3 Matching Annotations
  1. Jun 2018
  2. May 2018
  3. Oct 2017
    1. TensorFlow provides optimizers that slowly change each variable in order to minimize the loss function. The simplest optimizer is gradient descent. It modifies each variable according to the magnitude of the derivative of loss with respect to that variable

      Using Optimizer to auto estimate the parameters

      optimizer = tf.train.GradientDescentOptimizer(0.01)
      train = optimizer.minimize(loss)
      sess.run(init)  # reset values to incorrect defaults.
      for i in range(1000):
          sess.run(
              train, {x: [1, 2, 3, 4], y: [0, -1, -2, -3]})
      print("...", sess.run([W, b]))