4,265 Matching Annotations
  1. Last 7 days
    1. Reviewer #3 (Public review):

      Summary:

      This study aims to develop and characterize phenylhydrazone-based small molecules that selectively activate the ATF6 arm of the unfolded protein response by covalently modifying a subset of ER-resident PDIs. The authors identify AA263 as a lead scaffold and optimize its structure to generate analogs with improved potency and ATF6 selectivity, notably AA263-20. These compounds are shown to restore proteostasis and functional expression of disease-associated misfolded proteins in cellular models involving both secretory (AAT-Z) and membrane (GABAA receptor) proteins. The findings provide valuable chemical tools for modulating ER proteostasis and may serve as promising leads for therapeutic development targeting protein misfolding diseases.

      Strengths:

      The study presents a well-defined chemical biology framework integrating proteomics, transcriptomics, and disease-relevant functional assays.

      Identification and optimization of a new electrophilic scaffold (AA263) that selectively activates ATF6 represents a valuable advance in UPR-targeted pharmacology.

      SAR studies are comprehensive and logically drive the development of more potent and selective analogs such as AA263-20.

      Functional rescue is demonstrated in two mechanistically distinct disease models of protein misfolding-one involving a secretory protein and the other a membrane protein-underscoring the translational relevance of the approach.

      Weaknesses:

      ATF6 activation is primarily inferred from reporter assays and transcriptional profiling; direct biochemical evidence of ATF6 cleavage or nuclear translocation remains missing. However, the authors have added supporting data showing that co-treatment with the ATF6 inhibitor CP7 suppresses target gene induction, which partially strengthens the evidence for ATF6-dependent activity.

      Although the proposed mechanism involving PDI modification and ATF6 activation is plausible, it is still not experimentally demonstrated and remains incompletely characterized.

      In vivo validation is absent, and thus the pharmacological feasibility, selectivity, and bioavailability of these compounds in physiological systems remain untested.

      Comments on revisions:

      The authors have generally addressed my comments.

    1. Reviewer #3 (Public review):

      Summary:

      This is an important and well-conceived study that identifies the Bearded-type small protein E(spl)m4 as a physical and genetic interactor of TRAF4 in Drosophila. By combining classical genetics, yeast two-hybrid assays, and AlphaFold in silico modeling, the authors convincingly demonstrate that E(spl)m4 acts as an inhibitor of TRAF4-mediated induction of JNK-driven apoptosis in developing larval imaginal wing discs, while not affecting TRAF4's role in adherence junction remodeling.

      Based primarily on modeling, the authors propose that the specificity of E(spl)m4 towards TRAF4-mediated signaling arises from its interference with TRAF4 trimerization, which is likely required for the activation of the JNK signaling arm but not for the maintenance of adherence junctions and stability of E-cadherin/β-catenin complex.

      Overall, this study is of broad interest to cell and developmental biologists. It also holds potential biomedical relevance, particularly for strategies aimed at modulating TRAF protein activities to dissect and modulate canonical versus non-canonical signaling functions.

      Strengths:

      (1) The work identifies the Bearded-type small protein E(spl)m4 as a physical and genetic interactor of TRAF4 in Drosophila, extending the understanding of E(spl)m4 beyond its established functions in Notch signaling.

      (2) The study is experimentally solid, well-executed, and written, combining classical genetics with protein-protein interaction assays and modeling to reveal E(spl)m4 as a new regulator of TRAF4 signaling.

      (3) The genetic and biochemical data convincingly show the ability of E(spl)m4 overexpression to inhibit TRAF4-induced JNK-dependent apoptosis, while leaving the TRAF4 role in adherens junction remodeling unaffected.

      (4) The findings have important implications for the regulation of cell signaling and apoptosis and may guide pharmacological targeting of TRAF proteins.

      Weaknesses:

      The study is overall strong; however, several aspects could be clarified or expanded to strengthen the proposed mechanism and data presentation:

      (1) The proposed mechanism that E(spl)m4 inhibits TRAF4 activation of JNK signaling by affecting TRAF4 trimerization relies mainly on modeling. Experimental evidence would strengthen this claim. For example, a native or non-denaturing SDS-PAGE could be used to assess TRAF4 oligomerization states in the absence or presence of E(spl)m4 overexpression, testing whether E(spl)m4 interferes with high-molecular-weight TRAF4 assemblies.

      (2) The study depends largely on E(spl)m4 overexpression, which may not reflect physiological conditions. It would be valuable to test, or at least discuss, whether loss-of-function or knockdown of E(spl)m4 modulates the strength or duration of JNK-mediated signaling, potentially accelerating apoptosis. Such data would reinforce the model that E(spl)m4 acts as a physiological modulator of TRAF4-JNK signaling in vivo.

      (3) The authors initially identify both E(spl)m4 and E(spl)m2 as TRAF4 interactions, but subsequently focus on E(spl)m4. It would be helpful to clarify or discuss the rationale for prioritizing E(spl)m4 for detailed functional analysis.

      (4) E(spl)m4 overexpression appears to protect RpS3 loser clones (Figure 6H-K), yet caspase-3-positive cells are still visible in mosaic wing discs. Please comment on the nature of these Caspase 3-positive cells, whether they are cell-autonomous to the clone or non-autonomous (Figure 6K)?

      (5) This is a clear, well-executed, and conceptually strong study that significantly advances understanding of TRAF4 signaling specificity and its modulation by the Bearded-type protein E(spl)m4.

    1. Reviewer #3 (Public review):

      Summary and strengths:

      In this manuscript, Grimes presents an extension of the Ellipse of Insignificant (EOI) and Region of Attainable Redaction (ROAR) metrics to the meta-analysis setting as metrics for fragility and robustness evaluation of meta-analysis. The author applies these metrics to three meta-analyses of Vitamin D and cancer mortality, finding substantial fragility in their conclusions. Overall, I think extension/adaptation is a conceptually valuable addition to meta-analysis evaluation, and the manuscript is generally well-written.

      Specific comments:

      (1) The manuscript would benefit from a clearer explanation of in what sense EOIMETA is generalizable. The author mentions this several times, but without a clear explanation of what they mean here.

      (2) The authors mentioned the proposed tools assume low between-study heterogeneity. Could the author illustrate mathematically in the paper how the between-study heterogeneity would influence the proposed measures? Moreover, the between-study heterogeneity is high in Zhang et al's 2022 study. It would be a good place to comment on the influence of such high heterogeneity on the results, and specifying a practical heterogeneity cutoff would better guide future users.

      (3) I think clarifying the concepts of "small effect", "fragile result", and "unreliable result" would be helpful for preventing misinterpretation by future users. I am concerned that the audience may be confusing these concepts. A small effect may be related to a fragile meta-analysis result. A fragile meta-analysis doesn't necessarily mean wrong/untrustworthy results. A fragile but precise estimate can still reflect a true effect, but whether that size of true effect is clinically meaningful is another question. Clarifying the effect magnitude, fragility, and reliability in the discussion would be helpful.

    1. Reviewer #3 (Public review):

      Summary:

      In their manuscript entitled "Ubiquitous predictive processing in the spectral domain of sensory cortex", Sennesh and colleagues perform spectral analysis across multiple layers and areas in the visual system of mice. Their results are timely and interesting as they provide a complement to a study from the same lab focussed on firing rates, instead of oscillations. Together, the present study argues for a hypothesis called predictive routing, which argues that non-predictable stimuli are gated by Gamma oscillations, while alpha/beta oscillations are related to predictions.

      Strengths:

      (1) The study contains a clear introduction, which provides a clear contrast between a number of relevant theories in the field, including their hypotheses in relation to the present data set.

      (2) The study provides a systematic analysis across multiple areas and layers of the visual cortex.

      Weaknesses:

      (1) It is claimed in the abstract that the present study supports predictive routing over predictive coding; however, this claim is nowhere in the manuscript directly substantiated. Not even the differences are clearly laid out, much less tested explicitly. While this might be obvious to the authors, it remains completely opaque to the reader, e.g., as it is also not part of the different hypotheses addressed. I guess this result is meant in contrast to reference 17, by some of the same authors, which argues against predictive coding, while the present work finds differences in the results, which they relate to spectral vs firing rate analysis (although without direct comparison).

      (2) Most of the claims about a direction of propagation of certain frequency-related activities (made in the context of Figures 2-4) are - to the eyes of the reviewer - not supported by actual analysis but glimpsed from the pictures, sometimes, with very little evidence/very small time differences to go on. To keep these claims, proper statistical testing should be performed.

      (3) Results from different areas are barely presented. While I can see that presenting them in the same format as Figures 2-4 would be quite lengthy, it might be a good idea to contrast the right columns (difference plots) across areas, rather than just the overall averages.

      (4) Statistical testing is treated very generally, which can help to improve the readability of the text; however, in the present case, this is a bit extreme, with even obvious tests not reported or not even performed (in particular in Figure 5).

      (5) The description of the analysis in the methods is rather short and, to my eye, was missing one of the key descriptions, i.e., how the CSD plots were baselined (which was hinted at in the results, but, as far as I know, not clearly described in the analysis methods). Maybe the authors could section the methods more to point out where this is discussed.

      (6) While I appreciate the efforts of the authors to formulate their hypotheses and test them clearly, the text is quite dense at times. Partly this is due to the compared conditions in this paradigm; however, it would help a lot to show a visualization of what is being compared in Figures 2-4, rather than just showing the results.

    1. Reviewer #3 (Public review):

      Summary:

      The article explores the brain's ability to generalize information, with a specific focus on the entorhinal cortex (EC) and its role in learning and representing structural regularities that define relationships between entities in networks. The research provides empirical support for the longstanding theoretical and computational neuroscience hypothesis that the EC is crucial for structure generalization. It demonstrates that EC codes can generalize across non-spatial tasks that share common structural regularities, regardless of the similarity of sensory stimuli and network size.

      Strengths:

      At first glance, a potential limitation of this study appears to be its application of analytical methods originally developed for high-resolution animal electrophysiology (Samborska et al., 2022) to the relatively coarse and noisy signals of human fMRI. Rather than sidestepping this issue, however, the authors embrace it as a methodological challenge. They provide compelling empirical evidence and biologically grounded simulations to show that key generalization properties of entorhinal cortex representations can still be robustly detected. This not only validates their approach but also demonstrates how far non-invasive human neuroimaging can be pushed. The use of multiple independent datasets and carefully controlled permutation tests further underscores the reliability of their findings, making a strong case that structural generalization across diverse task environments can be meaningfully studied even in abstract, non-spatial domains that are otherwise difficult to investigate in animal models.

      Weaknesses:

      While this study provides compelling evidence for structural generalization in the entorhinal cortex (EC), several limitations remain that pave the way for promising future research. One issue is that the generalization effect was statistically robust in only one task condition, with weaker effects observed in the "community" condition. This raises the question of whether the null result genuinely reflects a lack of EC involvement, or whether it might be attributable to other factors such as task complexity, training order, or insufficient exposure possibilities that the authors acknowledge as open questions. Moreover, although the study leverages fMRI to examine EC representations in humans, it does not clarify which specific components of EC coding-such as grid cells versus other spatially tuned but non-grid codes-underlie the observed generalization. While electrophysiological data in animals have begun to address this, the human experiments do not disentangle the contributions of these different coding types. This leaves unresolved the important question of what makes EC representations uniquely suited for generalization, particularly given that similar effects were not observed in other regions known to contain grid cells, such as the medial prefrontal cortex (mPFC) or posterior cingulate cortex (PCC). These limitations point to important future directions for better characterizing the computational role of the EC and its distinctiveness within the broader network supporting learning and decision making based on cognitive maps.

    1. Reviewer #3 (Public review):

      The authors use high throughput neutralisation data to explore how different summary statistics for population immune responses relate to strain success, as measured by growth rate during the 2023 season. The question of how serological measurements relate to epidemic growth is an important one, and I thought the authors present a thoughtful analysis tackling this question, with some clear figures. In particular, they found that stratifying the population based on the magnitude of their antibody titres correlates more with strain growth than using measurements derived from pooled serum data. The updated manuscript has a stronger motivation, and there is substantial potential to build on this work in future research.

      Comments on revisions:

      I have no additional recommendations. There are several areas where the work could be further developed, which were not addressed in detail in the responses, but given this is a strong manuscript as it stands, it is fine that these aspects are for consideration only at this point.

    1. Reviewer #3 (Public review):

      Summary:

      The stable production of learned vocalizations like human language and birdsong requires auditory feedback. What happens in the brain areas that generate stable vocalizations as performance deteriorates is not well understood. Using a species of songbird, the current study investigates individual cells within the evolutionarily-conserved brain regions that generate learned vocalizations to describe that the complement of neuropeptide (short proteins) signals may be a key feature of behavioral change. Because neuropeptides are important across species, these findings may help explain diminishing stability in learned behaviors even in humans.

      Strengths:

      The experiments are solid and follow a strong progression from description through manipulation. The songbird model is appropriate and powerful to inform on generalizable biological mechanisms of precisely learned behaviors, including human speech.

      Weaknesses:

      While it is always possible to perform more experiments, most of the weaknesses are in the presentation of the project, not in the evidence or analysis, which are leading-edge and appropriate. Generally, the ability to follow the findings and to independently assess rigor would be enhanced with increased explicit mention of the statistical thresholds and subjective descriptions. In addition, two prior pieces of relevant work seem to be omitted, including one performing deafening, gene expression measures, and behavioral assessment in zebra finches, and another describing neuropeptide complements in zebra finch singing nuclei based largely on mass spectrometry. The former in particular should be related to the current findings.

    1. Reviewer #3 (Public review):

      This manuscript provides novel insights into altered glucose metabolism and KC status during early MASLD. The authors propose that hyperactivated glycolysis drives a spatially patterned KC depletion that is more pronounced than the loss of hepatocytes or hepatic stellate cells. This concept significantly enhances our understanding of early MASLD progression and KC metabolic phenotype.

      Through a combination of TUNEL staining and MS-based metabolomic analyses of KCs from HFHC-fed mice, the authors show increased KC apoptosis alongside dysregulation of glycolysis and the pentose phosphate pathway. Using in vitro culture systems and KC-specific ablation of Chil1, a regulator of glycolytic flux, they further show that elevated glycolysis can promote KC apoptosis.

      However, it remains unclear whether the observed metabolic dysregulation directly causes KC death or whether secondary factors, such as low-grade inflammation or macrophage activation, also contribute significantly. Nonetheless, the results, particularly those derived from the Chil1-ablated model, point to a new potential target for the early prevention of KC death during MASLD progression.

      The manuscript is clearly written and thoughtfully addresses key limitations in the field, especially the focus on glycolytic intermediates rather than fatty acid oxidation. The authors acknowledge the missing mechanistic link between increased glycolysis and KC death. Still, several interpretations require moderation to avoid overstatement, and certain experimental details, particularly those concerning flow cytometry and population gating, need further clarification.

      Strengths:

      (1) The study presents the novel observation of profound metabolic dysregulation in KCs during early MASLD and identifies these cells as undergoing apoptosis. The finding that Chil1 ablation aggravates this phenotype opens new avenues for exploring therapeutic strategies to mitigate or reverse MASLD progression.

      (2) The authors provide a comprehensive metabolic profile of KCs following HFHC diet exposure, including quantification of individual metabolites. They further delineate alterations in glycolysis and the pentose phosphate pathway in Chil1-deficient cells, substantiating enhanced glycolytic flux through 13C-glucose tracing experiments.

      (3) The data underscore the critical importance of maintaining balanced glucose metabolism in both in vitro and in vivo contexts to prevent KC apoptosis, emphasizing the high metabolic specialization of these cells.

      (4) The observed increase in KC death in Chil1-deficient KCs demonstrates their dependence on tightly regulated glycolysis, particularly under pathological conditions such as early MASLD.

      Weaknesses:

      (1) The novelty is questionable. The presented work has considerable overlap with a study by the same lab, which is currently under review (citation 17), and it should be considered whether the data should not be presented in one paper.

      (2) The authors report that 60% of KCs are TUNEL-positive after 16 weeks of HFHC diet and confirm this by cleaved caspase-3 staining. Given that such marker positivity typically indicates imminent cell death within hours, it is unexpected that more extensive KC depletion or monocyte infiltration is not observed. Since Timd4 expression on monocyte-derived macrophages takes roughly one month to establish, the authors should consider whether these TUNEL-positive KCs persist in a pre-apoptotic state longer than anticipated. Alternatively, fate-mapping experiments could clarify the dynamics of KC death and replacement.

      (3) The mechanistic link between elevated glycolytic flux and KC death remains unclear.

      (4) The study does not address the polarization or ontogeny of KCs during early MASLD. Given that pro-inflammatory macrophages preferentially utilize glycolysis, such data could provide valuable insight into the reason for increased KC death beyond the presented hyperreliance on glycolysis.

      (5) The gating strategy for monocyte-derived macrophages (moMFs) appears suboptimal and may include monocytes. A more rigorous characterization of myeloid populations by including additional markers would strengthen the study's conclusions.

      (6) While BMDMs from Chil1 knockout mice are used to demonstrate enhanced glycolytic flux, it remains unclear whether Chil1 deficiency affects macrophage differentiation itself.

      (7) The authors use the PDK activator PS48 and the ATP synthase inhibitor oligomycin to argue that increased glycolytic flux at the expense of OXPHOS promotes KC death. However, given the high energy demands of KCs and the fact that OXPHOS yields 15-16 times more ATP per glucose molecule than glycolysis, the increased apoptosis observed in Figure 4C-F could primarily reflect energy deprivation rather than a glycolysis-specific mechanism.

      (8) In Figure 1C, KC numbers are significantly reduced after 4 and 16 weeks of HFHC diet in WT male mice, yet no comparable reduction is seen in Clec4Cre control mice, which should theoretically exhibit similar behavior under identical conditions.

    1. Reviewer #3 (Public review):

      Summary:

      The authors report converging evidence from behavioral studies as well as several brain-imaging techniques that geometric figures, notably quadrilaterals, are processed differently in visual (lower activation) and spatial (greater) areas of the human brain than representative figures. Comparison of mathematical models to fit activity for geometric figures shows the best fit for abstract geometric features like parallelism and symmetry. The brain areas active for geometric figures are also active in processing mathematical concepts even in blind mathematicians, linking geometric shapes to abstract math concepts. The effects are stronger in adults than in 6-year-old Western children. Similar phenomena do not appear in great apes, suggesting that this is uniquely human and developmental.

      Strengths:

      Multiple converging techniques of brain imaging and testing of mathematical models showing special status of perception of abstract forms. Careful reasoning at every step of research and presentation of research, anticipating and addressing possible reservations. Connecting these findings to other findings, brain, behavior, and historical/anthropological to suggest broad and important fundamental connections between abstract visual-spatial forms and mathematical reasoning.

      Weaknesses:

      I have reservations of the authors' use of "symbolic." They seem to interpret "symbolic" as relying on "discrete, exact, rule-based features." Words are generally considered to symbolic (that is their major function), yet words do not meet those criteria. Depictions of objects can be regarded as symbolic because they represent real objects, they are not the same as the object (as Magritte observed). If so then perhaps depictions of quadrilaterals are also symbolic but then they do not differ from depictions of objects on that quality. Relatedly, calling abstract or generalized representations of forms a distinct "language of thought" doesn't seem supportable by the current findings. Minimally, a language has elements that are combined more or less according to rules. The authors present evidence for geometric forms as elements but nowhere is there evidence for combining them into meaningful strings.

      Further thoughts

      Incidentally, there have been many attempts at constructing visual languages from visual elements combined by rules, that is, mapping meaning to depictions. Many written languages like Egyptian hieroglyphics or Mayan or Chinese, began that way; there are current attempts using emoji. Apparently, mapping sound to discrete letters, alphabets, is more efficient and was invented once but spread. That said, for restricted domains like maps, circuit diagrams, networks, chemical interactions, mathematics, and more, visual "languages" work quite well.

      The findings are striking and as such invite speculation about their meaning and limitations. The images of real objects seem to be interpreted as representations of 3D objects as they activate the same visual areas as real objects. By contrast, the images of 2D geometric forms are not interpreted as representations of real objects but rather seemingly as 2D abstractions. It would be instructive to investigate stimuli that are on a continuum from representational to geometric, e. g., real objects that have simple geometric forms like table tops or boxes under various projections or balls or buildings that are rectangular or triangular. Objects differ from geometric forms in many ways: 3D rather than 2D, more complicated shapes; internal features as well as outlines. The geometric figures used are flat, 2-D, but much geometry is 3-D (e. g. cubes) with similar abstract features. The feature space of geometry is more than parallelism and symmetry; angles are important for example. Listing and testing features would be fascinating.

      Can we say that mathematical thinking began with the regularities of shapes or with counting, or both? External representations of counting go far back into prehistory; tallies are frequent and wide-spread. Infants are sensitive to number across domains as are other primates (and perhaps other species). Finding overlapping brain areas for geometric forms and number is intriguing but doesn't show how they are related.

      Categories are established in part by contrast categories; are quadrilaterals and triangles and circles different categories? As for quadrilaterals, the authors say some are "completely irregular." Not really; they are still quadrilaterals, if atypical. See Eleanor Rosch's insightful work on (visual) categories. One wonders about distinguishing squashed quadrilaterals from squashed triangles.

      What in human experience but not the experience of close primates would drive the abstraction of these geometric properties? It's easy to make a case for elaborate brain processes for recognizing and distinguishing things in the world, shared by many species, but the case for brain areas sensitive to abstracting geometric figures is harder. The fact that these areas are active in blind mathematicians and that they are parietal areas suggest that what is important is spatial far more than visual. Could these geometric figures and their abstract properties be connected in some way to behavior, perhaps with fabrication, construction or use of objects? Or with other interactions with complex objects and environments where symmetry and parallelism (and angles and curvature--and weight and size) would be important? Manual dexterity and fabrication also distinguish humans from great apes (quantitatively not qualitatively) and action drives both visual and spatial representations of objects and spaces in the brain. I certainly wouldn't expect the authors to add research to this already packed paper, but raising some of the conceptual issues would contribute to the significance of the paper.

    1. Reviewer #3 (Public review):

      Summary:

      This research shows that a-mangostin, a proposed nutraceutical, with cardiovascular protective properties, could act through the activation of large conductance potassium permeable channels (BK). The authors provide convincing electrophysiological evidence that the compound binds to BK channels and induces a potent activation, increasing the magnitude of potassium currents. Since these channels are important modulators of the membrane potential of smooth muscle in vascular tissue, this activation leads to muscle relaxation, possibly explaining cardiovascular protective effects.

