3,082 Matching Annotations
  1. Sep 2023
    1. Reviewer #3 (Public Review):

      Summary: Hariharan et al. establish an analysis pipeline using automated microscopy to detect features identified by morphological profiling from images of common dystrophin complex proteins present in differentiated diseased and unaffected human myoblasts. Ultimately, using a machine learning algorithm to generate high dimensional phenotypes, the authors can distinguish Duchenne patient myotubes from unaffected patient controls based on the morphological features of several Dystrophin complex proteins. Initially analyzed on their own or in pairs the authors identify an optimal combination of Utrophin and a-sarcoglycan and subsequently test their ability to distinguish perturbations of Dystrophin either by knock down (siRNA) in unaffected controls or following treatment with a splicing modifier, vivo-phosphorodiamidate morpholino oligonucleomer (vivo-PMO) to ameliorate the DMD phenotype. It is unclear whether this methodology will see widespread adoption due to the combination of unique methods (micro-patterned plates and machine learning based image analysis) combined with a lack of detail on the specific features responsible for supporting the high dimensional phenotypes generated using their machine learning algorithm.

      Strengths: The overall concept of this paper is interesting in that subtle morphological phenotypes, not readily observable by the eye, exhibited by dystrophin complex associated proteins can distinguish DMD samples from unaffected controls. It is interesting In Fig. 3B to see Utrophin and a-Sarcoglycan distinguish DMD and non-DMD lines from each other. This finding is the core of the paper and yet little information on how or why this is detected by image analysis is presented. An argument could be made that Combinations 1-7 all "work" to a certain degree at segregating DMD from non-DMD lines. This finding is exciting and has broad applicability both within and beyond the muscle field.

      Weaknesses: Significantly more detail on the 235 features that are identified would greatly benefit the paper. What are the most critical features that give rise to high F-Scores for Utrophin and a-Sarcoglycan? What do the image masks display for the top ~10 features (or 5)? In Fig. 3B what metric(s) is critical in this segregation? What is the effect on the dimensional display if PCA is conducted as opposed to a tSNE?

      Biological replicates are lacking to draw conclusions upon. Non-DMD #4 is present in certain figures and absent from others. With 2 replicates (non-DMD) and 2 replicates (DMD) it is difficult to draw statistical conclusions on the data. Non-DMD #4 is identified as a poor line (37% Desmin compared to the other lines being >88%) in Table 1. If this line is a poor line please remove it from the data analysis.

      It is not appropriate to calculate Euclidan distance based on tSNE plots. PCA, MDS or UMAP are the appropriate high dimensional visual representations that allow for Euclidian distance calculations. This brings into question the validity of Fig. 4D and Fig. 5D. The link below outlines the limitations of tSNE plots. https://distill.pub/2016/misread-tsne/

      It is unclear why treatment (siRNA) results in a statistically significant F-score (>0.9) when comparing non-DMD samples treated with siRNA against Dystrophin with DMD samples. Given that the siRNA knock-down appears to be quite robust this was unexpected and brings into question whether Dystrophin protein is the primary driver for the high dimensional phenotypes observed.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Zai et al. test whether birds can modify their vocal behavior in a manner consistent with planning. They point out that while some animals are known to be capable of volitional control of vocalizations, it has been unclear if animals are capable of planning vocalizations -that is, modifying vocalizations towards a desired target without the need to learn this modification by practicing and comparing sensory feedback of practiced behavior to the behavioral target. They study zebra finches that have been trained to shift the pitch of song syllables away from their baseline values. It is known that once this training ends, zebra finches have a drive to modify pitch so that it is restored back to its baseline value. They take advantage of this drive to ask whether birds can implement this targeted pitch modification in a manner that looks like planning, by comparing the time course and magnitude of pitch modification in separate groups of birds who have undergone different manipulations of sensory and motor capabilities. A key finding is that birds who are deafened immediately before the onset of this pitch restoration paradigm, but after they have been shifted away from baseline, are able to shift pitch partially back towards their baseline target. In other words, this targeted pitch shift occurs even when birds don't have access to auditory feedback, which argues that this shift is not due to reinforcement-learning-guided practice, but is instead planned based on the difference between an internal representation of the target (baseline pitch) and current behavior (pitch the bird was singing immediately before deafening).

      The authors present additional behavioral studies arguing that this pitch shift requires auditory experience of the song in its state after it has been shifted away from baseline (birds deafened early on, before the initial pitch shift away from baseline, do not exhibit any shift back towards baseline), and that a full shift back to baseline requires auditory feedback. The authors synthesize these results to argue that different mechanisms operate for small shifts (planning, does not need auditory feedback) and large shifts (reinforcement learning, requires auditory feedback).

      The authors also make a distinction between two kinds of planning: covert-not requiring any motor practice and overt-requiring motor practice but without access to auditory experience from which target mismatch could be computed. They argue that birds plan overtly, based on these deafening experiments as well as an analogous experiment involving temporary muting, which suggests that indeed motor practice is required for pitch shifts.

      Strengths:<br /> The primary finding (that partially restorative pitch shift occurs even after deafening) rests on strong behavioral evidence. It is less clear to what extent this shift requires practice, since their analysis of pitch after deafening takes the average over within the first two hours of singing. If this shift is already evident in the first few renditions then this would be evidence for covert planning. This analysis might not be feasible without a larger dataset. Similarly, the authors could test whether the first few renditions after recovery from muting already exhibit a shift back toward baseline.

      This work will be a valuable addition to others studying birdsong learning and its neural mechanisms. It documents features of birdsong plasticity that are unexpected in standard models of birdsong learning based on reinforcement and are consistent with an additional, perhaps more cognitive, mechanism involving planning. As the authors point out, perhaps this framework offers a reinterpretation of the neural mechanisms underlying a prior finding of covert pitch learning in songbirds (Charlesworth et al., 2012).

      A strength of this work is the variety and detail in its behavioral studies, combined with sensory and motor manipulations, which on their own form a rich set of observations that are useful behavioral constraints on future studies.

      Weaknesses:<br /> The argument that pitch modification in deafened birds requires some experience hearing their song in its shifted state prior to deafening (Fig. 4) is solid but has an important caveat. Their argument rests on comparing two experimental conditions: one with and one without auditory experience of shifted pitch. However, these conditions also differ in the pitch training paradigm: the "with experience" condition was performed using white noise training, while the "without experience" condition used "lights off" training (Fig. 4A). It is possible that the differences in the ability for these two groups to restore pitch to baseline reflect the training paradigm, not whether subjects had auditory experience of the pitch shift. Ideally, a control study would use one of the training paradigms for both conditions, which would be "lights off" or electrical stimulation (McGregor et al. 2022), since WN training cannot be performed in deafened birds. This is difficult, in part because the authors previously showed that "lights off" training has different valences for deafened vs. hearing birds (Zai et al. 2020). Realistically, this would be a point to add to in discussion rather than a new experiment.

      A minor caveat, perhaps worth noting in the discussion, is that this partial pitch shift after deafening could potentially be attributed to the birds "gaining access to some pitch information via somatosensory stretch and vibration receptors and/or air pressure sensing", as the authors acknowledge earlier in the paper. This does not strongly detract from their findings as it does not explain why they found a difference between the "mismatch experience" and "no mismatch experience groups" (Fig. 4).

      More broadly, it is not clear to me what kind of planning these birds are doing, or even whether the "overt planning" here is consistent with "planning" as usually implied in the literature, which in many cases really means covert planning. The idea of using internal models to compute motor output indeed is planning, but why would this not occur immediately (or in a few renditions), instead of taking tens to hundreds of renditions? To resolve confusion, it would be useful to discuss and add references relating "overt" planning to the broader literature on planning, including in the introduction when the concept is introduced. Indeed, muddying the interpretation of this behavior as planning is that there are other explanations for the findings, such as use-dependent forgetting, which the authors acknowledge in the introduction, but don't clearly revisit as a possible explanation of their results. Perhaps this is because the authors equate use-dependent forgetting and overt planning, in which case this could be stated more clearly in the introduction or discussion.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The neural retina is one of the most energetically active tissues in the body and research into retinal metabolism has a rich history. Prevailing dogma in the field is that the photoreceptors of the neural retina (rods and cones) are heavily reliant on glycolysis, and as oxygen tension at the level of photoreceptors is very low, these specialized sensory neurons carry out aerobic glycolysis, akin to the Warburg effect in cancer cells. It has been found that this unique metabolism changes in many retinal diseases, and targeting retinal metabolism may be a viable treatment strategy. The neural retina is composed of 11 different cell types, and many research groups over the past century have contributed to our current understanding of cell-specific metabolism of retinal cells. More recently, it has been shown in mouse models and co-culture of the mouse neural retina with human RPE cultures that photoreceptors are reliant on the underlying retinal pigment epithelium for supplying nutrients. Chen and colleagues add to this body of work by studying an ex vivo culture of the developing mouse retina that maintained contact with the retinal pigment epithelium. They exposed such ex vivo cultures to small molecule inhibitors of specific metabolic pathways, performing targeted metabolomics on the tissue and staining the tissue with key metabolic enzymes to lay the groundwork for what metabolic pathways may be active in particular cell types of the retina. The authors conclude that rod and cone photoreceptors are reliant on different metabolic pathways to maintain their cell viability - in particular, that rods rely on oxidative phosphorylation and cones rely on glycolysis. Further, their data support multiple mechanisms whereby glycolysis may occur simultaneously with anapleurosis to provide abundant energy to photoreceptors. The data from metabolomics revealed several novel findings in retinal metabolism, including the use of glutamine to fuel the mini-Krebs cycle, the utilization of the Cahill cycle in photoreceptors, and a taurine/hypotaurine shuttle between the underlying retinal pigment epithelium and photoreceptors to transfer reducing equivalents from the RPE to photoreceptors. In addition, this study provides robust quantitative metabolomics datasets that can be compared across experiments and groups. The use of this platform will allow for rapid testing of novel hypotheses regarding the metabolic ecosystem in the neural retina.

      Strengths:<br /> The data on differences in the susceptibility of rods and cones to mitochondrial dysfunction versus glycolysis provides novel hypothesis-generating conjectures that can be tested in animal models. The multiple mechanisms that allow anapleurosis and glycolysis to run side-by-side add significant novelty to the field of retinal metabolism, setting the stage for further testing of these hypotheses as well.

      Weaknesses:<br /> Almost all of the conclusions from the paper are preliminary, based on data showing enzymes necessary for a metabolic process are present and the metabolites for that process are also present. However, to truly prove whether these processes are happening, C13 labeling or knock-out or over-expression experiments are necessary. Further, while there is good data that RPE cultures in vitro strongly recapitulate RPE phenotypes in vivo, ex vivo neural retina cultures undergo rapid death. Thus, conclusions about metabolism from explants should either be well correlated with existing literature or lead to targeted in vivo studies. This paper currently lacks both.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Anderson et al utilize an array of orthogonal techniques to highlight the importance of protein dynamics for the function and inhibition of the kinase ERK2. ERK2 is important for a large variety of biological functions.

      Strengths:<br /> This is a thorough and detailed study that uses a variety of techniques to identify critical molecular/chemical parameters that drive ERK2 in specific states.

      Weaknesses:<br /> No details rules were identified so that novel inhibitors could be designed. Nevertheless, the mode of action of these existing inhibitors is much better defined.

    1. Reviewer #3 (Public Review):

      Summary:

      The authors image dopamine axons in medial prefrontal cortex (mPFC) using microprism-mediated two-photon calcium imaging. They image these axons as mice learn that two auditory cues predict two distinct outcomes, tailshock or water delivery. They find that some axons show a preference for encoding of the shock and some show a preference for encoding of water. The authors report a greater number of dopamine axons in mPFC that respond to shock. Across time, the shock-preferring axons begin to respond preferentially to the cue predicting shock, while there is a less pronounced increase in the water-responsive axons that acquire a response to the water-predictive cue (these axons also increase non-significantly to the shock-predictive cue). These data lead the authors to argue that dopamine axons in mPFC preferentially encode aversive stimuli.

      Strengths:

      The experiments are beautifully executed and the authors have mastered an impressively complex technique. Specifically, they are able to image and track individual dopamine axons in mPFC across days of learning. This technique is used the way it should be: the authors isolate distinct dopamine axons in mPFC and characterize their encoding preferences and how this evolves across learning of cue-shock and cue-water contingencies. Thus, these experiments are revealing novel information about how aversive and rewarding stimuli is encoded at the level of individual axons, in a way that has not been done before. This is timely and important.

      Weaknesses:

      The overarching conclusion of the paper is that dopamine axons preferentially encode aversive stimuli. This is prevalent in the title, abstract, and throughout the manuscript. This is fundamentally confounded. As the authors point out themselves, the axonal response to stimuli is sensitive to outcome magnitude (Supp Fig 3). That is, if you increase the magnitude of water or shock that is delivered, you increase the change in fluorescence that is seen in the axons. Unsurprisingly, the change in fluorescence that is seen to shock is considerably higher than water reward. Further, when the mice are first given unexpected water delivery and have not yet experienced the aversive stimuli, over 40% of the axons respond [yet just a few lines below the authors write: "Previous studies have demonstrated that the overall dopamine release at the mPFC or the summed activity of mPFC dopamine axons exhibits a strong response to aversive stimuli (e.g., tail shock), but little to rewards", which seems inconsistent with their own data]. Given these aspects of the data, it could be the case that the dopamine axons in mPFC encodes different types of information and delegates preferential processing to the most salient outcome across time. The use of two similar sounding tones (9Khz and 12KHz) for the reward and aversive predicting cues are likely to enhance this as it requires a fine-grained distinction between the two cues in order to learn effectively.

      There is considerable literature on mPFC function across species that would support such a view. Specifically, theories of mPFC function (in particular prelimbic cortex, which is where the axon images are mostly taken) generally center around resolution of conflict in what to respond, learn about, and attend to. That is, mPFC is important for devoting the most resources (learning, behavior) to the most relevant outcomes in the environment. This data then, provides a mechanism for this to occur in mPFC. That is, dopamine axons signal to the mPFC the most salient aspects of the environment, which should be preferentially learned about and responded towards. This is also consistent with the absence of a negative prediction error during omission: the dopamine axons show increases in responses during receipt of unexpected outcomes, but do not encode negative errors. This supports a role for this projection in helping to allocate resources to the most salient outcomes and their predictors, and not learning per se. Below are a just few references from the rich literature on mPFC function (some consider rodent mPFC analogous to DLPFC, some mPFC), which advocate for a role in this region in allocating attention and cognitive resources to most relevant stimuli, and do not indicate preferential processing of aversive stimuli.

      References:<br /> 1. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual review of neuroscience, 24(1), 167-202.<br /> 2. Bissonette, G. B., Powell, E. M., & Roesch, M. R. (2013). Neural structures underlying set-shifting: roles of medial prefrontal cortex and anterior cingulate cortex. Behavioural brain research, 250, 91-101.<br /> 3. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual review of neuroscience, 18(1), 193-222.<br /> 4. Sharpe, M. J., Stalnaker, T., Schuck, N. W., Killcross, S., Schoenbaum, G., & Niv, Y. (2019). An integrated model of action selection: distinct modes of cortical control of striatal decision making. Annual review of psychology, 70, 53-76.<br /> 5. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. science, 306(5695), 443-447.<br /> 6. Nee, D. E., Kastner, S., & Brown, J. W. (2011). Functional heterogeneity of conflict, error, task-switching, and unexpectedness effects within medial prefrontal cortex. Neuroimage, 54(1), 528-540.<br /> 7. Isoda, M., & Hikosaka, O. (2007). Switching from automatic to controlled action by monkey medial frontal cortex. Nature neuroscience, 10(2), 240-248.

    1. Reviewer #3 (Public Review):

      Summary:

      In their manuscript titled "Exposure to false cardiac feedback alters pain perception and anticipatory cardiac frequency", Parrotta and colleagues describe an experimental study on the interplay between false heart rate feedback and pain experience in healthy, adult humans. The experimental design is derived from Bayesian perspectives on interoceptive inference. In Experiment 1 (N=34), participants rated the intensity and unpleasantness of an electrical pulse presented to their middle fingers. Participants received auditory cardiac feedback prior to the electrical pulse. This feedback was congruent with the participant's heart rate or manipulated to have a higher or lower frequency than the participant's true heart rate (incongruent high/ low feedback). The authors find heightened ratings of pain intensity and unpleasantness as well as a decreased heart rate in participants who were exposed to the incongruent-high cardiac feedback. Experiment 2 (N=29) is equivalent to Experiment 1 with the exception that non-interoceptive auditory feedback was presented. Here, mean pain intensity and unpleasantness ratings were unaffected by feedback frequency.

      Strengths:

      The authors present interesting experimental data that was derived from modern theoretical accounts of interoceptive inference and pain processing.

      1. The motivation for the study is well-explained and rooted within the current literature, whereas pain is the result of a multimodal, inferential process. The separation of nociceptive stimulation and pain experience is explained clearly and stringently throughout the text.

      2. The idea of manipulating pain-related expectations via an internal, instead of an external cue, is very innovative.

      3. An appropriate control experiment was implemented, where an external (non-physiological) auditory cue with parallel frequency to the cardiac cue was presented.

      4. The chosen statistical methods are appropriate, albeit averaging may limit the opportunity for mechanistic insight, see weaknesses section.

      5. The behavioral data, showing increased unpleasantness and intensity ratings after exposure to incongruent-high cardiac feedback, but not exteroceptive high-frequency auditory feedback, is backed up by ECG data. Here, the decrease in heart rate during the incongruent-high condition speaks towards a specific, expectation-induced physiological effect that can be seen as resulting from interoceptive inference.

      Weaknesses:

      Additional analyses and/ or more extensive discussion are needed to address these limitations:

      1. I would like to know more about potential learning effects during the study. Is there a significant change in ∆ intensity and ∆ unpleasantness over time; e.g. in early trials compared to later trials? It would be helpful to exclude the alternative explanation that over time, participants learned to interpret the exteroceptive cue more in line with the cardiac cue, and the effect is driven by a lack of learning about the slightly less familiar cue (the exteroceptive cue) in early trials. In other words, the heartbeat-like auditory feedback might be "overlearned", compared to the less naturalistic tone, and more exposure to the less naturalistic cue might rule out any differences between them w.r.t. pain unpleasantness ratings.

      2. The origin of the difference in Cohen's d (Exp. 1: .57, Exp. 2: .62) and subsequently sample size in the sensitivity analyses remains unclear, it would be helpful to clarify where these values are coming from (are they related to the effects reported in the results? If so, they should be marked as post-hoc analyses).

      3. As an alternative explanation, it is conceivable that the cardiac cue may have just increased unspecific arousal or attention to a larger extent than the exteroceptive cue. It would be helpful to discuss the role of these rather unspecific mechanisms, and how it may have differed between experiments.

      4. The hypothesis (increased pain intensity with incongruent-high cardiac feedback) should be motivated by some additional literature.

      5. The discussion section does not address the study's limitations in a sufficient manner. For example, I would expect a more thorough discussion on the lack of correlation between participant ratings and self-reported bodily awareness and reactivity, as assessed with the BPQ.<br /> a. Some short, additional information on why the authors chose to focus on body awareness and supradiaphragmatic reactivity subscales would be helpful.

      6. The analyses presented in this version of the manuscript allow only limited mechanistic conclusions - a computational model of participant's behavior would be a very strong addition to the paper. While this may be out of the scope of the article, it would be helpful for the reader to discuss the limitations of the presented analyses and outline avenues towards a more mechanistic understanding and analysis of the data. The computational model in [7] might contain some starting ideas.

      Some additional topics were not considered in the first version of the manuscript:<br /> 1. The possible advantages of a computational model of task behavior should be discussed.<br /> 2. Across both experiments, there was a slightly larger number of female participants. Research suggests significant sex-related differences in pain processing [1,2]. It would be interesting to see what role this may have played in this data.<br /> 3. There are a few very relevant papers that come to mind which may be of interest. These sources might be particularly useful when discussing the roadmap towards a mechanistic understanding of the inferential processes underlying the task responses [3,4] and their clinical implications.<br /> 4. In this version of the paper, we only see plots that illustrate ∆ scores, averaged across pain intensities - to better understand participant responses and the relationship with stimulus intensity, it would be helpful to see a more descriptive plot of task behavior (e.g. stimulus intensity and raw pain ratings)

      [1] Mogil, J. S. (2020). Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nature Reviews Neuroscience, 21(7), 353-365. https://www.nature.com/articles/s41583-020-0310-6<br /> [2] Sorge, R. E., & Strath, L. J. (2018). Sex differences in pain responses. Current Opinion in Physiology, 6, 75-81. https://www.sciencedirect.com/science/article/abs/pii/S2468867318300786?via%3Dihub<br /> [3] Unal, O., Eren, O. C., Alkan, G., Petzschner, F. H., Yao, Y., & Stephan, K. E. (2021). Inference on homeostatic belief precision. Biological Psychology, 165, 108190.<br /> [4] Allen, M., Levy, A., Parr, T., & Friston, K. J. (2022). In the body's eye: the computational anatomy of interoceptive inference. PLoS Computational Biology, 18(9), e1010490.<br /> [5] Stephan, K. E., Manjaly, Z. M., Mathys, C. D., Weber, L. A., Paliwal, S., Gard, T., ... & Petzschner, F. H. (2016). Allostatic self-efficacy: A metacognitive theory of dyshomeostasis-induced fatigue and depression. Frontiers in human neuroscience, 10, 550.<br /> [6] Friston, K. J., Stephan, K. E., Montague, R., & Dolan, R. J. (2014). Computational psychiatry: the brain as a phantastic organ. The Lancet Psychiatry, 1(2), 148-158.<br /> [7] Eckert, A. L., Pabst, K., & Endres, D. M. (2022). A Bayesian model for chronic pain. Frontiers in Pain Research, 3, 966034.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Previous studies suggest that humans may infer objects' stability through a world model that performs mental simulations with a priori knowledge of gravity acting upon objects. In this study, the authors test two alternative hypotheses about the nature of this a priori knowledge. According to the Natural Gravity assumption, the direction of gravity encoded in this world model is straight downwards as in the physical world. According to the alternative Mental Gravity assumption, that gravity direction is encoded in a Gaussian distribution, with the vertical direction as the maximum likelihood. They present two experiments and computer simulations as evidence in support of the Mental Gravity assumption. Their conclusion is that when the brain is tasked to determine the stability of a given structure it runs a mental simulation, termed Mental Gravity Simulation, which averages the estimated temporal evolutions of that structure arising from different gravity directions sampled from a Gaussian distribution.

      Weaknesses:<br /> In spite of the fact that the Mental Gravity Simulation (MGS) seems to predict the data of the two experiments, it is an untenable hypothesis. I give the main reason for this conclusion by illustrating a simple thought experiment. Suppose you ask subjects to determine whether a single block (like those used in the simulations) is about to fall. We can think of blocks of varying heights. No matter how tall a block is, if it is standing on a horizontal surface it will not fall until some external perturbation disturbs its equilibrium. I am confident that most human observers would predict this outcome as well. However, the MSG simulation would not produce this outcome. Instead, it would predict a non-zero probability of the block to tip over. A gravitational field that is not perpendicular to the base has the equivalent effect of a horizontal force applied on the block at the height corresponding to the vertical position of the center of gravity. Depending on the friction determined by the contact between the base of the block and the surface where it stands there is a critical height where any horizontal force being applied would cause the block to fall while pivoting about one of the edges at the base (the one opposite to where the force has been applied). This critical height depends on both the size of the base and the friction coefficient. For short objects this critical height is larger than the height of the object, so that object would not fall. But for taller blocks, this is not the case. Indeed, the taller the block the smaller the deviation from a vertical gravitational field is needed for a fall to be expected. The discrepancy between this prediction and the most likely outcome of the simple experiment I have just outlined makes the MSG model implausible. Note also that a gravitational field that is not perpendicular to the ground surface is equivalent to the force field experienced by the block while standing on an inclined plane. For small friction values, the block is expected to slide down the incline, therefore another prediction of this MSG model is that when we observe an object on a surface exerting negligible friction (think of a puck on ice) we should expect that object to spontaneously move. But of course, we don't, as we do not expect tall objects that are standing to suddenly fall if left unperturbed. In summary, a stochastic world model cannot explain these simple observations.

      The question remains as to how we can interpret the empirical data from the two experiments and their agreement with the predictions of the stochastic world model if we assume that the brain has internalized a vertical gravitational field. First, we need to look more closely at the questions posed to the subjects in the two experiments. In the first experiment, subjects are asked about how "normal" a fall of a block construction looks. Subjects seem to accept 50% of the time a fall is normal when the gravitational field is about 20 deg away from the vertical direction. The authors conclude that according to the brain, such an unusual gravitational field is possible. However, there are alternative explanations for these findings that do not require a perceptual error in the estimation of the direction of gravity. There are several aspects of the scene that may be misjudged by the observer. First, the 3D interpretation of the scene and the 3D motion of the objects can be inaccurate. Indeed, the simulation of a normal fall uploaded by the authors seems to show objects falling in a much weaker gravitational field than the one on Earth since the blocks seem to fall in "slow motion". This is probably because the perceived height of the structure is much smaller than the simulated height. In general, there are even more severe biases affecting the perception of 3D structures that depend on many factors, for instance, the viewpoint. Second, the distribution of weight among the objects and the friction coefficients acting between the surfaces are also unknown parameters. In other words, there are several parameters that depend on the viewing conditions and material composition of the blocks that are unknown and need to be estimated. The authors assume that these parameters are derived accurately and only that assumption allows them to attribute the observed biases to an error in the estimate of the gravitational field. Of course, if the direction of gravity is the only parameter allowed to vary freely then it is no surprise that it explains the results. Instead, a simulation with a titled angle of gravity may give rise to a display that is interpreted as rendering a vertical gravitational field while other parameters are misperceived. Moreover, there is an additional factor that is intentionally dismissed by the authors that is a possible cause of the fall of a stack of cubes: an external force. Stacks that are initially standing should not fall all of a sudden unless some unwanted force is applied to the construction. For instance, a sudden gust of wind would create a force field on a stack that is equivalent to that produced by a tilted gravitational field. Such an explanation would easily apply to the findings of the second experiment. In that experiment subjects are explicitly asked if a stack of blocks looks "stable". This is an ambiguous question because the stability of a structure is always judged by imagining what would happen to the structure if an external perturbation is applied. The right question should be: "do you think this structure would fall if unperturbed". However, if stability is judged in the face of possible external perturbations then a tall structure would certainly be judged as less stable than a short structure occupying the same ground area. This is what the authors find. What they consider as a bias (tall structures are perceived as less stable than short structures) is instead a wrong interpretation of the mental process that determines stability. If subjects are asked the question "Is it going to fall?" then tall stacks of sound structure would be judged as stable as short stacks, just more precarious.

      The RL model used as a proof of concept for how the brain may build a stochastic prior for the direction of gravity is based on very strong and unverified assumptions. The first assumption is that the brain already knows about the force of gravity, but it lacks knowledge of the direction of this force of gravity. The second assumption is that before learning the brain knows the effect of a gravitational field on a stack of blocks. How can the brain simulate the effect of a non-vertical gravitational field on a structure if it has never observed such an event? The third assumption is that from the visual input, the brain is able to figure out the exact 3D coordinates of the blocks. This has been proven to be untrue in a large number of studies. Given these assumptions and the fact that the only parameters the RL model modifies through learning specify the direction of gravity, I am not surprised that the model produces the desired results.

      Finally, the argument that the MGS is more efficient than the NGS model is based on an incorrect analysis of the results of the simulation. It is true that 80% accuracy is reached faster by the MGS model than the 95% accuracy level is reached by the NGS model. But the question is: how fast does the NGS model reach 80% accuracy (before reaching the plateau)?

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors aim to provide a multidisciplinary resource on the structural and physiological organization of the hippocampal system and make the available experimental data available for further theoretical work, providing tools to do so in a very flexible and user-friendly way. Since this is a new version of an already existing data-resource, the authors certainly reach their aim and fulfil expectations that the reader might have. The content of the database is as good as the original data, collected from the published knowledge-database, sometimes with the help of the original authors, and the overall quality depends further on how the data are curated by the team of authors and many others who helped them. That process is briefly described and more details are available in descriptions of previous versions and on the website. The data extraction, examples of how data can be used, and the part on attempts to model the hippocampus are exciting and open doors to new and exciting research opportunities.

      Strengths:<br /> Excellent description with many outlined opportunities. Nicely illustrated and inviting to explore the online database.

      Weaknesses:<br /> The figures are complex, containing a heavy information load with many abbreviations. You need some general knowledge of the system in order to grasp the enormous potential of what is provided.

    1. Reviewer #3 (Public Review):

      Seba et al. investigate whether chromosomal recruitment of the E. coli SMC complex MukBEF is initiated at a single site, how MukBEF activity is excluded from the replication terminus region, and whether its recruitment and activity depend on DNA replication. Upon induction of MukBEF, the authors find that chromosomal long-range contacts increase globally rather than from a single site. Using large-scale chromosome rearrangements, they show that matS sites can insulate separate areas of high MukBEF activity from each other. This suggests that MukBEF loads at multiple sites in the genome. Finally, the authors propose that MukBEF associates preferentially with newly replicated DNA, based on ChIP-seq experiments after DNA replication arrest.

      The conclusions of the paper are mostly well supported by the data. The ratiometric contact analyses and range-of-contact analyses are compelling and nicely show the interplay between MukBEF and its proposed unloader MatP/matS. I particularly enjoyed the chromosome re-arrangement experiments, which lend strong support to the idea that MukBEF activity is independent of a centralized loading site.

      The enrichment of MukBEF in newly replicated regions is somewhat less convincing, as the effect sizes are rather small and the background signal is unknown. The conclusion that matS density controls MukBEF activity is appealing, but would likely need additional support from more systematic studies. It is based on a comparison of only two strains (looking at different combinations of three matS sites), and the effect size is small. As it is, differences in matS sequence composition and genomic context cannot be factored out.

      Overall, the work is an important advance in our understanding of bacterial chromosome organization. It will be of broad interest to chromosome biologists and bacterial cell biologists.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This important paper provides the best-to-date characterization of chirping in weakly electric fish using a large number of variables. These include environment (free vs divided fish, with or without clutter), breeding state, gender, intruder vs resident, social status, locomotion state and social and environmental experience, as well as with playback experiments. It applies state-of-the-art methods for reducing dimensionality and finding patterns of correlation between different kinds of variables (factor analysis, K-means). The exceptional strength of the evidence, collated from a large number of trials with many controls, leads to the conclusion that a number of commonly accepted truths about which variable affects chirping must be carefully rewritten or nuanced. Based on their extensive analyses, the authors suggest that chirps are mainly used as probes that help detect beats and objects.

      Strengths:<br /> The work is based on completely novel recordings using interaction chambers. The amount of new data and associated analyses is simply staggering, and yet, well organized in presentation. The study further evaluates the electric field strength around a fish (via modelling with the boundary element method) and how its decay parallels the chirp rate, thereby relating the above variables to electric field geometry.

      The main conclusions are that the lack of any significant behavioural correlates for chirping, and the lack of temporal patterning in chirp time series, cast doubt on a communication goal for most chirps. Rather, the key determinants of chirping are the difference frequency between two interacting conspecifics as well as individual subjects' environmental and social experience. These conclusions by themselves will be hugely useful to the field. They will also allow scientists working on other "communication" systems to at least reconsider, and perhaps expand the precise goal of the probes used in those senses. There are a lot of data summarized in this paper, and thorough referencing to past work. For example, the paper concludes that there is a lack of evidence for stereotyped temporal patterning of chirp time series, as well as of sender-received chirp transitions beyond the known increase in chirp frequency during an interaction.

      The alternative hypotheses that arise from the work are that chirps are mainly used as environmental probes for better beat detection and processing and object localization.

      The authors also advance the interesting idea that the sinusoidal frequency modulations caused by chirps are the electric fish's solution to the minute (and undetectable by neural wetware) echo-delays available to it, due to the propagation of electric fields at the speed of light in water.

      Weaknesses:<br /> My main criticism is that the alternative putative role for chirps as probe signals that optimize beat detection could be better developed. The paper could be clearer as to what that means precisely. And there is an egg-and-chicken type issue as well, namely, that one needs a beat in order to "chirp" the beating pattern, but then how does chirping optimize the detection of the said beat? Perhaps the authors mean (as they wrote elsewhere in the paper) that the chirps could enhance electrosensory responses to the beat.

      A second criticism is that the study links the beat detection to underwater object localization. I did not see a sufficiently developed argument in this direction, nor how the data provided support for this argument. It is certainly possible that the image on the fish's body of an object in the environment will be slightly modified by introducing a chirp on the waveform, as this may enhance certain heterogeneities of the object in relation to its environment. The thrust of this argument seems to derive more from the notion of Fourier analysis with pulse type fish (and radar theory more generally) that the higher temporal frequencies in the beat waveform induced by the chirp will enable a better spatial resolution of objects. It remains to be seen whether this is significant.

      I would also have liked to see a proposal for new experiments that could test these possible new roles.

      The authors should recall for the readers the gist of Bastian's 2001 argument that the chirp "can adjust the beat frequency to levels that are better detectable" in the light of their current. Further, at the beginning of the "Probing with chirps" section, the 3rd way in which chirps could improve conspecific localization mentions the phase-shifting of the EOD. The authors should clarify whether they mean that the tuberous receptors and associated ELL/toral circuitry could deal with that cue, or that the T_unit pathway would be needed?

      On p.17 I don't understand what is meant by most chirps being produced possibly aligned with the field lines, since field lines are everywhere. And what is one to conclude from the comparison of Fig.6D and 7A? Likewise it was not clear what is meant by chirps having a detectable effect on randomly generated beats.

      In the section on Inconsistencies between behaviour and hypothesized signal meaning, the authors could perhaps nuance the interpretation of the results further in the context of the unrealistic copy of natural stimuli using EOD mimics. In particular, Kelly et al. 2008 argued that electrode placement mattered in terms of representation of a mimic fish onto the body of a real fish, and thus, if I properly understand the set up here, the movement would cause the mimic to vary in quality. This may nevertheless be a small confounding issue.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The present manuscript by Reham Abdelaziz and colleagues addresses the gating of Kv10.1, which belongs to the KCNH gene family and contains other subfamilies such as Kv11 (ERG) and Kv12 (ELK). They all have fundamental physiological roles, from cardiac repolarization to modulation of neuronal excitability and cancer physiology. They have a non-domain swapped architecture at the molecular level; both voltage and Ca-CaM modulate the channel function. They contain an intracellular gating ring formed by a PAS domain (in the N-term) that interacts intimately with the cNBHD (C-term) of the neighbor subunit but also with the cytosolic part of the voltage sensor domain and the C-linker. Mutations in the N- or C- terminus modify the gating dramatically. This complex network of interactions makes the cytosolic section and the PAS domain in particular, an alluring part of the channel to study as responsible for the coupling between the movements of the voltage sensor and the gating ring.

      In this paper, Reham Abdelaziz and colleagues address a fundamental question of how in the Kv10.1 channels, the movement of the voltage sensor is coupled to the intracellular gating ring rotation to make the channel conduct ions. The authors perform a series of deletions and mutations in the N-terminal section of the channel (PAS domain) and in the C-terminus (cNHBD) and observe a biphasic behavior on the modified EAG channels that they interpret as two populations of open states, one of them not visible in the WT and only available because of the mutations introduced. While this is a fascinating hypothesis and it fits with the depolarizing range of potentials of the WT channels, there are some issues that, if addressed, will make this work very valuable for biophysicists and molecular physiologists interested in voltage-gated ion channels.

      Strengths:<br /> The work presented addresses one of this channel's most fascinating and challenging features in the KCNH family. The authors use adequate mutations and electrophysiological techniques to address the questions they are trying to answer. They help them explore the behavior of the channels and build a Markov model to understand the underlying mechanism.

      Weaknesses:<br /> Although very well established, the experimental conditions used in the present manuscript introduce uncertainties, weakening their conclusions and complicating the interpretation of the results. The authors performed most of their functional studies in Cl-based solutions that can become a non-trivial issue when the range of voltages explored extends to very depolarizing potentials such as +120mV. Oocytes endogenously express Ca2+-activated Cl- channels that will rectify Cl- at very depolarizing potentials -due to an increase in the driving force- and contribute dramatically to the current's amplitude observed at the test pulse in the voltage ranges where the authors identify the second open state.

      The authors propose a two-layer Markov model with two open states approximating their results. However, the results obtained with the mutants suggest an inactivated state accessible from closed states and a change in the equilibrium between the close/inactivated/open states that could also explain the observed results; therefore, other models could approximate their data.

      That said, if the results obtained by the authors get confirmed under different experimental conditions in the absence of Cl-, this present work could be instrumental in understanding the gating mechanisms of the KCNH family.

    1. Reviewer #3 (Public Review):

      The manuscript describes new ligand-bound structures within the larger bile acid sodium symporter family (BASS). This is the primary advance in the manuscript, together with molecular simulations describing how sodium and the bile acids sit in the structure when thermalized. What I think is fairly clear is that the ligands are more stable when the sodiums are present, with a marked reduction in RMSD over the course of repeated trajectories. This would be consistent with a transport model where sodium ions bind first, and then the bile acid binds, followed by a conformational change to another state where the ligands unbind.

      While the authors mention that BASS transporters are thought to undergo an elevator transport mechanisms, this is not tested here. In my reading, all the crystal structures belong to the same conformational state in the overall transport cycle, and the simulations do not make an attempt to induce a transition on accessible simulation timescales. Instead, there is a morph between two inward facing states.

      The focus is on what kinds of substrates bind to this transporter, interrogating this with isothermal calorimetry together with mutations. With a Kd in the micromolar range, even the best binder, pantoate, actually isn't a particularly tight binder in the pharmaceutical sense. For a transporter, tight binding is not actually desirable, since the substrate needs to be able to leave after conformational change places it in a position accessible to the other side.

      The structure and simulation analysis falls into the mainstream of modern structural biology work.

    1. Reviewer #3 (Public Review):

      Summary:

      The unconventional myosin Myo10 (aka myosin X) is essential for filopodia formation in a number of mammalian cells. There is a good deal of interest in its role in filopodia formation and function. The manuscript describes a careful, quantitative analysis of Myo10 molecules in U2OS cells, a widely used model for studying filopodia, how many are present in the cytosol versus filopodia and the distribution of filopodia and molecules along the cell edge. Rigorous quantification of Myo10 protein amounts in a cell and cellular compartment are critical for ultimately deciphering the cellular mechanism of Myo10 action as well as understand the molecular composition of a Myo10-generated filopodium.<br /> Consistent with what is seen in images of Myo10 localization in many papers, the vast majority of Myo10 is in the cell body with only a small percentage (appr 5%) present in filopodia puncta. Interestingly, Myo10 is not uniformly distributed along the cell edge, but rather it is unevenly localized along the cell edge with one region preferentially extending filopodia, presumably via localized activation of Myo10 motors. Calculation of total molecules present in puncta based on measurement of puncta size and measured Halo-Myo10 signal intensity shows that the concentration of motor present can vary from 3 - 225 uM. Based on an estimation of available actin binding sites, it is possible that Myo10 can be present in excess over these binding sites.

      Strengths:

      The work represents an important first step towards defining the molecular stoichiometry of filopodial tip proteins. The observed range of Myo10 molecules at the tip suggests that it can accommodate a fairly wide range of Myo10 motors. There is great value in studies such as this and the approach taken by the authors gives one good confidence that the numbers obtained are in the right range.

      Weaknesses:

      One caveat (see below) is that these numbers are obtained for overexpressing cells and the relevance to native levels of Myo10 in a cell is unclear.<br /> An interesting aspect of the work is quantification of the fraction of Myo10 molecules in the cytosol versus in filopodia tips showing that the vast majority of motors are inactive in the cytosol, as is seen in images of cells. This has implications for thinking about how cells maintain this large population in the off-state and what is the mechanism of motor activation. One question raised by this work is the distinction between cytosolic Myo10 and the population found at the 'cell edge' and the filopodia tip. The cortical population of Myo10 is partially activated, so to speak, as it is targeted to the cortex/membrane and presumably ready to go. Providing quantification of this population of motors, that one might think of as being in a waiting room, could provide additional insight into a potential step-by-step pathway where recruitment or binding to the cortical region/plasma membrane is not by itself sufficient for activation.

      Specific comments -

      1) It is not obvious whether the analysis of numbers of Myo10 molecules in a cell that is ectopically overexpressing Myo10 is relevant for wild type cells. It would appear to be a significant excess based on the total protein stained blot shown in Fig S1E where a prominent band the size of tagged Myo10 seen in the transfected sample is almost absent in the WT control lane. Ideally, and ultimately an important approach, would be to work with a cell line expressing endogenously tagged Myo10 via genome engineering. This can be complicated in transformed cells that often have chromosomal duplications.

      However, even though there is an excess of Myo10 it would appear that activation is still under some type of control as the cytosolic pool is quite large and its localization to the cell edge is not uniform. But it is difficult to gauge whether the number of molecules in the filopodium is the same as would be seen in untransfected cells. Myo10 can readily walk up a filopodium and if excess numbers of this motor are activated they would accumulate in the tip in large numbers, possibly creating a bulge as and indeed it does appear that some tips are unusually large. Then how would that relate to the normal condition?

      2) Measurements of the localization of Myo10 focuses in large part on 'Myo10 punctae'. While it seems reasonable to presume that these are filopodia tips, the authors should provide readers with a clear definition of a puncta. Is it only filopodia tips, which seems to be the case? Does it include initiation sites at the cell membrane that often appear as punctae?<br /> Along those lines, the position of dim punctae along the length of a filopodium is measured (Fig 3D). The findings suggest that a given filopodium can have more than one puncta which seems at odds if a puncta is a filopodia tip. How frequently is a filopodium with two puncta seen? It would be helpful if the authors provided an example image showing the dim puncta that are not present at the tip.

      3) The concentration of actin available to Myo10 is calculated based on the deduction from Nagy et al (2010) that only 4/13 of the actin monomers in a helical turn are accessible to the Myo10 motor (discussion on pg 9; Fig S4). Subsequent work (Ropars et al, 2016) has shown that the heads of the antiparallel Myo10 dimer are flattened, but the neck is rather flexible, meaning that the motor can a variable reach (36 - 52 nm). Wouldn't this mean that more actin could be accessible to the Myo10 motor than is calculated here?

      4) Quantification of numbers of Myo10 molecules in filopodial puncta (Fig 3C) leads the authors to conclude that 'only ten or fewer Myo10 molecules are necessary for filopodia initiation' (pg 7, top). While this is a reasonable based on the assumption that the formation of a puncta ultimately results from an initiation event, little is known about initiation events and without direct observation of coalescence of Myo10 at the cell edge that leads to formation of a filopodium, this seems rather speculative.

    1. Reviewer #3 (Public Review):

      Summary:<br /> As clearly highlighted by the authors, a key plank in the ability of trypanosomes to evade the mammalian host's immune system is its high rate of endocytosis. This rapid turnover of its surface enables the trypanosome to 'clean' its surface removing antibodies and other immune effectors that are subsequently degraded. The high rate of endocytosis is likely reflected in the organisation and layout of the endosomal system in these parasites. Here, Link et al., sought to address this question using a range of light and three-dimensional electron microscopy approaches to define the endosomal organisation in this parasite.

      Before this study, the vast majority of our information about the make-up of the trypanosome endosomal system was from thin-section electron microscopy and immunofluorescence studies, which did not provide the necessary resolution and 3D information to address this issue. Therefore, it was not known how the different structures observed by EM were related. Link et al., have taken advantage of the advances in technology and used an impressive combination of approaches at the LM and EM level to study the endosomal system in these parasites. This innovative combination has now shown the interconnected-ness of this network and demonstrated that there are no 'classical' compartments within the endosomal system, with instead different regions of the network enriched in different protein markers (Rab5a, Rab7, Rab11).

      Strengths:<br /> This is a generally well-written and clear manuscript, with the data well-presented supporting the majority of the conclusions of the authors. The authors use an impressive range of approaches to address the organisation of the endosomal system and the development of these methods for use in trypanosomes will be of use to the wider parasitology community.

      I appreciate their inclusion of how they used a range of different light microscopy approaches even though for instance the dSTORM approach did not turn out to be as effective as hoped. The authors have clearly demonstrated that trypanosomes have a large interconnected endosomal network, without defined compartments and instead show enrichment for specific Rabs within this network.

      Weaknesses:<br /> My concerns are:

      i) there is no evidence for functional compartmentalisation. The classical markers of different endosomal compartments do not fully overlap but there is no evidence to show a region enriched in one or other of these proteins has that specific function. The authors should temper their conclusions about this point.

      ii) the quality of the electron microscopy work is very high but there is a general lack of numbers. For example, how many tomograms were examined? How often were fenestrated sheets seen? Can the authors provide more information about how frequent these observations were?

      iii) the EM work always focussed on cells which had been processed before fixing. Now, I understand this was important to enable tracers to be used. However, given the dynamic nature of the system these processing steps and feeding experiments may have affected the endosomal organisation. Given their knowledge of the system now, the authors should fix some cells directly in culture to observe whether the organisation of the endosome aligns with their conclusions here.

      iv) the discussion needs to be revamped. At the moment it is just another run through of the results and does not take an overview of the results presenting an integrated view. Moreover, it contains reference to data that was not presented in the results.

    1. Reviewer #3 (Public Review):

      In this study, Weiting Zhang et al., improved the editing efficiency of prime editor by reducing misfolded pegRNA interactions, and the improvement of efficiency for prime editor helped to expand its application range. It is a research paper on technology improvement. This study is somewhat innovative.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In this paper presented by Liu et al, native MS on the lipid A transporter MsbA was used to obtain thermodynamic insight into protein-lipid interactions. By performing the analyses at different lipid A concentrations and temperatures, dissociation constants for 2-3 lipid A binding sites were determined, as well as enthalpies were calculated using non-linear van't Hoff fitting. Changes in free Gibb's energies were then calculated based on the determined dissociation constants, and together with the enthalpy values obtained via van' t Hoff analysis, the entropic contribution to lipid binding (DeltaS*T) was indirectly determined.

      Strengths:<br /> This is an extensive high quality native MS dataset that provides unique opportunities to gain insights into the thermodynamic parameters underlying lipid A binding. In addition, it provides coupling energies between mutations introduced into MsbA, that are implicated in lipid A binding.

      Weaknesses:<br /> The data all rely on the accuracy of determining KD values for lipid binding to MsbA. For the weaker binding sites, the range of lipid concentrations probed were in fact too low to generate highly accurate data. Another weakness is a lack of clear evidence, which KD values belong to which of the possible lipid A binding sites.

    1. Reviewer #3 (Public Review):

      Summary and Strengths:

      The manuscript by Li et al. presents an elegant application of sterile insect technology (pgSIT) utilizing a CRISPR-Cas9 system to suppress mosquito vector populations. The pgSIT technique outlined in this paper employs a binary system where Cas9 and gRNA are conjoined in experimental crosses to yield sterile male mosquitoes. Employing a multiplexed strategy, the authors combine multiple gRNA to concurrently target various genes within a single locus. This approach successfully showcases the disruption of three distinct genes at different genomic positions, resulting in the creation of highly effective sterile mosquitoes for population control. The pioneering work of the Akbari lab has been instrumental in developing this technology, previously demonstrating its efficacy in Drosophila and Aedes aegypti.

      By targeting the female-specific splice isoform (exon-5) of doublesex in conjunction with intersex and β-tubulin, the researchers induce female lethality, leading to a predominance of sterile male mosquitoes. This innovation is particularly noteworthy as the deployment of sterile mosquitoes on a large scale typically requires substantial investment in sex sorting. However, this study circumvents this challenge through genetic manipulation.

      Weaknesses:

      One notable concern arising from this manuscript pertains to the absence of data regarding the potential off-target effects of the gRNA. Given the utilization of multiple gRNA, the risk of unintended mutations in non-target areas of the genome increases. With around 1% of males still capable of producing fertile offspring, understanding the frequency of unintended genome targeting becomes crucial. Such mutations could potentially become fixed within the natural population.<br /> The experiments are well-conceived, featuring suitable controls and repeated trials to yield statistically significant data. However, a primary issue with the manuscript lies in its data presentation. The authors' graphical representations are intricate and demand considerable attention to discern the nuances, especially due to the striking similarity between the symbols representing different genotypes. As it stands, the manuscript primarily caters to experts within the field, thereby warranting improvements in data visualization for broader comprehension.

    1. Reviewer #3 (Public Review):

      This manuscript describes CK21, a modified version of Triptolide, a natural compound with ant-cancer activities, to improve its bioavailability. The authors tested the compound in two human pancreatic cancer cell lines, in vitro and in vivo. The authors also use two human organoid lines derived from pancreatic cancer, and mouse KC and KPC cell lines. In all models, CK21 treatment induces dose-dependent cytotoxicity. In vivo, CK21 causes tumor regression. The authors perform gene expression analysis and show that treated organoids have generally lower transcription, consistent with cytotoxicity, and a reduction in the KFkB pathway activation.

      Key experiments that would strengthen the current manuscript are: the inclusion of normal cell lines and organoids, too, presumably, show no cytotoxic effect. If that is the case, the authors would have the opportunity to compare responses and determine whether a tumor-specific mechanism can be defined.

      The authors observe that few gene changes - besides from overall lowering in transcription, occur upon treatment with CK21. They suggest that the drug acts through inhibition of the NFkB pathway and an increase in reactive oxygen species (ROS). However, no experiments to test whether either/both of these findings explain the cytotoxic effect (rescue experiments would be particularly valuable).

      In the last figure, the authors text whether CK21 is immunosuppressive by testing immunity against a mis-matched tumor cell line (using KPC tumors, mixed strain, in mixed strain mice). The immunity against HLA mis-matched cells is a very strong immune reaction, and mild immune suppression might be missed, which diminishes the value of these findings.

    1. Reviewer #3 (Public Review):

      Dysbiosis has a substantial impact on host physiology. Using the nematode C. elegans and E.coli as a model of host-microbe interactions, Yang et al. defined a mechanism by which the host deals with gut dysbiosis to maintain fitness. They found that accumulation of E. coli in the intestine secreted indole, a tryptophan metabolite, and activated the transcription factor DAF-16. DAF-16 induced the expression of lys-7 and lys-8, which in turn limited E. coli proliferation in the gut of worms and maintained the longevity of worms. Finally, these authors demonstrated that indole-activated DAF-16 via TRPA-1 in neurons of worms.

      This study revealed a new mechanism of host-microbe interaction. The concept of their work is of broad interest and the results they present are convincing. However, there are some issues that need to be addressed to support the conclusions.

      Major issues<br /> 1. The authors isolated the crude extract from a high-performance liquid chromatograph (HPLC). A candidate compound was detected by activity-guided isolation and further identified as indole with mass spectrometry and NMR data.<br /> The HPLC fractionations and activity-guided isolation experiments should be described in more detail with a schematic figure to reveal how these experiments were performed and how indole was identified. Showing a chemical characterization of indole in Figure 2A is not sufficient for the evaluation of the results. Rather, a figure comparing the fraction 26th with standard indole by MS and NMR is more appealing.

      2. DAF-16::GFP was mainly located in the cytoplasm of the intestine in worms expressing daf-16p::daf-16::gfp fed live E. coli OP50 on Day 1 (Figure 1A and 1B). The nuclear translocation of DAF-16 in the intestine was increased in worms fed live E. coli OP50 on Days 4 and 7, but not in age-matched WT worms fed heat-killed (HK)E. coli OP50 (Figure 1A and 1B).<br /> Since DAF-16 functions downstream of DAF-2, have the levels of DAF-2 been tested during aging on OP50 and (HK)OP50, or with and without indole supplementation?

      3. In lines 155-157, the author argued that the increase in the levels of indole in worms results from the intestinal accumulation of live E. coli OP50, rather than exogenous indole produced by E. coli OP50 on the NGM plates.<br /> However, the work also showed that supplementation with indole (50-200 μM) could significantly increase the indole levels in young adult worms on Day 1 (Figure 2-figure supplement 3B), which could induce nuclear translocation of DAF-16 in worms (Figure 2B).<br /> This result suggested that worms could take in indole from outside culturing environment. The concentration of indole in OP50 and (HK)OP50 could be measured.

      4. Recent work showed that the multicopy DAF-16 transgene acts differently from the single copy GFP knockin DAF-16 transgene. Which DAF-16 transgene was used in this work?

      5. In lines 190-193, the author argued that the supplementation with indole (100 M) inhibited the CFU of E. coli K-12 in WT worms, but not daf-16(mu86) mutants, on Days 4 and 7 (Figure 3H and 3I). These results suggest that endogenous indole is involved in maintaining a normal lifespan in worms.<br /> This is overstating. The data here more likely suggest that indole could inhibit the proliferation of E.coli through DAF-16.

      6. Sonowal (2017) reported that AHR mediates indole-promoted lifespan extension at 16oC. Yet this work argued that RNAi knockdown of ahr-1 did not affect the nuclear translocation of DAF-16 in worms fed E. coli K12 strain on Day 7 (Figure 4-figure supplement 1A) or young adult worms treated with indole (100 M) for 24 h.<br /> The difference between these two works should be discussed.

      7. Sonowal (2017) conducted mRNA profiling for worms growing on K12 and K12△tnaA. Is TRPA1 in their de-regulated gene list? Have other de-regulated genes been tested in this work?

      8. How does indole activate TRPA1? In the absence of trpa1, what is the concentration of indole in worms? Since TRPA1 is a channel, is there any possibility that TRPA1 is involved in the transport of indole? It is really interesting and surprising that neuronal TRPA-1, but not intestinal TRPA-1, mediates the beneficial effect of indole. How does indole specifically activate TRPA-1 in neurons to preserve the longevity of worms?

      9. How neuronal- and intestinal-specific knockdown of trpa-1 by RNAi was conducted? And what is the tissue-specific expression pattern of trap-1? Speculating how indole was transported to neuron cells is pretty appealing.

      10. Supplementation with indole only up-regulated the expression of lys-7 and lys-8 in worms subjected to intestinal-specific (Figure 7-figure supplement 2C), but not neuronal-specific, RNAi of trpa-1 (Figure 7-figure supplement 2D).<br /> If this is the case, should the addition of indole specifically induce the expression of lys-7p::gfp or lys-8p::gfp in neurons?

      11. The authors demonstrated that K-12△tnaA strain had undetectable tnaA mRNA or indole levels. Furthermore, the deletion of tnaA significantly inhibited the nuclear translocation of DAF-16 in worms. However, mutations in E. coli still have non-specific effects as there are several transposon insertions or polar mutations influencing downstream genes. The authors should demonstrate that only disruption of TnaA causes the failure of nuclear translocation of DAF-16.

    1. Reviewer #3 (Public Review):

      The authors are designing a novel continuous evidence accumulation task to look at neural and behavioral adaptations of continuously changing evidence. They particularly focus on centroparietal EEG potential that has been previously linked with evidence accumulation. This paper provides a novel method and analysis to investigate evidence accumulation in a continuous task set-up.

      I am not familiar with either the EEG or evidence accumulation literature, therefore cannot comment on the strength of the findings related to centroparietal EEG in evidence accumulation. I have therefore commented only on the coherence and details of the method and clarity of the argumentation and results.

      The main strength is in the task design which is novel and provides an interesting approach to studying continuous evidence accumulation. Because of the continuous nature of the task, the authors design new ways to look at behavioral and neural traces of evidence. The reverse-correlation method looking at the average of past coherence signals enables us to characterize the changes in signal leading to a decision bound and its neural correlate.<br /> By varying the frequency and length of the so-called response period, that the participants have to identify, the method potentially offers rich opportunities to the wider community to look at various aspects of decision-making under sensory uncertainty.

      The main weaknesses that I see lie within the description and rigor of the method. The authors refer multiple times to the time constant of the exponential fit to the signal before the decision but do not provide a rigorous method for its calculation and neither a description of the goodness of the fit. The variable names seem to change throughout the text which makes the argumentation confusing to the reader. The figure captions are incomplete and lack clarity.<br /> The authors claim that the method enables continuous analysis of decision-making and evidence accumulation which is true. The analysis of the signals that come prior to the decision provides a rich opportunity to characterize decision bound in this task. The behavioral and neural analyses globally lack clarity and description and thus do not strongly support the claims of the paper. The interpretation of the figures within the figure caption and the lack of a neutral and exhaustive description of what is being shown prevent the claims to be strongly supported.

      The continuous nature of the task and the computation of those evidence kernels are valuable methods to look at evidence accumulation that could be of use within the community. However, due to the lack of rigor in the analysis and description of the method, it is hard to know if the current dataset is under-exploited or whether the choice of the parameters for this set of experiment does not enable stronger claims.

    1. Reviewer #3 (Public Review):

      Akter et al. investigated how the astroglial Gi signaling pathway in the rat anterior cingulate cortex (ACC) affects cognitive functions, in particular schema memory formation. Using a stereotactic approach they intracranially introduced AAV8 vectors carrying mCherry-tagged hM4Di DREADD (Designer Receptor Exclusively Activated by Designer Drugs) under astrocyte selective GFAP promotor (AAV8-GFAP-hM4Di-mCherry) into the AAC region of the rat brain. hM4Di DREADD is a genetically modified form of the human M4 muscarinic (hM4) receptor insensitive to endogenous acetylcholine but is activated by the inert clozapine metabolite clozapine-N-oxide (CNO), triggering the Gi signaling pathway. The authors confirmed that hM4Di DREADD is selectively expressed in astrocytes after the application of the AAV8 vector by analysing the mCherry signals and immunolabeling of astrocytes and neurons in the ACC region of the rat brain. They activated hM4Di DREADD (Gi signalling) in astrocytes by intraperitoneal administration of CNO and measured cognitive functions in animals after CNO administration. Activation of Gi signaling in astrocytes by CNO application decreased paired-associate (PA) learning, schema formation, and memory retrieval in tested animals. This was associated with a decrease in cAMP in astrocytes and L-lactate in extracellular fluid as measured by immunohistochemistry in situ and in awake rats by microdialysis, respectively. Administration of exogenous L-lactate rescued the astroglial Gi-mediated deficits in PA learning, memory retrieval, and schema formation, suggesting that activation of astroglial Gi signalling downregulates L-lactate production in astrocytes and its transport to neurons affecting memory formation. Authors also show that expression level of proteins involved in mitochondrial biogenesis, which is associated with cognitive functions, is decreased in neurons, when Gi signalling is activated in astrocytes, and rescued when exogenous L-lactate is applied, suggesting the implication of astrocyte-derived L-lactate in the maintenance of mitochondrial biogenesis in neurons. The latter depended on lactate MCT2 transporter activity and glutamate NMDA receptor activity.

      The paper is very well written and discussed. The conclusions of this paper are well supported by the data. Although this is a study that uses established and previously published methodologies, it provides new insights into L-lactate signalling in the brain, particularly in AAC, and further confirms the role of astroglial L-lactate in learning and memory formation. It also raises new questions about the molecular mechanisms underlying astrocyte-derived L-lactate-mediated mitochondrial biogenesis in neurons and its contribution to schema memory formation.

      • The authors discuss astrocytic L-lactate signalling without considering the recently discovered L-lactate-sensitive Gs and Gi protein-coupled receptors in the brain, which are present in both astrocytes and neurons. The use of nonendogenous L-lactate receptor agonists (Compound 2, 3-chloro-5-hydroxybenzoic acid) would clarify the implication of L-lactate receptor signalling in schema memory formation.

      • The use of control animals transduced with an "empty" AAV9 vector (AAV8-GFAP-mCherry) compared with animals transduced with AAV8-GFAP-hM4Di-mCherry throughout the study would strengthen the results of this study, since transfection itself, as well as overexpression of the mCherry protein, may affect cell function.

    1. Reviewer #3 (Public Review):

      Seeking a selective inhibitor that precisely inhibits on-target activities and avoids side effects is a major challenge in the field of drug discovery and therapeutics. The authors proposed an alternative method that combines multiple inhibitors to maximize on-target inhibition and minimize off-target inhibition. Focusing on the kinase-inhibitor interaction dataset, the authors developed a quantitative way to measure the selectivity for mixtures of inhibitors by using the Jenson-Sahannon distance metric. The method sounds technical.

