Dataset Collection
.h2
Dataset Collection
.h2
3 Path-based Question Generation
.h2
2 Multi-Constraint Question
.h2
1 Introduction
.h2
5 SciNLP-KG Framework
.h2
4 Dataset Construction
.h2
3 NLP Knowledge Graph Schema
.h2
1 Introduction
.h2
5 CRONKGQA: Our proposed method
.h2
4 Temporal KG Embeddings
.h2
3 CRONQUESTIONS: The new TemporalKGQA dataset
.h2
1 Introduction
.h2
3 Approach
.h2
4 Approach
.h2
2 Task Formulation & Dataset
.h2
1 Introduction
.h2
4 Diachronic Embedding
.h2
1 Introduction
.h2
4 Experiments
.h2
3 Time-Aware Representations
.h2
1 Introduction
.h2
3 METHOD
.h2
2 CONCEPTS
.h2
1 INTRODUCTION
.h2
3. Representation Learning for Static Graphs
.h2
2. Background and Notation
.h2
1. Introduction
.h2
3 A Recommended Framework for Quality Evaluationof Knowledge Graph
.h2
2 Quality of Knowledge Graph
.h2
3 Our Method
.h2
1 Introduction
.h2
1 Introduction
.h2
3 Knowledge Graph Reasoning
.h2
1 Introduction
.h2
3 TEMPORAL SCOPE PREDICTION
.h2
1 INTRODUCTION
.h2
1. Introduction
.h2
2PROPOSEDMETHOD
.h2
1INTRODUCTION
.h2
3 Learning to Update a KG
.h2
2 TheTextWorld KGDataset
.h2
1 Introduction
.h2
1INTRODUCTION
.h2
4 An Algorithm for Dynamic Model Optimization
.h2
3 Specifying Models for Dynamic Knowledge Graphs
.h2
2 A Formal Objective for Dynamic Knowledge Graph Construction
.h2
2 Related work
.h2
1 Introduction
.h2
Deliberate practice leverages the spacing effect
.h3
Deliberate practice requires intense focus
.h3
Deliberate practice takes time and can be a lifelong process
.h3
Deliberate practice requires intrinsic motivation
.h3
Deliberate practice is most effective with the help of a coach or some kind of teacher
.h3
Deliberate practice involves constant feedback and measurement
.h3
Deliberate practice requires rest and recovery time
.h3
Deliberate practice is challenging and uncomfortable
.h3
Deliberate practice is structured and methodical
.h3
What is deliberate practice?
.h2
The elements of deliberate practice
.h2
3 Scoping Text Normalisation
.h2
3.3 Effect of Context Diversity
.h2
3.2 Effect of Mention Coverage
.h2
3.1 Effect of Name regularity
.h2
1 Introduction
.h2
2 Model
.h2
1 Introduction
.h2
4 Discussion
.h2
3.5 Main Results
.h2
2 Counterfactual Generator
.h2
1 Introduction
.h2
1 Introduction
.h2
5.2 Knowledge Graph Embeddings
.h3
5.1 Graph Analytics
.h3
5 INDUCTIVE KNOWLEDGE
.h2
4.3 Reasoning
.h3
4.2 Semantics and Entailment
.h3
4.1 Ontologies
.h3
4 DEDUCTIVE KNOWLEDGE
.h2
3.3 Context
.h3
3.2 Identity
.h3
3.1 Schema
.h3
3 SCHEMA, IDENTITY, CONTEXT
.h2
2.2 Querying
.h3
2.1 Models
.h3
2 DATA GRAPHS
.h2
7 Conclusions
.h2
1 Introduction
.h2
7 Conclusion
.h2
1 Introduction
.h2
1 Introduction
.h2
5 Conclusion
.h2
1 Introduction
.h2
2.7 Zero-Shot Learning
.h2
2 Prototypical Networks
.h2
1 Introduction
.h2
5 Conclusion
.h2
4 Experimental results
.h2
3 Experimental setup
.h2
2 BERTweet
.h2