      Strengths:

      The authors present evidence based on several lines of experiments that a-mangostin is a potent activator of BK channels. The quality of the experiments and the analysis is high and represents an appropriate level of analysis. This research is timely and provides a basis to understand the physiological effects of natural compounds with proposed cardio-protective effects.

      Weaknesses:

      The identification of the binding site is not the strongest point of the manuscript. The authors show that the binding site is probably located in the hydrophobic cavity of the pore and show that point mutations reduce the magnitude of the negative voltage shift of activation produced by a-mangostin. However, these experiments do not demonstrate binding to these sites, and could be explained by allosteric effects on gating induced by the mutations themselves.

    1. Reviewer #3 (Public review):

      Summary:

      In this study, Freier et al. demonstrate that 3 distinct metabolic pathways are critical for the synthesis of 1C-THF, a metabolite that is crucial for the growth and virulence of Listeria monocytogenes. Using an elegant suppressor screen, they also demonstrate the hierarchical importance of these metabolic pathways with respect to the biosynthesis of 1C-THF.

      Strengths:

      This study uses elegant bacterial genetics to confirm that 3 distinct metabolic pathways are critical for 1C-THF synthesis in L. monocytogenes, and the lack of either one of these pathways compromises bacterial growth and virulence. The study uses a combination of in vitro growth assays, macrophage-CFU assays, and murine infection models to demonstrate this.

      Weaknesses:

      (1) The primary finding of the study is that the perturbation of any of the 3 metabolic pathways important for the synthesis of 1C-THF results in reduced growth and virulence of L. monocytogenes. However, there is no evidence demonstrating the levels of 1C-THF in the various knockouts and suppressor mutants used in this study. It is important to measure the levels of this metabolite (ideally using mass spectrometry) in the various knockouts and suppressor mutants, to provide strong causality.

      (2) The story becomes a little hard to follow since macrophage-CFU assays and murine infection model data precede the in vitro growth assays. The manuscript would benefit from a reorganization of Figures 2,3, and 4 for better readability and flow of data.

    1. Reviewer #3 (Public review):

      Summary:

      This is an extremely important manuscript in the evolution of cerebral perfusion imaging using Arterial Spin Labelling (ASL). The number of subjects that were scanned has provided the authors with a unique opportunity to explore many potential associations between regional cerebral blood flow (CBF) and clinical and demographic variables.

      Strengths:

      The major strength of the manuscript is the access to an unprecedentedly large cohort of subjects. It demonstrates the sensitivity of regional tissue blood flow in the brain as an important marker of resting brain function. In addition, the authors have demonstrated a thorough analysis methodology and good statistical rigour.

      Weaknesses:

      This reviewer did not identify any major weaknesses in this work.

    1. Reviewer #3 (Public review):

      Summary:

      Ceravolo et al. employed functional magnetic resonance imaging (fMRI) to examine how the temporal voice areas (TVA) in the human brain respond to vocalizations from different nonhuman primate species. Their findings reveal that the human TVA is not only responsible for human vocalizations but also exhibits sensitivity to the vocalizations of other primates, particularly chimpanzee vocalizations sharing acoustic similarities with human voices, which offers compelling evidence for cross-species vocal processing in the human auditory system. Overall, the study presents intellectually stimulating hypotheses and demonstrates methodological originality. However, the current findings are not yet solid enough to fully support the proposed claims, and the presentation could be enhanced for clarity and impact.

      Strengths:

      The study presents intellectually stimulating hypotheses and demonstrates methodological originality.

      Weaknesses:

      (1) The analysis of the fMRI data does not account for the participants' behavioral performance, specifically their reaction times (RTs) during the species categorization task.

      (2) The figure organization/presentation requires significant revision to avoid confusion and redundancy.

    1. Reviewer #3 (Public review):

      Summary:

      In this study, authors utilize biophysical modeling to investigate differences in free energies and nucleosomal configuration probability density of CpG islands and nonmethylated regions in the genome. Toward this goal, they develop and apply the cgNA+ coarse-grained model, an extension of their prior molecular modeling framework.

      Strengths:

      The study utilizes biophysical modeling to gain mechanistic insight into nucleosomal occupancy differences in CpG and nonmethylated regions in the genome.

      Weaknesses:

      Although the overall study is interesting, the manuscripts need more clarity in places. Moreover, the rationale and conclusion for some of the analyses are not well described.

      Comments on revised version:

      The authors have addressed my concerns.

    1. Reviewer #3 (Public review):

      Summary:

      This study examined how young children with minimal reading instruction process letters, focusing on their familiarity with letter shapes, knowledge of letter names, and visual discrimination of upright versus inverted letters. Across four experiments, kindergarten and Grade 1 children could identify the correct orientation of letters even without knowing their names.

      Strengths:

      This study addresses an important research gap by examining whether children develop letter familiarity prior to formal literacy instruction and how this skill relates to reading-related cognitive abilities. By emphasizing letter familiarity alongside letter recognition, the study highlights a potentially overlooked yet important component of emergent literacy development.

      Weaknesses:

      The study's methods and results do not effectively test its stated research goals. Reading ability was not directly measured; instead, the authors inferred its relationship with reading from correlations between letter familiarity and reading-related cognitive measures, which limits the validity of their conclusions. Furthermore, the analytical approach was rather limited, relying primarily on simple and partial correlations without employing more advanced statistical methods that could better capture the underlying relationships.

      Major Comments:

      (1) Limited Novelty and Unclear Theoretical Contribution:

      The authors aim to challenge the view that children acquire letter shape knowledge only through formal literacy instruction, but similar questions regarding letter familiarity have already been explored in previous research. The manuscript does not clearly articulate how the present study advances beyond existing findings or why examining letter familiarity specifically before formal instruction provides new theoretical insight. Moreover, if letter familiarity and letter recognition are treated as distinct constructs, the authors should better justify their differentiation and clarify the theoretical significance of focusing on familiarity as an independent component of emergent literacy.

      (2) Overgeneralization to Reading Ability:

      Although the study measured several literacy-related cognitive skills and examined correlations with letter familiarity, it did not directly assess children's reading ability, as participants had not yet received formal literacy instruction. Therefore, the conclusion that letter familiarity influences reading skills (e.g., Line 519: "Our results are broadly consistent with previous work that has highlighted print letter knowledge as a strong predictor of future reading skills") is not fully supported and should be clarified or revised. To draw conclusions about the impact on reading ability, a longitudinal study would be more appropriate, assessing the relationship between letter familiarity and reading skills after children have received formal literacy instruction. If a longitudinal study is not feasible, measuring familial risk for dyslexia could provide an alternative approach to infer the potential influence of letter familiarity on later reading development.

      (3) Confusing and Limited Analytical Approach with Potential for More Sophisticated Modeling:

      The study employs a confusing analytical approach, alternating between simple correlational analyses and group-based comparisons, which may introduce circularity - for example, defining high vs. low familiarity groups partly based on performance differences in upright versus inverted letters and then observing a visual search advantage for upright letters within these groups. Moreover, the analyses are relatively simple: although multiple linear regression is mentioned, the results are not fully reported. These approaches may not fully capture the complex relationships among letter familiarity, recognition, visual search performance, RAN, and other covariates. More sophisticated modeling, such as mixed-effects models to account for repeated measures, structural equation modeling to examine latent constructs, or multivariate approaches jointly modeling familiarity and recognition effects, could provide a clearer understanding of the unique contribution of letter shape familiarity to early literacy outcomes. In addition, a large number of correlations were conducted without correction for multiple comparisons, which may increase the risk of false positives and raise concerns about the reliability of some significant findings.

    1. Reviewer #3 (Public review):

      Despite the abundance of RNA velocity tools, there are still major limitations, and there is strong skepticism about the results these methods lead to. In this paper, the authors try to address some limitations of current RNA velocity approaches by proposing a unified framework to jointly infer transcriptional and splicing dynamics. The method is then benchmarked on 6 real datasets against the most popular RNA velocity tools.

      While the approach has the potential to be of interest for the field, and may present improvements compared to existing approaches, there are some major limitations that should be addressed, particularly concerning the benchmark (see major comment 1).

      Major comments:

      (1) My main criticism concerns the benchmarking: real data lack a ground truth, and are absolutely not ideal for comparing methods, because one can only speculate what results appear to be more plausible.<br /> A solid and extensive simulation study, which covers various scenarios and possibly distinct data-generating models, is needed for comparing approaches. The authors should check, for example, the simulation studies in the BayVel approach (Section 4, BayVel: A Bayesian Framework for RNA Velocity Estimation in Single-Cell Transcriptomics). Clearly, all methods should be included in the simulation.

      (2) Related to the above: since a ground truth is missing, the real data analyses need to be interpreted with caution. I recommend avoiding strong statements, such as "successfully captures the correct gene dynamics", or "accurately infer", in favour of milder statements supported by the data, such as "... aligns with the biological processes described" (as in page 12), or "results are compatible with current biological knowledge", etc...

      (3) Many methods perform RNA velocity analyses. While there is a brief description, I think it'd be useful to have a schematic summary (e.g., via a Table) of the main conceptual, mathematical, and computational characteristics of each approach.

      (4) Related to the above: I struggled to identify the main conceptual novelty of TSvelo, compared to existing approaches. I recommend explaining this aspect more extensively.

      (5) A computational benchmark is missing; I'd appreciate seeing the runtime and memory cost of all methods in a couple of datasets.

      (6) I think BayVel (mentioned above) should be added to the list of competing methods (both in the text and in the benchmarks). The package can be found here: https://github.com/elenasabbioni/BayVel_pkgJulia .

    1. Reviewer #3 (Public review):

      Summary:

      The authors use fluorescent microscopy and fluorescent markers to investigate the requirement of P-bodies during growth on methanol, a common substrate available on plant leaves, by using a yeast edc3 mutant defective in P-body formation. Growth on methanol upregulates the transcription of methanol metabolic genes, which accumulate in granular structures, as observed by microscopy. Co-localization of P-bodies and granules was quantified and described as dynamically enhanced during oxidative stress. Ultimately, the authors suggest a model where methanol induces the accumulation of methanol-induced mRNAs in cytosolic granules, which dynamically interact with P-bodies, especially during oxidative stress, to protect the mRNAs from degradation. However, this model is not strongly supported by the provided data, as the quantification of the co-localization between different markers (of organelles and between P-body and granules) is not well presented or described in the text.

      Considering that there is only a small EDC3-dependent overlap between P-bodies and mimRNA granules, the claim that P-bodies regulate mimRNAs is not fully justified. Rather, EDC3 could also be involved in mimRNA granule formation, independent of P-bodies.

      Strengths:

      (1) The authors could show convincingly that P-bodies (using a P-body-deficient edc3-KO strain) are important for colonizing the plant phyllosphere and for the regulation of methanol-induced mRNAs (mimRNA).

      (2) The visualization of mimRNA granules and P-bodies using fluorescent markers is interesting and was validated by alternative methods, such as FISH staining.

      (3) The dynamic formation of mimRNA granules and P-bodies was demonstrated during growth on leaves and in artificial medium during oxidative stress. The mimRNA granules showed a similar dynamic as the abundances of several mimRNAs and their corresponding proteins.

      (4) A role of EDC3 in the formation of mimRNA granules was demonstrated. However, the link between P-bodies and mimRNA granules was not clearly shown.

      Weaknesses:

      (1) The study largely relies on fluorescent microscopy and co-localization measurements. However, the subcellular resolution is not very high; it is unclear how dot-like structures were measured and, importantly, how co-localization was quantified.

      (2) The text does not clarify to what degree P-bodies and mimRNA granules are different structures. Based on the images, the size of P-bodies and granules seems to be vastly different, making it unclear whether these structures are fused or separate, even if their markers are reported to overlap.

      (3) The evidence that mimRNA granules contain ribosome-free and ribosome-associated RNA is only based on inhibitors and microscopy, without providing further evidence measuring granule content by isolation and sequencing approaches.

      (4) Similarly, the co-localization with other organelle markers is not supported by quantitative data.

    1. Reviewer #3 (Public review):

      Summary:

      The authors propose three types of Gaussian process kernels that extend and generalize standard kernels used for sequence-function prediction tasks, giving rise to the connectedness, Jenga, and general product models. The associated hyperparameters are interpretable and represent epistatic effects of varying complexity. The proposed models significantly outperform the simpler baselines, including the additive model, pairwise interaction model, and Gaussian process with a geometric kernel, in terms of R^2.

      Strengths:

      (1) The demonstrated performance boost and improved scaling with increasing training data are compelling.

      (2) The hyperparameter selection step using the marginal likelihood, as implemented by the authors, seems to yield a reasonable hyperparameter combination that lends itself to biologically plausible interpretations.

      (3) The proposed kernels generalize existing kernels in domain-interpretable ways, and can correspond to cases that would not be "physical" in the original models (e.g., $\mu_p>1$ in the original connectedness model that allows modeling of anticorrelated phenotypes).

      Weaknesses:

      (1) While enabling uncertainty quantification is a key advantage of Gaussian processes, the authors do not present metrics specific to the predicted uncertainties; all metrics seem to concern the mean predictions only. It would be helpful to evaluate coverage metrics and maybe include an application of the uncertainties, such as in active learning or Bayesian optimization.

      (2) The more complex models, like the general product model, place a heavier burden on the hyperparameter selection step. Explicitly discussing the optimization routine used here would be helpful to potential users of the method and code.

    1. Reviewer #3 (Public review):

      Summary:

      This study presents a powerful and rigorous approach for characterizing stimulus discriminability throughout a sensory manifold, and is applied to the specific context of predicting color discrimination thresholds across the chromatic plane.

      Strengths:

      Color discrimination has played a fundamental role in studies of human color vision and for color applications, but as the authors note, it remains poorly characterized. The study leverages the assumption that thresholds should vary smoothly and systematically within the space, and validates this with their own tests and comparisons with previous studies.

      Weaknesses:

      The paper assumes that threshold variations are due to changes in the level of intrinsic noise at different stimulus levels. However, it's not clear to me why they could not also be explained by nonlinearities in the responses, with fixed noise. Indeed, most accounts of contrast coding (which the study is at least in part measuring because the presentation kept the adapt point close to the gray background chromaticity, and thus measured increment thresholds), assume a nonlinear contrast response function, which can at least as easily explain why the thresholds were higher for colors farther from the gray point. It would be very helpful if a section could be added that explains why noise differences rather than signal differences are assumed and how these could be distinguished. If they cannot, then it would be better to allow for both and refer to the variation in terms of S/N rather than N alone.

      Related to this point, the authors note that the thresholds should depend on a number of additional factors, including the spatial and temporal properties and the state of adaptation. However, many of these again seem to be more likely to affect the signal than the noise.

      An advantage of the approach is that it makes no assumptions about the underlying mechanisms. However, the choice to sample only within the equiluminant plane is itself a mechanistic assumption, and these could potentially be leveraged for deciding how to sample to improve the characterization and efficiency. For example, given what we know about early color coding, would it be more (or less) efficient to select samples based on a DKL space, etc?

    1. Reviewer #3 (Public review):

      Summary:

      Solyga, Zelechowski, and Keller present a concise report of an innovative study demonstrating clear visuomotor mismatch responses in ambulating humans, using a mobile EEG setup and virtual reality. Human subjects walked around a virtual corridor while EEGs were recorded. Occasionally, motion and visual flow were uncoupled, and this evoked a mismatch response that was strongest in occipitally placed electrodes and had a considerable signal-to-noise ratio. It was robust across participants and could not be explained by the visual stimulus alone.

      Strengths:

      This is an important extension of their prior work in mice, and represents an elegant translation of those previous findings to humans, where future work can inform theories of e.g., psychiatric diseases that are believed to involve disordered predictive processing. For the most part, the authors are appropriately circumspect in their interpretations and discussions of the implications. I found the discussion of the polarity differences they found in light of separate positive and negative prediction errors, intriguing.

      Weaknesses:

      The primary weaknesses rest in how the results are sold and interpreted.

      Most notably, the interpretation of the results of the comparison of visuomotor mismatches to the passive auditory oddball induced mismatch responses is inappropriate, as suboptimal electrode choices, unclear matching of trial numbers, and other factors. To clarify, regarding the auditory oddball portion in Figure 5, the data quality is a concern for the auditory ERPs, and the choice of Occipital electrodes is a likely culprit. Typically, auditory evoked responses are maximal at Cz or FCz, although these contacts don't seem to be available with this setup. In general, caution is warranted in comparing ERP peaks between two different sensory modalities - especially if attention is directed elsewhere (to a silent movie) during one recording and not during the other. The authors discuss this as a purely "qualitative" comparison in the text, which is appreciated, and do acknowledge the limitations within the results section, but the figure title and, importantly, the abstract set a different tone. At least, for comparisons between auditory mismatch and visuomotor mismatch, trial numbers need to be equated, as ERP magnitude can be augmented by noise (which reduces with increased numbers of trials in the average). And more generally, the size of the mismatch event at the scalp does not scale one-to-one with the size at the level of the neural tissue. One can imagine a number of variables that impact scalp level magnitudes, which are orthogonal to actual cortex-level activation - the size, spread, and polarity variance of the activated source (which all would diminish amplitude at the scalp due to polyphasic summation/cancelation). The variance of phase to a stimulus across trials (cross trial phase locking) vs magnitude of underlying power - the former, in theory, relates to bottom-up activity and the latter can reflect feedback (which has more variability in time across trials; the distance of the scalp electrode from the activated tissue (which, for the auditory system, would be larger (FCz to superior temporal gyrus) than for the visual system (O1 to V1/2)). None of this precludes the inclusion of the auditory mismatch, which is a strength of the study, but interpretations about this supporting a supremacy of sensory-motor mismatch - regardless of validity - are not warranted. I would recommend changing the way this is presented in the abstract.

      Otherwise, the data are of adequate quality to derive most of their conclusions.

      The authors claim that the mismatch responses emanate from within the occipital cortex, but I would require denser scalp coverage or a demonstration of consistent impedances across electrodes and across subjects to make conclusions about the underlying cortical sources (especially given the latencies of their peaks). In EEG, the distribution of voltage on the scalp is, of course, related to but not directly reflective of the distribution of the underlying sources. The authors are mostly careful in their discussion of this, but I would strongly recommend changing the work choice of "in occipital cortex" to "over occipital cortex" or even "posteriorly distributed". Even with very dense electrode coverage and co-registration to MRIs for the generation of forward models that constrain solutions, source localization of EEG signals is very challenging and not a simple problem. Given the convoluted and interior nature of human V1, the ability to reliably detect early evoked responses (which show the mismatch in mouse models) at the scalp in ERP peaks is challenging - especially if one is collapsing ERPs across subjects. And - given the latency of the mismatch responses, I'd imagine that many distributed cortical regions contribute to the responses seen at the scalp.

      I think that Figure 3C, but as a difference of visual mismatch vs halting flow alone (in the open loop) might be additionally informative, as it clarifies exactly where the pure "mismatch" or prediction error is represented.

      As a suggestion, the authors are encouraged to analyse time-frequency power and phase locking for these mismatch responses, as is common in much of the literature (see Roach et al 2008, Schizophrenia Bulletin). This is not to say that doing so will yield insights into oscillations per se, but converting the data to the time-frequency domain provides another perspective that has some advantages. It fosters translations to rodent models, as ERP peaks do not map well between species, but e.g., delta-theta power does (see Lee et al 2018, Neuropsychopharmacology; Javitt et al 2018, Schizophrenia research; Gallimore et al 2023, Cereb Ctx). Further, ERP peaks can be influenced by the actual neuroanatomy of an individual (especially for quantifying V1 responses). Time frequency analyses may aid in interpreting the "early negative deflection with a peak latency of 48 ms " finding as well.

      Finally, the sentence in the abstract that this paradigm " can trigger strong prediction error responses and consequently requires shorter recording 20 times would simplify experiments in a clinical setting" is a nice setup to the paper, but the very fact that one third of recordings had to be removed due to movement artifact, and that hairstyle modulates the recording SnR, is reason that this paradigm, using the reported equipment, may have limited clinical utility in its current form. Further, auditory oddball paradigms are of great clinical utility because they do not require explicit attention and can be recorded very quickly with no behavioral involvement of a hospitalized patient. This should be discussed, although it does not detract from the overall scientific importance of the study. The authors should reconsider putting this statement in the abstract.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Goicoechea et al. assesses the influence of hippocampal-network targeted TMS to parietal cortex on episodic memory using a meta-analytic approach. This is an important contribution to the literature, as the number of studies using this approach to modulate memory/hippocampal function has clearly increased since the initial publication by Wang et al. 2014. This manuscript makes an important contribution to the literature. In general, the analysis is straightforward and the conclusions are well-supported by the results; I have mostly minor comments/concerns.

      Strengths:

      (1) A meta-analysis across published work is used to evaluate the influence of hippocampal-network-targeted TMS in parietal cortex on episodic memory. By pooling results across studies, the meta-analytic effects demonstrate an influence of TMS on memory across the diversity of many details in study design (specific tasks, stimuli, TMS protocols, study populations).

      (2) Selectivity with regard to episodic memory vs. non-episodic memory tasks is evaluated directly in the meta-analysis.

      (3) The investigation into supplemental factors as predictors of TMS's influence on memory was tested. This is helpful given the diversity of study designs in the literature. This analysis helps to shed light on which study designs, e.g., TMS protocols, etc., are most effective in memory modulation.

      Weaknesses:

      (1) My only significant concern is how studies are categorized in the 'Timing' factor (when stimulation is applied). Currently, protocols in which TMS is administered across days are categorized as 'pre-encoding' in the Timing factor. This has the potential to be misleading and may lead to inaccurate conclusions. When TMS is administered across multiple days, followed by memory encoding and retrieval (often on a subsequent day), it is not possible to attribute the influence of TMS to a specific memory phase (i.e., encoding or retrieval) per se. Thus, labeling multi-day TMS studies as 'pre-encoding' may be misleading to readers, as it may imply that the influence of TMS is due to modulation of encoding mechanisms per se, which cannot be concluded. For example, multi-day TMS protocols could be labeled as 'pre-retrieval' and be similarly accurate. This approach also pools results from TMS protocols with temporal specificity (i.e., those applied immediately during encoding and not on board during memory testing) and without temporal specificity (i.e., the case of multi-day TMS) regarding TMS timing. Given the variety of paradigms employed in the literature, and to maximize the utility/accuracy of this analysis, one suggestion is to modify the categories within the Timing factor, e.g., using labels like 'Temporally-Specific' and 'Temporally Non-specific'. The 'Temporally-Specific' category could be subdivided based on the specific memory process affected: 'encoding', 'retrieval', or 'consolidation' (if possible). I think this would improve the accuracy of the approach and help to reach more meaningful conclusions, given the variety of protocols employed in the literature.