      From their computation and assays, the multi-compound-multitarget scoring (MMS) method framework was validated to be able to select a combination of inhibitors that is more selective than a single highly selective inhibitor for one kinase target, or for multiple targets. The MMS method is a promising solution to reduce off-target effects and could be applicable to other inhibitor-target interactions. My suggestion is that a comparative analysis of MMS with other similar methods can be conducted to highlight the advantage of MMS over others.

      The paper is not well organized and not easily readable. For example, first, the captions of the figures are two long; some of these texts could be moved to methods or results sections. Second, the concept of "penalty distribution" or "penalty prior" is vital to understand the MMS method, thus, at least a brief definition and introduction should be put in the main text rather than supporting method, as well as the rationale to use it. Third, the method section can be divided into several subsections with clear organizations and connections. Fourth, what is the difference between "a less selective inhibitor profile" and "an even less selective inhibitor profile" in Figure 3? Overall, the details of the paper are difficult to understand in the current version. I suggest rewriting<br /> the paper in a more concise and logical style.

    1. Reviewer #3 (Public Review):

      This study investigated cognitive mechanisms underlying approach-avoidance behavior using a novel reinforcement learning task and computational modelling. Participants could select a risky "conflict" option (latent, fluctuating probabilities of monetary reward and/or unpleasant sound [punishment]) or a safe option (separate, generally lower probability of reward). Overall, participant choices were skewed towards more rewarded options, but were also repelled by increasing probability of punishment. Individual patterns of behavior were well-captured by a reinforcement learning model that included parameters for reward and punishment sensitivity, and learning rates for reward and punishment. This is a nice replication of existing findings suggesting reward and punishment have opposing effects on behavior through dissociated sensitivity to reward versus punishment.

      Interestingly, avoidance of the conflict option was predicted by self-reported task-induced anxiety. Importantly, when a subset of participants were retested over 1 week later, most behavioral tendencies and model parameters were recapitulated, suggesting the task may capture stable traits relevant to approach-avoidance decision-making.

      The revised paper commendably adds important additional information and analyses to support these claims. The initial concern that not accounting for participant control over punisher intensity confounded interpretation of effects has been largely addressed in follow-up analyses and discussion.

      This study complements and sits within a broad translational literature investigating interactions between reward/punishers and psychological processes in approach-avoidance decisions.

    1. Reviewer #3 (Public Review):

      This study focused on collecting and analyzing odour samples from a wide range of vertebrate species to understand the composition and characteristics of vertebrate body odours. The researchers used dynamic headspace sampling to collect odour samples from 120 individual animals representing 64 vertebrate species. They collected odour from both live animals and hair samples, with hair being a reasonable proxy for mammalian body odour.

      The odour samples were analyzed using thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) to identify compounds and estimate their abundance. They identified a total of 116 compounds in the vertebrate odour extracts, including aldehydes, ketones, alcohols, aromatics, terpenes, and hydrocarbons. The compounds varied in prevalence across species, but a large number of compounds were found in at least 15 samples, indicating a broad overlap in odour composition among vertebrates.

      The study compared the vertebrate odour space to floral odour space and found that vertebrate odours shared more compounds compared to floral odours. Floral odours tended to be less complex and more likely to contain unique compounds found only in a single species. The analysis also revealed that odour profiles did not show strong phylogenetic signals, indicating that closely related species did not necessarily have similar odour profiles. However, within-species clustering was observed, suggesting that body odour composition may be species-specific.

      The researchers also investigated specific compounds that could serve as host-seeking cues for animals. They compared the odour of live vertebrate hosts to non-host stimuli and identified straight-chain aldehydes as abundant compounds in vertebrate odours. These aldehydes were found at substantially lower levels in non-host stimuli. Additionally, when comparing human odour to other vertebrate species and non-host stimuli, several compounds, including decanal, sulcatone, geranylacetone, and undecanal, emerged as strong predictors of human hosts.

      Three shortcomings of the study can be highlighted:<br /> 1. Undersampling of certain compound classes: The study acknowledged that they undersampled carboxylic acids, which are generally too polar or non-volatile to be analyzed without a special derivatization step. This limitation could have resulted in an incomplete understanding of the full range of compounds present in vertebrate odours.<br /> 2. Missing highly volatile compounds: The study mentioned the difficulty of capturing and quantifying highly volatile compounds reliably. This limitation suggests that certain compounds with high volatility may not have been adequately represented in the analysis, potentially impacting the comprehensiveness of the odour space.<br /> 3. Lack of controlled experiment for species replicates: Although the study observed strong within-species clustering for some species in their dataset, they cautioned that many of the species replicates came from the same farm or zoo, which could confound the results with sample origin. The lack of a well-controlled experiment limits the generalizability of the findings regarding consistent and characteristic odour profiles across animals.

      These shortcomings should be considered when interpreting the results of the study and could be addressed in future research to further advance our understanding of vertebrate body odours.

      The manuscript highlights three open questions. First, the authors discuss the implications of the differences between vertebrate and floral odors for olfactory coding in blood feeders and floral visitors. Specialist mosquitoes require odor blends to detect hosts, while honeybees can generalize from attractive mixtures to individual components. The authors suggest that these differences may be influenced by the different odor spaces mosquitoes and bees inhabit.

      Second, the authors note that although compounds in vertebrate odor are shared broadly across species, they are also common in other natural odors. This poses a challenge for generalist blood feeders, but the study suggests that straight-chain, saturated aldehydes, which are highly abundant in vertebrate odors, may still serve as useful indicators. These aldehydes have been shown to enhance host-seeking in mosquitoes and are even used by malaria parasites and orchids to attract mosquitoes. However, the study did not capture highly volatile or polar compounds that may also indicate the presence of a vertebrate host.

      Third, the manuscript discusses the lack of phylogenetic signal in the odors of mammals, which make up the majority of the sampled species. This may explain why few mosquitoes exhibit preferences for taxonomic groups at the family or order level. The study suggests that within a species, there is high consistency in odor-blend composition, which may mediate species-specific host preference through olfactory cues.

      The authors also focus on odor features that may serve as valuable cues for human specialists. They find that certain components of human odor, such as sulcatone, geranylacetone, decanal, and undecanal, are distinctive and enriched in human odor. Undecanal, despite being less common across non-human animals and in nature overall, is a more reliable indicator of human odor than decanal. The two ketones are even more reliable indicators. The authors speculate that the reliance on aldehydes by human-specialist mosquitoes may be due to the evolutionary history of these mosquitoes, which arose from an ancestral generalist subspecies.

      In conclusion, this manuscript presents a quantitative study of vertebrate animal odors, highlighting the differences between vertebrate and floral odors. It raises questions about olfactory coding in blood feeders and floral visitors, the challenges faced by generalist blood feeders, and the lack of phylogenetic signal in mammalian odors. The study also explores odor features that may be valuable cues for human specialists and discusses the evolutionary implications of these findings.

    1. Reviewer #3 (Public Review):

      This manuscript deal with the sex-related gene, DMRT1, showing that is has a testis-promoting function in the rabbit. Loss-of-function studies the mouse and human, DMRT1 has a role in testis maintenance after birth, although forced expression in mouse can induce testis formation.

      The authors used CRISPR/Cas9 genome editing to generate DMRT1-/- rabbit embryos. The gonads of these embryos developed as ovaries. Interestingly, in addition Y-linked SRY, DMRT1 is required for timely up-regulation of SOX9 during Sertoli cell differentiation in the male gonad. This is quite different to the situation in mouse, where Dmrt1 is not required in the testis until after birth (and Sry induced up-regulation of Sox9 hence does not require Dmrt1).

      The work adds to the field of sex determination by further broadening our understanding of the DMRT1 gene and the evolution of gonadal sex determination.

      In the Discussion section, it is suggested that DMRT1 could act as a pioneering factor to allow SRY action upon Sox9 in the rabbit model. The data show that DMRT1 may be more central to testis formation in mammals than previously considered. The work supports the notion that our understanding that the genetics of gonadal development (and indeed development more generally) should not rest solely on findings in the mouse.

    1. Reviewer #3 (Public Review):

      It is well established that there is extensive post-transcriptional gene regulation in nervous systems, including the fly brain. For example, dynamic regulation of hundreds of genes during photoreceptor development could only be observed at the level of translated mRNAs, but not the entire transcriptomes. The present study instead addresses the role of differential translational regulation between cell types (or rather classes: neurons and glia, as both are still highly heterogenous groups) in the adult fly brain. By performing bulk RNA-seq and Ribo-seq on the same lysates, the authors are able to compare the translation efficiency (TE) of all transcripts between neurons and glia. Many genes display differential TE, but interestingly, they tend to be the genes that already show strong differences at their mRNA level. The most striking observation is the finding that neuronal transcripts in glia display increased ribosome stalling at their 5' UTR, and in particular at the start codons of short "upstream ORFs". This could suggest that glia specifically employ a mechanism to upregulate upstream ORF translation, enabling them to better suppress the expression of the genes that have them. And neuronal genes tend to have longer 5' UTRs, perhaps to facilitate this type of regulation.

      However, it is difficult to evaluate the functional significance of these differences because the authors provide only one follow-up experiment to their RNA-seq analysis. Venus expressed with the Rh1 UTR sequences may be displaying differential levels between glia and neurons, but I find this image (Fig. 5C) rather unconvincing to support that conclusion. There are no quantifications of colocalization or even sample size information provided for this experiment. And if there is indeed a difference, it would still be difficult to argue this is because of the 5' stalling phenomenon authors observe with Rh1, because they switched both the 5' and 3' UTRs.

      I also find it puzzling that the TE differences between the groups are mostly among the transcripts that are already strongly differentially expressed at the transcriptional level. The authors would like to frame this as a mechanism of 'contrast sharpening'; but it is unclear why that would be needed. Rh1, for instance, is not just differentially expressed between neurons and glia, but it is actually only expressed by a very specific neuronal type (photoreceptors). Thus it's not clear to me why the glia would need this 5' stalling mechanism to fully suppress Rh1 expression, while all the other neurons can apparently do so without it.

    1. Reviewer #3 (Public Review):

      Summary: The study adds to the existing data that have established that cortical development in rhesus macaque is known to recapitulate multiple facets cortical development in humans. The authors generate and analyze single cell transcriptomic data from the timecourse of embryonic neurogenesis.

      Strengths:<br /> Studies of primate developmental biology are hindered by the limited availability and limit replication. In this regard, a new dataset is useful.

      The study analyzes parietal cortex, while previous studies focused on frontal and motor cortex. This may be the first analysis of macaque parietal cortex and, as such, may provide important insights into arealization, which the authors have not addressed.

      Weaknesses:<br /> The number of cells in the analysis is lower than recent published studies which may limit cell representation and potentially the discovery of subtle changes.

      The macaque parietal cortex data is compared to human and mouse pre-frontal cortex. See data from PMCID: PMC8494648 that provides a better comparison.

      A deeper assessment of these data in the context of existing studies would help others appreciate the significance of the work.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The present article attempts to answer both the ultimate question of why different stinging behaviours have evolved in Cnidiarians with different ecological niches and shed light on the proximate question of which electro-physiological mechanisms underlie these distinct behaviours.

      Account of major methods and results:<br /> In the first part of the paper, the authors try to answer the ultimate question of why distinct dependencies of the sting response on internal starvation levels have evolved. The premise of the article that Exaiptasia's nematocyte discharge is independent of the presence of prey (Artemia nauplii) as compared to Nematostella's significant dependence of the discharge on the presence of actual prey, is shown to be a robust phenomenon justified by the data in Figure 1.

      The hypothesis that defensive vs. predatory stinging leads to different nematocyte discharge behaviours is analysed in mathematical models based on the suitable framework of optimal control/decision theory. By assuming functional relations between the:<br /> 1) cost of a full nematocyte discharge and the starvation level.<br /> 2) probability of successful predation/avoidance on the discharge level.<br /> 3) desirability/reward of the reached nutritional state.

      Based on these assumptions of environmental and internal influences, the optimal choice of attack intensity is calculated using Bellman's equation for this problem. The model predictions are validated using counted nematocytes on a coverslip. The scaling of normalised nematocyte discharge numbers with scaled starvation time is qualitatively comparable to what is predicted from the models. The abundance of nematocytes in the tentacles was, on the other hand, independent of the starvation state of the animals.

      Next, the authors turn to investigate the proximate cause of the differential stinging behaviour. The authors have previously reported convincing evidence that a strongly inactivating Cav2.1 channel ortholog (nCav) is used by Nematostella to prevent stinging in the absence of prey (Weir et al. 2020). This inactivation is released by hyperpolarising sensory inputs signalling the presence of prey. In this article, it is clearly shown by blocking respective currents that Exaiptasia, too, relies on extracellular Ca2+ influx to initiate stinging. Patch clamp data of the involved currents is provided in support. However, the authors find that in addition to the nCav with a low-inactivation threshold, Exaiptasia has a splice variant with a higher inactivation threshold expressed (Figure 3D).

      The authors hypothesise that it is this high-threshold nCav channel population that amplifies any voltage depolarisation to release a sting irrespective of the presence of prey signals. They found that the β subunit that is responsible for Nematostella's unusually low inactivation threshold exists in Exaiptasia as two alternative splice isoforms. These N-terminus variants also showed the greatest variation in a phylogenetic comparison (Figure 5), rendering it a candidate target for mutations causing variation in stinging responses.

      Appraisal of methodology in support of the conclusions:<br /> The authors base their inference on a normative model that yields quantitative predictions which is an exciting and challenging approach. The authors take care in stating the model assumptions as well as showing that the data indeed does not contradict their model predictions. The interesting comparative nature of the modelling part of the study is complicated by slightly different cost assumptions for the two scenarios. Hence, Figure 2 needs to be carefully digested by readers.

      It would be even more prudent to analyse the same set of cost-of-discharge vs. starvation scenarios for both species. Specifically, for Nematostella the complete cost-of-discharge vs starvation-state curves as for Exaiptasia (Figure 2E, example 2-4) could be used. It is likely that the differential effect size of Nematostella and Exaiptasia behaviour is the strongest if only the flat cost-of-discharge vs starvation is used (Figure 2A) for Nematostella. But as a worst-case comparison the other curves, where the cost to the animal scales with starvation would be a good comparison. This could help the reader to understand when the different prediction of Nematostella's behaviour breaks down. In addition, this minor change could shed light on broader topics like common trade-offs in pursuit predation.

      The qualitatively similar scaling of the model-derived relation between starvation and sting intensity with the counted nematocytes for different feeding pauses is evidence that feeding has indeed been optimised for the two distinct ecological niches.<br /> To prove that Exaiptasia uses a similar Ca2+ channel ortholog as well as a different splice variant, the authors employed both clean electrophysiological characterisation (Figure 3) as well as transcriptomics data (Figure 4S1).

      To strengthen the authors' hypothesis that variation in the N-termini leads to changes in Ca2+ channel inactivation and hence altered stinging, the response sequence variability of 6 Cnidaria was analysed.

      Additional context:<br /> Although, the present article focuses on nematocytes alone, currently, there has been a refocus in neurobiology on the nervous systems of more basal metazoans, which received much attention already in the works of Romanes (1885). In part, this is driven by the goal to understand the early evolution of nervous systems. Cnidarians and Ctenophors are exciting model organisms in this venture. This will hopefully be accompanied by more comparative studies like the present one. Some of the recent literature also uses computational models to understand mechanisms of motor behaviour using full-body simulations (Pallasdies et al. 2019; Wang et al. 2023), which can be thought of as complementary to the normative modelling provided by the authors.

      Comparative studies of recent Cnidarians, such as the present article, can shed light on speculative ideas on the origin of nervous systems (Jékely, Keijzer, and Godfrey-Smith 2015). During a time (the Ediacarium/Cambrium transition) that has seen the genesis of complex trophic foodwebs with preditor-prey interaction, symbioses, but also an increase of body sizes and shapes, multiple ultimate causes can be envisioned that drove the increase in behavioural complexity. The authors show that not all of it needs to be implemented in dedicated nerve cells.

      References:

      Jékely, Gáspár, Fred Keijzer, and Peter Godfrey-Smith. 2015. "An Option Space for Early Neural Evolution." Philosophical Transactions of the Royal Society B: Biological Sciences 370 (December): 20150181. https://doi.org/10.1098/rstb.2015.0181.

      Pallasdies, Fabian, Sven Goedeke, Wilhelm Braun, and Raoul-Martin Memmesheimer. 2019. "From Single Neurons to Behavior in the Jellyfish Aurelia Aurita." eLife 8 (December). https://doi.org/10.7554/elife.50084.

      Romanes, G. J. 1885. Jelly-Fish, Star-Fish and Sea-Urchins: Being a Research on Primitive Nervous Systems. Appleton.

      Wang, Hengji, Joshua Swore, Shashank Sharma, John R. Szymanski, Rafael Yuste, Thomas L. Daniel, Michael Regnier, Martha M. Bosma, and Adrienne L. Fairhall. 2023. "A Complete Biomechanical Model of hydra Contractile Behaviors, from Neural Drive to Muscle to Movement." Proceedings of the National Academy of Sciences 120 (March). https://doi.org/10.1073/pnas.2210439120.

      Weir, Keiko, Christophe Dupre, Lena van Giesen, Amy S-Y Lee, and Nicholas W Bellono. 2020. "A Molecular Filter for the Cnidarian Stinging Response." eLife 9 (May). https://doi.org/10.7554/elife.57578.

    1. Reviewer #3 (Public Review):

      The authors present here a comparative meta-analysis analysis designed to detect evidence for a reproduction/ survival trade-off, central to expectations from life history theory. They present variation in clutch size within species as an observation in conflict with expectations of optimisation of clutch size and suggest that this may be accounted for from weak selection on clutch size. The results of their analyses support this explanation - they found little evidence of a reproduction - survival trade-off across birds. They extrapolated from this result to show in a mathematical model that the fitness consequences of enlarged clutch sizes would only be expected to have a significant effect on fitness in extreme cases, outside of normal species' clutch size ranges. Given the centrality of the reproduction-survival trade-off, the authors suggest that this result should encourage us to take a more cautious approach to applying concepts the trade-off in life history theory and optimisation in behavioural ecology more generally. While many of the findings are interesting, I don't think the argument for a major re-think of life history theory and the role of trade-offs in fitness maximisation is justified.

      The interest of the paper, for me, comes from highlighting the complexities of the link between clutch size and fitness, and the challenges facing biologists who want to detect evidence for life history trade-offs. Their results highlight apparently contradictory results from observational and experimental studies on the reproduction-survival trade-off and show that species with smaller clutch sizes are under stronger selection to limit clutch size.

      Unfortunately, the authors interpret the failure to detect a life history trade-off as evidence that there isn't one. The construction of a mathematical model based on this interpretation serves to give this possible conclusion perhaps more weight than is merited on the basis of the results, of this necessarily quite simple, meta-analysis. There are several potential complicating factors that could explain the lack of detection of a trade-off in these studies, which are mentioned and dismissed as unimportant (lines 248-250) without any helpful, rigorous discussion. I list below just a selection of complexities which perhaps deserve more careful consideration by the authors to help readers understand the implications of their results:

      • Reproductive output is optimised for lifetime reproductive success and so the consequences of being pushed off the optimum for one breeding attempt are not necessarily detectable in survival but in future reproductive success (and, therefore, lifetime reproductive success).<br /> • The analyses include some species that hatch broods simultaneously and some that hatch sequentially (although this information is not explicitly provided (see below)). This is potentially relevant because species which have been favoured by selection to set up a size asymmetry among their broods often don't even try to raise their whole broods but only feed the biggest chicks until they are sated; any added chicks face a high probability of starvation. The first point this observation raises is that the expectation of more chicks= more cost, doesn't hold for all species. The second more general point is that the very existence of the sequential hatching strategy to produce size asymmetry in a brood is very difficult to explain if you reject the notion of a trade-off.<br /> • For your standard, pair-breeding passerine, there is an expectation that costs of raising chicks will increase linearly with clutch size. Each chick requires X feeding visits to reach the required fledge weight. But this is not the case for species which lay precocious chicks which are relatively independent and able to feed themselves straight after hatching - so again the relationship of care and survival is unlikely to be detectable by looking at the effect of clutch size but again, it doesn't mean there isn't a trade-off between breeding and survival.<br /> • The costs of raising a brood to adulthood for your standard pair-breeding passerine is bound to be extreme, simply by dint of the energy expenditure required. In fact, it was shown that the basal metabolic rate of breeding passerines was at the very edge of what is physiologically possible, the human equivalent being cycling the Tour de France (Nagy et al. 1990). If birds are at the very edge of what is physiologically possible, is it likely that clutch size is under weak selection?<br /> • Variation in clutch size is presented by the authors as inconsistent with the assumption that birds are under selection to lay the Lack clutch. Of course, this is absurd and makes me think that I have misunderstood the authors' intended point here. At any rate, the paper would benefit from more clarity about how variable clutch size has to be before it becomes a problem for optimality in the authors' view (lines 84-85; line 246). See Perrins (1965) for an exquisite example of how beautifully great tits optimise clutch size on average, despite laying between 5-12 eggs.

      [Editors’ note: the authors had already made data files publicly available, available here, https://doi.org/10.5061/dryad.q83bk3jnk.]

    1. Reviewer #3 (Public Review):

      This contribution focuses on the zinc(II) transporter YiiP, a widely used model system of the Cation Diffusion Facilitator (CDF) superfamily. CDF proteins function as dimers and are typically involved in the maintenance of homeostasis of transition metal ions in organisms from all kingdoms of life. The system investigated here, YiiP, is a prokaryotic zinc(II)/H+ antiporter that exports zinc(II) ions from the cytosol. The authors addressed multiple crucial questions related to the functioning of YiiP, namely the specific role of the three zinc(II) binding sites present in each protomer, the zinc(II):H+ stoichiometry of antiport, and the impact of protonation on the transport process. Clarity on all these aspects is required to reach a thorough understanding of the transport cycle.

      The experimental approach implemented in this work consisted of a combination of site-directed mutagenesis, high-quality 3D structural determination by cryoEM, microscale electrophoresis, thermodynamic modeling and molecular dynamics. The mutants generated in this work removed one (for the structural characterization) or two (for microscale electrophoresis) of the three zinc(II) binding sites of YiiP, allowing the authors to unravel respectively the structural role of metal binding at each site and the metal affinity of every site individually. pH-dependent measurements and constant pH molecular dynamics simulations, together with the metal affinity data, provided a detailed per-site overview of dissociation constants and Ka values of the metal-binding residues, casting light on the interplay between protonation and metal binding along the transport cycle. This thermodynamic modeling constitutes an important contribution, with consistent experimental information gained from the various mutants.

      Overall the authors were successful in providing a model of the transport cycle (Figure 5) that is convincing and well supported by the experimental data. The demonstration that two protomers act asymmetrically during the cycle is another nice achievement of this work, confirming previous suggestions. This novel overview of the cycle can constitute a basis for future work on other systems such as human ZnT transporters, also exploiting a methodological approach for the thermodynamic of these proteins similar to the one deployed here. The latter approach may be applicable also to other superfamilies of metal transporters.

    1. Reviewer #3 (Public Review):

      Summary<br /> CLC-2 channels play an important role in cellular homeostasis and electrical excitability, and dysfunctions are associated with aldosteronism and leukodystrophy. Structural insights into the functioning of CLC-2 are just emerging. CLC-2 channels are distinct among the members of the CLC family in that they are activated by hyperpolarization. Earlier studies have implicated channel regulation by a "ball-and-chain" type of channel block mechanism which underlies its strong rectification and use-dependent "run-up" properties. Structural insights into these mechanisms are currently lacking. In this manuscript, Xu et al present CryoEM structures of CLC-2 in the apo and inhibitor-bound conformations in the 2.5-2.7 A resolution range. Several novel structural features are presented that lend support to the "ball-and chain" model, identify an interesting role for the c-terminal domain in gating, and establish the interaction pocket for AK-42. Electrophysiology and simulations nicely support the structural work. Overall, an elegant study, with high-quality data, and a well-presented manuscript.

      Strengths<br /> 1. The cryoEM data presented reveals that the channel is in a closed conformation at depolarizing potential (0 mv). Structures for the closed state of CLCs were not previously available. A strong density for Glu205, which constitutes the Egate, allows for an unambiguous assignment of its position at the Scen Cl-binding site, thereby establishing the basis for the block in the closed channel.<br /> 2. The apo state particles were sorted into two classes that differ in the conformation of the CTD. A previously unobserved rearrangement of the CBS region in the CTD is reported wherein the CTD is positioned closer to the TM region in one of the subunits, breaking the C2 symmetry. The data implicates a role for the conformational flexibility of CTD in gating.<br /> 3. The most interesting finding of this work is, perhaps, the presence of an additional density, corresponding to a hairpin-like structure, that is seen only at the subunit where the CTD is positioned away from the TMD. The authors propose that the additional density corresponds to a 13 aa stretch in the N-terminal region. The position of the hairpin at the intracellular mouth of the CL-permeation pathway is likely to impede ion conduction, by a mechanism analogous to the "ball-and-chain" proposed in other voltage-gated channels.<br /> 4. The structure of CLC-2 in complex with a selective inhibitor AK-42 is in a conformation very similar to that of the apo state, with a clear additional density for the AK-42 molecule. Binding site interaction provides insights into AK-42 selectivity for CLC-2 vs CLC-1.

      Weaknesses<br /> Although the conformation-dependent placement of the hairpin loop is convincing based on the density, the sequence assigned to this region is not conclusive.

    1. Reviewer #3 (Public Review):

      This paper is a response to the report by Lin et al., bioRxiv 2022 (DOI: https://doi.org/10.1101/550640) that mutations in the genome of SiR were identified, which could result in a canonical G-deleted Rabies virus.

      Strengths:

      First, the authors found that SiR production from cDNA leads to revertant-free viruses by analyzing a total of 400 individual viral particles obtained from 8 independent viral productions with Sanger sequencing. Next, they identified the molecular mechanisms of mutations in the SiR; they found that extensive amplification of packaging cells HEK-TGG leads to the selection of clones with suboptimal TEVp expression level, which leads to the accumulation of revertant mutants, where, as the authors discuss, the revertant mutants have a specific replication advantage. Based on these observations, the authors recommend producing SiR freshly from cDNA with low passage packaging cells. Lastly, the authors observed that SiR-infected hippocampal and cortical neurons can survive for longer periods of time than the neurons infected with revertant mutants or a canonical G-deleted Rabies virus by combining next-generation sequencing of RNAs isolated from infected tissue and 2-photon in vivo longitudinal imaging of infected cortical neurons. Together, these findings support the idea that the degradation of N by PEST-mediated cellular mechanism results in the self-inactivation of SiR as suggested in the original SiR manuscript (Ciabatti et al., Cell 2017). Thus, SiR remains a powerful viral tool for the chronic investigation of neuronal circuitry and function as long as the virus is prepared in a way the authors recommend.

      Weaknesses:

      While most of the findings are solid, some conclusions are not fully supported by the data presented. The authors need to address the following points:

      1. In Figure 3B-D, the authors concluded that SiR-CRE -infected cells did not show cell death in contrast to Rab-CRE and SiR-G453X, but it cannot be fully supported only by this experiment. The authors should consider the potential variance in infection efficiency in each experimental animal and show evidence of suppressed cell death. In addition, it needs to be confirmed that SiR-Cre is diminished in infected cells at later times. The authors should explain and address these concerns by conducting additional experiments, for example, cleaved caspase-3 staining and quantification of virus RNA levels in each time point as performed in their previous study Ciabatti et al., Cell 2017 (DOI: 10.1016/j.cell.2017.06.014).

      2. In Figure 3E-F, to ensure the long-term stability of SiR-Cre in the vivo mouse brain, authors conducted SMRT sequencing 1 week after the virus infection. To test the potential slow accumulation of mutations at 1-month and 2-month, the authors should perform the same experiment at these time points. Only when SiR-Cre was undetected at 1-month and 2-month, would it be reasonable to show only 1-week data, however, such data is not presented.

      3. In figure 4, the authors used only 2 mice for this experiment, although this is one of the most important experiments to ensure SiR-infected cells stay alive for the long term in vivo animals. It should be confirmed whether the conclusion remains the same by increasing the number of animals.

      4. The legend in Table 3 doesn't match the contents.

    1. Reviewer #3 (Public Review):

      The overarching goal of this study is to assess the feasibility of using optogenetic stimulation in the LGN for future visual neuroprostheses. This is an interesting and important research direction.

      To address this goal, the author express ChR2 in the LGN of tree shrews, implant a wireless μ‐LED stimulation probe, and test for the ability of tree shrews to generalize from visual detection to detection of optogenetic stimulation. The authors provide compelling evidence that tree shrews can generalize from visual detection to the detection of optogenetic stimulation in the LGN. This is an important and novel finding which demonstrates that optogenetic stimulation in the LGN can lead to detectable percepts. While the basic finding seems to be robust, some aspects of the paper still need further attention.

    1. Reviewer #3 (Public Review):

      The goal of this manuscript is to determine the function of MEMO1 (mediator of ERBB2-driven cell motility 1), an evolutionarily conserved protein with many putative functions but none that have been firmly established. The authors take an unbiased, bioinformatics approach to identify genetic interactions between MEMO1 and other genes in cancer cell lines. Notably, they uncovered multiple links to genes with relevance to cellular iron homeostasis. They then explore these genetic links through a variety of experiments. First, they use shRNA-mediated gene knockdown to confirm the functional interaction between MEMO1 and interacting genes at the level of protein expression and cell proliferation. Second, they analyze the impact of altered MEMO1 levels on iron levels, mitochondrial morphology, and sensitivity to ferroptosis. Third, they determine the crystal structure of MEMO1, both wild-type and mutant forms, and demonstrate that MEMO1 binds iron as well as copper.

      There are notable strengths to this manuscript. I appreciated the unbiased, bioinformatics approach they took to identify genes that interact with MEMO1 and the ensuing approaches they took to explore the potential relevance of MEMO1 to cancer cell iron homeostasis. The methods employed are varied and state-of-the-art and address different aspects of MEMO1's potential role in cellular iron biology. There are some weaknesses. One is that direct protein-protein interactions are not assessed between MEMO1 and TFR2, one of the key genes shown to genetically interact with MEMO1 in cancer cell lines. This limits the authors' ability to more strongly assign a function for MEMO1 in cellular iron homeostasis. They do show that MEMO1 binds to iron, but how does this finding relate to the MEMO1-TFR2 interaction?

      The authors conclude that MEMO1 is an iron-binding protein that regulates iron homeostasis in cancer cells. To this end, I agree that the authors have generated adequate evidence in support of this conclusion. The impact of this paper is that it will direct the field to focus on the relevance of MEMO1 to iron homeostasis. While this manuscript does not firmly establish the specific role of MEMO1 in iron homeostasis, future studies should be able to address that knowledge gap.

    1. Reviewer #3 (Public Review):

      The manuscript by Lin et al. reveals a novel positive regulatory loop between ZEB2 and ACSL4, which promotes lipid droplets storage to meet the energy needs of breast cancer metastasis.

    1. Reviewer #3 (Public Review):

      Molecular dynamics (MD) simulations nowadays are an essential element of structural biology investigations, complementing experiments and aiding their interpretation by revealing transient processes or details (such as the effects of glycosylation on the SARS-CoV-2 spike protein, for example (Casalino et al. ACS Cent. Sci. 2020; 6, 10, 1722-1734 https://doi.org/10.1021/acscentsci.0c01056) that cannot be observed directly. MD simulations can allow for the calculation of thermodynamic, kinetic, and other properties and the prediction of biological or chemical activity. MD simulations can now serve as "computational assays" (Huggins et al. WIREs Comput Mol Sci. 2019; 9:e1393. https://doi.org/10.1002/wcms.1393). Conceptually, MD simulations have played a crucial role in developing the understanding that the dynamics and conformational behaviour of biological macromolecules are essential to their function, and are shaped by evolution. Atomistic simulations range up to the billion atom scale with exascale resources (e.g. simulations of SARS-CoV-2 in a respiratory aerosol. Dommer et al. The International Journal of High Performance Computing Applications. 2023; 37:28-44. doi:10.1177/10943420221128233), while coarse-grained models allow simulations on even larger length- and timescales. Simulations with combined quantum mechanics/molecular mechanics (QM/MM) methods can investigate biochemical reactivity, and overcome limitations of empirical forcefields (Cui et al. J. Phys. Chem. B 2021; 125, 689 https://doi.org/10.1021/acs.jpcb.0c09898).

      MD simulations generate large amounts of data (e.g. structures along the MD trajectory) and increasingly, e.g. because of funder mandates for open science, these data are deposited in publicly accessible repositories. There is real potential to learn from these data en masse, not only to understand biomolecular dynamics but also to explore methodological issues. Deposition of data is haphazard and lags far behind experimental structural biology, however, and it is also hard to answer the apparently simple question of "what is out there?". This is the question that Tiemann et al explore in this nice and important work, focusing on simulations run with the widely used GROMACS package. They develop a search strategy and identify almost 2,000 datasets from Zenodo, Figshare and Open Science Framework. This provides a very useful resource. For these datasets, they analyse features of the simulations (e.g. atomistic or coarse-grained), which provides a useful snapshot of current simulation approaches. The analysis is presented clearly and discussed insightfully. They also present a search engine to explore MD data, the MDverse data explorer, which promises to be a very useful tool.

      As the authors state: "Eventually, front-end solutions such as the MDverse data explorer tool can evolve being more user-friendly by interfacing the structures and dynamics with interactive 3D molecular viewers". This will make MD simulations accessible to non-specialists and researchers in other areas. I would envisage that this will also include approaches using interactive virtual reality for an immersive exploration of structure and dynamics, and virtual collaboration (e.g. O'Connor et al., Sci. Adv.4, eaat2731 (2018). DOI:10.1126/sciadv.aat2731)

      The need to share data effectively, and to compare simulations and test models, was illustrated clearly in the COVID-19 pandemic, which also demonstrated a willingness and commitment to data sharing across the international community (e.g. Amaro and Mulholland, J. Chem. Inf. Model. 2020, 60, 6, 2653-2656 https://doi.org/10.1021/acs.jcim.0c00319; Computing in Science & Engineering 2020, 22, 30-36 doi: 10.1109/MCSE.2020.3024155). There are important lessons to learn here, for simulations to be reproducible and reliable, for rapid testing, for exploiting data with machine learning, and for linking to data from other approaches. Tiemann et al. discuss how to develop these links, providing good perspectives and suggestions.

      I agree completely with the statement of the authors that "Even if MD data represents only 1 % of the total volume of data stored in Zenodo, we believe it is our responsibility, as a community, to develop a better sharing and reuse of MD simulation files - and it will neither have to be particularly cumbersome nor expensive. To this end, we are proposing two solutions. First, improve practices for sharing and depositing MD data in data repositories. Second, improve the FAIRness of already available MD data notably by improving the quality of the current metadata."

      This nicely states the challenge to the biomolecular simulation community. There is a clear need for standards for MD data and associated metadata. This will also help with the development of standards of best practice in simulations. The authors provide useful and detailed recommendations for MD metadata. These recommendations should contribute to discussions on the development of standards by researchers, funders, and publishers. Community organizations (such as CCP-BioSim and HECBioSim in the UK, BioExcel, CECAM, MolSSI, learned societies etc) have an important part to play in these developments, which are vital for the future of biomolecular simulation.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Khaitova et al. report the formation of micronuclei during Arabidopsis meiosis under elevated temperatures. Micronuclei form when chromosomes are not correctly collected to the cellular poles in dividing cells. This happens when whole chromosomes or fragments are not properly attached to the kinetochore microtubules. The incidence of micronuclei formation is shown to increase at elevated temperatures in wild-type and more so in the weak centromere histone mutant cenH3-4. The number of micronuclei formed at high temperatures in the recombination mutant spo11 is like that in wild-type, indicating that the increased sensitivity of cenh3-4 is not related to the putative role of cenh3 in recombination. The abundance of CENH3-GFP at the centromere declines with higher temperature and correlates with a decline in spindle assembly checkpoint factor BMF1-GFP at the centromeres. The reduction in CENH3-GFP under heat is observed in meiocytes whereas CENH3-GFP abundance increases in the tapetum, suggesting there is a differential regulation of centromere loading in these two cell types. These observations are in line with previous reports on haploidization mutants and their hypersensitivity to heat stress.

      Strengths:<br /> This paper is an important contribution to our insights into the impact of heat stress on sexual reproduction in plants.

      Weaknesses:<br /> While it is highly significant, I struggled to interpret the results because of the poor quality of the figures and the videos.

    1. Reviewer #3 (Public Review):

      The paper by Su, Yendluri and Unal reports several regulatory processes that control the activity of the SBF complex (Swi4/Swi6) in S. cerevisiae and its interaction with the meiotic inducer Ime1.

      Entry into meiosis requires both the turning down of some components of the mitotic program and turning on meiotic genes. SBF (Swi4/Swi6) is an important player in entry in the mitotic cycle, acting at the G1/S transition. Previous data suggest the possibility that SBF may be differentially regulated during meiosis, potentially down-regulated. Here the authors first show a down regulation of Swi4 at the protein level, and then investigate downstream consequences. Overall the study is revealing several regulations of Swi4, with a repression of activity and a reduction of protein level by the Swi4-LUT1 transcript. The authors identify several components involved in this SWI4 pathway: 1) CLN1 and 2, which are targets of Swi4, and which mutation allows rescuing delay in meiotic entry when Swi4 is overexpressed; 2) Ime1 which activity is antigonized by Swi4, and more specifically its interaction with Ume6.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The L114P gain of function mutation in the K2P channel TALK-1 encoded by KCNJ16 has been associated with MODY. In this study, Nakhe et al. generated mice carrying L114P TALK-1 and evaluated the impact of the mutation on glucose homeostasis. The authors report that the mutation increases neonatal lethality, owing to hyperglycemia caused by a lack of glucose-stimulated Ca2+ influx and insulin secretion. Adult mutant mice showed glucose intolerance and fasting hyperglycemia, which is attributed to blunted glucose-stimulated insulin secretion as well as increased glucagon secretion. Interestingly, male mice were more affected than female mice. Islets from adult mutant mice were found to have reduced Ca2+ entry upon glucose stimulation but also enhanced IP3-induced ER Ca2+ release, consistent with previous studies from the group showing a role of TALK-1 in ER Ca2+ homeostasis. Finally, a comparison of bulk RNA sequencing results from WT and mutant islets revealed altered expression of genes involved in β-cell identification, function, and signalling, which also contributes to the observed islet dysfunction.

      The study is in general well designed and executed, and the conclusions are largely supported by the experimental evidence. The results confirm the pathogenic effect of L114P TALK-1 in human MODY. The findings that the mutation causes neonatal diabetes and affects male mice more than female mice have potential clinical implications with regard to genetic screening and diagnosis.

      Strengths:<br /> A major strength of the study is the detailed characterization of the mutant mice in two different genetic backgrounds. The overall results provide compelling evidence that L114P TALK-1 disrupts glucose-stimulated insulin secretion and causes hyperglycemia. The neonatal diabetes phenotype and the gender difference in adults uncovered by the study are significant and should be considered in human patients. Results showing that the mutation not only attenuates membrane depolarization and Ca2+ entry upon glucose stimulation but also enhances IP3-induced ER Ca2+ release is consistent with the channel's dual role in membrane hyperpolarization and in providing counter currents to support ER Ca2+ release. The observed altered islet cell composition and the RNA seq data also add to the story and suggest the mutation has secondary effects that could explain the phenotypes observed.

      Weaknesses:<br /> Some conclusions lack definitive evidence. For example, the authors conclude that L114P TALK-1 causes transient neonatal diabetes but there is no longitudinal glucose monitoring data to show remission of the diabetes. The contribution to defective insulin response from defects in plasma membrane depolarization relative to that from ER Ca2+ mishandling is not addressed. It is unclear whether the altered Ca2+ release in response to Ach is a direct result of GOF TALK-1 in the ER membrane or is due to the many transcriptional changes observed in the mutant islets.

    1. Reviewer #3 (Public Review):

      Summary:

      In this work, Jarc et al. describe a method to decouple the mechanisms supporting progenitor self-renewal and expansion from feed-forward mechanisms promoting their differentiation.

      The authors aimed at expanding pancreatic progenitor (PP) cells, strictly characterized as PDX1+/SOX9+/NKX6.1+ cells, for several rounds. This required finding the best cell culture conditions that allow sustaining PP cell proliferation along cell passages, while avoiding their further differentiation. They achieve this by comparing the transcriptome of PP cells that can be expanded for several passages against the transcriptome of unexpanded (just differentiated) PP cells.

      The optimized culture conditions enabled the selection of PDX1+/SOX9+/NKX6.1+ PP cells and their consistent, 2000-fold, expansion over ten passages and 40-45 days. Transcriptome analyses confirmed the stabilization of PP identity and the effective suppression of differentiation. These optimized culture conditions consisted of substituting the Vitamin A containing B27 supplement with a B27 formulation devoid of vitamin A (to avoid retinoic acid (RA) signaling from an autocrine feed-forward loop), substituting A38-01 with the ALK5 II inhibitor (ALK5i II) that targets primarily ALK5, supplementation of medium with FGF18 (in addition to FGF2) and the canonical Wnt inhibitor IWR-1, and cell culture on vitronectin-N (VTN-N) as a substrate instead of Matrigel.

      Strengths:

      The strength of this work relies on a clever approach to identify cell culture modifications that allow expansion of PP cells (once differentiated) while maintaining, if not reinforcing, PP cell identity. Along the work, it is emphasized that PP cell identity is associated with the co-expression of PDX1, SOX9, and NKX6.1. The optimized protocol is unique (among the other datasets used in the comparison shown here) in inducing a strong upregulation of GP2, a unique marker of human fetal pancreas progenitors. Importantly GP2+ enriched hPS cell-derived PP cells are more efficiently differentiating into pancreatic endocrine cells (Aghazadeh et al., 2022; Ameri et al., 2017).

      The unlimited expansion of PP cells reported here would allow scaling-up the generation of beta cells, for the cell therapy of diabetes, by eliminating a source of variability derived from the number of differentiation procedures to be carried out when starting at the hPS cell stage each time. The approach presented here would allow the selection of the most optimally differentiated PP cell population for subsequent expansion and storage. Among other conditions optimized, the authors report a role for Vitamin A in activating retinoic acid signaling in an autocrine feed-forward loop, and the supplementation with FGF18 to reinforce FGF2 signaling.

      This is a relevant topic in the field of research, and some of the cell culture conditions reported here for PP expansion might have important implications in cell therapy approaches. Thus, the approach and results presented in this study could be of interest to researchers working in the field of in vitro pancreatic beta cell differentiation from hPSCs. Table S1 and Table S4 are clearly detailed and extremely instrumental to this aim.

      Weaknesses:

      The experiments performed and the methods used to evaluate the treatment effects are well-suited and state-of-the-art. However, further details on the characterization or the discussion of some of the results might help to more clearly contextualize their findings, and improve their impact on the field.

      The authors strictly define PP cells as PDX1+/SOX9+/NKX6.1+ cells, and this phenotype was convincingly characterized by immunofluorescence, RT-qPCR, and FACS analysis along the work. However, broadly defined PDX1+/SOX9+/NKX6.1+ could include pancreatic multipotent progenitor cells (MPC, defined as PDX1+/SOX9+/NKX6.1+/PTF1A+ cells) or pancreatic bipotent progenitors (BP, defined as PDX1+/SOX9+/NKX6.1+/PTF1A-) cells. It has been indeed reported that Nkx6.1/Nkx6.2 and Ptf1a function as antagonistic lineage determinants in MPC (Schaffer, A.E. et al. PLoS Genet 9, e1003274, 2013), and that the Nkx6/Ptf1a switch only operates during a critical competence window when progenitors are still multipotent and can be uncoupled from cell differentiation. It would be important to define whether culturing PDX1+/SOX9+/NKX6.1+ PP (as defined in this work) in the best conditions allowing cell expansion is reinforcing either an MPC or BP phenotype. Data from Figure S2A (last paragraph of page 7) suggests that PTF1A expression is decreased in C5 culture conditions, thus more homogeneously keeping BP cells in this media composition. However, on page 15, 2nd paragraph it is stated that "the strong upregulation of NKX6.2 in our procedure suggested that our ePP cells may have retracted to an earlier PP stage". Evaluating the co-expression of the previously selected markers with PTF1A (or CPA2), or the more homogeneous expression of novel BP markers described, such as DCDC2A (Scavuzzo et al. Nat Commun 9, 3356, 2018), in the different culture conditions assayed would more shield light into this relevant aspect.

      In line with the previous comment, it would be extremely insightful if the authors could characterize or at least discuss a potential role for YAP underlying the mechanistic effects observed after culturing PP in different media compositions. It is well known that the nuclear localization of the co-activator YAP broadly promotes cell proliferation, and it is a key regulator of organ growth during development. Importantly in this context, it has been reported that TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors and disruption of this interaction arrests the growth of the embryonic pancreas (Cebola, I. et al. Nat Cell Biol 17, 615-26, 2015). More recently, it has also been shown that a cell-extrinsic and intrinsic mechanotransduction pathway mediated by YAP acts as gatekeeper in the fate decisions of BP in the developing pancreas, whereby nuclear YAP in BPs allows proliferation in an uncommitted fate, while YAP silencing induces EP commitment (Mamidi, A. et al. Nature 564, 114-118, 2018; Rosado-Olivieri et al. Nature Communications 10, 1464, 2019). This mechanism was further exploited recently to improve the in vitro pancreatic beta cell differentiation protocol (Hogrebe et al., Nature Protocols 16, 4109-4143, 2021; Hogrebe et al, Nature Biotechnology 38, 460-470, 2020). Thus, YAP in the context of the findings described in this work could be a key player underlying the proliferation vs differentiation decisions in PP.

      Regarding the improvements made in the PP cell culture medium composition to allow expansion while avoiding differentiation, some of the claims should be better discussed and contextualized with current state-of-the-art differentiation protocols. As an example, the use of ALK5 II inhibitor (ALK5i II) has been reported to induce EP commitment from PP, while RA was used to induce PP commitment from the primitive gut tube cell stage in recently reported in vitro differentiation protocols (Hogrebe et al., Nature Protocols 16, 4109-4143, 2021; Rosado-Olivieri et al. Nature Communications 10, 1464, 2019). In this context, and to the authors' knowledge, is Vitamin A (triggering autocrine RA signaling) usually included in the basal media formulations used in other recently reported state-of-the-art protocols? If so, at which stages? Would it be advisable to remove it?

      In this line also, the supplementation of cell culture media with the canonical Wnt inhibitor IWR-1 is used in this work to allow the expansion of PP while avoiding differentiation. A role for Wnt pathway inhibition during endocrine differentiation using IWR1 has been previously reported (Sharon et al. Cell Reports 27, 2281-2291.e5, 2019). In that work, Wnt inhibition in vitro causes an increase in the proportion of differentiated endocrine cells. It would be advisable to discuss these previous findings with the results presented in the current work. Could Wnt inhibition have different effects depending on the differential modulation of the other signaling pathways?

    1. Reviewer #3 (Public Review):

      The transition from planktonic to benthic depends upon several physical and chemical cues. Nitric oxide (NO) is known as a critical player in the induction of larval metamorphosis in several invertebrates. Although NO is a widespread signalling molecule in a broad range of organisms regulating key physiological processes, internal regulatory mechanisms studies are scarce. While the UV sensing in larvae of the annelid Platynereis dumerilii using ciliary photoreceptors has been studied, the neuronal signalling mechanism remains unknown. In this study, Kei Jokura et al. investigated how annelid Platynereis dumerilii larvae detect UV sensing and modulate swimming behaviour through nitric oxide feedback. Using existing resources of Platynereis larval connectome/volume EM data, they identified NOS-expressing interneurons within the ciliary photoreceptors circuit (cPRCs). They demonstrated that NO is produced in cPRCs during UV/violet stimulation by using a fluorescent NO-reporter line. Further, they demonstrated that Nitric oxide signalling mediates UV-avoidance behaviour by using NOS-mutant larvae. Finally, they mapped out the signalled mechanisms of the cPRC circuit using published spatially mapped single-cell transcriptome data of Platynereis larvae, the Ca sensor lines, in situ HCR, and immunostaining. Additionally, by using their findings from Ca imagining data of cPRC, INNOS and INRGWa cells collected in wild-type, NOS knockout and NIT-GC2 morphant larvae, Kei Jokura et al. developed a mixed cellular-circuit-level mathematical model. However, my expertise in mathematical modelling is limited, so I cannot comment on this section.

      No doubt, the study has been conducted extensively. However, I have a few comments, please see below.

      Page 4: "In contrast, both two- and three-day-old homozygous NOS-mutant larvae showed a strongly diminished UV avoidance response (Figure 3A, B and Figure 3-figure supplement 1B, C)." Instead of using subjective terms like "strongly," it would be more relevant to provide statistical values. However, I could not locate any means of statistical analysis on larval behaviour. Can the authors indicate the statistical values for all behaviour studies?

      Page 5: "(D) Vertical displacement in 30 sec bins of wild type and mutant (NOSΔ11/Δ11 and NOSΔ23/Δ23) three-day-old larvae stimulated with 395 nm light from the side, 488 nm light from the top and 395 nm light from the top." The error bars for WT are too long at the end of the experiment. It is not clear how the authors decided to use this time frame. Did the authors try carrying this out for an extended time period? How did the authors decide on 120 seconds as the time frame for exposure? Authors should provide data on larval behaviour for an extended time.

      Page 13: "During the UV response, prototroch cilia beat slower than trunk cilia, resulting in a head-down stable state ('rear-wheel drive'). In contrast, during the pressure response prototroch cilia beat faster than trunk cilia, leading to a head-up orientation ('front-wheel drive'). Testing this hypothesis will require biophysical experiments and mathematical modelling." Authors should carry out ciliary beating analysis under UV light in the current study with NOS mutant larvae. Since the pressure and UV detection systems are closely related, comparing the difference in ciliary beating is important to demonstrate this hypothesis. Further, did the authors check the Ca sensor GCaMP6s under pressure conditions?

      Page 18: "strips. One strip contained UV (395 nm) LEDs (SMB1W-395, Roithner Lasertechnik) and the other infrared (810 nm) LEDs (SMB1W-810NR-I, Roithner Lasertechnik)." Authors should test larval swimming behaviour at different wavelengths. Even though they are performed in previous work, the experiment with different wavelengths is necessary to be conducted in NOS mutant larvae in parallel with a control. This will confirm that NOS is principally associated with UV. Further, to demonstrate that this mechanism is associated with ciliary movement, authors need to provide this evidence.

    1. Reviewer #3 (Public Review):

      This study addresses the important topic of dual-color optogenetic control of neuronal activity, which is challenging due to significant optical crosstalk between channelrhodopsins of different absorption colors and ion selectivity. However, Mermet-Joret et al. demonstrate in flies that simple coexpression of a strong blue light-activated inhibitory opsin, such as the chloride-selective channelrhodopsin GtACR2, can suppress the blue light activity of a red-shifted excitatory opsin, such as Chrimson, and allow dual-color optogenetic control of the expressing neuron. The same concept was previously discussed by Vierock et al. and led to the generation of BiPOLES, which combines both channels in a single fusion protein. In the present manuscript, the authors introduce an alternative combination of channels with accelerated off-kinetics that are coexpressed by a bicistronic expression cassette. The goal is to better match the duration of illumination and optogenetic manipulation in order to reduce potential side effects induced by prolonged channel opening.

      The major novelty of this work lies in the choice of the employed ion channels: the excitatory cation channel vf-Chrimson and the inhibitory anion channel ZipACR, alongside their subsequent modifications (Fig. 2 - 4). Both channels belong to the fastest known ChRs, but the choice of ZipACR raises questions. First, it has a peak absorption at 515 nm that is 40 nm further red-shifted than GtACR2 tested in Figure 1 and accordingly important optical cross-talk with the coexpressed Chrimson channel. Second, it was reported to have reduced chloride selectivity, first by Govorunova et al. in 2017 and later also by Kato et al. in 2018. Both of these aspects are also mentioned by the authors but were not resolved through molecular engineering. Instead site-directed mutagenesis primarily focused on membrane expression and photoreceptor kinetics of the employed channels. Nonetheless, improving the membrane targeting of the vf-Chrimson channel by exchange of the N-terminus finally provided sufficient red light activation at low light intensities to reliably activate expressing neurons and allowed in combination with the decelerated ZipACR mutants dual color optogenetic control with millisecond time resolution. At higher light intensities inactivation of Chrimson and the optical crosstalk of both channels seem to limit its performance.

      The experimental results are well presented; but, certain questions persist:

      1. The enhanced vf-Chrimson could potentially be a highlight of the manuscript, serving broader applications. Yet, gauging the overall improvements of ivf-Chrimson in comparison to other Chrimson variants remains intricate due to several reasons. First, photocurrents from ivf-Chrimson seem smaller than those from C-Chrimson (Supplemental Figure 3), and a direct comparison with standard vf-Chrimson is absent. Second, while membrane expression of ivf-Chrimson appears enhanced in provided bright-field recordings, the quantitative analysis would necessitate confocal microscopy and a membrane marker (Supplemental Figure 2). Finally, other N-terminal modified Chrimson variants, like CsChrimson by Klapoetke et al. in 2014 and C1Chrimson by Oda et al. in 2018, have been generated. Comparing ivf-Chrimson to vf-CsChrimson or vf-C1Chrimson would be important to evaluate the benefits of the applied N-terminal modification.

      2. The action spectra of ZipACR suggest peak absorption of ZipACR WT and its mutant at 525 - 550 nm (Fig. 3). This is even further red-shifted than previously reported by Govorunova et al. Further action spectra recordings differ for all constructs between recordings initiated with blue or red light (Supplementary Fig. 5). This discrepancy is unexpected and should be discussed. Additionally, the representative photocurrents of Zip(151V) in Fig. 3D1 do not align with the corresponding action spectrum in Fig. 3D2 as they show maximal photocurrents for 400 nm excitation.

      3. The authors introduce two different bicistronic expression cassettes-ZipT-IvfChR and ZipV-IvfChR-without providing clear guidelines on their conditions of use. Although the authors assert that ZipT is slower and further red-shifted than ZipV, the differences in the data for both ACR mutants are small and the benefits of the different final constructs should be explained.

      4. The ZipT/V-IvfChRs are designed as bicistronic constructs; yet, disparities in membrane trafficking and protein degradation between the two channels could lead to divergences in blue and red light photoresponses. For future applicants, understanding the extent of expression ratio variations across cells using the presented expression cassettes could be of significance and should be discussed.

    1. Reviewer #3 (Public Review):

      This study is a fine example of a recent productive trend in the integration of neuroimaging and molecular biology of the brain: in brief, overlaying some neuroimaging data (usually from a large cohort) onto the high spatial resolution gene expression in the Allen Human Brain Atlas data, derived from 6 individuals. By projecting structural MRI images over cell type proportions identified in the Allen data, the authors can represent various diseases in terms of their spatially-associated cell types. The result has implications for prioritizing the contributions of various cell types to each disease and creates an even-handed cell type profile through which the 11 diseases can be compared.

    1. Reviewer #3 (Public Review):

      This study tackles an interesting topic from a new perspective. The manuscript is well-written, logical, and conceptually clear. The central topic regards the purpose of preparatory activity in motor & premotor cortex. Preparatory activity has long captured the imaginations of experimentalists because it is a window on an unknown internal process - a process that is informed by sensation and related to action but tied directly to neither. Preparatory activity was the first truly 'internal' form of activity to be studied in awake behaving animals. The meaning and nature of the internal preparatory process has long been debated. In the 1960's, it was thought to reflect the priming of reflex circuits and motoneurons. By the 1980's, it was understood to reflect 'motor programming', i.e., the readying of cortical movement-generating machinery. But why programming was needed, and might be accomplished during preparation, remained unclear. By the 2000s, preparatory activity was seen as initializing movement-generating dynamics, much as the initial state of a dynamical system governs its future evolution. This provided a mechanistic purpose for preparation, but didn't answer a fundamental question: why use that strategy at all? Why indirectly influence execution by creating a preparatory state when you could send inputs during execution and accomplish the same thing directly?

      The authors point out that the many neural network models presently in existence do not address this question because they already assume that preparatory inputs are used. Thus, those models show that the preparatory strategy works, and that it matches the data in multiple ways, but they don't reveal why it is the right strategy. An additional issue with existing networks is that they potentially create an artificial dichotomy where inputs are divided into two types: preparation-creating and movement-creating. It would be more elegant if one simply assumed that motor cortex receives inputs that attempt to serve the needs of the animal, with preparation being an emergent phenomenon rather than being baked in from the beginning. In some ways the field is already starting to shift in this direction, with preparation being seen as a special case of a general phenomenon: inputs that arrive in the null-space of network outputs. However, this shift is still nascent, and no paper to date has really addressed this issue. Thus, the present study can be seen as being the first to take a fully modern view of preparation, where it emerges as part of the solution to a more general problem.

      The study is clearly written and clearly presented, and I found both the results and the reasoning to be compelling, with some exceptions noted below. The authors demonstrate that many aspects of the empirical data can be accounted for as natural outcomes of a very simple assumption: that the inputs to motor cortex are optimized to create accurate motor-cortex output while being 'well-behaved' in the sense of remaining modest in magnitude. More broadly, the idea is that preparation emerges as a consequence of constraints on motor-cortex inputs. If upstream areas could magically control motor cortex any way they wanted, then there would be no need for preparation. The necessary patterns of execution activity could just be created directly by inputs at that time. However, when there exist constraints on inputs (i.e., on what upstream areas can do) preparation becomes a useful - perhaps necessary - strategy. By sending inputs early, upstream areas can leverage the dynamics of motor cortex in ways that would be harder to accomplish during movement.

      The authors illustrate how a very simple constraint on inputs - a high 'cost' to large inputs - makes preparation a good strategy. Preparation isn't strictly necessary, but it produces a lower-cost solution (reduced input magnitude for a given level of accuracy). Consequently, preparation appears naturally, with a time-course of ~300 ms before movement onset. This late rise in preparation doesn't match the longer plateau most people are used to from studies that use a randomized instructed delay, but that actually makes sense. In those studies, the animal does not know when the go cue will be given, and must be ready for it to occur at any time. In contrast, the present study considers the situation where the time of future movement is known internally and is part of the optimization process. This more closely matches situations where the animal chooses when to move, and in those situations, preparation does indeed appear late in most cases. So the predictions of their simulations are qualitatively correct (which is all that is desired, given uncertainty regarding things like the right internal time-constants). Their simulations also successfully predict two bouts of preparation during sequence tasks, matching recent empirical findings.

      The main strength of the study is its ability to elegantly explain well-known features of data in terms of simple normative principles. The study is thorough and careful in key ways. For example, they show that the emergence of preparation, in the service of satisfying the cost function, is a very general property that holds across a broad range of network types (including very simple toy networks and a variety of larger networks of different types). They also go to considerable trouble to show why cost is reduced by preparatory inputs, including illustrating different scenarios with different readout-vector orientations. The result is a conceptually clear study that conveys a fresh perspective on what preparation is and why it exists.

      The main limitation of the study is that it focuses exclusively on one specific constraint - magnitude - that could limit motor-cortex inputs. This isn't unreasonable, but other constraints are at least as likely, if less mathematically tractable. The basic results of this study will probably be robust with regard such issues - generally speaking, any constraint on what can be delivered during execution will favor the strategy of preparing - but this robustness cuts both ways. It isn't clear that the constraint used in the present study - minimizing upstream energy costs - is the one that really matters. Upstream areas are likely to be limited in a variety of ways, including the complexity of inputs they can deliver. Indeed, one generally assumes that there are things that motor cortex can do that upstream areas can't do, which is where the real limitations should come from. Yet in the interest of a tractable cost function, the authors have built a system where motor cortex actually doesn't do anything that couldn't be done equally well by its inputs. The system might actually be better off if motor cortex were removed. About the only thing that motor cortex appears to contribute is some amplification, which is 'good' from the standpoint of the cost function (inputs can be smaller) but hardly satisfying from a scientific standpoint.

