18 Matching Annotations
  1. Nov 2024
    1. #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) static int __gup_device_huge(unsigned long pfn, unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { int nr_start = *nr; struct dev_pagemap *pgmap = NULL; do { struct page *page = pfn_to_page(pfn); pgmap = get_dev_pagemap(pfn, pgmap); if (unlikely(!pgmap)) { undo_dev_pagemap(nr, nr_start, flags, pages); break; } if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { undo_dev_pagemap(nr, nr_start, flags, pages); break; } SetPageReferenced(page); pages[*nr] = page; if (unlikely(try_grab_page(page, flags))) { undo_dev_pagemap(nr, nr_start, flags, pages); break; } (*nr)++; pfn++; } while (addr += PAGE_SIZE, addr != end); put_dev_pagemap(pgmap); return addr == end; } static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { unsigned long fault_pfn; int nr_start = *nr; fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) return 0; if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { undo_dev_pagemap(nr, nr_start, flags, pages); return 0; } return 1; } static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { unsigned long fault_pfn; int nr_start = *nr; fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) return 0; if (unlikely(pud_val(orig) != pud_val(*pudp))) { undo_dev_pagemap(nr, nr_start, flags, pages); return 0; } return 1; } #else static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { BUILD_BUG(); return 0; } static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { BUILD_BUG(); return 0; } #endif

      seems like a check to see if pages can be grabbed. A quick skim maybe hints possible checks if huge pages can be grabbed?

