2 Matching Annotations
  1. Sep 2020
    1. Over millions of years of evolution, mitochondria and chloroplasts have become more specialized and today they cannot live outside the cell. Mitochondria and chloroplasts have striking similarities to bacteria cells. They have their own DNA, which is separate from the DNA found in the nucleus of the cell. And both organelles use their DNA to produce many proteins and enzymes required for their function. A double membrane surrounding both mitochondria and chloroplasts is further evidence that each was ingested by a primitive host. The two organelles also reproduce like bacteria, replicating their own DNA and directing their own division. Mitochondrial DNA (mtDNA) has a unique pattern of inheritance. It is passed down directly from mother to child, and it accumulates changes much more slowly than other types of DNA. Because of its unique characteristics, mtDNA has provided important clues about evolutionary history. For example, differences in mtDNA are examined to estimate how closely related one species is to another.

      There is compelling evidence that mitochondria and chloroplasts were once primitive bacterial cells. This evidence is described in the endosymbiotic theory. Symbiosis occurs when two different species benefit from living and working together. When one organism actually lives inside the other it’s called endosymbiosis. The endosymbiotic theory describes how a large host cell and ingested bacteria could easily become dependent on one another for survival, resulting in a permanent relationship.

    2. There is compelling evidence that mitochondria and chloroplasts were once primitive bacterial cells. This evidence is described in the endosymbiotic theory. Symbiosis occurs when two different species benefit from living and working together. When one organism actually lives inside the other it’s called endosymbiosis. The endosymbiotic theory describes how a large host cell and ingested bacteria could easily become dependent on one another for survival, resulting in a permanent relationship.

      There is compelling evidence that mitochondria and chloroplasts were once primitive bacterial cells. This evidence is described in the endosymbiotic theory. Symbiosis occurs when two different species benefit from living and working together. When one organism actually lives inside the other it’s called endosymbiosis. The endosymbiotic theory describes how a large host cell and ingested bacteria could easily become dependent on one another for survival, resulting in a permanent relationship.