      The use of a term that punishes the squared magnitude of control signals has a long history, both because it creates mathematical tractability and because it (somewhat) maps onto the idea that one should minimize the energy expended by muscles and the possibility of damaging them with large inputs. One could make a case that those things apply to neural activity as well, and while that isn't unreasonable, it is far from clear whether this is actually true (and if it were, why punish the square if you are concerned about ATP expenditure?). Even if neural activity magnitude an important cost, any costs should pertain not just to inputs but to motor cortex activity itself. I don't think the authors really wish to propose that squared input magnitude is the key thing to be regularized. Instead, this is simply an easily imposed constraint that is tractable and acts as a stand-in for other forms of regularization / other types of constraints. Put differently, if one could write down the 'true' cost function, it might contain a term related to squared magnitude, but other regularizing terms would by very likely to dominate. Using only squared magnitude is a reasonable way to get started, but there are also ways in which it appears to be limiting the results (see below).

      I would suggest that the study explore this topic a bit. Is it possible to use other forms of regularization? One appealing option is to constrain the complexity of inputs; a long-standing idea is that the role of motor cortex is to take relatively simple inputs and convert them to complex time-evolving inputs suitable for driving outputs. I realize that exploring this idea is not necessarily trivial. The right cost-function term is not clear (should it relate to low-dimensionality across conditions, or to smoothness across time?) and even if it were, it might not produce a convex cost function. Yet while exploring this possibility might be difficult, I think it is important for two reasons. First, this study is an elegant exploration of how preparation emerges due to constraints on inputs, but at present that exploration focuses exclusively on one constraint. Second, at present there are a variety of aspects of the model responses that appear somewhat unrealistic. I suspect most of these flow from the fact that while the magnitude of inputs is constrained, their complexity is not (they can control every motor cortex neuron at both low and high frequencies). Because inputs are not complexity-constrained, preparatory activity appears overly complex and never 'settles' into the plateaus that one often sees in data. To be fair, even in data these plateaus are often imperfect, but they are still a very noticeable feature in the response of many neurons. Furthermore, the top PCs usually contain a nice plateau. Yet we never get to see this in the present study. In part this is because the authors never simulate the situation of an unpredictable delay (more on this below) but it also seems to be because preparatory inputs are themselves strongly time-varying. More realistic forms of regularization would likely remedy this.

      At present, it is also not clear whether preparation always occurs even with no delay. Given only magnitude-based regularization, it wouldn't necessarily have to be. The authors should perform a subspace-based analysis like that in Figure 6, but for different delay durations. I think it is critical to explore whether the model, like monkeys, uses preparation even for zero-delay trials. At present it might or might not. If not, it may be because of the lack of more realistic constraints on inputs. One might then either need to include more realistic constraints to induce zero-delay preparation, or propose that the brain basically never uses a zero delay (it always delays the internal go cue after the preparatory inputs) and that this is a mechanism separate from that being modeled.

      I agree with the authors that the present version of the model, where optimization knows the exact time of movement onset, produces a reasonably realistic timecourse of preparation when compared to data from self-paced movements. At the same time, most readers will want to see that the model can produce realistic looking preparatory activity when presented with an unpredictable delay. I realize this may be an optimization nightmare, but there are probably ways to trick the model into optimizing to move soon, but then forcing it to wait (which is actually what monkeys are probably doing). Doing so would allow the model to produce preparation under the circumstances where most studies have examined it. In some ways this is just window-dressing (showing people something in a format they are used to and can digest) but it is actually more that than, because it would show that the model can produce a reasonable plateau of sustained preparation. At present it isn't clear it can do this, for the reasons noted above. If it can't, regularizing complexity might help (and even if this can't be shown, it could be discussed).

      In summary, I found this to be a very strong study overall, with a conceptually timely message that was well-explained and nicely documented by thorough simulations. I think it is critical to perform the test, noted above, of examining preparatory subspace activity across a range of delay durations (including zero) to see whether preparation endures as it does empirically. I think the issue of a more realistic cost function is also important, both in terms of the conceptual message and in terms of inducing the model to produce more realistic activity. Conceptually it matters because I don't think the central message should be 'preparation reduces upstream ATP usage by allowing motor cortex to be an amplifier'. I think the central message the authors wish to convey is that constraints on inputs make preparation a good strategy. Many of those constraints likely relate to the fact that upstream areas can't do things that motor cortex can do (else you wouldn't need a motor cortex) and it would be good if regularization reflected that assumption. Furthermore, additional forms of regularization would likely improve the realism of model responses, in ways that matter both aesthetically and conceptually. Yet while I think this is an important issue, it is also a deep and tricky one, and I think the authors need considerable leeway in how they address it. Many of the cost-function terms one might want to use may be intractable. The authors may have to do what makes sense given technical limitations. If some things can't be done technically, they may need to be addressed in words or via some other sort of non-optimization-based simulation.

      Specific comments

      As noted above, it would be good to show that preparatory subspace activity occurs similarly across delay durations. It actually might not, at present. For a zero ms delay, the simple magnitude-based regularization may be insufficient to induce preparation. If so, then the authors would either have to argue that a zero delay is actually never used internally (which is a reasonable argument) or show that other forms of regularization can induce zero-delay preparation.

      I agree with the authors that prior modeling work was limited by assuming the inputs to M1, which meant that prior work couldn't address the deep issue (tackled here) of why there should be any preparatory inputs at all. At the same time, the ability to hand-select inputs did provide some advantages. A strong assumption of prior work is that the inputs are 'simple', such that motor cortex must perform meaningful computations to convert them to outputs. This matters because if inputs can be anything, then they can just be the final outputs themselves, and motor cortex would have no job to do. Thus, prior work tried to assume the simplest inputs possible to motor cortex that could still explain the data. Most likely this went too far in the 'simple' direction, yet aspects of the simplicity were important for endowing responses with realistic properties. One such property is a large condition-invariant response just before movement onset. This is a very robust aspect of the data, and is explained by the assumption of a simple trigger signal that conveys information about when to move but is otherwise invariant to condition. Note that this is an implicit form of regularization, and one very different from that used in the present study: the input is allowed to be large, but constrained to be simple. Preparatory inputs are similarly constrained to be simple in the sense that they carry only information about which condition should be executed, but otherwise have little temporal structure. Arguably this produces slightly too simple preparatory-period responses, but the present study appears to go too far in the opposite direction. I would suggest that the authors do what they can to address these issue via simulations and/or discussion. I think it is fine if the conclusion is that there exist many constraints that tend to favor preparation, and that regularizing magnitude is just one easy way of demonstrating that. Ideally, other constraints would be explored. But even if they can't be, there should be some discussion of what is missing - preparatory plateaus, a realistic condition-invariant signal tied to movement onset - under the present modeling assumptions.

      On line 161, and in a few other places, the authors cite prior work as arguing for "autonomous internal dynamics in M1". I think it is worth being careful here because most of that work specifically stated that the dynamics are likely not internal to M1, and presumably involve inter-area loops and (at some latency) sensory feedback. The real claim of such work is that one can observe most of the key state variables in M1, such that there are periods of time where the dynamics are reasonably approximated as autonomous from a mathematical standpoint. This means that you can estimate the state from M1, and then there is some function that predicts the future state. This formal definition of autonomous shouldn't be conflated with an anatomical definition.

    1. Reviewer #3 (Public Review):

      This study reports data collected across time and treatment modalities (internet CBT or iCBT, pharmacological intervention, and control), with a particularly large sample in the iCBT group. This study addresses the question of whether metacognitive confidence is related to mental health symptoms in a trait-like manner, or whether it shows state dependency. The authors report an increase in metacognitive confidence as anxious-depression symptoms improve with iCBT (and the extent to which confidence increases is related to the magnitude of symptom improvement), a finding that is largely mirrored in those who receive antidepressants (without the correlation between symptom change and confidence change). I think these findings are exciting because they directly relate to one of the big assumptions when relating cognition to mental health - are we measuring something that changes with treatment (is malleable), so might be mechanistically relevant, or even useful as a biomarker?

      This work is also useful in that it replicates a finding of heightened confidence in those with compulsivity, and lowered confidence in those with elevated anxious-depression.

      One caveat to the interest of this work is that it doesn't allow any causal conclusions to be drawn, and only measures two timepoints, so it's hard to tell if changes in confidence might drive treatment effects (but this would be another study). The authors do mention this in the limitations section of the paper.

      Another caveat is the small sample in the antidepressant group.

      I appreciate the authors' efforts to respond to queries I had about this paper: including the addition of a sensitivity analysis to examine whether excluding 'inattentive' participants made a difference to results.

      I am still not fully convinced by the argument that these results are specific to metacognition, given that task difficulty significantly increased in the antidepressant group but not the control group. Whilst there is a lack of association between this change and symptom change, this 'null result' is not the same as showing there is no relationship and therefore that increased general performance in specific groups might drive increased confidence (though accuracy is the same). The authors' argument is strengthened by the lack of group*time interaction in dot difficulty, but individual tests (e.g. of change in antidepressant arm; and change in control arm) showed differing significance. This is a minor point, but could point to an alternative explanation of the results.

    1. Reviewer #3 (Public Review):

      The manuscript by Kairouani et al. investigates the function of a small family of plant RNA binding proteins with similarity to the well-studied Musashi protein in animals, and, therefore, called MUSASHI-LIKE1-4 (MSL1-4). Studies on the biological importance of post-transcriptional control of gene expression via RNA-binding proteins in plants are not numerous, and advances in this important field are much needed. The thorough work presented in this manuscript is such an advance.

      The central observations of the paper are<br /> - Knockout of any MSL gene alone does not produce a phenotype.<br /> It is of note that basic characterization of knockout mutations is really well done - for example, the authors have taken care to raise specific antibodies to each of the MSL proteins and use them to demonstrate that each of the T-DNA insertion mutants used actually does knock out protein production from the corresponding gene.

      - Knockout of MSL2/4 (but no other double mutant) produces a clear leaf phenotype, and a remarkable stem phenotype in which the mutants collapse as they are unable to support upright growth

      - The phenotypes of knockout mutants persist in point mutants defective in RNA-binding, indicating that RNA-binding is required for biological activity. Consistent with this, and associate physically with other RNA-binding proteins and translation factors.

      - MSL proteins are cytoplasmic

      - The msl2/4 mutants present multiple defects in secondary cell wall composition and structure, probably explaining their inability to grow upright. I did not examine the cell wall analyses in detail as I am no specialist in this field.

      - Msl2/4 mutants show transcriptomic changes with at large two big categories of differentially expressed genes compared to wild type.<br /> (1) Genes related to cell wall metabolism<br /> (2) Genes associated with defense against herbivores and pathogens

      - Two of the mRNAs encoding cell wall factors with significant upregulation in msl2/4 mutants compared to wild type also associate physically with MSL4 as judged by RNA-immunoprecipitation-RT-PCR assays, and this physical association is abrogated in the RNA-binding deficient MSL4 mutant.

      Altogether, the study shows clear biological relevance of the MSL family of RNA-binding proteins and provides good arguments that the underlying mechanism is control of mRNAs encoding enzymes involved in secondary cell wall metabolism (although concluding on translational control in the abstract is perhaps saying too much - post-transcriptional control will do given the evidence presented). One observation reported in the study makes it vulnerable to alternative interpretation, however, and I think this should be explicitly treated in the discussion:

      The fact that immune responses are switched on in msl2/4 mutants could also mean that MSL2/4 have biological functions unrelated to cell wall metabolism in wild type plants, and that cell wall defects arise solely as an indirect effect of immune activation (that is known to involve changes in expression of many cell wall-modifying enzymes and components such as pectin methylesterases, xyloglucan endotransglycosylases, arabinogalactan proteins etc. Indeed, the literature is rich in examples of gene functions that have been misinterpreted on the basis of knockout studies because constitutive defense activation mediated by immune receptors was not taken into account (see for example Lolle et al., 2017, Cell Host & Microbe 21, 518-529).

      With the evidence presented here, I am actually close to being convinced that the primary defect of msl2/msl4 mutants is directly related to altered cell wall metabolism, and that defense responses arise as a consequence of that, not the other way round. But I do not think that the reverse scenario can be formally excluded with the evidence at hand, and a discussion listing arguments in favor of the direct effect proposed here would be appropriate. Elements that the authors could consider to include would be the isolation of a cellulose synthase mutant as a constitutive expressor of jasmonic acid responses (cev1) as a clear example that a primary defect in cell wall metabolism can produce defense activation as secondary effect. The interaction of MSL4 with GXM1/3 mRNAs is also helpful to argue for a direct effect, and it would strengthen the argument if more examples of this kind could be included.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This is a timely and impressive study that applies a neuroscientific approach to provide an objective measurement of the psychological construct of trust. Drawing links from psychometrics, the presented neurometric approach will be beneficial to many open research questions within and beyond the field.

      Strengths:<br /> There are multiple strengths to highlight. First, the study followed and moved beyond best practices in psychometrics research to establish the neurometrics of trust. Second, it made use of multiple datasets to rigorously validate the model and tested its specificity and generalizability. The choice of these datasets was well justified and informed by previous studies. Third, the study combined a series of data-driven approaches to provide converging and complementary evidence of their neurometric model, and this sets an excellent example for future work in similar veins.

      Weaknesses:<br /> There were a few things that would be helpful to clarify, on top of the already comprehensive paper. First, it will be helpful to draw an even closer side-by-side analogy between neurometrics and psychometrics. Imaginably this work will benefit both psychology and neuroscience; using an illustration (such as a box) detailing the counterpart of neurometrics with respect to psychometrics will be very helpful for many researchers. Relatedly, I am curious about what the "end product" will be by using the neurometrics approach. In psychometrics, the product will naturally be the scale/questionnaire, and then there is the related validity & reliability check, etc. So is the multivariate pattern map the product, or something else? Practically, how can users make use of the maps as easily as using a questionnaire? Second, the relationship between trust and no-reward (and similarly between distrust and reward) is indeed puzzling. The authors attributed that to the non-linear nature of the methodology. But if this is true, does the non-linear nature of the methods also hamper the other results? It is perhaps worth checking the reward-related maps at the decision stage (to reflect the anticipation) rather than the outcome state (where participants actually saw the win/loss). Lastly, the measurement of "pattern expression" and the associated "expression difference" lacks detailed explanations, as in, what do the magnitude and sign mean? How to interpret them?

    1. Reviewer #3 (Public Review):

      The primary goal of this paper is to examine microtubule detyrosination as a potential therapeutic target for axon regeneration. Using dimethylamino-parthenolide (DMAPT), this study extensively examines mechanistic links between microtubule detyrosination, interleukin-6 (IL-6), and PTEN in neurite outgrowth in retinal ganglion cells in vitro. These findings provide convincing evidence that parthenolide has a synergistic effect on IL-6- and PTEN-related mechanisms of neurite outgrowth in vitro. The potential efficacy of systemic DMAPT treatment to promote axon regeneration in mouse models of optic nerve crush and spinal cord injury was also examined.

      Strengths<br /> 1. The examination of synergistic activities between parthenolide, hyperIL-6, and PTEN knockout is leveraged not only for potential therapeutic value, but also to validate and delineate mechanism of action.<br /> 2. The in vitro studies, including primary human retinal ganglion cells, utilize a multi-level approach to dissect the mechanistic link from parthenolide to microtubule dynamics.<br /> 3. The studies provide a basis for others to test the role of DMAPT in other settings, particularly in the context of other effective pro-regenerative approaches.

      Weaknesses<br /> 1. In vivo studies are limited to select outcomes of recovery and do not validate or address mechanism of action in vivo.

    1. Reviewer #3 (Public Review):

      The study examines how different cell types in various regions of the mouse dorsal cortex respond to visuomotor integration and how antipsychotic drugs impacts these responses. Specifically, in contrast to most cell types, the authors found that activity in Layer 5 intratelencephalic neurons (Tlx3+) and Layer 6 neurons (Ntsr1+) differentiated between open loop and closed loop visuomotor conditions. Focussing on Layer 5 neurons, they found that the activity of these neurons also differentiated between negative and positive prediction errors during visuomotor integration. The authors further demonstrated that the antipsychotic drugs reduced the correlation of Layer 5 neuronal activity across regions of the cortex, and impaired the propagation of visuomotor mismatch responses (specifically, negative prediction errors) across Layer 5 neurons of the cortex, suggesting a decoupling of long-range cortical interactions.<br /> The data when taken as a whole demonstrate that visuomotor integration in deeper cortical layers is different than in superficial layers and is more susceptible to disruption by antipsychotics. Whilst it is already known that deep layers integrate information differently from superficial layers, this study provides more specific insight into these differences. Moreover, this study provides a first step into understanding the potential mechanism by which antipsychotics may exert their effect.<br /> Whilst the paper has several strengths, the robustness of its conclusions is limited by weaknesses in statistical analyses. A summary of the paper's strengths and weaknesses follow.

      Strengths:

      The authors perform an extensive investigation of how different cortical cell types (including Layer 2/3, 4 , 5, and 6 excitatory neurons, as well as PV, VIP, and SST inhibitory interneurons) in different cortical areas (including primary and secondary visual areas as well as motor and premotor areas), respond to visuomotor integration. This investigation provides strong support to the idea that deep layer neurons are indeed unique in their computational properties. This large data set will be of considerable interest to neuroscientists interested in cortical processing.<br /> The authors also provide several lines of evidence that visuomotor information is differentially integrated in deep vs. superficial layers. They show that this is true across experimental paradigms of visuomotor processing (open loop, closed loop, mismatch, drifting grating conditions) and experimental manipulations, with the demonstration that Layer 5 visuomotor integration is more sensitive to disruption by the antipsychotic drug clozapine, compared with cortex as a whole.

      The study further uses multiple drugs (clozapine, aripiprazole and haloperidol) to bolster its conclusion that antipsychotic drugs disrupt correlated cortical activity in Layer 5 neurons, and further demonstrates that this disruption is specific to antipsychotics, as the psychostimulant amphetamine shows no such effect.

      In widefield calcium imaging experiments, the authors effectively control for the impact of hemodynamic occlusions in their results, and try to minimize this impact using a crystal skull preparation, which performs better than traditional glass windows. Moreover, they examine key findings in widefield calcium imaging experiments with two-photon imaging.

      Weaknesses:

      A critical weakness of the paper is its statistical analysis and data representations. The study does not use mice as its independent unit for statistical comparisons but rather relies on other definitions (see authors' Tabe S1), without appropriate justification, which results in an inflation of sample sizes. For example, in Figure 2, the independent statistical unit is defined as sessions instead of mice, and in Figures 6 and 7 its pairs of cortical regions of interest. This greatly inflates N by at least 1-2 orders of magnitude compared to using N = number of mice. With such inflated sample sizes, it becomes more likely to find spurious differences between groups as significant.

      It should be noted, however, that the authors have redone some analyses in their revision, specifically for Figure 1L, in which mice are used as independent units (shown in Figure S4) without any change in conclusion. However, this is not done for all other problematic figures in the manuscript.

      Furthermore - and related to the previous comment - trace averages and SEMs across the figures of the manuscript come from hundreds to thousands of data points (e.g. locomotion onsets or cells) repeatedly measured from only a handful of mice. This can be visually misleading for the reader (even if statistics are not being formally performed on these traces) as it artificially reduces the size of the SEM masking the true variability (and size) of the effects portrayed in the paper. Again, this practice is only justified if the data (e.g. locomotion onsets) within a mouse is actually statistically independent, which the authors do not test for or justify.

      It should be noted that the authors do show some trace averages and SEMs for a some of their data (Figure S2), in which N = individual mice, without any change in conclusion. However, this is not done for all other problematic figures in the manuscript.

      The above statistical problems are apparent throughout the manuscript. The more disciplined approach would be to average the data within a mouse, and then use the mouse as an independent unit for statistical comparison and/or for the purposes of presenting means and SEMs for aggregate data. Alternatively, the authors should provide clear justification in the manuscript for opting for other definitions of N.

      Finally, it is important to note that whilst the study demonstrates that antipsychotics may selectively impact visuomotor integration in L5 neurons, it does not show that this effect is necessary or sufficient for the action of antipsychotics; though this is likely beyond the scope of the study it is something for readers to keep in mind.

    1. Reviewer #3 (Public Review):

      Wang et al. investigated the role of acetate production, a byproduct of fatty acid oxidation, in the context of metabolic stressors, including diabetes mellitus and prolonged fasting. Mechanistically, they show the importance of the liver enzymes ACOT8 (peroxisome) and ACOT12 (cytoplasm) in converting FFA-derived acetyl-CoA into acetate and CoA. The regeneration of CoA allows for subsequent fatty acid oxidation. Inhibiting the generation of acetate has negative motor consequences in streptozocin-treated mice, which are mitigated with acetate injection.

      This paper's strengths include using multiple mouse models, metabolic stressors (db/db-/-, streptozocin, and prolonged starvation), numerous cell lines, precise knockout and rescue experiments, and complimentary use of mass spectrometry and nuclear magnetic resonance analytical platforms. The presented data support the conclusions of this paper and highlight the role of acetate in energy stress conditions.

      In clinical medicine, common ketones that are measured are acetoacetate, beta-hydroxybutyrate, and acetone which can help determine the severity of illness. However, the data presented here suggest the potential importance of measuring acetate as another biomarker when patients present with ketoacidosis in uncontrolled diabetes or starvation. This requires further investigation.

    1. Reviewer #3 (Public Review):

      Summary:

      Xue et al. extended their groundbreaking discovery demonstrating the protective effect of Txnip on cone photoreceptor survival. This was achieved by investigating the protection of cone degeneration through the overexpression of five distinct mutated variants of Txnip within the retinal pigment epithelium (RPE). Moreover, the study explored the roles of two proteins, HSP90AB1 and Arrdc4, which share similarities or associations with Txnip. They found the protection of Txnip in RPE cells and its mechanism is different from its protection in cone cells. These discoveries have significant implications for advancing our understanding of the mechanisms underlying Txnip's protection on cone cells.

      Strengths:<br /> 1. Identify the roles of different Txnip mutations in RPE and their effects on the expression of glucose transporter<br /> 2. Dissect the mechanism of Txnip in RPE vs Cone photoreceptors in retinal degeneration models.<br /> 3. Explore the functions of ARrdc4, a protein similar to Txnip and HSP90AB1 in cone degeneration.

      Weaknesses:<br /> 1. Arrdc4 has deleterious effect on cone survival but no discussion on its mechanism.<br /> 2. Inhibition of HSP90 is known to cause retinal generation. It is unclear why inhibition enhances the protection of Txnip.

    1. Reviewer #3 (Public Review):

      The authors evaluate the effect of high-resolution 2D template matching on template bias in reconstructions, and provide a quantitative metric for overfitting. It is an interesting manuscript that made me reevaluate and correct some mistakes in my understanding of overfitting and template bias, and I'm sure it will be of great use to others in the field. However, its main point is to promote high-resolution 2D template matching (2DTM) as a more universal analysis method for in vitro and, more importantly, in situ data. While the experiments performed to that end are sound and well-executed in principle, I fail to make that specific conclusion from their results.

      The authors correctly point out that overfitting is largely enabled by the presence of false-positives in the data set. They go on to perform their in situ experiments with ribosomes, which provide an extremely favorable amount of signal that is unrealistic for the vast majority of the proteome. This seems cherry-picked to keep the number of false-positives and false-negatives low. The relationship between overfitting/false-positive rate and the picking threshold will remain the same for smaller proteins (which is a very useful piece of knowledge from this study). However, the false-negative rate will increase a lot compared to ribosomes if the same high picking threshold is maintained. This will limit the applicability of 2DTM, especially for less-abundant proteins.

      I would like to see an ablation study: Take significantly smaller segments of the ribosome (for which the authors already have particle positions from full-template matching, which are reasonably close to the ground-truth), e.g. 50 kDa, 100 kDa, 200 kDa etc., and calculate the false-negative rate for the same picking threshold. If the resulting number of particles does plummet, it would be very helpful to discuss how that affects the utility of 2DTM for non-ribosomes in situ.

      Another point of concern is the dramatic resolution decrease to 8 A after multiple iterations of refinement against experimental reconstructions described in line 159. Was this a local search from the poses provided by 2DTM, or something more global? While this is not a manifestation of overfitting as the authors have conclusively shown, I think it adds an important point to the ongoing "But do we really need tomograms, or can we just 2D everything?" debate in the field, which is also central to the 2D part of 2DTM. Reaching 8 A with 12k ribosome particles would be considered a rather poor subtomogram averaging result these days. Being in the "we need tilt series to be less affected by non-Gaussian noise" camp myself, I wonder if this indicates 2D images are inherently worse for in situ samples. If they are, the same limitations would extend to template matching. In that case, shouldn't the authors advocate for 3DTM instead of 2DTM? It may not be needed for ribosomes, but could give smaller proteins the necessary edge.

      Right now, this study is also an invitation to practitioners who do not understand the picking threshold used here and cannot relate it to other template-matching programs to do a lot of questionable template matching and claim that the results are true because templates are "unoverfittable". I think such undesirable consequences should be discussed prominently.

    1. Reviewer #3 (Public Review):

      Summary: The authors clearly demonstrate the Rab3A plays a role in HSP at excitatory synapses, with substantially less plasticity occurring in the Rab3A KO neurons. There is also no apparent HSP in the Earlybird Rab3A mutation, although baseline synaptic strength seems already elevated. In this context, it is unclear if the plasticity is absent or just occluded by a ceiling effect due the synapses already being strengthened. The authors do appropriately discuss both options. There are also differences in genetic background between the Rab3A KO and Earlybird mutants that could also impact the results, which are also noted. The authors have solid data showing that Rab3A is unlikely to be active in astrocytes, Finally, they attempt to study the linkage between synaptic strength during HSP and AMPA receptor trafficking, and conclude that trafficking is largely not responsible for the changes in synaptic strength.

      Strengths: This work adds another player into the mechanisms underlying an important form of synaptic plasticity. The plasticity is only reduced, suggesting Rab3A is only partially required and perhaps multiple mechanisms contribute. The authors speculate about some possible novel mechanisms.

      Weaknesses: However, the rather strong conclusions on the dissociation of AMPAR trafficking and synaptic response are made from somewhat weaker data. The key issue is the GluA2 immunostaining in comparison with the mESPC recordings. Their imaging method involves only assessing puncta clearly associated with a MAP2 labeled dendrite. This is a small subset of synapses, judging from the sample micrographs (Fig 5). To my knowledge, this is a new and unvalidated approach that could represent a particular subset of synapses not representative of the synapses contributing to the mEPSC change (they are also sampling different neurons for the two measurements; an additional unknown detail is how far from the cell body were the analyzed dendrites for immunostaining). While the authors acknowledge that a sampling issue could explain the data, they still use this data to draw strong conclusions about the lack of AMPAR trafficking contribution to the mEPSC amplitude change. This apparent difference may be a methodological issue rather than a biological one, and at this point it is impossible to differentiate these. It will unfortunately be difficult to validate their approach. Perhaps if they were to drive NMDA-dependent LTD or chemLTP, and show alignment of the imaging and ephys, that would help. More helpful would be recordings and imaging from the same neurons but this is challenging. Sampling from identified synapses would of course be ideal, perhaps from 2P uncaging combined with SEP-labeled AMPARs, but this is more challenging still. But without data to validate the method, it seems unwarranted to make such strong conclusions such as that AMPAR trafficking does not underlie the increase in mEPSC amplitude, given the previous data supporting such a model.

      Other questions arise from the NASPM experiments, used to justify looking at GluA2 (and not GluA1) in the immunostaining. First, there is a frequency effect that is quite unclear in origin. One would expect NASPM to merely block some fraction of the post-synaptic current, and not affect pre-synaptic release or block whole synapses. It is also unclear why the authors argue this proves that the NASPM was at an effective concentration (lines 399-400). Further, the amplitude data show a strong trend towards smaller amplitude. The p value for both control and TTX neurons was 0.08 - it is very difficult to argue that there is no effect. And the decrease is larger in the TTX neurons. Considering the strong claims for a pre-synaptic locus and the use of this data to justify only looking at GluA2 by immunostaining, these data do not offer much support of the conclusions. Between the sampling issues and perhaps looking at the wrong GluA subunit, it seems premature to argue that trafficking is not a contributor to the mEPSC amplitude change, especially given the substantial support for that hypothesis. Further, even if trafficking is not the major contributor, there could be shifts in conductance (perhaps due to regulation of auxiliary subunits) that does not necessitate a pre-synaptic locus. While the authors are free to hypothesize such a mechanism, it would be prudent to acknowledge other options and explanations.

      The frequency data are missing from the paper, with the exception of the NASPM dataset. The mEPSC frequencies should be reported for all experiments, particularly given that Rab3A is generally viewed as a pre-synaptic protein regulating release. Also, in the NASPM experiments, the average frequency is much higher in the TTX treated cultures. Is this statistically above control values?

      Unaddressed issues that would greatly increase the impact of the paper:<br /> 1) Is Rab3A acting pre-synaptically, post-synaptically or both? The authors provide good evidence that Rab3A is acting within neurons and not astrocytes. But where it is acting (pre or post) would aid substantially in understanding its role (and particularly the hypothesized and somewhat novel idea that the amount of glutamate released per vesicle is altered in HSP). They could use sparse knock-down of Rab3A, or simply mix cultures from KO and WT mice (with appropriate tags/labels). The general view in the field has been that HSP is regulated post-synaptically via regulation of AMPAR trafficking, and considerable evidence supports this view. The more support for their suggestion of a pre-synaptic site of control, the better.

      2) Rab3A is also found at inhibitory synapses. It would be very informative to know if HSP at inhibitory synapses is similarly affected. This is particularly relevant as at inhibitory synapses, one expects a removal of GABARs and/or a decrease of GABA-packaging in vesicles (ie the opposite of whatever is happening at excitatory synapses). If both processes are regulated by Rab3A, this might suggest a role for this protein more upstream in the signaling; an effect only at excitatory synapses would argue for a more specific role just at these synapses.

    1. Reviewer #3 (Public Review):

      Summary:

      In this manuscript, Mure et al. describe interactions between diet, microbiome, and host development using Drosophila as a model. By characterizing microbial communities in food sources and animals, the authors showed that microbial community dynamics in the food source are critical for host development.

      Strengths:

      This is a very interesting study where the authors managed to tackle a difficult question in an elegant manner. How the interactions between different microbial species within the microbiome shape host physiology is an area of great interest but equally challenging due to the complexity of intercellular interactions in complex, host-associated microbial communities. By using a simplified model and interrogating not only microbe-microbe and host-microbe interactions, but also the role played by diet, authors were able to identify significant interactions during fly development.

      Weaknesses:

      Despite describing important findings, I believe that a more thorough explanation of the experimental setup and the steps expected to occur in the exposed diet over time, starting with natural "inoculation" could help the reader, in particular the non-specialist, grasp the rationale and main findings of the manuscript. When exactly was the decision to collect early-stage samples made? Was it when embryos were detected in some of the samples? What are the implications of bacterial presence in the no-fly traps? These samples also harbored complex microbial communities, as revealed by sequencing. Were these samples colonized by microbes deposited with air currents? Were they the result of flies that touched the material but did not lay eggs? Could the traps have been visited by other insects? Another interesting observation that could be better discussed is the fact that adult flies showed a microbiome that more closely resembles that of the early-stage diet, whereas larvae have a more late-stage-like microbiome. It is easy to understand why the microbiome of the larvae would resemble that of the late-stage foods, but what about the adult microbiome? Authors should discuss or at least acknowledge the fact that there must be a microbiome shift once adults leave their food source. Lastly, the authors should provide more details about the metabolomics experiments. For instance, how were peaks assigned to leucine/isoleucine (as well as other compounds)? Were both retention times and MS2 spectra always used? Were standard curves produced? Were internal, deuterated controls used?

    1. Reviewer #3 (Public Review):

      Numerous experimental models are phenotyped in this manuscript including mouse neurons, iPSC-derived human neurons, knock-in mice, and knock-in iPSCs. Expression of acetylation-mimic or acetylation-null TDP-43 protein is achieved either with overexpression or CRISPR-Cas9-based knock-in. A complex phenotype is observed including loss of TDP-43 function (reduced autoregulation, increased cryptic splicing) and a gain of TDP-43 (increased insoluble TDP-43 protein). These correlate with downstream neurobehavioral changes which are most consistent with a cortical/hippocampal phenotype without a motor phenotype. Post-translational modifications of disease-associated proteins are thought to contribute to neurodegenerative disease pathogenesis, and this study succeeds in demonstrating that TDP-43 acetylation results in downstream molecular and behavioral phenotypes.

      TDP-43 acetylation is a post-translational modification that is known to be associated with TDP-43 inclusions that are characteristic of human diseases. An important strength is the rigorous use of multiple different experimental models (rodent cells, iPSC-derived neurons, mice, overexpression, knock-in) with overall consistent results. Moreover, multiple orthogonal endpoints are presented including histology/cytology/immunostaining, biochemistry, molecular biology, and neurobehavioral assays. As TDP-43 acetylation is known to block RNA binding, these novel cellular and mouse models represent interesting albeit complex tools to study the functional consequences of a partial loss of function. As TDP-43 regulates its own expression (i.e. autoregulation), the complexity lies at least in part due to the loss of RNA binding leading to a functional loss of TDP-43 function which includes the increased expression of the TARDBP transcript and TDP-43 protein.

      Conceptually, there is a disconnect in that the mouse model exhibits primarily a cortical/hippocampal phenotype more akin to frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), while TDP-43 acetylation is only seen in ALS tissues and not in FTLD-TDP tissues because most of the pathologic protein in the latter is N-terminally truncated (i.e. the acetylation site is not present). That being said, there is no mouse model which completely and faithfully recapitulates the human disease, and this mouse model avoids overt overexpression (increased TDP-43 protein expression stemming from altered autoregulation) and avoids the use of synthetic/artificial mutation (such as mutation of the TDP-43 nuclear localization signal).

      This revision addresses most of my prior comments including documenting the lack of neurodegeneration in this model, the use of more appropriate statistical methods, and the use of more robust/quantitative aberrant splicing measures. The one thing which would still be helpful is sequencing the top predicted off target genomic loci for their various CRISPR'd models irrespective of whether these loci are exonic or noncoding. Having actual sequencing verification of the lack of mutations at these loci is preferable over relying only on computational likelihood estimates.

    1. Reviewer #3 (Public Review):

      Summary:

      This study implements an innovative neurofeedback procedure in rats, providing food reward upon detection of a sharp wave-ripple event (SWR) in the hippocampus. The elegant experimental design enables a within-animal comparison of the effects of this neurofeedback procedure as compared to a control condition in which an equivalent reward is provided in a non-contingent manner. The neurofeedback procedure was found to increase SWR rate, followed by a compensatory reduction in SWR rate. These changes in SWR rate were not accompanied by any changes in memory performance on the memory-guided task.

      Strengths:

      The scientific premise for the study is outstanding. It addresses an issue of high importance, of developing ways to not merely describe correlations between SWRs (and their content) and memory performance, but to manipulate them. The authors argue clearly and convincingly that even studies that have performed causal manipulations of SWRs have important confounds and limitations, and most importantly for translational purposes, they are all invasive. So, the idea of developing a potentially non-invasive neurofeedback procedure for modulating SWRs is compelling both as an innovative new experimental manipulation in studies of SWRs, and as a potentially impactful therapeutic avenue.

      In addition to addressing an important issue with an innovative approach, the study has many other strengths. The data unambiguously show that the method is effective at increasing SWR rate in each individual subject. The experimental design allows within-subject comparison of neurofeedback and control trials, where the subjects wait an equivalent amount of time. The careful analyses of SWR properties and their content establish that neurofeedback SWRs are comparable to control SWRs. The data add further evidence to the notion that SWR rate is subject to homeostatic control. The paper is also exceptionally well written, and was a pleasure to read. So, there is a clear technical advance, in that there is now a method for increasing SWR rate non-invasively, which is rigorously established and characterized.

      Weaknesses:

      The one overall limitation I find with this study is that it is unclear to what extent the same (or better) results could have been obtained using behavior-feedback instead of neuro-feedback. Because SWR rates are generally higher during states of quiescence compared to active movement or task engagement, it is possible that reinforcing behaviorally detected quiescent states (e.g. low movement) would indirectly increase SWR rates. The observation that all 4 subjects had lower movement speeds during neurofeedback compared to control trials supports this interpretation. This is an important issue that would help clarify whether the neurofeedback approach is worth the additional effort and expense compared to behavioral feedback.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors presented point light displays of human walkers to children (mean = 9 years) with and without ADHD to compare their biological motion perception abilities and relate them to IQ, social responsiveness scale (SRS) scores and age. They report that children with ADHD were worse at all three biological motion tasks, but that those loading more heavily on local processing related to social interaction skills and global processing to age. The important and solid findings are informative for understanding this complex condition, as well as biological motion processing mechanisms in general. However, I am unsure that these differences between local and global skills are truly supported by the data and suggest some further analyses.

      Strengths:<br /> The authors present clear differences between the ADHD and TD children in biological motion processing, and this question has not received as much attention as equivalent processing capabilities in autism. They use a task that appears well controlled. They raise some interesting mechanistic possibilities for differences in local and global motion processing, which are distinctions worth exploring. The group differences will therefore be of interest to those studying ADHD, as well as other developmental conditions, and those examining biological motion processing mechanisms in general.

      Weaknesses:<br /> I am unsure that the data are strong enough to support claims about differences between global and local processing wrt social communication skills and age. The mechanistic possibilities for why these abilities may dissociate in such a way are interesting, but do not seem so plausible to me. I am also concerned about gender, and possible autism, confounds when examining the effect of ADHD. Specifics:

      Gender confound. There are proportionally more boys in the ADHD than TD group. The authors appear to attempt to overcome this issue by including gender as a covariate. I am unsure if this addresses the problem. The vast majority of participants in the ADHD group are male, and gender is categorically, not continuously, defined. I'm pretty sure this violates the assumptions of ANCOVA.

      Autism. Autism and ADHD are highly comorbid. The authors state that the TD children did not have an autism or ADHD diagnosis, but they do not state that the ADHD children did not have an autism diagnosis. Given the nature of the claims, this seems crucial information for the reader.

      Conclusions. The authors state frequently that it was the local BM task that related to social communication skills (SRS) and not the global tasks. However, the results section shows a correlation between SRS and all three tasks. The only difference is that when looking specifically within the ADHD group, the correlation is only significant for the local task. I think that if the authors wish to make strong claims here they must show inferential stats supporting (1) a difference between ADHD and TD SRS-Task 1 correlations, and (2) a difference in those differences for Task 2 and 3 relative to Task 1. I think they should also show a scatterplot of this correlation, with separate lines of best fit for the two groups, for Tasks 2 and 3 as well. I.e. Figure 4 should have 3 panels. I would recommend the same type of approach for age. Currently, they have small samples for correlations, and are reading much of theoretical significance between some correlations passing significance threshold and others not. It would be incredibly interesting if the social skills (as measured by SRS) only relate to local BM abilities, and age only to global, but I think the data are not so clear with the current information. I would be surprised if all BM abilities did not improve with age. Even if there is some genetic starter kit (and that this differs according to particular BM component), most abilities improve with learning/experience/age.

      Theoretical assumptions. The authors make some sweeping statements about local vs global biological motion processing that need to be toned down. They assume that local processing is specifically genetically whereas global processing is a product of experience. The fact their global, but not local, task performance improves with age would tend to suggest there could be some difference here, but the existing literature does not allow for this certainty. The chick studies showing a neonatal preference are controversial and confounded - I cannot remember the specifics but I think there an upper vs lower visual field complexity difference here.

    1. Reviewer #3 (Public Review):

      Yang and colleagues investigated whether information on two task-irrelevant features that induce response conflict is represented in a common cognitive space. To test this, the authors used a task that combines the spatial Stroop conflict and the Simon effect. This task reliably produces a beautiful graded congruency sequence effect (CSE), where the cost of congruency is reduced after incongruent trials. The authors measured fMRI to identify brain regions that represent the graded similarity of conflict types, the congruency of responses, and the visual features that induce conflicts. They applied univariate, multivariate, and connectivity analyses to fMRI data to identify brain regions that represent the graded similarity of conflict types, the congruency of responses, and the visual features that induce conflicts. They further directly assessed the dimensionality of represented conflict space.

      The authors identified the right dlPFC (right 8C), which shows 1) stronger encoding of graded similarity of conflicts in incongruent trials and 2) a positive correlation between the strength of conflict similarity type and the CSE on behavior. The dlPFC has been shown to be important for cognitive control tasks. As the dlPFC did not show a univariate parametric modulation based on the higher or lower component of one type of conflict (e.g., having more spatial Stroop conflict or less Simon conflict), it implies that dissimilarity of conflicts is represented by a linear increase or decrease of neural responses. Therefore, the similarity of conflict is represented in multivariate neural responses that combine two sources of conflict.

      The strength of the current approach lies in the clear effect of parametric modulation of conflict similarity across different conflict types. The authors employed a clever cross-subject RSA that counterbalanced and isolated the targeted effect of conflict similarity, decorrelating orientation similarity of stimulus positions that would otherwise be correlated with conflict similarity. A pattern of neural response seems to exist that maps different types of conflict, where each type is defined by the parametric gradation of the yoked spatial Stroop conflict and the Simon conflict on a similarity scale. The similarity of patterns increases in incongruent trials and is correlated with CSE modulation of behavior.

      The main significance of the paper lies in the evidence supporting the use of an organized "cognitive space" to represent conflict information as a general control strategy. The authors thoroughly test this idea using multiple approaches and provide convincing support for their findings. However, the universality of this cognitive strategy remains an open question.

      The task presented in the study involved two sources of conflict information through a single salient visual input, which might have encouraged the utilization of a common space. The similarity space was analyzed at the level of between-individuals (i.e., cross-subject RSA) to mitigate potential confounds in the design, such as congruency and the orientation of stimulus positions. This approach makes it challenging to establish a direct link between the quality of conflict space representation and the patterns of behavioral adaptations within individuals.

      Furthermore, it remains unclear at which cognitive stages during response selection such a unified space is recruited. Can we effectively map any sources of conflict into a single scale? Is this unified space adaptively adjusted within the same brain region? Additionally, does the amount of conflict solely define the dimensions of this unified space across many conflict-inducing tasks? These questions remain open for future studies to address.

      Taken together, this study presents an exciting possibility that information requiring high levels of cognitive control could be flexibly mapped into cognitive map-like representations that both benefit and bias our behavior. Further characterization of the representational geometry and generalization of the current results look promising ways to understand representations for cognitive control.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This hybrid experimental/computational study by Hernandez-Hernandez sheds new light on sex-specific differences between male and female arterial myocytes from resistance arteries. The authors conduct careful experiments in isolated myocytes from male and female mice to obtain the data needed to parameterize sex-specific models of two important ionic currents (i.e., those mediated by CaV1.2 and KV2.1). Available experimental data suggest that KV1.5 channel currents from male and female myocytes are similar, but simulations conducted in the novel Hernandez-Hernandez sex-specific models provide a more nuanced view. This gives rise to the first of the authors' three key scientific claims: (1) In males, KV1.5 is the dominant current regulating membrane potential; whereas, in females, KV2.1 plays a primary role in voltage regulation. They further show that this (2) the latter distinction drives drive sex-specific differences in intracellular Ca2+ and cellular excitability. Finally, working with one-dimensional models comprising several copies of the male/female myocyte models linked by resistive junctions, they use simulations to (3) predict that the sensitivity of arterial smooth muscle to Ca2+ channel-blocking drugs commonly used to treat hypertension is heightened in female compared to male cells.

      Strengths:<br /> • The Methodology is described in exquisite detail in straightforward language that will be easy to understand for most if not all peer groups working in computational physiology. The authors have deployed standard protocols (e.g., parameter fitting as described by Kernik et al., sensitivity analysis as described by Sobie et al.) and appropriate brief explanations of these techniques are provided. The manoeuvre used to represent stochastic effects on voltage dynamics is particularly clever and something I have not personally encountered before. Collectively, these strengthen the credibility of the model and greatly enrich the manuscript.

      • Broadly speaking, the Results section describes findings that robustly support the three key scientific claims outlined in my summary. While there is certainly room for further discussion of some nuanced points as outlined below, it is evident these experiments were carefully designed and carried out with care and intentionality. In the present version of the manuscript, there are a few figures in which experimental data is shown side-by-side with outputs from the corresponding models. These are an excellent illustration of the power of the authors' novel sex-specific computational simulation platform. I think these figures will benefit from some modest additional quantitative analysis to substantiate the similarities between experimental and computational data, but there is already clear evidence of a good match.

      Areas for Improvement:<br /> • The authors used experimental data from a prior publication to calibrate their model of the BKCa current. As indicated in the manuscript, these data are for channel activity measured in a heterologous expression system (Xenopus oocytes). A similar principle applies to other major ion channels/pumps/etc. Is it possible there might be relevant sex-specific differences in these players as well? In the context of the present work, this feels like an important potential caveat to highlight, in case male/female differences in the activity of BKCa or other currents might influence model-predicted differences (e.g., the relative importance of KV1.5 and KV2.1). This should be discussed, and, if possible, related to the elegant sensitivity analysis presented in Fig. 5C (which shows, for example, that the models are relatively insensitive to variation in GBK).

      • The authors state that their model can be expanded to 2D/3D applications, "transitioning seamlessly from single-cell to tissue-level simulations". I would like to see more discussion of this. For example, given the modest complexity of the cell-scale model, how considerable would the computational burden be to implement a large network model of a subset of the human female or male arterial system? Are there sex-specific differences in vessel and/or network macro-structure that would need to be considered? How would this influence feasibility? Rather than a 1D cable as implemented here, I imagine a multi-scale implementation would involve the representation of myocytes wrapped around vessels. How would the behaviour of such a system differ from the authors' presented work using a 1D representation of 100 myocytes coupled end-to-end? Could these differences partially explain why the traces in Fig. 8D are smoother than those in Fig. 8C? From my standpoint, discussing these points would enrich the paper.

      • The nifedipine data presented in Fig. 9 are quite compelling, and a nice demonstration of the potential power of the new models. How does this relate to what is known about the clinical male/female responses to nifedipine? Are there sex differences in drug efficacy?

    1. Reviewer #3 (Public Review):

      Diechsel et al. provide important and valuable insights into how Notch signalling is shut down in response to parasitic wasp infestation in order to suppress crystal cell fate and favour lamellocyte production. The study shows that CSL transcription factor Su(H) is phosphorylated at S269A in response to parasitic wasp infestation and this inhibitory phosphorylation is critical for shutting down Notch. The authors go on to perform a screen for kinases responsible for this phosphorylation and have identified Pkc53E as the specific kinase acting on Su(H) at S269A. Using analysis of mutants, RNAi and biochemistry-based approaches the authors convincingly show how Pkc53E-Su(H) interaction is critical for remodelling hematopoiesis upon wasp challenge. The data presented supports the overall conclusions made by the authors. There are a few points below that need to be addressed by the authors to strengthen the conclusions:

      1) The authors should check melanized crystal cells in Su(H)gwt and Su(H)S269A in presence of PMA and Staurosporine?<br /> 2) Data for number of dead pupae, flies eclosed, wasps emerged post infestation should be monitored for the following genotypes and should be included: Pkc53EΔ28, Su(H)S269A, Pkc53EΔ28 Su(H)S269A, Su(H)S269D, Su(H)S269D Pkc53EΔ28<br /> 3) The exact molecular trigger for activation of Pkc53E upon wasp infestation is not clear.<br /> 4) The authors should check if activating ROS alone or induction of Calcium pulses/DUOX activation can mimic this condition and can trigger activation of Pkc53E and thereby cause phosphorylation of Su(H) at S269<br /> 5) Does Pkc53E get activated during sterile inflammation?

    1. Reviewer #3 (Public Review):

      A summary of what the authors were trying to achieve:<br /> - TNFAIP2 promotes TNBC drug resistance and DNA damage repair.<br /> - Mechanistically, TNFAIP2 interacts with IQGAP1 and Integrin β4 to mediate RAC1 activation and thus promotes TNBC drug resistance.<br /> - Clinically, TNFAIP2 expression levels positively correlated with ITGB4 in TNBC tissues.<br /> - ITGB4 and TNFAIP2 might serve as promising therapeutic targets for TNBC.<br /> -An account of the major strengths and weaknesses of the methods and results.<br /> The authors performed numerous rescue experiments in vitro to confirm the relationship among ITGB4, TNFAIP2, IQGAP1 and Rac1. However, clinical relevance is somehow limited. Additional experiments are needed to demonstrate the above conclusions in clinical samples.<br /> -An appraisal of whether the authors achieved their aims, and whether the results support their conclusions.<br /> To most extent, the authors achieved their aims, and the results demonstrate their conclusions "TNFAIP2 interacts with IQGAP1 and ITGB4. ITGB4 promotes TNBC drug resistance via the TNFAIP2/IQGAP1/RAC1 axis by promoting DNA damage repair".<br /> -A discussion of the likely impact of the work on the field, and the utility of the methods and data to the community.<br /> Drug resistance is always a challenge for TNBC treatment. This paper found that TNFAIP2 interacts with IQGAP1 and ITGB4 to activate Rac1, thus conferring DNA chemo-resistance to TNBC cells. In addition, positive correlation between the expression of TNFAIP2 and ITGB4 in TNBC tissues were presented. This paper suggests that the ITGB4/TNFAIP2/IQGAP1/Rac1 axis provides potential therapeutic targets to overcome chemo-resistance (DNA damage drugs) in fighting with TNBC.

      Additional context to help readers interpret or understand the significance of the work:<br /> This work reported a new mechanism related to TNBC chemo-resistance, which mainly depends on ordered interactions among ITGB4/TNFAIP2/IQGAP1/Rac1 and the following activation of pathways. Thus micro-peptide targeting technique, which is widely used to develop targeted drugs for protein-protein interactions, could show extraordinary potentials and application significance.<br /> At present, cell penetrating peptide, a type of micro-peptide targeting technique, makes functional micro-peptides more stable by cross-linking some amino acid side chains. In recent years, it has been found that binding peptides can not only stabilize peptides, make them easier to enter cells, but also not easy to be hydrolyzed by proteases. At the same time, they have high affinity for targets and can target protein interactions, thus becoming a new way to develop protein interaction targeting inhibitors. To make it easier to enter cells, cell-penetrating peptides can be used in combination, such as HIV TAT. Cell-penetrating peptides can carry a variety of biologically active substances into the cell, is a good targeting drug carrier, with low toxicity, not limited by cell type, into the cell speed and high transduction efficiency. Based on the mechanism reported here, researchers can explore new micro-peptides targeting the interactions between ITGB4 and TNFAIP2 or TNFAIP2 and IQGAP1 to enhance the sensitivity of TNBC cells to drugs by cell-penetrating peptide technology.

    1. Reviewer #3 (Public Review):

      The main findings of this study are as follows: (1) The authors defined "metabolism-type" and "kinase-type" in unclassified sporadic PCC patients through the single-cell transcriptomics-based differentially expressed genes and functional enrichment analyses. (2) They identified the limitation of Pheochromocytoma of the Adrenal gland Scaled Score (PASS) system and suggested the combination of molecular diagnostic methods like scRNA-seq with pathological tools like PASS in aiding the clinical evaluation of PCCs. (3) Analysis of the PCC microenvironment revealed a lack of immune cell infiltration in both metabolism-type and kinase-type PCCs, while only the kinase-type PCC patient exhibited the low expression of HLA-Ⅰ that potentially regulated by RET, providing clues for the combined therapy with kinase inhibitors and immunotherapy in kinase-type PCC patients.

      The main strength of this manuscript is that it involves scRNA-seq analysis of an extremely rare tumor type-PCCs, which presents a single-cell transcriptomics-based molecular classification and microenvironment characterization of PCCs and further provides clues for potential therapeutic strategies to treat PCCs. The authors also validated the scRNA-seq analysis results (such as the expression levels of marker genes and the distribution of immune cells in the PCC microenvironment) with immunocytochemistry and multispectral immunofluorescent staining. In summary, the findings in this manuscript are quite interesting and significant, which will potentially be valuable for the molecular classification of PCCs.

    1. Reviewer #3 (Public Review):

      Gaynes et al. investigated the presynaptic and postsynaptic mechanisms of starburst amacrine cell (SAC) direction selectivity in the mouse retina by computational modeling and glutamate sensitivity (iGluSnFR) imaging methods. Using the SAC computational simulation, the authors initially tested bipolar cell contributions (space-time wiring model, presynaptic effect) and SAC axial resistance contributions (postsynaptic effect) to the SAC DS. Then, the authors conducted two-photon iGluSnFR imaging from SACs to examine the presynaptic glutamate release, and found seven clusters of ON-responding and six clusters of OFF-responding bipolar cells. They were categorized based on their response kinetics: delay, onset phase, decay time, and others. Finally, the authors generated a model consisting of multiple clusters of bipolar cells on proximal and distal SAC dendrites. When the SAC DS was measured using this model, they found that the space-time wiring model accounted for only a fraction of SAC DS.

      The article has many interesting findings, and the data presentation is superb. Strengths and weaknesses are summarized below.

      Major Strengths:<br /> • The authors utilized solid technology to conduct computational modeling with Neuron software and a machine-learning approach based on evolutionary algorithms. Results are effectively and thoroughly presented.

      • The space-time wiring model was evaluated by changing bipolar cell response properties in the proximal and distal SAC dendrites. Many response parameters in bipolar cells are compared, and DSI was compared in Figure 3.

      • Two-photon microscopy was used to measure the bipolar cell glutamate outputs onto SACs by conducting iGluSnFR imaging. All the data sets, including images and transients, are elegantly presented. The authors analyzed the response based on various parameters, which generated more than several response clusters. The clustering is convincing.

      Major Weaknesses:<br /> • In Figure 9, the authors generated the bipolar cell cluster alignment based on the space-time wiring model. The space-time wiring model has been proposed based on the EM study that distinct types of bipolar cells synapse on distinct parts of SAC dendrites (Green et al 2016, Kim et al 2014). While this is one of the representative Reicardt models, it is not fully agreed upon in the field (see Stincic et al 2016). While the authors' approach of testing the space-time wiring model and conclusions is interesting and appreciated, the authors could address more issues: mainly two clusters were used to generate the model, but more numbers of clusters should be applied. Although the location of each cluster on the SAC dendrites is unknown, the authors should know the populations of clusters by iGluSnFR experiments. Furthermore, the authors could provide more suggestive mechanisms after declining postsynaptic factors and the space-time wiring model.<br /> • The computational modeling demonstrates intriguing results: SAC dendritic morphology produces dendritic isolation, and a massive input overcomes the dendritic isolation (Figure 1). This modeling seems to be generated by basic dendritic cable properties. However, it has been reported that SAC dendrites express Kv3 and voltage-gated Ca channels. It seems to be that these channels are not incorporated in this model.

      • In Figure 5B, representative traces are shown responding to moving bars in horizontal directions. These did not show different responses to two directional stimuli. It is unclear whether directional preference was not detected, which was shown by Yonehara's group recently (Matsumoto et al 2021). Or that was not investigated as described in the Discussion.

      • The authors found seven ON clusters and six OFF clusters, which are supposed to be bipolar cell terminals. However, bipolar cells reported to provide synaptic inputs are T-7, T-6, and multiple T-5s for ON SACs and T-1, T-2, and T-3s for OFF SACs. The number of types is less than the number of clusters. Potentially, clusters might belong to glutamatergic amacrine cells. These points are not fully discussed.

    1. Reviewer #3 (Public Review):

      Summary: The manuscript by de Guglielmo et al. presents data demonstrating that escalation of drug intake, increased motivation for drug under a progressive ratio, and drug-seeking despite adverse consequence can be explained by the same construct, while irritability-like behavior during withdrawal is statistically unrelated to an addiction-like phenotype.

      Strengths: It is commendable that the authors used large cohorts of heterogenous male and female rats to mitigate common preclinical limitations that can hinder the translational relevance of research findings. The overall question is important and the authors provide a large amount of data to support their claim.

      Weaknesses: However, there are a number of factors - such as behavioral rate - that are not considered and likely co-vary with other measures. This is critical as previous work has shown that rate of behavior in reinforcement tasks is a large determinant of sensitivity to both drug effects on that behavior and punishers. This is not considered and but additional information and tempering the interpretation of the data would further strengthen the manuscript.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The current manuscript claims that 14-3-3 interacts with Spastin and that the 14-3-3/spastin interaction is important to regulate axon regeneration after spinal cord injury.

      Strengths:<br /> In its present form, this reviewer identified no clear strengths for this manuscript.

      Weaknesses:<br /> In general, most of the figures lack sufficient quality to allow analyses and support the author's claims (detailed below). The legends also fail to provide enough information on the figures which makes it hard to interpret some of them. Most of the quantifications were done based on pseudo-replication. The number of independent experiments (that should be defined as n) is not shown. The overall quality of the written text is also low and typos are too many to list. The original nature of the spinal cord injury-related experiments is unclear as the role of 14-3-3 (and Spastin) in axon regeneration has been extensively explored in the past.

    1. Reviewer #3 (Public Review):

      This paper studies chromatic coding in mouse primary visual cortex. Calcium responses of a large collection of cells are measured in response to a simple spot stimulus. These responses are used to estimate chromatic tuning properties - specifically sensitivity to UV and green stimuli presented in a large central spot or a larger still surrounding region. Cells are divided based on their responses to these stimuli into luminance or chromatic sensitive groups. Several technical concerns limit how clearly the data support the conclusions. If these issues can be fixed, the paper would make a valuable contribution to how color is coded in mouse V1.

      Analysis<br /> The central tool used to analyze the data is a "spike triggered average" of the responses to randomly varying stimuli. There are several steps in this analysis that are not documented, and hence evaluating how well it works is difficult. Central to this is that the paper does not measure spikes. Instead, measured calcium traces are converted to estimated spike rates, which are then used to estimate STAs. There are no raw calcium traces shown, and the approach to estimate spike rates is not described in any detail. Confirming the accuracy of these steps is essential for a reader to be able to evaluate the paper. Further, it is not clear why the linear filters connecting the recorded calcium traces and the stimulus cannot be estimated directly, without the intermediate step of estimating spike rates.

      A further issue about the STAs is that the inclusion criterion (correlation of predicted vs measured responses of 0.25) is pretty forgiving. It would be helpful to see a distribution of those correlation values, and some control analyses to check whether the STA is providing a sufficiently accurate measure to support the results (e.g. do the central results hold for the cells with the highest correlations).

      Limitations of stimulus choice<br /> The paper relies on responses to a large (37.5 degree diameter) modulated spot and surrounding region. This spot is considerably larger than the receptive fields of both V1 cells and retinal ganglion cells. As a result, the spot itself is very likely to strongly activate both center and surround mechanisms, and responses of cells are likely to depend on where the receptive fields are located within the spot (and, e.g., how much of the true neural surround samples the center spot vs the surround region). The impact of these issues on the conclusions is considered briefly at the start of the results but needs to be evaluated in considerably more detail. This is particularly true for retinal ganglion cells given the size of their receptive fields (see also next point).

      Comparison with retina<br /> A key conclusion of the paper is that the chromatic tuning in V1 is not inherited from retinal ganglion cells. This conclusion comes from comparing chromatic tuning in a previously-collected data set from retina with the present results. But the retina recordings were made using a considerably smaller spot, and hence it is not clear that the comparison made in the paper is accurate. This issue may be handled by the analysis presented in the paper, but if so it needs to be described more clearly.<br /> The paper from which the retina data is taken argues that rod-cone chromatic opponency originates largely in the outer retina. This mechanism would be expected to be shared across retinal outputs. Thus it is not clear how the Green-On/UV-Off vs Green-Off/UV-On asymmetry could originate. This should be discussed.

      Residual chromatic cells at low mesopic light levels<br /> The presence of chromatically tuned cells at the lowest light level probed is surprising. The authors describe these conditions as rod-dominated, in which case chromatic tuning should not be possible. This again is discussed only briefly. It either reflects the presence of an unexpected pathway that amplifies weak cone signals under low mesopic conditions such that they can create spectral opponency or something amiss in the calibrations or analysis. Data collected at still lower light levels would help resolve this.

