18 Matching Annotations
  1. Last 7 days
    1. KRAS insertion mutations are oncogenic and exhibit distinct functional properties

      [Paper-level Aggregated] PMCID: PMC4748120

      Evidence Type(s): Oncogenic, Functional, Predictive

      Justification: Oncogenic: The text describes a partial duplication of the switch 2 domain of K-Ras, which is associated with transforming growth in myeloid progenitors and Ba/F3 cells, indicating its role as an oncogenic mutation. Functional: The study demonstrates that K-Ras proteins with switch 2 insertions exhibit reduced intrinsic GTP hydrolysis rates and accumulate in the GTP-bound conformation, indicating altered functional properties of these mutant proteins. Predictive: The findings suggest that K-Ras mutations, including the switch 2 duplications, may influence the sensitivity of transformed cells to MEK and PI3K inhibitors, indicating potential predictive value for therapeutic responses.

      Gene→Variant (gene-first): PIK3R1(5295):A66dup KRAS(3845):K-RasG12D PIK3CA(5290):Y64G KRAS(3845):Glutamine 61 KRAS(3845):Q61 KRAS(3845):c.178_198dup KRAS(3845):c.184_198dup

      Genes: PIK3R1(5295) KRAS(3845) PIK3CA(5290)

      Variants: A66dup K-RasG12D Y64G Glutamine 61 Q61 c.178_198dup c.184_198dup

    2. Oncogenic KRAS mutations introduce discrete amino acid substitutions that reduce intrinsic Ras GTPase activity and confer resistance to GTPase-activating proteins (GAPs). Here we discover a partial duplication of the swi

      [Paragraph-level] PMCID: PMC4748120 Section: ABSTRACT PassageIndex: 1

      Evidence Type(s): Oncogenic, Predictive, Diagnostic

      Justification: Oncogenic: The passage describes how the A66dup variant contributes to tumor development by transforming the growth of primary myeloid progenitors and Ba/F3 cells, indicating its role in oncogenesis. Predictive: The passage mentions that K-Ras proteins with the A66dup variant are hypersensitive to MEK inhibition, suggesting a correlation with response to a specific therapy. Diagnostic: The discovery of the A66dup variant in a child with an atypical myeloproliferative neoplasm suggests its potential use in defining or classifying this disease.

      Gene→Variant (gene-first): 5295:A66dup

      Genes: 5295

      Variants: A66dup

    3. The observation that K-RasG12D and switch 2 insertion mutant proteins are defective for PI3K binding and Akt activation suggested that this might alter effector pathway dependencies. To address this question, we exposed

      [Paragraph-level] PMCID: PMC4748120 Section: RESULTS PassageIndex: 15

      Evidence Type(s): Predictive, Oncogenic

      Justification: Predictive: The passage discusses the sensitivity of cells expressing K-RasG12D to specific therapies, indicating a correlation between the variant and response to treatment with MEK and PI3K inhibitors. Oncogenic: The mention of K-RasG12D in the context of transformed Ba/F3 cells suggests that this somatic variant contributes to tumor development or progression, as it is involved in cytokine-independent growth.

      Gene→Variant (gene-first): 3845:K-RasG12D

      Genes: 3845

      Variants: K-RasG12D

    4. Together with prior structural modelling predictions, these biochemical data prompted us to directly assess the ability of WT and mutant K-Ras proteins to bind to effectors in vitro. As expected, His-K-Ras WT bound GST-R

      [Paragraph-level] PMCID: PMC4748120 Section: RESULTS PassageIndex: 13

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses the ability of mutant K-Ras proteins to bind to effectors in vitro, indicating that the variants alter molecular interactions, specifically the binding to FLAG-p110alpha. Oncogenic: The mention of K-RasG12D and the other mutant variants in the context of their binding interactions suggests that these somatic variants contribute to tumor development or progression through their altered functional properties.