    2. #ifdef CONFIG_ARCH_HAS_HUGEPD static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, unsigned long sz) { unsigned long __boundary = (addr + sz) & ~(sz-1); return (__boundary - 1 < end - 1) ? __boundary : end; } static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { unsigned long pte_end; struct page *page; struct folio *folio; pte_t pte; int refs; pte_end = (addr + sz) & ~(sz-1); if (pte_end < end) end = pte_end; pte = huge_ptep_get(ptep); if (!pte_access_permitted(pte, flags & FOLL_WRITE)) return 0; /* hugepages are never "special" */ VM_BUG_ON(!pfn_valid(pte_pfn(pte))); page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); refs = record_subpages(page, addr, end, pages + *nr); folio = try_grab_folio(page, refs, flags); if (!folio) return 0; if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { gup_put_folio(folio, refs, flags); return 0; } if (!folio_fast_pin_allowed(folio, flags)) { gup_put_folio(folio, refs, flags); return 0; } if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) { gup_put_folio(folio, refs, flags); return 0; } *nr += refs; folio_set_referenced(folio); return 1; } static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned int pdshift, unsigned long end, unsigned int flags, struct page **pages, int *nr) { pte_t *ptep; unsigned long sz = 1UL << hugepd_shift(hugepd); unsigned long next; ptep = hugepte_offset(hugepd, addr, pdshift); do { next = hugepte_addr_end(addr, end, sz); if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) return 0; } while (ptep++, addr = next, addr != end); return 1; } #else static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned int pdshift, unsigned long end, unsigned int flags, struct page **pages, int *nr) { return 0; } #endif /* CONFIG_ARCH_HAS_HUGEPD */ static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { struct page *page; struct folio *folio; int refs; if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) return 0; if (pmd_devmap(orig)) { if (unlikely(flags & FOLL_LONGTERM)) return 0; return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, pages, nr); } page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); refs = record_subpages(page, addr, end, pages + *nr); folio = try_grab_folio(page, refs, flags); if (!folio) return 0; if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { gup_put_folio(folio, refs, flags); return 0; } if (!folio_fast_pin_allowed(folio, flags)) { gup_put_folio(folio, refs, flags); return 0; } if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { gup_put_folio(folio, refs, flags); return 0; } *nr += refs; folio_set_referenced(folio); return 1; } static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { struct page *page; struct folio *folio; int refs; if (!pud_access_permitted(orig, flags & FOLL_WRITE)) return 0; if (pud_devmap(orig)) { if (unlikely(flags & FOLL_LONGTERM)) return 0; return __gup_device_huge_pud(orig, pudp, addr, end, flags, pages, nr); } page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); refs = record_subpages(page, addr, end, pages + *nr); folio = try_grab_folio(page, refs, flags); if (!folio) return 0; if (unlikely(pud_val(orig) != pud_val(*pudp))) { gup_put_folio(folio, refs, flags); return 0; } if (!folio_fast_pin_allowed(folio, flags)) { gup_put_folio(folio, refs, flags); return 0; } if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { gup_put_folio(folio, refs, flags); return 0; } *nr += refs; folio_set_referenced(folio); return 1; } static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { int refs; struct page *page; struct folio *folio; if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) return 0; BUILD_BUG_ON(pgd_devmap(orig)); page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); refs = record_subpages(page, addr, end, pages + *nr); folio = try_grab_folio(page, refs, flags); if (!folio) return 0; if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { gup_put_folio(folio, refs, flags); return 0; } if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { gup_put_folio(folio, refs, flags); return 0; } if (!folio_fast_pin_allowed(folio, flags)) { gup_put_folio(folio, refs, flags); return 0; } *nr += refs; folio_set_referenced(folio); return 1; } static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { unsigned long next; pmd_t *pmdp; pmdp = pmd_offset_lockless(pudp, pud, addr); do { pmd_t pmd = pmdp_get_lockless(pmdp); next = pmd_addr_end(addr, end); if (!pmd_present(pmd)) return 0; if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || pmd_devmap(pmd))) { /* See gup_pte_range() */ if (pmd_protnone(pmd)) return 0; if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, pages, nr)) return 0; } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { /* * architecture have different format for hugetlbfs * pmd format and THP pmd format */ if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, PMD_SHIFT, next, flags, pages, nr)) return 0; } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr)) return 0; } while (pmdp++, addr = next, addr != end); return 1; } static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { unsigned long next; pud_t *pudp; pudp = pud_offset_lockless(p4dp, p4d, addr); do { pud_t pud = READ_ONCE(*pudp); next = pud_addr_end(addr, end); if (unlikely(!pud_present(pud))) return 0; if (unlikely(pud_huge(pud) || pud_devmap(pud))) { if (!gup_huge_pud(pud, pudp, addr, next, flags, pages, nr)) return 0; } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, PUD_SHIFT, next, flags, pages, nr)) return 0; } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) return 0; } while (pudp++, addr = next, addr != end); return 1; } static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { unsigned long next; p4d_t *p4dp; p4dp = p4d_offset_lockless(pgdp, pgd, addr); do { p4d_t p4d = READ_ONCE(*p4dp); next = p4d_addr_end(addr, end); if (p4d_none(p4d)) return 0; BUILD_BUG_ON(p4d_huge(p4d)); if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, P4D_SHIFT, next, flags, pages, nr)) return 0; } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) return 0; } while (p4dp++, addr = next, addr != end); return 1; } static void gup_pgd_range(unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { unsigned long next; pgd_t *pgdp; pgdp = pgd_offset(current->mm, addr); do { pgd_t pgd = READ_ONCE(*pgdp); next = pgd_addr_end(addr, end); if (pgd_none(pgd)) return; if (unlikely(pgd_huge(pgd))) { if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, pages, nr)) return; } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, PGDIR_SHIFT, next, flags, pages, nr)) return; } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) return; } while (pgdp++, addr = next, addr != end); } #else static inline void gup_pgd_range(unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { }

      policy use functions for gup_huge pte policy code function above (not right above, gotta scroll probably to find it)