    1. Reviewer #3 (Public Review):

      Summary:

      This study demonstrates that the axon guidance molecule Sema7a patterns the innervation of hair cells in the neuromasts of the zebrafish lateral line, as revealed by quantifying gain- and loss-of function effects on the three-dimensional topology of sensory axon arbors over developmental time. Alternative splicing can produce either a diffusible or membrane-bound form of Sema7a, which is increasingly localized to the basolateral pole of hair cells as they develop (Figure 1). In sema7a mutant zebrafish, sensory axon arbors still grow to the neuromast, but they do not form the same arborization patterns as in controls, with many arbors overextending, curving less, and forming fewer loops even as they lengthen (Figure 2,3). These phenotypes only become significant later in development, indicating that Sema7a functions to pattern local microcircuitry, not the gross wiring pattern. Further, upon ectopic expression of the diffusible form of Sema7a, sensory axons grow towards the Sema7a source (Figure 4). The data also show changes in the synapses that form when mutant terminals contact hair cells, evidenced by significantly smaller pre- and post-synaptic punctae (Figure 5). Finally, by replotting single cell RNA-sequencing data (Figure 6), the authors show that several other potential cues are also produced by hair cells and might explain why the sema7a phenotype does not reflect a change in growth towards the neuromast. In summary, the data strongly indicate that Sema7a plays a role in shaping connectivity within the neuromast.

      Strengths:

      The main strength of this study is the sophisticated analysis that was used to demonstrate fine-level effects on connectivity. Rather than asking "did the axon reach its target?", the authors asked "how does the axon behave within the target?". This type of deep analysis is much more powerful than what is typical for the field and should be done more often. The breadth of analysis is also impressive, in that axon arborization patterns and synaptic connectivity were examined at 3 stages of development and in three-dimensions.

      Weaknesses:

      The main weakness is that the data do not cleanly distinguish between activities for the secreted and membrane-bound forms of Sema7a, which the authors speculate may influence axon growth and synapse formation respectively. The authors do not overstate the claims, but it would have been nice to see some additional experimentation along these lines, such as the effects of overexpressing the membrane-bound form, some analysis of the distance over which the "diffusible" form of Sema7a might act (many secreted ligands are not in fact all that diffusible), or some live-imaging of axons before they reach the target (predicted to be the same in control and mutants) and then within the target (predicted to be different). Clearly, although the gain-of-function studies show that Sema7a can act at a distance, other cues are sufficient. Although the lack of a phenotype could be due to compensation, it is also possible that Sema7a does not actually act in a diffusible manner within its natural context.

      Overall, the data support the authors' carefully worded conclusions. While certain ideas are put forward as possibilities, the authors recognize that more work is needed. The main shortcoming is that the study does not actually distinguish between the effects of the two forms of Sema7a, which are predicted but not actually shown to be either diffusible or membrane linked (the membrane linkage can be cleaved). Although the study starts by presenting the splice forms, there is no description of when and where each splice form is transcribed. Additionally, since the mutants are predicted to disrupt both forms, it is a bit difficult to disentangle the synaptic phenotype from the earlier changes in circuit topology - perhaps the change at the level of the synapse is secondary to the change in topology. Further, the authors do not provide any data supporting the idea that the membrane bound form of Sema7a acts only locally. Without these kinds of data, the authors are unable to attribute activities to either form.

      The main impact on the field will be the nature of the analysis. The field of axon guidance benefits from this kind of robust quantification of growing axon trajectories, versus their ability to actually reach a target. This study highlights the value of more careful analysis and as a result, makes the point that circuit assembly is not just a matter of painting out paths using chemoattractants and repellants, but is also about how axons respond to local cues. The study also points to the likely importance of alternative splice forms and to the complex functions that can be achieved using different forms of the same ligand.

    1. Reviewer #3 (Public Review):

      Onck and co-workers present in this work the identification of binding partners and sites of polyPR on various nuclear transport components and elucidate how polyPR might potentially influence the transport process. It's interesting to note that some interaction sites on transport components also serve as their inherent/functional binding sites. The difference in the effects between short polyPR (PR7) and long polyPR (PR50) is also evident, although the authors might need to clarify the mechanisms better. Overall, the manuscript is well organized and concisely written, and it would greatly enhance our understanding of the toxicity induced by polyPR. In general, the 1-bead per atom force field model used in the study is well-tuned for studying the interactions between polyPR and proteins, as the essential cation-pi interactions (between Arg and Phe/Tyr/Trp) were included using an 8-6 LJ model.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This study used prolonged stimulation of a limb to examine possible plasticity in somatosensory evoked potentials induced by the stimulation. They also studied the extent that the blood-brain barrier (BBB) was opened by prolonged stimulation and whether that played a role in the plasticity. They found that there was potentiation of the amplitude and area under the curve of the evoked potential after prolonged stimulation and this was long-lasting (>5 hrs). They also implicated extravasation of serum albumin, caveolae-mediated transcytosis, and TGFb signalling, as well as neuronal activity and upregulation of PSD95. Transcriptomics was done and implicated plasticity-related genes in the changes after prolonged stimulation, but not proteins associated with the BBB or inflammation. Next, they address the application to humans using a squeeze ball task. They imaged the brain and suggested that the hand activity led to an increased permeability of the vessels, suggesting modulation of the BBB.

      Strengths:<br /> The strengths of the paper are the novelty of the idea that stimulation of the limb can induce cortical plasticity in a normal condition, and it involves the opening of the BBB with albumin entry. In addition, there are many datasets and both rat and human data.

      Weaknesses:<br /> The conclusions are not compelling however because of a lack of explanation of methods and quantification. It also is not clear whether the prolonged stimulation in the rat was normal conditions. To their credit, the authors recorded the neuronal activity during stimulation, but it seemed excessive excitation. Since seizures open the BBB this result calls into question one of the conclusions. that the results reflect a normal brain. The authors could either conduct studies with stimulation that is more physiological or discuss the caveats of using a supraphysiological stimulus to infer healthy brain function.

    1. Reviewer #3 (Public Review):

      The manuscript presents novel findings regarding the judgment of difficulty of perceptual decisions. In the main task (Experiment 1), participants accumulated evidence over time about two tasks, patches of random dot motion, and were asked to report for which patch it would be easier to make a decision about its dominant color, while not explicitly making such decision(s). By fitting several alternative models, authors demonstrated that while accuracy changes as a function of the difference between stimulus strengths, reaction times of such decisions are not solely governed by the difference in stimulus strength, but (also) by the difference in absolute accumulated evidence for color judgment of the two stimuli ('Difference model'). Predictions from the best fitted model were then tested with a new set of conditions and participants (Experiment 2). Here, authors eliminated part of the uncertainty by informing participants about the dominant color of the two stimuli ('known color' condition) and showing that reaction times were faster compared to the 'unknown color' task, and only depended on the difference between stimulus strengths.

      The paper deals with a valuable question about a metacognitive aspect of perceptual decision making, which was only sparsely addressed before. The paper is very well written, figures and illustrations clearly accompanied the text, and methods and modeling are rigor. The authors also address the concern that a difficulty judgment might be a confidence estimation, another metacognitive judgment of perceptual decisions, by fitting a Confidence model to the 'known color' condition in Experiment 2 and showing that this model performs worse compared to the Difference model. This is an important control analysis, given the possibility that humans might make an implicit decision about the dominant color of each patch, and then report their level of confidence.

      This work is likely to be of great interest in the field of behavioral modeling of perceptual decision making, and might encourage further investigations of how judging the difficulty of a task affects subsequent decisions about the same task.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors aimed to investigate how genetic and environmental factors influence the muscle insulin signaling network and its impact on metabolism. They utilized mass spectrometry-based phosphoproteomics to quantify phosphosites in the skeletal muscle of genetically distinct mouse strains in different dietary environments, with and without insulin stimulation. The results showed that genetic background and diet both affected insulin signaling, with almost half of the insulin-regulated phosphoproteome being modified by genetic background on an ordinary diet, and high-fat high-sugar feeding affecting insulin signaling in a strain-dependent manner.

      Strengths:<br /> The study uses state-of-the-art phosphoproteomics workflow allowing quantification of a large number of phosphosites in skeletal muscle, providing a comprehensive view of the muscle insulin signaling network. The study examined five genetically distinct mouse strains in two dietary environments, allowing for the investigation of the impact of genetic and environmental factors on insulin signaling. The identification of coregulated subnetworks within the insulin signaling pathway expanded our understanding of its organization and provided insights into potential regulatory mechanisms. The study associated diverse signaling responses with insulin-stimulated glucose uptake, uncovering regulators of muscle insulin responsiveness.

      Weaknesses:<br /> Different mouse strains have huge differences in body weight on normal and high-fat high-sugar diets, which makes comparison between the models challenging. The proteome of muscle across different strains is bound to be different but the changes in protein abundance on phosphosite changes were not assessed. Authors do get around this by calculating 'insulin response' because short insulin treatment should not affect protein abundance. The limitations acknowledged by the authors, such as the need for larger cohorts and the inclusion of female mice, suggest that further research is needed to validate and expand upon the findings.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors aim to study the role of axoneme radial spoke proteins in forming the three radial spokes that connect the central pair microtubules with the doublet microtubules of the ciliary axoneme. They combined existing and novel mutants to first study ciliary dynamics, followed by cryoET structure and proteomics to identify known and new radial spoke protein components, and assign those with radial spoke(s) to which they belong.

      Strengths: / Weaknesses:<br /> The strengths of this study are in the genetic mutants combined with the cryoET to study the unique structural impacts of each mutant on the three radial spokes. The proteomics to study protein loss and interactions also enabled a comprehensive comparison of proteins at the radial spoke under normal and mutant conditions. This allowed the authors to predict that there are several classes of each type of radial spoke. While there are some limitations with overlapping phenotypes between the mutants, this tactic allows the authors to predict known and new proteins that are predicted to localize to each of the three radial spokes. However, in some places, the conclusions are overstated and the list of molecules without functional insight simply identifies new components that will need to be the target of future studies. Two examples of this are that the authors claim to have "solved the composition of individual radial spokes" and that "adenylate kinases [that] dock to specific RSs". Neither of these statements should be made based on the results in this manuscript. Moreover, the authors state that Rsp3Bp does not change in rsp3C knockouts and conclude that Rsp3B from the A-C heterodimer is still attached to the axoneme without maintaining the RS2 structure. To me, this makes a series of strongly stated conclusions without the results to justify the statement. The authors also report on unique features of ciliary dynamics resulting from the loss of each of the three Tetrahymena RSP3 genes. This showed a strong phenotype for rsp3b knockout. However, a quantitative measure of ciliary dynamics to understand how much the presented data represent the ciliary dynamics was not clear. Furthermore, the authors argue that metachrony or coordination between cilia was affected but the presented data are not interpretable or quantified. Furthermore, the authors state that all three Rsp3 paralogs localize along the entire length of the cilium. However, Rsp3A and B do not localize to ciliary tips, while Rsp3C does. This may inform the differences found in the ciliary waveform for rsp3C mutants compared to rsp3A and rsp3B. The authors state that they have defined a "large part of the protein composition of individual RSs...". It is not clear to me that they know how much of the total RS proteome they have identified.

      This manuscript identifies new candidate proteins that may function with radial spokes, future work will be required to 1) confirm their localization to the radial spoke and 2) to study their function within radial spokes.

    1. Reviewer #3 (Public Review):

      The starting point of the paper is the observation by the group of Matthew Chafee that zero-lag correlations in pairs of prefrontal cortex neurons transiently increase close to the motor response in a dot-pattern expectancy task', and that this increase in synchrony is abolished by NMDA blockers. The goal of this paper is to understand the mechanisms of this NMDA-dependent increase in synchrony using computational modeling. They simulate and analyze a network of sparsely connected spiking neurons in which synaptic interactions are mediated by AMPA, NMDA, and GABA conductances with realistic time constants. In this network, it had been shown previously that when parameters are such that the network is close to a bifurcation separating asynchronous from synchronous oscillatory states, an<br /> increase in external inputs can push the network towards synchrony. They show that when the NMDA component of synaptic inputs is removed, the network moves away from the bifurcation, and thus the same increase in external inputs no longer leads to a significant increase in synchronization.

      Thus, this study provides a potential explanation for the NMDA-dependent increase of synchrony observed in their data. The authors further argue that this effect might be responsible for symptoms observed in schizophrenia, through spike-timing-dependent mechanisms. Overall, this is an interesting study, but there are<br /> several weaknesses that dampened my initial enthusiasm: In particular, the model predicts a tight link between synchrony and mean firing rate that should hold during the whole task, not only at the time of the motor response but this is not explored by the authors.

      Also, the relationship between changes in synchrony due to NMDAR dysfunction and schizophrenia is not very convincing. Many forms of synaptic plasticity, including STDP are dependent on NMDA receptors, and thus synaptic plasticity in schizophrenic patients is likely to be impacted independently of any synchrony. Thus, the link between the results of this paper and schizophrenia seems tenuous.

    1. Reviewer #3 (Public Review):

      Higgins et al. examine the interaction between erythrocyte basigin and malaria parasite RH5. They use sophisticated biochemical and biophysical studies to establish that basigin on erythrocyte membranes exists primarily in association with either MCT1 or PMCA4b, that these complexes facilitate tighter binding of RH5 to basigin, and that RH5-basigin interaction does not appear to change the activity of the PMCA4b Ca++ pump. They determine that some antibodies that interfere with RH5-basigin interaction to interfere with the pathogen's entry into erythrocytes are effective only when tested in the presence of MCT1 or PMCA4b association. The studies are rigorously performed and have the potential to guide the development of better vaccines that block this invasion process.

    1. Reviewer #3 (Public Review):

      Over the past decade, novel approaches to understanding beta cell connectivity and how that contributes to the overall function of the pancreatic islet have emerged. The application of network theory to beta cell connectivity has been an extremely useful tool to understand functional hierarchies amongst beta cells within an islet. This helps to provide functional relevance to observations from structural and gene expression data that beta cells are not all identical.

      There are a number of "controversies" in this field that have arisen from the mathematical and subsequent experimental identification of beta "hub" cells. These are small populations of beta cells that are very highly connected to other beta cells, as assessed by applying correlation statistics to individual beta cell calcium traces across the islet.

      In this paper Briggs et al set out to answer the following areas of debate:<br /> 1. They use computational datasets, based on established models of beta cells acting in concert (electrically coupled) within an islet-like structure, to show that it is similarities in metabolic parameters rather than "structural" connections (ie proximity which subserves gap junction coupling) that drives functional network behaviour. Whilst the computational models are quite relevant, the fact that the parameters (eg connectivity coefficients) are quite different to what is measured experimentally, confirm the limitations of this model. Therefore it was important for the authors to back up this finding by performing both calcium and metabolic imaging of islet beta cells. These experimental data are reported to confirm that metabolic coupling was more strongly related to functional connectivity than gap junction coupling. However, a limitation here is that the metabolic imaging data confirmed a strong link between disconnected beta cells and low metabolic coupling but did not robustly show the opposite. Similarly, I was not convinced that the FRAP studies, which indirectly measured GJ ("structural") connections were powered well enough to be related to measures of beta cell connectivity.<br /> 2. The group goes on to provide further analytical and experimental data with a model of increasing loss of GJ connectivity (by calcium imaging islets from WT, heterozygous (50% GJ loss), and homozygous (100% loss). Given the former conclusion that it was metabolic not GJ connectivity that drives small world network behaviour, it was surprising to see such a great effect on the loss of hubs in the homs. That said, the analytical approaches in this model did help the authors confirm that the loss of gap junctions does not alter the preferential existence of beta cell connectivity and confirms the important contribution of metabolic "coupling". One perhaps can therefore conclude that there are two types of network behaviour in an islet (maybe more) and the field should move towards an understanding of overlapping network communities as has been done in brain networks.

      Overall this is an extremely well-written paper which was a pleasure to read. This group has neatly and expertly provided both computational and experimental data to support the notion that it is metabolic but not "structural" ie GJ coupling that drives our observations of hubs and functional connectivity. However, there is still much work to do to understand whether this metabolic coupling is just a random epiphenomenon or somehow fated, the extent to which other elements of "structural" coupling - ie the presence of other endocrine cell types, the spatial distribution of paracrine hormone receptors, blood vessels and nerve terminals are also important.

    1. Reviewer #3 (Public Review):

      This is an interesting manuscript from Sparta and colleagues that investigates dynamics of MTOR and TFEB signalling. The main strength is that the study is based on a systems biology approach using live cell imaging of a range of MTOR downstream readouts, capturing data on a single-cell level with capabilities to multiplex tracking over time. To monitor downstream signalling, the authors primarily rely on measuring nuclear translocation of a fluorescent reporter of TFEB, truncated to remove C-terminal DNA-binding domain and the AKT phosphorylation site. The authors further show that a TFEB reporter with 3x S>A mutations at 3 GSK3beta phosphorylation sites (134, 138 and 142) was dramatically less sensitive to stimulation by amino acids, or by insulin. The authors use these single cell tools to determine whether MTOR-TFEB signalling better fits a gated / digital pattern of response vs a gradual/ analogue mode. Data based on concentration-dependent titrations provide further support of the ability of MTOR-TFEB to respond to amino acid or insulin stimulations with gradual/incremental sensitivity. To understand how MTOR, AMPK and AKT pathways respond and integrate to multiple signals, the authors were also able to use single cell imaging approaches, comparing: TFEB, AMPK-FRET, and FOXO reporters. As follows, the authors were able to track downstream signalling following various patterns of sequential stimulation by glucose, amino acids and insulin. This work is thus able to provide further insight and illustrate how single cells within a population function during nutrient sensing signalling. The results highlight the power of single cell multi-channel imaging to interrogate signalling in real time.

    1. Reviewer #3 (Public Review):

      The authors use a full-likelihood multispecies coalescent (MSC) approach to identify major introgression events throughout the radiation of Heliconius butterflies, thereby improving estimates of the phylogeny. First, the authors conclude that H. aoede is the likely outgroup relative to other Heliconius species; miocene introgression into the ancestor of H. aoede makes it appear to branch later. Topologies at most loci were not concordant with this scenario, though 'aoede-early' topologies were enriched in regions of the genome where interspecific introgression is expected to be reduced: the Z chromosome and larger autosomes. The revised phylogeny is interesting because it would mean that no extant Heliconius species has reverted to a non-pollen-feeding ancestral state. Second, the authors focus on a particularly challenging clade in which ancient and ongoing gene flow is extensive, concluding that silvaniform species are not monophyletic. Building on these results, a third set of analyses investigates the origin of the P1 inversion, which harbours multiple wing patterning loci, and which is maintained as a balanced polymorphism in H. numata. The authors present data supporting a new scenario in which P1 arises in H. numata or its ancestor and is introduced to the ancestor of H. pardilinus and H. elevatus - introgression in the opposite direction to what has previously been proposed using a smaller set of taxa and different methods.

      The analyses were extensive and methodologically sound. Care was taken to control for potential sources of error arising from incorrect genotype calls and the choice of a reference genome. The argument for H. aoede as the earliest-diverging Heliconius lineage was compelling, and analyses of the melpomene-silvaniform clade were thorough.

      The discussion is quite short in its current form. In my view, this is a missed opportunity to summarise the level of support and biological significance of key results. This applies to the revised Melpomene-silvaniform phylogeny and, in particular, the proposed H. numata origin of P1. It would be useful to have a brief overview of the relationships that remain unclear, and which data (if any) might improve estimates.

      It was good to see the authors reflect on the utility of full-likelihood approaches more generally, though the discussion of their feasibility and superiority was at times somewhat overstated and reductive. Alternative MSC-based methods that use gene tree frequencies or coalescence times can be used to infer the direction and extent of introgression with accuracy that is satisfactory for a wide variety of research questions. In practice, a combination of both approaches has often been successful. Although full-likelihood approaches can certainly provide richer information if specific parameter estimates are of interest, they quickly become intractable in large species complexes where there is extensive gene flow or significant shifts in population size. In such cases, there may be hundreds of potentially important parameters to estimate, and alternate introgression scenarios may be impossible to disentangle. This is particularly challenging in systems, unlike Heliconius where there is little a priori knowledge of reproductive isolation, genome evolution, and the unique life history traits of each species. It would be useful for the authors to expand on their discussion of strategies that can simplify inference problems in such systems, acknowledging the difficulties therein.

    1. Reviewer #3 (Public Review):

      The work presented by Ascencao and coworkers aims to deepen into the process of sex chromosome inactivation during meiosis (MSCI) as a critical factor in the regulation of meiosis progression in male mammals. For this purpose, they have generated a transgenic mouse model in which a specific domain of TOPBP1 protein has been mutated, hampering the binding of a number of protein partners and interfering with the regulatory cascade initiated by ATR. Through the use of immunolocalization of an impressive number of markers of MSCI, phosphoproteomics and single cell RNA sequencing (scRNAseq), the authors are able to show that despite a proper morphological formation of the sex body and the incorporation of most canonical MSCI makers, sex chromosome-liked genes are reactivated at some point during pachytene and this triggers meiosis progression breakdown, likely due to a defective phosphorylation of the helicase SETX.

      The manuscript presents a clear advance in the understanding of MSCI and meiosis progression with two main strengths. First, the generation of a mouse model with a very uncommon phenotype. Second, the use of a vast methodological approach. The results are well presented and illustrated. Nevertheless, the discussion could be still a bit tuned by the inclusion of some ideas, and perhaps speculations, that have not been considered.

    1. Reviewer #3 (Public Review):

      This study presents a new method to highly purify live human pancreatic α cells using the zinc-based reaction probe DA-ZP1. After demonstrating this probe is capable of separating β and α cells from other islet and non-islet cells based on florescence intensity, the authors employ a variety of experimental approaches to demonstrate that these isolated α cells are functional and capable of maintaining their viability and identity in culture over time. The authors also investigate the impact of islet dissociation and cell reaggregation on the islet cell transcriptome, where they primarily identified downregulation of pathways associated with extracellular matrix organization, cell surface interactions, and focal adhesion. Overall, this study adds an additional tool to isolate human α cells to the islet biology community, which may aid in further understanding of human α cell biology under both normal and diabetic conditions. However, some caveats of this study include:

      1) While the authors claim that this method improves human α cell yield over antibody-based approaches, they provide no direct comparison between the two methods.<br /> 2) The strength of studies determining cell fraction purity and α cell characteristics (function, viability, proliferation, and apoptosis rates) would be strengthened by performing these studies across multiple donors rather than multiple replicates from the same donor.<br /> 3) Given the heterogeneous nature of the human islet, the use of bulk RNA-sequencing makes the interpretation of genes obtained via the comparison of α-pseudoislets and unsorted pseudoislets difficult. Some cell-specific signals will be missed or masked by differences in cell mixture between groups. It is unclear whether these expression changes are due to α-intrinsic changes or simply the loss of other cell types.<br /> 4) Supplementary files concerning bulk sequencing data is not transparent, with only the direction of the gene expression noted.

    1. Reviewer #3 (Public Review):

      Summary:

      This study examined the role that the activation and plasma membrane localisation of a calcium dependent protein kinase (CPK3) plays in plant defence against viruses.

      The authors clearly demonstrate that the ability to hamper the cell-to-cell spread of the virus P1AMV is not common to other CPKs which have roles in defence against different types of pathogens, but appears to be specific to CPK3 in Arabidopsis. Further they show that lateral diffusion of CPK3 in the plasma membrane is reduced upon P1AMV infection, with CPK3 likely present in nano-domains. This stabilisation however, depends on one of its phosphorylation substrates a Remorin scaffold protein REM1-2. However, when REM1-2 lateral diffusion was tracked, it showed an increase in movement in response to P1AMV infection. These contrary responses to P1AMV infection were further demonstrated to be interdependent, which led the authors to propose a model in which activated CPK3 is stabilised in nano-domains in part by its interaction with REM1.2, which it binds and phosphorylates, allowing REM1-2 to diffuse more dynamically within the membrane.

      The likely impact of this work is that it will lead to closer examination of the formation of nano-domains in the plasma membrane and dissection of their role in immunity to viruses, as well as further investigation into the specific mechanisms by which CPK3 and REM1-2 inhibit the cell-to-cell spread of viruses.

      Strengths:

      The paper provided compelling evidence about the roles of CPK3 and REM1-2 through a combination of logical reverse genetics experiments and advanced microscopy techniques, particularly in single particle tracking.

      Weaknesses:

      There is a lack of evidence for the downstream pathways, specifically whether the role that CPK3 has in cytoskeletal organisation may play a role in the plant's defence against viral propagation. Also, there is limited discussion about the localisation of the nano-domains and whether there is any overlap with plasmodesmata, which as plant viruses utilise PD to move from cell to cell seems an obvious avenue to investigate.

    1. Reviewer #3 (Public Review):

      The major strength of this manuscript is the "anvi-estimate-metabolism' tool, which is already accessible online, extensively documented, and potentially broadly useful to microbial ecologists. However, the context for this tool and its validation is lacking in the current version of the manuscript. It is unclear whether similar tools exist; if so, it would help to benchmark this new tool against prior methods. Simulated datasets could be used to validate the approach and test its robustness to different levels of bacterial richness, genome sizes, and annotation level.

      The concept of metabolic independence was intriguing, although it also raises some concerns about the overinterpretation of metagenomic data. As mentioned by the authors, IBD is associated with taxonomic shifts that could confound the copy number estimates that are the primary focus of this analysis. It is unclear if the current results can be explained by IBD-associated shifts in taxonomic composition and/or average genome size. The level of prior knowledge varies a lot between taxa; especially for the IBD-associated gamma-Proteobacteria. It can be difficult to distinguish genes for biosynthesis and catabolism just from the KEGG module names and the new normalization tool proposed herein markedly affects the results relative to more traditional analyses. As such, it seems safer to view the current analysis as hypothesis-generating, requiring additional data to assess the degree to which metabolic dependencies are linked to IBD.

    1. Reviewer #3 (Public Review):

      In the present study, Chen et al. revealed the fungal composition and explored its interaction with bacteria in Caesarean section scar diverticulum (CSD) patients. Performing metagenomic and mass spectrometry analysis, they found specific fungi could alter bacterial abundance through regulating the production of several metabolites such as Goyaglycoside A and Janthitrem E, which results in disruption of bacterial composition stability. Their study drew a conclusion that abnormal fungal composition and activity are essential drivers for bacterial dysbiosis in CSD patients. However, the results are not substantial enough and there are many format errors throughout the manuscript. In addition, I have some concerns or suggestions that may help to improve this work.

      Major<br /> 1. Smoke or drink conditions, as well as diseases like hypertension and diabetes are important factors that could influence the metabolism of the host, thus the authors should add them in the exclusion criteria in the Methods.<br /> 2. The sample size of this study is not large enough to draw a convincing conclusion.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors use several quantitative approaches to characterize the feeding ecologies of bohaiornithid enantiornithines, including allometric data, mechanical advantage and finite element analyses of the jaw, and morphometric analyses of the claws. The authors combine their results with data for other enantiornithines collected from the literature to shed new insight on the ecological evolution of Enantiornithes as a clade.

      The approaches used by the authors are generally appropriate for the questions being asked, their comparisons are thorough, and the interpretations are generally reasonable. However, there are a number of major flaws to the comparisons used that should at least be addressed by the authors, if not overcome by modifying the methodology. Smaller concerns/comments are provided in "Recommendations for the authors."

      My first major concern is about how the presence of teeth might influence both qualitative and quantitative comparisons to extant birds. The authors should discuss how the presence of teeth might facilitate or prevent feeding strategies that might be inconsistent with (for example) patterns reconstructed using finite element analysis for a comparative sample of toothless birds.

      Next, the authors should discuss the potential impact that cranial kinesis might have on the functionality of the jaws - especially with regards to the mitigation of stresses experienced by the skull. Do the quantitative approaches used here to characterize the mechanics of the jaws account for kinesis in extant birds? If so, how? If not, how do the authors' account for that mechanical difference in their interpretations?

      My next concern regards potential biases introduced by the approach taken to reconstruct the bohaiornithid skulls sampled here. Using elements from closely related taxa to fill out an incomplete skull during reconstruction is reasonable, but it may influence the results of subsequent shape comparisons - especially when the "donor" skull is compared to the recipient. The authors should explain how they accounted for this possibility in their methods or their interpretations.

      Next, it is unclear how or where much of the data used or generated by this study are made available. I appreciate that the authors thoroughly cite the literature from which some data (e.g., extant FEA data), but all data used should be provided in the supplement. Likewise for the FEA models generated for the newly sampled taxa. The authors indicate that some R scripts are available online (Lines 787-788), but that link is currently non-functional, so I could not verify what was made available. And unless I missed it, the authors don't indicate that other data (e.g., FEA models) are also available there. Any data used in, or generated by, this paper should be made available online - including FEA models, tree files and analysis output files.

      Also pertaining to the methods, in some places, the methods the authors used to analyze their data were not specified. For example, the authors mention that "all analyses of the [MA/FEA] data were performed in R" and "scripts [are] available" online (Lines 786-787), but the authors don't specify what those analyses actually are - unless that was specified elsewhere and I missed it? I know very little about FEA or MA analyses, so maybe these approaches are well understood in those circles, but I am unable to assess the approaches here without downloading and digging into the scripts.

      A broader recommendation here: in several places, I found this paper difficult to follow. That's partly understandable, the authors are discussing and comparing trends across a wide variety of data types and analyses - which is certainly both challenging and commendable. But that variety of analyses has resulted in a staggering variety of acronyms that I found nearly impossible to keep track of. Minimally, I recommend that the authors redefine the most important acronyms at the start of each major subheading.

      Related to that last point, in the discussion, I often found myself missing the forest for the trees, so to speak - the authors paid much attention to interpreting the results of each analytical approach for each taxon (which I appreciate), but I found it difficult to keep track of the take-home message the authors were trying to convey. I would recommend a reorganization of the discussion that follows a backbone based on the authors' key messages - for example, a section on species-level interpretations (maybe with sub-headings for each approach discussed), followed by larger-picture discussions of Bohaiornithidae and Enantiornithes more generally. The authors included a section at the end of their discussion that already provides that larger picture for Enantiornithes, but the section on "Bohaiornithid Ecology and Evolution" includes a lot of species-level comparison that I think would be better suited for species-focused sub-sections, and I think the paper would be better served by reserving this section for a bohaiornithid-level survey.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In this study, the authors analyzed data from 99 individuals with implanted electrodes who were performing a word-list recall task. Because the task involves successively encoding and then recalling 25 lists in a row, they were able to measure the similarity in neural responses for items within the same list as well as items across different lists, allowing them to test hypotheses about the impact of between-list boundaries on neural responses. They find that, in addition to slow drift in responses across items, there is boundary-related structure in the medial parietal lobe such that early items in each list show similarity (for recalled items) and late items in each list show similarity (for not recalled items).

      Strengths:<br /> The dataset used in this paper is substantially larger than most iEEG datasets, allowing for the detection of nuanced differences between item positions and for analyses of individual differences in boundary-related responses. There are excellent visualizations of the similarity structure between items for each region, and this work connects to a growing literature on the role of event boundaries in structuring neural responses.

      Weaknesses:<br /> 1) My primary confusion in the current version of this paper is that the analyses don't seem to directly compare the two proposed models illustrated in Fig 1B, i.e. the temporal context model (with smooth drifts between items, including across lists) versus the boundary model (with similarities across all lists for items near boundaries). After examining smooth drift in the within-list analysis (Fig 2), the across-list analyses (Figs 3-5) use a model with two predictors (boundary proximity and list distance), neither of which is a smoothly-drifting context. Therefore there does not appear to be a quantitative analysis supporting the conclusion that in lateral temporal cortex "drift exhibits a relationship with elapsed time regardless of the presences of intervening boundaries" (lines 272-3).

      2) The feature representation used for the neural response to each item is a gamma power time-frequency matrix. This makes it unclear what characteristics of the neural response are driving the observed similarity effects. It appears that a simple overall scaling of the response after boundaries (stronger responses to initial items during the beginning portion of the 1.6s time window) would lead to the increased cosine similarity between initial items, but wouldn't necessarily reflect meaningful differences in the neural representation or context of these items.

      3) The specific form of the boundary proximity models is not well justified. For initial items, a model of e^(1-d) is used (with d being serial position), but it is not stated how the falloff scale of this model was selected (as opposed to e.g. e^((1-d)/2)). For final items, a different model of d/#items is used, which seems to have a somewhat different interpretation (about drift between boundaries, rather than an effect specific to items near a final boundary). The schematic in Fig 1B appears to show a hypothesis which is not tested, with symmetric effects at initial and final boundaries.

      4) The main text description of Fig 2 only describes drift effects in lateral temporal cortex, but Fig 2 - supplement 1 shows that there is also drift and a significant subsequent memory effect in the other two ROIs as well. There is not a significant memory x drift slope interaction in these regions; are the authors arguing that the lack of this interaction (different drift rates for remembered versus forgotten items) is critical for interpreting the roles of lateral temporal cortex versus medial parietal and hippocampal regions?

      5) The parameter fits for the "list distance" regressor are not shown or analyzed, though they do appear to be important for the observed similarity structure (e.g. Fig 3E). I would interpret this regressor as also being "boundary-related" in the sense that it assumes discrete changes in similarity at boundaries.

      6) It is unclear to me whether the authors believe that the observed similarity after boundaries is due to an active process in which "the medial parietal lobe uses drift-resets" (line 16) to reinstate a boundary-related context, or that this similarity is simply because "the context for the first item may be the boundary itself" (lines 246-7), and therefore this effect would emerge naturally from a temporal context model that incorporates the full task structure as the "items."

    1. Reviewer #3 (Public Review):

      Summary:<br /> This is a strong manuscript by Basson and colleagues which contributes to our understanding of gender disparities in scientific publishing. The authors examine attitudes and behaviors related to manuscript submission in influential journals (specifically, Science, Nature and PNAS). The authors rightly note that much attention has been paid to gender disparities in work that is already published, but this fails to capture the unseen hurdles that occur prior to publication (which include decisions about where to publish, desk rejections, revisions and resubmissions, etc.). They conducted a survey study to address some of these components and their results are interesting:

      They find that women are less likely to submit their manuscript to Science, Nature or PNAS. While both men and women feel their work would be better suited for more specialized journals, women were more likely to think their work was 'less novel or groundbreaking.'

      A smaller proportion of respondents indicated that they were actively discouraged from submitting their manuscripts to these journals. In this instance, women were more likely to receive this advice than men.

      Lastly, the authors also looked at self-reported acceptance and rejection rates and found that there were no gender differences in acceptance or rejection rates.

      These data are helpful in developing strategies to mitigate gender disparities in influential journals.

      Comments:<br /> The methods the authors used are appropriate for this study. The low response rate is common for this type of recruitment strategy. The authors provide a thoughtful interpretation of their data in the Discussion.

    1. Reviewer #3 (Public Review):

      The authors present in this study the characterization of two mutant lines of the filasterean Capsaspora owczarzaki, a unicellular holozoan with a key phylogenetic position to understand multicellular development in animals. The present study is built on a previous work from the same research group, on the mutant of the orthologue of the Yorki gene in C. owczarzaki. By knocking out the two upstream kinases of the same pathway, coHpo-/- and coWts-/-, in single cell and aggregates of C. owkzarzaki, they now have mutated the entire pathway and in different cellular contexts.

      The authors obtain results in the same direction as the previous work, demonstrating that the Hippo pathway of the unicellular holozoan C. owczarzaki, is not involved in the control of cell proliferation but is related with cytoskeletal dynamics through the actin-myosin mechanism.

      The work carried out in this study is technically precise at all levels, molecular, cellular and microscopy. The reviewer here acknowledges how difficult is to work and develop tools and mutant lines in a non-model organism and therefore congratulates the authors in their efforts. The authors have done excellent work in this sense and all data presented seems to be solid.

      Nevertheless, some of the observations, in my opinion, should be further investigated before taking the conclusion that the Hippo pathway controls cell density and a contractile behavior in the C. owczarzaki. On the hand the authors claim as main conclusions what they have partially already claimed in the previous work (Phillips et al. eLife 2022;0:e77598).

    1. Reviewer #3 (Public Review):

      Fission yeast is an important model organism and studies on fission yeast have provided many key insights into the understanding of genes and biological pathways. However, even in such a well-studied model organism, there are still many genes without known functions.

      In this work, the authors took advantage of the availability of genome-wide fission yeast deletion mutants to systematically analyze the mutant phenotypes under 131 different conditions. This effort generated a genotype-phenotype dataset larger than the currently curated genotype-phenotype dataset, which is derived from studies over many decades by hundreds of fission yeast laboratories. The authors used the dataset to construct gene clusters that provide functional clues for many genes without previously known functions, including ones conserved in humans. This rich resource will surely be highly useful to the fission yeast community and beyond.

      In addition, the authors also used machine learning to generate functional predictions of fission yeast genes and yield novel understandings, which are validated by experimental analysis of new ageing-related genes.

      Overall, this study provides unprecedented and highly valuable resources for understanding fission yeast gene functions.

    1. Reviewer #3 (Public Review):

      This manuscript presents a comprehensive investigation into the mechanisms that explain the presence of TADs (P-TADs) in cells where cohesin has been removed. In particular, to study TADs in wildtype and cohesin depleted cells, the authors use a combination of polymer simulations to predict whole chromosome structures de novo and from Hi-C data. Interestingly, they find that those TADs that survive cohesin removal contain a switch in epigenetic marks (from compartment A to B or B to A) at the boundary. Additionally, they find that the P-TADs are needed to retain enhancer-promoter and promoter-promoter interactions.

      Overall, the study is well-executed, and the evidence found provides interesting insights into genome folding and interpretations of conflicting results on the role of cohesin on TAD formation.

      To strengthen their claims, the authors should compare their de-novo prediction approach to their data-driven predictions at the single cell level.

    1. Reviewer #3 (Public Review):

      In this manuscript, Chan and collaborators investigate the role of CDPK1 in regulating microneme trafficking and exocytosis in Toxoplasma gondii. Micronemes are apicomplexan-specific organelles localized at the apical end of the parasite and depending on cortical microtubules. Micronemes contain proteins that are exocytosed in a Ca²+-dependent manner and are required for T. gondii egress, motility, and host-cell invasion. In Apicomplexa, Ca²+ signaling is dependent on Ca²+-dependent protein kinases (CDPKs). CDPK1 has been demonstrated to be essential for Ca²+-stimulated micronemes exocytosis allowing parasite egress, gliding motility, and invasion. It is also known that intracellular calcium storages are mobilized following a cyclic nucleotide-mediated activation of protein kinase G. This step, occurs upstream of CDPK1 functions. However, the exact signaling pathway regulated by CDPK1 remains unknown. In this paper, the authors used phosphoproteomic analysis to identify new proteins phosphorylated by CDPK1. They demonstrated that CDPK1 activity is required for calcium-stimulated trafficking of micronemes to the apical end, depending on a complex of proteins that include HOOK and FTS, which are known to link cargo to the dynein machinery for trafficking along microtubules. Overall, the authors identified evidence for a new protein complex involved in microneme trafficking through the exocytosis process for which circumstantial evidence of its functionality is demonstrated here.

    1. Reviewer #3 (Public Review):

      In this study, the authors analyzed a unique and very stable microtubule bundle that is formed in yeast cells entering quiescence. They show that the structure is required for yeast cells to maintain viability during quiescence and that it needs to be disassembled for cell cycle re-entry. They identify different stages during the assembly process and focus on the molecular players required for microtubule bundle formation and stabilization. They identify kinetochore as well as molecular motors such as auroraB, kinesin-14, and kinesin-5 that assemble, stabilize and crosslink the microtubules of the bundle. The paper also investigates the disassembly of the structure and shows that disassembly is required for cell cycle re-entry.

      The study is very comprehensive, provides quantifications to support claims, and identifies various players involved in these processes, providing mechanistic insight. It also presents various control experiments to exclude alternative explanations and support the proposed model.

      It is the first molecular-level insight into how this very stable microtubule structure can be assembled, maintained, and disassembled, and how this is coordinated with cell cycle exit and re-entry. This information may be very useful when analyzing similarly stable, microtubule-based structures in other organisms such as cilia in animals, which also display cell cycle-coordinated dynamics.

      Overall, this is a nicely presented study that provides important insight into the field and beyond, but there are a few points that need to be addressed regarding methods used for quantifications and data presentation.

  2. Aug 2023
    1. Reviewer #3 (Public Review):

      Bae et al. described the key roles of pericytes in cavernous tissues in diabetic erectile dysfunction using both mouse and human single-cell transcriptomic analysis. Erectile dysfunction (ED) is caused by dysfunction of the cavernous tissue and affects a significant proportion of men aged 40-70. The most common treatment for ED is phosphodiesterase 5 inhibitors; however, these are less effective in patients with diabetic ED. Therefore, there is an unmet need for a better understanding of the cavernous microenvironment, cell-cell communications in patients with diabetic ED, and the development of new therapeutic treatments to improve the quality of life.

      Pericytes are mesenchymal-derived mural cells that directly interact with capillary endothelial cells (ECs). They play a vital role in the pathogenesis of erectile function as their interactions with ECs are essential for penile erection. Loss of pericytes has been associated with diabetic retinopathy, cancer, and Alzheimer's disease and has been investigated in relation to the permeability of cavernous blood vessels and neurovascular regeneration in the authors' previous studies. This manuscript explores the mechanisms underlying the effect of diabetes on pericyte dysfunction in ED. Additionally, the cellular landscape of cavernous tissues and cell type-specific transcriptional changes were carefully examined using both mouse and human single-cell RNA sequencing in diabetic ED. The novelty of this work lies in the identification of a newly identified pericyte (PC)-specific marker, LBH, in mouse and human cavernous tissues, which distinguishes pericytes from smooth muscle cells. LBH not only serves as a cavernous pericyte marker, but its expression level is also reduced in diabetic conditions. The LBH-interacting proteins (Cryab and Vim) were further identified in mouse cavernous pericytes, indicating that these signaling interactions are critical for maintaining normal pericyte function. Overall, this study demonstrates the novel marker of pericytes and highlights the critical role of pericytes in diabetic ED.

    1. Reviewer #3 (Public Review):

      The manuscript by Yang et al. investigated in mice how hypobaric hypoxia can modify the RBC clearance function of the spleen, a concept that is of interest. Via interpretation of their data, the authors proposed a model that hypoxia causes an increase in cellular iron levels, possibly in RPMs, leading to ferroptosis, and downregulates their erythrophagocytic capacity. However, most of the data is generated on total splenocytes/total spleen, and the conclusions are not always supported by the presented data. The model of the authors could be questioned by the paper by Youssef et al. (which the authors cite, but in an unclear context) that the ferroptosis in RPMs could be mediated by augmented erythrophagocytosis. As such, the loss of RPMs in vivo which is indeed clear in the histological section shown (and is a strong and interesting finding) can be not directly caused by hypoxia, but by enhanced RBC clearance. Such a possibility should be taken into account.

      Major points:

      1) The authors present data from total splenocytes and then relate the obtained data to RPMs, which are quantitatively a minor population in the spleen. Eg, labile iron is increased in the splenocytes upon HH, but the manuscript does not show that this occurs in the red pulp or RPMs. They also measure gene/protein expression changes in the total spleen and connect them to changes in macrophages, as indicated in the model Figure (Fig. 7). HO-1 and levels of Ferritin (L and H) can be attributed to the drop in RPMs in the spleen. Are any of these changes preserved cell-intrinsically in cultured macrophages? This should be shown to support the model (relates also to lines 487-88, where the authors again speculate that hypoxia decreases HO-1 which was not demonstrated). In the current stage, for example, we do not know if the labile iron increase in cultured cells and in the spleen in vivo upon hypoxia is the same phenomenon, and why labile iron is increased. To improve the manuscript, the authors should study specifically RPMs.

      2) The paper uses flow cytometry, but how this method was applied is suboptimal: there are no gating strategies, no indication if single events were determined, and how cell viability was assessed, which are the parent populations when % of cells is shown on the graphs. How RBCs in the spleen could be analyzed without dedicated cell surface markers? A drop in splenic RPMs is presented as the key finding of the manuscript but Fig. 3M shows gating (suboptimal) for monocytes, not RPMs. RPMs are typically F4/80-high, CD11-low (again no gating strategy is shown for RPMs). Also, the authors used single-cell RNAseq to detect a drop in splenic macrophages upon HH, but they do not indicate in Fig. A-C which cluster of cells relates to macrophages. Cell clusters are not identified in these panels, hence the data is not interpretable).

      3) The authors draw conclusions that are not supported by the data, some examples:

      a) They cannot exclude eg the compensatory involvement of the liver in the RBCs clearance (the differences between HH sham and HH splenectomy is mild in Fig. 2 E, F and G)

      b) Splenomegaly is typically caused by increased extramedullary erythropoiesis, not RBC retention. Why do the authors support the second possibility? Related to this, why do the authors conclude that data in Fig. 4 G,H support the model of RBC retention? A significant drop in splenic RBCs (poorly gated) was observed at 7 days, between NN and HH groups, which could actually indicate increased RBC clearance capacity = less retention.

      c) Lines 452-54: there is no data for decreased phagocytosis in vivo, especially in the context of erythrophagocytosis. This should be done with stressed RBCs transfusion assays, very good examples, like from Youssef et al. or Threul et al. are available in the literature.

      d) Line 475 - ferritinophagy was not shown in response to hypoxia by the manuscript, especially that NCOA4 is decreased, at least in the total spleen.

      4) In a few cases, the authors show only representative dot plots or histograms, without quantification for n>1. In Fig. 4B the authors write about a significant decrease (although with n=1 no statistics could be applied here; of note, it is not clear what kind of samples were analyzed here). Another example is Fig. 6I. In this case, it is even more important as the data are conflicting the cited article and the new one: PMCID: PMC9908853 which shows that hypoxia stimulates efferocytosis. Sometimes the manuscript claim that some changes are observed, although they are not visible in representative figures (eg for M1 and M2 macrophages in Fig. 3M)

      5) There are several unclear issues in methodology:

      - what is the purity of primary RPMs in the culture? RPMs are quantitatively poorly represented in splenocyte single-cell suspensions. This reviewer is quite skeptical that the processing of splenocytes from approx 1 mm3 of tissue was sufficient to establish primary RPM cultures. The authors should prove that the cultured cells were indeed RPMs, not monocyte-derived macrophages or other splenic macrophage subtypes.<br /> - (around line 183) In the description of flow cytometry, there are several missing issues. In 1) it is unclear which type of samples were analyzed. In 2) it is not clear how splenocyte cell suspension was prepared.<br /> - In line 192: what does it mean: 'This step can be omitted from cell samples'?<br /> - 'TO method' is not commonly used anymore and hence it was unclear to this Reviewer. Reticulocytes should be analyzed with proper gating, using cell surface markers.<br /> - The description of 'phagocytosis of E. coli and RBCs' in the Methods section is unclear and incomplete. The Results section suggests that for the biotinylated RBCs, phagocytosis? or retention? Of RBCs was quantified in vivo, upon transfusion. However, the Methods section suggests either in vitro/ex vivo approach. It is vague what was indeed performed and how in detail. If RBC transfusion was done, this should be properly described. Of note, biotinylation of RBCs is typically done in vivo only, being a first step in RBC lifespan assay. The such assay is missing in the manuscript. Also, it is not clear if the detection of biotinylated RBCs was performed in permeablized cells (this would be required).

      The authors did not substantially improve the quality of their manuscript in the revised version, at least in the case of the limitations which I have spotted. The major points which remain unclear:<br /> 1. No gating strategies for flow cytometry are provided.<br /> 2. Figure 3M still does not show a typical F4/80 vs CD11b gating, with a population of true RPMs gated.<br /> 3. In a few cases data still lack biological replicates+statistics.<br /> 4. Results from scRNA-seq are not presented more clearly (=clusters in Fig 3E are described as macrophages, but it is not explained which among the clusters are RPMs).<br /> 5. The compensatory role of liver macrophages is omitted.<br /> 6. The authors misunderstood by suggestion to perform in vivo erythrophagocytosis assay using stained RBCs. This assay quantifies the true capacity for erythrophagocytosis in RPMs or KCs in the organ, regardless of the ferroptosis that may be a subsequent consequence (please, see initial Figures in Yousseff et al. paper). Using the percentage of biotin-positive RBCs in the spleen (although this method is not well described in the Methods), the authors rather show increased RBCs clearance at 7 days following hypoxia. Hence, the model where first hypoxia increases erythrophagocytosis in RPMs, consequently leading to their ferroptosis still cannot be excluded.<br /> 7. The Methods are poorly described and unclear - the authors claimed that they have used in vivo biotinylation assay to assess the lifespan of RBCs but it is not described. Instead, the paragraph „Phagocytosis of E. coli and RBCs" suggests that RBCs were stained with biotin for phagocytic assay in culture with macrophages. Phagocytosis of E. coli is still described in the Methods although the authors opted to remove the data from the revised manuscript.<br /> Some points are unclear in the current version of the manuscript, after the addition of new data:<br /> 8. Data in Figure 4D versus 4E,F are not consistent, showing less retention versus increased retention of RBCs in the spleen (retention of senescent RBCs in the spleen should be measured anyway quantitatively, eg, with proper flow cytometry)<br /> 9. The increase of labile iron in the red pulp might not be in RPMs - especially since they seem depleted. Flow cytometry should be used to assess which cell types show increased iron levels.

    1. Reviewer #3 (Public Review):

      Summary: The manuscript by Cullinan et al., uses ANAP-tmFRET to test the hypothesis that the NTD and CTD form a complex at rest and to probe these domains for acid-induced conformational changes. They find convincing evidence that the NTD and CTD do not have a propensity to form a complex. They also report these domains are parallel to the membrane and that the NTD moves towards, and the CTD away, from the membrane upon acidification.

      Strengths:<br /> The major strength of the paper is the use of tmFRET, which excels at measuring short distances and is insensitive to orientation effects. The donor-acceptor pairs here are also great choices as they are minimally disruptive to the structure being studied.

      Furthermore, they conduct these measurements over several positions with the N and C tails, both between the tails and to the membrane. Finally, to support their main point, MST is conducted to measure the association of recombinant N and C peptides, finding no evidence of association or complex formation.

      Weaknesses:<br /> While tmFRET is a strength, using ANAP as a donor requires the cells to be unroofed to eliminate background signal. This causes two problems. First, it removes any possible low affinity interacting proteins such as actinin (PMID 19028690). Second, the pH changes now occur to both 'extracellular' and 'intracellular' lipid planes. Thus, it is unclear if any conformational changes in the N and CTDs arise from desensitization of the receptor or protonation of specific amino acids in the N or CTDs or even protonation of certain phospholipid groups such as in phosphatidylserine. The authors do comment that prolonged extracellular acidification leads to intracellular acidification as well. But the concerns over disruption by unroofing/washing and relevance of the changes remain.

      The distances calculated depend on the R0 between donor and acceptor. In turn, this depends on the donor's emission spectrum and quantum yield. The spectrum and yield of ANAP is very sensitive to local environment. It is a useful fluorophore for patch fluorometry for precisely this reason, and gating-induced conformational changes in the CTD have been reported just from changes in ANAP emission alone (PMID 29425514). Therefore, using a single R0 value for all positions (and both pHs at a single position) is inappropriate. The authors should either include this caveat and give some estimate of how big an impact changes spectrum and yield might have, or actually measure the emission spectra at all positions tested.

      Overall, the writing and presentation of figures could be much improved with specific points mentioned in the recommendations for authors section.

      The authors argue that the CTD is largely parallel to the plasma membrane, yet appear to base this conclusion on ANAP to membrane FRET of positions S464 and M505. Two positions is insufficient evidence to support such a claim. Some intermediate positions are needed.

      Upon acidification, NTD position Q14 moves towards the plasma membrane (Figure 8B). Q14 also gets closer to C515 or doesn't change relative to 505 (Figures 7C and B) upon acidification. Yet position 505 moves away from the membrane (Figure 8D). How can the NTD move closer to the membrane, and to the CTD but yet the CTD move further from the membrane? Some comment or clarification is needed.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The manuscript by Nagel et al. describes studies of mouse vomeronasal sensory neuron (VSN) tuning to mouse urine samples across different sexes and strains, including wild mice, alongside mass spectrometry analysis of the same samples. The authors performed live Ca2+ imaging (CAL520 dye) of VSNs in acute vomeronasal organ (VNO) slices to determine how VSNs are tuned to pairs of stimuli that differ in their origin (e.g. male C57BL/6 versus male BALB/c urine, male C57BL/6 versus female C57BL/6, etc.). For each pair of tested odorants, the results measure the proportion of VSNs that respond to both stimuli ("generalists") or just one of the two ("specialists"), as well as metrics of tuning preference and response reliability. The authors find in most cases that generalists make up a larger proportion of responsive VSNs than specialists, but several pairwise comparisons showed a high degree of strain selectivity. Notably, the authors evaluated VSN tuning in both male C57BL/6 and male BALB/c VNOs, finding strain-dependent differences in the representation of mouse urine. Alongside these measurements of VSN tuning, the authors report results of mass spectrometry analyses of volatiles and proteins in the same urine samples. These analyses indicated a number of molecules in each category that vary across sex and strain, and therefore represent candidate vomeronasal ligands. However, this study did not directly test whether any of these candidate molecules drives VSN activity, limiting the interpretability of these comparisons. Overall, this work provides useful information related to mouse vomeronasal chemosensation, but future work will be necessary to link the physiological measurements to the observed molecular diversity.

      Strengths:<br /> A strength of the current study is its focus on characterizing the neural responses of the VNO to urine derived from wild mice. The majority of existing vomeronasal system research has relied on the use of inbred strains for both neural response recordings and investigations of candidate vomeronasal system ligands. Inbreeding in laboratory environments may alter the chemical composition of bodily secretions, thereby potentially changing the information they contain. Moreover, the more homogeneous nature of inbred strains could be critical when studying the AOS mediated social aspects. If there exist noticeable differences in the chemical composition of secretions from wild animals compared to inbred strains, this would suggest that future research must consider natural sources of candidate ligands outside of inbred strains. This work identifies some intriguing differences - worthy of further exploration - between the urine composition of wild mice versus inbred mice, as well as disparities in how the VNO responds to urine from these different sources. However, the molecular composition and VNO responsiveness to wild mouse urine was found to be highly overlapping with inbred mouse urine, supporting the continued investigation of candidate ligands found in inbred mouse urine.

      Another positive aspect of this work is its use of the same set of stimuli as a previous study by the same authors (Bansal et al., 2021) in the downstream accessory olfactory bulb. The consistency in stimulus selection facilitates a comparison of information processing of sex and strain information from the sensory periphery to the brain. Although comparisons between the two connected regions are not a focus of this work, and methodological differences (e.g., Ca2+ imaging versus electrophysiology) may introduce caveats into comparisons, the support of "apples to apples" comparisons across connected circuits is critical to progress in the field.

      Finally, this study directly measured VSN tuning in both male C57BL/6 and male BALB/c VNOs, finding subtle but important differences in the representation of mouse urine in these two recipient strains. Given that there is a long history of research into strain-specific differences in social behavior, this research paves the way for future studies into how different mouse strains detect and process social chemosignals.

      Weaknesses:<br /> One of the primary objectives in this study is to ascertain the extent to which the response profiles of VSNs are specific to sex and strain. The design of these Ca2+ imaging experiments uses a simple stimulus design, using two interleaved bouts of stimulation with pairs of urine (e.g. male versus female C57BL/6, male C57BL/6 versus male BALB/c) at a single dilution factor (1:100). This introduces two significant limitations: (1) the "generalist" versus "specialist" descriptors pertain only to the specific pairwise comparisons made and (2) there is no information about the sensitivity/concentration-dependence of the responses.

      The functional measurements of VSN tuning to various pairs of urine stimuli are consistently presented alongside mass spectrometry-based comparisons. Although it is clear from the manuscript text that the mass spectrometry-based analysis was separated from the VSN tuning experiments/analysis, the juxtaposition of VSN tuning measurements with independent molecular diversity measurements gives the appearance to readers that these experiments were integrated (i.e., that the diversity of ligands was underlying the diversity of physiological responses). This is a hypothesis raised by the parallel studies, not a supported conclusion of the work. This data presentation style risks confusing readers.

      The impact of mass spectrometry findings is limited by the fact that none of these molecules (in bulk, fractions, or monomolecular candidate ligands) were tested on VSNs. It is possible that only a very small number of these ligands activate the VNO. The list of variably expressed proteins - especially several proteins that are preferentially found in female urine - is compelling, but, again, there is no evidence presented that indicates whether or not these candidate ligands drive VSN activity. It is noteworthy that the largest class of known natural ligands for VSNs are small nonvolatiles that are found at high levels in mouse urine. These molecules were almost certainly involved in driving VSN activity in the physiology assays (both "generalist" and "specialist"), but they are absent from the molecular analysis.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This study tackles the important subject of sensory driven suppression of alpha oscillations using a unique intracranial dataset in human patients. Using a model-based approach to separate changes in alpha oscillations from broadband power changes, the authors try to demonstrate that alpha suppression is spatially tuned, with similar center location as high broadband power changes, but much larger receptive field. They also point to interesting differences between low-order (V1-V3) and higher-order (dorsolateral) visual cortex. While I find some of the methodology convincing, I also find significant parts of the data analysis, statistics and their presentation incomplete. Thus, I find that some of the main claims are not sufficiently supported. If these aspects could be improved upon, this study could potentially serve as an important contribution to the literature with implications for invasive and non-invasive electrophysiological studies in humans.

      Strengths:<br /> The study utilizes a unique dataset (ECOG & high-density ECOG) to elucidate an important phenomenon of visually driven alpha suppression. The central question is important and the general approach is sound. The manuscript is clearly written and the methods are generally described transparently (and with reference to the corresponding code used to generate them). The model-based approach for separating alpha from broadband power changes is especially convincing and well-motivated. The link to exogenous attention behavioral findings (figure 8) is also very interesting. Overall, the main claims are potentially important, but they need to be further substantiated (see weaknesses).

      Weaknesses:<br /> I have three major concerns:<br /> 1. Low N / no single subject results/statistics: The crucial results of Figure 4,5 hang on 53 electrodes from four patients (Table 2). Almost half of these electrodes (25/53) are from a single subject. Data and statistical analysis seem to just pool all electrodes, as if these were statistically independent, and without taking into account subject-specific variability. The mean effect per each patient was not described in text or presented in figures. Therefore, it is impossible to know if the results could be skewed by a single unrepresentative patient. This is crucial for readers to be able to assess the robustness of the results. N of subjects should also be explicitly specified next to each result.

      2. Separation between V1-V3 and dorsolateral electrodes: Out of 53 electrodes, 27 were doubly assigned as both V1-V3 and dorsolateral (Table 2, Figures 4,5). That means that out of 35 V1-V3 electrodes, 27 might actually be dorsolateral. This problem is exasperated by the low N. for example all the 20 electrodes in patient 8 assigned as V1-V3 might as well be dorsolateral. This double assignment didn't make sense to me and I wasn't convinced by the authors' reasoning. I think it needlessly inflates the N for comparing the two groups and casts doubts on the robustness of these analyses.

      3. Alpha pRFs are larger than broadband pRFs: first, as broadband pRF models were on average better fit to the data than alpha pRF models (dark bars in Supp Fig 3. Top row), I wonder if this could entirely explain the larger Alpha pRF (i.e. worse fits lead to larger pRFs). There was no anlaysis to rule out this possibility. Second, examining closely the entire 2.4 section there wasn't any formal statistical test to back up any of the claims (not a single p-value is mentioned). It is crucial in my opinion to support each of the main claims of the paper with formal statistical testing.

      While I judge these issues as crucial, I can also appreciate the considerable effort and thoughtfulness that went into this study. I think that addressing these concerns will substantially raise the confidence of the readership in the study's findings, which are potentially important and interesting.

    1. Reviewer #3 (Public Review):

      Summary:

      The paper proposes an alternative to the attractor hypothesis, as an explanation for the fact that grid cell population activity patterns (within a module) span a toroidal manifold. The proposal is based on a class of models that were extensively studied in the past, in which grid cells are driven by synaptic inputs from place cells in the hippocampus. The synapses are updated according to a Hebbian plasticity rule. Combined with an adaptation mechanism, this leads to patterning of the inputs from place cells to grid cells such that the spatial activity patterns are organized as an array of localized firing fields with hexagonal order. I refer to these models below as feedforward models.