      (2) As the scope of the meta-analysis is limited to TMS applied to parietal or superior occipital cortex, it is important to highlight this in the Introduction/Abstract. The 'HITS' terminology suggests a general approach that would not necessarily be restricted to parietal/nearby cortical sites.

      Minor:

      (1) To reduce the number of study factors tested, data reduction was performed via Lasso regression to remove factors that were not unique predictors of the influence of TMS on memory. This approach is reasonable; however, one limitation is that factors strongly correlated with others (and predict less unique variance) will be dropped. This may result in a misrepresentation, i.e., if readers interpret factors left out of this analysis as not being strongly related to the influence of TMS on memory. I do see and appreciate the paragraph in the Discussion which appropriately addresses this issue. However, it may be worth also considering an alternative analysis approach, if the authors have not already done so, which explicitly captures the correlation structure in the data (i.e., shown in Figure S2) using a tool like PCA or an appropriate factor analysis. Then, this shared covariance amongst factors can be tested as predictors of the influence of TMS - e.g., by testing whether component scores for dominant PCs are indeed predictive of the influence of TMS. This complementary approach would capture rather than obfuscate the extent to which different factors are correlated and assess their joint (rather than independent) influence on memory, potentially resulting in more descriptive conclusions. For example, TMS intensity and protocol may jointly influence memory.

      (2) Given the specific focus on TMS applied to parietal cortex to modulate hippocampal and related network function, it would be fruitful if the authors could consider adding discussion/speculation regarding whether this approach may be effectively broadened using other stimulation methods (e.g., tACS, tDCS), how it may compare to other non-invasive brain stimulation methods with depth penetration to target hippocampal function directly (transcranial temporal interference, or transcranial focused ultrasound), and/or how or whether other stimulation sites may or may not be effective.

      (3) Studies were only included in the meta-analysis if they contained objective episodic memory tests. How were studies handled that included both objective and subjective memory, or other non-episodic memory measures? For example, Yazar et al. 2014 showed no influence of TMS on objective recall, but an impairment in subjective confidence. I assume confidence was not included in the meta-analysis. Similarly, Webler et al. 2024 report results from both the mnemonic similarity task (presumably included) and a fear conditioning paradigm (presumably excluded). Please clarify in the methods how these distinctions were handled.

      (4) The analysis comparing memory to non-memory measures is important, showing the specificity of stimulation. Did the authors consider further categorizing the non-memory tasks into distinct domains (i.e., language, working memory, etc.)? If possible, this could provide a finer detail regarding the selectivity of influences on memory vs. other aspects of cognition. It is likely that other aspects of cognition dependent on hippocampal function may be modulated as well, i.e., tasks with high relational/associative processing demands.

      (5) In the analysis of the Intensity factor, how were studies using Active (rather than resting) MT categorized? Only resting MT is mentioned in Table S1. This is important as the original theta-burst TMS protocol from Huang et al. 2005 determines intensity based on Active Motor Threshold.

      (6) Is there a reason why the study by Koen et al. 2018 (Cognitive Neuroscience) was not included? TMS was performed during encoding to the left AG, and objective memory was assessed, so it would seemingly meet the inclusion criterion.

      (7) It would be helpful to briefly differentiate the current meta-analysis from that performed by Yeh & Rose (How can transcranial magnetic stimulation be used to modulate episodic memory?: A systematic review and meta-analysis, 2019, Frontiers in Psychology) (other than being more current).

      (8) For transparency and to facilitate further understanding of the literature and potential data re-use, it would be great if the authors consider sharing a supplementary table or file that describes how individual studies/memory measures were categorized under the factors listed in Table S1.

    1. Reviewer #3 (Public review):

      Summary:

      This article presented a novel computer model to address an important question in the field of brain stimulation, using the magnetic stimulation iTBS protocol as an example, how stimulation parameters, frequency in particular, interfere with the intrinsic brain oscillations via plastic mechanisms. Brain oscillation is a critical feature of functional brains and its alteration signals the onset of many neuropsychiatric diseases or certain brain states. The authors suggested with their model that harmonic and subharmonic stimulations close to the individual alpha frequency achieved strong broadband power suppression.

      Strengths:

      The authors focused on the cortico-thalamic circuitry and managed to generate alpha oscillations in their four-population model. By adding the non-monotonic calcium-based BCM rule, they have also achieved both homeostasis and plasticity in response to magnetic stimulation. This work combined computer simulations and statistical analysis to demonstrate the changes in network architecture and network dynamics triggered by varied magnetic stimulation parameters. By delivering the iTBS protocol to the cortical excitatory population, the key findings are that harmonic and subharmonic stimulations close to the individual alpha frequency (IAF) achieved strong broadband power suppression. This resulted from increased synaptic weights of the corticothalamic feed-forward inhibitory projections, which were mediated by the calcium dynamics perturbed by iTBS magnetic stimulation. This finding endorsed the importance of applying customized stimulation to patients based on their IAFs and suggested the underlying mechanism at the circuitry level.

      Weaknesses:

      The drawbacks of this work are also obvious. Model validation and biological feasibility justification should be better addressed. The primary outcome of their model is the broadband power suppression and the optimal effects of (sub)harmonic stimulation frequency, but it lacks immediate empirical support in the literature. To the best of my knowledge, many alpha frequency tACS studies reported to increase but not suppress the power of certain brain oscillations. A review by Wang et al., 2024 (Frontiers in System Neuroscience) suggested hybrid changes to different brain oscillations by magnetic stimulation. Developing a model to fully capture such changes might be out of the scope of the present study and challenging in the entire field, but it undermines the quality of the present work if not extensively discussed and justified. Clarity and reproducibility of the work can be improved. Although it is intriguing to see how the calcium-dependent BCM plasticity mediates such changes, the writing of the methods part is not hard to follow. It was also not clear why only two populations were considered in the thalamus, how the entire network was connected, or how the LTP/LTD threshold alters with calcium dynamics. The figures were unfortunately prepared in a nested manner. The crowded layout and the tiny font sizes reduce the clarity. The third point comes to contextualization and comparison to existing models. It will strengthen the work if the authors could have compared their work to other TMS modeling work with plasticity rules, e.g, Anil et al., 2024. Besides, magnetic stimulation is unique in being supra-threshold and having focality compared to other brain stimulation modalities, e.g., tDCS and tACS, but they may share certain basic neural mechanisms if accounting for certain parameters, e.g., frequency. A solid literature review and discussion on this part may help the field better perceive the value and potential limitations of this work.

  2. Nov 2025
    1. Reviewer #3 (Public Review):

      In this manuscript, Verma et al. set out to visualize cytoplasmic dynein in living cells and describe their behaviour. They first generated heterozygous CRISPR-Cas9 knock-ins of DHC1 and p50 subunit of dynactin and used spinning disk confocal microscopy and TIRF microscopy to visualize these EGFP-tagged molecules. They describe robust localization and movement of DHC and p50 at the plus tips of MTs, which was abrogated using SiR tubulin to visualize the pool of DHC and p50 on the MTs. These DHC and p50 punctae on the MTs showed similar, highly processive movement on MTs. Based on comparison to inducible EGFP-tagged kinesin-1 intensity in Drosophila S2 cells, the authors concluded that the DHC and p50 punctae visualized represented 1 DHC-EGFP dimer+1 untagged DHC dimer and 1 p50-EGFP+3 untagged p50 molecules.

    1. Reviewer #3 (Public review):

      Summary:

      Deletion of the TMA-sensor TAAR5 results in circadian alterations in the gene expression, particularly in the olfactory bulb; plasma hormones; and neurobehaviors.

      Strengths:

      Genetic background was rigorously controlled.

      Comprehensive characterization.

      Impact:

      These data add to the growing literature pointing to a role for the TMA/TMAO pathway in olfaction and neurobehavior.

    1. Reviewer #3 (Public review):

      In this paper, the authors investigate how the RNA-binding protein Ssd1 and calorie restriction (CR) influence yeast replicative lifespan, with a particular focus on age-dependent iron uptake and activation of the iron regulon. For this, they use microfluidics-based single-cell imaging to monitor replicative lifespan, protein localization, and intracellular iron levels across aging cells. They show that both Ssd1 overexpression and CR act through a shared pathway to prevent the nuclear translocation of the iron-regulon regulator Aft1 and the subsequent induction of high-affinity iron transporters. As a result, these interventions block the age-related accumulation of intracellular free iron, which otherwise shortens lifespan. Genetic and chemical epistasis experiments further demonstrate that suppression of iron regulon activation is the key mechanism by which Ssd1 and CR promote replicative longevity.

      Overall, the paper is technically rigorous, and the main conclusions are supported by a substantial body of experimental data. The microfluidics-based assays in particular provide compelling single-cell evidence for the dynamics of Ssd1 condensates and iron homeostasis.

      My main concern, however, is that the central reasoning of the paper-that Ssd1 overexpression and CR prevent the activation of the iron regulon-appears to be contradicted by previous findings, and the authors may actually be misrepresenting these studies, unless I am mistaken. In the manuscript, the authors state on two occasions:

      "Intriguingly, transcripts that had altered abundance in CR vs control media and in SSD1 vs ssd1∆ yeast included the FIT1, FIT2, FIT3, and ARN1 genes of the iron regulon (8)"

      "Ssd1 and CR both reduce the levels of mRNAs of genes within the iron regulon: FIT1, FIT2, FIT3 and ARN1 (8)"

      However, reference (8) by Kaeberlein et al. actually says the opposite:

      "Using RNA derived from three independent experiments, a total of 97 genes were observed to undergo a change in expression >1.5-fold in SSD1-V cells relative to ssd1-d cells (supplemental Table 1 at http://www.genetics.org/supplemental/). Of these 97 genes, only 6 underwent similar transcriptional changes in calorically restricted cells (Table 2). This is only slightly greater than the number of genes expected to overlap between the SSD1-V and CR datasets by chance and is in contrast to the highly significant overlap in transcriptional changes observed between CR and HAP4 overexpression (Lin et al. 2002) or between CR and high external osmolarity (Kaeberlein et al. 2002). Intriguingly, of the 6 genes that show similar transcriptional changes in calorically restricted cells and SSD1-V cells, 4 are involved in iron-siderochrome transport: FIT1, FIT2, FIT3, and ARN1 (supplemental Table 1 at http://www.genetics.org/supplemental/)."

      Although the phrasing might be ambiguous at first reading, this interpretation is confirmed upon reviewing Matt Kaeberlein's PhD thesis: https://dspace.mit.edu/handle/1721.1/8318

      (page 264 and so on)

      Moreover, consistent with this, activation of the iron regulon during calorie restriction (or the diauxic shift) has also been observed in two other articles:

      https://doi.org/10.1016/S1016-8478(23)13999-9

      https://doi.org/10.1074/jbc.M307447200

      Taken together, these contradictory data might blur the proposed model and make it unclear how to reconcile the results.

      Comments on revisions:

      The authors successfully addressed my requests and concerns

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript presents an ambitious integration of multiple artificial intelligence technologies to examine social learning in naturalistic mother-infant interactions. The authors aimed to quantify how information flows between mothers and infants across different communicative modalities and timescales, using speech analysis (Whisper), pose detection (MMPose), facial expression recognition, and semantic modeling (GPT-2) in a unified analytical framework. Their goal was to provide unprecedented quantitative precision in measuring behavioral coordination and information transfer patterns during social learning, moving beyond traditional observational coding approaches to examine cross-modal coordination patterns and semantic contingencies in real-time across multiple temporal scales.

      Strengths:

      The integration of multiple AI tools into a coherent analytical framework represents a genuine methodological breakthrough that advances our capabilities for studying complex social phenomena. The authors successfully analyzed naturalistic interactions at a scale and level of detail that was not previously possible, examining 33 5-month-old and 34 15-month-old dyads across multiple modalities simultaneously. This sophisticated analytical pipeline, combining speech analysis, semantic modeling, pose detection, and facial expression recognition, provides new capabilities for studying social interactions that extend far beyond what traditional observational coding could achieve.

      The specific findings about hierarchical information flow patterns across different timescales are particularly valuable and would not have been possible without this sophisticated analytical approach. The discovery that mothers reduce low-level sensory input when infants focus on objects, while increases in object naming and information rate associate with sustained attention, provides new empirical insights into how social learning unfolds in naturalistic settings. The temporal dynamics analyses reveal interesting patterns of behavioral coordination that extend our understanding of how caregivers adaptively modify their responses to support infant attention across multiple communicative channels simultaneously.

      The scale of data collection and the comprehensive multi-modal approach are impressive, opening up new possibilities for understanding social learning processes. The methodological innovations demonstrate how modern computational tools can be systematically integrated to reveal new quantitative aspects of well-established developmental phenomena. The computational features developed for this study represent innovative applications of information theory and computer vision to developmental research.

      Weaknesses:

      Several major limitations affect the reliability and interpretability of the findings. The sample sizes of 33-34 dyads per age group are relatively modest for the complexity of analyses performed, which include eight different features examined across various time lags with extensive statistical comparisons. The study lacks adequate power analysis to demonstrate whether these sample sizes are sufficient to detect meaningful effect sizes, which is particularly concerning given the multiple comparison burden inherent in this type of multi-modal, multi-timescale analysis.

      The statistical framework presents several concerns that limit confidence in the findings. Inter-rater reliability for gaze coding shows substantial but not excellent agreement (κ = 0.628), with only 22% of the data undergoing double coding. Given that gaze coding forms the foundation for all subsequent analyses of joint attention and information flow, this reliability level may systematically influence findings. The multiple comparison correction strategies vary inconsistently across different analyses, with some using FDR correction and others treating lower-level and higher-level features separately. Additionally, object naming analyses employed one-sided tests (p<0.05) while others used two-sided tests (p<0.025) without clear theoretical or methodological justification for these differences.

      The validation of AI tools in the specific context of mother-infant interactions is insufficient and represents a critical limitation. The performance characteristics of Whisper with infant-directed speech, the precision of MMPose for detecting facial landmarks in young children, and the accuracy of facial expression recognition tools in infant contexts are not adequately validated for this population. These sophisticated tools may not perform optimally in the specific context of mother-infant interactions, where speech patterns, facial expressions, and body movements may differ substantially from their training data.

      The theoretical positioning requires substantial refinement to better acknowledge the extensive existing literature. The authors are working within a well-established theoretical framework that has long recognized social learning as an active, bidirectional process. The joint attention literature, beginning with foundational work by Bruner (1983) and continuing through contemporary theories of social cognition by researchers like Tomasello (1995), has emphasized the communicative and adaptive nature of attentional processes. The scaffolding literature, including seminal work by Wood, Bruner, and Ross (1976), has demonstrated how parents adjust their support based on children's developing competencies. Moreover, there is a substantial body of micro-analytic research that has employed sophisticated quantitative methods to study social interactions, including work by Stern (1985) on microsecond-level interactions and research using time-series methods to examine dyadic coordination patterns.

      The cross-correlation analyses have inherent limitations for causal inference that are not adequately acknowledged. The interpretation of temporal correlation patterns in terms of directional influence requires more cautious consideration, as observational data have fundamental constraints for establishing causality. The ecological validity is also questionable due to the laboratory tabletop interaction paradigm and the sample's demographic homogeneity, consisting primarily of white, highly educated, high-income mothers.

    1. Reviewer #3 (Public review):

      The paper by Maggi et al. builds on earlier work by the team (Paatero et al., 2018) on oriented junction-based lamellipodia (JBL). They validate the role of JBLs in guiding endothelial cell rearrangements and utilise high-resolution time-lapse imaging of novel transgenic strains to visualise the formation of distal junctions and their subsequent fusion with proximal junctions. Through functional analyses of Arp2/3 and actomyosin contractility, the study identifies JBLs as localized mechanical hubs, where protrusive forces drive distal junction formation, and actomyosin contractility brings together the distal and proximal junctions. This forward movement provides a unique directionality which would contribute to proper lumen formation, EC orientation, and vessel stability during these early stages of vessel development.

      Time-lapse live imaging of VEC, ZO-1, and actin reveals that VEC and ZO-1 are initially deposited at the distal junction, while actin primarily localizes to the region between the proximal and distal sites. Using a photoconvertible Cdh5-mClav2 transgenic line, the origin of the VEC aggregates was examined. This convincingly shows that VE-cadherin was derived from pools outside the proximal junctions. However, in addition to de novo VEC derived from within the photoconverted cell, could some VEC also be contributed by the neighbouring endothelial cell to which the JBL is connected?

      As seen for JAILs in cultured ECs, the study reveals that Arp2/3 is enhanced when JBLs form by live imaging of Arpc1b-Venus in conjunction with ZO-1 and actin. Therefore Arp2/3 likely contributes to the initial formation of the distal junction in the lamellopodium.

      Inhibiting Arp2/3 with CK666 prevents JBL formation, and filopodia form instead of lamellopodia. This loss of JBLs leads to impaired EC rearrangements.

      Is the effect of CK666 treatment reversible? Since only a short (30 min) treatment is used, the overall effect on the embryo would be minimal, and thus washing out CK666 might lead to JBL formation and normalized rearrangements, which would further support the role of Arp2/3.

      From the images in Figure 4d it appears that ZO-1 levels are increased in the ring after CK666 treatment. Has this been investigated, and could this overall stabilization of adhesion proteins further prevent elongation of the ring?

      To explore how the distal and proximal junctions merge, imaging of spatiotemporal imaging of Myl9 and VEC is conducted. It indicates that Myl9 is localized at the interjunctional fusion site prior to fusion. This suggests pulling forces are at play to merge the junctions, and indeed Y 27632 treatment reduces or blocks the merging of these junctions.

      For this experiment, a truncated version of VEC was use,d which lacks the cytoplasmic domain. Why have the authors chosen to image this line, since lacking the cytoplasmic domain could also impair the efficiency of tension on VEC at both junction sites? This is as described in the discussion (lines 328-332).

      Since the time-lapse movies involve high-speed imaging of rather small structures, it is understandable that these are difficult to interpret. Adding labels to indicate certain structures or proteins at essential timepoints in the movies would help the readers understand these.

    1. Reviewer #3 (Public review):

      The article's main question is how humans handle spurious transitions between object features when learning a predictive model for decision-making. The authors conjecture that humans use semantic knowledge about plausible causal relations as an inductive bias to distinguish true from spurious links.

      The authors simulate a successor feature (SF) model, demonstrating its susceptibility to suboptimal learning in the presence of spurious transitions caused by co-occurring but independent causal factors. This effect worsens with an increasing number of planning steps and higher co-occurrence rates. In a preregistered study (N=100), they show that humans are also affected by spurious transitions, but perform somewhat better when true transitions occur between features within the same semantic category. However, no evidence for the benefits of semantic congruency was found in test trials involving novel configurations, and attempts to model these biases within an SF framework remained inconclusive.

      Strengths:

      (1) The authors tackle an important question.

      (2) Their simulations employ a simple yet powerful SF modeling framework, offering computational insights into the problem.

      (3) The empirical study is preregistered, and the authors transparently report both positive and null findings.

      (4) The behavioral benefit during learning in the congruent vs incongruent condition is interesting

      Weaknesses:

      (1) A major issue is that approximately one quarter of participants failed to learn, while another quarter appeared to use conjunctive or configural learning strategies. This raises questions about the appropriateness of the proposed feature-based learning framework for this task. Extensive prior research suggests that learning about multi-attribute objects is unlikely to involve independent feature learners (see, e.g., the classic discussion of configural vs. elemental learning in conditioning: Bush & Mosteller, 1951; Estes, 1950).

      (2) A second concern is the lack of explicit acknowledgment and specification of the essential role of the co-occurrence of causal factors. With sufficient training, SF models can develop much stronger representations of reliable vs. spurious transitions, and simple mechanisms like forgetting or decay of weaker transitions would amplify this effect. This should be clarified from the outset, and the occurrence rates used in all tasks and simulations need to be clearly stated.

      (3) Another problem is that the modeling approach did not adequately capture participant behavior. While the authors demonstrate that the b parameter influences model behavior in anticipated ways, it remains unclear how a model could account for the observed congruency advantage during learning but not at test.

      (4) Finally, the conceptualization of semantic biases is somewhat unclear. As I understand it, participants could rely on knowledge such as "the shape of a building robot's head determines the kind of head it will build," while the type of robot arm would not affect the head shape. However, this assumption seems counterintuitive - isn't it plausible that a versatile arm is needed to build certain types of robot heads?

    1. Reviewer #3 (Public review):

      This is an intriguing paper that reports a potentially novel mechanism of reversible phosphorylation of AGC kinase activation segments by changes in sodium and potassium ion concentrations. The authors show for a variety of AGC kinases that incubating diverse eukaryotic cell types in 450 and 600 mM NaCl results in dephosphorylation of the activation segment. In contrast, phosphorylation of the activation segment for p38 kinases increases. No dephosphorylation of AGC kinases activation segment occurs with sorbitol, thus dephosphorylation is independent of osmotic pressure. This effect is rapidly reversed when cells are returned to normal media and the AGC kinase is re-phosphorylated. This phenomenon is also observed for eukaryotic cell-free extracts, and is induced by other alkali metal ions but not lithium. Importantly, no dephosphorylation is observed in the E. coli cell extract.

      The authors also make the following observations:

      (1) Dephosphorylation is dependent on PP2A.

      (2) Re-phosphorylation is not dependent on PDK1, ATP, and Mg2+.

      (3) The K/Na-dependent dephosphorylation/phosphorylation is observed even for relatively short protein segments that incorporate the activation segment.

      (4) The phosphorylation observed occurs in cis, i.e., only the activation segment of the protein that is dephosphorylated becomes phosphorylated on reduced KCl. An activation segment from a different length protein is not phosphorylated.

      (5) No evidence for auto(de)phosphorylation.

      (6) The authors propose three models to explain the dephosphorylation/phosphorylation mechanism. Their experimental data suggest that an acceptor molecule is responsible for accepting the phosphate group and then transferring it back to the activation segment.

      Comments on results and experiments:

      (1) Are these results an artefact of their assay? The authors mainly use immunoblotting to assess the phosphorylation status of AGC kinase. However, an assay artefact would not show a difference between control and okadaic-acid-treated cells (Figure 3A). Moreover, the authors show dephosphorylation/phosphorylation using radiolabelling (Figure 6C).