    3. static int internal_get_user_pages_fast(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages) { unsigned long len, end; unsigned long nr_pinned; int locked = 0; int ret; if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | FOLL_FORCE | FOLL_PIN | FOLL_GET | FOLL_FAST_ONLY | FOLL_NOFAULT | FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) return -EINVAL; if (gup_flags & FOLL_PIN) mm_set_has_pinned_flag(&current->mm->flags); if (!(gup_flags & FOLL_FAST_ONLY)) might_lock_read(&current->mm->mmap_lock); start = untagged_addr(start) & PAGE_MASK; len = nr_pages << PAGE_SHIFT; if (check_add_overflow(start, len, &end)) return -EOVERFLOW; if (end > TASK_SIZE_MAX) return -EFAULT; if (unlikely(!access_ok((void __user *)start, len))) return -EFAULT; nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) return nr_pinned; /* Slow path: try to get the remaining pages with get_user_pages */ start += nr_pinned << PAGE_SHIFT; pages += nr_pinned; ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, pages, &locked, gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); if (ret < 0) { /* * The caller has to unpin the pages we already pinned so * returning -errno is not an option */ if (nr_pinned) return nr_pinned; return ret; } return ret + nr_pinned; } /** * get_user_pages_fast_only() - pin user pages in memory * @start: starting user address * @nr_pages: number of pages from start to pin * @gup_flags: flags modifying pin behaviour * @pages: array that receives pointers to the pages pinned. * Should be at least nr_pages long. * * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to * the regular GUP. * * If the architecture does not support this function, simply return with no * pages pinned. * * Careful, careful! COW breaking can go either way, so a non-write * access can get ambiguous page results. If you call this function without * 'write' set, you'd better be sure that you're ok with that ambiguity. */ int get_user_pages_fast_only(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages) { /* * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, * because gup fast is always a "pin with a +1 page refcount" request. * * FOLL_FAST_ONLY is required in order to match the API description of * this routine: no fall back to regular ("slow") GUP. */ if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET | FOLL_FAST_ONLY)) return -EINVAL; return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); } EXPORT_SYMBOL_GPL(get_user_pages_fast_only); /** * get_user_pages_fast() - pin user pages in memory * @start: starting user address * @nr_pages: number of pages from start to pin * @gup_flags: flags modifying pin behaviour * @pages: array that receives pointers to the pages pinned. * Should be at least nr_pages long. * * Attempt to pin user pages in memory without taking mm->mmap_lock. * If not successful, it will fall back to taking the lock and * calling get_user_pages(). * * Returns number of pages pinned. This may be fewer than the number requested. * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns * -errno. */ int get_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages) { /* * The caller may or may not have explicitly set FOLL_GET; either way is * OK. However, internally (within mm/gup.c), gup fast variants must set * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" * request. */ if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) return -EINVAL; return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); } EXPORT_SYMBOL_GPL(get_user_pages_fast); /** * pin_user_pages_fast() - pin user pages in memory without taking locks * * @start: starting user address * @nr_pages: number of pages from start to pin * @gup_flags: flags modifying pin behaviour * @pages: array that receives pointers to the pages pinned. * Should be at least nr_pages long. * * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See * get_user_pages_fast() for documentation on the function arguments, because * the arguments here are identical. * * FOLL_PIN means that the pages must be released via unpin_user_page(). Please * see Documentation/core-api/pin_user_pages.rst for further details. * * Note that if a zero_page is amongst the returned pages, it will not have * pins in it and unpin_user_page() will not remove pins from it. */ int pin_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages) { if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) return -EINVAL; return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); } EXPORT_SYMBOL_GPL(pin_user_pages_fast); /** * pin_user_pages_remote() - pin pages of a remote process * * @mm: mm_struct of target mm * @start: starting user address * @nr_pages: number of pages from start to pin * @gup_flags: flags modifying lookup behaviour * @pages: array that receives pointers to the pages pinned. * Should be at least nr_pages long. * @locked: pointer to lock flag indicating whether lock is held and * subsequently whether VM_FAULT_RETRY functionality can be * utilised. Lock must initially be held. * * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See * get_user_pages_remote() for documentation on the function arguments, because * the arguments here are identical. * * FOLL_PIN means that the pages must be released via unpin_user_page(). Please * see Documentation/core-api/pin_user_pages.rst for details. * * Note that if a zero_page is amongst the returned pages, it will not have * pins in it and unpin_user_page*() will not remove pins from it. */ long pin_user_pages_remote(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, int *locked) { int local_locked = 1; if (!is_valid_gup_args(pages, locked, &gup_flags, FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) return 0; return __gup_longterm_locked(mm, start, nr_pages, pages, locked ? locked : &local_locked, gup_flags); } EXPORT_SYMBOL(pin_user_pages_remote); /** * pin_user_pages() - pin user pages in memory for use by other devices * * @start: starting user address * @nr_pages: number of pages from start to pin * @gup_flags: flags modifying lookup behaviour * @pages: array that receives pointers to the pages pinned. * Should be at least nr_pages long. * * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and * FOLL_PIN is set. * * FOLL_PIN means that the pages must be released via unpin_user_page(). Please * see Documentation/core-api/pin_user_pages.rst for details. * * Note that if a zero_page is amongst the returned pages, it will not have * pins in it and unpin_user_page*() will not remove pins from it. */ long pin_user_pages(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages) { int locked = 1; if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) return 0; return __gup_longterm_locked(current->mm, start, nr_pages, pages, &locked, gup_flags); } EXPORT_SYMBOL(pin_user_pages); /* * pin_user_pages_unlocked() is the FOLL_PIN variant of * get_user_pages_unlocked(). Behavior is the same, except that this one sets * FOLL_PIN and rejects FOLL_GET. * * Note that if a zero_page is amongst the returned pages, it will not have * pins in it and unpin_user_page*() will not remove pins from it. */ long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, struct page **pages, unsigned int gup_flags) { int locked = 0; if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) return 0; return __gup_longterm_locked(current->mm, start, nr_pages, pages, &locked, gup_flags); }

