3 Matching Annotations
  1. Jun 2024
    1. g(L(t))=(D−C)×(L(t)−C)=0(D−C)×((B−A)⋅t+A−C)=0t=(C−A)×(D−C)(D−C)×(B−A)

      This is wrong. The correct solution is a negative fraction that is $$ t = −\frac{(C−A)×(D−C)}{(D−C)×(B−A)} = \frac{(C−A)×(D−C)}{(B−A)×(D−C)} $$

      because $$ g(L(t)) = (D−C)×(L(t)−C) \ = (D−C)×((B−A)⋅t + A − C)\ = ((D−C)×(B−A))⋅t + (D−C)×(A−C) = 0 \ \implies ((D−C)×(B−A))⋅t = −(D−C)×(A−C) \ \implies t = −\frac{(C−A)×(D−C)}{(D−C)×(B−A)} $$

  2. Dec 2023
    1. saved:2022-04-21.._

      Use saved:2022-04-21..* instead

    2. published:_..2020-01-01

      Use published:*..2020-01-01 instead