differentiating with respect to a squared quantity rather than a single quantity
From the chain rule of differentiation:
$$\frac{d(E^{2})}{dt} = \frac{d(E \cdot E)}{dt} = (E \cdot \frac{dE}{dt}) + (\frac{dE}{dt} \cdot E)$$ $$ \frac{d(E^{2})}{dt} = 2 \cdot E \cdot \frac{dE}{dt}$$ $$\frac{1}{2} \frac{d(E^{2})}{dt} = E \cdot \frac{dE}{dt}$$