      fast gup functions

    4. if ((flags & FOLL_DUMP) && (vma_is_anonymous(vma) || !vma->vm_ops->fault)) return ERR_PTR(-EFAULT); return NULL;

      explained in comments

    5. #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL /* * Fast-gup relies on pte change detection to avoid concurrent pgtable * operations. * * To pin the page, fast-gup needs to do below in order: * (1) pin the page (by prefetching pte), then (2) check pte not changed. * * For the rest of pgtable operations where pgtable updates can be racy * with fast-gup, we need to do (1) clear pte, then (2) check whether page * is pinned. * * Above will work for all pte-level operations, including THP split. * * For THP collapse, it's a bit more complicated because fast-gup may be * walking a pgtable page that is being freed (pte is still valid but pmd * can be cleared already). To avoid race in such condition, we need to * also check pmd here to make sure pmd doesn't change (corresponds to * pmdp_collapse_flush() in the THP collapse code path). */ static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { struct dev_pagemap *pgmap = NULL; int nr_start = *nr, ret = 0; pte_t *ptep, *ptem; ptem = ptep = pte_offset_map(&pmd, addr); if (!ptep) return 0; do { pte_t pte = ptep_get_lockless(ptep); struct page *page; struct folio *folio; /* * Always fallback to ordinary GUP on PROT_NONE-mapped pages: * pte_access_permitted() better should reject these pages * either way: otherwise, GUP-fast might succeed in * cases where ordinary GUP would fail due to VMA access * permissions. */ if (pte_protnone(pte)) goto pte_unmap; if (!pte_access_permitted(pte, flags & FOLL_WRITE)) goto pte_unmap; if (pte_devmap(pte)) { if (unlikely(flags & FOLL_LONGTERM)) goto pte_unmap; pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); if (unlikely(!pgmap)) { undo_dev_pagemap(nr, nr_start, flags, pages); goto pte_unmap; } } else if (pte_special(pte)) goto pte_unmap; VM_BUG_ON(!pfn_valid(pte_pfn(pte))); page = pte_page(pte); folio = try_grab_folio(page, 1, flags); if (!folio) goto pte_unmap; if (unlikely(folio_is_secretmem(folio))) { gup_put_folio(folio, 1, flags); goto pte_unmap; } if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { gup_put_folio(folio, 1, flags); goto pte_unmap; } if (!folio_fast_pin_allowed(folio, flags)) { gup_put_folio(folio, 1, flags); goto pte_unmap; } if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { gup_put_folio(folio, 1, flags); goto pte_unmap; } /* * We need to make the page accessible if and only if we are * going to access its content (the FOLL_PIN case). Please * see Documentation/core-api/pin_user_pages.rst for * details. */ if (flags & FOLL_PIN) { ret = arch_make_page_accessible(page); if (ret) { gup_put_folio(folio, 1, flags); goto pte_unmap; } } folio_set_referenced(folio); pages[*nr] = page; (*nr)++; } while (ptep++, addr += PAGE_SIZE, addr != end); ret = 1; pte_unmap: if (pgmap) put_dev_pagemap(pgmap); pte_unmap(ptem); return ret; } #else /* * If we can't determine whether or not a pte is special, then fail immediately * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not * to be special. * * For a futex to be placed on a THP tail page, get_futex_key requires a * get_user_pages_fast_only implementation that can pin pages. Thus it's still * useful to have gup_huge_pmd even if we can't operate on ptes. */ static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { return 0; } #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */

      non concurrent fast gup approach that checks for pinned page and unmaps pte or clears it

