2 Matching Annotations
  1. Oct 2024
    1. We will build a flexible and tractable bijective function by stacking a sequence of simple bijections.In each simple bijection, part of the input vector is updated using a function which is simple to invert,but which depends on the remainder of the input vector in a complex way. We refer to each of thesesimple bijections as an affine coupling layer. Given a D dimensional input x and d < D, the outputy of an affine coupling layer follows the equations

      RealNVP에서 사용된 Affine coupling transformation이 non-volume preserving인 이유는 무엇인가요? 또한, 이 특성이 모델의 성능에 어떤 영향을 미치나요?

    1. The algorithmic complexity of jointly sampling and com-puting the log-det-Jacobian terms of the inference modelscales as O(LN 2) + O(KD), where L is the number ofdeterministic layers used to map the data to the parame-ters of the flow, N is the average hidden layer size, K isthe flow-length and D is the dimension of the latent vari-ables. Thus the overall algorithm is at most quadratic mak-ing the overall approach competitive with other large-scalesystems used in practice.

      Normalizing Flows가 많은 수의 레이어를 가질 경우에는 추론하는데 걸리는 시간이 어떻게 되나요? 특히 실시간 추론이나 아주 큰 데이터셋에서는 성능 저하 문제가 생길 것 같은데 이는 어떻게 해결할 수 있을까요?