      (2) Preferably, the authors would have a control to test dephosphorylation/phosphorylation does not occur in the absence of cell extract. The E. coli extract shows that dephosphorylation/phosphorylation is specific to eukaryotic cell extracts.

      (3) The authors should show that dephosphorylation/phosphorylation occurs on the same residue of the activation segment (by mass spec).

      (4) Since phosphorylation levels are assessed using immunoblots, the levels of dephosphorylation/phosphorylation are not quantified. What proportion of AGC kinase is phosphorylated initially (before Na/K-induced dephosphorylation)?

      (5) The experiment to test autophosphorylation (Figure 4, Figure supplement 1B) is not completely convincing because the authors use a cell line with a PKN1 mutant knock-in. Possibly PKN2 or another AGC kinase could phosphorylate the proteins expressed from the transfection vector - although the authors do test with AGC kinase inhibitors.

      (6) What are the two bands in Figure 6C (lanes 'Con' and 'diluted)? Only one band disappears with KCl. There is one band in Figure 6 Supplement 2.

      In summary, the results presented in this paper are highly unusual. Generally, the manuscript is well written and the figures are clear. The authors have performed numerous experiments to understand this process. These appear robust, and most of their data lend credence to their model in Figure 6Aiii. The idea that a phosphate group can be transferred by an enzyme onto/between molecule(s) is not unprecedented, i.e., phosphoglycerate mutase catalyses 3-phosphoglycerate isomerisation through a phosphorylenzyme intermediate. It will be important to identify this transfer enzyme. One observation that does not fit easily with their model is the role of PP2A. Since protein dephosphorylation by PP2A does not involve a phosphorylenzyme intermediate, if the initial dephosphorylation reaction is catalysed by PP2A, it is very difficult to envision how the free phosphate is then used to phosphorylate the activation segment.

    1. Reviewer #3 (Public review):

      Ji et al. report a novel and interesting light-induced transcriptional response pathway in the eyeless roundworm Caenorhabditis elegans that involves a cytochrome P450 family protein (CYP-14A5) and functions independently from previously established photosensory mechanisms. Although the exact mechanisms underlying photoactivation of this pathway remain unclear, light-dependent induction of CYP-14A5 requires bZIP transcription factors ZIP-2 and CEBP-2 that have been previously implicated in worm responses to pathogens. The authors then suggest that light-induced CYP-14A5 activity in the C. elegans hypoderm can unexpectedly and cell-non-autonomously contribute to retention of an olfactory memory. Finally, the authors demonstrate the potential for this pathway to enable robust light-induced control of gene expression and behavior, albeit with some restrictions. Overall, the evidence supporting the claims of the authors is convincing, and the authors' work suggests numerous interesting lines of future inquiry.

      (1) The authors determine that light, but not several other stressors tested (temperature, hypoxia, and food deprivation), can induce transcription of cyp-15A5. The authors use these experiments to suggest the potential specificity of the induction of CYP-14A5 by light. Given the established relationship between light and oxidative stress and the authors' later identification of ZIP-2, testing the effect of an oxidative stressor or pathogen exposure on transcription of cyp-14A5 would further strengthen the validity of this statement and potentially shed some insight into the underlying mechanisms.

      (2) The authors suggest that short-wavelength light more robustly increases transcription of cyp-14A5 compared to equally intense longer wavelengths (Figure 2F and 2G). Here, however, the authors report intensities in lux of wavelengths tested. Measurements of and reporting the specific spectra of the incident lights and their corresponding irradiances (ideally, in some form of mW/mm2 - see Ward et al., 2008, Edwards et al., 2008, Bhatla and Horvitz, 2015, De Magalhaes Filho et al., 2018, Ghosh et al., 2021, among others, for examples) is critical for appropriate comparisons across wavelengths and facilitates cross-checking with previous studies of C. elegans light responses. On a related and more minor note, the authors place an ultraviolet shield in front of a visible light LED to test potential effects of ultraviolet light on transcription of cyp-14A5. A measurement of the spectrum of the visible light LED would help confirm if such an experiment was required. Regardless, the principal conclusions the authors made from these experiments will likely remain unchanged.

      (3) The authors report an interesting observation that animals exposed to ambient light (~600 lux) exhibit significantly increased memory retention compared to those maintained in darkness (Figure 4). Furthermore, light deprivation within the first 2-4 hours after learning appears to eliminate the effect of light on memory retention. These processes depend on CYP-14A5, loss of which can be rescued by re-expression of cyp-14A5 in mutant animals using a hypoderm-specific- and non-light-inducible- promoter. Taken together, the authors argue convincingly that hypodermal expression of cyp-14A5 can contribute to the retention of the olfactory memory. More broadly, these experiments suggest that cell-non-autonomous signaling can enhance retention of olfactory memory. How retention of the olfactory memory is enhanced by light generally remains unclear. In addition, the authors' experiments in Figure 1B demonstrate - at least by use of the transcriptional reporter - that light-dependent induction of cyp-14A5 transcription at 500 - 1000 lux is minimal and especially so at short duration exposures. Additional experiments, including verification of light-dependent changes in CYP-14A5 levels in the olfactory memory behavioral setup, would help further interpret these otherwise interesting results.

      (4) The experiments in Figure 4 nicely validate the usage of the cyp-14A5 promoter as a potential tool for light-dependent induction of gene expression. Despite the limitations of this tool, including those presented by the authors, it could prove useful for the community.

    1. Reviewer #3 (Public review):

      Summary:

      The article develops a CNN-based metastasis scoring system to distinguish cell subsets with high brain metastatic potential and validates its performance using patient platelet data. The robustness of this approach is further demonstrated across diverse single-cell and spatial datasets from multiple cancers, supported by transcription factor and gene set analyses, as well as novel drug identification pipelines. Together, these findings provide strong evidence that reinforces the central theme of the study.

      Strengths:

      Development of a CNN-based scoring system to reveal the potential of brain metastasis that is robust across multiple cancer cell types, validated by multiple datasets. Other approaches, including transcription factor analyses, cell-cell communication analysis, and spatial transcriptomic, etc., were included to strengthen the work.

      Weaknesses:

      The author could identify/validate more signaling pathways beyond the VEGF pathway since it's well known in metastasis.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript examines how locus coeruleus (LC) activity relates to hippocampal ripple events across behavioral states in freely moving rats. Using multi-site electrophysiological recordings, the authors report that LC activity is suppressed prior to ripple events, with the magnitude of suppression depending on the ripple subtype. Suppression is stronger during wakefulness than during NREM sleep and is least pronounced for ripples coupled to spindles.

      Strengths:

      The study is technically competent and addresses an important question regarding how LC activity interacts with hippocampal and thalamocortical network events across vigilance states.

      Weaknesses:

      The results are interesting, but entirely observational. Also, the study in its current form would benefit from optimization of figure labeling and presentation, and more detailed result descriptions to make the findings fully interpretable. Also, it would be beneficial if the authors could formulate the narrative and central hypothesis more clearly to ease the line of reasoning across sections.

      Comments:

      (1) Stronger evidence that recorded units represent noradrenergic LC neurons would reinforce the conclusions. While direct validation may not be possible, showing absolute firing rates (Hz) across quiet wake, active wake, NREM, and REM, and comparing them to published LC values, would help.

      (2) The analyses rely almost exclusively on z-scored LC firing and short baselines (~4-6 s), which limits biological interpretation. The authors should include absolute firing rates alongside normalized values for peri-ripple and peri-spindle analyses and extend pre-event windows to at least 20-30 s to assess tonic firing evolution. This would clarify whether differences across ripple subtypes arise from ceiling or floor effects in LC activity; if ripples require LC silence, the relative drop will appear larger during high-firing wake states. This limitation should be discussed and, if possible, results should be shown based on unnormalized firing rates.

      (3) Because spindles often occur in clusters, the timing of ripple occurrence within these clusters could influence LC suppression. Indicate whether this structure was considered or discuss how it might affect interpretation (e.g., first vs. subsequent ripples within a spindle cluster).

      (4) While the observational approach is appropriate here, causal tests (e.g., optogenetic or chemogenetic manipulation of LC around ripple events and in memory tasks) would considerably strengthen the mechanistic conclusions. At a minimum, a discussion of how such approaches could address current open questions would improve the manuscript.

      (5) Please show how "Synchronization Index" (SI) differs quantitatively across behavioral states (wake, NREM, REM) and discuss whether it could serve as a state classifier. This would strengthen interpretations of the correlations between SI, ripple occurrence, and LC activity.

      (6) The current use of SI to denote a delta/gamma power ratio is unconventional, as "SI" typically refers to phase-locking metrics. Consider adopting a more standard term, such as delta/gamma power ratio. Similarly, it would be easier to follow if you use common terminology (AUC) to describe the drop in LC-MUA rather than using "MI" and "sub-MI".

      (7) The logic in Figure 3 is difficult to follow. The brain state (delta/gamma ratio) appears unchanged relative to surrogate events (3C), while LC activity that is supposedly negatively correlated to delta/gamma changes markedly (3D-E). Could this discrepancy reflect the low temporal resolution (4-s windows) used to calculate delta/gamma when the changes occur on a shorter time scale?

      (8) There are apparent inconsistencies between Figures 4B and 4C-D. In B, it seems that the difference between the 10th and 90th percentile is mostly in higher frequencies, but in C and D, the only significant difference is in the delta band.

      (9) Because standard sleep scoring is based on EEG and EMG signals, please include an example of sleep scoring alongside the data used for state classification. It would also be relevant to include the delta/gamma power ratio in such an example plot.

      (10) Can variability in modulation index (subMI) across ripple subsets reflect differences in recording quality? Please report and compare mean LC firing rates across subsets to confirm this is not a confounding factor.

      (11) Figure 6B: If the brown trace represents LC-MUA activity around random time points, why would there be a coinciding negative peak as relative to real sleep spindles? Or is it the subtracted trace?

      (12) On page 8, lines 207-209, the authors write "Importantly, neither the LC-MUA rate nor SIs differed during a 2-sec time window preceding either group of spindles". It is unclear which data they refer to, but the statement seems to contradict Figure 6E as well as the following sentence: "Across sessions, MI values exceeded 95% CI in 17/20 datasets for isoSpindles and only 3/20 for ripSpindles". This should be clarified.

      (13) The results in Figures 5C and 6F do not align. It seems surprising that ripple-coupled spindles show a considerably higher LC modulation than spindle-coupled ripples, as these events should overlap. Could the discrepancy be due to Z-score normalization as mentioned above? Please include a discussion of this to help the interpretation of the results.

      (14) The text implies that 8 recordings came from one rat and two each from six others. This should be confirmed, and it should be explained how the recordings were balanced and analyzed across animals.

    1. Reviewer #3 (Public review):

      Summary:

      The authors set out to determine how GABAergic inhibitory premotor circuits contribute to the rhythmic alternation of leg flexion and extension during Drosophila grooming. To do this, they first mapped the ~120 13A and 13B hemilineage inhibitory neurons in the prothoracic segment of the VNC and clustered them by morphology and synaptic partners. They then tested the contribution of these cells to flexion and extension using optogenetic activation and inhibition and kinematic analyses of limb joints. Finally, they produced a computational model representing an abstract version of the circuit to determine how the connectivity identified in EM might relate to functional output. The study makes important contributions to the literature.

      The authors have identified an interesting question and use a strong set of complementary tools to address it:

      They analysed serial‐section TEM data to obtain reconstructions of every 13A and 13B neuron in the prothoracic segment. They manually proofread over 60 13A neurons and 64 13B neurons, then used automated synapse detection to build detailed connectivity maps and cluster neurons into functional motifs.

      They used optogenetic tools with a range of genetic driver lines in freely behaving flies to test the contribution of subsets of 13A and 13B neurons.

      They used a connectome-constrained computational model to determine how the mapped connectivity relates to the rhythmic output of the behavior.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Lamothe et al. sought to identify the neural substrates of voice identity in the human brain by correlating fMRI recordings with the latent space of a variational autoencoder (VAE) trained on voice spectrograms. They used encoding and decoding models, and showed that the "voice" latent space (VLS) of the VAE performs, in general, (slightly) better than a linear autoencoder's latent space. Additionally, they showed dissociations in the encoding of voice identity across the temporal voice areas.

      Strengths:

      The geometry of the neural representations of voice identity has not been studied so far. Previous studies on the content of speech and faces in vision suggest that such geometry could exist. This study demonstrates this point systematically, leveraging a specifically trained variational autoencoder.

      The size of the voice dataset and the length of the fMRI recordings ensure that the findings are robust.

      Comments on revisions:

      The authors addressed my previous recommendations.

    1. Reviewer #5 (Public review):

      Summary:

      In the research article, "Functional genomics reveals strain-specific genetic requirements conferring hypoxic growth in Mycobacterium intracellulare" Tateshi et al focussed their research on pulmonary disease caused by Mycobacterium avium-intracellulare complex which has recently become a major health concern. The authors were interested in identifying the genetic requirements necessary for growth/survival within host and used hypoxia and biofilm conditions that partly replicate some of the stress conditions experienced by bacteria in vivo. An important finding of this analysis was the observation that genes involved in gluconeogenesis, type VII secretion system and cysteine desulphurase were crucial for the clinical isolates during standard culture while the same were necessary during hypoxia in the ATCC type strain.

      Strength of the study:

      Transposon mutagenesis has been a powerful genetic tool to identify essential genes/pathways necessary for bacteria under various in vitro stress conditions and for in vivo survival. The authors extended the TnSeq methodology not only to the ATCC strain but also to the recently clinical isolates to identify the differences between the two categories of bacterial strains. Using this approach they dissected the similarities and differences in the genetic requirement for bacterial survival between ATCC type strains and clinical isolates. They observed that the clinical strains performed much better in terms of growth during hypoxia than the type strain. These in vitro findings were further extended to mouse infection models and similar outcomes were observed in vivo further emphasising the relevance of hypoxic adaptation crucial for the clinical strains which could be explored as potential drug targets.

      Weakness:

      The authors have performed extensive TnSeq analysis but fail to present the data coherently. The data could have been well presented both in Figures and text. In my view this is one of the major weakness of the study.

      Comments on revisions:

      There is quite a lot of data and this could have been a really impactful study if the the authors had channelized the Tn mutagenesis by focussing on one pathway or network. It looks scattered. However, from the previous version, the authors have made significant improvements to the manuscript and have provided comments that fairly address my questions.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, an inducible degron approach is taken to investigate the function of the CHD4 chromatin remodelling complex. The cell lines and approaches used are well thought out, and the data appear to be of high quality. They show that loss of CHD4 results in rapid changes to chromatin accessibility at thousands of sites. Of these locations at which chromatin accessibility is decreased are strongly bound by CHD4 prior to activation of the degron, and so likely represent primary sites of action. Somewhat surprisingly, while chromatin accessibility is reduced at these sites, transcription factor occupancy is little changed. Following CHD4 degradation, occupancy of the key pluripotency transcription factors NANOG and SOX2 increases at many locations genome-wide wide and at many of these sites, chromatin accessibility increases. These represent important new insights into the function of CHD4 complexes.

      Strengths:

      The experimental approach is well-suited to providing insight into a complex regulator such as CHD4. The data generated to characterise how cells respond to the loss of CHD4 is of high quality. The study reveals major changes in transcription factor occupancy following CHD4 depletion.

      Weaknesses:

      The main weakness can be summarised as relating to the fact that authors interpret all rapid changes following CHD4 degradation as being a direct effect of the loss of CHD4 activity. The possibility that rapid indirect effects arise does not appear to have been given sufficient consideration. This is especially pertinent where effects are reported at sites where CHD4 occupancy is initially low.

    1. Reviewer #3 (Public review):

      Summary:

      The authors aimed at a comprehensive phenotypic characterization of the roles of all Rab proteins expressed in PN neurons in the developing Drosophila olfactory system. Important data are shown for a number of these Rabs with small/no phenotypes (in the Supplements) as well as the main endosomal Rabs, Rab5, 7, and 11 in the main figures.

      Strengths:

      The mosaic analysis is a great strength, allowing visualization of small clones or single neuron morphologies. This also allows some assessment of the cell autonomy of the observed phenotypes. The impact of the work lies in the comprehensiveness of the experiments. The rescue experiments are a strength.

      Weaknesses:

      The main weakness is that the experiments do not address the mechanisms that are affected by the loss of these Rab proteins, especially in terms of the most significant cargos. The insights thus do not extend far beyond what is already known from other work in many systems.

    1. Reviewer #3 (Public review):

      Summary:

      The study investigates the control of the subspaces in which sequences propagate, through static external and dynamic self-generated inhibition. For this, it first uses a 1D ring model with an asymmetry in the weights to evoke a drift of its bump. This model is studied in detail, showing and explaining that the trajectories take place in different subspaces due to the inhibition of different sets of contributing neurons. Sequence propagation is preserved, even if large numbers of neurons are silenced. In this regime, trajectories are restricted to near-orthogonal subspaces of neuronal activity space. The last part of the results shows that similar phenomena can be observed in a 2D spiking neural network model.

      Strengths:

      The results are important and convincing, and the analyses give a good further insight into the phenomena. The interpretation of inhibited networks as near-circulant is very elucidating. The sparsening by dynamically maintained winner-takes-all inhibition and the transfer to a 2D spiking model are particularly nice results.

      Weaknesses:

      I see no major weaknesses, except that some crucial literature has not yet been mentioned and discussed. Further, Figure 2c might raise doubts whether the sequences are indeed reliable for the largest amount of sparsening inhibition considered, and it is not yet clear whether the dynamical regime of the 2D model is biologically plausible.

    1. Reviewer #3 (Public review):

      Strengths:

      The core strength of this study lies in its innovative demonstration that an engineered sACE2-Fc fusion redirects virus-decoy complexes to Fc-mediated phagocytosis and lysosomal clearance in macrophages, revealing a distinct antiviral mechanism beyond traditional neutralization. Its complete prophylactic protection in animal models and precise targeting of airway phagocytes establish a novel therapeutic paradigm against SARS-CoV-2 variants and future respiratory viruses.

      Weaknesses:

      The study attributes the complete antiviral protection to Fc-mediated phagocytic clearance, a central claim that requires more rigorous experimental validation. The observation that abrogating Fc functions compromises protection could be confounded by potential alterations in the protein's stability, half-life, or overall structure. To firmly establish this mechanism, it is crucial to include a control molecule with a mutated Fc region that lacks FcγR binding while preserving the Fc structure itself. Without this critical control, the conclusion that phagocytic clearance is the primary mechanism remains inadequately supported. The strategy of deliberately targeting virus-decoy complexes to phagocytes via Fc receptors inherently raises the question of Antibody-Dependent Enhancement (ADE) of disease. While the authors demonstrate a lack of productive infection in macrophages, this only addresses one facet of ADE. The risk of Fc-mediated exacerbation of inflammation (ADE) remains a critical concern. The manuscript would be significantly strengthened by a direct discussion of this risk and by including data, such as cytokine profiling from treated macrophages, to more comprehensively address the safety profile of this approach. The exclusive use of the K18-hACE2 mouse model, which exhibits severe disease, limits the generalizability of the findings. The "complete protection" observed may not translate to models with more robust and naturalistic immune responses or to human physiology. Furthermore, the lack of data on circulating SARS-CoV-2 variants is a concern. The concept of sACE2-Fc fusion proteins as decoy receptors is not novel, and numerous similar constructs have been previously reported. The manuscript would benefit from a clearer demonstration of how the optimized B5-D3 mutant represents a significant advance over existing sACE2-Fc designs. A direct comparative analysis with previously published benchmarks, particularly in terms of neutralizing potency, Fc effector function strength, and in vivo efficacy, is necessary to establish the incremental value and novelty of this specific agent.

    1. Reviewer #3 (Public review):

      Summary:

      Zhu et al. set out to elucidate how the moral emotions of guilt and shame emerge from specific cognitive antecedents - harm and responsibility - and how these emotions subsequently drive compensatory behavior. Consistent with their prediction derived from functionalist theories of emotion, their behavioral findings indicate that guilt is more influenced by harm, whereas shame is more influenced by responsibility. In line with previous research, their results also demonstrate that guilt has a stronger facilitating effect on compensatory behavior than shame. Furthermore, computational modeling and neuroimaging results suggest that individuals integrate harm and responsibility information into a composite representation of the individual's share of the harm caused. Brain areas such as the striatum, insula, temporoparietal junction, lateral prefrontal cortex, and cingulate cortex were implicated in distinct stages of the processing of guilt and/or shame. In general, this work makes an important contribution to the field of moral emotions. Its impact could be further enhanced by clarifying methodological details, offering a more nuanced interpretation of the findings, and discussing their potential practical implications in greater depth.

      Strengths:

      First, this work conceptualizes guilt and shame as processes unfolding across distinct stages (cognitive appraisal, emotional experience, and behavioral response) and investigates the psychological and neural characteristics associated with their transitions from one stage to the next.

      Second, the well-designed experiment effectively manipulates harm and responsibility - two critical antecedents of guilt and shame.

      Third, the findings deepen our understanding of the mechanisms underlying guilt and shame beyond what has been established in previous research.

      Comments on revisions:

      The authors have addressed the issues I raised in the previous review. I have no more comments on the manuscript.

    1. Reviewer #3 (Public review):

      Summary & Strengths:

      This review by Yu-Tung Li sheds new light on the processes involved in leukocyte extravasation, with a focus on the inter between leukocytes and the extracellular matrix. In doing so, it presents a fresh perspective on the topic of leukocyte extravasation, which has been extensively covered in numerous excellent reviews. Notably, the role of the extracellular matrix in leukocyte extravasation has received relatively little attention until recently. This review synthesizes the substantial knowledge accumulated over the past two decades in a novel and compelling manner.

      The author discusses the relevant barriers leukocytes face during extravasation, addresses interactions with and transmigrate through endothelial junctions, mechanisms supporting extravasation, and how minimal plasma leakage is achieved during this process. The question whether extravasation affects leukocyte differentiation and properties is original and thought-provoking and has received limited consideration thus far. The consequences leukocytes extracellular matrix interaction, non-linear responses to substrate stiffness and effects on macrophage polarization, efferocytosis and the outcome of inflammation are relevant topics raised. Finally, a unifying descriptive framework MIKA is introduced, which provides a tool for classifying macrophages based on their expression patterns and could inform the development of targeted therapies aimed at modulating macrophage identity and improving outcomes in inflammatory scenarios.

      In summary, this review provides a stimulating perspective on leukocyte extravasation in the context of extracellular matrix biology.