      It has already been shown by Si, Kropff, and Treves in 2012 that recurrent connections between grid cells can lead to alignment of their spatial response patterns. This idea was revisited by Urdapilleta, Si, and Treves in 2017. Thus, it should already be clear that in such models, the population activity pattern spans a manifold with toroidal topology. The main new contributions in the present paper are (i) in considering some forms of recurrent connectivity that were not directly addressed before (but see comments below). (ii) in applying topological analysis to simulations of the model. (iii) in interpreting the results as a potential explanation for the observations of Gardner et al.

      Strengths:

      The exploration of learning in a feedforward model, when recurrent connectivity in the grid cell layer is structured in a ring topology, is interesting. The insight that this not only aligns the grid cells in a common direction but also creates a correspondence between their intrinsic coordinate (in terms of the ring-like recurrent connectivity) and their tuning on the torus is interesting as well, and the paper as a whole may influence future theoretical thinking on the mechanisms giving rise to the properties of grid cells.

      Weaknesses:

      1. It is not clear to me that the proposal here is fundamentally new. In Si, Kropff and Treves (2012) recurrent connectivity was dependent on the head direction tuning and thus had a ring structure. Urdapilleta, Si, and Treves considered connectivity that depends on the distance on a 2d plane.

      2. The paper refers to the connectivity within the grid cell layer as an attractor. However, would this connectivity, on its own, indeed sustain persistent attractor states? This is not examined in the paper. Furthermore, is this even necessary to obtain the results in the model? Perhaps weak connections that do not produce an attractor would be sufficient to align the spatial response patterns during the learning of feedforward weights, and reproduce the results? In general, there is no exploration of how the strength of collateral interactions affects the outcome.

      3. I did not understand what is learned from the local topology analysis. Given that all the grid cells are driven by an input from place cells that spans a 2d manifold, and that the activity in the grid cell network settles on a steady state that depends only on the inputs, isn't it quite obvious that the manifold of activity in the grid cell layer would have, locally, a 2d structure?

      4. The modeling is all done in planar 2d environments, where the feedforward learning mechanism promotes the emergence of a hexagonal pattern in the single neuron tuning curve. This, combined with the fact that all neurons develop spatial patterns with the same spacing and orientation, implies even without any topological analysis that the emerging topology of the population activity is a torus.

      However, the toroidal topology of grid cells in reality has been observed by Gardner et al also in the wagon wheel environment and in sleep, and there is substantial evidence based on pairwise correlations that it persists also in various other situations, in which the spatial response pattern is not a hexagonal firing pattern. It is not clear that the mechanism proposed in the present paper would generate toroidal topology of the population activity in more complex environments. In fact, it seems likely that it will not do so.

      5. Moreover, the recent work of Gardner et al. demonstrated much more than the preservation of the topology in the different environments and in sleep: the toroidal tuning curves of individual neurons remained the same in different environments. Previous works, that analyzed pairwise correlations under hippocampal inactivation and various other manipulations, also pointed towards the same conclusion. Thus, the same population activity patterns are expressed in many different conditions. In the present model, the results of Figure 6 suggest that even across distinct rectangular environments, toroidal tuning curves will not be preserved, because there are multiple possible arrangements of the phases on the torus which emerge in different simulations.

      6. In real grid cells, there is a dense and fairly uniform representation of all phases (see the toroidal tuning of grid cells measured by Gardner et al). Here the distribution of phases is not shown, but Figure 7 suggests that phases are non uniformly represented, with significant clustering around a few discrete phases. This, I believe, is also the origin for the difficulty in identifying the toroidal topology based on the transpose of the matrix M: vectors representing the spatial response patterns of individual neurons are localized near the clusters, and there are only a few of them that represent other phases. Therefore, there is no dense coverage of the toroidal manifold that would exist if all phases were represented equally. This is not just a technical issue, however: there appears to be a mismatch between the results of the model and the experimental reality, in terms of the phase coverage.

      7. The manuscript makes several strong claims that incorrectly represent the relation between experimental data and attractor models, on one hand, and the present model on the other hand. For the latter, see the comments above. For the former, I provide a detailed list in the recommendations to the authors, but in short: the paper claims that attractor models induce rigidness in the neural activity which is incompatible with distortions seen in the spatial response patterns of grid cells. However, this claim seems to confuse distortions in the spatial response pattern, which are fully compatible with the attractor model, with distortions in the population activity patterns, which would be incompatible with the attractor model. The attractor model has withstood numerous tests showing that the population activity manifold is rigidly preserved across conditions - a strong prediction (which is not made, as far as I can see, by feedforward models). I am not aware of any data set where distortions of the population activity manifold have been identified, and the preservation has been demonstrated in many examples where the spatial response pattern is disrupted. This is the main point of two papers cited in the present manuscript: by Yoon et al, and Gardner et al.

      8. There is also some weakness in the mathematical description of the dynamics. Mathematical equations are formulated in discrete time steps, without a clear interpretation in terms of biophysically relevant time scales. It appears that there are no terms in the dynamics associated with an intrinsic time scale of the neurons or the synapses, and this introduces a difficulty in interpreting synaptic weights as being weak or strong. As mentioned above, the nature of the recurrent dynamics within the grid cell network (whether it exhibits continuous attractor behavior) is not sufficiently clear.

      In my view, the weaknesses discussed above limit the ability of the model, as it stands, to offer a compelling explanation for the toroidal topology of grid cell population activity patterns, and especially the rigidity of the manifold across environments and behavioral states. Still, the work offers an interesting way of thinking on how the toroidal topology might emerge. Perhaps with certain additional elements this may motivate new theoretical insights.

    1. Reviewer #3 (Public Review):

      Summary: This is a careful examination of the distribution of mitochondria in the basal dendrites of ferret visual cortex in a previously published volume electron microscopy dataset. The authors report that mitochondria are sparsely, as opposed to continuously distributed in the dendritic shafts, and that they tend to cluster near dendritic spines with heterogeneous orientation selectivity.

      Strengths: Volume EM is the gold standard for quantification of organelle morphology. An unusual strength of this particular dataset is that the orientation selectivity of the dendritic spines was measured by calcium imaging prior to EM reconstruction. This allowed the authors to assess how spines with varying selectivity are organized relative to mitochondria, leading to an intriguing observation that they localize to heterogeneous spine clusters. The analysis is carefully performed.

      Weaknesses: Using threshold distances between mitochondria and synapses as opposed to absolute distances may overlook important relationships in the data.

    1. Reviewer #3 (Public Review):

      In this study, the authors identified homozygous ZMYND12 variants in four unrelated patients. In sperm cells from these individuals, immunofluorescence revealed altered localization of DNAH1, DNALI1, WDR66, and TTC29. Axonemal localization of ZMYND12 ortholog TbTAX-1 was confirmed using the Trypanosoma brucei model. RNAi knock-down of TbTAX-1 dramatically affected flagellar motility, with a phenotype similar to ZMYND12-variant-bearing human sperm. Co-immunoprecipitation and ultrastructure expansion microscopy in T. brucei revealed TbTAX-1 to form a complex with TTC29. Comparative proteomics with samples from Trypanosoma and Ttc29 KO mice identified a third member of this complex: DNAH1. The data presented revealed that ZMYND12 is part of the same axonemal complex as TTC29 and DNAH1, which is critical for flagellum function and assembly in humans, and Trypanosoma. The manuscript is informative for the clinical and basic researchers in the field of spermatogenesis and male infertility.

    1. Reviewer #3 (Public Review):

      In "Trophic eggs affect caste determination in the ant Pogonomyrmex rugosus" Genzoni et al. probe a fundamental question in sociobiology, what are the molecular and developmental processes governing caste determination? In many social insect lineages, caste determination is a major ontogenetic milestone that establishes the discrete queen and worker life histories that make up the fundamental units of their colonies. Over the last century, mechanisms of caste determination, particularly regulators of caste during development, have remained relatively elusive. Here, Genzoni et al. discovered an unexpected role for trophic eggs in suppressing queen development - where bi-potential larvae fed trophic eggs become significantly more likely to develop into workers instead of gynes (new queens). These results are unexpected, and potentially paradigm-shifting, given that previously trophic eggs have been hypothesized to evolve to act as an additional intra-colony resource for colonies in potentially competitive environments or during specific times in colony ontogeny (colony foundation), where additional food sources independent of foraging would be beneficial. While the evidence and methods used are compelling (e.g., the sequence of reproductive vs. trophic egg deposition by single queens, which highlights that the production of trophic eggs is tightly regulated), the connective tissue linking many experiments is missing and the downstream mechanism is speculative (e.g., whether miRNA, proteins, triglycerides, glycogen levels in trophic eggs is what suppresses queen development). Overall, this research elevates the importance of trophic eggs in regulating queen and worker development but how this is achieved remains unknown.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In this study, the researchers used ancient environmental DNA (aeDNA) retrieved from sediment cores, from two lakes in the Arctic, on the Yamal peninsula, in Siberia. The dating of one of the cores, showed that the sediment layers were very recent (ranging between the years 2019 - 1895). From this core they sequenced 23 libraries which were enriched for mammal mitochondrial genomes. They found a high proportion of two species that have been extinct for thousands of years, the mammoth and the woolly rhinoceros. The highest proportion of mammoth reads were found in very young layer (~81 years old) and as this initial finding does not match the temporal occurrence of the species, they confirmed the identification with several other methods. Additionally, they applied a different dating method on some samples and found that the aging of the samples was not completely congruent. The authors suggest the that the presence of these two Pleistocene megafauna in such recent sediment layers is a consequence of physical processes, specific to the study site, and that the high quality of the aeDNA recovered is a result of permafrost preservation.

      Strengths:<br /> The strengths of the study are in the rigorous confirmation of the identification of the taxa with four different PCR and sequencing techniques being used, the initial enrichment panel, and then subsequent metabarcoding PCRs, and taxa specific PCR for COI and cytB. Along with the ancient DNA protocol applied, this is therefore very convincing that the DNA detected in the samples is indeed from the Pleistocene mammals. Additionally, two methods were used to age the sediment cores, and although the depth of the samples tested do not overlap, they give reasonable ages (apart from the anomalous sample) and all together these are robust results.

      Weaknesses:<br /> The paper could benefit from clearer aims in the introductions because as it stands the initial aim states that the authors are looking for Arctic mammal abundances through time. However, there are no results relating to general arctic mammal biodiversity presented, which leaves the reader wondering. Perhaps the focus of the study is more on identifying and dating the Pleistocene megafauna. Additionally, it is presented as an analysis on the two taxa, but it feels like the woolly rhinoceros does not receive the same treatment as the mammoth, as there are no additional molecular results, confirmation or figures relating to DNA from this taxa.

      Overall the results support that there has been some movement of DNA throughout the sediment core which may impact the dating of the last occurrence of particular extinct taxa. As highlighted, though the geological processes by which this may have arisen are specific to this particular lake and may not be broadly relevant, therefore highlighting that knowledge of each system is important to understanding DNA distribution.

    1. Reviewer #3 (Public Review):

      Neininger-Castro and colleagues developed software tools for the quantification of sarcomeres and sarcomere-precursor features in immunostained human induced pluripotent stem cell-derived cardiac myocytes (hiCMs). In the first part they used a deep-learning- based model called a U-Net to construct and train a network for binarization of immunostained cardiomyocyte images. They also wrote graphical user interface (GUI) software that will assist other labs to use this approach and made it publicly available. They did not compare their approach to existing ones, but example from one image suggests their binarization tool outperforms Otsu thresholding binarization.

      In the second part they developed a software tool called sarcApp that classifies sarcomere structures in the binarized image as a Z-Line or Z-Body and assigns each to either a myofibril or to stress fibers. The tools can then automatically count and measure multiple features (33 per cell and 24 per myofibril) and report them on a per-cell, per-myofibril, and per- stress fiber basis.

      To test the tools they used Blebbistatin to inhibit sarcomere assembly and showed that the sarcApp tool could capture changes in multiple features such as fewer myofibrils, fewer Z-Lines, decreased myofibril persistence, decreased Z-Line length and altered myofibril orientation in the Blebbistatin treated cells. With some changes the tool was also shown to quantify sarcomeres in titin and myomesin stained cardiomyocytes.

      Finally they used sarcApp to quantify the changes in sarcomere assembly after siRNA mediated knockout of MYH7, MYH7, or MYOM. The analysis indicates that neither MYH6 nor MYH7 knockdown perturbed the assembly of Z- or M-lines, and that knockdown of MYOM perturbed the A-band/M-Line but not the Z-Line assembly according to features captured by the sarcApp tool.

      Overall the authors developed and made publicly available an excellent software tool that will be very useful for labs that are interested in studying sarcomere assembly. Multiple features that are difficult to measure or count manually can be automatically measured by the software quickly and accurately.

      There are however some remaining questions about these tools:<br /> 1. The binarization tool which is tailored to sarcomere image binarization appears promising but was not systematically compared with existing approaches. Example from one cell suggests it outperforms Otsu's binarization approach.<br /> 2. How robust is the tool? The tool was tested on images from one type of cardiomyocytes (hiCMs) taken from one lab using Nikon Spinning Disk confocal microscope equipped with Apo TIRF Oil 100X 1.49 NA objective or instant Structured Illumination Microscopy (iSIM), using deconvolution (Microvolution software) and in a specific magnification. It remains to be seen whether the tool would be equally effective with images taken with other microscopy systems, with other cardiomyocytes (chick or neonatal rat), with different magnifications, live imaging, etc. The authors state that this approach is also useful in other situations, but the data is not included in this manuscript.<br /> 3. The tool was developed for evaluation of sarcomere assembly. The authors show that for this application it can detect the perturbation by Blebbistatin, or knockdown of sarcomeric genes. It remains to be seen if this tool is also useful for assessment of sarcomere structure for other questions beside sarcomere assembly and in other sarcomere pathologies.

    1. Reviewer #3 (Public Review):

      Summary:<br /> How does the brain distinguish stimulus intensity reduction from response reductions due to adaptation? Ling et al study whether and how the locust olfactory system encodes stimulus intensity and repetition differently. They show that these stimulus manipulations have distinguishable effects on population dynamics.

      Strengths:<br /> 1. Provides a potential strategy with which the brain can distinguish intensity decrease from adaptation. -- while both conditions reduce overall spike counts, intensity decrease can also changes which neurons are activated and adaptation only changes the response magnitude without changing the active ensemble.<br /> 2. By interleaving a non-repeated odor, they show that these changes are odor-specific and not a non-specific effect.<br /> 3. Describes how proboscis orientation response (POR) changes with stimulus repetition., Unlike the spike counts, POR increases in probability with stimulus. The data portray the variability across subjects in a clear way.

      Weaknesses:<br /> 1. Behavior<br /> a. While the "learning curve" of the POR is nicely described, the behavior itself receives very little description. What are the kinematics of the movement, and do these vary with repetition? Is the POR all-or-nothing or does it vary trial to trial?

      b. What are the reaction times? This can constrain what time window is relevant in the neural responses. E.g., if the reaction time is 500 ms, then only the first 500 ms of the ensemble response deserves close scrutiny. Later spikes cannot contribute.

      c. The behavioral methods are lacking some key information. While references are given to previous work, the reader should not be obligated to look at other papers to answer basic questions: how was the response measured? Video tracking? Hand scored?

      d. Can we be sure that this is an odor response? Although airflow out of the olfactometer is ongoing throughout the experiment, opening and closing valves usually creates pressure jumps that are likely to activate mechanosensors in the antennae.

      e. What is the baseline rate of PORs in the absence of stimuli?

      e.What can you say about the purpose of the POR? I lack an intuition for why a fly would wiggle the maxillary palps. This is a question that is probably impossible to answer definitively, but even a speculative explanation would help the reader better understand.

      2. Physiology<br /> a. Does stimulus repetition affect "spontaneous" activity (i.e., firing in the interstimulus interval? To study this question, in Figures 2b and c, it would be valuable to display more of the pre-stimulus period, and a quantification of the stability or lability of the inter-stimulus activity.

      b. When does the response change stabilize? While the authors compare repetition 1 to repetition 25, from the rasters it appears that the changes have largely stabilized after the 3rd or 4th repetition. In Figure 5, there is a clear difference between repetition 1-3 or so and the rest. Are successive repetitions more similar than more temporally-separated repetitions (e.g., is rep 13 more similar to 14 than to 17?). I was not able to judge this based on the dendrograms of Figure 5. If the responses do stabilize at it appears, it would be more informative to focus on the dynamics of the first few repetitions.

      c. How do temporal dynamics change? Locust PNs have richly varied temporal dynamics, but how these may be affected is not clear. The across-population average is poorly suited to capture this feature of the activity. For example, the PNs often have an early transient response, and these appear to be timed differently across the population. These structures will be obscured in a cross population average. Looking at the rasters, it looks like the initial transient changes its timing (e.g., PN40 responses move earlier; PN33 responses move later.). Quantification of latency to first spike after stimulus may make a useful measure of the dynamics.

      d. How legitimate is the link between POR and physiology? While their changes can show a nice correlation, the fact the data were taken from separate animals makes them less compelling than they would be otherwise. How feasible is it to capture POR and physiology in the same prep? This would be most helpful, but I suspect may be too technically challenging to be within scope.

    1. Reviewer #3 (Public Review):

      A major finding of this work is that loss of monocarboxylate transporter 1 (MCT1), specifically in stellate cells, can decrease fibrosis in the liver. However, the underlying mechanism whereby MCT1 influences stellate cells is not addressed. It is unclear if upstream/downstream metabolic flux within different cell types leads to fibrotic outcomes. Ultimately, the paper opens more questions than it answers: why does decreasing MCT1 expression in hepatocytes exacerbate disease, while silencing MCT1 in fibroblasts seems to alleviate collagen deposition? Mechanistic studies in isolated hepatocytes and stellate cells could enhance the work further to show the disparate pathways that mediate these opposing effects. The work highlights the complexity of cellular behavior and metabolism within a disease environment but does little to mechanistically explain it.

      The observations presented are compelling and rigorous, but their impact is limited by the nearly complete lack of mechanistic insight presented in the manuscript. As also mentioned elsewhere, it is important to know whether lactate import or export (or the transport of another molecule-like ketone bodies, for example) is the decisive role of MCT1 for this phenotype. Beyond that, it would be interesting, albeit more difficult, to determine how that metabolic change leads to these fibrotic effects.

      Kuppfer cells are initially analyzed and targeted. These cells may play a major role in fibrotic response. It will be interesting to determine the effects of lactate metabolism in other cells within the microenvironment, like Kuppfer cells, to gain a complete understanding of how metabolism is altered during fibrotic change.

      The timing of MCT1 depletion raises concern, as this is a largely prophylactic experiment, and it remains unclear if altering MCT1 would aid in the regression of established fibrosis. Given the proposal for translation to clinical practice, this will be an important question to answer.

    1. Reviewer #3 (Public Review):

      The authors provide a detailed analysis of the sulcal and sutural imprints preserved on the natural endocast and associated cranial vault fragments of the KNM-ER3732 early Homo specimen. The analyses indicate a primitive ape-like organization of this specimen's frontal cortex. Given the geological age of around 1.9 million years, this is the earliest well-documented evidence of a primitive brain organization in African Homo.

      The various points raised by the reviewers and the responses provided by the authors illustrate that paleoneurology is a research field where little consensus has been reached over the past century. This is due not only to the fragmentary preservation of most fossil endocasts, but also to the limitations of scientific inference in general, and paleoneurological inference in particular. Like any scientific hypothesis, a paleoneurological hypothesis cannot be proven, but at best be falsified, leaving a wide field of possible alternative hypotheses. Furthermore, endocranial morphology does not equate cerebral morphology. A classical example: the endocranial Broca cap is not identical to the cortical Broca area. And last but not least, taxonomy cannot resolve questions of phylogeny.

    1. Reviewer #3 (Public Review):

      Summary:

      The authors discovered that the RdnE effector possesses DNase activity, and in competition, P. mirabilis having RdnE outcompetes the null strain. Additionally, they presented evidence that the RdnI immunity protein binds to RdnE, suppressing its toxicity. Interestingly, the authors demonstrated that the RdnI homolog from a different phylum (i.e., Actinomycetota) provides cross-species protection against RdnE injected from P. mirabilis, despite the limited identity between the immunity sequences. Finally, using metagenomic data from human-associated microbiomes, the authors provided bioinformatic evidence that the rdnE/rdnI gene pair is widespread and present in individual microbiomes. Overall, the discovery of broad protection by non-cognate immunity is intriguing, although not necessarily surprising in retrospect, considering the prolonged period during which Earth was a microbial battlefield/paradise.

      Strengths:

      The authors presented a strong rationale in the manuscript and characterized the molecular mechanism of the RdnE effector both in vitro and in the heterologous expression model. The utilization of the bacterial two-hybrid system, along with the competition assays, to study the protective action of RdnI immunity is informative. Furthermore, the authors conducted bioinformatic analyses throughout the manuscript, examining the primary sequence, predicted structural, and metagenomic levels, which significantly underscore the significance and importance of the EI pair.

      Weaknesses:

      1. The interaction between RdnI and RdnE appears to be complex and requires further investigation. The manuscript's data does not conclusively explain how RdnI provides a "promiscuous" immunity function, particularly concerning the RdnI mutant/chimera derivatives. The lack of protection observed in these cases might be attributed to other factors, such as a decrease in protein expression levels or misfolding of the proteins. Additionally, the transient nature of the binding interaction could be insufficient to offer effective defenses.

      2. The results from the mixed population competition lack quantitative analysis. The swarm competition assays only yield binary outcomes (Yes or No), limiting the ability to obtain more detailed insights from the data.

      3. The discovery of cross-species protection is solely evident in the heterologous expression-competition model. It remains uncertain whether this is an isolated occurrence or a common characteristic of RdnI immunity proteins across various scenarios. Further investigations are necessary to determine the generality of this behavior.

      Comments from Reviewing Editor:

      • In addition to the references provided by Reviewer #2, the first manuscript to show non-cognate binding of immunity proteins was Russell et al 2012 (PMID: 22607806).

      • IdrD was shown to form a subfamily of effectors in this manuscript by Hespanhol et al 2022 PMID: 36226828 that analyzed several T6SS effectors belonging to PDDExK, and it should be cited.

    1. Reviewer #3 (Public Review):

      Summary: The authors present a thought-provoking and comprehensive re-analysis of previously published human cell genomics data that seeks to understand the relationship between the sites where the Origin Recognition Complex (ORC) binds chromatin, where the replicative helicase (Mcm2-7) is situated on chromatin, and where DNA replication actually beings (origins). The view that these should coincide is influenced by studies in yeast where ORC binds site-specifically to dedicated nucleosome-free origins where Mcm2-7 can be loaded and remains stably positioned for subsequent replication initiation. However, this is most certainly not the case in metazoans where it has already been reported that chromatin bindings sites of ORC, Mcm2-7, and origins do not necessarily overlap, likely because ORC loads the helicase in transcriptionally active regions of the genome and, since Mcm2-7 retains linear mobility (i.e., it can slide), it is displaced from its original position by other chromatin-contextualized processes (for example, see Gros et al., 2015 Mol Cell, Powell et al., 2015 EMBO J, Miotto et al., 2016 PNAS, and Prioleau et al., 2016 G&D amongst others). This study reaches a very similar conclusion: in short, they find a high degree of discordance between ORC, Mcm2-7, and origin positions in human cells.

      Strengths: The strength of this work is its comprehensive and unbiased analysis of all relevant genomics datasets. To my knowledge, this is the first attempt to integrate these observations and the analyses employed were suited for the questions under consideration.

      Weaknesses: The major weakness of this paper is that this comprehensive view failed to move the field forward from what was already known. Further, a substantial body of relevant prior genomics literature on the subject was neither cited nor discussed. This omission is important given that this group reaches very similar conclusions as studies published a number of years ago. Further, their study seems to present a unique opportunity to evaluate and shape our confidence in the different genomics techniques compared in this study. This, however, was also not discussed.

    1. Reviewer #3 (Public Review):

      This is an interesting work reporting ferroptosis that is involved in the tooth morphogenesis. The authors showed that Gpx4, the core anti-lipid peroxidation enzyme in ferroptosis, is upregulated in tooth development using ex vivo culture system.

    1. Reviewer #3 (Public Review):

      Summary: In this study, Peterson et al. longitudinally record and document the vocal repertoires of three Mongolian gerbil families. Using unsupervised learning techniques, they map the variability across these groups, finding that while overall statistics of, e.g., vocal emission rates and bout lengths are similar, families differed markedly in their distributions of syllable types and the transitions between these types within bouts. In addition, the large and rich data are likely to be valuable to others in the field.

      Strengths:<br /> - Extensive data collection across multiple days in multiple family groups.<br /> - Thoughtful application of modern analysis techniques for analyzing vocal repertoires.<br /> - Careful examination of the statistical structure of vocal behavior, with indications that these gerbils, like naked mole rats, may differ in repertoire across families.

      Weaknesses:<br /> - The work is largely descriptive, documenting behavior rather than testing a specific hypothesis.<br /> - The number of families (N=3) is somewhat limited.

    1. Reviewer #3 (Public Review):

      In this study, Zhu and authors investigate the expression and function of the clustered Protocadherins (cPcdhs) in synaptic connectivity in the mouse cortex. The cPcdhs encode a large family of cadherin-related transmembrane molecules hypothesized to regulate synaptic specificity through combinatorial expression and homophilic binding between neurons expressing matching cPcdh isoforms. But the evidence for combinatorial expression has been limited to a few cell types, and causal functions between cPcdh diversity and wiring specificity have been difficult to test experimentally. This study addresses two important but technically challenging questions in the mouse cortex: 1) Do single neurons in the cortex express different cPcdh isoform combinations? and 2) Does Pcdh isoform diversity or particular combinations among pyramidal neurons influence their connectivity patterns? Focusing on the Pcdh-gamma subcluster of 22 isoforms, the group performed 5'end-directed single-cell RNA sequencing from dissociated postnatal (P11) cortex. To address the functional role of Pcdhg diversity in cortical connectivity, they asked whether the Pcdhgs and isoform matching influence the likelihood of synaptic pairing between 2 nearby pyramidal neurons. They performed simultaneous whole-cell recordings of 6 pyramidal neurons in cortical slices, and measured paired connections by evoked monosynaptic responses. In these experiments, they measured synaptic connectivity between pyramidal neurons lacking the Pcdhgs, or overexpressing dissimilar or matching sets of Pcdhg isoforms introduced by electroporation of plasmids encoding Pcdhg cDNAs.

      Overall, the study applies elegant methods that demonstrate that single cortical neurons express different combinations of Pcdh-gamma isoforms, including the upper layer Pyramidal cells that are assayed in paired recordings. The electrophysiology data demonstrate that nearby Pyramidal neurons lacking the entire Pcdhg cluster are more likely to be synaptically connected compared to the control neurons, and that overexpression of matching isoforms between pairs decreases the likelihood to be synaptically connected. These are important and compelling findings that advance the idea that the Pcdhgs are important for cortical synaptic connectivity, and that the repertoire of isoforms expressed by neurons influence their connectivity patterns potentially through a self/non-self discrimination mechanism. However, the findings are limited to probability in connectivity and do they do not support the authors' conclusions that Pcdhg isoforms regulate synaptic specificity, 'by preventing synapse formation with specific cells' or to 'unwanted partners'. Characterizations of the cellular basis of these defects are needed to determine whether they are secondary to other roles in cell positioning, axon/dendrite branching and synaptic pruning, and overall synaptic formation. Claims that Pcdh-alpha and Pcdhg C-type isoforms are not functionally required are premature, due to limitations of the experiments. Moreover, claims that 'similarity level of γ-PCDH isoforms between neurons regulate the synaptic formation' are not supported due to weak statistical analyses presented in Fig4. The overstatements should be corrected. There was also missed opportunity to clearly discuss these results in the context of other published work, including recent publications focused on the cortex.

      Strengths:

      - The 5' end sequencing with a Pcdhg-amplified library is a technical feat and addresses the pitfall of conventional scRNA-Seq methods due to the identical 3'sequences shared by all Pcdhg isoform and the low abundance of the variable exons. New figures with annotated cell types confirm that several pyramidal and inhibitory cortical subpopulations were captured.

      -Statistical assessment of co-occurrence of isoform expression within clusters is also a strength.

      - By establishing the combinatorial expression of Pcdhgs by maturing pyramidal cells, the study further substantiates the 'single neuron combinatorial code for cPcdhs' model. Although combinatorial expression is not universal (ie. serotonergic neurons), there was limited evidence. The findings that individual pyramidal neurons express ~1-3 variable Pcdhg transcripts plus the C-type transcripts aligns with single RT-PCR studies of single Purkinje cells (Esumi et al 2005; Toyoda et al 2014). They differ from the findings by Lv et al 2022, where C-type expression was lower among pyramidal neurons. OSNs also do not substantially express C-type isoforms (Mountoufaris et al 2017; Kiefer et al 2023). Differences, and the advantages of the 5'end -directed sequencing (vs. SmartSeq) could be raised in the discussion.

      - Simultaneous whole-cell recordings and pairwise comparisons of pyramidal neurons is a technically outstanding approach. They assess the effects of Pcdhg OE isoform on the probability of paired connections.

      - The connectivity assay between nearby pairs proved to be sensitive to quantify differences in probability in Pcdhg-cKO and overexpression mutants. The comparisons of connectivity across vertical vs lateral arrangement are also strengths. Overexpressing identical Pcdhg isoform (whether 1 or 6) reduces the probability of connectivity, but there are caveats to the interpretations (see below).

      Weaknesses:

      -The experiments support a role for the Pcdhgs in influencing the probability of synaptic connectivity between nearby pairs but are not sufficient evidence for synapse specificity. The cPcdhs play multiple roles in neurite arborization, synaptic density, and cell positioning. Kostadinov 2015 also showed that starburst cells lacking the Pcdhgs maintained increased % connectivity at maturity, suggesting a lack of refinement in the absence of Pcdhgs. The known roles raise questions on how these manipulations might have primary effects in these processes and then subsequently impact the probability of connectivity. Investigations of morphological aspects of pyramidal development would strengthen the study and potentially refine the findings. The authors should more clearly relate their findings to the body of cPcdh studies in the discussion.

      - Pcdhg cKO-dependent effects on connectivity occur between closely spaced soma (50-100um - Figure 2E), highlighting the importance of spatial arrangement to connectivity (also noted by Tarusawa 2016). Was distance considered for the overexpression (OE) assays, and did the authors note changes in cell distribution which might diminish the connectivity? Recent work by Lv et al 2022 reported that manipulating Pcdhgs influences the dispersion of clonally-related pyramidal neurons, which also impacts the likelihood of connections. Overexpression of Pcdhgc3 increased cell dispersion and decreased the rate of connectivity between pairs. Though these papers are mentioned, they should be discussed in more detail and related to this work.

      - Though the authors added suggested citations and improved the contextualization of the study, several statements do not accurately represent the cited literature. It is at the expense of crystalizing the novelty and importance of this present work. For instance, Garrett et al 2012 PMID: 22542181 was the first to describe roles for Pcdhgs in cortical pyramidal cells and dendrite arborization, and that pyramidal cell migration and survival are intact. Line 52 cited Wang et al 2002, but this was limited to gross inspection. Garrett et al is the correct citation for: 'The absence of γ-PCDH does not cause general abnormality in the development of the cerebral cortex, such as cell differentiation, migration, and survival (Wang et al., 2002).' Second, single cell cPcdh diversity is introduced very generally, as though all neuron types are expected to show combinatorial variable expression with ubiquitous C-Type expression. But those initial studies were limited to Purkinje cells (Esumi 2005 and Toyoda 2014). Profiling of serotonergic neurons and OSN reveals different patterns (citations needed for Chen 2017 PMID: 28450636; Mountofaris et al PMID: 2845063; Canzio 2023 PMID: 37347873), raising the idea that cPcdh diversity and ubiquitous C-type expression is not universal. Thus, the authors missed the opportunity to emphasize the gap regarding cPcdh diversity in the cortex.

      - They have not shown rigorously and statistically that the rate of connectivity changes with% isoform matching. In Figure 4D, comparisons of % isoform matching in OE assays show a single statistical comparison between the control and 100% groups, but not between the 0%, 11% and 33% groups. Is there a significant difference between the other groups? Significant differences are claimed in the results section, but statistical tests are not provided. The regression analysis in 4E suggests a correlation between % isoform similarity and connectivity probability, but this is not sound as it is based on a mere 4 data points from 4D. The authors previously explained that they cannot evaluate the variance in these recordings as they must pool data together. However, there should be some treatment of variability, especially given the low baseline rate of connectivity. Or at the very least, they should acknowledge the limitations that prevent them from assessing this relationship. Claims in lines 230+ are not supported: ' Overall, our findings demonstrate a negative correlation between the probability of forming synaptic connections and the similarity level of γ-PCDH isoforms expressed in neuron pairs (Fig. 4E)".

      -Figure 4 provides connectivity probability, but this result might be affected by overall synapse density. Did connection probability change with directionality (e.g between red to green cells, or green to red cells).

      -Generally, the statistical approaches were not sufficiently described in the methods nor in the figure legends, making it difficult to assess the findings. They do not report on how they calculated FDR for connectivity data, when this is typically used for larger multivariate datasets.

      - The possibility that the OE effects are driven by total Pcdhg levels, rather isoform matching, should be examined. As shown by qRT-PCR in Fig. 3, expression of individual isoforms can vary. It is reasonable that protein levels cannot be measured by IHC, although epitope tags could be considered as C-terminal tagging of cPcdhs preserves the function in mice (see Lefebvre 2008). Quantification of constant Pcdhg RNA levels by qRT-PCR or sc-RT-PCR would directly address the potential caveat that OE levels vary with isoform combinations.

      -A caveat for the relative plasmid expression quantifications in Figure 3-S1 is that IHC was used to amplify the RFP-tagged isoform, and thus does not likely preserve the relationship between quantities and detection.

      -Figure 1 didn't change in response to reviews to improve clarity. New panels relating to the scRNA-Seq analyses were added to supplementary data but many are central and should be included in Figure 1 (ie. S1-Fig6D). In the Results, the authors state that neuronal subpopulations generally show a combinatorial expression of some variable RNA isoforms and near ubiquitous C-type expression. But they only show data for the Layer 2/3 neuron-specific cluster in S1-Fig-6D, and so it is not clear if this pattern applies to other clusters. Fig. S1-5 show a low number of expressed isoforms per cell, but specific descriptions on whether these include C-type isoforms would be helpful. Figure 1F showing isoform profile in all neurons is not particularly meaningful. There is a lot of interest in neuron-type specific differences in cPcdh diversity, and the authors could highlight their data from S1-5 accordingly.

      -The concept of co-occurrence and results should be explained within the results section, to more clearly relate this concept to data and interpretations. Explanations are now found in the methods, but this did not improve the clarity of this otherwise very interesting aspect of the study.

      - The claim that C-type Pcdhgs do not functionally influence connectivity is premature. Tests were limited to PcdhgC4, which has unique properties compared to the other 2 C-type isoforms (Garrett et al 2019 PMID: 31877124; Mancia et al PMID: 36778455). The text should be corrected to limit the conclusion to PcdhgC4, and not generally to C-type. The authors should test PcdhgC3 and PcdhgC5 isoforms.

      -The group generated a novel conditional Pcdh-alpha mouse allele using CRISPR methods, and state that there were no changes in synaptic connectivity in these Pcdh-alpha mutants. But this claim is premature. The Southern blots validate the targeting of the allele. But further validations are required to establish that this floxed allele can be efficiently recombined, disrupting Pcdha protein levels and function. Pcdha alleles have been validated by western blots and by demonstration of the prominent serotonergic axonal phenotype of Pcdha-KO (ie. Chen 2017 PMID: 28450636; Ing-Esteves 2018 PMID: 29439167).

      -The Discussion would be strengthened by a deeper discussion of the findings to other cPcdh roles and studies, and of the limitations of the study. The idea that the Pcdhgs are influencing the rate of connectivity through a repulsion mechanism or synaptic formation (ie through negative interactions with synaptic organizers such as Nlgn - Molumby 2018, Steffen 2022) could be presented in a model, and supported by other literature.

    1. Reviewer #3 (Public Review):

      This study uses a range of methods to characterize heterogeneous neural populations within the nucleus incertus (NI). The authors focus on two major populations, expressing gsc2 and rln3a, and present solid evidence that these cells have different patterns of efferent and afferent connectivity, calcium activity and function in control of behavior. Although the study does not go as far as clarifying the role of NI in any specific neural computation or aspect of behavioral control, the findings will be valuable in support of future endeavors to do so. In particular, the authors have made two beautiful knock-in lines that recapitulate endogenous expression pattern of gsc2 and rln3a which will be a powerful tool to study the roles of the relevant NI cells. Experiments are well done and data are high quality and most claims are well supported. However, there are a few issues, detailed below, where I believe additional analysis could strengthen the paper.

      • The data very clearly show different patterns of neurites for gsc2 and rln3a neurons in the IPN and the authors interpret these are being axonal arbors. However, can they rule out that some arbors might be dendritic in nature? Notably, they cite the recent Portugues lab study that confirmed that, as in other species, tegmental neurons in zebrafish extend spatially segregated axonal and dendritic arbors into IPN, and the authors speculate that these GABAergic cells might in fact be part of NI.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In the manuscript by Valenzisi et al., the authors report on the role of WRNIP1 to prevent R-loop and TRC-associated DNA damage. The authors claim WRNIP1 localizes to TRCs in response to replication stress and prevents R-loop accumulation, TRC formation, replication fork stalling, and subsequent DNA damage. While the findings are of potential significance to the field, the strength of evidence in support of the conclusions is lacking.

      Weaknesses:<br /> 1) The authors fail to utilize the proper controls throughout the manuscript in regard to the shWRNIP1, WT, and mutant cell lines. It is unclear why the authors failed to use the shWRNIP1WT line in the comet assay, DNA fiber assay, and the FANCD2 assays. This is a key control for i) the use of only a single shRNA (most studies will use at least 2 different shRNAs) and ii) the use of the mutant WRNIP1 lines. In several figures, the authors only show the effect of the UBZ mutant, but don't include the ATPase mutant or WT for comparison. Including these is essential.

      2) The authors use the S9.6 antibody to conclude the loss of WRNIP1 causes more R-loops; however, it has been shown that this antibody detects dsRNA in addition to RNA-DNA hybrids. Accordingly, it cannot be ruled out that the increased S9.6 signal is due to increased dsRNA.

      3) Multiple pieces of data do not support the conclusions. For example, Figure 1D shows shWRNIP1 to reduce damage in Aph+DRB cells compared to MRC5SV cells with Aph+DRB. This result suggests that WRNIP1 actually increases DNA damage in stressed cells with transcription blocked. Another result is seen in Figure 4a, where the number of PLA spots (presumably TRCs) increases in the shWRNIP1WT cells with Aph+RNH1 compared to Aph alone. If R-loops are required for TRC accumulation, then the RNH1 should decrease the PLA foci. This result instead suggests that WRNIP leads to increased TRCs in stressed cells with R-loops cleared by RNH1.

      4) The data are mostly phenomenological and fail to yield mechanistic insight. For example, the authors state that "it remains unclear whether WRNIP1 is directly involved in the mechanisms of R-loop removal/resolution". Unfortunately, the data presented in this manuscript do not provide new insights into this unresolved question.

      5) The authors only show merged images making it impossible to visualize differences in PLA foci.

    1. Reviewer #3 (Public Review):

      In this manuscript, Davidsen and collaborators introduce jAspSnFR3, a new version of aspartate biosensor derived from iGluSnFR3, that allows monitoring in real-time aspartate levels in cultured cells. A selective amino acids substitution was applied in a key region of the template to switch its specificity from glutamate to aspartate. The jAspSnFR3 does not respond to other tested metabolites and performs well, is not toxic for cultured cells, and is not affected by temperature ensuring the possibility of using this tool in tissues physiologically more relevant. The high affinity for aspartate (KD=50 uM) allowed the authors to measure fluctuations of this amino acid in the physiological range. Different strategies were used to bring aspartate to the minimal level. Finally, the authors used jAspSnFR3 to estimate the intracellular aspartate concentration. One of the highlights of the manuscript was a treatment with asparagine during glutamine starvation. Although didn't corroborate the essentiality of asparagine in glutamine depletion, the measurement of aspartate during this supplementation is a glimpse of how useful this sensor can be.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The overarching goal of the authors was to understand whether emotional information conveyed through point-light biological motion can trigger automatic physiological responses, as reflected in pupil size.

      Strengths:<br /> This manuscript has several noticeable strengths: it addresses an intriguing research question that fills that gap in existing literature, presents a clear and accurate presentation of the current literature, and conducts a series of experiments and control experiments with adequate sample size. Yet, it also entails several noticeable limitations - especially in the study design and statistical analyses.

      Weaknesses:<br /> 1. Study design:<br /> 1.1 Dependent variable:<br /> Emotional attention is known to modulate both microsaccades and pupil size. Given the existing pupillometry data that the authors have collected, it would be both possible and valuable to determine whether the rate of microsaccades is also influenced by emotional biological motion.

      1.2 Stimuli:<br /> It appears that the speed of the emotional biological motion stimuli mimics the natural pace of the emotional walker. What is the average velocity of the biological motion stimuli for each condition?

      When the authors used inverted biological motion stimuli, they didn't observe any modulation in pupil size. Could there be a difference in microsaccades when comparing inverted emotional biological motion stimuli?

      2. Statistical analyses<br /> 2.1 Multiple comparisons:<br /> There are many posthoc comparisons throughout the manuscript. The authors should consider correction for multiple comparisons. Take Experiment 1 for example, it is important to note that the happy over neutral BM effect and the sad over neutral BM effect are no longer significant after Bonferroni correction, which is worth noting.

      2.2 The authors present the correlation between happy over sad dilation effect and the autistic traits in Experiment 1, but do not report such correlations in Experiments 2-4. Did the authors collect the Autistic Quotient measure in Experiments 2-4? It would be informative if the authors could demonstrate the reproducibility (or lack thereof) of this happy-sad index in Experiments 2-4.

      2.3 The observed correlation between happy over sad dilation effect and the autistic traits in Experiment 1 seems rather weak. It could be attributed to the poor reliability of the Autistic Quotient measure or the author-constructed happy-sad index. Did the authors examine the test-retest reliability of their tasks or the Autistic Quotient measure?

      2.4 Relatedly, the happy over sad dilation effect is essentially a subtraction index. Without separately presenting the pipul size correlation with happy and sad BM in supplemental figures, it becomes challenging to understand what's primarily driving the observed correlation.

      2.5 For the sake of transparency, it is important to report all findings, not just the positive results, throughout the paper.

      3. Structure<br /> 3.1 The Results section immediately proceeds to the one-way repeated measures ANOVA. This section could be more reader-friendly by including a brief overview of the task procedures and variables, e.g., shifting Fig. 3 to this section.

    1. Reviewer #3 (Public Review):

      Liang and colleagues set out to test whether the human brain uses distance and grid-like codes in social knowledge using a design where participants had to navigate in a two-dimensional social space based on competence and warmth during an fMRI scan. They showed that participants were able to navigate the social space and found distance-based codes as well as grid-like codes in various brain regions, and the grid-like code correlated with behavior (reaction times).

      On the whole, the experiment is designed appropriately for testing for distant-based and grid-like codes and is relatively well-powered for this type of study, with a large amount of behavioral training per participant. They revealed that a number of brain regions correlated positively or negatively with distance in the social space, and found grid-like codes in the frontal polar cortex and posterior medial entorhinal cortex, the latter in line with prior findings on grid-like activity in the entorhinal cortex. The current paper seems quite similar conceptually and in design to previous work, most notably by Park et al., 2021, Nature Neuroscience.

      Below, I raise a few issues and questions on the evidence presented here for a grid-like code as the basis of navigating abstract social space or social knowledge.

      1. The authors claim that this study provides evidence that humans use a spatial / grid code for abstract knowledge like social knowledge.

      This data does specifically not add anything new to this argument. As with almost all studies that test for a grid code in a similar "conceptual" space (not only the current study), the problem is that when the space is not a uniform, square/circular space, and 2-dimensional then there is no reason the code will be perfectly grid-like, i.e., show six-fold symmetry. In real-world scenarios of social space (as well as navigation, semantic concepts), it must be higher dimensional - or at least more than two-dimensional. It is unclear if this generalizes to larger spaces where not all part of the space is relevant. Modelling work from Tim Behrens' lab (e.g., Whittington et al., 2020) and Bradley Love's lab (e.g., Mok & Love, 2019) have shown/argued this to be the case. In experimental work, like in mazes from the Mosers' labs (e.g., Derdikman et al., 2009), or trapezoid environments from the O'Keefe lab (Krupic et al., 2015), there are distortions in mEC cells, and would not pass as grid cells in terms of the six-fold symmetry criterion.

      The authors briefly discuss the limitations of this at the very end but do not really say how this speaks to the goal of their study and the claim that social space or knowledge is organized as a grid code and if it is in fact used in the brain in their study and beyond. This issue deserves to be discussed in more depth, possibly referring to prior work that addressed this, and raising the issue for future work to address the problem - or if the authors think it is a problem at all.

      Data and analysis

      2. Concerning the negative correlation of distance with activation in the fusiform gyrus and visual cortex: this is a slightly puzzling but potentially interesting finding. However, could this be related to reaction times? The larger the distance, the longer the reaction times, so the original finding might reflect larger activations with smaller distances.

      3. Concerning the correlation of grid-like activity with behavior: is the correlation with reaction time just about how long people took (rather than a task-related neural signal)? The authors have only reported correlations with reaction time. The issue here is that the duration of reaction times also relates to the starting positions of each trial and where participants will navigate to. Considering the speed-accuracy tradeoff, could performance accuracy be negatively correlated with these grid consistency metrics? Or it could be positively correlated, which would suggest the grid signal reflects a good representation of the task.

    1. Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors report the first evidence of Nav1.5 regulation by a long noncoding RNA, LncRNA-DACH1, and suggest its implication in the reduction in sodium current observed in heart failure. Since no direct interaction is observed between Nav1.5 and the LncRNA, they propose that the regulation is via dystrophin and targeting of Nav1.5 to the plasma membrane.

      Strengths:

      1. First evidence of Nav1.5 regulation by a long noncoding RNA.<br /> 2. Implication of LncRNA-DACH1 in heart failure and mechanisms of arrhythmias.<br /> 3. Demonstration of LncRNA-DACH1 binding to dystrophin.<br /> 4. Potential rescuing of dystrophin and Nav1.5 strategy.

      Weaknesses:

      1. Main concern is that the authors do not provide evidence of how LncRNA-DACH1 regulates Nav1.5 protein level. The decrease in total Nav1.5 protein by about 50% seems to be the main consequence of the LncRNA on Nav1.5, but no mechanistic information is provided as to how this occurs.<br /> 2. The fact that the total Nav1.5 protein is reduced by 50% which is similar to the reduction in the membrane reduction questions the main conclusion of the authors implicating dystrophin in the reduced Nav1.5 targeting. The reduction in membrane Nav1.5 could simply be due to the reduction in total protein.

    1. Reviewer #3 (Public Review):

      Summary:

      The receptor tyrosine kinase Anaplastic Lymphoma Kinase (ALK) in humans is nervous system expressed and plays an important role as an oncogene. A number of groups have been signalling ALK signalling in flies to gain mechanistic insight into its various role. In flies, ALK plays a critical role in development, particularly embryonic development and axon targeting. In addition, ALK also was also shown to regulate adult functions including sleep and memory. In this manuscript, Sukumar et al., used a suite of molecular techniques to identify downstream targets of ALK signalling. They first used targeted DamID, a technique that involves a DNA methylase to RNA polymerase II, so that GATC sites in close proximity to PolII binding sites are marked. They performed these experiments in wild-type and ALK loss of function mutants (using an Alk dominant negative ALkDN), to identify Alk responsive loci. Comparing these loci with a larval single-cell RNAseq dataset identified neuroendocrine cells as an important site of Alk action. They further combined these TaDa hits with data from RNA seq in Alk Loss and Gain of Function manipulations to identify a single novel target of Alk signalling - a neuropeptide precursor they named Sparkly (Spar) for its expression pattern. They generated a mutant allele of Spar, raised an antibody against Spar, and characterised its expression pattern and mutant behavioural phenotypes including defects in sleep and circadian function.

      Strengths:

      The molecular biology experiments using TaDa and RNAseq were elegant and very convincing. The authors identified a novel gene they named Spar. They also generated a mutant allele of Spar (using CrisprCas technology) and raised an antibody against Spar. These experiments are lovely, and the reagents will be useful to the community. The paper is also well written, and the figures are very nicely laid out making the manuscript a pleasure to read.

      Weaknesses:

      My main concerns were around the genetics and behavioural characterisation which is incomplete. The authors generated a novel allele of Spar - Spar ΔExon1 and examined sleep and circadian phenotypes of this allele. However, they have only one mutant allele of Spar, and it doesn't appear as if this mutant was outcrossed, making it very difficult to rule out off-target effects. To make this data convincing, it would be better if the authors had a second allele, perhaps they could try RNAi?

      Further, the sleep and circadian characterisation could be substantially improved. In Fig 8 E-F it appears as if sleep was averaged over 30 days! This is a little bizarre. They then bin the data as day 1 - 12 and 12-30. This is not terribly helpful either. Sleep in flies, as in humans, undergoes ontogenetic changes - sleep is high in young flies, stabilises between day 3-12, and shows defects by around 3 weeks of age (cf Shaw et al., 2000 PMID 10710313). The standard in the sleep field is to average over 3 days or show one representative day. The authors should reanalyse their data as per this standard, and perhaps show data from 3-10 day old flies, and if they like from 20-30 day old flies. Further, sleep data is usually analysed and presented from lights on to lights on. This allows one to quantify important metrics of sleep consolidation including bout lengths in day and night, and sleep latency. These metrics are of great interest to the community and should be included.

      The authors also claim there are defects in circadian anticipatory activity. However, these data, as presented are not solid to me. The standard in the field is to perform eduction analyses and quantify anticipatory activity e.g. using the method of Harrisingh et al. (PMID: 18003827). Further, circadian period could also be evaluated. There are several free software packages to perform these analyses so it should not be hard to do.

    1. Reviewer #3 (Public Review):

      A central step in cell division is the formation of midbody abscission that separates two daughter cells at the end of cytokinesis. The ESCRT, endosomal sorting complexes required for transport, plays a critical role in this process. Specifically, the ESCRT-III proteins are actively recruited throughout the cell at the membrane fission sites, and their oligomerization into filaments is necessary to constrict the cell membranes to the fission point. Fundamental structural elements in ESCRT-III interactome are the so-called MIT-interacting motifs (MIMs) located at the protein's C terminal portion. Recently, Sundquist and co-workers (eLife 2022) identified several cofactors interacting with ESCRT-III subunits directly implicated in abscission. Among those cofactors, they identified Calpain-7, a cysteine protease whose function is still unclear. Calpain-7 comprises two MIT domains that target ESCRT-II subunit IST1. Here, the authors use structural methods and cell assays to characterize the interactions between Calpain-7 and IST1. For the structural studies, they constructed a minimalistic system in which MT1 and MT2 domains of Calpain-7 interact with the two MIMs localized in the IST1 construct. The truncated constructs interact with high affinity, recapitulating the strength of interaction expected for the full-length constructs in the cell. Using fluorescence polarization anisotropy binding isotherms, these researchers obtained solid binding data, showing a dissociation constant of 0.09 uM for the construct containing both MIMs, ~2 uM for the second MIM domain, and 100 uM for the first MIM. These data suggest a synergistic binding mechanism between the two MIM domains. The authors expressed and purified these constructs in recombinant systems and obtained purified isotopically labeled proteins to study by NMR. To characterize the binding by NMR, the authors studied the IST1 constructs with the two MIMs in the absence and presence of Calpain-7. The IST1 construct displays a well-resolved NMR fingerprint, with most resonances assigned to specific residues. Upon addition of the Calpain-7 construct, the resonances of the residues involved in the binding either broaden beyond detection or shift significantly, which supports the fluorescence binding studies. Given the high affinity, these authors were able to crystallize these complexes and identify the binding interfaces that parallel the solution NMR studies. Mutational studies confirm the hot spots for the interactions, and the authors concluded that the MIT:MIM binding interface is responsible for the association of the full-length constructs of Calpain-7 and IST1 in the cell. Using localization experiments, the authors concluded that IST1 is responsible for recruiting Calpain-7 to midbodies, and the presence of both MIT domains of Calpain-7 and MIM domains is required for localization. Taken together, the biophysical characterization of these complexes and the cell assays led the authors to conclude that IST1 binding to Calpain-7 is necessary for its role in abscission and Nocut checkpoint maintenance.<br /> In my opinion, the research is well executed and also supported by their previous finding (see Sundquist 2022 eLife). The paper is succinct and well-written.

    1. Reviewer #3 (Public Review):

      The manuscript by Salloum et al., titled "Statin-mediated reduction in mitochondrial cholesterol primes an anti-inflammatory response in macrophages by upregulating JMJD3" reports an extensive characterization of the mechanisms underlying the anti-inflammatory role of statins using different in vitro studies. Based on these approaches, the authors observed that cholesterol reduction in response to statin treatment alters mitochondrial function and they identify JMJD3 as a potential critical driver of macrophage anti-inflammatory phenotype. Overall, the study is interesting and provides new findings that could shed light on the molecular effects of statins in these cells, but a number of issues remain confusing, and the experimental design is, on some occasions, not rigorous enough to support the drawn conclusions.

      Major issues:

      1. Focus on JMJD3 is justified by the authors as it was among the 40 genes commonly up-regulated in macrophages exposed to statin or methyl--cyclodextrin (MCD) by RNA-Seq analysis. However, this analysis has not been presented in the manuscript and it is unclear what genes (apart from JMJD3) might play an important role in the response of these cells. A detailed characterization of both up- and down-regulated genes in these experimental conditions and a better justification for JMJD3 are required to fully support further analysis.<br /> 2. In the same line, Figures 6A and B fail to fully describe the changes found by ATAC-seq and RNA-seq. A more comprehensive analysis of these three datasets (together with previous RNA-seq studies) would help to obtain a better understanding of overlapping dysregulated genes (not only those found up-regulated) and what other epigenetic modifying factors might be involved.<br /> 3. In Figure 6C and Supplementary Figure 7, it would be noteworthy to also measure the gene expression of Kdm6a/UTX homolog Kdm6c/UTY, as it has been shown to lack demethylate H3K27me3 demethylase activity due to mutations in the catalytic site of the Jumomji-C-domain.<br /> 4. The use of rather unspecific treatments such as MG-132 (proteasome inhibitor) and GSKj4 (inhibitor of both JMJD3 and UTX) may distort the results observed and might elude their correct interpretation. To avoid this limitation, additional silencing and/or overexpression experiments are currently needed.<br /> 5. Figure 3 and Supplementary Figure 3 seem to be duplicated, please correct them. Moreover, for a better representation of these data, please include representative Seahorse profile figures of each experimental condition in these figures.<br /> 6. As stated by the authors, macrophage phenotype is much more complex than M1/M2 polarization. In this view, assessing a very limited set of genes (i.e, Il-1, IL-10, TNF, IL-6, IL-12, Arg1, Ym1, Mrc1) appears to be inappropriate. A meaningful number of markers must be added.<br /> 7. For accurate quantification of H3K27me3 global levels, please add immunoblotting against histone H3 in Supplementary Figure 1.

    1. Reviewer #3 (Public Review):

      The autocatalytic replication mechanism of misfolded Prion-like proteins (PrP) into amyloid aggregates is associated with a plethora of deleterious neurodegenerative diseases. Despite of the huge amount of research, the underlying molecular events of self-replication and identification of the toxic species are not fully understood. Many recent studies have indicated that non-fibrillar oligomeric intermediates could be more neurotoxic compared to the Prion fibrils. Various cellular factors, like the participation of other proteins and chaperone activity, also play an important role in PrP misfolding, aggregation, and neurotoxicity. The present work focuses on understanding the PrP aggregation mechanism with the identification of the associated toxic species and cellular factors. One of the significant strengths of the work is performing the aggregation assay in near-native conditions. In contrast, most in vitro studies use harsh conditions (such as high temperature, denaturant, detergent, low pH, etc.) to promote protein aggregation. The authors successfully observed the well-known seeding property of the PrP in this aggregation assay that bypasses the primary nucleation during aggregation. Moreover, the authors have shown that syntaxin 6 (Stx6), a known risk factor in prion-mediated Creutzfeldt-Jakob disease, delays fibril formation and prolongs the persistence of toxic intermediates, thus playing an anti-chaperone activity. This study will contribute to understanding the molecular mechanism of PrP aggregation and neurotoxicity. However, further studies are required to identify and characterize the toxic intermediate in the near future precisely.

    1. Reviewer #3 (Public Review):

      In this manuscript by Lu et al., the authors cloned TPC1 from Vicia faba (VfTPC1) and characterized its channel properties by patching the vacuoles isolated from VfRPC1 expressing TPC1-loss-of-function Arabidopsis mutant tpc1-2. They found that VfTPC1 displayed faster kinetics, higher voltage dependence, and less sensitivity to luminal calcium than its Arabidopsis orthologue (AtTPC1). Mutating three luminal residues (E457, E605 and D606) in AtTPC1 to the corresponding ones in VfTPC1 converted the channel into one that resembles VfTPC1: hyperactive and desensitized to luminal Ca2+. By constructing a VfTPC1 model based on the published Ca2+-bound AtTPC1-D454N (fou2) cryo-EM structures, the authors proposed a Ca2+-dependent interaction between the E605/D606 motif and a Ca2+ coordination site at the luminal entrance of the selectivity filter (D269/E637; in VfTPC1, D271/E639). Finally, they showed that vacuoles with VfTPC1 or AtTPC1- triple mutant were hyperexcitable. Overall, this is an interesting study that might have both evolutional and functional implications.

    1. Reviewer #3 (Public Review):

      The authors investigate the role of commensal microbes and molecules in the antigen presentation pathway in the development and phenotype of CD8 T cells specific for the Qa-1b-restricted peptide FL9 (QFL). The studies track both endogenous QFL-specific T cells and utilize a recently generated TCR transgenic model. The authors confirm that QFL-specific T cells in the spleen and small intestine intraepithelial lymphocyte (IEL) pool show an antigen-experienced phenotype as well as unique phenotypic and innate-like functional traits, especially among CD8+ T cells expressing Va3.2+ TCRs. They find that deficiency in the TAP transporter leads to almost complete loss of QFL-specific T cells but that loss of either Qa1 or the ERAAP aminopeptidase does not impact QFL+ T cell numbers but does cause them to maintain a more conventional, naïve-like phenotype. In germ-free (GF) mice, the QFL-specific T cells are present at similar numbers and with a similar phenotype to SPF animals, but in older animals (>18w) there is a notable loss of IEL QFL-specific cells. This drop can be avoided by neonatal colonization of GF mice with the commensal microbe Pediococcus pentosaceus but not a different commensal, Lactobacillus johnsonii, and the authors show that P. pentosaceus encodes a peptide that weakly stimulates QFL-specific T cells, while the homologous peptide from L. johnsonii does not stimulate such cells.

      This study provides new insights into the way in which the differentiation, phenotype, and function of CD8+ T cells specific for Qa-1b/FL9 is regulated by peptide processing and Qa1 expression, and by interactions with the microbiota. The approaches are well designed, the data compelling, and the interpretation, for the most part, appropriate. There are a few relatively minor concerns.