    6. #ifdef CONFIG_HAVE_FAST_GUP /* * Used in the GUP-fast path to determine whether a pin is permitted for a * specific folio. * * This call assumes the caller has pinned the folio, that the lowest page table * level still points to this folio, and that interrupts have been disabled. * * Writing to pinned file-backed dirty tracked folios is inherently problematic * (see comment describing the writable_file_mapping_allowed() function). We * therefore try to avoid the most egregious case of a long-term mapping doing * so. * * This function cannot be as thorough as that one as the VMA is not available * in the fast path, so instead we whitelist known good cases and if in doubt, * fall back to the slow path. */ static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags) { struct address_space *mapping; unsigned long mapping_flags; /* * If we aren't pinning then no problematic write can occur. A long term * pin is the most egregious case so this is the one we disallow. */ if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) != (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) return true; /* The folio is pinned, so we can safely access folio fields. */ if (WARN_ON_ONCE(folio_test_slab(folio))) return false; /* hugetlb mappings do not require dirty-tracking. */ if (folio_test_hugetlb(folio)) return true; /* * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods * cannot proceed, which means no actions performed under RCU can * proceed either. * * inodes and thus their mappings are freed under RCU, which means the * mapping cannot be freed beneath us and thus we can safely dereference * it. */ lockdep_assert_irqs_disabled(); /* * However, there may be operations which _alter_ the mapping, so ensure * we read it once and only once. */ mapping = READ_ONCE(folio->mapping); /* * The mapping may have been truncated, in any case we cannot determine * if this mapping is safe - fall back to slow path to determine how to * proceed. */ if (!mapping) return false; /* Anonymous folios pose no problem. */ mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; if (mapping_flags) return mapping_flags & PAGE_MAPPING_ANON; /* * At this point, we know the mapping is non-null and points to an * address_space object. The only remaining whitelisted file system is * shmem. */ return shmem_mapping(mapping); }

      policy logic. avoids locks unlike get user pages unlocked/locked which seems risky so its not supposed to be used on concurrent gup logic

    7. #ifdef CONFIG_MIGRATION /* * Returns the number of collected pages. Return value is always >= 0. */ static unsigned long collect_longterm_unpinnable_pages( struct list_head *movable_page_list, unsigned long nr_pages, struct page **pages) { unsigned long i, collected = 0; struct folio *prev_folio = NULL; bool drain_allow = true; for (i = 0; i < nr_pages; i++) { struct folio *folio = page_folio(pages[i]); if (folio == prev_folio) continue; prev_folio = folio; if (folio_is_longterm_pinnable(folio)) continue; collected++; if (folio_is_device_coherent(folio)) continue; if (folio_test_hugetlb(folio)) { isolate_hugetlb(folio, movable_page_list); continue; } if (!folio_test_lru(folio) && drain_allow) { lru_add_drain_all(); drain_allow = false; } if (!folio_isolate_lru(folio)) continue; list_add_tail(&folio->lru, movable_page_list); node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio), folio_nr_pages(folio)); } return collected; }
    8. #ifdef CONFIG_ELF_CORE struct page *get_dump_page(unsigned long addr) { struct page *page; int locked = 0; int ret; ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked, FOLL_FORCE | FOLL_DUMP | FOLL_GET); return (ret == 1) ? page : NULL; } #endif /* CONFIG_ELF_CORE */