      Gene→Variant (gene-first): 5295:A66dup 3845:K-RasG12D 5290:Y64G

      Genes: 5295 3845 5290

      Variants: A66dup K-RasG12D Y64G

    5. To assess how acute activation of K-Ras duplication mutants modulates effector pathway activation, we engineered tetracycline inducible GFP-K-Ras constructs and introduced them into Ba/F3 cells (Supplementary Fig. 4). In

      [Paragraph-level] PMCID: PMC4748120 Section: RESULTS PassageIndex: 12

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses how the K-RasG12D variant alters the levels of pERK and pAkt, indicating a change in molecular function related to signaling pathways. Oncogenic: The K-RasG12D variant is implicated in modulating effector pathway activation, which suggests its role in tumor development or progression.

      Gene→Variant (gene-first): 3845:K-RasG12D

      Genes: 3845

      Variants: K-RasG12D

    6. Expression of K-RasG12D and each tandem duplication mutant, but not WT K-Ras, transformed interleukin 3 (IL-3)-dependent Ba/F3 cells to cytokine-independent growth (Supplementary Fig. 3a). Ba/F3 cells expressing K-RasG12

      [Paragraph-level] PMCID: PMC4748120 Section: RESULTS PassageIndex: 11

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage describes how the K-RasG12D variant and tandem duplication mutants transform Ba/F3 cells to cytokine-independent growth, indicating their role in tumor development or progression. Functional: The passage mentions that Ba/F3 cells expressing K-RasG12D and the tandem duplication mutants had elevated levels of Ras-GTP, suggesting that these variants alter molecular function related to Ras signaling.

      Gene→Variant (gene-first): 5295:A66dup 3845:K-RasG12D

      Genes: 5295 3845

      Variants: A66dup K-RasG12D

    7. To directly test these predictions, we produced N-terminal histidine fusions encoding amino acids 1-166 of K-RasG60_A66dup or K-RasE62_A66dup, and compared their biochemical properties with WT K-Ras and K-RasG12D (Supple

      [Paragraph-level] PMCID: PMC4748120 Section: RESULTS PassageIndex: 9

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses how the variants K-RasG60_A66dup and K-RasE62_A66dup alter the biochemical properties of K-Ras, specifically their GTPase activity and response to GAP stimulation, indicating a change in molecular function. Oncogenic: The variants are described in the context of their role in accumulating in the active GTP conformation and exhibiting impaired GTPase activity, which suggests their contribution to tumor development or progression.

      Gene→Variant (gene-first): 5295:A66dup 3845:K-RasG12D

      Genes: 5295 3845

      Variants: A66dup K-RasG12D

    8. We next examined published crystal structures to model potential effects of switch 2 insertions on the following: (1) the positions of critical residues involved in intrinsic catalysis such as Glutamine 61 (Q61); (2) the

      [Paragraph-level] PMCID: PMC4748120 Section: RESULTS PassageIndex: 7

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses how the variant Glutamine 61 (Q61) may alter protein-protein interactions and the structural dynamics of Ras, indicating a change in molecular function due to the predicted effects of switch 2 insertions. Oncogenic: The analysis suggests that the alterations in the Ras protein structure, particularly involving Q61, may contribute to the GTP conformation of Ras, which is associated with tumor development and progression.

      Gene→Variant (gene-first): 3845:Glutamine 61 3845:Q61

      Genes: 3845

      Variants: Glutamine 61 Q61

    9. A hypersensitive pattern of colony-forming unit granulocyte macrophage (CFU-GM) progenitor formation in response to colony-stimulating factor (GM-CSF) is a cellular hallmark of JMML. To ask whether K-Ras insertion mutant

      [Paragraph-level] PMCID: PMC4748120 Section: RESULTS PassageIndex: 5

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage discusses how the K-RasG12D variant induces cytokine-independent colony formation and contributes to abnormal growth patterns in hematopoietic progenitor cells, indicating its role in tumor development. Functional: The variant K-RasG12D alters the growth response of progenitor cells to GM-CSF, demonstrating a change in molecular function related to colony formation.