      1) For most of the report, the authors use a set of phenotypic traits to highlight the unique features of QFL-specific CD8+ T cells - specifically, CD44high, CD8aa+ve, CD8ab-ve. In Supp. Fig. 4, however, completely distinct phenotypic characteristics are presented, indicating that IEL QFL-specific T cells are CD5low, Thy-1low. No explanation is provided in the text about whether this is a previously reported phenotype, whether any elements of this phenotype are shared with splenic QFL T cells, what significance the authors ascribe to this phenotype (and to the fact that Qa1-deficiency leads to a more conventional Thy-1+ve, CD5+ve phenotype), and whether this altered phenotype is also seen in ERAAP-deficient mice. At least some explanation for this abrupt shift in focus and integration with prior published work is needed. On a related note, CD5 expression is measured in splenic QFL-specific CD8+ T cells from GF vs SPF mice (Supp. Fig. 9), to indicate that there is no phenotypic impact in the GF mice - but from Supp. Fig. 4, it would seem more appropriate to report CD5 expression in QFL-specific cells from the IEL, not the spleen.

      2) The authors suggest the finding that QFL-specific cells from ERAAP-deficient mice have a more "conventional" phenotype indicates some form of negative selection of high-affinity clones (this result being somewhat unexpected since ERAAP loss was previously shown to increase the presentation of Qa-1b loaded with FL9, confirmed in this report). It is not clear how this argument aligns with the data presented, however, since the authors convincingly show no significant reduction in the number of QFL-specific cells in ERAAP-knockout mice (Fig. 3a), and their own data (e.g. Fig. 2a) do not suggest that CD44 expression correlates with QFL-multimer staining (as a surrogate for TCR affinity/avidity). Is there some experimental basis for suggesting that ERAAP-deficient lacks a subset of high-affinity QFL-specific cells?

      3) The rationale for designing FL9 mutants, and for using these data to screen the proteomes of various commensal bacteria needs further explanation. The authors propose P4 and P6 of FL9 are likely to be "critical" but do not explain whether they predict these to be TCR or Qa-1b contact sites. Published data (e.g., PMID: 10974028) suggest that multiple residues contribute to Qa-1b binding, so while the authors find that P4A completely lost the ability to stimulate a QFL-specific hybridoma, it is unclear whether this is due to the loss of a TCR- or a Qa-1-contact site (or, possibly, both). This could easily be tested - e.g., by determining whether P4A can act as a competitive inhibitor for FL9-induced stimulation of BEko8Z (and, ideally, other Qa-1b-restricted cells, specific for distinct peptides). Without such information, it is unclear exactly what is being selected in the authors' screening strategy of commensal bacterial proteomes. This, of course, does not lessen the importance of finding the peptide from P. pentosaceus that can (albeit weakly) stimulate QFL-specific cells, and the finding that association with this microbe can sustain IEL QFL cells.

    1. Reviewer #3 (Public Review):

      In this study, Ruan et al. investigate the role of the IQCH gene in spermatogenesis, focusing on its interaction with calmodulin and its regulation of RNA-binding proteins. The authors examined sperm from a male infertility patient with an inherited IQCH mutation as well as IQCH CRISPR knockout mice. The authors found that both human and mouse sperm exhibited structural and morphogenetic defects in multiple structures, leading to reduced fertility in ICHQ-knockout male mice. Molecular analyses such as mass spectrometry and immunoprecipitation indicated that RNA-binding proteins are likely targets of IQCH, with the authors focusing on the RNA-binding protein HNRPAB as a critical regulator of testicular mRNAs. The authors used in vitro cell culture models to demonstrate an interaction between IQCH and calmodulin, in addition to showing that this interaction via the IQ motif of IQCH is required for IQCH's function in promoting HNRPAB expression. In sum, the authors concluded that IQCH promotes male fertility by binding to calmodulin and controlling HNRPAB expression to regulate the expression of essential mRNAs for spermatogenesis. These findings provide new insight into molecular mechanisms underlying spermatogenesis and how important factors for sperm morphogenesis and function are regulated.

      The strengths of the study include the use of mouse and human samples, which demonstrate a likely relevance of the mouse model to humans; the use of multiple biochemical techniques to address the molecular mechanisms involved; the development of a new CRISPR mouse model; ample controls; and clearly displayed results. There are some minor weaknesses in that more background details could be provided to the reader regarding the proteins involved; some assays could benefit from more rigorous quantification; some of the mouse testis images and analyses could be improved; and larger sample sizes, especially for the male mouse breeding tests, could be increased. Overall, the claims made by the authors in this manuscript are well-supported by the data provided and there are only minor technical issues that could increase the robustness and rigor of the study.

      1. More background details are needed regarding the proteins involved, in particular IQ proteins and calmodulin. The authors state that IQ proteins are not well-represented in the literature, but do not state how many IQ proteins are encoded in the genome. They also do not provide specifics regarding which calmodulins are involved, since there are at least 5 family members in mice and humans. This information could help provide more granular details about the mechanism to the reader and help place the findings in context.

      2. The mouse fertility tests could be improved with more depth and rigor. There was no data regarding copulatory plug rate; data was unclear regarding how many WT females were used for the male breeding tests and how many litters were generated; the general methodology used for the breeding tests in the Methods section was not very explicitly or clearly described; the sample size of n=3 for the male breeding tests is rather small for that type of assay; and, given that ICHQ appears to be expressed in testicular interstitial cells (Fig. S10) and somewhat in other organs (Fig. S2), another important parameter of male fertility that should be addressed is reproductive hormone levels (e.g., LH, FSH, and testosterone).

      3. The Western blots in Figure 6 should be rigorously quantified from multiple independent experiments so that there is stronger evidence supporting claims based on those assays.

      4. Some of the mouse testis images could be improved. For example, the PNA and PLCz images in Figure S7 are difficult to interpret in that the tubules do not appear to be stage-matched, and since the authors claimed that testicular histology is unaffected in knockout testes, it should be feasible to stage-match control and knockout samples. Also, the anti-ICHQ and CaM immunofluorescence in Figure S10 would benefit from some cell-type-specific co-stains to more rigorously define their expression patterns, and they should also be stage-matched.

    1. Reviewer #3 (Public Review):

      Summary. This study sought to clarify the connection between inositol pyrophosphates (IPPs) and their regulation of phosphate homeostasis in the yeast Saccharomyces cerevisiae to answer the question of whether any of the IPPs (1-IP7, 5-IP7, and IP8) or only particular IPPs are involved in regulation. IPPs bind to SPX domains in proteins to affect their activity, and there are several key proteins in the PHO pathway that have an SPX domain, including Pho81. The authors use the latest methodology, capillary electrophoresis and mass spectrometry (CE-MS), to examine the cytosolic concentrations of PP-IPs in wild-type and strains carrying mutations in the enzymes that metabolize these compounds in rich medium and during a phosphate starvation time-course for the wild-type.

      Major strengths and weaknesses. The authors have strong premises for performing these experiments: clarifying the regulatory molecule(s) in yeast and providing a unifying mechanism across eukaryotes. They use the latest methodologies and a variety of approaches including genetics, biochemistry, cell biology and protein structure to examine phosphate regulation. Their experiments are rigorous and well controlled, and the story is clearly told. The consideration of physiological levels of IPPs throughout the study was critical to interpretation of the data and a strength of the manuscript. The investigation of the structure of Pho81, its regulation by IPPs, and its interactions with Pho80 provide a vivid model for regulation.

      Appraisal. The authors achieved their goal of determining the mechanistic details for phosphate regulation, revising the prior model with new insights. Additionally, they provided strong support for the idea that IP8 regulates phosphate metabolism across eukaryotes - including animals and plants in addition to fungi.

      Impact. This study is likely to have broad impact because it addresses prior findings that are inconsistent with current understanding, and they provide good reasoning as to how older methods were inadequate.

    1. Reviewer #3 (Public Review):

      This study investigated cognitive mechanisms underlying approach-avoidance behavior using a novel reinforcement learning task and computational modelling. Participants could select a risky "conflict" option (latent, fluctuating probabilities of monetary reward and/or unpleasant sound [punishment]) or a safe option (separate, generally lower probability of reward). Overall, participant choices were skewed towards more rewarded options, but were also repelled by increasing probability of punishment. Individual patterns of behavior were well-captured by a reinforcement learning model that included parameters for reward and punishment sensitivity, and learning rates for reward and punishment. This is a nice replication of existing findings suggesting reward and punishment have opposing effects on behavior through dissociated sensitivity to reward versus punishment.

      Interestingly, avoidance of the conflict option was predicted by self-reported task-induced anxiety. Importantly, when a subset of participants were retested over 1 week later, most behavioral tendencies and model parameters were recapitulated, suggesting the task may capture stable traits relevant to approach-avoidance decision-making.

      The revised paper commendably adds important additional information and analyses to support these claims. The initial concern that not accounting for participant control over punisher intensity confounded interpretation of effects has been largely addressed in follow-up analyses and discussion.

      This study complements and sits within a broad translational literature investigating interactions between reward/punishers and psychological processes in approach-avoidance decisions.

    1. Reviewer #3 (Public Review):

      The authors of this study have designed a novel screening pipeline to detect DNA motif spacing preferences between TF partners using publicly available data. They were able to recapitulate previously known composite elements, such as the AP-1/IRF4 composite elements (AICE) and predict many composite elements that are expected to be very useful to the community of researchers interested in dissecting the regulatory logic of mammalian enhancers and promoters. The authors then focus on a novel, SPICE predicted interaction between JUN and IKZF1, and show that under LPS and IL-21 treatment, JUN and IKZF1 in B cells have significant overlap in their genomic localization. Next, to know whether the two TFs physically interact, a co-immunoprecipitation experiment was performed. While JUN immunoprecipitated with an anti-IKZF1 antibody, curiously IKZF1 did not immunoprecipitate with an anti-JUN antibody. Finally, EMSA and luciferase experiments were performed to show that the two TFs bind cooperatively at an IL20 upstream probe.

      Major strengths:<br /> 1. SPICE was able to recapitulate previously known composite elements, such as the AP-1/IRF4 composite elements (AICE).<br /> 2. Under LPS and IL-21 treatment, JUN and IKZF1 in B cells have significant overlap in their genomic localization. This is very good supporting evidence for the efficacy of SPICE in detecting TF partners.

      Major weaknesses:<br /> 1. The authors fail to convincingly show that IKZF1 and Jun physically interact. A quantitative measurement of their interaction strength would have been ideal.<br /> 2. The super-shift experiment to show that the proteins bound to their EMSA probe were indeed IKZF1 and JUN are not very convincing and would benefit from efforts to quantify the shift (Figure 3E). Nuclear extracts from cells with single or double CRISPR knock outs of the two TFs would have been ideal.<br /> 3. There is a second band beneath the more prominent band in the EMSA experiment with recombinant IKZF1 and JUN (Figure 4C). This second band is most probably bound by IKZF1 because it becomes weaker when the IKZF1 site is mutated and is completely absent when only JUN is added. This is completely ignored by the authors. Therefore, experiments with EMSA fail to convincingly show that IKZF1 and Jun bind cooperatively. They could just as well bind independently to the two sites.

    1. Reviewer #3 (Public Review):

      Laham et al. present a manuscript investigating the function of adult-born granule cells (abGCs) projecting to the CA2 region of the hippocampus during social memory. It should be noted that no function for the general DG to CA2 projection has been proposed yet. The authors use targeted ablation, chemogenetic silencing, and in vivo ephys to demonstrate that the abGCs to CA2 projection is necessary for the retrieval of remote social memories such as the memory of one's mother. They also use in vivo ephys to show that abGCs are necessary for differential CA2 network activity, including theta-gamma coupling and sharp wave-ripples, in response to novel versus familiar social stimuli.

      The question investigated is important since the function of DG to CA2 projection remained elusive a decade after its discovery. Overall, the results are interesting but focused on the social memory of the mother, and their description in the manuscript and figures is too cursory. For example, raw interaction times must be shown before their difference. The assumption that mice exhibit social preference between familiar or novel individuals such as mother and non-mother based on social memory formation, consolidation, and retrieval should be better explained throughout the manuscript. Thus, when describing the results, the authors should comment on changes in preference and how this can be interpreted as a change in social memory retrieval. Several critical experimental details such as the total time of presentation to the mother and non-mother stimulus mice are also lacking in the manuscript. The in vivo e-phys results are interesting as well but even more succinct with no proposed mechanism as to how abGCs could regulate SWR and PAC in CA2.

      The manuscript is well-written with the appropriate references. The choice of the behavioral test is somewhat debatable, however. It is surprising that the authors chose to use a direct presentation test (presentation of the mother and non-mother in alternation) instead of the classical 3-chamber test which is particularly appropriate to investigate social preference. Since the authors focused exclusively on this preference, the 3-chamber test would have been more adequate in my opinion. It would greatly strengthen the results if the authors could repeat a key experiment from their investigation using such a test. In addition, the authors only impaired the mother's memory. An additional experiment showing that disruption of the abGCs to CA2 circuit impairs social memory retrieval would allow us to generalize the findings to social memories in general. As the manuscript stands, the authors can only conclude the importance of this circuit for the memory of the mother. Developmental memory implies the memory of familiar kin as well.

      The in vivo ephys section (Figure 3) is interesting but even more minimalistic and it is unclear how abGCs projection to CA2 can contribute to SWR and theta-gamma PAC. In Figure 1, the authors suggest that abGCs project preferentially to PV+ neurons in CA2. At a minimum, the authors should discuss how the abGCs to PV+ neurons to CA2 pyramidal neurons circuit can facilitate SWR and theta-gamma PAC.

      Finally, proposing a function for 4-6-week-old abGCs projecting to CA2 begs two questions: What are abGCs doing once they mature further, and more generally, what is the function of the DG to CA2 projection? It would be interesting for the authors to comment on these questions in the discussion.

    1. Reviewer #3 (Public Review):

      The potential for sexual selection and the extent of sexual dimorphism in gene expression have been studied in great detail in animals, but hardly examined in plants so far. In this context, the study by Zhao, Zhou et al. al represents a welcome addition to the literature.

      Relative to the previous studies in Angiosperms, the dataset is interesting in that it focuses on reproductive rather than somatic tissues (which makes sense to investigate sexual selection), and includes more than a single developmental stage (buds + mature flowers).

      The main limitation of the study is the very low number of samples analyzed, with only three replicate individuals per sex (i.e. the whole study is built on six individuals only). This provides low power to detect differential expression. Along the same line, only three species were used to evaluate the rates of non-synonymous to synonymous substitutions, which also represents a very limited dataset, in particular when trying to fit parameter-rich models such as those implemented here.

      A third limitation relates to the absence of a reference genome for the species, making the use of a de novo transcriptome assembly necessary, which is likely to lead to a large number of incorrectly assembled transcripts. Of course, the production of a reference transcriptome in this non-model species is already a useful resource, but this point should at least be acknowledged somewhere in the manuscript.

      Each of these shortcomings is relatively important, and together they strongly limit the scope of the conclusions that can be made, and they should at least be acknowledged more prominently. The study is valuable in spite of these limitations and the topic remains grossly understudied, so I think the study will be of interest to researchers in the field, and hopefully inspire further, more comprehensive analyses.

    1. Reviewer #3 (Public Review):

      More than 80 million people live at high altitude. This impacts health outcomes, including those related to pregnancy. Longer-lived populations at high altitudes, such as the Tibetan and Andean populations show partial protection against the negative health effects of high altitude. The paper by Yue sought to determine the mechanisms by which the placenta of Tibetans may have adapted to minimise the negative effect of high altitude on fetal growth outcomes. It compared placentas from pregnancies from Tibetans to those from the Han Chinese. It employed RNAseq profiling of different regions of the placenta and fetal membranes, with some follow-up of histological changes in umbilical cord structure and placental structure. The study also explored the contribution of fetal sex in these phenotypic outcomes.

      A key strength of the study is the large sample sizes for the RNAseq analysis, the analysis of different parts of the placenta and fetal membranes, and the assessment of fetal sex differences.

      A main weakness is that this study, and its conclusions, largely rely on transcriptomic changes informed by RNAseq. Changes in genes and pathways identified through bioinformatic analysis were not verified by alternate methods, such as by western blotting, which would add weight to the strength of the data and its interpretations. There is also a lack of description of patient characteristics, so the reader is unable to make their own judgments on how placental changes may link to pregnancy outcomes. Another weakness is that the histological analyses were performed on n=5 per group and were rudimentary in nature.

    1. Reviewer #3 (Public Review):

      The manuscript by Egan and coworkers investigates how Caspase-1 and Caspase-4 mediated cell death affects replication of Salmonella in human THP-1 macrophages in vitro.

      Overall evaluation:

      Strength of the study include the use of human cells, which exhibit notable differences (e.g., Caspase 11 vs Caspase-4/5) compared to commonly used murine models. Furthermore, the study combines inhibitors with host and bacterial genetics to elucidate mechanistic links.

      The main weaknesses of the study are the inherent limitations of tissue culture models. For example, to study interaction of Salmonella with host cells in vitro, it is necessary to kill extracellular bacteria using gentamicin. However, since Salmonella-induced macrophage cell death damages the cytosolic membrane, gentamicin can reach intracellular bacteria and contribute to changes in CFU observed in tissue culture models (major point 1). This can result in tissue culture "artefacts" (i.e., observations/conclusions that cannot be recapitulated in vivo). For example, intracellular replication of Salmonella in murine macrophages requires T3SS-2 in vitro, but T3SS-2 is dispensable for replication in macrophages of the spleen in vivo (Grant et al., 2012).

      Major comments:

      In Figure 1: are increased CFU in WT vs CASP1-deficient THP-1 cells due to Caspase 1 restricting intracellular replication or due to Caspase-1 causing pore formation to allow gentamicin to enter the cytosol thereby restricting bacterial replication? The same question arises about Caspase-4 in Figure 2, where differences in CFU are observed only at 24h when differences in cell death also become apparent. The idea that gentamicin entering the cytosol through pores is responsible for controlling intracellular Salmonella replication is also consistent with the finding that GSDMD-mediated pore formation is required for restricting intracellular Salmonella replication (Figure 3). Similarly, the finding that inflammasome responses primarily control Salmonella replication in the cytosol could be explained by an intact SCV membrane protecting Salmonella from gentamicin (Figure 5).

    1. Reviewer #3 (Public Review):

      Strengths:

      NanoPDLIM2, nanotechnologies that efficiently deliver lentivirus overcomes resistance to chemotherapy and anti-PD-1 immunotherapy. This is a new strategy for enhancing the efficiency of immune checkpoint inhibitors. This finding is important from a clinical translation perspective, but I have several minor concerns.

      Weaknesses:

      1. Please describe the mechanism of increased MHC class I and PD-L1 by PDLIM2.<br /> 2. Please describe the mechanism of decreased MDR1, nuclear RelA and STAT3 by PDLIM2.<br /> 3. Please determine whether PDLIM2 expression directly impacts immune cells (function and number)?<br /> 4. What is the efficiency of PDLIM2 delivery? Does delivery efficiency determine anti-tumor effect?<br /> 5. Authors used a non-immunogenic tumor model. Can you demonstrate the combination effect with PDLIM2 in immunogenic lung cancer models to determine whether the combination of PDLIM2 with anti-PD-1 Ab confers a synergistic effect without chemotherapy?<br /> 6. On page 11, % change can make one over-interpret data.<br /> 7. In Figure 5, what is the difference between 5A and 5D?<br /> 8. It is unclear whether PDLIM2 confers an additive or a synergistic effect with anti-PD-1/chemo.<br /> 9. Have the authors tested any toxicity in normal lungs?

    1. Reviewer #3 (Public Review):

      I very much like this approach and the idea of incorporating hypervariable markers. The method is intriguing, and the ability to e.g. estimate recombination rates, the size of DMRs, etc. is a really nice plus. I am not able to comment on the details of the statistical inference, but from what I can evaluate it seems sound and reasonable. This is an exciting new avenue for thinking about inference from genomic data. I have a few concerns about the presentation and then also questions about the use of empirical methylation data sets.

      I think a more detailed description of demographic accuracy is warranted. For example, in L245 MSMC2 identifies the bottleneck (albeit smoothed) and only slightly overestimates recent size. In the same analysis the authors' approach with unknown mu infers a nonexistent population increase by an order of magnitude that is not mentioned.

      Similarly, it seems problematic that (L556) the approach requiring estimation of site and region parameters (as would presumably be needed in most empirical systems like endangered nonmodel species mentioned in the introduction) does no better than using only SNPs. Overall, I think a more objective and perhaps quantitative comparison of approaches is warranted.

      The authors simulate methylated markers at 2% (and in some places up to 20%). In many plant genomes a large proportion of cytosines are methylated (e.g. 70% in maize: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496265/). I don't know what % of these may be polymorphic, but this leads to an order of magnitude more methylated cytosines than there are SNPs. Couldn't this mean that any appreciable error in estimating methylation threatens to be of a similar order of magnitude to the SNP data? I would welcome the authors' thoughts here.

      A few points of discussion about the biology of methylation might be worth including. For example, methylation can differ among cell types or cells within a tissue, yet sequencing approaches evaluate a pool of cells. This results in a reasonable fraction of sites having methylation rates not clearly 0 or 1. How does this variation affect the method? Similarly, while the authors cite literature about the stable inheritance of methylation, a sentence or so more about the time scale over which this occurs would be helpful. Finally, in some species methylated cytosines have mutation rates an order of magnitude higher than other nucleotides. The authors mention they assume independence, but how would violation of this assumption affect their inference?

    1. Reviewer #3 (Public Review):

      In this manuscript, Lewis et al. investigate the role of tetraspanins in the formation of discs - the key structure of vertebrate photoreceptors essential for light reception. Two tetraspanin proteins play a role in this process: PRPH2 and ROM1. The critical contribution of PRPH2 has been well established and loss of its function is not tolerated and results in gross anatomical pathology and degeneration in both mice and humans. However, the role of ROM1 is much less understood and has been considered somewhat redundant. This paper provides a definitive answer about the long-standing uncertainty regarding the contribution of ROM1 firmly establishing its role in outer segment morphogenesis. First, using an ingenious quantitative proteomic technique the authors show PRPH2 compensatory increase in ROM1 knockout explaining the redundancy of its function. Second, they uncover that despite this compensation, ROM1 is still needed, and its loss delays disc enclosure and results in the failure to form incisures. Third, the authors used a transgenic mouse model and show that deficits seen in ROM1 KO could be completely compensated by the overexpression of PRPH2. Finally, they analyzed yet another mouse model based on double manipulation with both ROM1 loss and expression of PRPH2 mutant unable to form dimerizing disulfide bonds further arguing that PRPH2-ROM1 interactions are not required for disc enclosure. To top it off the authors complement their in vivo studies by a series of biochemical assays done upon reconstitution of tetraspanins in transfected cultured cells as well as fractionations of native retinas. This report is timely, addresses significant questions in cell biology of photoreceptors, and pushes the field forward in a classical area of photoreceptor biology and mechanics of membrane structure as well. The manuscript is executed at the top level of technical standard, exceptionally well written, and does not leave much more to desire. It also pushes standards of the field- one such domain is the quantitative approach to analysis of the EM images which is notoriously open to alternative interpretations - yet this study does an exceptional job unbiasing this approach.

      According to my expertise in photoreceptor biology, there is nothing wrong with this manuscript either technically or conceptually and I have no concerns to express.

    1. Reviewer #3 (Public Review):

      Hon et al. investigated the role of BNST CRF signaling in modulating phasic and sustained fear in male and female mice. They found that partial and full fear conditioning had similar effects in both sexes during conditioning and during recall. However, males in the partially reinforced fear conditioning group showed enhanced acoustic startle, compared to the fully reinforced fear conditioning group, an effect not seen in females. Using fiber photometry to record calcium activity in all BNST neurons, the authors show that the BNST was responsive to foot shock in both sexes and both conditioning groups. Shock response increased over the session in males in the fully conditioned fear group, an effect not observed in the partially conditioned fear group. This effect was not observed in females. Additionally, tone onset resulted in increased BNST activity in both male groups, with the tone response increasing over time in the fully conditioned fear group. This effect was less pronounced in females, with partially conditioned females exhibiting a larger BNST response. During recall in males, BNST activity was suppressed below baseline during tone presentations and was significantly greater in the partially conditioned fear group. Both female groups showed an enhanced BNST response to the tone that slowly decayed over time. Next, they knocked CRF in the BNST to examine its effect on fear conditioning, recall and anxiety-like behavior after fear. They found no effect of the knockdown in either sex or group during fear conditioning. During fear recall, BNST CRF knockdown lead to an increase in freezing in only the partially conditioned females. In the anxiety-like behavior tasks, BNST CRF knockdown lead to increased anxiolysis in the partially reinforced fear male, but not in females. Surprisingly, BNST CRF knockdown increased startle response in fully conditioned, but not partially conditioned males. An effect not observed in either female group. In a final set of experiments, the authors single photon calcium imaging to record BNST CRF cell activity during fear conditioning and recall. Approximately, 1/3 of BNST CRF cells were excited by shock in both sexes, with the rest inhibited and no differences were observed between sexes or group during fear conditioning. During recall, BNST CRF activity decreased in both sexes, an effect pronounced in male and female fully conditioned fear groups.

      Overall, these data provide novel, intriguing evidence in how BNST CRF neurons may encode phasic and sustained fear differentially in males and females. The experiments were rigorous.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The manuscript Kroon et al. described two algorithms, which when combined achieve high throughput automation of "martinizing" protein structures with selected protonation states and post-translational modifications.

      Strengths:<br /> A large scale protein simulation was attempted, showing strong evidence that authors' algorithms work smoothly.

      The authors described the algorithms in detail and shared the open-source code under Apache 2.0 license on GitHub. This allows both reproducibility of extended usefulness within the field. These algorithms are potentially impactful if the authors can address some of the issues listed below.

      Weaknesses:<br /> One major caveat of the manuscript is that the authors claim their algorithms aim to "process any type of molecule or polymer, be it linear, cyclic,<br /> branched, or dendrimeric, and mixtures thereof" and "enable researchers to prepare simulation input files for arbitrary (bio)polymers". However, the examples provided by the manuscript only support one type of biopolymer, i.e. proteins. Despite the authors' recommendation of using polyply along with martinize2/vermouth, no concrete evidence has been provided to support the authors' claim. Therefore, the manuscript must be modified to either remove these claims or include new evidence.

      Method descriptions on Martinize2 and graph algorithms in SI should be core content of the manuscript. I argue that Figure S1 and Figure S2 are more important than Figure 3 (protonation state). I recommend the authors can make a workflow chart combining Figure S1 and S2 to explain Martinize2 and graph algorithms in main text.

      In Figure 3 (protonation state), the figure itself and the captions are ambiguous about whether at the end the residue is simply renamed from HIS to HIP, or if hydrogen is removed from HIP to recover HIS.

      In "Incorporating a Ligand small-molecule Database", the authors are calling for a community effort to build a small-molecule database. Some guidance on when the current database/algorithm combination does or does not work will help the community in contributing.

      A speed comparison is needed to compare Martinize2 and Martinize.

    1. Reviewer #3 (Public Review):

      To analyze the circuit mechanisms leading to the habituation of the O-bed responses upon repeated dark flashes (DFs), the authors performed 2-photon Ca2+ imaging in larvae expressing nuclear-targeted GCaMP7f pan-neuronally panning the majority of the midbrain, hindbrain, pretectum, and thalamus. They found that while the majority of neurons across the brain depress their responsiveness during habituation, a smaller population of neurons in the dorsal regions of the brain, including the torus longitudinalis, cerebellum, and dorsal hindbrain, showed the opposite pattern, suggesting that motor-related brain regions contain non-depressed signals, and therefore likely contribute to habituation plasticity.

      Further analysis using affinity propagation clustering identified 12 clusters that differed both in their adaptation to repeated DFs, as well as the shape of their response to the DF.

      Next by the pharmacological screening of 1953 small molecule compounds with known targets in conjunction with the high-throughput assay, they found that 176 compounds significantly altered some aspects of measured behavior. Among them, they sought to identify the compounds that 1) have minimal effects on the naive response to DFs, but strong effects during the training and/or memory retention periods, 2) have minimal effects on other aspects of behaviors, 3) show similar behavioral effects to other compounds tested in the same molecular pathway, and identified the GABAA/C Receptor antagonists Bicuculline, Amoxapine, and Picrotoxinin (PTX). As partial antagonism of GABAAR and/or GABACR is sufficient to strongly suppress habituation but not generalized behavioral excitability, they concluded that GABA plays a very prominent role in habituation. They also identified multiple agonists of both Melatonin and Estrogen receptors, indicating that hormonal signalling may also play a prominent role in habituation response.

      To integrate the results of the Ca2+ imaging experiments with the pharmacological screening results, the authors compared the Ca2+ activity patterns after treatment with vehicle, PTX, or Melatonin in the tethered larvae. The behavioral effects of PTX and Melatonin were much smaller compared with the very strong behavioral effects in freely-swimming animals, but the authors assumed that the difference was significant enough to continue further experiments. Based on the hypothesis that Melatonin and GABA cooperate during habituation, they expected PTX and Melatonin to have opposite effects. This was not the case in their results: for example, the size of the 12(Pot, M) neuron population was increased by both PTX and Melatonin, suggesting that pharmacological manipulations that affect habituation behavior manifest in complex functional alterations in the circuit, making capturing these effects by a simple difficult.

      Since the 12(𝑃𝑜𝑡, 𝑀) neurons potentiate their responses and thus could act to progressively depress the responses of other neuronal classes, they examined the identity of these neurons with GABA neurons. However, GABAergic neurons in the habituating circuit are not characterized by their Adaptation Profile, suggesting that global manipulations of GABAergic signalling through PTX have complex manifestations in the functional properties of neurons.

      Overall, the authors have performed an admirably large amount of work both in whole-brain neural activity imaging and pharmacological screening.

    1. Reviewer #3 (Public Review):

      In this paper, Toschi et al. performed dMRI to in vivo estimate axon diameter in the brain and demonstrated that multi-compartmental modeling (AxCaliber) is sensitive to microstructural axonal damage in rats and axon caliber increase in demyelinating lesions in MS patients, suggesting that axon diameter mapping provides a potential biomarker to bridge the gap between medical imaging contrasts and biological microstructure. In particular, authors injected ibotenic acid (IBO) and saline in the left and right rat hippocampus, respectively, and compared in vivo estimated axon diameter and ex vivo neurofilament staining in left and right fimbria. The axon size estimation was larger in the fimbria of IBO injection side, where the neurofilament intensity is higher. Correlation of axon size estimation and neurofilament intensity was observed in both injection sides. Further, higher axon diameter estimation was observed in normal appearing white matter (NAWM) of MS patients, compared with the healthy subjects. The axon size estimation increased in hypointense lesions of T1 weighted contrast, but not in isointense lesions. Through the comparison of dMRI-estimated axon size and histology-based fluorescence intensity, authors indirectly validated the sensitivity of axon diameter mapping to the tissue microstructure in the rat brain, and further explored the axon size change in the brain of MS patients. However, the dMRI protocol and biophysical modeling in this study were not fully optimized to maximize the sensitivity to axon size estimation, and the dMRI-estimated axon size (4.4-5.4 micron) was much larger than values reported in previous histological studies (0.5-3 micron) [Barazany et al., Brain 2009]. Finally, although the modified AxCaliber model incorporated two fiber bundles in different directions, the fiber dispersion in each bundle was not considered (c.f. fiber dispersion ~20-30 degree in corpus callosum), potentially leading to overestimated axon diameter.

      The conclusions in this study are supported by experimental results. However, the dMRI protocol and biophysical model could be further optimized and validated:<br /> 1. To in vivo estimate the axon diameter ~1 micron using dMRI, strong diffusion weighting (b-value) should be applied to maximize the signal decay due to intra-axonal restricted diffusion and minimize the signal contribution of extra-cellular hindered diffusion. However, authors only applied maximal b-value = 4000 s/mm2, much smaller than values ~15,000-20,000 s/mm2 in previous studies [Assaf et al., MRM 2008; Huang et al., BSAF 2020, 225:1277]. The use of low diffusion weighting in this study leads to a lower bound ~4-6 micron for accurate diameter estimation, the so-called resolution limit in [Nilsson et al., NMR Biomed 2017, 30:e3711]. In other words, the estimated axon diameter is potentially overestimated and related with the imaging protocol and image quality, confounding the biological interpretation.<br /> 2. In this study, the positive correlation of dMRI-estimated axon size and neurofilament fluorescence intensity is indeed an encouraging result, and yet this validation is indirect since it relies on the positive correlation between neurofilament intensity and axon diameter in histology.<br /> 3. Authors did not consider the fiber dispersion in the proposed dMRI model. This can lead to overestimated axon diameter, even in the highly aligned WM, such as corpus callosum with ~20-30 degree dispersion in histology [Ronen et al., BSAF 2014, 219:1773; Leergaard et all, PLoS One 2010, 5(1), e8595] and MRI [Dhital et al., NeuroImage 2019, 189, 543; Novikov et al., NeuroImage 2018, 174:518].

    1. Reviewer #3 (Public Review):

      This study examined the changes in fear response, as measured by the flight initiation distances (FID), of birds living in urban areas. The authors examined the FIDs of birds during the pandemic (COVID-19 lockdown restrictions) compared to FIDs measured before the pandemic (mostly in 2018 & 2019). The main study justification was that human presence changed drastically during the pandemic lockdowns and the change in human presence might have influenced the fear response of birds as a result of changing the "landscape of fear". Human presence was quantified using a 'stringency' index (government-mandated restrictions). Urban areas were selected from within five different cities, which included four European cities (Czech Republic - Prague, Finland - Rovaniemi, Hungary - Budapest, Poland - Poznan), and one city in the global south (Australia - Melbourne). Using 6369 flight initiation distances across 147 different bird species, the authors found that FIDs were not significantly different before the pandemic versus during the pandemic, nor was the variation in FID explained by the level of 'stringency'.

      Major strengths: There are several strengths to this study that allows for understanding the variety of factors that influence a bird's response to fear (measured as flight initiation distances). This study also demonstrates that FIDs are highly variable between species and regions.<br /> Specifically,<br /> 1) One of the major strengths of this paper is the focus on birds living in urban areas, a habitat type that is hypothesized to have changed drastically in the 'landscape of fear' experienced by animals during the pandemic lockdown restrictions (due to the presumed decrease in human presence and densities). Maintaining the focus on urban birds allowed for a deeper examination of the effect of human behaviour changes on bird behaviour in urban habitats, which are at the interface of human-wildlife interactions.<br /> 2) This study accounted for several variables that are predicted to influence flight initiation distances in birds including species, genus, region (country), variability between years, pandemic year (pre- versus during), the strictness of government-mandated lockdown measures, and ecological factors such as the human observer starting distance, flock size, species-specific body size, ambient air temperature (also a proxy of the timing during the breeding season), time of day, date of data collection (timing within the regional [Europe or Australia] breeding season), and categorization of urban site type (e.g. park, cemetery, city centre).<br /> 3) This study examined FIDs in two years previous to the pandemic (mostly 2018 and 2019, one site was 2014) which would account for some of the within- and between-year FID variation exhibited prior to the pandemic.<br /> 4) This study uses strong statistical approaches (mixed effect models) which allows for repeat sampling, and a post hoc analysis testing for a phylogenetic signal.

      Major weaknesses: The authors used government 'stringency' as a proxy for human presence and densities, however, this may not have been an accurate measure of actual human presence at the study sites and during measurements of FIDs. Furthermore, although the authors accounted for many factors that are predicted to influence fear response and FIDs in birds, there are several other factors that may have contributed to the high level of variation and patterns in FIDS observed during this study, thus resulting in the authors' conclusion that FIDs did not vary between pre- and during pandemic years.<br /> Specifically,<br /> 1) The authors used "government stringency" as a measure of change in human activity, which makes the assumption that the higher the level of 'stringency', the fewer humans in urban areas where birds are living. However, the association between "stringency" and actual human presence at the study sites was not measured, nor was 'stringency' compared to other measures of human presence such as human mobility.<br /> 2) There was considerable variation in FID measurements, which can be seen in the figures, indicating that most of the variation in FID was not accounted for in the authors' models. Factors that may have contributed to variation in FIDs that were not accounted for in this study are as follows:<br /> a. The authors accounted for the date of data collection using the 'day' since the start of the general region's breeding season (Europe: Day 1 = 1 April; Australia: Day 1 = 15 August). Using 'day' since the breeding season started probably was an attempt to quantify the effect of the breeding stage (e.g. territory establishment, nest young, fledgling) on FIDs. However, breeding stages vary both within- and between species, as well as between sub-regions (e.g. Finland vs. Hungary). As different species respond to predation or human presence differently depending on the stage during their breeding cycle, more specificity in the breeding cycle stage may allow for explaining the observed variation and patterns in FID.<br /> b. Variation in species-specific FIDs may also vary with habitat features within urban sites, such as the proximity of trees and other protective structures (e.g. perches and cover), the openness of the area, and the level of stressors present (e.g. noise pollution, distance to roads). Perhaps accounting for this habitat heterogeneity would account for the FID variation measured in this study.<br /> c. The authors accounted for species and genus within their models, however, FIDs may vary with other species-specific (or even specific populations of a species) characteristics such as whether the species/population is neophobic versus neophilic, precocial versus altricial, and the level of behavioural plasticity exhibited. These variables were not accounted for in the analysis.<br /> d. Three different methods of measuring the distances between flight and the observer location were used, and FIDs were only measured once per bird, such that there were no measures of repeatability for a test subject. Thus, variation surrounding the measurement of FIDs would have contributed to the variation in FIDs seen during this study.<br /> 3) The sample design of this study may have influenced the FID variability associated with specific species, and specific populations of species. A different number of species were sampled across the time periods of interest; 68 species were sampled before the pandemic versus 135 species after the pandemic. However, the authors do not appear to have directly compared the FIDs for the same species before the pandemic compared to during the pandemic (e.g. the FIDs of Eurasian blackbirds before the pandemic versus during the pandemic). Furthermore, within the same country-city, it is unclear whether the species observed before the pandemic were observed at the same location (e.g. same habitat type such as the same park) during the pandemic. As a species' FID response may be influenced by population characteristics and features specific to each site (e.g. habitat openness), these factors may have influenced the variability in FID measurements in this study.<br /> 4) The models in this study accounted for many factors predicted to affect FIDs (see the section on major strengths), however, the number of fixed and random factors are large in number compared to the total sample size (N =6369), such that models may have been over-extended.

      Overarching main conclusion<br /> Overall, this study examines factors influencing FIDs in a variety of bird species and concludes that FIDs did not differ during the pandemic lockdowns compared to before the pandemic (2019 and earlier). Furthermore, FIDs were not influenced by the strictness of government-mandated restrictions. Although the authors accounted for many factors influencing the measurement of FIDs in birds, the authors did not achieve their aim of disentangling the effects of pandemic-specific ecological effects from ecological effects unrelated to the pandemic (such as habitat heterogeneity). Their findings indicate that FIDs are highly variable both within- and between- species, but do not strongly support the conclusion that FIDs did not change in urban species during the pandemic lockdown. Therefore, this study is of limited impact on our understanding of how a drastic change in human behaviour may impact bird behaviour in urban habitats. Overall, the study demonstrates the challenges in using FIDs as a general fear response in birds, even during a pandemic lockdown when fewer humans are presumably present, and this study illustrates the large degree of variation in FIDs in response to a human observer.

    1. Reviewer #3 (Public Review):

      A big open question in evolutionary biology is how single cells become multicellular organisms, capable of adaptation as a collective. Many cells form groups, but adaptation at the level of the group tends to be inefficient (especially in comparison to cells). Theoretically, it has been proposed that groups formed by clonal development (cells remain attached to each other after division) can more readily lead to group-level adaptation than groups coming together through the aggregation of different cells post-division. To evaluate empirically the plausibility of this hypothesis, the authors compared adaptation in two lines of yeast that differ only in a couple of mutations determining their mechanism of group formation. Ace2 mutants develop through staying together, and Floc mutants through aggregation. They performed a form of size selection (through settling) as a way to select for multicellularity (this selection regime has been used before to obtain multicellular phenotypes). This selective regime has two components: growing (largely due to differences between cells) and settling (largely due to differences between groups). Thus, the authors assume that increases in fitness through growth are due mostly to adaptation at the single-cell level, whereas increases in fitness through settling are mostly due to adaptation at the multicellular level. They find that adaptation in clonal groups is mostly through settling and that aggregative groups adapt more through growth (despite getting bigger).

      Overall this assumption makes sense (especially in a positive way) but growth, in this case, is also selecting against groups in the snowflake case and less strongly so in the floc case in which cells aggregate and disaggregate with some probability, and therefore cells can keep growing. That is, in addition to assortment the result is somewhat expected because there is less of a trade-off between growth and settling in floc: having a higher density in floc probably leads to higher aggregation and indirectly benefits settling, whereas in the clonal case, larger groups mean that a larger proportion of cells is not growing.

      The main result of the paper holds true: clonal development favors multicellular adaptation relative to aggregative multicellularity, but the reason is not exclusively a difference in the distribution of variation, but a difference in the trade-off between single cell and multicellular traits.

      In the second part of the paper, the authors beautifully show that the mechanisms of group formation affect evolutionary processes. Clonal aggregation leads to a decrease in the effective population size (because the descendants of mutants are likely to be in the same group, and therefore be selected together). This result shows that the mode of development can affect evolution!

    1. Reviewer #3 (Public Review):

      Summary:<br /> Smith-Magenis syndrome (SMS) is associated with obesity and is caused by deletion or mutations in one copy of the Rai1 gene which encodes a transcriptional regulator. Previous studies have shown that Bdnf gene expression is reduced in the hypothalamus of Rai1 heterozygous mice. This manuscript by Javed et al. further links SMS-associated obesity with reduced Bdnf gene expression in the PVH.

      Strengths:<br /> The authors show that deletion of the Rai1 gene in all BDNF-expressing cells or just in the PVH BDNF neurons postnatally caused obesity. Interestingly, mutant mice displayed sexual dimorphism in the cause for the obesity phenotype. Overall, the data are well presented and convincing except the data from LM22A-4.

      Weaknesses:<br /> 1. The most serious concern is about data from LM22A-4 administration experiments (Figure 5 and associated supplemental figures). A rigorous study has demonstrated that LM22A-4 does not activate TrkB (Boltaev et al., Science Signaling, 2017), which is consistent with unpublished results from many labs in the neurotrophin field. It is tricky to interpret body weight data from pharmacological studies because compounds always have some side effects, which can reduce body weight non-specifically.

      2. The resolution of all figures are poor, and thus I could not judge the quality of the micrographs.

      3. Citation of the literature is not precise. The study by An et al. (2015) shows that deletion of the Bdnf gene in the PVH leads to obesity due to increased food intake and reduced energy expenditure (not just hyperphagic obesity; Line 72). Furthermore, the study by Unger et al. (2017) carried out Bdnf deletion in the VMH and DMH using AAV-Cre and did not discuss SF1 neurons at all (Line 354). The two studies by Yang et al. (Mol Endocrinol, 2016) and Kamitakahara et al. (Mol Metab, 2015) did use SF1-Cre to delete the Bdnf gene and did not observe any obesity phenotype.

      4. Animal number is not described in many figure legends.

    1. Reviewer #3 (Public Review):

      This paper considers a challenging motor control task - the critical stability task (CST) - that can be performed equally well by humans and macaque monkeys. This task is of considerable interest since it is rich enough to potentially yield important novel insights into the neural basis of behavior in more complex tasks that point-to-point reaching. Yet it is also simple enough to allow parallel investigation in humans and monkeys, and is also easily amenable to computational modeling. The paper makes a compelling argument for the importance of this type of parallel investigation and the suitability of the CST for doing so.

      Behavior in monkeys and in human subjects suggests that behavior seems to cluster into different regimes that seem to either oscillate about the center of the screen, or drift more slowly in one direction. The authors show that these two behavioral regimes can be reliably reproduced by instructing human participants to either maintain the cursor in the center of the screen (position control objective), or keep the cursor still anywhere in the screen (velocity control objective) - as opposed to the usual 'instruction' to just not let the cursor leave the screen. A computational model based on optimal feedback control can similarly reproduce the two control regimes when the costs are varied

      Overall, this is a creative study that successfully leverages experiments in humans and computational modeling to gain insight into the nature of individual differences in behavior across monkeys (and people). The approach does work and successfully solves the core problem the authors set out to address. I do think that more comprehensive approaches might be possible that might involve, e.g. using a richer set of behavioral features to classify behavior, fitting a parametric class of control objectives rather than assuming a binary classification, and exploring the reliability of the inference process in more detail.

      In addition, the authors do fully establish that varying control objectives is the only way to obtain the different behavioral phenotypes observed. It may, for instance, be possible that some other underlying differences (e.g. the sensitivity to effort costs or the extent of signal-dependent noise) might also lead to a similar range of behaviors as varying the position versus velocity costs.

      Specific Comments:<br /> The simulations convincingly show that varying the control objective via the cost function can reproduce the different observed behavioral regimes. However, in principle, the differences in behavior among the monkeys and among the humans in Experiment 1 might not necessarily be due to difference in other aspects of the model. For instance, for a fixed cost function, differences in motor execution noise might perhaps lead the model to favor a position-like strategy or a velocity-like strategy. Or differences in the relative effort cost might alter the behavioral phenotype. Given that the narrative is about inferring control objectives, it seems important to rule out more systematically that some other factor might not potentially dictate each individual's style of performing the task. One approach to rule this out might be to try to formally fit the parameters of the model (or at least a subset of them) under a fixed cost function (e.g. velocity-based), and check whether the model might still recover the different regimes of behavior when parameters *other than the cost function* are varied.

      The approach to the classification problem is somewhat ad hoc and based on fairly simplistic, hand-picked features (RMS position and RMS velocity). I do wonder whether a more comprehensive set of behavioral features might enable a clearer separation between strategies, or might even reveal that the uninstructed subjects were doing something qualitatively different still from the instructed groups. Different control objectives ought to predict meaningfully different control policies - that is, different ways of updating hand position based on current state of the cursor and hand - e.g. the hand/cursor gain, which does clearly differ across instructed strategies. Would it be possible to distinguish control strategies more accurately based on this level of analysis, rather than based on gross task metrics? Might this point to possible experimental interventions (e.g. target jumps) that might validate the inferred objective?

      It seems that the classification problem cannot be solved perfectly, at least on a single-trial level. Although it works out that the classification can recover which participants were given which instructions, it's not clear how robust this classification is. It should be straightforward to estimate the reliability of the strategy classification by simulating participants and deriving a "confusion matrix", i.e. calculating how often e.g. data generated under a velocity-control objective gets mis-classified as following a position-control objective. It's not clear how this kind of metric relates to the decision confidence outputted by the classifier.

      The problem of inferring the control objective is framed as a dichotomy between position control and velocity control. In reality, however, it may be a continuum of possible objectives, based on the relative cost for position and velocity. How would the problem differ if the cost function is framed as estimating a parameter, rather than as a classification problem?

    1. Reviewer #3 (Public Review):

      This manuscript describes the use of scRNA-seq to decipher the cellular heterogeneity, molecular dynamics and signaling interactions during fibrocartilaginous enthesis formation. They delineate the enthesis growth and the temporal atlas from embryonic stage to postnatal stage by scRNA-seq, compared the development pattern of enthesis origins with tendon and articular cartilage, then demonstrated the cellular complexity and heterogeneity of postnatal enthesis growth and revealed the molecular dynamics and signaling networks during enthesis formation.

      This manuscript used appropriate and validated methodology in line with current state-of-the-art, and the conclusions of this paper are mostly well supported by data, more in vitro or in vivo experiments are encouraged to verify the key molecular dynamics and signaling networks revealed by scRNA-seq during enthesis formation.

      This manuscript facilitates better understand of the enthesis development, which will benefit the important field of enthesis research.

    1. Reviewer #3 (Public Review):

      The major claim from the paper is the dependence of two factors that determine the polymerization of MreB from a Gram-positive, thermophilic bacteria 1) The role of nucleotide hydrolysis in driving the polymerization. 2) Lipid bilayer as a facilitator/scaffold that is required for hydrolysis-dependent polymerization. These two conclusions are contrasting with what has been known until now for the MreB proteins that have been characterized in vitro. The experiments performed in the paper do not completely justify these claims as elaborated below.

      Major comments:

      1. No observation of filaments in the absence of lipid monolayer can also be accounted due to the higher critical concentration of polymerization for MreBGS in that condition. It is seen that all the negative staining without lipid monolayer condition has been performed at a concentration of 0.05 mg/mL. It is important to check for polymerization of the MreBGS at higher concentration ranges as well, in order to conclusively state the requirement of lipids for polymerization.

      2. The absence of filaments for the non-hydrolysable conditions in the lipid layer could also be because the filaments that might have formed are not binding to the planar lipid layer, and not necessarily because of their inability to polymerize.

      3. Given the ATPase activity measurements, it is not very convincing that ATP rather than ADP will be present in the structure. The ATP should have been hydrolysed to ADP within the structure. The structure is now suggestive that MreB is not capable of hydrolysis, which is contradictory to the ATP hydrolysis data.

    1. Reviewer #3 (Public Review):

      In this study, Ye et al investigated how a peptide that binds to the transmembrane (TM) domain of the T cell receptor (TCR) subunits affects TCR activation. The objective was to test the allosteric relaxation model of TCR activation. To this end, the authors leveraged their previously established strategy of designing TM-targeting peptides and studied how such peptide alters the TCR activation and downstream signaling cascades in Jurkat T cells. The authors found that the TM-targeting peptide inhibited phosphorylation of the TCR submits, phosphorylation of downstream signaling proteins such as ZAP70, and calcium influx in T cells. Using immunoprecipitation experiments, the authors proposed that the peptide binds into the membrane gap between CD3 and CD3 subunits in the TCR complex. The authors conclude that their data support the allosteric TCR activation model, in which allosteric changes in the TM bundle in the TCR complex determine the receptor signaling.

      The use of pH-responsive TM-targeting peptides, which the authors previously developed, is a novel aspect of this study. Those peptides can be quite powerful for understanding molecular mechanisms of receptor signaling, such as the allosteric activation model as tested in this study. The manuscript contains several interesting approaches and observations, but there are concerns about the experimental design and interpretation of the results. More importantly, the authors' primary conclusion that the allosteric changes in the TM bundles determine TCR activation is not fully supported by the data presented. For example:

      1. The authors provided confocal fluorescence images showing the colocalization of fluorescently labeled peptides and TCR subunits. Based on the data, they concluded that "PITCR is able to bind to TCR". This is misleading, because given the spatial resolution of the imaging technique, "colocalization" does not indicate binding or interaction between molecules. Because the peptide binding to the TM region is the pillar of the primary finding of this study, direct evidence supporting the peptide-TM binding or interaction is essential.<br /> 2. In calcium response experiments, the authors compared calcium influx (indicated by Indo-1 ratio) under different cell activation conditions (Figure 2). There are some concerns about how the authors interpreted the data: (1) The calcium plots from OKT3 activation in A-C panels are inconsistent. The plot in (A) showed a calcium peak after activation, which is not present in the plots shown in (B) and (C). There is no explanation or discussion on this inconsistency. (2) What is more concerning is that this prominent calcium peak in (A) was used to draw the conclusion that the designer peptide inhibitor effectively reduces calcium response. However, inconsistent with that conclusion, the calcium plots are indistinguishable for the three conditions: with PITCR (peptide inhibitor), with PITCRG41P (negative control that should not affect TCR activation), or no peptide. All three plots have similar magnetite and fluctuations. This does not support the authors' conclusion that the PITCR (peptide inhibitor) reduces calcium response in T cells.<br /> 3. Different types of T cells were used for separate measurements: E6-1 Jurkat T cells were used for calcium influx experiments, J. OT.hCD8+ Jurkat cells were used for CD69 measurements, and primary murine CD4+ T cells were used for colocalization imaging experiments. Rationales for the choices of cells in different measurements are also unclear. This is different from the common practice where different cell types are used in repeated experiments to test the generality of a finding. Here, they were used for different experiments, and findings were lumped together as "T cells", without further evidence/discussion on how translatable the findings from different cell types are.<br /> 4. The authors set out to test the model that TCR activation by pMHC occurs through allosteric changes in the TM region, but in most experiments, they activated Jurkat T cells by anti-CD3 antibody, not by antigen peptides. The anti-CD3 antibody activates TCR signaling through clustering. It is unclear whether TCR activation by anti-CD3 leads to the same allosteric changes in the TM region as activation by pMHC.

      As such, the main claim of the paper, namely that the designer peptide affects TCR signaling by disrupting the allosteric changes in the TM region, remains insufficiently supported by the data presented.

    1. Reviewer #3 (Public Review):

      Here the authors use high-parameter flow cytometry to address expression patterns of inhibitory receptors and concordant functional responses in CD8+ T cells from people living with HIV (PLWH) during early vs. long-term ART treatment in order to understand the potential evolution of exhausted T cells in HIV infection. High-dimensional bioinformatic analysis is employed to uncover different subsets of CD8+ T cells expressing TIM-3, TIGIT, PD1, LAG3, and CD39. Stimulation assays were further conducted to assess polyclonal T cell responses (superantigen) or HIV-gag-specific CD8+ T cells, and whether the responding cells displayed inhibitory receptors. Finally, inhibitory receptor blockade was used (focusing on TIGIT and TIM-3 only) to examine the potential reversal of exhaustion. The authors found that CD107a+ degranulating central memory T cells apparently were sensitive to TIGIT blockade, yielding increased responses in cells from ART-treated PLWH.

      Methods and Results Major Strengths: Sample size and data density. Longitudinal samples from long-term treated PLWH. Mechanistic studies to assess inhibitory receptor blockade.

      Methods and Results Major Weaknesses: Lack of clarity on flow cytometric analysis and statistical methodology, including correction for multiple comparisons. Clustering density in tSNE analysis is unjustified, leading to potentially spurious outcomes. Insufficient raw flow cytometry data presented on inhibitory receptor expression in the various contexts of the study to allow determination of whether the subsequent bioinformatic analysis was merited due to the very low expression of 3/5 markers examined. Unclear whether differences observed are biologically meaningful (despite statistical differences). Finally, although the longitudinal samples are a distinct strength of the study, changes over time within individuals are unfortunately not assessed.

      Aims and conclusions: The authors do find differences between the cohorts as described in the manuscript; however, the biological relevance of the findings is questionable due to an absence of direct studies on the cell populations found to be different. The use of unbiased clustering analysis is both a strength and a weakness. Specifically, the algorithm uncovers potential cell clusters that might be missed; however, the clustering program requires pre-set inputs on the expected number of clusters to be found, leading to possible irrelevant subsets being identified. The conclusions of the study are appropriately limited in scope.

      Impact: There have been numerous studies of CD8+ T cell inhibitory receptor expression and T cell exhaustion in the context of HIV infection. It is well-accepted that T-cell exhaustion is a hallmark of progressive infection. This study contributes to the current knowledge in this area specifically through the examination of very long-term ART-treated PLWH. Unfortunately, it is not clear that several of the examined inhibitory receptors could be adequately detected, limiting the interpretation of the findings. Finally, it is unclear that this study justifies the potential use of TIGIT blockade to improve T cell function given the unclear biological relevance of the differential populations of CD8+ T cells observed.

    1. Reviewer #3 (Public Review):

      Henault et al. address the important open question of whether hybridization could trigger TE mobilization. To do this they analysed MA lines derived from crosses of Saccharomyces paradoxus and Saccharomyces cerevisiae using long-read sequencing. These MA lines were already analysed in a previous publication using Illumina short-read data but the novelty of this work is the long-read sequencing data, which may reveal previously missed information. It is an interesting message of this study that hybridization between the two species did not lead to much TE activity. Due to this low activity, the authors performed an additional TE activity assay in vivo to measure transposition rates in hybrid backgrounds. The study is well written and I cannot spot any major problems. The study provides some important messages (like the influence of the genotype and mitochondrial DNA on transposition rates).

      Major comments<br /> - What I miss the most in this work is the perspective of the host defence against TEs in Saccharmoces. Based on such a mechanistic perspective, why do the authors think that hybridization could lead to a TE reactivation? For example, in Drosophila small RNAs important for the defence against a TE, are solely maternally transmitted. Hybrid offspring will thus solely have small-RNAs complementary to the TEs of the mother but not to the TEs of the father, therefore a reactivation of the paternal TEs may be expected. I was thus wondering, what is the situation in yeast. Why would we expect an upregulation of TEs? Without such a mechanistic explanation the hypothesis that TEs should be upregulated in hybrids is a bit vague, based on a hunch.

    1. Reviewer #3 (Public Review):

      In this manuscript, Gustison et al., describe the development of an automated whole-brain mapping pipeline, including the first 3D histological atlas of the prairie vole, and then use that pipeline to quantify Fos immunohistochemistry as a measure of neural activity during mating and pair bonding in male and female prairie voles. Prairie voles have become a useful animal model for examining the neural bases of social bonding due to their socially monogamous mating strategy. Prior studies have focused on identifying the role of a few neuromodulators (oxytocin, vasopressin, dopamine) acting in a limited number of brain regions. The authors use this unbiased approach to determine which areas become activated during mating, cohabitation, and pair bonding in both sexes to identify 68 brain regions clustered in seven brain-wide neuronal circuits that are activated over the course of pair bonding. This is an important study because i) it generates a valuable tool and analysis pipeline for other investigators in the prairie vole research community and ii) it highlights the potential involvement of many brain regions in regulating sexual behavior, social engagement, and pair bonding that have not been previously investigated.

      Strengths of the study include the unbiased assessment of neural activity using the automated whole brain activity mapped onto the 3D histological atlas. The design of the behavioral aspect of the study is also a strength. Brains were collected at baseline and 2.5, 6 and 22 hrs after cohabitation with either a sibling or opposite-sex partner. These times were strategically chosen to correspond to milestones in pair bond development. Behavior was also quantified during epochs over the 22 hr period providing useful information on the progression of behaviors (e.g. mating) during pair bonding and relating Fos activation to specific behaviors (e.g. sex vs bonding). The sibling co-housed group provided an important control, enabling the identification of areas specifically activated by sex and bond formation. The analyses of the data were rigorous, resulting in convincing conclusions. While there was nothing particularly surprising in terms of the structures that were identified to be active during the mating and cohabitation, the statistical analysis revealed interesting relationships in terms of interactions of the various clusters, and also some level of synchrony in brain activation between partners. Furthermore, ejaculation was found to be the strongest predictor of Fos activation in both males and females. The sex differences identified in the study were subtle and less than the authors expected, which is interesting.

      While the study provides a potentially useful tool and approach that may be of general use to the prairie vole community and identifies in an anatomically precise manner areas that may be important for mating or pair bond formation, there are some weaknesses as well. The study is largely descriptive. It is impossible to determine whether the activated areas are simply involved in sex or in the pair bond process itself. In other words, the authors did not use the Fos data to inform functional testing of circuits in pair bonding or mating behaviors. However, that is likely beyond the scope of this paper in which the goal was more to describe the automated, unbiased approach. This weakness is offset by the value of the comprehensive and detailed analysis of the Fos activation data providing temporal and precise anatomical relationships between brain clusters and in relation to behavior. The manuscript concludes with some speculative interpretations of the data, but these speculations may be valuable for guiding future investigations.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The study by Karaś et al. reveals how multi-protein systems can evolve into single-protein equivalents, shedding light on the molecular events enabling gene loss during evolution. This work is valuable for researchers in evolutionary fields and offers potential applications in protein and organism engineering. While the findings lack broader appeal and societal implications, the evidence presented supports the proposed molecular mechanism. Using computational methods and biochemical analysis, the authors traced the evolutionary simplification of bacterial small heat shock proteins, linking specific mutations to functional changes. The study's strength lies in its vertical approach, identifying functional residues, but it does not introduce new techniques, limiting its novelty and significance.

      Strengths:<br /> 1) Experimental Approach<br /> The research question was clearly outlined and the author's approach to answering it was systematic. In particular, their model system was highly suitable to address the research question. The authors employed appropriate experimental and computational techniques, and their 'vertical approach' was beneficial in that it allowed them to discover functional residues in the sHsp system which may not have been possible otherwise. Overall, their approach to this study was solid.

      2) Reproducibility<br /> The results were presented well. The number of experimental repeats was suitable, as well as their analysis of the data. The values for standard deviation were reasonable, and their results using the alternative ancestors for the substrate aggregation assays helped support the robustness of their observations.

