Derivative[edit] The derivative for a curve of order n is B ′ ( t ) = n ∑ i = 0 n − 1 b i , n − 1 ( t ) ( P i + 1 − P i ) {\displaystyle \mathbf {B} '(t)=n\sum _{i=0}^{n-1}b_{i,n-1}(t)(\mathbf {P} _{i+1}-\mathbf {P} _{i})}
$B(n, t) = \displaystyle \sum_{i=0}^n {n \choose i} (1-t)^{n-i}t^iP_i$ for points $Pi$, then $$\begin{align} B^{'}(n, t) &= \sum{i=0}^n {n \choose i}\left[i(1-t)^{n-i}t^{i-1} -(n-i)(1-t)^{n-i-1}t^i \right]Pi \ &= \underbrace{\sum{i=0}^n {n \choose i}i(1-t)^{n-i}t^{i-1}Pi}{1^{st}\text{ term vanishes}} - \underbrace{\sum_{i=0}^n {n \choose i}(n-i)(1-t)^{n-i-1}t^iPi}{n^{th}\text{ term vanishes}}\
&= \sum_{i=1}^n {n \choose i}i(1-t)^{n-i}t^{i-1}Pi - \sum{i=0}^{n-1} {n \choose i}(n-i)(1-t)^{n-i-1}t^iPi\ &= \sum{i=0}^{n-1} {n \choose i+1}(i+1)(1-t)^{n-i-1}t^iP{i+1} - \sum{i=0}^{n-1} {n \choose i}(n-i)(1-t)^{n-i-1}t^iPi\ &= n\sum{i=0}^{n-1} {n-1 \choose i}(1-t)^{(n-1)-i}t^iP{i+1} - n\sum{i=0}^{n-1} {n-1 \choose i}(1-t)^{(n-1)-i}t^iPi\ &= n\sum{i=0}^{n-1} {n-1 \choose i}(1-t)^{(n-1)-i}t^i(P_{i+1} - P_i) \end{align}$$
which is equal to $nB(n-1, t)$ with points $\left(P_{i+1} - P_i\right)$