      Weaknesses:

      One potential drawback of this review is that the attempt to integrate a vast amount of information has resulted in complex figures, which may lead to important details being overlooked by readers.

    1. Reviewer #3 (Public review):

      Summary:

      In this article, Barnett examines a pressing question regarding citing behavior of authors during the peer review process. In particular, the author studies the interaction between reviewers and authors, focusing on the odds of acceptance, and how this may be affected by whether or not the authors cited the reviewers' prior work, whether the reviewer requested such citations be added, and whether the authors complied/how that affected the reviewer decision-making.

      Strengths:

      The author uses a clever analytical design, examining four journals that use the same open peer review system, in which the identities of the authors and reviewers are both available and linkable to structured data. Categorical information about the approval is also available as structured data. This design allows a large scale investigation of this question.

      Weaknesses:

      My original concerns have been largely addressed. Much more detail is provided about the number of documents under consideration for each analysis, which clarifies a great deal.

      Much of the observed reviewer behavior disappears or has much lower effect sizes depending on whether "Accept with Reservations" is considered an Accept or a Reject. This is acknowledged in the results text. Language has been toned down in the revised version.

      The conditional analysis on the 441 reviews (lines 224-228) does support the revised interpretation as presented.

      No additional concerns are noted.

    1. Reviewer #3 (Public review):

      This manuscript addresses an important biological question regarding the mechanisms of muscle cell fusion during regeneration. The primary strength of this work lies in the clean and convincing experiments, with the major conclusions being well-supported by the data provided.

      The authors have satisfactorily addressed my inquiries.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript by Qiao et al., the authors seek to uncover force and contractility dynamics that drive tissue morphogenesis, using the Ciona atrial siphon primordium as a model. Specifically, the authors perform a detailed examination of epithelial folding dynamics. Generally, the authors' claims were supported by their data, and the conceptual advances may have broader implications for other epithelial morphogenesis processes in other systems.

      Strengths:

      The strengths of this manuscript include the variety of experimental and theoretical methods, including generally rigorous imaging and quantitative analyses of actomyosin dynamics during this epithelial folding process, and the derivation of a mathematical model based on their empirical data, which they perturb in order to gain novel insights into the process of epithelial morphogenesis.

      Weaknesses:

      There are concerns related to wording and interpretations of results, as well as some missing descriptions and details regarding experimental methods.

    1. Reviewer #3 (Public review):

      Summary:

      Overall, the work is fine; however, I find it very preliminary. To the best of my understanding, to make any claims for altered Notch signaling from this study that is physiologically relevant remains to be discerned.

      Strengths:

      This manuscript systematically analyzes cancer-associated mutations in the Negative Regulatory Region (NRR) of Drosophila Notch to reveal diverse regulatory mechanisms with implications for cancer modelling and therapy development. The study introduces cancer-associated mutations equivalent to human NOTCH1 mutations, covering a broad spectrum across the LNR and HD domains. The authors use rigorous phenotypic assays to classify their functional outcomes. By leveraging the S2 cell-based assay platform, the work identifies mechanistic differences between mutations that disrupt the LNR-HD interface, core HD, and LNR surface domains, enhancing understanding of Notch regulation. The discovery that certain HD and LNR-HD interface mutations (e.g., R1626Q and E1705P) in Drosophila mirror the constitutive activation and synergy with PEST deletion seen in mammalian T-ALL is nice and provides a platform for future cancer modelling. Surface-exposed LNR-C mutations were shown to increase Notch protein stability and decrease turnover, suggesting a previously unappreciated regulatory layer distinct from canonical cleavage-exposure mechanisms. By linking mutant-specific mechanistic diversity to differential signaling properties, the work directly informs targeted approaches for modulating Notch activity in cancer cells.

      Weaknesses:

      While this is indeed an exciting set of observations, the work is entirely cell-line-based, and is the primary reason why this approach dampens the enthusiasm for the study. The analysis is confined to Drosophila S2 cells, which may not fully recapitulate tissue or organism-level regulatory complexity observed in vivo. Some Drosophila HD domain mutants accumulate in the secretory pathway and do not phenocopy human T-ALL mutations. Possibly due to limitations on physiological inputs that S2 cells cannot account for, or species-specific differences such as the absence of S1 cleavage.

      Thus, the findings may not translate directly to understanding Notch 1 function in mammalian cancer models. While the manuscript highlights mechanistic variety, the functional significance of these mutations for hematopoietic malignancies or developmental contexts in live animals remains untested. Overall, the work does not yet provide evidence for altered Notch signaling that is physiologically relevant.

    1. Reviewer #3 (Public review):

      Summary:

      The authors present a variant of a previously described fluorescence lifetime sensor for calcium. Much of the manuscript describes the process of developing appropriate assays for screening sensor variants, and thorough characterization of those variants (inherent fluorescence characteristics, response to calcium and pH, comparisons to other calcium sensors). The final two figures show how the sensor performs in cultured cells and in vivo drosophila brains.

      Strengths:

      The work is presented clearly and the conclusion (this is a new calcium sensor that could be useful in some circumstances) is supported by the data.

      Weaknesses:

      There are probably few circumstances where this sensor would facilitate experiments (calcium measurements) that other sensors would prove insufficient.

      Comment on revised version:

      I think the manuscript has been significantly improved and I concur with the eLife Assessment statement.

      [Editors' note: There are no further requests by the reviewers. All of them expressed their approval of the new version of the manuscript.]

    1. Reviewer #3 (Public review):

      Summary:

      Here, Bykov et al move the bi-genomic split-GFP system they previously established to the genome-wide level in order to obtain a more comprehensive list of mitochondrial matrix and inner membrane proteins. In this very elegant split-GFP system, the longer GFP fragment, GFP1-10, is encoded in the mitochondrial genome and the shorter one, GFP11, is C-terminally attached to every protein encoded in the genome of yeast Saccharomyces cerevisiae. GFP fluorescence can therefore only be reconstituted if the C-terminus of the protein is present in the mitochondrial matrix, either as part of a soluble protein, a peripheral membrane protein or an integral inner membrane protein. The system, combined with high-throughput fluorescence microscopy of yeast cells grown under six different conditions, enabled the authors to visualize ca. 400 mitochondrial proteins, 50 of which were not visualised before and 8 of which were not shown to be mitochondrial before. The system appears to be particularly well suited for analysis of dually localized proteins and could potentially be used to study sorting pathways of mitochondrial inner membrane proteins.

      Strengths:

      Many fluorescence-based genome-wide screen were previously performed in yeast and were central to revealing the subcellular location of a large fraction of yeast proteome. Nonetheless, these screens also showed that tagging with full-length fluorescent proteins (FP) can affect both the function and targeting of proteins. The strength of the system used in the current manuscript is that the shorter tag is beneficial for detection of a number of proteins whose targeting and/or function is affected by tagging with full length FPs.

      Furthermore, the system used here can nicely detect mitochondrial pools of dually localized proteins. It is especially useful when these pools are minor and their signals are therefore easily masked by the strong signals coming from the major, nonmitochondrial pools of the proteins.

      Weaknesses:

      My only concern is that the biological significance of the screen performed appears limited. The dataset obtained is largely in agreement with several previous proteomic screens but it is, unfortunately, not more comprehensive than them, rather the opposite. For proteins that were identified inside mitochondria for the first time here or were identified in an unexpected location within the organelle, it remains unclear whether these localizations represent some minor, missorted pools of proteins or are indeed functionally important fractions and/or productive translocation intermediates. The authors also allude to several potential applications of the system but do little to explore any of these directions.

      Comments on revisions:

      The revised version of the manuscript submitted by Bykov et al addresses the comments and concerns raised by the Reviewers. It is a pity that the verification of the newly obtained data and its further biological exploration is apparently more challenging than perhaps anticipated.

    1. Reviewer #3 (Public review):

      In this manuscript, Wang et al employ a chemical biology approach to investigate the differences between the enzymatic and scaffolding roles of tankyrase during Wnt β-catenin signalling. It was previously established that, in addition to its enzymatic activity, tankyrase 1/2 also plays a scaffolding function within the destruction complex, a property conferred by SAM-domain-dependent polymerization (PMID: 27494558). It is also known that TNKS1/2 is an autoregulated protein and that its enzymatic inhibition leads to accumulation of total TNKS proteins and stabilization of Axin punctae (through the scaffolding function of TNKS1/2), leading to rigidification of the DC and decreased β-catenin turnover. The authors surmised that this could, in part, explain the limited efficacy of TNKS1/2 catalytic inhibition for the treatment of colorectal cancers. To test this hypothesis, they evaluated a series of PROTAC molecules promoting the degradation of TNKS1/2 to block both the catalytic and scaffolding activities. They show that IWR1-POMA (their most active molecule) promotes more efficient suppression of beta-catenin-mediated transcription and is more active in inhibiting colorectal cancer cell and CRC patient-derived organoids growth. Mechanistically, the authors used FRAP to demonstrate that catalytic inhibitors of TNKS led to a reduced dynamic assembly of the DC (rigidification), whereas IWR1-POMA did not affect the dynamics.

      Overall, this is an interesting study describing the design and development of a PROTAC for TNKS1/2 that could have increased efficacy where catalytic inhibitors have displayed limited activity. Knowing the importance of the scaffolding role of TNKS1/2 within the destruction complex, targeting both the catalytic and scaffolding roles certainly makes sense. The manuscript contains convincing evidence of the different mechanisms of the PROTAC vs catalytic inhibitors. Some additional efforts to quantify several of the experiments and to indicate the reproducibility and statistical analysis would strengthen the manuscript. Ultimately, it would have been great to evaluate the in vivo efficacy of IWR1-POMA in an in vivo CRC assay (APCmin mice or using PDX models); however, I realize that this is likely beyond the scope of this manuscript.

      I have some recommendations listed below for consideration by the authors to strengthen their study:

      (1) The title is slightly misleading, as it is already known that the scaffolding function of TNKS is important within the DC. The authors should consider incorporating the PROTAC targeting aspect in the title (e.g., PROTAC-mediated targeting of tankyrase leads to increased inhibition of betacat signaling and CRC growth inhibition).

      (2) The authors should comment in the manuscript on the bell-shaped curve obtained with treatment of cells with the PROTACs (Figure S2C). This likely indicates tittering of the targets within a bifunctional molecule with increasing concentration (and likely reveals the auto-inhibition conferred by the catalytic inhibition alone).

      (3) The authors comment that using G007-LK as warehead was unsuccessful, but they do not show data. Do the authors know why this was the case?

      (4) Throughout the manuscript, the authors need to do a better job at quantifying their results (i.e., the western blots and the IF). For example, the degradation of TNKS1/2 in Figure 1D is not overly convincing. Similarly, the IF data in Figure 3 needs to be quantified in some ways. Along the same lines, the effect of IWR1-POMA treatments on the proliferation of cells and organoids should be quantified using viability assays... There is also no indication of how many times these experiments were performed and whether the blots shown are representative experiments. The quantification should include all experiments.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Shukla and colleagues presents a comprehensive study that addresses a central question in kinesin-1 regulation - how cargo binding to the kinesin light chain (KLC) tetratricopeptide repeat (TPR) domains triggers activation of full-length kinesin-1 (KHC). The authors combine AlphaFold3 modeling, biophysical analysis (fluorescence polarization, hydrogen-deuterium exchange), and electron microscopy to derive a mechanistic model in which the KLC-TPR domains dock onto coiled-coil 1 (CC1) of the KHC to form the "TPR shoulder," stabilizing the autoinhibited (λ-particle) conformation. Binding of a W/Y-acidic cargo motif (KinTag) or deletion of the CC1 docking site (TDS) dislocates this shoulder, liberating the motor domains and enhancing accessibility to cofactors such as MAP7. The results link cargo recognition to allosteric structural transitions and present a unified model of kinesin-1 activation.

      Strengths:

      (1) The study addresses a fundamental and long-standing question in kinesin-1 regulation using a multidisciplinary approach that combines structural modeling, quantitative biophysics, and electron microscopy.

      (2) The mechanistic model linking cargo-induced dislocation of the TPR shoulder to activation of the motor complex is well supported by both structural and biochemical evidence.

      (3) The authors employ elegant protein-engineering strategies (e.g., ElbowLock and ΔTDS constructs) that enable direct testing of model predictions, providing clear mechanistic insight rather than purely correlative data.

      (4) The data are internally consistent and align well with previous studies on kinesin-1 regulation and MAP7-mediated activation, strengthening the overall conclusion.

      Weaknesses:

      (1) While the EM and HDX-MS analyses are informative, the conformational heterogeneity of the complex limits structural resolution, making some aspects of the model (e.g., stoichiometry or symmetry of TPR docking) indirect rather than directly visualized.

      (2) The dynamics of KLC-TPR docking and undocking remain incompletely defined; it is unclear whether both TPR domains engage CC1 simultaneously or in an alternating fashion.

      (3) The interplay between cargo adaptors and MAP7 is discussed but not experimentally explored, leaving open questions about the sequence and exclusivity of their interactions with CC1.

    1. Reviewer #3 (Public review):

      Summary:

      The study is grounded in the observations that mitochondrial DNA (mtDNA) exhibits a degree of resistance to mutagenesis under genotoxic stress. The manuscript focuses on the effects of UVC-induced DNA damage on TFAM-DNA binding in vitro and in cells. The authors demonstrate increased TFAM-DNA compaction following UVC irradiation in vitro based on high-throughput protein-DNA binding and atomic force microscopy (AFM) experiments. They did not observe a similar trend in fluorescence polarization assays. In cells, the authors found that UVC exposure upregulated TFAM, POLG, and POLRMT mRNA levels without affecting the mitochondrial membrane potential. Overexpressing TFAM in cells or varying TFAM concentration in reconstituted nucleoids did not alter the accumulation or disappearance of mtDNA damage. Based on their data, the authors proposed a plausible model that, following UVC-induced DNA damage, TFAM facilitates nucleoid compaction, which may serve to signal damage in the mitochondrial genome.

      Strengths:

      The presented data are solid, technically rigorous, and consistent with established literature findings. The experiments are well-executed, providing reliable evidence on the change of TFAM-DNA interactions following UVC irradiation. The proposed model may inspire future follow-up studies to further study the role of TFAM in sensing UVC-induced damage.

      Weaknesses:

      The manuscript could be further improved by refining specific interpretations and ensuring terminology aligns precisely with the data presented.

      (1) In line 322, the claim of increased "nucleoid compaction" in cells should be removed, as there is a lack of direct cellular evidence. Given that non-DNA-bound TFAM is subject to protease digestion, it is uncertain to what extent the overexpressed TFAM actually integrates into and compacts mitochondrial nucleoids in the absence of supporting immunofluorescence data.

      (2) In lines 405 and 406, the authors should avoid equating TFAM overexpression with compaction in the cellular context unless the compaction is directly visualized or measured.

      (3) In lines 304 and 305 (and several other places throughout the manuscript), the authors use the term "removal rates". A "removal rate" requires a direct comparison of accumulated lesion levels over a time course under different conditions. Given the complexity of UV-induced DNA damage-which involves both damage formation and potential removal via multiple pathways-a more accurate term that reflects the net result of these opposing processes is "accumulated DNA damage levels." This terminology better reflects the final state measured and avoids implying a single, active 'removal' pathway without sufficient kinetic data.

      (4) In line 357, the authors refer to the decrease in the total DNA damage level as "The removal of damaged mtDNA". The decrease may be simply due to the turnover and resynthesis of non-damaged mtDNA molecules. The term "removal" may mislead the casual reader into interpreting the effect as an active repair/removal process.

    1. Reviewer #3 (Public review):

      Summary:

      Overall, this is a well-done study, and the conclusions are largely supported by the data, which will be of interest to the field.

      Strengths:

      Strengths of this study include experiments with solution NMR that can resolve high-resolution interactions of the highly flexible C-terminal tail of arr2 with clathrin and AP2. Although mainly confirmatory in defining the arr2 CBL 376LIELD380 as the clathrin binding site, the use of the NMR is of high interest (Fig. 1). The 15N-labeled CLTC-NTD experiment with arr2 titrations reveals a span from 39-108 that mediates an arr2 interaction, which corroborates previous crystal data, but does not reveal a second area in CLTC-NTD that in previous crystal structures was observed to interact with arr2.

      SEC and NMR data suggest that full-length arr2 (1-418) binding with 2-adaptin subunit of AP2 is enhanced in the presence of CCR5 phospho-peptides (Fig. 3). The pp6 peptide shows the highest degree of arr2 activation, and 2-adaptin binding, compared to less phosphorylated peptide or not phosphorylated at all. It is interesting that the arr2 interaction with CLTC NTD and pp6 cannot be detected using the SEC approach, further suggesting that clathrin binding is not dependent on arrestin activation. Overall, the data suggest that receptor activation promotes arrestin binding to AP2, not clathrin, suggesting the AP2 interaction is necessary for CCR5 endocytosis.

      To validate the solid biophysical data, the authors pursue validation experiments in a HeLa cell model by confocal microscopy. This requires transient transfection of tagged receptor (CCR5-Flag) and arr2 (arr2-YFP). CCR5 displays a "class B"-like behavior in that arr2 is rapidly recruited to the receptor at the plasma membrane upon agonist activation, which forms a stable complex that internalizes onto endosomes (Fig. 4). The data suggest that complex internalization is dependent on AP2 binding not clathrin (Fig. 5).

      The addition of the antagonist experiment/data adds rigor to the study.

      Overall, this is a solid study that will be of interest to the field.

    1. Reviewer #3 (Public review):

      Shimogawa et al. describe the generation of acetylated aSyn variants by genetic code expansion to elucidate effects on vesicle binding, aggregation, and seeding effects. The authors compared a semi-synthetic approach to obtain acetylated aSyn variants with genetic code expansion and concluded that the latter was more efficient in generating all 12 variants studied here, despite the low yields for some of them. Selected acetylated variants were used in advanced NMR, FCS, and cryo-EM experiments to elucidate structural and functional changes caused by acetylation of aSyn. Finally, site-specific differences in deacetylation by HDAC 8 were identified.

      The study is of high scientific quality, andthe results are convincingly supported by the experimental data provided. The challenges the authors report regarding semi-synthetic access to aSyn are somewhat surprising, as this protein has been made by a variety of different semi-synthesis strategies in satisfactory yields and without similar problems being reported.

      The role of PTMs such as acetylation in neurodegenerative diseases is of high relevance for the field, and a particular strength of this study is the use of authentic acetylated aSyn instead of acetylation-mimicking mutations. The finding that certain lysine acetylations can slow down aggregation even when present only at 10-25% of total aSyn is exciting and bears some potential for diagnostics and therapeutic intervention.

    1. Reviewer #3 (Public review):

      In this manuscript, Davis and colleagues aimed to identify the molecular sensors and signaling cascade that enable collecting lymphatic vessels to increase their spontaneous contraction frequency in response to intraluminal pressure (pressure-induced chronotropy). They tested whether the process is similar to blood vessel myogenic constriction by relying on cation channels (TRPC6, TRPM4, PKD2, PIEZO1, etc.) or instead require the activation of G-protein-coupled receptors (presumably mechanosensitive GNAQ/GNA11-coupled receptors), using ex vivo pressure myography of mouse popliteal lymphatics, smooth muscle-specific conditional knockouts, quantitative PCR validation, and single-cell RNA sequencing for target prioritization. The authors convincingly demonstrate that pressure-induced chronotropy does not require the cation channels implicated in arterial myogenic tone but is blunted by deletion of GNAQ/GNA11 or IP3 receptor 1, supporting a model of GPCR > IP3 > Ca2+ release > Cl⁻ channel activation > depolarization. The core conclusion is robust. The work redefines lymphatic pacemaking as G-protein-coupled receptor-dependent mechanotransduction, distinct from arterial mechanisms, and provides a genetically validated toolkit that is useful for studying lymphatic function and dysfunction.

      Strengths:

      (1) The data are of high quality and highly sensitive functional readouts

      (2) The systematic genetic targeting is a major strength that overcomes pharmacological artifacts

      (3) Careful quantitative analyses of frequency-pressure slopes

      Weaknesses:

      (1) The use of inguinal-axillary vessels for single-cell RNA sequencing rather than the popliteal segment studied functionally.

      (2) No direct testing of the specific G-protein-coupled receptor involved.

    1. Reviewer #3 (Public review):

      Summary

      Following recent findings that exposure to natural sounds and anthropogenic noise before hatching affects development and fitness in an altricial songbird, this study attempts to estimate the hearing capacities of zebra finch nestlings and the perception of high frequencies in that species. It also tries to estimate whether airborne sound can make zebra finch eggs vibrate, although this is not relevant to the question.

      Strength

      That prenatal sounds can affect the development of altricial birds clearly challenges the long-held assumption that altricial avian embryos cannot hear. However, there is currently no data to support that expectation. Investigating the development of hearing in songbirds is therefore important, even though technically challenging. More broadly, there is accumulating evidence that some bird species use sounds beyond their known hearing range (especially towards high frequencies), which also calls for a reassessment of avian auditory perception.

      Weaknesses

      Rather than following validated protocols, the study presents many experimental flaws and two major methodological mistakes (see below), which invalidate all results on responses to frequency-specific tones in nestlings and those on vibration transmission to eggs, as well as largely underestimating hearing sensitivity. Accordingly, the study fails to detect a response in the majority of individuals tested with tones, including adults, and the results are overall inconsistent with previous studies in songbirds. The text throughout the preprint is also highly inaccurate, often presenting only part of the evidence or misrepresenting previous findings (both qualitatively and quantitatively; some examples are given below), which alters the conclusions.

      Conclusion and impact

      The conclusion from this study is not supported by the evidence. Even if the experiment had been performed correctly, there are well-recognised limitations and challenges of the method that likely explain the lack of response. The preprint fails to acknowledge that the method is well-known for largely underestimating hearing threshold (by 20-40dB in animals) and that it may not be suitable for a 1-gram hatchling. Unlike what is claimed throughout, including in the title, the failure to detect hearing sensitivity in this study does not invalidate all previous findings documenting the impacts of prenatal sound and noise on songbird development. The limitations of the approach and of this study are a much more parsimonious explanation. The incorrect results and interpretations, and the flawed representation of current knowledge, mean that this preprint regrettably creates more confusion than it advances the field.

      Detailed assessment

      For brevity, only some references are included below as examples, using, when possible, those cited in the preprint (DOI is provided otherwise). A full review of all the studies supporting the points below is beyond the scope of this assessment.

