494 Matching Annotations
- Sep 2021
-
aclanthology.org aclanthology.org
-
Dataset Collection
.h2
-
- Aug 2021
-
aclanthology.org aclanthology.org
-
3 Path-based Question Generation
.h2
-
-
aclanthology.org aclanthology.org
-
2 Multi-Constraint Question
.h2
-
1 Introduction
.h2
-
-
arxiv.org arxiv.org
-
5 SciNLP-KG Framework
.h2
-
4 Dataset Construction
.h2
-
3 NLP Knowledge Graph Schema
.h2
-
1 Introduction
.h2
-
-
arxiv.org arxiv.org
-
5 CRONKGQA: Our proposed method
.h2
-
4 Temporal KG Embeddings
.h2
-
3 CRONQUESTIONS: The new TemporalKGQA dataset
.h2
-
1 Introduction
.h2
-
-
arxiv.org arxiv.org
-
3 Approach
.h2
-
-
arxiv.org arxiv.org
-
4 Approach
.h2
-
2 Task Formulation & Dataset
.h2
-
1 Introduction
.h2
-
-
arxiv.org arxiv.org
-
4 Diachronic Embedding
.h2
-
1 Introduction
.h2
-
- Jul 2021
-
arxiv.org arxiv.org
-
4 Experiments
.h2
-
3 Time-Aware Representations
.h2
-
1 Introduction
.h2
-
-
arxiv.org arxiv.org
-
3 METHOD
.h2
-
2 CONCEPTS
.h2
-
1 INTRODUCTION
.h2
-
-
arxiv.org arxiv.org
-
3. Representation Learning for Static Graphs
.h2
-
2. Background and Notation
.h2
-
1. Introduction
.h2
-
-
-
3 A Recommended Framework for Quality Evaluationof Knowledge Graph
.h2
-
2 Quality of Knowledge Graph
.h2
-
-
aclanthology.org aclanthology.org
-
3 Our Method
.h2
-
1 Introduction
.h2
-
-
aclanthology.org aclanthology.org
-
1 Introduction
.h2
-
-
arxiv.org arxiv.org
-
3 Knowledge Graph Reasoning
.h2
-
1 Introduction
.h2
-
-
dl.acm.org dl.acm.org
-
3 TEMPORAL SCOPE PREDICTION
.h2
-
1 INTRODUCTION
.h2
-
-
-
1. Introduction
.h2
-
-
rlgm.github.io rlgm.github.io69.pdf2
-
2PROPOSEDMETHOD
.h2
-
1INTRODUCTION
.h2
-
-
arxiv.org arxiv.org
-
3 Learning to Update a KG
.h2
-
2 TheTextWorld KGDataset
.h2
-
1 Introduction
.h2
-
- Jun 2021
-
openreview.net openreview.net
-
1INTRODUCTION
.h2
-
-
www.akbc.ws www.akbc.ws
-
4 An Algorithm for Dynamic Model Optimization
.h2
-
3 Specifying Models for Dynamic Knowledge Graphs
.h2
-
2 A Formal Objective for Dynamic Knowledge Graph Construction
.h2
-
-
www.aclweb.org www.aclweb.org
-
2 Related work
.h2
-
1 Introduction
.h2
-
-
-
Deliberate practice leverages the spacing effect
.h3
-
Deliberate practice requires intense focus
.h3
-
Deliberate practice takes time and can be a lifelong process
.h3
-
Deliberate practice requires intrinsic motivation
.h3
-
Deliberate practice is most effective with the help of a coach or some kind of teacher
.h3
-
Deliberate practice involves constant feedback and measurement
.h3
-
Deliberate practice requires rest and recovery time
.h3
-
Deliberate practice is challenging and uncomfortable
.h3
-
Deliberate practice is structured and methodical
.h3
-
What is deliberate practice?
.h2
-
The elements of deliberate practice
.h2
-
- Mar 2021
-
-
3 Scoping Text Normalisation
.h2
-
-
www.aclweb.org www.aclweb.org
-
3.3 Effect of Context Diversity
.h2
-
3.2 Effect of Mention Coverage
.h2
-
3.1 Effect of Name regularity
.h2
-
1 Introduction
.h2
-
-
arxiv.org arxiv.org
-
2 Model
.h2
-
1 Introduction
.h2
-
-
www.aclweb.org www.aclweb.org
-
4 Discussion
.h2
-
3.5 Main Results
.h2
-
2 Counterfactual Generator
.h2
-
1 Introduction
.h2
-
-
arxiv.org arxiv.org
-
1 Introduction
.h2
-
-
arxiv.org arxiv.org
-
5.2 Knowledge Graph Embeddings
.h3
-
5.1 Graph Analytics
.h3
-
5 INDUCTIVE KNOWLEDGE
.h2
-
4.3 Reasoning
.h3
-
4.2 Semantics and Entailment
.h3
-
4.1 Ontologies
.h3
-
4 DEDUCTIVE KNOWLEDGE
.h2
-
3.3 Context
.h3
-
3.2 Identity
.h3
-
3.1 Schema
.h3
-
3 SCHEMA, IDENTITY, CONTEXT
.h2
-
2.2 Querying
.h3
-
2.1 Models
.h3
-
2 DATA GRAPHS
.h2
-
-
-
7 Conclusions
.h2
-
1 Introduction
.h2
-
-
www.aclweb.org www.aclweb.org
-
7 Conclusion
.h2
-
1 Introduction
.h2
-
- Feb 2021
-
www.aclweb.org www.aclweb.org
-
1 Introduction
.h2
-
-
www.aclweb.org www.aclweb.org
-
5 Conclusion
.h2
-
1 Introduction
.h2
-
-
