all metrics of facial masculinity are equally valid given current empirical evidence. In a recent longitudinal study, only cheekbone prominence was found to show consistent evidence of sexual dimorphism across age groups.
Robertson, J. M., Kingsley, B. E., & Ford, G. C. (2017). Sexually dimorphic faciometrics in humans from early adulthood to late middle age: Dynamic, declining, and differentiated. Evolutionary Psychology, 15(3), 1474704917730640.
Overall, I found the authors' discussion of how they selected the specific facial metrics lumped together in their analyses to be underspecified. Please note in the discussion as well that BMI is a well-known confound in studies of facial masculinity and may be a cause of null results in the present study (unless I happened to miss this in the regard to the moderation results - if so, my apologies!).
Geniole, S. N., Denson, T. F., Dixson, B. J., Carré, J. M., & McCormick, C. M. (2015). Evidence from meta-analyses of the facial width-to-height ratio as an evolved cue of threat. PloS one, 10(7), e0132726.
(iv) Finally, please provide reference to and potentially brief discussion of the current state of the literature as regards "good genes" hypotheses of female choice, which is relevant for determining how useful previous studies are for directly addressing this hypothesis. Please see:
Achorn, A. M., & Rosenthal, G. G. (2020). It's not about him: Mismeasuring 'good genes' in sexual selection. Trends in Ecology & Evolution, 35, 206-219.