42 Matching Annotations
  1. Oct 2022
    1. Six molecules of both ATP and NADPH are used up in the process, helping to drive the reactions and produce the electrons required to reduce the incoming CO2. The "spent" molecules (ADP and NADP+) return to the nearby thylakoids to be recycled back into ATP and NADPH.

      What is used up during the Calvin cycle? Do they regenerate?

    2. The biological pathway that leads to carbon fixation in green plants and cyanobacteria is called the Calvin Cycle and is a reductive pathway (consumes energy and electrons) which leads to the reduction of CO2 to G3P.

      What is the Calvin cycle? What is it used for?

    3. It is at this step that light energy is transformed into the more stable form of chemical energy. All of the subsequent redox reactions are involved in pumping protons or in delivering that e- to NADP.

      When does the photon energy go from being unstable to stable?

    4. The captured energy is transferred from chlorophyll to chlorophyll until ...eventually... (after about a millionth of a second), it is delivered to the reaction center. Up to this point, only energy has been transferred between molecules, not electrons. In other words, no new bonds have formed.

      How does energy captured from a photon make it to the reaction center?

    5. Both photosystems have the same basic structure; a number of antenna proteins to which chlorophyll molecules are bound surround the reaction center where the photochemistry takes place. Each photosystem is serviced by this light-harvesting complex, which passes energy from sunlight to the reaction center;

      What is the structure of the photo systems 1 & 2 Where does the photochemistry take place?

    6. These two types are simply called photosystem II (PSII, carrying P680) and photosystem I (PSI, carrying P700), and were named (confusingly) in the order of their discovery. The two complexes differ on the basis of what they oxidize (that is, their source of electrons) and what they reduce (the place to which they deliver their energized electrons). Working in tandem, these two photosystems can power the production of both NADPH and ATP.

      What are the two pigments used in Oxygenic Photosynthesis? What do they do?

    7. In oxygenic photosynthesis, two types of pigment are found embedded in the thylakoid membrane (in plants) or the bacterial inner membrane (in cyanobacteria).

      Where are the two types of pigments used in oxygenic Photosynthesis stored?

    8. oxygenic photosynthesis is more complex than the "sulfur-genic" photosynthesis described above, requiring two different reaction centers, with different reduction potentials.

      How is oxygenic photosynthesis different from sulfur-genic photosythesis?

    9. The overall function of "light-dependent" reactions of photosynthesis is to transform solar energy into chemical compounds, in the form of NADPH and ATP. This energy supports the "light-independent" reactions and fuels the assembly of sugar molecules.

      What are the functions of the “light dependent” rxns and what do they support?

    10. This NADPH will be used for carbon fixation. Thus in order to keep generating NADPH there's needs to be a source of electrons to refill the "electron hole" in bacteriochlorophyll

      What is needed to keep a steady state for the production of NADPH?

    11. In an electron transport chain analogous to that of respiration, the electron is passed exergonically from carrier to carrier. The redox reaction at one of the carriers powers a proton pump, pushing protons into a higher concentration compartment. Eventually the electron is used to reduce bacteriochlorophyllox (making a complete loop) and the whole process can start again.

      How is the reduction of bacteriochlorophyll(ox) seem similar to glycolysis?

    12. This electron must come from an external source with a lower reduction potential than the (ground state) pigment and depending on the reduction potential of that pigment there are different possible sources that might be employed, including H2O, reduced sulfur compounds such as SH2, and even elemental S0

      Since pigments don’t get regenerated by the plant, how can the pigment attain another e-? What conditions does the e- donor need to fulfill in order to donate the e-?

    13. However, the electron energized by light might have an alternative fate: it might descend through a different series of carriers (without pumping protons) and instead be deposited onto a close relative of NAD+ called NADP. Addition of 2 e- generates NADPH, which is going to be used to build sugars from CO2

      What is the plant version of NAD+ How is it used?

    14. This electrochemical gradient generates a proton motive force whose concentration gradient can then be coupled to the endergonic production of ATP, via ATP synthase (again, just as in respiration).

      Does Photosynthesis use ATP synthase? How?

    15. For example, as you can see in the Table below, the ground state pigment at the reaction center of PSII (the "chlorophyll a" in P680) cannot reduce anything listed in the table- it is the weakest reducing agent described there (even weaker than H2O!).

      Where is Chlorophyll on the redox tower?

    16. While in the excited state, the pigment has a much lower reduction potential (E˚', it moves upward on our electron tower, it becomes a stronger reducing agent) and can donate these unstable, high potential energy electrons to carriers with greater E˚'

      How does a higher orbital state change the electron’s reduction potential?

    17. Because the energy changed the reduction potential such that the molecule is now a stronger e- donor, this high-energy e- can be transferred exergonically to an appropriate e- acceptor. In other words, the excited state can be involved in a redox reactions. This is a photochemical reaction

      What is a photochemical reaction?

    18. When an atom absorbs a photon of light, an electron acquires that energy, leaving its ground (lowest potential energy) orbital and moving up to a higher energy orbital. This is an unstable situation.

      What happens when an atom absorbs a photon?

    19. This ring structure is chemically related to the structure of heme compounds that also coordinate a metal and are involved in oxygen binding and/or transport in many organisms. Different chlorophylls are distinguished from one another by different "decorations"/chemical groups on the porphyrin ring

      Where does chlorophylls ring structure come from? How can different types of Chlorophyll be identified through its structure? How does Heme relate to this?

    20. There are five major chlorophyll pigments named: a, b, c, d, and f. Chlorophyll a is related to a class of more ancient molecules found in bacteria called bacteriochlorophylls. Chlorophylls are structurally characterized by ring-like porphyrin group that coordinates a metal ion.

      How many major chlorophyll pigments are there? What is Chlorophyll’s structure?

    21. If a plant were able to absorb 100% of incident photons, what color would it be? What if a variant of the same species of plant lacked a pigment required to absorb red light?

      If the plant were able to absorb all the light photons, then it would look pure white. If it was a variant that couldn’t absorb red light then it would look red.