      (A) Hearing experiment

      The study uses the Auditory Brainstem Response (ABR), which measures minute electrical signals transmitted to the surface of the skull from the auditory nerve and nuclei in the brainstem. ABR is widely used, especially in humans, because it is non-invasive. However, ABR is also a lot less sensitive than other methods, and requires very specific experimental precautions to reliably detect a response, especially in extremely small animals and with high-frequency sounds, as here.

      (1) Results on nestling frequency sensitivity are invalid, for failing to follow correct protocols:

      The results on frequency testing in nestlings are invalid, since what might serve as a positive control did not work: in adults, no response was detected in a majority of individuals, at the core of their hearing range, with loud 95dB sounds (Figure S1), when testing frequency sensitivity with "tone burst".

      This is mostly because the study used a stimulation duration 5 times larger than the norm. It used 25ms tone bursts, when all published avian studies (in altricial or precocial birds) used stimulation of 5ms or less (when using subdermal electrodes as here; e.g., cited: Brittan-Powell et al 2004; not cited: Brittan-Powell et al 2002 (doi: 10.1121/1.1494807), Henry & Lucas 2008 (doi: 10.1016/j.anbehav.2008.08.003)). Long stimulations do not make sense and are indeed known to interfere with the detection of an ABR response, especially at high frequencies, as, for example, explicitly tested and stated in Lauridsen et al 2021 (cited).

      Adult response was then re-tested with a correct 5ms tone duration ("tone-pip"), which showed that, for the few individuals that responded to 25ms tones, thresholds were abnormally high (c.a. by 30dB; Figure 2C).<br /> Yet, no nestlings were retested with a correct protocol. There is therefore no valid data to support any conclusion on nestling frequency hearing. Under these circumstances, the fact that some nestlings showed a response to 25ms tones from day 8 would argue against them having very low sensitivity to sound.

      (2) Responses to clicks underestimate hearing onset by several days:

      Without any valid nestling responses to tones (see # 1), establishing the onset of hearing is not possible based on responses to clicks only, since responses to clicks occur at least 4 days after responses to tones during development (Saunders et al, 1973). Here, 60% of 4-day-old individuals responding to clicks means most would have responded to tones at and before 2 days post-hatch, had the experiment been done correctly.<br /> Responses to tones are indeed observed in other songbirds at 1day post-hatch (see #6).

      In budgerigars, hearing onset occurs before 5 days post hatch, since responses to both clicks and tones were detectable at the first age tested at 5dph (Brittan-Powell et al, 2004).

      (3) Experimental parameters chosen lower ABR detectability, specifically in younger birds:

      Very fast stimulus repetition rate inhibits the ABR response, especially in young:

      (a) The stimulus presentation rate (25 stim/ sec) is 6 times faster than zebra finch heat-calls, and 5 to 25 times faster than most previous studies in young birds (e.g., cited: Saunders et al 1973, 1974: 1 stim/sec or less; Katayama 1985: 3.3 clicks/sec; Brittan-Powell et al 2004: 4 stim/sec). Faster rates saturate the neurons and accordingly are known to decrease ABR amplitude and increase ABR latency, especially in younger animals with an immature nervous system. In birds, this occurs especially in the range from 5 to 30 stim/sec (e.g., cited: Saunder et al 1973, Brittan-Powell et al 2004). Values here with 25 rather than 1-4 stim/min are therefore underestimating true sensitivity.

      (b) Averaging over only 400 measures is insufficient to reliably detect weak ABR signals:

      The study uses 2 to 3 times fewer measures per stimulation type than the recommended value of 1,000 (e.g., Brittan-Powell et al 2002, 2024; Henry & Lucas 2008). This specifically affects the detection of weak signals, as in small hatchlings with tiny brains (adult zebra finches are 12-14g).

      (c) Body temperature is not specified and strongly affects the ABR:

      Controlling the body temperature of hatchlings of 1-4 grams (with a temperature probe under a 5mm-wide wing) would be very challenging. Low body temperature entirely eliminates the ABR, and even slight deviance from optimal temperature strongly increases wave latency and decreases wave amplitude (e.g., cited: Katayama 1985).

      (d) Other essential information is missing on parameters known to affect the ABR:

      This includes i) the weight of the animals, ii) whether and how the response signal was amplified and filtered, iii) how the automatised S/N>2 criteria compared to visual assessment for wave detection, and iv) what measures were taken to allow the correct placement of electrodes on hatchlings less than 5 grams.

      (4) Results in adults largely underestimate sensitivity at high frequencies, and are not the correct reference point:

      (a) Thresholds measured here at high frequencies for adults (using the correct stimulus duration, only done on adults) are 10-30dB higher than in all 3 other published ABR studies in adult zebra finches (cited: Zevin et al 2004; Amin et al 2007; not cited: Noirot et al 2011 (10.1121/1.3578452)), for both 4 and 6 kHz tone pips.

      (b) The underlying assumption used throughout the preprint that hearing must be adult-like to be functional in nestlings does not make sense. Slower and smaller neural responses are characteristic of immature systems, but it does not mean signals are not being perceived.

      (5) Failure to account for ABR underestimation leads to false conclusions:

      (a) Whether the ABR method is suitable to assess hearing in very small hatchlings is unknown. No previous avian study has used ABR before 5 days post-hatch, and all have used larger bird species than the zebra finch.

      (b) Even when performed correctly on large enough animals, the ABR systematically underestimates actual auditory sensitivity by 20-40 dB, especially at high frequencies, compared to behavioural responses (e.g., none cited: Brittan-Powell et al 2002, Henry & Lucas 2008, Noirot et al 2011). Against common practice, the preprint fails to account for this, leading to wrong interpretations. For example, in Figure 1G (comparing to heat call levels), actual hearing thresholds would be 30-40dB below those displayed. In addition, the "heat whistle" level displayed here (from the same authors) is 15dB lower than their second measure that they do not mention, and than measures obtained by others (unpublished data). When these two corrections are made - or even just the first one - the conclusion that heat-call sound levels are below the zebra finch hearing threshold does not hold.

      (c) Rather than making appropriate corrections, the preprint uses a reference in humans (L180), where ABR is measured using a much more powerful method (multi-array EEG) than in animals, and from a larger brain. The shift of "10-20dB" obtained in humans is not applicable to animals.

      (6) Results are inconsistent with previous findings in developing songbirds:

      As expected from all of the above, results and conclusions in the preprint are inconsistent with findings in other songbirds, which, using other methods, show for example, auditory sensitivity in:

      (a) zebra finch embryos, in response to song vs silence (not cited: Rivera et al 2018, doi: 10.1097/WNR.0000000000001187)

      (b) flycatcher hatchlings at 2-3d post hatch (first age tested), across a wide range of frequencies (0.3 to 5kHz), at low to moderate sound levels (45-65dB) (cited: Aleksandrov and Dmitrieva 1992, not cited: Korneeva et al 2006 (10.1134/S0022093006060056)).

      (c) songbird nestlings at 2-6d post hatch, which discriminate and behaviourally respond to relevant parental calls or even complex songs. This level of discrimination requires good hearing across frequencies (e.g., not cited: Korneeva et al 2006; Schroeder & Podos 2023 (doi: 10.1016/j.anbehav.2023.06.015)).

      (d) zebra finch nestlings at 13d post-hatch, which show adult-like processing of songs in the auditory cortex (CNM) (Schroeder & Remage‐Healey 2021, doi: 10.1002/dneu.22802).

      (e) zebra finch juveniles, which are able to perceive and learn song syllables at 5-7kHz (fundamental frequency) with very similar acoustic properties to heat calls, and also produced during inspiration (Goller & Daley 2001, doi: 10.1098/rspb.2001.1805).

      NONE of these results - which contradict results and claims in the preprint - are mentioned. Instead, the preprint focuses on very slow-developing species (parrots and owls), which take 2-4 times longer than songbirds to fledge (cited: Brittan-Powell et al 2004; Köppl & Nickel 2007; Kraemer et al 2017).

      (7) Results in figures are misreported in the text, and conclusions in the abstract and headers are not supported by the data:

      For example:

      (a) The data on Figure 1E shows that at 4 days old, 8 out of 13 nestlings (60%) responded to clicks, but the text says only 5/13 responded (L89). When 60% (4dph) and 90% (6dph) of individuals responded, the correct term would be that "most animals", rather than "some animals" responded (L89). Saying that ABR to loud sound appeared "in the majority only after one week" (L93) is also incorrect, given the data. It follows that the title of the paragraph is also erroneous.

      (b) The hearing threshold is underestimated by 40dB at 6 and 8Kz on Fig 2C, not by "10-20dB" as reported in the text (L178).

      (B) Egg vibration experiment

      (8) Using airborne sound to vibrate eggs is biologically irrelevant:

      The measurement of airborne sound levels to vibrate eggs misunderstands bone conduction hearing and is not biologically meaningful: zebra finch parents are in direct contact with the eggs when producing heat calls during incubation, not hovering in front of the nest. This misunderstanding affects all extrapolations from this study to findings in studies on prenatal communication.

      (C) Misrepresentation of current knowledge

      (9) Values from published papers are misreported, which reverses the conclusions:

      Most critical examples:

      (a) Preprint: "Zebra finch most sensitive hearing range of 1-to-4 kHz (Amin et al., 2007; Okanoya and Dooling, 1987; Yeh et al., 2023)" (L173).<br /> Actual values in the studies cited are:

      1-to-7kHz, in Amin et al 2007 (threshold [=50dB with ABR] is the same at 7kHz and 1KHz).

      1-to-6 kHz, in Okanoya and Dooling (the threshold [=30dB with behaviour] is actually lower at 6kHz than at 1KHz).

      1-to-7kHz, in Yeh et al (threshold [=35-38dB with behaviour] is the same at 7kHz and 1KHz).

      Note that zebra finch nestlings' begging calls peaking at 6kHz (Elie & Theunissen 2015, doi: 10.1007/s10071-015-0933-6), would fall 2kHz above the parents' best hearing range if it were only up to 4kHz.

      (b) The preprint incorrectly states throughout (e.g., L139, L163, L248) that heat-calls are 7-10kHz, when the actual value is 6-10kHz in the paper cited (Katsis et al, 2018).

      (c) Using the correct values from these studies, and heat-calls at 45 dB SLP (as measured by others (unpublished data), or as measured by the authors themselves, but which is not reported here (Anttonen et a,l 2025), the correct conclusion is that heat calls fall within the known zebra finch hearing range.

      (10) Published evidence towards high-frequency hearing, including in early development, is systematically omitted:

      (a) Other studies showing birds use high frequencies above the known avian hearing range are ignored. This includes oilbirds (7-23kHz; Brinklov et al 2017; by 1 of the preprint authors, doi: 10.1098/rsos.170255) and hummingbirds (10-20kHz; Duque et al 2020, doi: 10.1126/sciadv.abb9393), and in a lesser extreme, zebra finches' inspiratory song syllables at 5-7kHz (Goller & Dalley, 2001).

      (b) The discussion of anatomical development (L228-241) completely omits the well-known fact that the avian basilar papilla develops from high to low frequencies (i.e., base to apex), which - as many have pointed out - is opposite to the low-to-high development of sensitivity (e.g., cited: Cohen & Fermin 1978; Caus Capdevila et al 2021).

      (c) High frequency hearing in songbirds at hatching is several orders of magnitude better than in chickens and ducks at the same age, even though songbirds are altricial (e.g., at 4kHz, flycatcher: 47dB, chicken-duck: 90dB; at 5kHz, flycatcher: 65dB, chicken-duck: 115dB; Korneeva et al 2006, Saunders et al 1974). That is because Galliformes are low-frequency specialists, according to both anatomical and ecological evidence, with calls peaking at 0.8 to 1.2kHz rather than 2-6kHz in songbirds. It is incorrect to conclude that altricial embryos cannot perceive high frequencies because low-frequency specialist precocial birds do not (L250;261).

      The references used to support the statement on a very high threshold for precocial birds above 6kHz are also wrong (L250). Katayama 1985 did not test embryos, nor frequency tones. Neither of these two references tested ducks.

      (11) Incorrect statements do not reflect findings from the references cited

      For example:

      (a) "in altricial bird species hearing typically starts after hatching" (L12, in abstract), "with little to no functional hearing during embryonic stages (Woolley, 2017)." (L33).

      There is no evidence, in any species, to support these statements. This is only a - commonly repeated - assumption, not actually based on any data. On the contrary, the extremely limited evidence to date shows the opposite, with zebra finch embryos showing ZENK activation in the auditory cortex in response to song playback (Rivera et al, 2018, not cited).

      The book chapter cited (Woolley 2017) acknowledges this lack of evidence, and, in the context of song learning, provides as only references (prior to 2018), 2 studies showing that songbirds do not develop a normal song if the song tutor is removed before 10d post-hatch. That nestlings cannot memorise (to later reproduce) complex signals heard before d10 does not mean that they are deaf to any sound before day 10.

      Studies showing hearing in young songbird nestlings (see point 6 above) also contradict these statements.

      (b) "Zebra finch embryos supposedly are epigenetically guided to adapt to high temperatures by their parents high-frequency "heat calls" " (L36 and L135).

      This is an extremely vague and meaningless description of these results, which cannot be assessed by readers, even though these results are presented as a major justification for the present study. Rather than giving an interpretation of what "supposedly" may occur, it would be appropriate to simply synthesize the empirical evidence provided in these papers. They showed that embryonic exposure to heat-calls, as opposed to control contact calls, alters a suite of physiological and behavioural traits in nestlings, including how growth and cellular physiology respond to high temperatures. This also leads to carry-over effects on song learning and reproductive fitness in adulthood.

      (c) "The acoustic communication in precocial mallard ducks depends specifically on the low-frequency auditory sensitivity of the embryo (Gottlieb, 1975)" (L253)

      The study cited (Gottlieb, 1975) demonstrates exactly the opposite of this statement: it shows that duckling embryos, not only perceive high frequency sounds (relative to the species frequency range), but also NEED this exposure to display normal audition and behaviour post-hatch. Specifically, it shows that duckling embryos deprived of exposure to their own high-frequency calls (at 2 kHz), failed to identify maternal calls post-hatch because of their abnormal insensitivity to higher frequencies, which was later confirmed by directly testing their auditory perception of tones (Dimitrieva & Gottlieb, 1994).

      (12) Considering all of the mistakes and distortions highlighted above, it would be very premature to conclude, based on these results and statements, that altricial avian embryos are not sensitive to sound. This study provides no actual scientific ground to support this conclusion.

    1. Reviewer #3 (Public Review):

      The article presents a comprehensive study on the stratification of viral shedding patterns in saliva among COVID-19 patients. The authors analyze longitudinal viral load data from 144 mildly symptomatic patients using a mathematical model, identifying three distinct groups based on the duration of viral shedding. Despite analyzing a wide range of clinical data and micro-RNA expression levels, the study could not find significant predictors for the stratified shedding patterns, highlighting the complexity of SARS-CoV-2 dynamics in saliva. The research underscores the need for identifying biomarkers to improve public health interventions and acknowledges several limitations, including the lack of consideration of recent variants, the sparsity of information before symptom onset, and the focus on symptomatic infections.

      The manuscript is well-written, with the potential for enhanced clarity in explaining statistical methodologies. This work could inform public health strategies and diagnostic testing approaches.

      Comments on the revised version from the editor:

      The authors comprehensively addressed the concerns of all 3 reviewers. We are thankful for their considerable efforts to do so. Certain limitations remain unavoidable such as the lack of immunologic diversity among included study participants and lack of contemporaneous variants of concern.

      One remaining issue is the continued use of the target cell limited model which is sufficient in most cases, but misses key datapoints in certain participants. In particular, viral rebound is poorly described by this model. Even if viral rebound does not place these cases in a unique cluster, it is well understood that viral rebound is of clinical significance.

      In addition, the use of microRNAs as a potential biomarker is still not fully justified. In other words, are there specific microRNAs that have a pre-existing mechanistic basis for relating to higher or lower viral loads? As written it still feels like microRNA was included in the analysis simply because the data existed.

    1. Reviewer #3 (Public review):

      This manuscript provides evidence that mice have a fusome, a conserved structure most well studied in Drosophila that is important for oocyte specification. Overall, a myriad of evidence is presented demonstrating the existence of a mouse fusome that the authors term visham. This work is important as it addresses a long-standing question in the field of whether mice have fusomes and sheds light on how oocytes are specified in mammals. Concerns that need to be addressed revolve around several conclusions that are overstated or unclear and are listed below.

      (1) Line 86 - the heading for this section is "PGCs contain a Golgi-rich structure known as the EMA granule" but there is nothing in this section that shows it is Golgi-rich. It does show that the structure is asymmetric and has branches.

      (2) Line 105-106, how do we know if what's seen by EM corresponds to the EMA1 granule?

      (3) Line 106-107-states "Visham co-stained with the Golgi protein Gm130 and the recycling endosomal protein Rab11a1". This is not convincing as there is only one example of each image, and both appear to be distorted.

      (4) Line 132-133---while visham formation is disrupted when microtubules are disrupted, I am not convinced that visham moves on microtubules as stated in the heading of this section.

      (5) Line 156 - the heading for this section states that Visham associates with polarity and microtubule genes, including pard3, but only evidence for pard3 is presented.

      (6) Lines 196-210 - it's strange to say that UPR genes depend on DAZ, as they are upregulated in the mutants. I think there are important observations here, but it's unclear what is being concluded.

      (7) Line 257-259---wave 1 and 2 follicles need to be explained in the introduction, and how this fits with the observations here clarified.

    1. Reviewer #3 (Public review):

      Summary:

      The authors dilute fluorescent HCMV stocks in small steps (df ≈ 1.3-1.5) across 23 points, quantify infections by flow cytometry at 3 dpi, and fit a power-law model to estimate a cooperativity parameter n (n > 1 indicates apparent cooperativity). They compare fibroblasts vs epithelial cells and multiple strains/reporters, and explore alternative mechanisms (clumping, accrued damage, viral compensation) via analytical modeling and stochastic simulations. They discuss implications for titer/MOI estimation and suggest a method for detecting "apparent cooperativity," noting that for viruses showing this behavior, MOI estimation may be biased.

      Strengths:

      (1) High-resolution titration & rigor: The small-step dilution design (23 serial dilutions; tailored df) improves dose-response resolution beyond conventional 10× series.

      (2) Clear quantitative signal: Multiple strain-cell pairs show n > 1, with appropriate model fitting and visualization of the linear regime on log-log axes.

      (3) Mechanistic exploration: Side-by-side modeling of clumping vs accrued damage vs compensation frames testable hypotheses for cooperativity.

      Weaknesses:

      (1) Secondary infection control: The authors argue that 3 dpi largely avoids progeny-mediated secondary infection; this claim should be strengthened (e.g., entry inhibitors/control infections) or add sensitivity checks showing results are robust to a small secondary-infection contribution.

      (2) Discriminating mechanisms: At present, simulations cannot distinguish between accrued damage and viral compensation. The authors should propose or add a decisive experiment (e.g., dual-color coinfection to quantify true coinfection rates versus "priming" without coinfection; timed sequential inocula) and outline expected signatures for each mechanism.

      (3) Decline at high genomes/cell: Several datasets show a downturn at high input. Hypotheses should be provided (cytotoxicity, receptor depletion, and measurement ceiling) and any supportive controls.

      (4) Include experimental data: In Figure 6, please include the experimentally measured titers (IU/mL), if available.

      (5) MOI guidance: The practical guidance is important; please add a short "best-practice box" (how to determine titer at multiple genomes/cell and cell densities; when single-hit assumptions fail) for end-users.

    1. Reviewer #3 (Public review):

      Summary:

      This study from Jia et al carried out a variety of analyses of terminating ribosomes, including the development of eRF1-seq to map termination sites, identification of a GA-rich motif that promotes ribosome pausing, characterization of tissue-specific termination dynamics, and elucidation of the regulatory roles of 18S rRNA and RPS26. Overall, the study is thoughtfully designed, and its biological conclusions are well supported by complementary experiments. The tools and datasets generated provide valuable resources for researchers investigating the mechanisms of RNA translation.

      Strengths:

      (1) The study introduces eRF1-seq, a novel approach for mapping translation termination sites, providing a methodological advance for studying ribosome termination.

      (2) Through integrative bioinformatic analyses and complementary MPRA experiments, the authors demonstrate that GA-rich motifs promote ribosome pausing at termination sites and reveal possible regulatory roles of 18S rRNA in this process.

      (3) The study characterizes tissue-specific ribosome termination dynamics, showing that the testis exhibits stronger ribosome pausing at stop codons compared to other tissues. Follow-up experiments suggest that RPS26 may contribute to this tissue specificity.

      Weaknesses:

      The biological significance of ribosome pausing regulation at translation termination sites or of translational readthrough, for example, across different tissue types, remains unclear. Nevertheless, this question lies beyond the primary scope of the current study.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, the authors define a new paradigm for the attachment and endocytosis of SARS-CoV-2 in which cell surface heparan sulfate (HS) is the primary receptor, with ACE2 having a downstream role within endocytic vesicles. This has implications for the importance of targeting virion-HS interactions as a therapeutic strategy.

      Strengths:

      The authors show that viruses are internalized via dynamin-dependent endocytosis and that endocytic internalization is the major pathway for pseudotyped SARS-CoV-2 genome expression. They show that HS-mediated viral attachment is a critical step preceding viral endocytosis and also subsequent genome expression. Further, they show that hACE2 acts downstream of endocytosis to promote viral infection, and may be co-internalised with virions after HS attachment. Pseudotyped virus and authentic SARS-CoV-2 provide similar results. In addition, the authors demonstrate that remarkable clusters of multiple HS chains exist on the cell surface, visualised by a number of elegant microscopy methods, and that these represent the docking sites for virions. These visualisations are an important general contribution in themselves to understanding the nanoscale interactions of HS at the cell surface.

      The use of a complementary range of methods, virus constructs, and cell models is a strength, and the results clearly support the conclusions.

      Overall, the results convincingly demonstrate a different model to the currently accepted mechanism in which the ACE2 protein is regarded as the cell surface receptor for SARS-CoV-2. Here, the authors provide compelling evidence that cell surface clusters of HS are the primary docking site, with ACE2 interactions occurring later, after endocytosis (whilst still being essential for viral genome expression). This is an exciting and important landmark evidence which supports the view that HS-virion interactions should be viewed as a key site for anti-viral drug targeting, likely in strategies that also target the downstream ACE2-based mechanism of viral entry within endosomes.

      Weaknesses:

      This reviewer identified only minor points regarding citing and discussing other studies and typos, which can be corrected.