      Gene→Variant (gene-first): 5295:A66dup 3845:K-RasG12D

      Genes: 5295 3845

      Variants: A66dup K-RasG12D

    10. Juvenile myelomonocytic leukaemia (JMML) is an aggressive myeloproliferative neoplasm (MPN) characterized by driver Ras pathway mutations in 85% of cases, including known oncogenic KRAS and NRAS substitutions. We discove

      [Paragraph-level] PMCID: PMC4748120 Section: RESULTS PassageIndex: 3

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage describes a partial duplication of the K-Ras gene that is associated with juvenile myelomonocytic leukaemia (JMML), indicating that the variant contributes to tumor development or progression. Functional: The immunoblot analysis shows that the variant alters the molecular function of K-Ras, as evidenced by the detection of a band with reduced electrophoretic mobility compared to normal Ras protein, indicating a change in protein behavior.

      Gene→Variant (gene-first): 3845:c.178_198dup 3845:c.184_198dup

      Genes: 3845

      Variants: c.178_198dup c.184_198dup

    11. The observation that K-RasG12D and switch 2 insertion mutant proteins are defective for PI3K binding and Akt activation suggested that this might alter effector pathway dependencies. To address this question, we exposed

      [Paragraph-level] PMCID: PMC4748120 Section: RESULTS PassageIndex: 15

      Evidence Type(s): Predictive, Oncogenic

      Justification: Predictive: The passage discusses the sensitivity of cells expressing K-RasG12D to specific therapies, indicating a correlation between the variant and response to treatment with MEK and PI3K inhibitors. Oncogenic: The mention of K-RasG12D in the context of transformed Ba/F3 cells suggests that this somatic variant contributes to tumor development or progression, as it is involved in cytokine-independent growth.

      Gene→Variant (gene-first): 3845:K-RasG12D

      Genes: 3845

      Variants: K-RasG12D

    12. Together with prior structural modelling predictions, these biochemical data prompted us to directly assess the ability of WT and mutant K-Ras proteins to bind to effectors in vitro. As expected, His-K-Ras WT bound GST-R

      [Paragraph-level] PMCID: PMC4748120 Section: RESULTS PassageIndex: 13

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses the ability of mutant K-Ras proteins to bind to effectors in vitro, indicating that the variants alter molecular interactions, specifically the binding to FLAG-p110alpha. Oncogenic: The mention of K-RasG12D and the other mutant variants in the context of their binding interactions suggests that these somatic variants contribute to tumor development or progression through their altered functional properties.

      Gene→Variant (gene-first): 5295:A66dup 3845:K-RasG12D 5290:Y64G

      Genes: 5295 3845 5290

      Variants: A66dup K-RasG12D Y64G

    13. To assess how acute activation of K-Ras duplication mutants modulates effector pathway activation, we engineered tetracycline inducible GFP-K-Ras constructs and introduced them into Ba/F3 cells (Supplementary Fig. 4). In

      [Paragraph-level] PMCID: PMC4748120 Section: RESULTS PassageIndex: 12

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses how the K-RasG12D variant alters the levels of pERK and pAkt, indicating a change in molecular function related to signaling pathways. Oncogenic: The K-RasG12D variant is implicated in modulating effector pathway activation, which suggests its role in tumor development or progression.

      Gene→Variant (gene-first): 3845:K-RasG12D

      Genes: 3845

      Variants: K-RasG12D

    14. Expression of K-RasG12D and each tandem duplication mutant, but not WT K-Ras, transformed interleukin 3 (IL-3)-dependent Ba/F3 cells to cytokine-independent growth (Supplementary Fig. 3a). Ba/F3 cells expressing K-RasG12

      [Paragraph-level] PMCID: PMC4748120 Section: RESULTS PassageIndex: 11

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage describes how the K-RasG12D variant and tandem duplication mutants transform Ba/F3 cells to cytokine-independent growth, indicating their role in tumor development or progression. Functional: The passage mentions that Ba/F3 cells expressing K-RasG12D and the tandem duplication mutants had elevated levels of Ras-GTP, suggesting that these variants alter molecular function related to Ras signaling.