      Weaknesses:<br /> During the mutational experiments, the authors examined seven potential substitutions identified through ASR and measured their impact on protein disaggregation activity. Positions 66 and 109 exhibited a significant decrease in luciferase refolding stimulation. To explore the combined effect of these mutations, the authors created the double mutant AncA0. However, predicting the most impactful combination of mutations due to epistatic effects is challenging. A more effective strategy would be to test various combinations of mutations to identify the double mutant with the greatest decrease in luciferase refolding stimulation and/or alternatively perform a co-evolutionary study to try to understand any epistatic effects between the mutations.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This study aimed to understand the neural correlates of memory recall over short (1-day) and long (14-days) intervals in children (5-7 years old) relative to young adults. The results show that children recall less than young adults and that this is accompanied by less activation (relative to young adults) in brain networks associated with memory retrieval.

      Strengths:<br /> This paper is one of few investigating long-term memory (multiple days) in a developmental population, an important gap in the field. Also, the authors apply a representational similarity analysis to understand how specific memories evolve over time. This analysis shows how the specificity of memories decreases over time in children relative to adults. This is an interesting finding.

      Weaknesses:<br /> Overall, these results are consistent with what we already know: recall is worse in children relative to adults (e.g., Cycowicz et al., 2001) and children activate memory retrieval networks to a lesser extent than adults (Bauer et al, 2017).

      It seems that the reduced activation in memory recall networks is likely associated with less depth of memory encoding in children due to inattentiveness, reduced motivation, and documented differences in memory strategies. In regards to this, there was consideration of IQ, sex, and handedness but these were not included as covariates as they were not significant although I note p<.16 suggests there was some level of association nonetheless. Also, IQ is measured differently for the children and adults so it's not clear these can be directly contrasted. The authors suggest the instructed elaborative encoding strategy is effective for children and adults but the reference in support of this (Craik & Tulving, 1975) does not seem to support this point.

    1. Reviewer #3 (Public Review):

      Overall, this is a strong manuscript that uses multiple current techniques to provide specific mechanistic insight into prior discoveries of the contributions of the Bcl11b transcription factor to mossy fiber synapses of dentate gyrus granule cells. The authors employ an adult deletion of Bcl11b via Tamoxifen-inducible Cre and use immunohistochemical, electron microscopy, and electrophysiological studies of synaptic plasticity, together with viral rescue of C1ql2, a direct transcriptional target of Bcl11b or Nrxn3, to construct a molecular cascade downstream of Bcl11b for DG mossy fiber synapse development. They find that C1ql2 re-expression in Bcl11b cKOs can rescue the synaptic vesicle docking phenotype and the impairments in MF-LTP of these mutants. They also show that C1ql2 knockdown in DG neurons can phenocopy the vesicle docking and plasticity phenotypes of the Bcl11b cKO. They also use artificial synapse formation assays to suggest that C1ql2 functions together with a specific Nrxn3 splice isoform in mediating MF axon development, extending these data with a C1ql2-K262E mutant that purports to specifically disrupt interactions with Nrxn3. All of the molecules involved in this cascade are disease-associated and this study provides an excellent blueprint for uncovering downstream mediators of transcription factor disruption. Together this makes this work of great interest to the field. Strengths are the sophisticated use of viral replacement and multi-level phenotypic analysis while weaknesses include the linkage of C1ql2 with a specific Nrxn3 splice variant in mediating these effects.

      Here is an appraisal of the main claims and conclusions:

      1. C1ql2 is a downstream target of Bcl11b which mediates the synaptic vesicle recruitment and synaptic plasticity phenotypes seen in these cKOs. This is supported by the clear rescue phenotypes of synapse anatomy (Fig.2) and MF synaptic plasticity (Fig.3). One weakness here is the absence of a control assessing over-expression phenotypes of C1ql2. It's clear from Fig.1D that viral rescue is often greater than WT expression (totally expected). In the case where you are trying to suppress a LoF phenotype, it is important to make sure that enhanced expression of C1ql2 in a WT background does not cause your rescue phenotype. A strong overexpression phenotype in WT would weaken the claim that C1ql2 is the main mediator of the Bcl11b phenotype for MF synapse phenotypes.

      2. Knockdown of C1ql2 via 4 shRNAs is sufficient to produce the synaptic vesicle recruitment and MF-LTP phenotypes. This is supported by clear effects in the shRNA-C1ql2 groups as compared to nonsense-EGFP controls. One concern (particularly given the use of 4 distinct shRNAs) is the potential for off-target effects, which is best controlled for by a rescue experiment with RNA-insensitive C1ql2 cDNA as opposed to nonsense sequences, which may not elicit the same off-target effects.

      3. C1ql2 interacts with Nrxn3(25b+) to facilitate MF terminal SV clustering. This claim is theoretically supported by the HEK cell artificial synapse formation assay (Fig.5), the inability of the K262-C1ql2 mutation to rescue the Bcl11b phenotype (Fig.6), and the altered localization of C1ql2 in the Nrxn1-3 deletion mice (Fig.7). Each of these lines of experimental evidence has caveats that should be acknowledged and addressed. Given the hypothesis that C1ql2 and Nrxn3b(25b) are expressed in DG neurons and work together, the heterologous co-culture experiment seems strange. Up till now, the authors are looking at pre-synaptic function of C1ql2 since they are re-expressing it in DGNs. The phenotypes they are seeing are also pre-synaptic and/or consistent with pre-synaptic dysfunction. In Fig.5, they are testing whether C1ql2 can induce pre-synaptic differentiation in trans, i.e. theoretically being released from the 293 cells "post-synaptically". But the post-synaptic ligands (Nlgn1 and and GluKs) are not present in the 293 cells, so a heterologous synapse assay doesn't really make sense here. The effect that the authors are seeing likely reflects the fact that C1ql2 and Nrxn3 do bind to each other, so C1ql2 is acting as an artificial post-synaptic ligand, in that it can cluster Nrxn3 which in turn clusters synaptic vesicles. But this does not test the model that the authors propose (i.e. C1ql2 and Nrxn3 are both expressed in MF terminals). Perhaps a heterologous assay where GluK2 is put into HEK cells and the C1ql2 and Nrxn3 are simultaneously or individually manipulated in DG neurons?

      4. K262-C1ql2 mutation blocks the normal rescue through a Nrxn3(25b) mechanism (Fig.6). The strength of this experiment rests upon the specificity of this mutation for disrupting Nrxn3b binding (presynaptic) as opposed to any of the known postsynaptic C1ql2 ligands such as GluK2. While this is not relevant for interpreting the heterologous assay (Fig.5), it is relevant for the in vivo phenotypes in Fig.6. Similar approaches as employed in this paper can test whether binding to other known postsynaptic targets is altered by this point mutation.

      5. Altered localization of C1ql2 in Nrxn1-3 cKOs. These data are presented to suggest that Nrx3(25b) is important for localizing C1ql2 to the SL of CA3. Weaknesses of this data include both the lack of Nrxn specificity in the triple a/b KOs as well as the profound effects of Nrxn LoF on the total levels of C1ql2 protein. Some measure that isn't biased by this large difference in C1ql2 levels should be attempted (something like in Fig.1F).

    1. Reviewer #3 (Public Review):

      This study demonstrates that from fish to mammals CIB2/3 is required for hearing, revealing the high degree of conservation of CIB2/3 function in vertebrate sensory hair cells. The modeling data reveal how CIB2/3 may affect the conductance of the TMC1/2 channels that mediate mechanotransduction, which is the process of converting mechanical energy into an electrical signal in sensory receptors. This work will likely impact future studies of how mechanotransduction varies in different hair cell types.

      One caveat is that the experiments with the mouse mutants are confirmatory in nature with regard to a previous study by Wang et al., and the authors use lower resolution tools in terms of function and morphological changes. Another is that the modeling data is not supported by electrophysiological experiments, however, as mentioned above, future experiments may address this weakness.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Using ex vivo electrophysiology and morphological analysis, Boi et al. investigate the electrophysiological and morphological properties of serotonergic and dopaminergic subpopulations in the dorsal raphe nucleus (DRN). They performed labor-intensive and rigorous electrophysiology with posthoc immunohistochemistry and neuronal reconstruction to delineate the two major cell classes in the DRN: DRN-DA and DRN-5HT, named according to their primary neurotransmitter machinery. They find that the dopaminergic (DRN-DA) and serotonergic (DRN-5HT) neurons are electrophysiologically and morphologically distinct, and are altered following striatal injection of the toxin 6-OHDA. However, these alterations were largely prevented in DRN-5HT neurons by pre-treatment with desipramine. These findings suggest an important interplay between catecholaminergic systems in healthy and parkinsonian conditions, as well as a relationship between neuronal structure and function.

      Strengths:<br /> A large, well-validated dataset that will be a resource for others.<br /> Complementary electrophysiological and anatomical characterizations.<br /> Conclusions are justified by the data.<br /> Relevant for basic scientists interested in DRN cell types and physiology.<br /> Relevant for those interested in serotonin and/or DRN neurons in Parkinson's Disease.

      Weaknesses:<br /> Given the scope of the author's questions and hypotheses, I did not identify any major weaknesses.

    1. Reviewer #3 (Public Review):

      Ghasemahmad et al. examined behavioral and neurochemical responses of male and female mice to vocalizations associated with mating and restraint. The authors made two significant and exciting discoveries. They revealed that the affective content of vocalizations modulated both behavioral responses and the release of acetylcholine (ACh) and dopamine (DA) but not serotonin (5-HIAA) in the basolateral amygdala (BLA) of male and female mice. Moreover, the results show sex-based differences in behavioral responses to vocalizations associated with mating. The authors conclude that behavior and neurochemical responses in male and female mice are experience-dependent and are altered by vocalizations associated with restraint and mating. The findings suggest that ACh and DA release may shape behavioral responses to context-dependent vocalizations. The study has the potential to significantly advance our understanding of how neuromodulators provide internal-state signals to the BLA while an animal listens to social vocalizations; however, multiple concerns must be addressed to substantiate their conclusions.

      Major concerns:

      1. The authors normalized all neurochemical data to the background level obtained from a single pre-stimulus sample immediately preceding playback. The percentage change from the background level was calculated based on a formula, and the underlying concentrations were not reported. The authors should report the sample and background concentrations to make the results and analyses more transparent. The authors stated that NE and 5-HT had low recovery from the mouse brain and hence could not be tracked in the experiment. The authors could be more specific here by relating the concentrations to ACh, DA, and 5-HIAA included in the analyses.

      2. For the EXP group, the authors stated that each animal underwent 90-min sessions on two consecutive days that provided mating and restraint experiences. Did the authors record mating or copulation during these experiments? If yes, what was the frequency of copulation? What other behaviors were recorded during these experiences? Did the experiment encompass other courtship behaviors along with mating experiences? Was the female mouse in estrus during the experience sessions?

      3. For the mating playback, the authors stated that the mating stimulus blocks contained five exemplars of vocal sequences emitted during mating interactions. The authors should clarify whether the vocal sequences were emitted while animals were mating/copulating or when the male and female mice were inside the test box. If the latter was the case, it might be better to call the playback "courtship playback" instead of "mating playback".

      4. Since most differences that the authors reported in Figure 3 were observed in Stim 1 and not in Stim 2, it might be better to perform a temporal analysis - looking at behaviors and neurochemicals over time instead of dividing them into two 10-minute bins. The temporal analysis will provide a more accurate representation of changes in behavior and neurochemicals over time.

      5. In Figures 2 and 3, the authors show the correlation between Flinching behavior and ACh concentration. The authors should report correlations between concentrations of all neurochemicals (not just ACh) and all behaviors recorded (not just Flinching), even if they are insignificant. The analyses performed for the stim 1 data should also be performed on the stim 2 data. Reporting these findings would benefit the field.

      6. The mice used in the study were between p90 - p180. Although CBA/CaJ mice display normal hearing, sexual behaviors, and social behaviors for at least 1 year (Ohlemiller, Dahl, and Gagnon, JARO 11: 605-623, 2010), the age of the mice covers a range of 90 days. It would strengthen the authors' argument that the affective content of vocalizations modulated both behavioral responses and the release of acetylcholine (ACh) and dopamine (DA) but not serotonin (5-HIAA) in the basolateral amygdala (BLA) of male and female mice if there were no correlations between the magnitude of the neural responses and age.

      7. The authors reported neurochemical levels estimated as the animals listened to the sounds played back. What about the sustained effects of changes in neurochemicals? Are there any potential long-term effects of social vocalizations on behavior and neurochemical levels? The authors might consider discussing long-term effects.

      8. Histology from a single recording was shown in supplementary figure 1. It would benefit the readers if additional histology was shown for all the animals, not just the colored schematics summarizing the recording probe locations. Further explanation of the track location is also needed to help the readers. Make it clear for the readers which dextran-fluorescein labeling image is associated with which track in the schematic.

      9. The authors did not control for the sounds being played back with a speaker. This control may be necessary since the effects are more pronounced in Stim 1 than in Stim 2. Playing white noise rather than restraint or courtship vocalizations would be an excellent control. However, the authors could perform a permutation analysis and computationally break the relationship between what sound is playing and the neurochemical data. This control would allow the authors to show that the actual neurochemical levels are above or below chance.

      10. The authors indicated that each animal's post-vocalization session was also recorded. No data in the manuscript related to the post-vocalization playback period was included. This omission was a missed opportunity to show that the neurochemical levels returned to baseline, and the results were not dependent on the normalization process described in major concern #1. The data should be included in the manuscript and analyzed. It would add further support for the model described in Figure 6.

      11. The authors could use a predictive model, such as a binary classifier trained on the CSF sampling data, to predict the type of vocalizations played back. The predictive model could support the conclusions and provide additional support for the model in Figure 6.

    1. Reviewer #3 (Public Review):

      Using the zebrafish model, this paper by Kraus A. et al., described the anti-virus response in the Olfactory bulb (OB) neurons and microglia. This paper used the behavioral test, neuron calcium imaging, and single-cell transcriptomic analysis. Importantly, this paper discovered that following IHNV infection, the OB neuron increased Pacap expression, which likely protects the neuron cells and mediates the anti-viral defense response. Overall, the findings presented in this paper are quite interesting.

      Major strength:<br /> (1) The author demonstrated for the first time that zebrafish OSN neurons sense the IHNV viruses and transmit the viral signal to OB neurons. The zebrafish can be used as a new system to investigate the viral-neuron interaction and understand the mechanisms of how the neurons in the CNS to viral infection through the peripheral chemosensory system.

      (2) This paper generated the first zebrafish OB sc-RNA sequencing data. The sc-RNA sequencing data generated in this paper will also help other zebrafish researchers who study the OB neurons.

      Major weakness:<br /> The experiment results presented in this paper are not well-integrated. For example, it is unclear how the behavioral phenotype is connected to the neuronal calcium phenotype. It is also unclear how the behavioral or neuronal calcium imaging results is connected to the scRNA sequencing result.

    1. Reviewer #3 (Public Review):

      This manuscript aims to exploit experimental measurements of the extracellular voltages produced by colliding action potentials to adjust a simplified model of action potential propagation that is then used to predict the extracellular fields at axon terminals. The overall rationale is that when solving the cable equation (which forms the substrate for models of action potential propagation in axons), the solution for a cable with a closed end can be obtained by a technique of superposition: a spatially reflected solution is added to that for an infinite cable and this ensures by symmetry that no axial current flows at the closed boundary. By this method, the authors calculate the expected extracellular fields for axon terminals in different situations. These fields are of potential interest because, according to the authors, their magnitude can be larger than that of a propagating action potential and may be involved in ephaptic signalling. The authors perform direct measurements of colliding action potentials, in the earthworm giant axon, to parameterise and test their model.

      Although simplified models can be useful and the trick of exploiting the collision condition is interesting, I believe there are several significant problems with the rationale, presentation, and application, such that the validity and potential utility of the approach is not established.

      Simplified model vs. Hogdkin and Huxley<br /> The authors employ a simplified model that incorporates a two-state membrane (in essence resting and excited states) and adds a recovery mechanism. This generates a propagating wave of excitation and key observables such as propagation speed and action potential width (in space) can be adjusted using a small number of parameters. However, even if a Hodgkin-Huxley model does contain a much larger number of parameters that may be less easy to adjust directly, the basic formalism is known to be accurate and typical modifications of the kinetic parameters are very well understood, even if no direct characterisations already exist or cannot be obtained. I am therefore unconvinced by the utility of abandoning the Hodgkin-Huxley version.

      In several places in the manuscript, the simplified model fits the data well whereas the Hodgkin-Huxley model deviates strongly (e.g. Fig. 3CD). This is unsatisfying because it seems unlikely that the phenomenon could not be modelled accurately using the HH formulation. If the authors really wish to assert that it is "not suitable to predict the effects caused by AP [collision]" (p9) they need to provide a good deal more analysis to establish the mechanism of failure.

      (In)applicability of the superposition principle<br /> The reflecting boundary at the terminal is implemented using the symmetry of the collision of action potentials. However, at a closed cable there is no reflecting boundary in the extracellular space and this implied assumption is particularly inappropriate where the extracellular field is one objective of the modelling, as here. I believe this assumption is not problematic for the calculation of the intracellular voltage, because extracellular voltage gradients can usually be neglected, but the authors need to explain how the issue was dealt with for the calculation of the extracellular fields of terminals. I assume they were calculated from the membrane currents of one-half of the collision solution, but this does not seem to be explained. It might be worth showing a spatial profile of the calculated field.

      Missing demonstrations<br /> Central analytical results are stated rather brusquely, notably equations (3) and (4) and the relation between them. These merit an expanded explanation at the least. A better explanation of the need for the collision measurements in parameterising the models should also be provided.

      Adjusted parameters<br /> I am uncomfortable that the parameters adjusted to fit the model are the membrane capacitance and intracellular resistance. These have a physical reality and could easily be measured or estimated quite accurately. With a variation of more than 20-fold reported between the different models in Appendix 2 we can be sure that some of the models are based upon quite unrealistic physical assumptions, which in turn undermines confidence in their generality.

      p8 the values of both the extracellular (100 Ohm m) and intracellular resistivity (1 Ohm m) appear to be in error, especially the former.

      (In)applicability to axon terminals<br /> The rationale of the application of the collision formalism to axon terminals is somewhat undermined by the fact that they tend not to be excitable. There is experimental evidence for this in the Calyx of Held and the cerebellar pinceau. The solution found via collision is therefore not directly applicable in these cases.

      Comparison with experimental data<br /> More effort should be made to compare the modelling with the extracellular terminal fields that have been reported in the literature.

      Choice of term "annihilation"<br /> The term annihilation does not seem wholly appropriate to me. The dictionary definitions are something along the lines of complete destruction by an external force or mutual destruction, for example of an electron and a positron. I don't think either applies exactly here. I suggest retaining the notion of collision which is well understood in this context.

    1. Reviewer #3 (Public Review):

      The authors utilize chimpanzee-human hybrid cell lines to assess cis-regulatory evolution. These hybrid cell lines offer a well-controlled environment, enabling clear differentiation between cis-regulatory effects and environmental or other trans effects.<br /> In their research, Wang et al. expand the range of chimpanzee-human hybrid cell lines to encompass six new developmental cell types derived from all three germ layers. This expansion allows them to discern cell type-specific cis-regulatory changes between species from more pleiotropic ones. Although the study investigates only two iPSC clones, the RNA- and ATAC-seq data produced for this paper is a valuable resource.

      The authors begin their analysis by examining the relationship between allele-specific expression (ASE) as a measure of species divergence and cell type specificity. They find that cell-type-specific genes exhibit more divergent expression. By integrating this data with measures of constraint within human populations, the authors conclude that the increased divergence of tissue-specific genes is, at least in part, attributable to positive selection. A similar pattern emerges when assessing allele-specific chromatin accessibility (ASCA) as a measure of divergence of cis-regulatory elements (CREs) in the same cell lines.

      By correlating these two measures, the authors identify 95 CRE-gene pairs where tissue-specific ASE aligns with tissue-specific ASCA. Among these pairs, the authors select two genes of interest for further investigation. Notably, the authors employ an intriguing machine-learning approach in which they compare the inferred chromatin state of the human sequence with that of the chimpanzee sequence to pinpoint putatively causal variants.

      Overall, this study delves into the examination of gene expression and chromatin accessibility within hybrid cell lines, showcasing how this data can be leveraged to identify potential causal sequence differences underlying between-species expression changes.

      I have three major concerns regarding this study:

      1. The only evidence that the cells are indeed differentiated in the right direction is the expression of one prominent marker gene per cell type. Especially for the comparison of conservation between the differentiated cell types, it would be beneficial to describe the cell type diversity and the differentiation success in more detail.

      2. Check for a potential confounding effect of sequence similarity on the power to detect ASE or ASCA.

      3. In the last part the authors showcase 2 examples for which the log2 fold changes in chromatin state scores as inferred by the machine learning model Sei are used. This is an interesting and creative approach, however, more sanity checks on this application are necessary.

    1. Reviewer #3 (Public Review):

      The manuscript by Bimai et al describes a structural and functional characterization of an anaerobic ribonucleotide reductase (RNR) enzyme from the human microbe, P. copri. More specifically, the authors aimed to characterize the mechanism by how (d)ATP modulates nucleotide reduction in this anaerobic RNR, using a combination of enzyme kinetics, binding thermodynamics, and cryo-EM structural determination. One of the principal findings of this paper is the ordering of a NxN 'flap' in the presence of ATP that promotes RNR catalysis and the disordering of both this flap and the glycyl radical domain (GRD) when the inhibitory effector, dATP, binds. The latter is correlated with a loss of substrate binding, which is the likely mechanism for dATP inhibition. It is important to note that the GRD is remote (>30 Ang) from the binding site of the dATP molecule, suggesting long-range communication of the structural (dis)ordering. The authors also present evidence for a shift in oligomerization in the presence of dATP. The work does provide evidence for new insights/views into the subtle differences of nucleotide modulation (allostery) of RNR through long-range interactions.

      The strengths of the work are the impressive, in-depth structural analysis of the various regulated forms of PcRNR by (d)ATP using cryo-EM. The authors present seven different models in total, with striking differences in oligomerization and (dis)ordering of select structural features, including the GRD that is integral to catalysis. The authors present several, complementary biochemical experiments (ITC, MST, EPR, kinetics) aimed at resolving the binding and regulatory mechanism of the enzyme by various nucleotides. The authors present a good breadth of the literature in which the focus of allosteric regulation of RNRs has been on the aerobic orthologues.

      Given the resolution of some of the structures in the remote regions that appear to be of importance, the rigor of the work could have been improved by complementing this experimental studies with molecular dynamics (MD) simulations to reveal the dynamics of the GRD and loops/flaps at the active site. The biochemical data supporting the loss of substrate binding with dATP association is compelling, but the binding studies of the (d)ATP regulatory molecules are not; the authors noted less-than-unity binding stoichiometries for the effectors. Also, the work would benefit from additional support for oligomerization changes using an additional biochemical/biophysical approach.

      Overall, the authors have mostly achieved their overall aims of the manuscript. With focused modifications, including additional control experiments, the manuscript should be a welcomed addition to the RNR field.

    1. Reviewer #3 (Public Review):

      Light harvesting (LH) associated with photosynthesis, photoprotection, and the formation of useful pigment-protein complexes are all major functions of carotenoid (Car) pigments. However, the connections between quinone exchange, prokaryotic reaction center (RC)-LH complex formation, and Car depletion in the LH are not entirely understood. This article examined the native RC-LH (nRC-LH) and Car-depleted RC-LH (dRC-LH) complexes in the filamentous anoxygenic phototroph Roseiflexus castenholzii. The authors show with a high degree of detail using crystallography and Cryo-EM complemented with biophysical techniques important results of a new conformation of a LH. They could assigned the amino acid sequences of subunit X and two hypothetical proteins, Y and Z, that formed the quinone channel and maintained the RC-LH connections. This study identifies a new architectural basis for the regulation of bacterial RC-LH complex and quinone exchange by Cars assembly, which is distinct from the well known purple bacteria. These findings represent a significant advancement of diversity and development of bacterial photosynthetic machinery.

    1. Reviewer #3 (Public Review):

      The present paper uncovers evidence of the coordination of two brain areas involved in a two-step learning process in birdsong plasticity. Indeed, songbirds can modify their song based on an error-correction mechanism that involves a motor bias expressed by a basal ganglia-thalamo-cortical loop. After training (hundreds or a few thousands of renditions), the motor bias necessary to correct vocal errors becomes independent of the BG-thalamo-cortical loop and is transferred into the long-term motor program stored in a primary motor network. Current understanding claims that the output nucleus of the BG-thalamo-cortical loop, LMAN, trains the primary motor networks (in area RA) to drive the learning transfer. However, no clear evidence for such entrainment was available until now. In the present study, the authors elegantly show that correlations in trial-by-trial fluctuations in the premotor activity in LMAN and RA are present spontaneously (in multi-unit electrophysiological recordings) and are increased during a lab-induced plasticity protocol. The change in correlation is specific to the syllable that undergoes plasticity. Moreover, perturbing LMAN activity through low-intensity and spatially broad electrical stimulation of LMAN during the premotor window prevents behavioral adaptation. Altogether, their results convincingly show that the entrainment of RA neural populations by LMAN neurons is present during baseline, strengthened during plasticity in a syllable-specific manner, and necessary for song plasticity.

      This study thus provides important validation of the current model for the 2-step learning process underlying song learning and plasticity, where a BG-thalamo-cortical network drive motor bias to correct vocal errors based on a reinforcement learning mechanism, while the song motor engram is updated slowly through the adjustment of song-related activity in the primary motor areas. Beyond the songbird field, these results will be of importance to all studying sensorimotor learning and adaptation, and more broadly the formation of memory through a two-step learning process.

      The authors present the context for their hypothesis clearly, state their hypothesis precisely, and conduct a thorough investigation of the posed question. The conclusions are well supported by data.

      In particular, the statistical evaluation of the covariance of LMAN and RA activity in the premotor window is adequate and the interpretation of the results is therefore well backed by their analysis. The methods used here to assess covariation between LMAN and RA activity during singing set the ground for future studies looking at the coordination between brain areas during behavior.

    1. Reviewer #3 (Public Review):

      Jie Yang et al. investigated the transgenerational behavioral modification of a high-sugar diet (HSD) in Drosophila and revealed the underlying molecular and neural mechanisms. It has been reported that HSD exposure decreases sweet sensitivity in gustatory sensory neurons, resulting in reduced sugar response (Proboscis extension reflex, PER) in flies. The current study reports that this effect can be transmitted across generations through the maternal germline. Furthermore, the authors show that H3K27me3 modification is enhanced in the first-generation progenies of HSD-treated flies (F1), and genetical or pharmacological disruption of PCL-PRC2 complex blocks the behavioral change and restores the sweet sensitivity in the Gr5a+ sweet sensory neurons. The authors further analyze the differentially expressed genes in the F1 flies. Among H3K27me3 hypermethylated regions, they focus on homeobox genes and find a transcription factor Caudal (Cad), which shows decreased expression in the F1 flies. Knocking down Cad in Gr5a+ neurons results in decreased PER response to sucrose.

      Transgenerational changes in physiology and metabolism have been broadly studied, while inherited changes at the behavioral level are much less investigated. This work provides convincing evidence for transgenerational modification of feeding behavior and digs out the underlying molecular and neural mechanisms. However, there still are several concerns that need to be clarified.

      1) The epigenetic regulator PCR2 has been found to play an essential role in the 7d-HSD-induced modification of the PER response. In this study, it's important to clarify for the transgenerational change, whether epigenetic modification is required in the flies exposed to HSD (F0), the progenies (F1), or both. It would be very helpful for better interpretation if the procedures of HSD treatment in RNAi experiments and the drug treatments were stated in more detail. In addition, the F0 flies should be examined as the control.<br /> 2) The information on the drug treatment period is also missing for imaging experiments (Fig.4C). Moreover, the response curve is very different from those recorded in the same neurons in previous studies. What's the reason? Please also provide a representative image showing which part of the Gr5a neurons is recorded.<br /> 3) It's unclear whether the decreased Cad expression upon HSD treatment specifically occurred in Gr5a+ neurons or a lot of cells. If the change in gene expression is significant in the qPCR test, it should occur in a large number of cells, most likely including different types of gustatory sensory neurons. If lower cad expression led to lower neural response and thereby lower behavioral response, how to specifically decrease the PER response to sucrose but not to other tastes? --whether HSD-induced desensitization is specific to sucrose in the offspring?<br /> 4) In Fig.2D, data are sorted for genomic regions showing an up-regulated modification of H3K27me. It's unclear whether similar sorting was performed in panel C. This needs to be clarified.

    1. Reviewer #3 (Public Review):

      The authors aim to gain a more comprehensive understanding of the role of FIKK4.1 in parasite biology. To achieve this, they used a novel approach termed PerTurboID that allows them to map changes in the conformational and interaction environment of proteins that are in close proximity of the tagged gene of interest. Here the authors focus on two proteins KHARP and PTP4 who are known targets of FIKK4.1 and assessed the impact of the genetic disruption of the kinase on the interaction environment of these proteins. The experimental strategy identifies a range of changes that indicate that changes go beyond the direct targets of FIKK4.1 and therefore creates new insights of interaction networks that are regulated by this specific kinase.

      The strength of this approach is not only that it can identify new interaction networks relating to FIKK4.1 but that serves as a proof of concept that can be used for a wide range of applications in parasite biology. At the same time as the authors have noted themselves the extent of the biotin pulse is important and most likely needs to be calibrated for every specific application. In addition, this approach is only suitable for proteins that can be tagged without impacting their function.

      The authors present very convincing evidence that the PerTurboID is suitable to study FIKK kinases in parasites and have used this to shed new light on how FIKK4.1 is involved directly or indirectly in a wider range of biological activities in the parasite.

      The main impact of this work is that it provides a wider understanding of the relationship between a specific kinase and structural as well as biological consequences. The methodology is also very powerful and will have a wide range of applications.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors present a biophysically detailed model of the basolateral amygdala (BLA) that is capable of fear learning through a depression-dominated spike-timing dependent plasticity (STDP) mechanism. Furthermore, the model also replicates experimentally measured rhythmic signatures of baseline amygdala activity and changes of these signatures during and after fear learning. The authors furthermore carefully dissect the contributions of the three different types of interneurons (parvalbumin-positive (PV), somatostatin-positive (SOM), and vaso-active peptide-positive (VIP) interneurons) in regulating network activity to allow for the association between conditioned and unconditioned stimuli.

      Strengths:<br /> The biophysical detail of the model allows the authors to go beyond a simple modelling of the fear learning process in terms of spiking activity of the principal cells and to link the associative learning to several oscillatory rhythms in the BLA, namely high and low theta and gamma rhythms. This provides an understanding of the generation and function of these rhythms in the baseline amygdala circuit as well as of the functional consequences of alterations of these rhythms during and after the fear learning process. This offers a new and uniquely detailed insight into the mechanistic level.

      Weaknesses:<br /> The main weakness of the approach is the lack of experimental data from the BLA to constrain the biophysical models. This forces the authors to use models based on other brain regions and leaves open the question of whether the model really faithfully represents the basolateral amygdala circuitry. Furthermore, the authors chose to use model neurons without a representation of the morphology. However, given that PV and SOM cells are known to preferentially target different parts of pyramidal cells and given that the model relies on a strong inhibition form SOM to silence pyramidal cells, the question arises whether SOM inhibition at the apical dendrite in a model representing pyramidal cell morphology would still be sufficient to provide enough inhibition to silence pyramidal firing. Lastly, the fear learning relies on the presentation of the unconditioned stimulus over a long period of time (40 seconds). The authors justify this long-lasting input as reflecting not only the stimulus itself but as a memory of the US that is present over this extended time period. However, the experimental evidence for this presented in the paper is only very weak.

      The authors achieved the aim of constructing a biophysically detailed model of the BLA not only capable of fear learning but also showing spectral signatures seen in vivo. The presented results support the conclusions with the exception of a potential alternative circuit mechanism demonstrating fear learning based on a classical Hebbian (i.e. non-depression-dominated) plasticity rule, which would not require the intricate interplay between the inhibitory interneurons. This alternative circuit is mentioned but a more detailed comparison between it and the proposed circuitry is warranted.

      The presented model demonstrates how the complex interplay between different types of interneurons is able to precisely control neural activity to enable learning to happen. Furthermore, the presented work shows this interactive control of activity by the interneurons gives rise to specific oscillatory signatures. Since the three types of interneurons considered here are found throughout the brain, the findings will likely have a big impact on other studies of interneuron function and learning in general.

    1. Reviewer #3 (Public Review):

      In the present study, Iversen et al investigate the effect of middle cerebral artery occlusion (MCAo) on penumbral capillary blood flow in rat brains. Using Laser Speckle Contrast imaging and two-photon microscopy, they found that during MCAo the red blood cell dynamics become chaotic in penumbral capillaries despite an apparent constant residual blood flow. They further conclude that these disturbances would cause decreases in steady-state cerebral metabolic rate of oxygen (CMRO2), and tissue oxygen tension (PtO2) using a post hoc biophysical model for oxygen extraction. Interestingly, the authors present data excluding a role for pericytes in altering capillary blood flow. From this observation, the study raises potentially interesting questions on the origin of the disturbance but fails to address them by not investigating the upstream arteriolar behavior. Increased vasomotion, palpability, or intermittent vasospasm may trigger capillary blood flow disturbances without necessarily impacting residual blood flow resting as measured by Laser Speckle Contrast imaging. Furthermore, the data are very poorly presented, here are some examples:<br /> Fig 1b is incorrectly labeled and, assuming this is the "first" 1f panel, the scale bar shows 500 µm while the legend says 200.<br /> Fig 1d is poorly convincing as pink or grey, as detailed in the legend, are not visible. It also looks like there is a second core and penumbra on the more rostral left part of the brain.<br /> Line 219 time is misspelled.<br /> Fig 2, what does "percent of alle capillaries" on the y axes mean? 2d is presented before 2c in the text.<br /> What is the rationale for presenting the statistics from Fig 3 in Fig 4? Panels 4e and 4f are not discussed. The reference in the Fig 4 legend is not formatted.<br /> Fig 6 is presented before Fig 5.<br /> The overall lack of a central hypothesis combined with the aforementioned weaknesses prevents the study from achieving its proposed goal "to characterize microvascular flow disturbances in penumbral tissue in a rat model of acute ischemic stroke".

    1. Reviewer #3 (Public Review):

      Summary:<br /> Bidirectional transsynaptic signaling via cell adhesion molecules and cell surface receptors contributes to the remarkable specificity of synaptic connectivity in the brain. Zaman et al., investigate how the receptor tyrosine kinase Kit and its trans-cellular kit ligand regulate molecular layer interneuron (MLI)- Purkinje cell (PC) connectivity in the cerebellum. Presynaptic Kit is specific for MLIs, and forms a trans-synaptic complex with Kit ligand in postsynaptic PC cells. The authors begin by generating Kit cKOs via an EUCOMM allele to enable cell-type specific Kit deletion. They cross this Kit cKO to the MLI-specific driver Pax2-Cre and conduct validation via Kit IHC and immunoblotting. Using this system to examine the functional consequences of presynaptic MLI Kit deletion onto postsynaptic PC cells, they record spontaneous and miniature synaptic currents from PC cells and find a selective reduction in IPSC frequency. Deletion of Kit ligand from postsynaptic PC cells also results in reduced IPSC frequency, together supporting that this trans-synaptic complex regulates GABAergic synaptic formation or maturation. The authors then show that sparse Kit ligand overexpression in PCs decreases neighboring uninfected control sIPSCs in a potentially competitive manner.

      Strengths:<br /> Overall, the study addresses an important open question, the data largely support the authors' conclusions, the experiments appear well-performed, and the manuscript is well-written. I just have a few suggestions to help shore up the author's interpretations and improve the study.

      Weaknesses:<br /> The strong decrease in sIPSC frequency and amplitude in control uninfected cells in Figure 4 is surprising and puzzling. The competition model proposed is one possibility, and I think the authors need to do additional experiments to help support or refute this model. The authors can conduct similar synaptic staining experiments as in Fig S4 but in their sparse infection paradigm, comparing synapses on infected and uninfected cells. Additional electrophysiological parameters in the sparse injection paradigm, such as mIPSCs or evoked IPSCs, would also help support their conclusions.

      The authors should validate KL overexpression and increased cell surface levels using their virus to support their overexpression conclusions.

    1. Reviewer #3 (Public Review):

      This manuscript provides a more or less quantitative analysis of protein synthesis in lymphocytes. I have no issue with the data as presented, as I'm sure all measurements have been expertly done. I see no need for additional experimental work, although it would be helpful if the authors could comment on the possibility of measuring the rate of synthesis of a defined protein, say a histone, in cells prior to and after activation. The conclusion the authors leave us with is the idea that the rates of protein synthesis recorded here are incompatible with observed rates of T cell division in vivo. Indeed, in the final paragraph of the discussion, the authors note the mismatch between what they consider a requirement for cell division, and the observed rates of protein synthesis. They then invoke unconventional mechanisms to make up for the shortfall, without -in this reviewer's opinion- discussing in adequate detail the technical limitations of the methodology used.

      A key question is the broad interest, novelty, and extension of current knowledge, in comparison with Argüello's (reference 27) 'SunRise' method. It would be helpful for the authors to stake out a clear position as to the similarities and differences with reference 27: what have we learned that is new? The authors could cite reference 27 in the introduction of their manuscript, given the similarity in approach. That said, the findings reported here will generate further discussion.

      The manuscript would increase in impact if the authors were to clearly define why a particular measurement is important and then show the actual experiment/result. As an example, it would be helpful to explain to the non-expert why the distinction between monosomes, polysomes, and stalled versions of the same is important, and then explain the rationale of the actual experiment: how can these distinctions be made with confidence, and what are confounding variables? The initial use of human cells, later abandoned in favor of the OT-1 in vitro and in vivo models, requires contextualization. If the goal is to address the relationship between rates of translation and cell division of antigen-activated T cells in vivo, then a lot of the work on the human model and the in vitro experiments becomes more of a distraction, unless properly contextualized. Is there any reason to assume that antigen-specific activation in vivo will impact translation differently than the use of the PMA/ionomycin/IL2 cocktail? The way the work is presented leaves me with the impression that everything that was done is included, regardless of whether it goes to the core of the question(s) of interest.

      It would be helpful if the authors made explicit some of the assumptions that underlie their quantitative comparisons. Likewise, the authors should discuss the limitations of their methods and provide alternative interpretations where possible, even if they consider them less/not plausible, with justification. As they themselves note, improvements in the RPM protocols raised the increase in translating ribosomes upon activation from 10-fold to 15-fold. Who's to say that is the best achievable result? What about the reliability/optimization of the other measurements?

      The composition of the set of proteins produced upon activation will differ from cell to cell (CD4, CD8, B, resting vs. dividing). Even if analyses are performed on fixed cells, the ability of the monoclonal anti-puromycin antibody to penetrate the matrix of the various fixed cell types may not be equal for all of them, depending on protein composition, susceptibility to fixation etc. Is it possible for puromycin to occupy the ribosome's A site and terminate translation without forming a covalent bond with the nascent chain? This could affect the staining with anti-puromycin antibodies and also underestimate the number of nascent chains.

      I believe that the concept of FACS-based quantitation also requires an explanation for the non-expert. For the FACS plots shown, the differences between the highest and lowest RPM scores for cells that divided and that have a similar CFSE score is at least 10-fold. Does that mean that divided cells can differ by that margin in terms of the number of nascent chains present? If I make the assumption that cells stimulated with PMA/ionomycin/IL2 respond more or less synchronously, why would there be a 10-fold difference in absolute fluorescence intensity (anti=puromycin) for randomly chosen cells with similar CFSE values? While the use of MFI values is standard practice in cytofluorimetry, the authors should devote some comments to such variation at the population level.

      It is assumed that for cells to complete division, they must have produced a full and complete copy of their proteome and only then divide. What if cells can proceed to divide even when expressing a subset of the proteome of departure (=the threshold set required for initiation of division), only to complete synthesis of the 'missing ' portion once cell division is complete? Would this obviate the requirement for an unusual mechanism of protein acquisition (trogocytosis; other)?

      Translation is estimated to proceed at a rate of ~6 amino acids per second, but surely there is variability in this number attributable to inaccuracies of the methods used, in addition to biological variability. Were these so-called standard values determined for a range of different tissues? It stands to reason that there might be variation depending on the availability of initiation/elongation factors, NTPs, aminoacyl tRNAs etc. What is the margin of error in calculating chain elongation rates based on the results shown here?

    1. Reviewer #3 (Public Review):

      The authors introduce two new concepts for antimicrobial resistance borrowed from pharmacology, "variant vulnerability" (how susceptible a particular resistance gene variant is across a class of drugs) and "drug applicability" (how useful a particular drug is against multiple allelic variants). They group both terms under an umbrella term "drugability". They demonstrate these features for an important class of antibiotics, the beta-lactams, and allelic variants of TEM-1 beta-lactamase.

      The strength of the result is in its conceptual advance and that the concepts seem to work for beta-lactam resistance. However, I do not necessarily see the advance of lumping both terms under "drugability", as this adds an extra layer of complication in my opinion.

      I also think that the utility of the terms could be more comprehensively demonstrated by using examples across different antibiotic classes and/or resistance genes. For instance, another good model with published data might have been trimethoprim resistance, which arises through point mutations in the folA gene (although, clinical resistance tends to be instead conferred by a suite of horizontally acquired dihydrofolate reductase genes, which are not so closely related as the TEM variants explored here).

      The impact of the work on the field depends on a more comprehensive demonstration of the applicability of these new concepts to other drugs.

    1. Reviewer #3 (Public Review):

      This study performs in vivo recordings of neurons in the mouse superior colliculus and their afferents from the retina, retinal ganglion cells (RGCs). Building on a preparation they previously published, this study adds the use of optogenetic identification of inhibitory neurons (aka optotagging) to compare RGC connectivity to excitatory and inhibitory neurons in SC. Using this approach, the authors characterize connection probability, strength, and response correlation between RGCs and their target neurons in SC, finding several differences from what is observed in the retina-thalamus-visual cortex pathway. As such, this may be a useful dataset for efforts to understand retinocollicular connectivity and computations.

    1. Reviewer #3 (Public Review):

      This manuscript describes the development of CRISPR knockouts for gh, fsh and tsh in the fast-aging Nothobranchius furzeri grz strain. CRISPR knockouts have been published before, and the strength of the paper is that here, the authors include a novel, easy and fast way of rescuing the loss of function in the entire body by electroporation in muscle. This offers flexibility in timing and dosage, and leads to intriguing results regarding the role of these hormones in growth and fertility. Finally they also add a conditional doxycycline-dependent overexpression model that would allow even more control over the modalities of the rescue. The phenotypes of the knockouts were not the key message of the paper and remained at times only superficially described. The doxycycline-dependent overexpression was only minimally validated, and here it is not yet clear how robust this system is in terms of overexpression levels, timing, and reversibility.

      Overall this study brings a new set of tools in the killifish toolbox that can have much wider applications and will be appreciated also in other teleost models.

    1. Reviewer #3 (Public Review):

      The present study used novel data logging devices to record the foraging behavior of wandering albatrosses. Specifically, the authors showed how localized winds and wave heights influence their ability to take off from the sea surface, which is the most expensive behavior they engage in while foraging. There is no better platform for this initial work because these birds are so large, the equipment they can carry without creating significant impact is tremendous.

      The results were impressive, presented well, and the paper was generally written in an accessible way to readers with less knowledge. The authors provide a convincing set of results that support the aims and conclusions. The theory and application could be used to inform our understanding of flight behavior in other seabirds.

      Although the idea of taking off from the sea surface may sound trivial, it is essential to understand that albatrosses and other soaring seabirds have wings that are adapted for soaring (i.e. long and narrow). The trade off, however, is that powered flight through wing flapping is energetically expensive because the wings have a shallow amplitude and generate less power compared to a shorter, wider wing. Thus, wind is everything and this study shows how wind facilitates the ability of the birds to gain flight using wind and waves. Awesome!

    1. Reviewer #3 (Public Review):

      In this work, the authors tried to profile time-dependent changes in gene and protein expression during BMP-induced amnion differentiation from hPSCs. The authors depicted a GATA3 - TFAP2A - ISL1/HAND1 order of amniotic gene activation, which provides a more detailed temporary trajectory of amnion differentiation compared to previous works. As a primary goal of this study, the above temporal gene/protein activation order is amply supported by experimental data. However, the mechanistic insights on amniotic fate decision, as well as the transcriptomic analysis comparing amnion-like cells from this work and other works remain limited. While this work allows us to see more details of amnion differentiation and understand how different transcription factors were turned on in a sequence and might be useful for benchmarking the identity of amnion in ex utero cultured human embryos/embryoids, it provides limited insights on how amnion cells might diverge from primitive streak / mesoderm-like cells, despite some transcriptional similarity they shared, during early development.

    1. Reviewer #3 (Public Review):

      In this manuscript by Berrocal and coworkers, the authors do a deep dive into the transcriptional regulation of the eve gene in both an endogenous and ectopic background. The idea is that by looking at eve expression under non-native conditions, one might infer how enhancers control transcriptional bursting. The main conclusion is that eve enhancers have not evolved to have specific behaviors in the eve stripes, but rather the same rates in the telegraph model are utilized as control rates even under ectopic or 'de novo' conditions. For example, they achieve ectopic expression (outside of the canonical eve stripes) through a BAC construct where the binding sites for the TF Giant are disrupted along with one of the eve enhancers. Perhaps the most general conclusion is that burst duration is largely constant throughout at ~ 1 - 2 min. This conclusion is consistent with work in human cell lines that enhancers mostly control frequency and that burst duration is largely conserved across genes, pointing to an underlying mechanistic basis that has yet to be determined.

    1. Reviewer #3 (Public Review):

      Strengths:

      On the positive side, I thought the use of ChatGPT to score the sentiment of text was novel and interesting, and I was largely convinced by the parts of the methods which illustrate that the AI provides broadly similar sentiment and politeness scores to humans who were asked to rank a sub-set of the reviews. The paper is mostly clear and well-written, and tackles a question of importance and broad interest (i.e. the potential for bias in the peer review process, and the objectivity of peer review).

      Weaknesses:

      The sample size and scope of the paper are a bit limited, and I have concerns covering diverse aspects including statistical/inferential issues, missing references, and suggestions for other material that could be included that would greatly increase the usefulness of the paper. A major limitation is that the paper focuses on published papers, and thus is a biased sample of all the reviews that were written, which prevents the paper properly answering the questions that it sets out to answer (e.g. is peer review repeatable, fair and objective).

    1. Reviewer #3 (Public Review):

      This paper reports a considerable technical achievement: the optogenetic activation of single retinal ganglion cells in vivo in monkeys. As clearly specified in the paper, this is an important step towards causal tests of the role of specific ganglion cell types in visual perception. Yet this methodological advance is not described currently in sufficient detail to replicate or evaluate. The paper could be improved substantially by including additional methodological details. Some specific suggestions follow.

      The start of the results needs a paragraph or more to outline how you got to Figure 1. Figure 1 itself lacks scale bars, and it is unclear, for example, that the ganglion cells targeted are in the foveal slope.

      The text mentions the potential difficulties targeting ganglion cells at larger eccentricities where the soma density increases. If this is something that you have tried it would be nice to include some of that data (whether or not selective activation was possible). Related to this point, it would be helpful to include a summary of the ganglion cell density in monkey retina.

      Related to the point in the previous paragraph - do you have any experiments in which you systematically moved the stimulation spot away from the target ganglion cell to directly test the dependence of stimulation on distance? This would be a valuable addition to the paper.

      The activity in Figure 1 recovers from activation very slowly - much more slowly than the light response of these cells, and much more slowly than the activity elicited in most optogenetic studies. Can you quantify this time course and comment on why it might be so slow?

      Traces from non-targeted cells should be shown in Figure 1 along with those of targeted cells.

    1. Reviewer #3 (Public Review):

      a) Important findings<br /> - This study confirms that Gr28 subfamily members are expressed in distinct sets of taste neurons in Drosophila larvae, supporting previous findings (e.g., Kwon et al., 2011).<br /> - Neurons expressing different members of the Gr28 family exhibit distinct behavioral responses when chemically activated with capsaicin.<br /> - Silencing experiments reveal that neurons expressing Gr28bc are necessary for larval avoidance of four bitter compounds, whereas neurons expressing Gr28be are necessary for avoiding lobeline and caffeine.<br /> - Inserting either Gr28ba or Gr28bc into the GR28 mutant line restored larval avoidance of denatonium.<br /> - Calcium imaging experiments show that Gr28ba and Gr28bc are involved in sensing denatonium, while none of the GR28 family members are involved in detecting quinine.

      b) Caveats<br /> - The authors did not acknowledge that neurons expressing members of the GR28 family also express other Gr family members, which could potentially contribute to the detection and behavioral responses to the tested bitter compounds.<br /> - Gal4 lines from various studies exhibit varying expression patterns, highlighting the necessity for improved reagents. These findings also suggest the importance of employing different Gal4 lines for each receptor to validate the results of the current study.<br /> - Activating or silencing neurons pertains to the function of the neurons rather than the receptors.<br /> - Inconsistency is observed in the use of different reagents across the experiments. Specifically, all six Gal4 lines were utilized in the Chemical Activation experiments, while only two lines were employed in the silencing experiments.<br /> - The Alphafold structure prediction is exciting but lacks conclusive evidence.

    1. Reviewer #3 (Public Review):

      Leeds et al. employ elegant in vitro experiments and sophisticated numerical modeling to investigate the ability of mechanical coupling to coordinate the growth of individual microtubules within microtubule bundles, specifically k-fibers. While individual microtubules naturally polymerize at varying rates, their growth must be tightly regulated to function as a cohesive unit during chromosome segregation. Although this coordination could potentially be achieved biochemically through selective binding of polymerases and depolymerases, the authors demonstrate, using a novel dual laser trap assay, that mechanical coupling alone can also coordinate the growth of in vitro microtubule pairs.

      By reanalyzing recordings of single microtubules growing under constant force (data from their own previous work), the authors investigate the stochastic kinetics of pausing and show that pausing is suppressed by tension. Using a constant shared load, the authors then show that filament growth is tightly coordinated when pairs of microtubules are mechanically coupled by a material with sufficient stiffness. In addition, the authors develop a theoretical model to describe both the natural variability and force dependence of growth, using no freely adjustable parameters. Simulations based on this model, which accounts for stochastic force-dependent pausing and intrinsic variability in microtubule growth rate, fit the dual-trap data well.

      Overall, this study illuminates the potential of mechanical coupling in coordinating microtubule growth and offers a framework for modeling k-fibers under shared loads. The research exhibits meticulous technical rigor and is presented with exceptional clarity. It provides compelling evidence that a minimal, reconstituted biological system can exhibit complex behavior. As it currently stands, the paper is highly informative and valuable to the field.

      To provide further clarity regarding the implications of their study, the authors may wish to address the following points in more detail:

      - Considering the authors' understanding of the quantitative relationship between forces, microtubule growth, and coordination, is the dual trap assay necessary to demonstrate this coordination? What advantages does the (semi)experimental system offer compared to a purely in silico treatment?

      - What are the limitations of studying a system comprising only two individual microtubules? How might the presence of crosslinkers, which are typically present in vivo between microtubules, influence their behavior in this context?

      - How dependent are the results on the chosen segmentation algorithm? Can the distributions of pause and run durations truly be fitted by "simple" Gaussians, as indicated in Figure S5-2? Given the inherent limitations in accurately measuring short durations and the application of threshold durations, it is likely that the first bins in the histograms underestimate events. Cumulative plots could potentially address this issue.

    1. Reviewer #3 (Public Review):

      The authors investigated the initial steps involved in angiogenesis. Using appropriate experimental tools they associated engineered vasculature models with a strong mathematical analysis. The study provides a dynamic view of the early steps involved in angiogenesis. It shows significant fluctuations in the onset of angiogenesis that suggest transitions between order and disorder in cell organization. The data obtained strongly support the hypothesis and support the conclusion of the study. This work brings new insights into the comprehension of the complex processes involved in the onset of angiogenesis and it provides a strong model to predict how VEGF will activate the delta-NOTCH signaling. Nevertheless, it would be important to describe in more detail how the current study can be used for a better understanding of the angiogenesis process in physiological and in pathological situations.

    1. Reviewer #3 (Public Review):

      Prior work from the Kaverina lab and others had determined that beta-cells build a microtubule network that differs from the canonical radial organization typical in most mammalian cell types and that this organization facilitates the regulated secretion of insulin-containing secretory granules (IGs). In this manuscript, the authors tested the hypothesis that kinesin-driven microtubule sliding is an underlying mechanism that establishes a sub-membranous microtubule array that regulates IG secretion. They employed knock-down and dominant-negative strategies to convincingly show microtubule sliding does, in fact, drive the assembly of the sub-membranous microtubule band. They also used live cell imaging assays to demonstrate that kinesin-mediated microtubule sliding in beta-cells is triggered by extracellular high glucose. Overall, this is an interesting and important study that relates microtubule dynamics to an important physiological process. The experiments were rigorous and well-controlled.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Using a combination of approaches, including automated feature selection and hierarchical clustering, the author identified a set of genes persistently associated with extrachromosomal DNA (ecDNA) presence across cancer types. The authors further validated the gene set identified using gene ontology enrichment analysis and identified that upregulated genes in extrachromosomal DNA-containing tumors are enriched in biological processes like DNA damage and cell proliferation, whereas downregulated genes are enriched in immune response processes.

      Major comments:<br /> 1. The authors presented a solid comparative analysis of ecDNA-containing and ecDNA-free tumors. An established automated feature selection approach, Boruta, was used to select differentially expressed genes (DEG) in ecDNA(+) and ecDNA(-) TCGA tumor samples, and the iterative selection process and two-tier multiple hypothesis testing ensured the selection of reliable DEGs. The author showed that the DEG selected using Boruta has stronger predictive power than genes with top log-fold changes.

      2. The author performed a thorough interpretation of the findings with GO enrichment analysis of biological processes enriched in the identified DEG set, and presented interesting findings, including the enrichment in DNA damage process among the genes upregulated in ecDNA(+) tumors.

      3. Overall, the authors achieved their aims with solid data mining and analysis approaches applied to public data tumor data sets.

      4. While it may not be the scope of this study, it will be interesting to at least have some justification for choosing Boruta over other feature selection methods, such as Recursive Feature Elimination (RFE) and backward stepwise selection.

      5. The authors showed that DESEQ-selected DEGs with top log-fold changes have less strong predictive power and speculated that this may be due to the fact that genes with top log-fold changes (LFC) are confined only to a small subset of samples. It will be interesting to select DEGs with top log-fold changes after first partitioning the tumor samples. For example, randomly partition the tumor samples, identify the DEGs with top LFC, combine the DEGs identified from each partition, then evaluate the predictive power of these DEGs against the Boruta-selected DEGs.

      6. While the authors showed that the presence of mutations was not able to classify ecDNA(+) and (-) tumor samples, it will be interesting to see if variant allele frequencies of the genes containing these mutations have predictive power.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Variants in the UBA5 gene are associated with rare developmental and epileptic encephalopathy, DEE44. This research developed a system to assess in vivo and in vitro genotype-phenotype relationships between UBA5 allele series by humanized UBA5 fly models and biochemical activity assays. This study provides a basis for evaluating current and future individuals afflicted with this rare disease.

      Strengths:<br /> The authors developed a method to measure the enzymatic reaction activity of UBA5 mutants over time by applying the UbiReal method, which can monitor each reaction step of ubiquitination in real time using fluorescence polarization. They also classified fruit fly carrying humanized UBA5 variants into groups based on phenotype. They found a correlation between biochemical UBA5 activity and phenotype severity.

      Weaknesses:<br /> In the case of human DEE44, compound heterozygotes with both loss-of-function and hypomorphic forms (e.g., p.Ala371Thr, p.Asp389Gly, p.Asp389Tyr) may cause disease states. The presented models have failed to evaluate such cases.

    1. Reviewer #3 (Public Review):

      The work presented in the manuscript tries to identify tRNA modifications present in Mycobacterium tuberculosis (Mtb) using reverse transcription-derived error signatures with tRNA-seq. The study identified enzyme homologs and correlates them with presence of respective tRNA modifications in Mtb. The study used several chemical treatments (IAA and alkali treatment) to further enhance the reverse transcription signals and confirms the presence of modifications in the bases. tRNA modifications by two enzymes TruB and MnmA were established by doing tRNA-seq of respective deletion mutants. Ultimately, authors show that MnmA-dependent tRNA modification is important for intracellular growth of Mtb. Overall, this report identifies multiple tRNA modifications and discuss their implication in Mtb infection.

    1. Reviewer #3 (Public Review):

      In this study, the authors sought to test the hypothesis that blocking triglyceride storage in adipose tissue by knockout of DGAT1 and DGAT2 in adipocytes would lead to ectopic lipid deposition, lipodystrophy, and impaired glucose homeostasis. Surprisingly, the authors found the opposite result, with DGAT1/2 DKO in adipocytes leading to increased energy expenditure, minimal ectopic lipid deposition, and improved glucose homeostasis with HFD feeding. These metabolic improvements were largely attributed to increased beiging of the white fat and increased brown adipose tissue activity. This study provides an interesting new paradigm whereby impairing fat storage, the major function of adipose tissue, does not lead to severe metabolic disease, but rather improves it. The authors provide a comprehensive assessment of the metabolism of these DKO mice under chow and HFD conditions, which support their claims. The study lacks in mechanistic insight, which would strengthen the study, but does not detract from the authors' major conclusions.

    1. Reviewer #3 (Public Review):

      In this study, Sun et al examine the role of the splicing factor SRSF1 in spermatogenesis in mice. Alternative splicing is important for spermatogenic development, but its regulation and major developmental roles during spermatogenesis are not well understood. The authors set out to better define both SRSF1 function in testes and the contribution of alternative splicing. They collect several large 'omics datasets to define SRSF1 targets in testis, including RNA interactions by CLIP-seq in whole testis, protein interactions by IP-mass spec in whole testis, and RNA sequencing to detect expression levels and splice variants. They also examine the phenotype of germline conditional knockouts (cKO) for Srsf1, using the early-acting Vasa-Cre, and find a severe depletion of germ cells starting at 7 days post partum (dpp) and culminating with a lack of germ cells (Sertoli Cell Only Syndrome) by adulthood. They detect differences in gene expression as well as differences in splicing between control and knockout, including 9 genes that are downregulated, experience alternative splicing, and whose transcripts are also bound by SRSF1, and identify the Tial1/Tiar transcript as one of these targets. They conclude that SRSF1 is required for homing and self-renewal of spermatogonial stem cells, at least in part through its regulation of Tial1/Tiar splicing.

      Strengths of the paper include detailed phenotyping of the Srsf1 cKO, which convincingly supports the Sertoli Cell Only phenotype, establishes the timing of the first appearance of the spermatogonial defect, and provides new insight into the role of splicing factors and SRSF1 specifically in spermatogenesis. Another strength is the generation of CLIP-seq, IP-MS, and RNA-seq datasets which will be a useful resource for the field of germ cell development. Major weaknesses include a lack of robust support for two major claims: first, there is inadequate support for the claim of defects in either "homing" or "self-renewal" of spermatogonia in the cKO, and second, there is inadequate support for the claim that altered splicing of the Tial1 transcript mediates the effect of SRSF1 loss. A moderate weakness is the superficial discussion of the CLIP, RNA-seq, and IP-MS datasets, limiting their otherwise high utility for other researchers. Overall, the paper as it stands will have a moderate impact on the field of male reproductive biology. Specific points that should be addressed to improve support for the claims are below.

      Major comments

      1) In Fig 1D, it appears that SRSF1 is expressed most strongly in spermatogonia by immunofluorescence, but this is inconsistent with the sharp rise in expression detected by RT-qPCR at 20 days post partum (dpp) (Fig. 1B), which is when round spermatids are first added; this discrepancy should be explained or addressed.

      2) It is important to provide a more comprehensive basic description of the CLIP-seq datasets beyond what is shown in the tracks shown in Fig. 2B. This would allow a better assessment of the data quality and would also provide information about the transcriptome-wide patterns of SRSF1 binding. No information or quality metrics are provided about the libraries, and it is not stated how replicates are handled to maximize the robustness of the analysis. The distribution of peaks across exons, introns, and other genomic elements should also be shown.

