Reviewer #2 (Public Review):
In this study, Radtke et al. use a model of helminth infection in IL-4-IRES-eGFP (4get) mice, in which transcription at the Il4 locus is reported by eGFP, in order to define the transcriptional signatures and clonal relatedness between Il4-licensed, CD4+ T cells in the mesenteric lymph nodes (mLN) and lungs. By infecting 4get mice with the hookworm Nippostrongylus brasiliensis, which is well described to induce a robust type 2 immune response, the authors isolated and sorted eGFP+CD4+ T cells from the mLN and lungs at 10-day post infection and performed single cell RNA-seq analysis using the 10X Chromium platform. Transcriptional profiling of activated CD4+ T cells with scRNA-seq has been performed in a murine model of allergic asthma, including the lung and lung-draining lymph nodes, but this study involved unbiased capture of all activated CD4+ T cells (Tibbitt et al., Immunity, 2019). Radtke et al. have used a distinct model with Nippostrongylus brasiliensis and have focused on sorting Il4-licensed, CD4+ T cells, allowing for a greater number of captured CD4+ T cells with a "type 2" lymphocyte program for single cell analysis. Furthermore, this study sought to identify distinct and overlapping transcriptional signatures and clonal relatedness between Il4-licensed, CD4+ T cells in two "distant" tissues. In support of such an approach, there is growing evidence for tissue-specific and model-specific features of CD4+ T cell differentiation (Poholek, Immunohorizons, 2021; Hiltensperger et al., Nature Immunol, 2021; Kiner et al., Nature Immunol, 2021).
Upon dimension reduction, the authors found mLN- and lung-specific clusters, including two juxtaposed clusters that form a "bridge" between the mLN and lung compartments, suggesting immigrating and/or emigrating cells. Consistent with previous studies, the dominant lung cluster (L2) exhibited unique expression of Il5 and Il13, enhanced IL-33 and IL-2 signaling, and exhibited an effector/resident memory profile. The authors did find a small cluster in the mLN (ML4) with an effector/resident memory signature that also expressed CCR9, suggesting the potential for homing to the gut mucosa. Whether this population is specific to the mLN or would also be found in the lung-draining lymph nodes remains unclear. In the mLN, the authors also describe an iNKT cell cluster with CCR9 expression and a CD4+ T cell cluster with a myeloid gene signature, but the significance of these populations remains unclear.
The authors then use RNA velocity analysis to infer the developmental trajectory of Il4-licensed, CD4+ T cells from the two tissue sites. Consistent with previous studies, the authors found that T cell proliferation was associated with fate decisions. Furthermore, among the two lung CD4+ T cell clusters, L1 represents highly differentiated, effector Th2 cells while L2, which is juxtaposed to the mLN clusters, represents a population likely entering the lung with the potential to differentiate into L1 cells.
Next, the authors perform TCR repertoire analysis. The authors identified a broad TCR repertoire with the majority of distinct TCRs being found in only one cell. Among the TCRs found in more than one cell, a substantial number of clones can be found in both tissue sites, which is consistent with the findings that individual CD4+ T cells clones can produce different types of effector cells (Tubo et al., Cell, 2013). The authors find significant overlap of clones between the mLN and lung. In addition, they also identify clones enriched in a particular site and suggest that this represents local expansion. However, an alternative possibility is that certain CD4+ T cell clones are expanded at a particular site because the specific TCR preferentially instructs a particular cell fate. For example, fate-mapping of individual naïve CD8+ T cells suggests that certain T cell clones exhibit a greatly heightened capacity to form tissue-resident memory T cells over other cell fates (Kok et al., J Exp Med, 2020). Lastly, the authors analyze CDR3 sequences, finding the most abundant CDR3 motif belonging to the invariant TCRa chain of iNKTs. Among conventional CD4+ T cells, the abundant CDR3 motifs were not restricted to an exact TCRa/TCRb combination beyond a slight preferential usage of the Trbv1 gene. While TCR repertoire analysis allows for defining clonal relatedness among Il4-licensed, CD4+ T cells, the importance and relevance of the above findings to the in vivo type 2 immune response remain unclear.