      part of policy use code likely

    9. static __always_inline long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, struct page **pages, int *locked, unsigned int flags) { long ret, pages_done; bool must_unlock = false; /* * The internal caller expects GUP to manage the lock internally and the * lock must be released when this returns. */ if (!*locked) { if (mmap_read_lock_killable(mm)) return -EAGAIN; must_unlock = true; *locked = 1; } else mmap_assert_locked(mm); if (flags & FOLL_PIN) mm_set_has_pinned_flag(&mm->flags); /* * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior * is to set FOLL_GET if the caller wants pages[] filled in (but has * carelessly failed to specify FOLL_GET), so keep doing that, but only * for FOLL_GET, not for the newer FOLL_PIN. * * FOLL_PIN always expects pages to be non-null, but no need to assert * that here, as any failures will be obvious enough. */ if (pages && !(flags & FOLL_PIN)) flags |= FOLL_GET; pages_done = 0; for (;;) { ret = __get_user_pages(mm, start, nr_pages, flags, pages, locked); if (!(flags & FOLL_UNLOCKABLE)) { /* VM_FAULT_RETRY couldn't trigger, bypass */ pages_done = ret; break; } /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ if (!*locked) { BUG_ON(ret < 0); BUG_ON(ret >= nr_pages); } if (ret > 0) { nr_pages -= ret; pages_done += ret; if (!nr_pages) break; } if (*locked) { /* * VM_FAULT_RETRY didn't trigger or it was a * FOLL_NOWAIT. */ if (!pages_done) pages_done = ret; break; } /* * VM_FAULT_RETRY triggered, so seek to the faulting offset. * For the prefault case (!pages) we only update counts. */ if (likely(pages)) pages += ret; start += ret << PAGE_SHIFT; /* The lock was temporarily dropped, so we must unlock later */ must_unlock = true; retry: /* * Repeat on the address that fired VM_FAULT_RETRY * with both FAULT_FLAG_ALLOW_RETRY and * FAULT_FLAG_TRIED. Note that GUP can be interrupted * by fatal signals of even common signals, depending on * the caller's request. So we need to check it before we * start trying again otherwise it can loop forever. */ if (gup_signal_pending(flags)) { if (!pages_done) pages_done = -EINTR; break; } ret = mmap_read_lock_killable(mm); if (ret) { BUG_ON(ret > 0); if (!pages_done) pages_done = ret; break; } *locked = 1; ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, pages, locked); if (!*locked) { /* Continue to retry until we succeeded */ BUG_ON(ret != 0); goto retry; } if (ret != 1) { BUG_ON(ret > 1); if (!pages_done) pages_done = ret; break; } nr_pages--; pages_done++; if (!nr_pages) break; if (likely(pages)) pages++; start += PAGE_SIZE; } if (must_unlock && *locked) { /* * We either temporarily dropped the lock, or the caller * requested that we both acquire and drop the lock. Either way, * we must now unlock, and notify the caller of that state. */ mmap_read_unlock(mm); *locked = 0; } return pages_done; }

      same as gup but sets/unsets mmap_lock

    10. /* user gate pages are read-only */ if (gup_flags & FOLL_WRITE) return -EFAULT; if (address > TASK_SIZE) pgd = pgd_offset_k(address); else pgd = pgd_offset_gate(mm, address); if (pgd_none(*pgd)) return -EFAULT; p4d = p4d_offset(pgd, address); if (p4d_none(*p4d)) return -EFAULT; pud = pud_offset(p4d, address); if (pud_none(*pud)) return -EFAULT; pmd = pmd_offset(pud, address); if (!pmd_present(*pmd)) return -EFAULT; pte = pte_offset_map(pmd, address); if (!pte) return -EFAULT; entry = ptep_get(pte); if (pte_none(entry)) goto unmap; *vma = get_gate_vma(mm); if (!page) goto out; *page = vm_normal_page(*vma, address, entry); if (!*page) { if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) goto unmap; *page = pte_page(entry); } ret = try_grab_page(*page, gup_flags); if (unlikely(ret)) goto unmap;

      Most of these seem like sanity checks right up until line 897 i.e, 'if(!page)'* after which we seem to unmap the page.