    1. Reviewer #3 (Public review):

      In this paper, authors aimed to investigate carbamylation effects on the function of Cx43-based hemichannels. Such effects have previously been characterized for other connexins, e.g. for Cx26, which display increased hemichannel (HC) opening and closure of gap junction channels upon exposure to increased CO2 partial pressure (accompanied by increased bicarbonate to keep pH constant). The authors used HeLa cells transiently transfected with Cx43 to investigate CO2-dependent carbamylation effects on Cx43 HC function. In contrast to Cx43-based gap junction channels that are here reported to be insensitive to PCO2 alterations, they provide evidence that Cx43 HC opening is highly dependent on the PCO2 pressure in the bath solution, over a range of 20 up to 70 mmHg encompassing the physiologically normal resting level of around 40 mmHg. They furthermore identified several Cx43 residues involved in Cx43 HC sensitivity to PCO2: K105, K109, K144 & K234; mutation of 2 or more of these AAs is necessary to abolish CO2 sensitivity. The subject is interesting and the results indicate that a fraction of HCs is open at a physiological 40 mmHg PCO2, which differs from the situation under HEPES buffered solutions where HCs are mostly closed under resting conditions. The mechanism of HC opening with CO2 gassing is linked to carbamylation and authors pinpointed several Lys residues involved in this process. Overall, the work is interesting as it shows that Cx43 HCs have a significant open probability under resting conditions of physiological levels of CO2 gassing, probably applicable to/relevant for brain, heart and other Cx43 expressing organs. The paper gives a detailed account on various experiments performed (dye uptake, electrophysiology, ATP release to assess HC function) and results concluded from those. They further consider many candidate carbamylation sites by mutating them to negatively charged Glu residues. The paper finalizes with hippocampal slice work showing evidence for connexin-dependent increases of the EPSP amplitude that could be inhibited by HC inhibition with Gap26 (Fig. 10). Another line of evidence comes from the Cx43-linked ODDD genetic disease whereby L90V as well as the A44V mutations of Cx43 prevented the CO2 induced hemichannel opening response (Fig. 11). Although the paper is interesting, in its present state it suffers from (i) a problematic Fig. 3, precluding interpretation of the data shown, and (ii) the poor use of hemichannel inhibitors that are necessary to strengthen the evidence in the crucial experiment of Fig. 2 and others.

      Comments on revisions:

      The traces in Fig.2B show that the HC current is inward at 20 mmHg PCO2, while it switches to an outward current at 55mmHg PCO2. HCs are non-selective channels, so their current should switch direction around 0 mV but not around -50 mV. As such, the -50 mV switching point indicates involvement of another channel distinct from non-selective Cx43 hemichannels. In the revised version, this problem has not been solved nor addressed. Additionally, I identified another problem in that the experimental traces shown lack a trace at the baseline condition of PCO2 35mmHg, while the summary graph depicts a data point. Not showing a trace at baseline PCO2 35mmHg renders data interpretation in the summary graph questionable.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript Pinon et al. describe the development of a 3D model of human vasculature within a microchip to study Neisseria meningitidis (Nm)- host interactions and validate it through its comparison to the current gold-standard model consisting of human skin engrafted onto a mouse. There is a pressing need for robust biomimetic models with which to study Nm-host interactions because Nm is a human-specific pathogen for which research has been primarily limited to simple 2D human cell culture assays. Their investigation relies primarily on data derived from microscopy and its quantitative analysis, which support the authors' goal of validating their Vessel-on-Chip (VOC) as a useful tool for studying vascular infections by Nm, and by extension, other pathogens associated with blood vessels.

      Strengths:

      • Introduces a novel human in vitro system that promotes control of experimental variables and permits greater quantitative analysis than previous models<br /> • The VOC model is validated by direct comparison to the state-of-the-art human skin graft on mouse model<br /> • The authors make significant efforts to quantify, model, and statistically analyze their data<br /> • The laser ablation approach permits defining custom vascular architecture<br /> • The VOC model permits the addition and/or alteration of cell types and microbes added to the model<br /> • The VOC model permits the establishment of an endothelium developed by shear stress and active infusion of reagents into the system

      Weaknesses:

      • The VOC model contains one cell type, human umbilical cord vascular endothelial cells (HUVECs), while true vasculature contains a number of other cell types that associate with and affect the endothelium, such as smooth muscle cells, pericytes, and components of the immune system. However, adding such complexity may be a future goal of this VOC model.

      Impact:

      The VOC model presented by Pinon et al. is an exciting advancement in the set of tools available to study human pathogens interacting with the vasculature. This manuscript focuses on validating the model, and as such sets the foundation for impactful research in the future. Of particular value is the photoablation technique that permits the custom design of vascular architecture without the use of artificial scaffolding structures described in previously published works.

      Comments on revised version:

      The authors have nicely addressed my (and other reviewers') comments.

    1. Reviewer #3 (Public review):

      Summary:

      Fengwen Huang et al. used multiple neuroscience techniques (transgenetic mouse, immunochemistry, bulk calcium recording, neural sensor, hippocampal-dependent task, optogenetics, chemogenetics, and interfer RNA technique) to elucidate the role of the excitatory cholecystokinin-positive pyramidal neurons in the hippocampus in regulating the hippocampal functions, including navigation and neuroplasticity.

      Strengths:

      (1) The authors provided the distribution profiles of excitatory cholecystokinin in the dorsal hippocampus via the transgenetic mice (Ai14::CCK Cre mice), immunochemistry, and retrograde AAV.

      (2) The authors used the neural sensor and light stimulation to monitor the CCK release from the CA3 area, indicating that CCK can be secreted by activation of the excitatory CCK neurons.

      (3) The authors showed that the activity of the excitatory CCK neurons in CA3 is necessary for navigation learning.

      (4) The authors demonstrated that inhibition of the excitatory CCK neurons and knockdown of the CCK gene expression in CA3 impaired the navigation learning and the neuroplasticity of CA3-CA1 projections.

      Weaknesses:

      (1) The causal relationship between navigation learning and CCK secretion?

      (2) The effect of overexpression of the CCK gene on hippocampal functions?

      (3) What are the functional differences between the excitatory and inhibitory CCK neurons in the hippocampus?

      (4) Do CCK sources come from the local CA3 or entorhinal cortex (EC) during the high-frequency electrical stimulation?

    1. Reviewer #3 (Public review):

      Summary:

      This is a clearly written paper that describes the reanalysis of data from a BXD study of the locomotor response to morphine and naloxone. The authors detect significant loci and an epistatic interaction between two of those loci. Single-cell data from outbred rats is used to investigate the interaction. The authors also use network methods and incorporate human data into their analysis.

      Strengths:

      One major strength of this work is the use of granular time-series data, enabling the identification of time-point-specific QTL. This allowed for the identification of an additional, distinct QTL (the Fgf12 locus) in this work compared to previously published analysis of these data, as well as the identification of an epistatic effect between Oprm1 (driving early stages of locomotor activation) and Fgf12 (driving later stages).

      Weaknesses:

      (1) What criteria were used to determine whether the epistatic interaction was significant? How many possible interactions were explored?

      (2) Results are presented for males and females separately, but the decision to examine the two sexes separately was never explained or justified. Since it is not standard to perform GWAS broken down by sex, some initial explanation of this decision is needed. Perhaps the discussion could also discuss what (if anything) was learned as a result of the sex-specific analysis. In the end, was it useful?

      (3) The confidence intervals for the results were not well described, although I do see them in one of the tables. The authors used a 1.5 support interval, but didn't offer any justification for this decision. Is that a 95% confidence interval? If not, should more consideration have been given to genes outside that interval? For some of the QTLs that are not the focus of this paper, the confidence intervals were very large (>10 Mb). Is that typical for BXDs?

    1. Reviewer #3 (Public review):

      Summary:

      In the submitted article by Lewis et al., the authors investigate how mechanical stimulation influences organ regeneration using the well-characterized zebrafish caudal fin regeneration model. Using a swim flume and a 30min/day exercise regime, the authors found that exercise during the establishment of the blastema reduced regeneration and led to skeletal deformations. Transcriptional profiling of regenerated caudal fin tissue revealed reduced expression of extracellular matrix-associated genes, which were found to be expressed by blastemal fibroblast and osteoblast lineage cells.

      Downregulated genes included hyaluronic acid synthases 1 and 2; accordingly, hyaluronic acid levels were found to be reduced in regenerating fins exposed to exercise. The link between regeneration and HA was further confirmed through HA depletion and HA overexpression experiments, which showed a reduction in blastema size and partial rescue of blastema formation, respectively. The authors further show that HA levels, as well as the extent of mechanical loading correlate with nuclear localization of the mechanotransducer Yap and conclude that biomechanical forces play a significant role during regeneration through regulation of HA levels in the ECM and therewith regulation of YAP downstream signaling.

      This work expands our understanding of the biochemical signaling connecting biomechanical forces with tissue regeneration. The conclusions are well supported by the data.

      Strengths:

      (1) Analysis is performed in multiple replicate experimental groups and shows the robust response to the experimental conditions.

      (2) The link of HA levels to blastema formation was confirmed through HA overexpression and two different HA depletion experiments.

      (3) The use of a previously established fin regeneration single cell dataset does elegantly show the correlation of changes in gene expression levels and specific tissue types, which was further confirmed by in vivo imaging of cell type-specific transgenic lines.

      Weaknesses:

      Tissue sections stained with hematoxylin and eosin would be helpful to show the changes in tissue architecture more clearly.

    1. Reviewer #3 (Public review):

      Summary:

      This study identifies a novel energy-sensing circuit in Drosophila and mice that directly regulates sweet taste perception. In flies, hugin+ neurons function as a glucose sensor, activated through Glut1 transport and ATP-sensitive potassium channels. Once activated, hugin neurons release hugin peptide, which stimulates downstream Allatostatin A (AstA)+ neurons via PK2-R1 receptors. AstA+ neurons then inhibit sweet-sensing Gr5a+ gustatory neurons through AstA peptide and its receptor AstA-R1, reducing sweet sensitivity after feeding. Disrupting this pathway enhances sweet taste and increases food intake, while activating the pathway suppresses feeding.

      The mammalian homolog of neuromedin U (NMU) was shown to play an analogous role in mice. NMU knockout mice displayed heightened sweet preference, while NMU administration suppressed it. In addition, VMH NMU+ neurons directly sense glucose and project to rNST Calb2+ neurons, dampening sweet taste responses. The authors suggested a conserved hugin/NMU-AstA pathway that couples energy state to taste perception.

      Strengths:

      Interesting findings that extend from insects to mammals. Very comprehensive.

      Weaknesses:

      Coupling energy status to taste sensitivity is not a new story. Many pathways appear to be involved, and therefore, it raises a question as to how this hugin-AstA pathway is unique.

    1. Reviewer #3 (Public review):

      Summary:

      The authors set out to extend their previous mapping of Drosophila head mechanosensory neurons (Eichler et al., 2024) by reconstructing their full second-order connectome. Their aim is to reveal how bristle mechanosensory neurons (BMNs) interface with excitatory and inhibitory partners to generate location-specific grooming movements, and to identify the circuit motifs and developmental lineages that support this transformation.

      Strengths:

      The strengths of this work are clear. The authors present a comprehensive synaptic-resolution connectome for BMNs, identifying nearly all of their pre- and postsynaptic partners. This dataset reveals important circuit motifs:

      (1) BMNs provide feedforward excitation to descending neurons, feedforward inhibition to interneurons, and are themselves strongly regulated by GABAergic presynaptic inhibition.

      (2) These motifs together support the idea that BMN activity is locally gated and hierarchically suppressed, fitting well with known behavioural sequences of grooming.

      (3) The study also shows that connectivity preserves somatotopy, such that BMNs from neighbouring bristle populations converge onto shared partners, while distant BMNs remain segregated.

      (4) A developmental analysis reveals both primary and secondary partners, suggesting a layered scaffold plus adult-specific elaborations.

      (5) Finally, the identification of hemilineage 23b (LB23) as a core postsynaptic pathway - incorporating previously described antennal grooming neurons (aBN2) - provides a striking link between developmental lineage, anatomical connectivity, and behavioral output.

      (6) Together, the dataset represents a valuable resource for the neuroscience community and a foundation for future functional studies.

      Weaknesses:

      There are also some weaknesses that mostly only limit clarity.

      (1) The writing is dense, with results often presented in a cryptic fashion and the functional implications deferred to the discussion. As a result, the significance of circuit motifs such as BMN→motor or reciprocal inhibitory loops is sometimes buried, rather than highlighted when first described.

      (2) Some assumptions require more explanation for non-specialist readers - for example, how bristle identity is inferred in EM in the absence of cuticular structures, or what is meant by "ascending" and "descending" in a dataset that does not include the ventral nerve cord. While some of this comes from the earlier paper, it would help readers of this one to explain this.

      (3) Visualization choices also sometimes obscure key conclusions: network graphs can be visually appealing but do not clearly convey somatotopy or BMN-type differences; heatmaps or region-level matrices would make the parallel, block-like organization of the circuit more evident.

      (4) The data might also speak to roles beyond grooming (e.g., mechanosensory modulation of posture or feeding), and a brief acknowledgement of this would broaden the impact.

      (5) The restriction to one hemisphere should be explicitly acknowledged as a limitation when framing this as a 'comprehensive' connectome.

      Overall, the authors achieve their main goal: they convincingly show that BMNs connect into parallel, somatotopically organized pathways, with LB23 providing a key lineage-based link from sensory input to grooming output. The dataset is carefully analyzed, and while the presentation could be streamlined, the connectome will be a valuable resource for researchers studying sensory processing, motor control, and the logic of circuit organization.

    1. Reviewer #3 (Public review):

      Summary:

      In this study, the authors establish a human in vitro liver model by co-culturing induced hepatocyte-like cells (iHEPs) with induced macrophages (iMACs). Through flow cytometry-based sorting of cell populations at days 3 and 7 of co-culture, followed by bulk RNA sequencing, they demonstrate that bidirectional interactions between these two cell types drive functional maturation. Specifically, the presence of iMACs accelerates the hepatic maturation program of iHEPs, while contact-dependent cues from iHEPs enhance the acquisition of Kupffer cell identity in iMACs, indicating that direct cell-cell interactions are critical for establishing tissue-resident macrophage characteristics.

      Functionally, the authors show that iMAC-derived Kupffer-like cells respond to pathological stimuli by producing interleukin-6 (IL-6), a hallmark cytokine of hepatic immune activation. When exposed to a panel of clinically relevant hepatotoxic drugs, the co-culture system exhibited concentration-dependent modulation of IL-6 secretion consistent with reported drug-induced liver injury (DILI) phenotypes. Notably, this response was absent when hepatocytes were co-cultured with monocyte-derived macrophages from peripheral blood, underscoring the liver-specific phenotype and functional relevance of the iMAC-derived Kupffer-like cells. Collectively, the study proposes this co-culture platform as a more physiologically relevant model for interrogating macrophage-hepatocyte crosstalk and assessing immune-mediated hepatotoxicity in vitro.

      Strengths:

      A major strength of this study lies in its systematic dissection of cell-cell interactions within the co-culture system. By isolating each cell type following co-culture and performing comprehensive transcriptomic analyses, the authors provide direct evidence of bidirectional crosstalk between iMACs and iHEPs. The comparison with single-culture controls is particularly valuable, as it clearly demonstrates how co-culture enhances functional maturation and lineage-specific gene expression in both cell types. This approach allows for a more mechanistic understanding of how hepatocyte-macrophage interactions contribute to the acquisition of tissue-specific phenotypes.

      Weaknesses:

      (1) Overreliance on bulk RNA-seq data:

      The primary evidence supporting cell maturation is derived from bulk RNA sequencing, which has inherent limitations in resolving heterogeneous cellular states and functional maturation. The conclusions regarding hepatocyte maturation are based largely on increased expression of a subset of CYP genes and decreased AFP levels - markers that, while suggestive, are insufficient on their own to substantiate functional maturation. Additional phenotypic or functional assays (e.g., metabolic activity, protein-level validation) would significantly strengthen these claims.

      (2) Insufficient characterization of input cell populations:

      The manuscript lacks adequate validation of the cellular identities prior to co-culture. Although the authors reference previously published protocols for generating iHEPs and iMACs, it remains unclear whether the cells used in this study faithfully retain expected lineage characteristics. For example, hepatocyte preparations should be characterized by flow cytometry for ALB and AFP expression, while iMACs should be assessed for canonical macrophage markers such as CD45, CD11b, and CD14 before co-culture. Without these baseline data, it is difficult to interpret the magnitude or significance of any co-culture-induced changes.

      (3) Quantitative assessment of IL-6 production is insufficient:

      The analysis of drug-induced IL-6 responses is based primarily on relative changes compared to control conditions. However, percentage changes alone are inadequate to capture the biological relevance of these responses. Absolute cytokine production levels - particularly in response to LPS stimulation - should be reported and directly compared to PBMC-derived macrophages to determine whether iMAC-derived Kupffer-like cells exhibit enhanced cytokine output. Moreover, the Methods section should clearly describe how ELISA results were normalized or corrected to account for potential differences in cell number, viability, or culture conditions.

      (4) Unclear mechanistic interpretation of IL-6 modulation:

      The observed changes in IL-6 production upon drug treatment cannot be interpreted solely as evidence of Kupffer cell-specific functionality. For instance, IL-6 suppression by NSAIDs such as diclofenac is well known to result from altered prostaglandin synthesis due to COX inhibition, while leflunomide's effects are linked to metabolite-induced modulation of immune cell proliferation and broader cytokine networks. These mechanisms are distinct from Kupffer cell identity and may not directly reflect liver-specific macrophage function. Consequently, changes in IL-6 secretion alone - particularly without additional mechanistic evidence or analysis of other cytokines - are insufficient to conclude that co-culture with hepatocytes drives the acquisition of bona fide Kupffer cell maturity.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript reports the discovery of new compounds that selectively inhibit SMARCA4/SMARCA2 ATPase activity and have pronounced effects on uveal melanoma cell proliferation. They induce apoptosis and suppress tumor growth, with no toxicity in vivo. The report provides biological significance by demonstrating that the drugs alter chromatin accessibility at lineage specific gene enhancer regions and decrease expression of lineage specific genes, including SOX10 and SOX10 target genes.

      Strengths:

      The study provides compelling evidence for the therapeutic use of these compounds and does a thorough job at elucidating the mechanisms by which the drugs work. The study will likely have a high impact on the chromatin remodeling and cancer fields. The datasets will be highly useful to these communities.

      [Editors' note: The authors have addressed all of the outstanding issues.]

    1. Reviewer #3 (Public review):

      Summary:

      Several recent findings indicate that forces perpendicular to the microtubule accelerate kinesin unbinding, where perpendicular and axial forces were analyzed using the geometry in a single-bead optical trapping assay (Khataee and Howard, 2019), comparison between single-bead and dumbbell assay measurements (Pyrpassopoulos et al., 2020), and comparison of single-bead optical trap measurements with and without a DNA tether (Hensley and Yildiz, 2025).

      Here, the authors devise an assay to exert forces along the microtubule axis by tethering kinesin to the microtubule via a dsDNA tether. They compared the behavior of kinesin-1, -2, and -3 when pulling against the DNA tether. In line with previous optical trapping measurements, kinesin unbinding is less sensitive to forces when the forces are aligned with the microtubule axis. Surprisingly, the authors find that both kinesin-1 and -2 detach from the microtubule more slowly when stalled against the DNA tether than in unloaded conditions, indicating that these motors act as catch bonds in response to axial loads. Axial loads accelerate kinesin-3 detachment. However, kinesin-3 reattaches quickly to maintain forces. For all three kinesins, the authors observe weakly attached states where the motor briefly slips along the microtubule before continuing a processive run.

      Strengths:

      These observations suggest that the conventional view that kinesins act as slip bonds under load, as concluded from single-bead optical trapping measurements where perpendicular loads are present due to the force being exerted on the centroid of a large (relative to the kinesin) bead, needs to be reconsidered. Understanding the effect of force on the association kinetics of kinesin has important implications for intracellular transport, where the force-dependent detachment governs how kinesins interact with other kinesins and opposing dynein motors (Muller et al., 2008; Kunwar et al., 2011; Ohashi et al., 2018; Gicking et al., 2022) on vesicular cargoes.

      Weaknesses:

      The authors attribute the differences in the behaviour of kinesins when pulling against a DNA tether compared to an optical trap to the differences in the perpendicular forces. However, the compliance is also much different in these two experiments. The optical trap acts like a ~ linear spring with stiffness ~ 0.05 pN/nm. The dsDNA tether is an entropic spring, with negligible stiffness at low extensions and very high compliance once the tether is extended to its contour length (Fig. 1B). The effect of the compliance on the results should be addressed in the manuscript.

      Compared to an optical trapping assay, the motors are also tethered closer to the microtubule in this geometry. In an optical trap assay, the bead could rotate when the kinesin is not bound. The authors should discuss how this tethering is expected to affect the kinesin reattachment and slipping. While likely outside the scope of this study, it would be interesting to compare the static tether used here with a dynamic tether like MAP7 or the CAP-GLY domain of p150glued.

      In the single-molecule extension traces (Figure 1F-H; S3), the kinesin-2 traces often show jumps in position at the beginning of runs (e.g., the four runs from ~4-13 s in Fig. 1G). These jumps are not apparent in the kinesin-1 and -3 traces. What is the explanation? Is kinesin-2 binding accelerated by resisting loads more strongly than kinesin-1 and -3?

      When comparing the durations of unloaded and stall events (Fig. 2), there is a potential for bias in the measurement, where very long unloaded runs cannot be observed due to the limited length of the microtubule (Thompson, Hoeprich, and Berger, 2013), while the duration of tethered runs is only limited by photobleaching. Was the possible censoring of the results addressed in the analysis?

      The mathematical model is helpful in interpreting the data. To assess how the "slip" state contributes to the association kinetics, it would be helpful to compare the proposed model with a similar model with no slip state. Could the slips be explained by fast reattachments from the detached state?

    1. Reviewer #3 (Public review):

      The introduction does a very good job of discussing the issue around whether there is ongoing replication in people with HIV on antiretroviral therapy. Sporadic, non-sustained replication likely occurs in many PWH on ART related to adherence, drug-drug interactions and possibly penetration of antivirals into sanctuary areas of replication and as the authors point out proving it does not occur is likely not possible and proving it does occur is likely very dependent on the population studied and the design of the intervention. Whether the consequences of this replication in the absence of evolution toward resistance have clinical significance challenging question to address.