There are several limitations of the study:<br>
(1) The authors use the term "Th2 cells" to describe all Il4-licensed, CD4+ T cells. While CD4+ T helper cell nomenclature has evolved, Th2 cells and Tfh2 cells are generally used to describe distinct subsets driven by unique transcriptional programs (Ruterbusch et al., Annu Rev Immunol, 2020). While previous data suggested that Tfh2 cells are precursors to effector Th2 cells, subsequent studies support a model in which Tfh2 and Th2 cells represent distinct developmental pathways and should be designated as distinct subsets (Ballesteros-Tato et al., Immunity, 2016; Tibbitt et al., Immunity, 2019). Consequently, the authors' broad use of "Th2 cells" and a description of "Th2 cell heterogeneity" includes CD4+ T cell subsets with distinct developmental pathways that includes canonical Th2 cells as well as Tfh2 and iNKT cells. The clarity of the manuscript would be improved by describing eGFP+CD4+ cells as Il4-licensed, CD4+ T cells rather than Th2 cells.
(2) The authors used perfused lungs to isolate Il4-licensed, CD4+ T cells for scRNA-seq of "Th2 cells" in the lung tissue. However, previous studies indicate that leukocytes, including CD4+ T cells, in lung vasculature are not completely removed by perfusion, which confounds the interpretation of a tissue cell profile due to contaminating circulating cells (Galkina, E et al., J Clin Invest, 2005; Anderson, KG et al., Nat Protoc, 2014). This is particularly true in the lung and relevant as the authors found a lung cluster (L2) with a circulating signature and suggested that L2 may represent a recent immigrant "Th2 cells". Thus, it is unclear whether L2 cluster identifies immigrant Th2 cells or simply reflect the circulating Th2 cells trapped in the lung vasculature. The study would benefit of using the intravascular staining to discriminate cells within the lungs from those in the circulation (Anderson, KG et al., Nat Protoc, 2014) for the proper isolation of Il4-licensed lung CD4+ T cells to truly define immigrant "Th2 cells" within the lung parenchyma.
(3) The authors describe T cell exchange/trafficking across organs. However, in general, inter-organ trafficking refers to lymphocyte trafficking between distinct non-lymphoid tissues, rather than trafficking between lymph nodes and peripheral tissues (Huang et al., Science, 2018). Rather than inter-organ trafficking, the authors have described shared and distinct features of Il4-licensed, CD4+ T cells from a draining lymph node of one organ (gut) and a distant non-lymphoid organ (lung). The experimental approach used makes interpretation of some of the findings challenging. Specifically, canonical effector Th2 cell differentiation is well described to occur via two checkpoints, including the draining lymph node and the peripheral (non-lymphoid) tissue (Liang et al., Nature Immunol, 2011; Van Dyken et al., Nature Immunol, 2016; Tibbitt et al., Immunity, 2019). In the draining lymph node, Th2 cells acquire the capacity to express IL-4 alone, but do not complete effector Th2 cell differentiation until trafficking to the inflamed peripheral tissues and receiving additional inflammatory signals. Consequently, it is unclear whether the differences identified in the mesenteric lymph node and lungs simply reflect well-described differences between the two Th2 cell checkpoints or organ-specific differences (gut vs lung). Il4-licensed, CD4+ T cells from the intestinal mucosa and lung-draining lymph node would also be needed to truly define organ-specific differences during helminth infection.
(4) The study includes a single time point (day 10) whereas Tibbitt et al. performed scRNA-seq in the lung and lung-draining lymph node at multiple time points during type 2 immunity (Tibbitt et al., Immunity, 2019). As a result, it remains unclear how similarities or differences between the mesenteric lymph node and lung response would change over the duration of helminth infection, especially given the helminth life cycle involves multiple infection stages.
(5) The study analyzed one scRNA-seq experiment that included two mice without validation via flow cytometry or other method to infer a role of a particular finding to the type 2 immune response in vivo.