      Gene→Variant (gene-first): 5295:A66dup 3845:K-RasG12D

      Genes: 5295 3845

      Variants: A66dup K-RasG12D

    15. To directly test these predictions, we produced N-terminal histidine fusions encoding amino acids 1-166 of K-RasG60_A66dup or K-RasE62_A66dup, and compared their biochemical properties with WT K-Ras and K-RasG12D (Supple

      [Paragraph-level] PMCID: PMC4748120 Section: RESULTS PassageIndex: 9

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses how the variants K-RasG60_A66dup and K-RasE62_A66dup alter the biochemical properties of K-Ras, specifically their GTPase activity and response to GAP stimulation, indicating a change in molecular function. Oncogenic: The variants are described in the context of their role in accumulating in the active GTP conformation and exhibiting impaired GTPase activity, which suggests their contribution to tumor development or progression.

      Gene→Variant (gene-first): 5295:A66dup 3845:K-RasG12D

      Genes: 5295 3845

      Variants: A66dup K-RasG12D

    16. We next examined published crystal structures to model potential effects of switch 2 insertions on the following: (1) the positions of critical residues involved in intrinsic catalysis such as Glutamine 61 (Q61); (2) the

      [Paragraph-level] PMCID: PMC4748120 Section: RESULTS PassageIndex: 7

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses how the variant Glutamine 61 (Q61) may alter protein-protein interactions and the structural dynamics of Ras, indicating a change in molecular function due to the predicted effects of switch 2 insertions. Oncogenic: The analysis suggests that the alterations in the Ras protein structure, particularly involving Q61, may contribute to the GTP conformation of Ras, which is associated with tumor development and progression.

      Gene→Variant (gene-first): 3845:Glutamine 61 3845:Q61

      Genes: 3845

      Variants: Glutamine 61 Q61

    17. A hypersensitive pattern of colony-forming unit granulocyte macrophage (CFU-GM) progenitor formation in response to colony-stimulating factor (GM-CSF) is a cellular hallmark of JMML. To ask whether K-Ras insertion mutant

      [Paragraph-level] PMCID: PMC4748120 Section: RESULTS PassageIndex: 5

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage discusses how the K-RasG12D variant induces cytokine-independent colony formation and contributes to abnormal growth patterns in hematopoietic progenitor cells, indicating its role in tumor development. Functional: The variant K-RasG12D alters the growth response of progenitor cells to GM-CSF, demonstrating a change in molecular function related to colony formation.

      Gene→Variant (gene-first): 5295:A66dup 3845:K-RasG12D

      Genes: 5295 3845

      Variants: A66dup K-RasG12D

    18. Juvenile myelomonocytic leukaemia (JMML) is an aggressive myeloproliferative neoplasm (MPN) characterized by driver Ras pathway mutations in 85% of cases, including known oncogenic KRAS and NRAS substitutions. We discove

      [Paragraph-level] PMCID: PMC4748120 Section: RESULTS PassageIndex: 3

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage describes a partial duplication of the K-Ras gene that is associated with juvenile myelomonocytic leukaemia (JMML), indicating that the variant contributes to tumor development or progression. Functional: The immunoblot analysis shows that the variant alters the molecular function of K-Ras, as evidenced by the detection of a band with reduced electrophoretic mobility compared to normal Ras protein, indicating a change in protein behavior.

      Gene→Variant (gene-first): 3845:c.178_198dup 3845:c.184_198dup

      Genes: 3845

      Variants: c.178_198dup c.184_198dup