      3) The claim that SRSF1 is required for "homing and self-renewal" of SSCs is made in multiple places in the manuscript. However, neither homing nor self-renewal is ever directly tested. A single image is shown in Fig. 5E of a spermatogonium at 5dpp that does not appropriately sit on the basal membrane, potentially indicating a homing defect, but this is not quantified or followed up. There is good evidence for depletion of spermatogonia starting at 7 dpp, but no further explanation of how homing and/or self-renewal fit into the phenotype.

      4) In Fig. 6A (lines 258-260) very few genes downregulated in the cKO are bound by SRSF1 and undergo abnormal splicing. The small handful that falls into this overlap could simply be noise. A much larger fraction of differentially spliced genes are CLIP-seq targets (~33%), which is potentially interesting, but this set of genes is not explored.

      5) The background gene set for Gene Ontology analyses is not specified. If these were done with the whole transcriptome as background, one would expect enrichment of spermatogenesis genes simply because they are expressed in testes. The more appropriate set of genes to use as background in these analyses is the total set of genes that are expressed in testis.

      6) In general, the model is over-claimed: aside from interactions by IP-MS, little is demonstrated in this study about how SRSF1 affects alternative splicing in spermatogenesis, or how alternative splicing of TIAL1 specifically would result in the phenotype shown. It is not clear why Tial1/Tiar is selected as a candidate mediator of SRSF1 function from among the nine genes that are downregulated in the cKO, are bound by SRSF1, and undergo abnormal splicing. Although TIAL1 levels are reduced in cKO testes by Western blot (Fig. 7J), this could be due just be due to a depletion of germ cells from whole testis. The reported splicing difference for Tial1 seems very subtle and the ratio of isoforms does not look different in the Western blot image.

    1. Reviewer #3 (Public Review):<br /> <br /> Tutor et al. present their work on Kelch13/K13 from Plasmodium falciparum, the causative agent of malaria. This protein is involved in resistance against artemisinin (ART), one of the most commonly used drugs to treat malaria. Despite having identified the mutation in K13 that leads to resistance to ART, the exact molecular mechanism, function of K13, and impact of the K13 mutations still need to be elucidated. This is where the authors step in to investigate the relationship between endocytosis and K13, as well as the impact of depleting the protein using knock-sideway (KS). Using light microscopy, the authors demonstrate how K13-YFP forms a pore associated with fluorescently labeled dextran, which is taken up into tubules that move toward the digestive vacuole. This tubule formation is not sensitive to jasplakinolide (JAS) treatment. Using electron microscopy, they show that K13 is localized at the dark contrast border of the cytostome, and knocking down K13 leads to the disruption of the cytostome structure. Upon removal of K13, the structure changes, and the opening enlarges. The impact of KS induction on the cytostome was quantified using TEM and tomography. The authors also provide reconstructions of the cytostome in both induced and non-induced parasites. Finally, they measure the impact of KS on haem degradation. These data provide clear information on the function of K13 in cytostome formation and the implication of this structure in endocytosis for Plasmodium falciparum.

      The conclusions of this paper are well supported by the data, but some data analysis should be clarified and extended, and some complementary experiments would further strengthen the authors' claims.

    1. Reviewer #3 (Public Review):

      The authors report a study in which they use intracranial recordings to dissociate subjectively aware and subjectively unaware stimuli, focusing mainly on prefrontal cortex. Although this paper reports some interesting findings (the videos are very nice and informative!) the interpretation of the data is unfortunately problematic for several reasons. I will detail my main comments below. If the authors address these comments well, I believe the paper may provide an interesting contribution to further specifying the neural mechanisms important for conscious access (in line with Gaillard et al., Plos Biology 2009).

      The main problem with the interpretation of the data is that the authors have NOT used a so-called "no-report paradigm". The idea of no report paradigms is that subjects passively view a certain stimulus without the instruction to "do something with it", e.g., detect the stimulus, immediately or later in time. Because of the confusion of this term, specifically being related to the "act of reporting", some have argued we should use the term no-cognition paradigm instead (Block, TiCS, 2019, see also Pitts et al., Phil Trans B 2018). The crucial aspect is that, in these types of paradigms, the critical stimulus should be task-irrelevant and thus not be associated with any task (immediately or later). Because in this experiment subjects were instructed to detect the gratings when cued 600 ms later in time, the stimuli are task relevant, they have to be reported about later and therefore trigger all kinds of (known and potentially unknown) cognitive processes at the moment the stimuli are detected in real-time (so stimulus-locked). You could argue that the setup of this delayed response task excludes some very specific report related processes (e.g., the preparation of an eye-movement), which is good, however this is usually not considered the main issue. For example when comparing masked versus unmasked stimuli (Gaillard et al., 2009 Plos Biology), these conditions usually also both contain responses but these response related processes are "averaged out" in the specific contrasts (unmasked > masked). In this paper, RT differences between conditions (that are present in this dataset) are taken care of by using this delayed response in this paper, which is a nice feature for that and is not the case for the above example set-up.

      Given the task instructions, and this being merely a delayed-response task, it is to be expected that prefrontal cortex shows stronger activity for subjectively aware versus subjectively unaware stimuli. Unfortunately, given the nature of this task, the novelty of the findings is severely reduced. The authors cannot claim that prefrontal cortex is associated with "visual awareness", or what people have called phenomenal consciousness (this is the goal of using no-cognition paradigms). The only conclusion that can be drawn is that prefrontal cortex activity is associated with accessing sensory input: and hence conscious access. This less novel observation has been shown many times before and there is also little disagreement about this issue between different theories of consciousness (e.g., global workspace theory and local recurrency theories both agree on this).

      The best solution at this point seems to rewrite the paper entirely in light of this. My advice would be to state in the introduction that the authors investigate conscious access using iEEG and then not refer too much to no-cognition paradigm or maybe highlight some different strategies about using task-irrelevant stimuli (see Canales-Johnson et al., Plos Biology 2023; Hesse et al., eLife 2020; Hatamimajoumerd et al Curr Bio 2022; Alilovic et al., Plos Biology 2023; Pitts et al., Frontiers 2014; Dwarakanth et al., Neuron 2023 and more). Obviously, the authors should then also not claim that their results solve debates about theories regarding visual awareness (in the "no-cognition" sense, or phenomenal consciousness), for example in relation to the debate about the "front or the back of the brain", because the data do not inform that discussion. Basically, the authors can just discuss their results in detail (related to timing, frequency, synchronization etc) and relate the different signatures that they have observed to conscious access.

      I think the authors have to discuss the Gaillard et al PLOS Biology 2009 paper in much more detail. Gaillard et al also report a study related to conscious access contrasting unmasked and masked stimuli using iEEG. In this paper they also report ERP, time frequency and phase synchronization results (and even Granger causality). Because of the similarities in approach, I think it would be important to directly compare the results presented in that paper with results presented here and highlight the commonalities and discrepancies in the Discussion.

      In the Gaillard paper they report a figure plotting the percentage of significant frontal electrodes across time (figure 4A) in which it can be seen that significant electrodes emerge after approximately 250 ms in PFC as well. It would be great if the authors could make a similar figure to compare results. In the current paper there are much more frontal electrode contacts than in the Gaillard paper, so that is interesting in itself.

      In my opinion, some of the most interesting results are not highlighted: the findings that subjectively unaware stimuli show increased activations in the prefrontal cortex as compared to stimulus absent trials (e.g., Figure 4D). Previous work has shown PFC activations to masked stimuli (e.g., van Gaal et al., J Neuroscience 2008, 2010; Lau and Passigngham J Neurosci 2007) as well as PFC activations to subjectively unaware stimuli (e.g., King, Pescetelli, and Dehaene, Neuron 2016) and this is a very nice illustration of that with methods having more detailed spatial precision. Although potentially interesting, I wonder about the objective detection performance of the stimuli in this task. So please report objective detection performance for the patients and the healthy subjects, using signal detection theoretic d'. This gives the reader an idea of how good subjects were in detecting the presence/absence of the gratings. Likely, this reveals far above chance detection performance and in that case I would interpret these findings as "PFC activation to stimuli indicated as subjectively unaware" and not unconscious stimuli. See Stein et al., Plos Biology 2021 for a direct comparison of subjectively and objectively unaware stimuli.

      In Figure 7 of the paper the authors want to make the case that the contrast does not differ between subjectively aware stimuli and subjectively unaware stimuli. However so far they've done the majority of their analyses across subjects, and for this analysis the authors only performed within-subject tests, which is not a fair comparison imo. Because several P values are very close to significance I anticipate that a test across subjects will clearly show that the contrast level of the subjectively aware stimuli is higher than of the subjectively unaware stimuli, at the group level. A solution to this would be to subselect trials from one condition (NA) to match the contrast of the other condition (NU), and thereby create two conditions that are matched in contrast levels of the stimuli included. Then do all the analyses on the matched conditions.

      Related, Figure 7B is confusing and the results are puzzling. Why is there such a strong below chance decoding on the diagonal? (also even before stimulus onset) Please clarify the goal and approach of this analysis and also discuss/explain better what they mean.

      I was somewhat surprised by several statements in the paper and it felt that the authors may not be aware of several intricacies in the field of consciousness. For example a statement like the following "Consciousness, as a high-level cognitive function of the brain, should have some similar effects as other cognitive functions on behavior (for example, saccadic reaction time). With this question in mind, we carefully searched the literature about the relationship between consciousness and behavior; surprisingly, we failed to find any relevant literature." This is rather problematic for at least two reasons. First, not everyone would agree that consciousness is a high-level cognitive function and second there are many papers arguing for a certain relationship between consciousness and behavior (Dehaene and Naccache, 2001 Cognition; van Gaal et al., 2012, Frontiers in Neuroscience; Block 1995, BBS; Lamme, Frontiers in Psychology, 2020; Seth, 2008 and many more). Further, the explanation for the reaction time differences in this specific case is likely related to the fact that subjects' confidence in that decision is much higher in the aware trials than in the unaware trials, hence the speeded response for the first. This is a phenomenon that is often observed if one explores the "confidence literature". Although the authors have not measured confidence I would not make too much out of this RT difference.

      I would be interested in a lateralized analysis, in which the authors compare the PFC responses and connectivity profiles using PLV as a factor of stimulus location (thus comparing electrodes contralateral to the presented stimulus and electrodes ipsilateral to the presented stimulus). If possible this may give interesting insights in the mechanism of global ignition (global broadcasting), supposing that for contralateral electrodes information does not have to cross from one hemisphere to another, whereas for ipsilateral electrodes that is the case (which may take time). Gaillard et al refer to this issue as well in their paper, and this issue is sometimes discussed regarding to Global workspace theory. This would add novelty to the findings of the paper in my opinion.

    1. Reviewer #3 (Public Review):

      The authors report on the nature of interventions that were applied to aid and improve engagement in cervical screening, brought about by the SARS CoV Pandemic in Sweden.

      I appreciate that the impact of these interventions, given that they are recent, will take some time to quantify but the description (and reach) of the policy changes that occurred in a short amount of time is of significant interest to the screening community. The piece on HPV Even Faster is particularly novel; I am not aware of another example of where this has been enacted within a routine programme.

      The authors make reference to (15) where the reader can find greater details relating to the population who received the offer of self sampling (and the nature of the device). However I was a little confused (in this stand alone piece) as to who the self sampling group constituted exactly. Did this group not include pregnant women, women invited for first screen or women on non routine recall?

      The authors state that "the most likely explanation for the large increase in population coverage seen is that the sending of self-sampling kits resulted in improved attendance in particular among previously non-attending women" - why is this written as speculation at this stage (?) is it not possible to attribute directly the contribution made by self sampling, or is this in hand?

      While self sampling is certainly an option that can support uptake and enfranchisement in cervical screening - its overall performance is fundamentally contingent on the number of women who then comply with follow up should the HPV test be positive; it is not simply about who returns the sample. It would have been of interest to see the proportion of women who did comply with follow up.

    1. Reviewer #3 (Public Review):

      'Collateral sensitivity' occurs when drug-resistance mutations render a drug target more sensitive to inhibition by another drug, which has been previously described in some detail for malaria parasite dihydroorotate dehydrogenase (DHODH - see refs 36, 46, and 47, for example). Although it has been suggested that combinations of such drugs could potentially suppress the emergence of resistance, cross-resistance-associated mutation (or copy-number variation, CNV) could render such combination strategies ineffective. In the current study, the authors assess a new pairing of DHODH-targeting drugs. Cross-resistant parasites with DHODH mutation or CNV arise following either sequential or combined drug selection, suggesting that the drug combination described would likely fail to effectively suppress the emergence of resistance.

      The strength of the study is that it describes, for a particular drug combination, different mutations associated either with collateral sensitivity or with cross-resistance, and the authors conclude that "combination treatment with DSM265 and TCMDC-125334 failed to suppress resistance". They go on to say that this "brings into question the usefulness of pursuing further DHODH inhibitors." More specific interpretations and implications of the study are as follows:<br /> a. Other combinations may also fail but there may be combinations that can effectively suppress resistance. A more exhaustive analysis of mutational space will likely be required to determine which combinations if any, would be predicted to succeed in a clinical setting.<br /> b. It was previously reported that "a combination of [DHODH] wild-type and mutant-type selective inhibitors led to resistance far less often than either drug alone. ... Comparative growth assays demonstrated that two mutant parasites grew less robustly than their wild-type parent, and the purified protein of those mutants showed a decrease in catalytic efficiency, thereby suggesting a reason for the diminished growth rate" (Ref 46). Also, "selection with a combination of Genz-669178, a wild-type PfDHODH inhibitor, and IDI-6273, a mutant-selective PfDHODH inhibitor, did not yield resistant parasites" (Ref 36). It is possible that these previously tested combinations would also yield cross-resistant mutants if selected further.<br /> c. Although increased DHODH copy number "confers only moderately reduced susceptibility" to the drug used for selection and although these clones were not assessed here for cross-resistance, it seems likely that CNV may represent a general mechanism that could undermine other collateral resistance strategies.

    1. Reviewer #3 (Public Review):

      The authors described their extensive single-cell analysis of Candida undergoing (sub-inhibitory) antibiotic treatment versus no treatment. To do so, the authors used a microfluidics platform they had previously developed, and they optimized, characterized, and validated it for this particular application. Their findings included: (a) the transcription of untreated cells is driven mostly by cell cycle phase, (b) treated cells can be clustered into several major groups and a few outlier groups that the authors termed comets, (c) cells undergoing FCZ treatment can adopt one of two different states (possibly bistability). I found the results interesting and the approach to be sound, and much of the results confirmed my prior expectations. The authors provide a detailed depiction of what is going on in the transcriptome during sub-inhibitory treatment, although this did not always lead to a mechanistic explanation. The clinical relevance was unclear to me beyond a proof of concept application for single-cell transcriptomics. In my opinion, an interesting follow-up would be to follow the transcriptional trajectory of lineages undergoing antimicrobial switching (on and off). The main issues I identified were the author's use of the term tolerance versus resistance, interpretation of "comets", clustering approach, description of fitness, and comparison between time points.

    1. Reviewer #3 (Public Review):

      Increased LRRK2 kinase activity is known to confer Parkinson's disease risk. While much is known about disease-causing LRRK2 mutations that increase LRRK2 kinase activity, the normal cellular mechanisms of LRRK2 activation are less well understood. Rab GTPases are known to play a role in LRRK2 activation and to be substrates for the kinase activity of LRRK2. However, much of the data on Rabs in LRRK2 activation comes from over-expression studies and the contributions of endogenously expressed Rabs to LRRK2 activation are less clear. To address this problem, Bondar and colleagues tested the impact of systematically depleting candidate Rab GTPases on LRRK2 activity as measured by its ability to phosphorylate Rab10 in the human A549 type 2 pneumocyte cell line. This resulted in the identification of a major role for Rab12 in controlling LRRK2 activity towards Rab10 in this model system. Follow-up studies show that this role for Rab12 is of particular importance for the phosphorylation of Rab10 by LRRK2 at damaged lysosomes. Increases in LRRK2 activity in cells harboring disease-causing mutants of LRRK2 and VPS35 also depend (at least partially) on Rab12. Confidence in the role of Rab12 in supporting LRRK2 activity is strengthened by parallel experiments showing that either siRNA-mediated depletion of Rab12 or CRISPR-mediated Rab12 KO both have similar effects on LRRK2 activity. Collectively, these results demonstrate a novel role for Rab12 in supporting LRRK2 activation in A549 cells. It is likely that this effect is generalizable to other cell types. However, this remains to be established. It is also likely that lysosomes are the subcellular site where Rab12-dependent activation of LRRK2 occurs. Independent validation of these conclusions with additional experiments would strengthen this conclusion and help to address some concerns that much of the data supporting a lysosome localization for Rab12-dependent activation of LRRK2 comes from a single method (LysoIP). Furthermore, there is a discrepancy between panel 4A versus 4D in the effect of LLoMe-induced lysosome damage on LRRK2 recruitment to lysosomes that will need to be addressed to strengthen confidence in conclusions about lysosomes as sites of LRRK2 activation by Rab12.

    1. Reviewer #3 (Public Review):

      This manuscript by Bellegarda et al. examined the in vivo dynamic behavior of the Reissner fiber and its interactions with cilia and sensory neurons in the central canal of zebrafish larvae. The authors accomplished this by performing live imaging with a transgenic reporter zebrafish line in which the fiber is GFP-tagged and by finely tracking the movement of the fiber. Interestingly, they discovered that the fiber undergoes a dynamic vibratory-like movement along the dorsoventral axis. The authors then utilized a pulsed laser to precisely cut the fiber, which frequently resulted in a fast retraction behavior and a loss of calcium activity in sensory neurons in the central canal called CSF-CNs. Mechanical modeling of the elastic properties of the fiber indicated that the fiber is a soft elastic rod with graded tension along the rostrocaudal axis. Finally, by performing live imaging of motile cilia and the fiber in the central canal, they found that the two interact in close proximity and that cilia motility is affected when the fiber was cut. The authors concluded that the Reissner fiber is a dynamic structure under tension that interacts with sensory neurons and cilia in the central canal.

      Strengths:<br /> 1. The study utilizes state-of-the-art microscopy techniques and beautiful transgenic zebrafish tools to characterize the in vivo behavior of the Reissner fiber and found that it exhibits surprising dynamic movements along the dorsal-ventral axis. This observation has important implications for the physiology and function of the Reissner fiber.

      2. By performing a series of clever laser cutting experiments, the authors reveal that the Reissner fiber is under tension in the central canal of zebrafish. This finding provides direct experimental evidence to support the hypothesis that the Reissner fiber functions in a biomechanical manner during spinal cord development and body axis straightening.

      3. By developing a mechanical model of the Reissner fiber and its retraction behavior, the authors estimate the elastic properties of the fiber and found that it is more akin to an elastic polymer rather than a stiff rod. This is a useful finding that illuminates the biophysical properties of the fiber.

      4. Through calcium and cilia imaging studies, the authors demonstrate that the Reissner fiber likely interacts with motile cilia and regulates the activity of ciliated sensory neurons (CSF-CNs). The authors propose a model in which fiber-cilia interactions may occur via weak interactions or frictional forces. This model is plausible and opens several new doors for additional investigation.

      Weaknesses:<br /> 1. All the live imaging experiments appear to be performed with animals paralyzed via the injection of a chemical agent (bungarotoxin). Does paralysis and/or bungarotoxin negatively impact the behavior of the Reissner fiber? Some data from non-paralyzed animals would ameliorate this concern.

      2. Although the authors convincingly demonstrate that the Reissner fiber is under graded tension, it remains unclear what is the relevance and function of tension on this structure. The photoablation data presented do not delineate between the relevance of the fiber being intact or tension on the fiber as cutting the fiber impacts both. Is fiber tension required for body straightening? At the site of fiber photoablation, does a spinal curvature develop? If cultured, do the ablated animals exhibit a scoliotic phenotype?

      3. One of the most potentially impactful conclusions of the paper is that the Reissner fiber interacts with cilia, but the evidence is insufficient to support this. Although some motile cilia are near the fiber (Figure 3A), many cilia are not near the fiber. The provided images and videos do not clearly demonstrate that cilia physically contact or influence the behavior of the Reissner fiber. Further, the data is lacking to conclude that the Reissner fiber directly impacts cilia motility as they did not observe an overall statistically significant difference before and after ablation (Supplemental Figure 1A). Higher magnification, higher resolution, higher acquisition rate and/or colocalization analyses of fiber-cilia interactions could alleviate this concern.

      4. Similarly, how does the Reissner fiber interact with CSF-CN sensory neurons? The authors suggest that the fiber interacts with CSF-CN sensory neurons by modulating their spontaneous calcium activity via weak interactions or frictional forces from motile ciliated ependymal radial glial cells. While the calcium imaging data of the CSF-CNs is convincing and sound, the exact nature of the fiber-neuron interaction is unclear. Do cilia or apical extensions on CSF-CN sensory neurons sense the fiber or forces through a mechanosensing or chemosensing mechanism? There is some additional confusion as the authors appear to focus their cilia experiments on ependymal radial glial cells in section 4, rather than CSF-CNs. The addition of an illustrative cartoon would add clarity.

      Overall, the conclusions of the study are well supported by the data presented. However, the strength of the conclusions could be enhanced by additional controls, alternative experimental approaches and clarifications.

      This manuscript is an important contribution to the fields of spinal cord development and body axis development, which are fundamental questions in neurobiology, developmental biology, and musculoskeletal biology. In recent years, the Reissner fiber and motile cilia function have been linked to cerebrospinal fluid flow signaling and body straightening, but the precise form and function of the fiber remain unclear. This study provides new insight into the dynamic and biophysical properties of the Reissner fiber in vivo in zebrafish and proposes a model in which the fiber interacts with cilia and sensory neurons. This study provides novel insight into the cellular mechanisms that underlie the pathogenesis of disorders such as idiopathic scoliosis.

    1. Reviewer #3 (Public Review):

      CaMKII is a multimeric kinase of great biologic interest due to its crucial roles in long-term memory, cardiac pacemaking, and fertilization. CaMKII subunits organize into holoenzymes comprised of 12-14 subunits, adopting a donut-like, double-ringed structure. In this manuscript, Lucic et al challenge two models in the CaMKII field, which are somewhat related. The first is a longstanding topic in the field about whether the autophosphorylation of a crucial residue, Thr286, can be phosphorylated between intact holoenzymes (inter-holoenzyme phosphorylation). The second is a more recent biochemical finding, which tested the long-running theory that CaMKII exchanges subunits between holoenzymes to create mixed oligomers. These two models are connected by the idea that subunit exchange could facilitate phosphorylation between subunits of different holoenzymes by allowing subunits to integrate into a different holoenzyme and driving transphosphorylation within the CaMKII ring. Here, the authors attempt to show that one intact holoenzyme phosphorylates another intact holoenzyme at Thr286. The authors also provide evidence suggesting that subunit exchange is not occurring under their conditions, and therefore not driving this phosphorylation event. The authors propose a model where instead of exchanging subunits, two holoenzymes interact via their kinase domains to enable transphosphorylation at Thr286 without integrating into the holoenzyme structure. In order for the authors to successfully convince readers of all three facets of this new model, they need to provide evidence that 1) transphosphorylation at Thr286 happens when subunit exchange is blocked, 2) subunit exchange does not occur under their conditions, and 3) there are interactions between kinases of different holoenzymes that lead to productive autophosphorylation at Thr286.

      Strengths:<br /> The authors have designed and performed a battery of cleverly designed and orthogonal experiments to test these models. Using mutagenesis, they mixed a kinase-dead mutant with an active kinase to ask whether transphosphorylation occurs. They observe phosphorylation of the kinase-dead variant in this experiment, which indicates that the active kinase must have phosphorylated it. A few key questions arise here: 1) whether this phosphorylation occurred within a single CaMKII holoenzyme ring (which is the canonical mechanism for Thr286 phosphorylation), 2) whether the phosphorylation occurred between two separate holoenzyme rings, and 3) why was this not observed in previous literature? To address questions 1 and 2, the authors implemented an innovative strategy introducing a genetically-encoded photocrosslinker in the oligomerization domain, which when crosslinked using UV light, should lock the holoenzyme in place. The rate of phosphorylation was the same when comparing uncrosslinked and crosslinked CaMKII variants, indicating that phosphorylation is occurring between holoenzymes, rather than through a subunit exchange mechanism that would require some type of disassembly and reassembly (presumably blocked by crosslinking). The 3rd question remains as to why this has not been previously observed, as it has not been for lack of effort. The authors mention low temperature and low concentration as culprits, however, Bradshaw et al, JBC v. 277, 2002 carry out a series of careful experiments that indicated that autophosphorylation at T286 is not concentration-dependent (meaning that the majority of phosphorylation occurs via intra-holoenzyme), and this is done over a concentration and temperature range. It is possible that due to the mutants used in the current manuscript, it allows for the different behavior of the kinase-dead domains, which will have an empty nucleotide-binding pocket. Further studies will need to elucidate these details, and importantly, understand what physiological conditions facilitate this mechanism.

      The most convincing data that subunit exchange does not occur is from the crosslinking mass spectrometry experiment. The authors created mixtures of 'light' and 'heavy' CaMKII holoenzymes, either activated or not and then used a Lys-Lys crosslinker (DSS) to trap the enzyme in its final state. The results of this experiment indicate that subunit exchange is not occurring under their conditions. A caveat here is that there are not many lysines at hub-hub interfaces, which is the crux of this experiment. If there is no subunit exchange under their conditions, how does transphosphorylation occur between holoenzymes? The authors show very nice mass photometry data indicating that there are populations of 24-mers, which corresponds to a double-holoenzyme. Paired with the data from their crosslinking mass spectrometry which shows crosslinks between kinase domains of different holoenzymes, this indicates that perhaps kinases between holoenzymes do interact, and they do so in a competent manner to allow transphosphorylation to occur.

      Weaknesses:<br /> The authors should be commended for performing three orthogonal experiments to test whether CaMKII holoenzymes exchange subunits to form heterooligomers. However, there are technical issues that dampen the strength of the results shown here. For simplicity, let's consider that CaMKII holoenzymes are comprised of two stacked hexameric rings. It has been proposed that the stable unit of CaMKII assembly and perhaps also disassembly and subunit exchange is a vertical dimer unit (comprised of one subunit from each hexameric ring). In the UV crosslinking data shown in this paper, the authors have a significant number of monomers, some crosslinked dimers (of which there are two populations), and fewer higher-order oligomers. To effectively block subunit exchange, robust crosslinking into hexamers is necessary, which the authors have not done. Incomplete crosslinking results in smaller species that can still exchange (and/or dissociate), confounding the results of this experiment. In addition, Figure 3 shows a trapping experiment, where if the exchange was occurring, there would be an oligomeric band in Lane 8, which is visible and highlighted with a blue arrow by the authors. This result is explained by nonspecific UV effects, however by eye it is not clear if there is an equivalent band in lane 10. The overall issue here is inefficient crosslinking.

      The authors also employ a single-molecule TIRF experiment to further interrogate subunit exchange. Upon inspection of the TIRF images, it is not clear that the authors are achieving single molecule resolution (there are evident overlapping and distorted particles). The analysis employed here is Pearson's correlation coefficient, which is not sufficient for single molecule analysis and would not account for particle overlap, particles that are too bright, and/or particles that are too dim. For example, an alternative explanation for the authors' results is that activation results in aggregation (high correlation), and subsequent EGTA treatment leads to dissociation at these low concentrations (low correlation). However, further experimentation and analysis are necessary.

      Taken together, the authors have provided important food for thought regarding inter-holoenzyme phosphorylation and subunit exchange. However, given the shortcomings discussed here, it remains unclear exactly what mechanisms are at play within and between CaMKII holoenzymes once activated.

    1. Reviewer #3 (Public Review):

      Joechner and their co-authors performed an extensive analysis of two existing datasets from sleeping children aged between 5 to 18 years. By identifying discrete events of slow oscillations (SOs) and (fast) sleep spindles they examined not only the developmental changes of these distinct sleep grapho-elements. They also took a closer look at their interplay, e.g., to what extend sleep spindles are co-occurring with slow oscillation up-states, as this coupling is thought to underlie sleep-dependent memory consolidation.

      The authors found that both sleep spindles and slow oscillation undergo a change across the young age, e.g., while sleep spindles increased in frequency approaching the typical 12-16 Hz range found in adults, slow oscillation showed a shift in occurrence patterns from posterior to anterior sites. Likewise, the coupling of fast spindles within slow oscillation up-states manifested with age, which is almost non-existing in 5- to 6-year-old children. However, and most intriguingly, a coupling analysis based on the adult-like 12-16 Hz range revealed an already existing SO-spindle phase-relation across all age ranges. Altogether, this data nicely demonstrates the trajectory of sleep spindles and SOs in children and highlights the almost inherent coupling between SOs and "adult" sleep spindles. In my view, these results not only provide a good overview of a healthy development but also interesting food for thought regarding the function of SO-spindle coupling in healthy or clinical development.

      Overall, this work is well-written, and the performed analyses are well conceptualized. Hence, there are one general and a few minor aspects that could be addressed to hopefully strengthen this manuscript a bit further.

      The biggest aspect that was striking is the shear amount of data reported, e.g., a supplement with 28 tables is too extensive. The authors should consider reducing a few aspects.<br /> For example, the authors employ a linear mixed effects model and report coefficient etc. in the supplement. However, in the main text, the authors mainly report ANOVA-based results. Obviously, a LMM and an ANOVA are equivalent, however, focusing on one approach could streamline everything.<br /> Another example is the assessment of spindle frequency via the discrete events: First spindle peak frequency is derived via power spectra. Using the then individually identified peaks, discrete events are detected. Shouldn't it be obvious that these events show the same behavior with regard to their frequency?<br /> As a final example, the authors first report changes in fast spindle properties across age and, e.g., find an increase in frequency towards 12-16 Hz adult range. They then repeat the whole analysis in the 12-16 Hz range and examine the "distance" to the individualized results. It should again be obvious that this approach comes to the same conclusion, a smaller distance in older children. Even more obvious is the conclusion "Hence, it appears as if fast centro-parietal SPs become more dominant and adult-like in their frequency and amplitude characteristics in older children" because it describes a normal development of a healthy child. Altogether, the authors could streamline a few aspects by removing hidden redundancies and focus on the - in my view - central aspect of an inherent 12-16 Hz coupling across all ages.

    1. Reviewer #3 (Public Review):

      Mesenchymal stem cells have been shown to have potent immunomodulatory and regenerative properties and have been tested and tried in kidney transplantation. In a previous paper, the authors of this paper reviewed the beneficial actions of nitric oxide (NO) on the beneficial action of MSC. In this manuscript, they describe a method to generate NO in the therapeutic MSC. While NO donors like the short-acting nitrates have been used for angina pectoris patients few therapeutic approaches have been published aiming at the local delivery of NO to specific tissues or organs like the kidney. Gene therapy with adenoviral vectors, overexpressing the eNOS gene itself failed due to the fact that the eNOS enzyme, when overexpressed quickly runs out of sufficient co-factors like BH4. As a consequence, the enzyme uncouples and becomes cytotoxic due to the generation of peroxynitrate. Hence, the current strategy to generate NO in the MSC itself is novel and interesting.

      The authors first describe the cryoprotective effects and antioxidant effects of NO generation in MSC in vitro and subsequently in vivo in a mouse model of ischemia-reperfusion injury that may reflect acute kidney injury (or ischemia associated with kidney transplantation) in patients. While the MSC are transplanted intracortical on a local position in the kidneys, the manuscript describes surprising effectivity on serum creatinine, ureum, casts, and protection of brush border. Also, upon immunohistochemical analyses, fibrosis, and kidney injury markers decrease. Most likely there is a strong paracrine effect. It is unfortunate that the control "PBS + MGP" is lacking to exclude some low-grade background conversion of the compound with subsequent release of NO. MGP only is tested however, studies in kidney sections with state-of-the-art EPR, give the authors the wanted control.

      The paper provides an interesting proof of concept for a novel therapeutic approach. However, in the clinical arena, some questions remain involving the survival of the MSC after transplantation and the introduction of novel antigens associated with the engineered cells

    1. Reviewer #3 (Public Review):

      Pinatel and colleagues addressed a currently understudied topic in neurobiology, namely, the architecture and function of myelination in subsets of Parvalbumin (PV)- and Somatostatin (SST)-positive GABAergic hippocampal interneurons and its dependence on juxtaparanodal organizer proteins. In order to elucidate the structural and functional implications of interneuron myelination, the authors visualized inhibitory neurons by utilizing a Lhx2-tdTomato reporter line in combination with crucial cytoskeletal linker proteins such as Contactin2/TAG-1, Caspr2, and Protein 4.1B. They then applied a comprehensive set of histological, electrophysiological, and behavioral experiments to dissect the role these proteins play in proper myelination and function of PV- and SST-interneurons.

      The bulk of the study's data is based on immunofluorescence, which is presented in a number of figures comprised of high-quality images. As much as this is a strength of the study, the underlying image analysis as described in the methods falls short. All structural data rely on the measurements of physical parameters such as length of internodes, the distance between (juxta)paranode and node, the distance between node and myelin sheath, length of the axon initial segment (AIS), etc. In light of this, and considering the small physical dimensions of the nodal region in general, the methods remain unclear about the depth of 3D reconstruction/deconvolution applied to the samples. Measurements presented in the results show significant differences in sub-micrometer dimension, which at least according to the stated methods, are unlikely to be precise given that the confocal imaging parameters do not seem to reach Nyquist conditions. For a study in which a third of all data is aimed at elucidating (sub)micrometer changes, this is crucial and the study would benefit from a more rigorous method description by the authors.

      Another methodological weakness is the somewhat small n, and its incoherence across the experiments and therefore, the statistics performed in some of the experiments. Statistics are based on either n for animals, or n for individual data points from several animals. Why is not all data represented as mean/animal? Also, the sampling in general with n = 3 animals is borderline acceptable; in some cases, it seems that only 2 animals were used, and in others, no number is given at all (please refer to author comments for details). This needs to be addressed, either by explaining why so few animals were used, or by adding more data from individual animals. Assigning structures (AIS, nodes) as n results in overstating effects, since especially for AIS, there is significant heterogeneity in the length across neurons from the same type, and this is masked when 100 AIS are considered as individual n instead 100 AIS per animal, and the animal is (correctly) the n. Since the study seems to switch back and forth between these assignments, it would be helpful to level these data across all experiments unless there are specific reasons not to do so, which then need to be explained. As outlined in the methods, all values are given as means {plus minus} SEM; this needs to be corrected for those cases where the standard deviation is the appropriate choice (e.g. all graphs showing n = individual structure, and not the mean of an animal).

      As far as the analysis of geometrical AIS changes is concerned, the method section should be extended to address how, if at all, AIS length and position were analyzed in 3D, also considering the somewhat "spotty" immunosignal outlined in Fig. 8D. The observed AIS length change is then discussed in the context of a study conducted in a pharmacological model of myelin loss, however, that particular study (Hamada & Kole, 2015) found not only a length change but a position change after cuprizone-induced AIS plasticity. The authors should therefore discuss this finding in a bit more detail than simply stating "Adaptation of the AIS has been reported in the cuprizone chemical model of demyelination" (p. 14, ll. 512).

      Similarly to the points made about structural data above, the data from electrophysiological recordings should be presented in such a way that e.g. the number of cells and/or animals is readily accessible from the graph or legend. In its current form, this information - while available - needs to be pieced together from in-text information supplemented by figure legends. Sometimes, the authors do not include the number of animals behind individual cell data (for details please see author comments). Please carefully review all figures and edit accordingly.

      The behavioral data presented in the study is interesting, but the conclusions drawn are not supported by the data presented, as many unknown factors remain in place that could contribute to the observed phenotype.

    1. Reviewer #3 (Public Review):

      This work contributes to the literature characterizing early and late waves of transcription and associated chromatin remodeling following neuronal depolarization, here in cultured embryonic striatum. While they find IEG transcription 1h after depolarization, they find chromatin remodeling is slower (opening at the 4h time point). This may be due to chromatin at IEG regulatory regions already being open (in embryonic striatum), although previous work has found remodeling occurring at the 1h time point (in adult dentate gyrus). The authors next show that the chromatin remodeling that occurs at the late (4h) stage is largely in putative regulatory regions of the genome (rather than gene bodies), and is dependent on translation, which validates and extends the prior literature. The authors then transition from genome-wide basic neuroscience to focus on a specific gene of interest, prodynorphin (Pdyn), and a putative enhancer they identify from their chromatin analysis. They target CRISPR-activating and -inhibiting complexes to the putative enhancer and demonstrate that accessibility of this locus is necessary and sufficient for Pdyn transcription. They then show that at least one PDYN enhancer is conserved from rodents to humans, and is only activity-regulated in human GABAergic but not glutamatergic neurons. Finally, the authors generate snATAC-seq and show Pdyn gene and enhancer activity are also cell-type-specific in the rat striatum. The Pdyn work in particular is thorough and novel.

      Strengths:<br /> This work integrates multiple cutting-edge methods (multiple forms of genome-wide sequencing, combining new and published data across species, applying new forms of bioinformatic analysis, and targeted epigenome editing) to repeatedly and convincingly demonstrate these waves of chromatin remodeling and transcription. The figures and visual representations of data in particular set a new standard for the field. Although several findings within this paper are not novel, this paper ties previous findings all together in one place and goes on to show potential relevance for neuropsychiatric disorders beyond basic cellular neuroscience. The conclusions are mostly supported by the data.

      Results and conclusions that would benefit from clarification/extension.<br /> 1. Throughout the paper, the authors emphasize a "temporal decoupling" of transcriptional and chromatin response to depolarization, based on a lack of significant chromatin changes at 1h, despite IEG transcription. However, previous publications show significant chromatin remodeling at 1h (e.g. Su et al., NN 2017 in adult dentate gyrus) or 2h (Kim et al., Nature 2010; Malik et al., NN 2014 in cultured embryonic cortical neurons). The discussion briefly mentions this contrast, but it remains difficult to conclude decisively whether there is temporal decoupling when such decoupling is not found consistently. If one is to make broad conclusions about basic neural chromatin response to depolarization, it would be ideal to know under which conditions there is temporal decoupling, or if this is a region-specific phenomenon.

      2. The UMAP analysis is a novel way to probe transcription factor enrichment, but it's unclear what this is actually showing. The authors sought to ask whether "DARs could be separated based on transcription factor motifs in these regions." However, the motifs present in any genomic stretch are fixed based on genomic sequence, so it seems like this analysis might be asking whether certain motifs are more likely to be physically clustered together in the genome, in activity-regulated regions (rather than certain transcription factors acting in concert, as is implied in discussion). While still potentially interesting, this analysis does not seem to give much additional insight into activity-dependent chromatin remodeling beyond the motif enrichment analysis already performed. Nevertheless, to draw stronger conclusions, it would be necessary to compare clustering to a random set of genomic regions of the same length/size to interpret the clustering here. It would also be useful to know whether the ISL1 motif is also enriched in ubiquitously accessible genomic regions in the striatum (and not just DARs).

      3. The authors identify late-response gene enhancers by 3 criteria. However, only Pdyn was highlighted thereafter. How many putative DARs met these three criteria in striatum? Only Pdyn?

    1. Reviewer #3 (Public Review):

      This work provides a novel framework for semi-automatic segmentation and parcellation of brain tissues from fetal magnetic resonance imaging (MRI) by fusing an advanced deep learning technique and manual correction by experts. Over the broad age spectrum spanning newborns to adults, several fully-automatic segmentation/parcellation techniques have been proposed, showing robust, reliable performance across MR images with varying imaging quality. Unlike other age groups, however, scanning of the fetal brain is conducted in the womb; thus, there are additional and unique challenges, such as ambiguous positioning of the fetal brain, the surrounding maternal tissue in the fetal MRI, and fetal and maternal motion. These challenges in fetal MRI have collectively served as important bottlenecks in developing robust, reliable automatic segmentation/parcellation frameworks to date. This paper proposes a methodological framework for the segmentation and parcellation of fetal MRI scans using a two-step deep learning model, each for segmentation and parcellation. It is also noteworthy that the validity of the proposed framework has been extensively tested over different datasets with different image quality and different recording parameters, so the robust generalizability of the framework over other fetal MRI datasets is clearly suggested.

      Strengths:

      In general, a novel design framework, with separation of segmentation and parcellation schemes under each deep learning model, provides ample room for improving the model performance, as suggested by the results of this study. In addition, thanks to the flexibility in the model design (e.g., the choice of deep learning model) and parameters (e.g., manual correction step during training), an identical or similar framework can be easily extended to other datasets for different age groups or diagnostic groups/brain disorders. Another strength is the minimal requirement of human interaction after the training stage as significant time and effort of manual correction is often required following the automatic segmentation of fetal MR images. Lastly, thorough investigation of the inter-dataset generalizability of the proposed segmentation/parcellation framework will be well-received by the fetal neuroscience community.

      Weakness:

      The main weakness of this paper is the vague definition of the scientific novelty. By design, this paper is a technical study. The technical advancement claimed by the authors is a novel design of deep learning and a two-step deep-learning framework; each for segmentation and parcellation. There have been, however, other deep learning studies, and some share nearly identical model architecture to the one published by Asis-Cruz et al. (Frontiers in Neuroscience, 2022). As such the conceptual improvement in terms of deep learning model architecture is overstated. Regarding the separate framework for segmentation and parcellation, the conventional preprocessing protocol (e.g., Draw-EM; Makropoulos et al. IEEE Transactions on Medical Imaging, 2014) already presented a similar concept. Overall, it is unclear what unique technical advances have been made in the current paper.

      A second weakness of the work is the insufficient comparison to other conventional published methods. While the authors' claim that there is no "universally accepted" protocol for fetal brain segmentation/parcellation is at least partially true, Draw-EM, which was originally designed for neonatal brain segmentation, has been widely and successfully utilized in many fetal MRI studies, as discussed by the authors. Instead of a direct comparison to Draw-EM, the authors only performed a descriptive comparison using two exemplar MRI scans. It is unclear whether the superior performance of the proposed framework in these selected scans would be generalizable to others. Similarly, the authors claim that the proposed deep-learning-based segmentation/parcellation framework required minimal time for manual post-preprocessing refinement (1-3 mins), compared to 1-3 hours in another study using Draw-EM (Story et al. Neuroimage: Clinical, 2021). Again, this may not represent a fair comparison considering that the intensity/precision of manual refinement may differ depending on the different goals/objectives of other studies.

    1. Reviewer #2 (Public Review):

      In this study, the authors propose the possibility that some neurons in the enteric nervous system (ENS) originate postnatally from a non-ectodermal source. This possibility is investigated using a combination of transgenic lines, single cell RNA-sequencing (scRNA-seq), and immunofluorescence. Initially the authors identify a subset of neurons within myenteric enteric ganglia that are not lineage-labeled by canonical neural-crest derived cre-LoxP strategies. In their analysis, the group seeks to show that these neurons have an origin distinct from neural crest-derived progenitors that are known to initially colonize the developing gut. The team uses multiple cre lines (both Wnt1-cre and Pax3-cre) as well as several distinct reporter lines (ROSA-tdTomato, ROSA-EGFP, Hprt-tdTomato) to demonstrate that the lack of labeling by neural crest cre transgenes is consistent across several tools and not due to any transgene or reporter line artifact. Based on prior analysis that suggests some neurons in the ENS might be arising from a mesodermal lineage, the authors evaluate the possibility that mesoderm could contribute neurons to the ENS by evaluating expression of Tek-cre and Mesp1-cre tagged cell types in myenteric ganglia. The work with transgenic lines is convincing that some ENS neurons originate from an alternative source in the postnatal intestine and that this population increases in aging mice.

      The authors apply single cell RNA-sequencing to identify additional markers of these non-neural crest enteric neurons. They rely on dissociation of laminar gut muscle preparations, stripped from the outside of the adult intestine, that contain many cell types including smooth muscle, vasculature, and enteric ganglia. In the analysis of this scRNA-seq data, the authors focus on a cluster of cells in the resulting UMAP plots as being the MENs cluster based on labeling of this cluster with three genes (Calcb (CGRP), Met, and Cdh3). Based on expression of these marker genes there are a very large number of MENs and very few neural crest-derived enteric neurons (NENs) seen in the UMAPs. It is not clear why this difference in cell numbers has occurred. The early lineage tracing data shown with cre transgenes (Figures 1 and 2) shows relatively equal numbers of NENs and MENs in confocal imaging studies, yet in the RNA-seq UMAPs thousands of MENs are displayed while very few NENs are present. There is the possibility that the authors have identified a cell cluster as MENs that does not coincide with the Mesp1-cre or Tek-cre lineage labeled neurons observed within enteric ganglia of the laminar gut muscle preparations. The authors state that they have "used the single cell transcriptomics to both confirm the presence of MENs and identify more MEN-specific markers", however there is not a direct relationship made in this study between the MENs imaged and the cells profiled by single cell RNA-sequencing.

      In their analysis the authors note a difference in the percentage of enteric neurons labeled by the neural crest lineage tracer line, Wnt1-cre, relative to the total neurons labeled by the pan-neuronal marker HuC/D with age of the mice studied. They undertake a temporal analysis of the percentage of Wnt1-cre labeled neurons over total HuC/D neurons over the lifespan and note a decrease of Wnt1-cre labeled neurons with age. Further, the team assessed levels of growth factors that are known to promote proliferation and survival of NENs (GDNF-Ret signaling) versus factors known to promote growth of mesoderm (HGF) with age and document a decrease in GDNF-Ret signaling while HGF levels increase with age. The authors propose that the balance between these two signaling pathways is responsible for the shift in proportions of NENs versus MENs in aging animals.

      Some of the conclusions of this paper are supported, but several additional analyses are needed to reach the outcomes that the authors infer:

      1) Because the scRNA-seq data generated in this study derives from mixed cell populations present in laminar gut muscle preparations, there is a gap between the image data shown for the mesodermal cre lineage tracing and the MENs clusters the authors have selected in their single cell RNA-seq analysis. The absence of direct transcriptional profiling of cells labeled by Mesp1-cre or Tek1-cre expression prevents the authors from definitively connecting their in situ lineage labeling with specific clusters in the single cell RNA-seq analysis.

      2) Differential gene expression is the standard approach for identifying markers of a particular cluster and yet this is lacking in this study, and the rationale for why some genes were prioritized as markers of MENs is missing from the manuscript. Reanalysis of the authors posted single cell RNA-seq data found that genes integral to calling MENs (marker genes) were detectable in the data. Met, Cdh3, Calcb, Elavl2, Hand2, Pde10a, Vsnl1, Tubb2b, Stmn2, Stx3, and Gpr88 were all expressed in very few cells and at low levels. Given this, how were these genes chosen to be marker genes for MENs, especially given the low sequencing depth utilized?

      3) The authors rely on Phox2b as a marker for all ENS cells, including MENs. However, reprocessing of the authors posted single cell RNA-seq data finds that Phox2b is not detected in any of the cells in the MENs cluster and it's only expressed in very few cells of the neuroglia cluster. This discrepancy between the data the authors have generated and what is widely known about Phox2b expression in the ENS field must be explained as the absence of Phox2b message suggests there is an issue with reliance on low-depth scRNA-seq data for reaching the stated conclusions.

      4) The authors have not considered potential similarities between their MENs and other developing ENS lineages, like enteric mesothelial fibroblasts reported by Zeisel et al. 2018, and further analysis is needed to show that MENs are indeed a distinct cell type. Top marker genes of the author's MENs clusters were expressed more often in the clusters that were left out of Morarach et al 2021's E15.5 and E18.5 datasets because those clusters were mostly Phox2b-negative on UMAPs. This lack of Phox2b expression matches the characteristic of the MENs clusters' Phox2b-negative status in the authors single cell dataset. It is important to note that the Morarach dataset consists of Wnt1-cre lineage labeled (originating from neural crest) flow sorted cells. This is of import as it implies that Phox2b-negative cells ARE present within the Wnt1-cre lineage labeled population, an aspect that is relevant to this study's data analysis.

      5) Upon reprocessing of the authors MENs-genesis dataset with integration by sample as the authors describe, Met expression is evident within the cluster of NENs on the resulting UMAP plot and yet the authors rely on this gene as a marker of MENs. Whether Met expression is restricted to MENs should be resolved because the authors state it is exclusive to MENs and they subsequently investigate this gene across lifespan. Because it is not clear that Met is absent from neural crest derived enteric neurons this caveat complicates the interpretations of the present study.

      6) The authors apply MHCst immunofluorescence to mark MENs, but do not show any RNA expression for the MHCst transcripts in their single cell data. How did the authors come to the conclusion that MHCst IHC would be an appropriate marker for MENs? This rationale is missing from the text.

    1. Reviewer #3 (Public Review):

      Human complex traits including common diseases are highly polygenic (influenced by thousands of loci). This observation is in need of an explanation. The authors of this manuscript propose a model that competition for a single global resource (such as RNA polymerase II) may lead to a highly polygenic architecture of traits. Following an analytical examination, the authors reject their hypothesis. This work is of clear interest to the field. It remains to be seen if the model covers the variety of possible competition models.

    1. Reviewer #3 (Public Review):

      Wang et al. explored the unique biology of the deep-sea mussel Gigantidas platifrons to understand the fundamental principles of animal-symbiont relationships. They used single-nucleus RNA sequencing and validation and visualization of many of the important cellular and molecular players that allow these organisms to survive in the deep sea. They demonstrate that a diversity of cell types that support the structure and function of the gill including bacteriocytes, specialized epithelial cells that host sulfur-oxidizing or methane-oxidizing symbionts as well as a suite of other cell types including supportive cells, ciliary, and smooth muscle cells. By performing experiments of transplanting mussels from one habitat which is rich in methane to methane-limited environments, the authors showed that starved mussels may consume endosymbionts versus in methane-rich environments upregulated genes involved in glutamate synthesis. These data add to the growing body of literature that organisms control their endosymbionts in response to environmental change.

      The conclusions of the data are well supported. The authors adapted a technique that would have been technically impossible in their field environment by preserving the tissue and then performing nuclear isolation after the fact. The use of single-nucleus sequencing opens the possibility of new cellular and molecular biology that is not possible to study in the field. Additionally, the in-situ data (both WISH and FISH) are high-quality and easy to interpret. The use of cell-type-specific markers along with a symbiont-specific probe was effective. Finally, the SEM and TEM were used convincingly for specific purposes in the case of showing the cilia that may support water movement.

      The one particular area for clarification and improvement surrounds the concept of a proliferative progenitor population within the gill. The authors imply that three types of proliferative cells within gills have long been known, but their study may be the first to recover molecular markers for these putative populations. The markers the authors present for gill posterior end budding zone cells (PEBZCs) and dorsal end proliferation cells (DEPCs) are not intuitively associated with cell proliferation and some additional exploration of the data could be performed to strengthen the argument that these are indeed proliferative cells. The authors do utilize a trajectory analysis tool called Slingshot which they claim may suggest that PEBZCs could be the origin of all gill epithelial cells, however, one of the assumptions of this analysis is that differentiated cells are developed from the same precursor PEBZC population.

      However, these conclusions do not detract from the overall significance of the work of identifying the relationship between symbionts and bacteriocytes and how these host bacteriocytes modulate their gene expression in response to environmental change. It will be interesting to see how similar or different these data are across animal phyla. For instance, the work of symbiosis in cnidarians may converge on similar principles or there may be independent ways in which organisms have been able to solve these problems.

    1. Reviewer #3 (Public Review):

      In this manuscript, the authors describe the development of a machine-learning model to be used for gait assessment using insole data. They first developed a machine learning model using an existing, large data set of ground reaction forces collected during walking with force plates in a lab, from healthy adults and a group of people with knee injuries. Subsequently, they tested this model on ground reaction forces derived from insoles worn by a group of 19 healthy adults and a group of n=44 people with knee osteoarthritis (OA). The model was able to accurately identify individuals belonging to the knee OA group or the healthy group using the ground reaction forces during walking. Note: I do not have expertise on machine learning and will therefore refrain from reviewing the ML methods that were applied in this paper.

      Strengths: The authors successfully externally validated the trained model for GRF on insole data. Insole data carries potentially rich information, including the path of the CoP during the stance phase. The additional value of insoles over force plates in itself is clear, as insoles can be used independently of laboratory facilities. Moreover, insoles provide information on the COP path, which can have added value over other mobile assessment methods such as inertial sensors.

      Limitations: The second ML model, using only insole data to identify knee arthropathy from healthy subjects, was trained on a small sample of subjects. Although I have no background in ML, I can imagine that external validation in an independent and larger sample is needed to support the current findings.

      Gait speed has a major influence on the majority of gait-related outcomes. Slow or more cautious gait, due to pain or other causes, is reflected in vertical GRF's with less pronounced peaks. A difference in gait speed between people with pain in their knee (due to injury) and healthy subjects can be expected. This raises the question of what the added value of a model to estimate vertical GRF is over a simpler output (e.g. gait speed itself). Moreover, the paper does not elucidate what the added value of machine learning is over a simpler statistical model.

      In line with this issue, the current analyses are not strongly convincing me that the model described resulted in an identification of knee arthropathy-specific signature. Only knee arthropathy vs healthy (relatively young) subjects was compared, and we cannot rule out that this group only reflects general cautious, slow, or antalgic gait. As such, the data does not provide any evidence that the tool might be valuable to identify people with more or less severity of symptoms, or that the tool can be used to discriminate knee osteoarthritis from hip, or ankle osteoarthritis, or even to discriminate between people with musculoskeletal diseases and people with neurological gait disorders. This substantially limits the relevance for clinical (research) practice. In short, the output of the model seems to be restricted to "something is going on here", without further specification. Further development towards more specific aims using the insole data may substantially amplify clinical relevance.

    1. Reviewer #3 (Public Review):

      Hayashi et al., investigate the role of spinal neurons derived from the V2 progenitor domain. They identify a molecular marker, Hes2, specific to the V2 lineage in the spinal cord. The authors use this result to generate a new mouse line allowing specific access to the Hes2 lineage and show that this lineage is composed of excitatory V2a and inhibitory V2b spinal interneurons plus some populations of supraspinal neurons. Taking advantage of this new tool, they demonstrate that the developmental silencing of the Hes2 lineage leads to a disruption of mouse locomotor gait characterized by shorter strides and an increased cadence with no alteration of the alternation between flexion and extension. In addition, the authors show that the silencing of the Hes2 lineage also leads to an alteration of the interlimb coordination and a decreased capacity of the mice to achieve complex motor tasks. Using an intersectional genetic approach, the authors further demonstrate that the selective ablation of spinal V2 neurons in adult mice recapitulates the festination phenotype as well as the altered execution of complex motor tasks.

      By identifying a novel marker of the V2 lineage in the spinal cord and using this finding to generate a new mouse line Hayashi and colleagues suggest an intriguing interplay between excitatory and inhibitory V2 spinal neurons modulating differentially, multiple facets of motor behavior.

      The conclusions of this study are for the vast majority well supported by data. However, a few additional validations of the mouse model that is used and clarification about the methods of statistical analysis would improve the quality of this manuscript.

      1) Additional validations of the Hes2iCre mouse line generated and used in this study would improve the quality of the manuscript as well as shed light on the potential value of the use of the Hes2iCre mouse line for future investigations.

      - When reporting the cell population labeled by GFP in Hes2iCre; R26LSL-Sun1-GFP the authors need to report the number of animals on which these quantifications were performed to strengthen their conclusions (Figure 3C-E). Similarly, when showing the number of Hes2+, Chx10+ (V2a) and GATA3+ (V2b) neurons in Hes2iCre heterozygous vs homozygous the number of animals should be reported (Figure 3G; Figure S2E-F).

      - The numbers of Hes2+, Chx10+ (V2a) and GATA3+ (V2b) neurons in Hes2iCre heterozygous vs homozygous is reported. However, it would improve the validation of the mouse line, if the authors could provide a quantification of the numbers of Chx10+ and GATA3+ cells in heterogygous Hes2WT/iCre animals versus littermates lacking the Cre.

      - Although the study focus on spinal V2 neurons and the intersectional approach used in the last part of the paper is compelling, a better description of the supraspinal neurons that are part of the Hes2 lineage would give a better insight into the potential contribution of supraspinal Hes2 lineage to the motor phenotype described in Hes2-silenced mouse. In particular, an experiment showing if V2 (especially Chx10+ V2a) neurons from the medullary reticular nucleus are part of the Hes2 lineage would allow us to get a better grasp on the potential supraspinal effect of Hes2 neurons silencing.

      2) Adding a part in the methods explaining the statistical analysis applied is needed. In this part, the choices of the statistical analysis performed should be clearly explained and the assumptions stated. Although the intersectional genetic approach is challenging and does not allow for obtaining numerous animals, the use of parametric Student's t-tests on groups with only 4 animals is discussable and at least needs to be justified in the methods (results presented in Figure 6 and Figure S5). When the number of statistical units allows it, the normality of the distributions and the homoscedasticity should be tested prior to the use a parametric test. In some instances, tests taking into account the hierarchical structure of the data could be used. Furthermore, running statistical analysis on what seems to be a group of n=2 statistical units (Figure S3L) is not appropriate.

      3) Although this decision belongs to the authors, the use of the term "synergy" in the title and abstract might be misleading and might lead to confusion regarding the important outcome of this study. The authors show compelling evidence that the spinal ablation of the V2 lineage leads to a disruption of the ipsilateral coordination of body movements. However, as well explained by the authors, prior studies ablating individual V2a and V2b populations did not show any abnormal ipsilateral body coordination. This rather suggests a redundant or complementary function of inhibitory and excitatory V2 spinal neurons in spinal circuits, with the possibility for one individual population to compensate for the effect on the ipsilateral coordination following the ablation of the other population. Alternatively, "synergy" may suggest a simultaneous activity of V2a and V2b neurons that is not in the scope of this work.

    1. Reviewer #3 (Public Review):

      The authors previously showed that expressing formate dehydrogenase, rubisco, carbonic anhydrase, and phosphoribulokinase in Escherichia coli, followed by experimental evolution, led to the generation of strains that can metabolise CO2. Using two rounds of experimental evolution, the authors identify mutations in three genes - pgi, rpoB, and crp - that allow cells to metabolise CO2 in their engineered strain background. The authors make a strong case that mutations in pgi are loss-of-function mutations that prevent metabolic efflux from the reductive pentose phosphate autocatalytic cycle. The authors also argue that mutations in crp and rpoB lead to an increase in the NADH/NAD+ ratio, which would increase the concentration of the electron donor for carbon fixation. While this may explain the role of the crp and rpoB mutations, there is good reason to think that the two mutations have independent effects, and that the change in NADH/NAD+ ratio may not be the major reason for their importance in the CO2-metabolising strain.

      Specific comments:

      1. Deleting pgi rather than using a point mutation would allow the authors to more rigorously test whether loss-off-function mutants are being selected for in their experimental evolution pipeline. The same argument applies to crp.

      2. Page 10, lines 10-11, the authors state "Since Crp and RpoB are known to physically interact in the cell (26-28), we address them as one unit, as it is hard to decouple the effect of one from the other". CRP and RpoB are connected, but the authors' description of them is misleading. CRP activates transcription by interacting with RNA polymerase holoenzyme, of which the Beta subunit (encoded by rpoB) is a part. The specific interaction of CRP is with a different RNA polymerase subunit. The functions of CRP and RpoB, while both related to transcription, are otherwise very different. The mutations in crp and rpoB are unlikely to be directly functionally connected. Hence, they should be considered separately.

      3. A Beta-galactosidase assay would provide a very simple test of CRP H22N activity. There are also simple in vivo and in vitro assays for transcription activation (two different modes of activation) and DNA-binding. H22 is not near the DNA-binding domain, but may impact overall protein structure.

      4. There are many high-resolution structures of both CRP and RpoB (in the context of RNA polymerase). The authors should compare the position of the sites of mutation of these proteins to known functional regions, assuming H22N is not a loss-of-function mutation in crp.

      5. RNA-seq would provide a simple assay for the effects of the crp and rpoB mutations. While the precise effect of the rpoB mutation on RNA polymerase function may be hard to discern, the overall impact on gene expression would likely be informative.