2 Matching Annotations
  1. Feb 2017
    1. or the task was to give the meaning of all expressions in a certain infinite set on the basis of the meaning of the parts ;

      So how does this infinite set of expressions apply to the synonyms of language or the ambiguous nature of language itself that is a necessary implicitly?

    2. rege's theor

      This idea was formulated in non-symbolic terms in his The Foundations of Arithmetic (1884). Later, in his Basic Laws of Arithmetic (vol. 1, 1893; vol. 2, 1903; vol. 2 was published at his own expense), Frege attempted to derive, by use of his symbolism, all of the laws of arithmetic from axioms he asserted as logical. Most of these axioms were carried over from his Begriffsschrift, though not without some significant changes. The one truly new principle was one he called the Basic Law V: the "value-range" of the function f(x) is the same as the "value-range" of the function g(x) if and only if ∀x[f(x) = g(x)]. The crucial case of the law may be formulated in modern notation as follows. Let {x|Fx} denote the extension of the predicate Fx, i.e., the set of all Fs, and similarly for Gx. Then Basic Law V says that the predicates Fx and Gx have the same extension iff ∀x[Fx ↔ Gx]. The set of Fs is the same as the set of Gs just in case every F is a G and every G is an F. (The case is special because what is here being called the extension of a predicate, or a set, is only one type of "value-range" of a function.) (stanford.edu)