    11. static struct page *follow_page_mask(struct vm_area_struct *vma, unsigned long address, unsigned int flags, struct follow_page_context *ctx) { pgd_t *pgd; struct mm_struct *mm = vma->vm_mm; ctx->page_mask = 0; /* * Call hugetlb_follow_page_mask for hugetlb vmas as it will use * special hugetlb page table walking code. This eliminates the * need to check for hugetlb entries in the general walking code. */ if (is_vm_hugetlb_page(vma)) return hugetlb_follow_page_mask(vma, address, flags, &ctx->page_mask); pgd = pgd_offset(mm, address); if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) return no_page_table(vma, flags); return follow_p4d_mask(vma, address, pgd, flags, ctx); }

      places mask after following page into pte

    12. if (likely(!pmd_trans_huge(pmdval))) return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) return no_page_table(vma, flags); ptl = pmd_lock(mm, pmd); if (unlikely(!pmd_present(*pmd))) { spin_unlock(ptl); return no_page_table(vma, flags); } if (unlikely(!pmd_trans_huge(*pmd))) { spin_unlock(ptl); return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); }

      branch prediction to check if pmd is there and if it's big

    13. /* FOLL_GET and FOLL_PIN are mutually exclusive. */ if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == (FOLL_PIN | FOLL_GET))) return ERR_PTR(-EINVAL); ptep = pte_offset_map_lock(mm, pmd, address, &ptl); if (!ptep) return no_page_table(vma, flags); pte = ptep_get(ptep); if (!pte_present(pte)) goto no_page; if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) goto no_page; page = vm_normal_page(vma, address, pte); /* * We only care about anon pages in can_follow_write_pte() and don't * have to worry about pte_devmap() because they are never anon. */ if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, page, vma, flags)) { page = NULL; goto out; } if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { /* * Only return device mapping pages in the FOLL_GET or FOLL_PIN * case since they are only valid while holding the pgmap * reference. */ *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); if (*pgmap) page = pte_page(pte); else goto no_page; } else if (unlikely(!page)) { if (flags & FOLL_DUMP) { /* Avoid special (like zero) pages in core dumps */ page = ERR_PTR(-EFAULT); goto out; } if (is_zero_pfn(pte_pfn(pte))) { page = pte_page(pte); } else { ret = follow_pfn_pte(vma, address, ptep, flags); page = ERR_PTR(ret); goto out; } } if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { page = ERR_PTR(-EMLINK); goto out; } VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && !PageAnonExclusive(page), page); /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ ret = try_grab_page(page, flags); if (unlikely(ret)) { page = ERR_PTR(ret); goto out; } /* * We need to make the page accessible if and only if we are going * to access its content (the FOLL_PIN case). Please see * Documentation/core-api/pin_user_pages.rst for details. */ if (flags & FOLL_PIN) { ret = arch_make_page_accessible(page); if (ret) { unpin_user_page(page); page = ERR_PTR(ret); goto out; } } if (flags & FOLL_TOUCH) { if ((flags & FOLL_WRITE) && !pte_dirty(pte) && !PageDirty(page)) set_page_dirty(page); /* * pte_mkyoung() would be more correct here, but atomic care * is needed to avoid losing the dirty bit: it is easier to use * mark_page_accessed(). */ mark_page_accessed(page); }

      finds page in pte. Judging by the complexity of the logic this is most likely policy code because we're literally getting user page

    14. struct folio *folio = page_folio(page); if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) return -ENOMEM; if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) return -EREMOTEIO; if (flags & FOLL_GET) folio_ref_inc(folio);

      checks for code that is involved in policy but is not the actual logic

    15. if (unlikely((flags & FOLL_LONGTERM) && !folio_is_longterm_pinnable(folio))) { if (!put_devmap_managed_page_refs(&folio->page, refs)) folio_put_refs(folio, refs); return NULL;

      checks for longterm folio pins.

    16. if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) return NULL; if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) return NULL;

      Time saving predictions(unlikely) and single time warning func(WARN_ON_ONCE) for flags. Not actual policy logic so low confidence.

    17. if (unlikely(page_folio(page) != folio)) { if (!put_devmap_managed_page_refs(&folio->page, refs)) folio_put_refs(folio, refs); goto retry;

      Uses prediction to check if a folio still points to the page. This is part of the function that tries to retrieve the folio to confirm that it is associated with a page.

    18. folio = page_folio(page); if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) return NULL; if (unlikely(!folio_ref_try_add(folio, refs))) return NULL;

      These increment the reference count for the folio since you're returning a reference of the folio. Important function so important internal logic subsequently