arxiv.org arxiv.org
-
2.7 Zero-Shot Learning
.h2
-
2 Prototypical Networks
.h2
-
1 Introduction
.h2
-
-
www.aclweb.org www.aclweb.org
-
5 Conclusion
.h2
-
4 Experimental results
.h2
-
3 Experimental setup
.h2
-
2 BERTweet
.h2
-
1 Introduction
.h2
-
-
arxiv.org arxiv.org
-
6 Conclusion
.h2
-
2 Background
.h2
-
1 Introduction
.h2
-
-
arxiv.org arxiv.org
-
1 Introduction
.h2
-
-
www.aclweb.org www.aclweb.org
-
7 Conclusions and Ongoing Work
.h2
-
1 Introduction
.h2
-
-
www.ijcai.org www.ijcai.org
-
4 Ablation Study and Analyses
.h2
-
3 Experiments
.h2
-
2 Proposed Model: FinBERT
.h2
-
-
www.aclweb.org www.aclweb.org
-
3 Evaluation
.h2
-
2 Knowledge Augmented NER
.h2
-
-
arxiv.org arxiv.org
-
5 Financial Sentiment Experiments
.h2
-
4 FinBERT Training
.h2
-
3 Financial Corpora
.h2
-
-
www.hoffart.ai www.hoffart.ai
-
2. ADDING EMERGING ENTITIES
.h2
-
1. MOTIVATION AND INTRODUCTION
.h2
-
- Jan 2021
-
arxiv.org arxiv.org
-
V. RESULTS ANDDISCUSSION
.h2
-
IV. EXPERIMENTS
.h2
-
III. APPROACH: RDANER
.h2
-
B. Domain-specific Pre-training Methods
.h3
-
A. Learning-based Methods
.h3
-
II. RELATEDWORK
.h2
-
I. INTRODUCTION
.h2
-
-
www.nfx.com www.nfx.com
-
Scale Effects
.h3
-
Reinforcement
.h3
-
“Platform Business Model” (Less helpful term)
.h3
-
Viral Effects & Virality
.h3
-
Geometric (Exponential/Non-Linear) Growth vs. Linear Growth
.h3
-
Part V – Related Concepts
.h2
-
Retention
.h3
-
Disintermediation
.h3
-
Multi-Tenanting
.h3
-
Chicken or Egg Problem (Cold Start Problem)
.h3
-
Switching Costs
.h3
-
Multiplayer vs. Single-Player Mode
.h3
-
Part IV – Building and Maintaining Network Effects
.h2
-
Negative Network Effects
.h3
-
Indirect Network Effects
.h3
-
Cross-Side Network Effects
.h3
-
Same-Side Network Effects
.h3
-
Asymptotic Network Effects
.h3
-
Homogeneous vs. Heterogeneous Networks
.h3
-
Asymmetry
.h3
-
Real Identity vs Pseudonymity vs Anonymity
.h3
-
Irregularity
.h3
-
Part III – Network Properties
.h2
-
The Network “Laws”
.h3
-
Critical Mass
.h3
-
Clustering
.h3
-
One-to-One vs One-to-Many
.h3
-
Directionality
.h3
-
Network Density
.h3
-
Part II – How Networks Work
.h2
-
-
-
3 Our Framework: CrossWeigh
.h2
-
1 Introduction
.h2
-
-
arxiv.org arxiv.org
-
6 CONCLUSION
.h2
-
4 APPROACH
.h2
-
1 INTRODUCTION
.h2
-
-
alanakbik.github.io alanakbik.github.io
-
3.3 Ablation: Character Embeddings Only
.h2
-
2 Method
.h2
-
-
noisy-text.github.io noisy-text.github.io
-
6 Error Analysis
.h2
-
5 Results and Discussion
.h2
-
4 Experimental Settings
.h2
-
3.3 Sequential Inference
.h3
-
3.2 Model Description
.h3
-
3.1 Feature Representation
.h3
-
3 Methodology
.h2.
-
1 Introduction
.h2
-
-
www.aclweb.org www.aclweb.org
-
3 Data
.h2
-
2 Task Definition
.h2
-
-
-
4 RESULTS AND EVALUATION
.h2
-
3.2 Temporal resolution
.h3
-
3.1 Data selection and computations
.h3
-
3 SCHEMA AND KNOWLEDGE GRAPHPOPULATION
.h2
-
2 SOCIAL KNOWLEDGE GRAPH
.h2
-
1 INTRODUCTION
.h2
-
-
ipfs.runfission.com ipfs.runfission.com
-
Further Opportunities and Challenges
.h2
-
3.2.4 Integration with External Sources.
.h3
-
3.2.3 Population and Maintenance.
.h3
-
3.2.2 Semantic Annotation of Text.
.h3
-
3 PERSONAL KNOWLEDGE GRAPHS
.h2
-
1INTRODUCTION
.h2
-
-
www.aclweb.org www.aclweb.org
-
6 Conclusions
.h2
-
5.3 Effects of Extra Pretraining
.h3
-
5.2 Effects of Entity-aware Self-attention
.h3
-
5.1 Effects of Entity Representations
.h3
-
5 Analysis
.h2
-
4.5 Extractive Question Answering
.h3
-
4.4 Cloze-style Question Answering
.h3
-
4.3 Named Entity Recognition
.h3
-
4.2 Relation Classification
.h3
-
4.1 Entity Typing
.h3
-
4 Experiments
.h2
-
3.3 Pretraining Task
.h3
-
3.2 Entity-aware Self-attention
.h3
-
3.1 Input Representation
.h3
-
3 LUKE
.h2
-
1 Introduction
.h2
-
-
Local file Local file
-
III. KEYTECHNIQUES INCONSTRUCTINGKNOWLEDGEGRAPHS
.h2
-
II. THE2019 ICDM/ICBK CONTEST
.h2
-