1 Introduction
.h2
6 Conclusion
.h2
2 Background
.h2
1 Introduction
.h2
1 Introduction
.h2
7 Conclusions and Ongoing Work
.h2
1 Introduction
.h2
4 Ablation Study and Analyses
.h2
3 Experiments
.h2
2 Proposed Model: FinBERT
.h2
3 Evaluation
.h2
2 Knowledge Augmented NER
.h2
5 Financial Sentiment Experiments
.h2
4 FinBERT Training
.h2
3 Financial Corpora
.h2
2. ADDING EMERGING ENTITIES
.h2
1. MOTIVATION AND INTRODUCTION
.h2
V. RESULTS ANDDISCUSSION
.h2
IV. EXPERIMENTS
.h2
III. APPROACH: RDANER
.h2
B. Domain-specific Pre-training Methods
.h3
A. Learning-based Methods
.h3
II. RELATEDWORK
.h2
I. INTRODUCTION
.h2
Scale Effects
.h3
Reinforcement
.h3
“Platform Business Model” (Less helpful term)
.h3
Viral Effects & Virality
.h3
Geometric (Exponential/Non-Linear) Growth vs. Linear Growth
.h3
Part V – Related Concepts
.h2
Retention
.h3
Disintermediation
.h3
Multi-Tenanting
.h3
Chicken or Egg Problem (Cold Start Problem)
.h3
Switching Costs
.h3
Multiplayer vs. Single-Player Mode
.h3
Part IV – Building and Maintaining Network Effects
.h2
Negative Network Effects
.h3
Indirect Network Effects
.h3
Cross-Side Network Effects
.h3
Same-Side Network Effects
.h3
Asymptotic Network Effects
.h3
Homogeneous vs. Heterogeneous Networks
.h3
Asymmetry
.h3
Real Identity vs Pseudonymity vs Anonymity
.h3
Irregularity
.h3
Part III – Network Properties
.h2
The Network “Laws”
.h3
Critical Mass
.h3
Clustering
.h3
One-to-One vs One-to-Many
.h3
Directionality
.h3
Network Density
.h3
Part II – How Networks Work
.h2
3 Our Framework: CrossWeigh
.h2
1 Introduction
.h2
6 CONCLUSION
.h2
4 APPROACH
.h2
1 INTRODUCTION
.h2
3.3 Ablation: Character Embeddings Only
.h2
2 Method
.h2
6 Error Analysis
.h2
5 Results and Discussion
.h2
4 Experimental Settings
.h2
3.3 Sequential Inference
.h3
3.2 Model Description
.h3
3.1 Feature Representation
.h3
3 Methodology
.h2.
1 Introduction
.h2
3 Data
.h2
2 Task Definition
.h2
4 RESULTS AND EVALUATION
.h2
3.2 Temporal resolution
.h3
3.1 Data selection and computations
.h3
3 SCHEMA AND KNOWLEDGE GRAPHPOPULATION
.h2
2 SOCIAL KNOWLEDGE GRAPH
.h2
1 INTRODUCTION
.h2
Further Opportunities and Challenges
.h2
3.2.4 Integration with External Sources.
.h3
3.2.3 Population and Maintenance.
.h3
3.2.2 Semantic Annotation of Text.
.h3
3 PERSONAL KNOWLEDGE GRAPHS
.h2
1INTRODUCTION
.h2
6 Conclusions
.h2
5.3 Effects of Extra Pretraining
.h3
5.2 Effects of Entity-aware Self-attention
.h3
5.1 Effects of Entity Representations
.h3
5 Analysis
.h2
4.5 Extractive Question Answering
.h3
4.4 Cloze-style Question Answering
.h3
4.3 Named Entity Recognition
.h3
4.2 Relation Classification
.h3
4.1 Entity Typing
.h3
4 Experiments
.h2
3.3 Pretraining Task
.h3
3.2 Entity-aware Self-attention
.h3
3.1 Input Representation
.h3
3 LUKE
.h2
1 Introduction
.h2
III. KEYTECHNIQUES INCONSTRUCTINGKNOWLEDGEGRAPHS
.h2
II. THE2019 ICDM/ICBK CONTEST
.h2