      It is important to note that INSTI-based therapy may have a different impact on HIV replication events that results in differences in virus release for specific cell type (those responsible for "second phase" decay) by blocking integration in cells that have completed reverse transcription prior to ART initiation but have yet to be fully activated. In a PI or NNRTI-based regimen, those cells will release virus, whereas with an INSTI-based regimen, they will not.

      Given the very small sample size, there is a substantial risk of imbalance between the groups in important baseline measures.

      Comments on the revised version from the editor:

      I appreciate that the authors thoroughly address the reviewer's concerns in the response letter. Most importantly, they acknowledge that "The absence of a pre-specified statistical endpoint or sample size calculation reflects the exploratory nature of the trial." This is vital because the transient impact on total HIV DNA in the intensified versus standard dose arm raises questions about any sustained or meaningful anti-reservoir effect and was also not hypothesized a priori. The authors explanation that HIV DNA may have rebounded due to clonal expansion is interesting but not assessed directly in the trial.

      The greater decrease in intact HIV DNA between days 0 and 84 in the intensified arm are notable but are somewhat limited by small sample size, small effect size and lack of data between these two timepoints.

      Unfortunately, the hypothesis generating nature of the conclusions which is outlined nicely in the author's response letter is only acknowledged in the discussion of the revised paper. The abstract and results are only marginally different than the original version and still read as definitive when the evidence is only hypothesis generating. For these reasons, the level of evidence remains incomplete as before.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript demonstrates that starvation induces persister formation in M. abscesses. They also utilized Tn-Seq for the identification of genes involved in persistence. They identified the role of catalase-peroxidase KatG in preventing death from translation inhibitors Tigecycline and Linezolid. They further demonstrated that a combination of these translation inhibitors leads to the generation of ROS in PBS-starved cells.

      Strengths:

      The authors used high-throughput genomics-based methods for identification of genes playing a role in persistence.

      Weaknesses:

      The findings could not be validated in clinical strains.

      Comments on revisions: No more comments for the authors.

    1. Reviewer #3 (Public review):

      Summary

      The regulation of NF-κB signaling is complex and central to the differentiation and homeostasis of αβT cells, essential to adaptive immunity. γδ T cells are a distinct population that responds to stress/injury-induced cues by producing inflammatory cytokines, representing an important bridge between innate and adaptive immunity. This study from Islam et al. demonstrates that the IKK complex, a central regulator of NF-κB signaling, plays distinct and essential roles in the differentiation and maintenance of γδ T cells. The authors use elegant murine genetic models to generate clear data that disentangle these requirements in vivo.

      Although NF-κB activity was found to be dispensable for specification of γδ T cell progenitors and the generation of adaptive γδ T cells, it was required for both the ontogeny of type 1 γδ T cells and the survival of mature adaptive γδ T cells. Subunit-specific analyses revealed parallels with αβ T cells: RELA was necessary for type 1 γδ T cell development, while maintenance of adaptive γδ T cells relied upon redundancy between REL subunits, with cREL and p50 compensating in the absence of RELA but not vice versa. These findings reflect distinct biological requirements for ontogeny versus maintenance, likely driven by differences in receptor signaling, such as TCR and TNFRSF family members. Moreover, IKK also maintained γδ T cell survival through repression of RIPK1-mediated cell death, echoing its dual role in αβ T cells, where it both prevents TNF-induced apoptosis and provides NF-κB-dependent survival signals.

      Strengths:

      The multiple, unique murine genetic models employed for detailed analysis of in vivo γδ T cell differentiation and homeostasis are a major strength of this paper. NF-κB signaling processes are devilishly complex. The conditional mutants generated for this study disentangle the requirements for the various IKK-regulated pathways in γδ T cell differentiation, cell survival, and homeostasis. Data are clearly presented and suitably interpreted, with a helpful synthesis provided in the Discussion. These data will provide a definitive account of the requirements for NF-κB signaling in γδ T cells and provide new genetic models for the community to further study the upstream signals.

      Weaknesses:

      The paper would benefit greatly from a graphical abstract that could summarize the key findings, making the key findings accessible to the general immunology or biochemistry reader. Ideally, this graphic would distinguish the requirements for NF-κB signals sustaining thymic γδ T cell differentiation from peripheral maintenance, taking into account the various subsets and signaling pathways required. In addition, the authors should consider adding further literature comparing the requirements for NF-κB /necroptosis pathways in regulating other non-conventional T cell populations, such as iNKT, MAIT, or FOXP3+ Treg cells. These data might help position the requirements described here for γδ T cells compared to other subsets, with respect to homeostatic cues and transcriptional states.

      Last and least, there are multiple grammatical errors throughout the manuscript, and it would benefit from further editing. Likewise, there are some minor errors in figures (e.g., Figure 3A, add percentage for plot from IKKDT.RIPK1D138N mouse; Figure 7, "Adative").

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Kim et al. describes a MuSC subpopulation that loses VCam expression in geriatric muscle and shows reduced ability to contribute to muscle regeneration. They propose that this population underlies the reported decline of MuSCs in aged mice, suggesting that these cells remain present in geriatric muscle but are overlooked due to low or absent VCam expression. The identification of a subpopulation that changes with aging would be compelling and of interest to the field.

      Strengths:

      The authors employ a wide range of assays, from in vitro to in vivo systems, to characterize Vcam-low/negative cells from geriatric muscle. The loss of Vcam appears strong in geriatric mice. They further identify CD63 and CD200 as potential surface markers that remain stable with age, thereby enabling the isolation of MuSCs across different age groups.

      Weaknesses:

      Some issues remain before establishing whether this population represents a true functional subset or explains the reported decline in MuSC numbers in aged mice. A stronger fate assessment of Vcam-low/negative cells is needed to assess their propensity for cell death in vitro and in vivo (e.g., engraftment efficiency), and if this plays a role in their conclusions. Comparisons include young, middle-aged, and geriatric mice, but not aged (~24 months) mice, which are needed for direct assessment of previous reports of age-related MuSC decline. The suggestion that the Vcam-low/negative population reflects senescence appears premature, with few consistent markers for this fate, as well as the cells not exhibiting irreversible cell-cycle exit. Finally, validation of CD63 and CD200 as reliable age-independent MuSC markers requires further testing, specifically using the Pax7-YFP tracing model and co-labeling in geriatric mice.

    1. Reviewer #3 (Public Review):

      The manuscript by Carayon and Strutt addresses the role of cell-scale signaling during the establishment of planar cell polarity (PCP) in the Drosophila pupal wing. The authors induce locally the expression of a tagged core PCP protein, Frizzled, and observe and analyze the de novo establishment of planar cell polarity. Using this system, the authors show that PCP can be established within several hours, that PCP is robust towards variation in core PCP protein levels, that PCP proteins do not orient microtubules, and that PCP is robust towards 'extrinsic' re-polarization. The authors conclude that the polarization at the cell-scale is strongly intrinsic and only weakly affected by the polarity of neighboring cells.

      Major comments (first round of review):

      The data are clearly presented and the manuscript is well written. The conclusions are well supported by the data. 

      (1) The authors use a system to de novo establish PCP, which has the advantage of excluding global cues orienting PCP and thus to focus on the cell-intrinsic mechanisms. At the same time, the system has the limitation that it is unclear to what extent de novo PCP establishment reflects 'normal' cell scale PCP establishment, in particular because the Gal4/UAS expression system that is used to induce Fz expression will likely result in much higher Fz levels compared with the endogenous levels. The authors should briefly discuss this limitation.

      (2) Fig. 3. The authors use heterozygous mutant backgrounds to test the robustness of de novo PCP establishment towards (partial) depletion in core PCP proteins. The authors conclude that de novo polarization is 'extremely robust to variation in protein level'. Since the authors (presumably) lowered protein levels by 50%, this conclusion appears to be somewhat overstated. The authors should tune down their conclusion.

      Significance: 

      The manuscript contributes to our understanding of how planar cell polarity is established. It extends previous work by the authors (Strutt and Strutt, 2002,2007) that already showed that induction of core PCP pathway activity by itself is sufficient to induce de novo PCP. This manuscript further explores the underlying mechanisms. The authors test whether de novo PCP establishment depends on an 'inhibitory signal', as previously postulated (Meinhardt, 2007), but do not find evidence. They also test whether core PCP proteins help to orient microtubules (which could enhance cell intrinsic polarization of core PCP proteins), but, again, do not find evidence, corroborating previous work (Harumoto et al, 2010). The most significant finding of this manuscript, perhaps, is the observation that local de novo PCP establishment does not propagate far through the tissue. A limitation of the study is that the mechanisms establishing intrinsic cell scale polarity remain unknown. The work will likely be of interest to specialists in the field of PCP.

      Summary of comments from the Reviewing Editor on the revised version:

      In the introduction, when you refer to Figure 1, the definition of Molecular, cellular, tissue scale is indeed not too clear to outside readers. For example, when you first refer to 'cell scale' you define it 'non-local', but probably it is not clear to many readers 'non-local' means 'the mechanism that cannot be explained by 'molecular scale'. (because 'molecular scale = local' is only inferred).

      The 'conclusion paragraph' at the end of the Introduction does not have conclusion (only explained 'which question was tested by which method').

      Minor comments that can easily be addressed by textual edits:

      – they do not explain why gene dosage affects constitutive but not de novo polarization. It seems to me that one would expect de novo to be at least as sensitive if not more.

      – Unconventional nomenclature for tissue axes - mediolateral, horizontal - are frequently used. These are sometimes difficult to parse. Please stick with universally accepted anterior, posterior, proximal and distal.

    1. Reviewer #3 (Public review):

      Summary:

      Kumar et al. examine the H3K115 epigenetic mark located on the lateral surface of the histone core domain and present evidence that it may serve as a marker enriched at transcription start sites (TSSs) of active CpG island promoters and at polycomb-repressed promoters. They also note enrichment of the H3K115ac mark is found on fragile nucleosomes within nucleosome-depleted regions, on active enhancers, and CTCF-bound sites. They propose that these observations suggest that H3K115ac contributes to nucleosome destabilization and so may serve as a marker of functionally important regulatory elements in mammalian genomes.

      Strengths:

      The authors present novel observations suggesting that acetylation of a histone residue in a core (versus on a histone tail) domain may serve a functional role in promoting transcription, in CPG islands and polycomb-repressed promoters. They present a solid amount of confirmatory in silico data using appropriate methodology that supports the idea that the H3K115ac mark may function to destabilize nucleosomes and contribute to regulating ESC differentiation.

      Weaknesses:

      Additional experiments to confirm antibody specificity are needed. The authors use synthetic peptides for other markers (e.g., H3K122) to support the claim that the antibody is specific, but ChIP-ChIP assays are performed under cross-linked, non-denatured conditions, which preserve structure and epitope accessibility differently than synthetic peptides used for dot blots. Does the antibody give a single band in western blots of histones, and can the H3K115ac peptide block western and immunofluorescence signals of the antibody? Given that the antibody is a rabbit polyclonal, specificity is not a trivial consideration.

    1. Reviewer #3 (Public review):

      This study investigates the connection between glycolysis and the biosynthesis of sulfur-containing amino acids in controlling fungal morphogenesis, using Saccharomyces cerevisiae and C. albicans as model organisms. The authors identify a conserved metabolic axis that integrates glycolysis with cysteine/methionine biosynthetic pathways to influence morphological transitions. This work broadens the current understanding of fungal morphogenesis, which has largely focused on gene regulatory networks and cAMP-dependent signaling pathways, by emphasizing the contribution of metabolic control mechanisms. However, despite the novel conceptual framework, the study provides limited mechanistic characterization of how the sulfur metabolism and glycolysis blockade directly drive morphological outcomes. In particular, the rationale for selecting specific gene deletions, such as Met32 (and not Met4), or the Met30 deletion used to probe this pathway, is not clearly explained, making it difficult to assess whether these targets comprehensively represent the metabolic nodes proposed to be critical. Further supportive data and experimental validation would strengthen the claims on connections between glycolysis, sulfur amino acid metabolism, and virulence.

      Strengths:

      (1) The delineation of how glycolytic flux regulates fungal morphogenesis through a cAMP-independent mechanism is a significant advancement. The coupling of glycolysis with the de novo biosynthesis of sulfur-containing amino acids, a requirement for morphogenesis, introduces a novel and unexpected layer of regulation.

      (2) Demonstrating this mechanism in both S. cerevisiae and C. albicans strengthens the argument for its evolutionary conservation and biological importance.

      (3) The ability to rescue the morphogenesis defect through exogenous supplementation of sulfur-containing amino acids provides functional validation.

      (4) The findings from the murine Pfk1-deficient model underscore the clinical significance of metabolic pathways in fungal infections.

      Weaknesses:

      (1) While the link between glycolysis and sulfur amino acid biosynthesis is established via transcriptomic and proteomic analysis, the specific regulation connecting these pathways via Met30 remains to be elucidated. For example, what are the expression and protein levels of Met30 in the initial analysis from Figure 2? How specific is this effect on Met30 in anaerobic versus aerobic glycolysis, especially when the pentose phosphate pathway is involved in the growth of the cells when glycolysis is perturbed?

      (2) Including detailed metabolite profiling could have strengthened the metabolic connection and provided additional insights into intermediate flux changes, i.e., measuring levels of metabolites to check if cysteine or methionine levels are influenced intracellularly. Also, it is expected to see how Met30 deletion could affect cell growth. Data on Met30 deletion and its effect on growth are not included, especially given that a viable heterozygous Met30 strain has been established. Measuring the cysteine or methionine levels using metabolomic analysis would further strengthen the claims in every section.

      (3) In comparison with the previous bioRxiv (doi: https://doi.org/10.1101/2025.05.14.654021) of this article in May 2025 to the recent bioRxiv of this article (doi: https://doi.org/10.1101/2025.05.14.654021), there have been some changes, and Met30 deletion has been recently included, and the chemical perturbation of glycolysis has been added as new data. Although the changes incorporated in the recent version of the article improved the illustration of the hypothesis in Figure 6, which connects glycolysis to Sulfur metabolism, the gene expression and protein levels of all genes involved in the illustrated hypothesis are not consistently shown. For example, in some cases, the Met4 expression is not shown (Figure 4), and the Met30 expression is not shown during profiling (gene expression or protein levels) throughout the manuscript. Lack of consistency in profiling the same set of key genes makes understanding more complicated.

      (4) The demonstrated link between glycolysis and sulfur amino acid biosynthesis, along with its implications for virulence in C. albicans, is important for understanding fungal adaptation, as mentioned in the article; however, the Met4 activation was not fully characterized, nor were the data presented when virulence was assessed in Figure 4. Why is Met4 not included in Figure 4D and I? Especially, according to Figure 6, Met4 activation is crucial and guides the differences between glycolysis-active and inactive conditions.

      (5) Similarly, the rationale behind selecting Met32 for characterizing sulfur metabolism is unclear. Deletion of Met32 resulted in a significant reduction in pseudohyphal differentiation; why is this attributed only to Met32? What happens if Met4 is deleted? It is not justified why Met32, rather than Met4, was chosen. Figure 6 clearly hypothesizes that Met4 activation is the key to the mechanism.

      (6) The comparative RT-qPCR in Figure 5 did not account for sulfur metabolism genes, whereas it was focused only on virulence and hyphal differentiation. Is there data to support the levels of sulfur metabolism genes?

      (7) To validate the proposed interlink between sulfur metabolism and virulence, it is recommended that the gene sets (illustrated in Figure 6) be consistently included across all comparative data included throughout the comparisons. Excluding sulfur metabolism genes in Figure 5 prevents the experiment from demonstrating the coordinated role of glycolysis perturbation → sulfur metabolism → virulence. The same is true for other comparisons, where the lack of data on Met30, Met4, etc., makes it hard to connect the hypothesis. It is also recommended to check the gene expression of other genes related to the cAMP pathway and report them to confirm the cAMP-independent mechanism. For example, gap2 deletion was used to confirm the effects of cAMP supplementation, but the expression of this gene was not assessed in the RNA-seq analysis in Figure 2. It would be beneficial to show the expression of cAMP-related genes to completely confirm that they do not play a role in the claims in Figure 2.

      (8) Although the NAC supplementation study is included in the new version of the article compared to the previous version in BioRxiv (May 2025), the link to sulfur metabolism is not well characterized in Figure 5 and their related datasets. The main focus of the manuscript is to delineate the role of sulfur metabolism; hence, it is anticipated that Figure 5 will include sulfur-related metabolic genes and their links to pfk1 deletion, using RT-PCR measurements as shown for the virulence genes.

      (9) The manuscript would benefit from more information added to the introduction section and literature supports for some of the findings reported earlier, including the role of (i) cAMP-PKA and MAPK pathways, (ii) what is known in the literature that reports about the treatment with 2DG (role of Snf1, HXT1, and HXT3), as well as how gpa2 is involved. Some sentences in the manuscripts are repetitive; it would be beneficial to add more relevant sections to the introduction and discussion to clarify the rationale for gene choices.

    1. Reviewer #3 (Public review):

      Summary:

      Nucleotide modifications are important regulators of biological function, however, until recently, their study has been limited by the availability of appropriate analytical methods. Oxford Nanopore direct RNA sequencing preserves nucleotide modifications, permitting their study, however many different nucleotide modifications lack an available base-caller to accurately identify them. Furthermore, existing tools are computationally intensive, and their results can be difficult to interpret.

      Cheng et al. present SegPore, a method designed to improve the segmentation of direct RNA sequencing data and boost the accuracy of modified base detection.

      Strengths:

      This method is well described and has been benchmarked against a range of publicly available base callers that have been designed to detect modified nucleotides.

      Comment from the Reviewing Editor:

      The authors have provided responses to the weaknesses highlighted previously and the reviewers were not asked to comment. The authors have now requested a Version of Record.

    1. Reviewer #3 (Public review):

      Summary:

      Pinho et al., investigated the role of the dorsal VS ventral hippocampus and gender differences in mediated learning. While previous studies already established the engagement of the hippocampus in sensory preconditioning, the authors here took advantages of freely-moving fiber photometry recording and chemogenetics to observe and manipulate sub-regions of the hippocampus (drosal VS ventral) in a cell-specific manner. Importantly, the authors validated the sensory preconditioning procedure in male mice. The authors found no evidence of sensory preconditioning in female mice, but rather a generalization effect, stressing the importance of gender differences in fear learning. After validation of a sensory preconditioning procedure in male mice using light and tone neutral stimuli and a mild foot shock as the unconditioned stimulus, the authors used fiber photometry to record from all neurons VS parvalbumin_positive_only neurons in the dorsal hippocampus or ventral hippocampus of male mice during both preconditioning and conditioning phases. They found an increased activity of all neurons, PV+_only neurons, and CAMKII+ neurons in both sub-regions of the hippocampus during both preconditioning and conditioning phases. Finally, the authors found that chemogenetic inhibition of CaMKII+ neurons (but not PV+_only neurons) in the dorsal (but not ventral) hippocampus specifically prevented the formation of an association between the two neutral stimuli (i.e., light and tone cues). This manipulation had no effect on the direct association between the light cue and the mild foot shock. This set of data (1) validates sensory preconditioning in male mice, and stresses the importance of taking gender effect into account; (2) validates the recruitment of dorsal and ventral hippocampi during preconditioning and conditioning phases; (3) and further establishes the specific role of CaMKII+ neurons in the dorsal hippocampus, but not ventral hippocampus, in the formation of an association between two neutral stimuli, but not between a neutral-stimulus and a mild foot shock.

      Strengths:

      The authors developed a sensory preconditioning procedure in male mice to investigate mediated learning using light and tone cues as neutral stimuli, and a mild foot shock as the unconditioned stimulus. They provide evidence of a gender effect in the formation of light-cue association. The authors took advantage of fiber-photometry and chemogenetics to target sub-regions of the hippocampus, in a cell-specific manner and investigate their role during different phases of a sensory conditioning procedure, and developed a DeepLabCut-based strategy to assess freezing fear responses.

      Weaknesses:

      The authors went further than previous studies by investigating the role of sub-regions the hippocampus in mediated learning, however, there are a few weaknesses that should be addressed in future studies:

      (1) This study found a generalization effect in female mice only. While the authors attempted to neutralize this effect, the mechanism underlying this gender effect and whether female mice can display evidence for mediated learning has yet to be determined.

      (2) One of the main effects from which derives the conclusion of this study (i.e., deficit of mediated learning in male mice when CAMKII+ neurons are inhibited in the dorsal HPC during the preconditioning phase) lies in the absence of a significant difference of the freezing response before and during the tone cue presentation when CAMKII+ are chemogenetically inhibited during the Probe Test Tone phase (cf. Fig. 4 Panel B, DPCd group). The fear response before the tone cue presentation in this group (DPCd) seems higher than in Controls_d and DPTd groups and could have masked a mediated learning effect.

    1. Reviewer #3 (Public review):

      This study by the Boddy and Otomo laboratories further characterizes the roles of SMC5/6 loader proteins and related factors in SMC5/6-mediated repression of extrachromosomal circular DNA. The work shows that mutations engineered at an AlphaFold-predicted protein-protein interface formed between the loader SLF2/SIMC1 and SMC6 (similar to the interface in the yeast counterparts observed by cryo-EM) prevent co-IP of the respective proteins. The mutations in SLF2 also hinder plasmid DNA silencing when expressed in SLF2-/- cell lines, suggesting that this interface is needed for silencing. SIMC1 is dispensable for recruitment of SMC5/6 to sites of DNA damage, while SLF1 is required, thus separating the functions of the two loader complexes. Preventing SUMOylation (with a chemical inhibitor) increases transcription from plasmids but does not in SLF2-deleted cell lines, indicating the SMC5/6 silences plasmids in a SUMOylation dependent manner. Expression of LT is sufficient for increased expression, and again, not additive or synergistic with SIMC1 or SLF2 deletion, indicating that LT prevents silencing by directly inhibiting 5/6. In contrast, PML bodies appear dispensable for plasmid silencing.

    1. Reviewer #3 (Public review):

      Summary:

      In their manuscript, Armand and colleagues investigate the potential of continuing CDK4/6 inhibitors or combining them with CDK2 inhibitors in the treatment of breast cancer that has developed resistance to initial therapy. Utilizing cellular and animal models, the research examines whether maintaining CDK4/6 inhibition or adding CDK2 inhibitors can effectively control tumor growth after resistance has set in. The key findings from the study indicate that the sustained use of CDK4/6 inhibitors can slow down the proliferation of cancer cells that have become resistant, and the combination of CDK2 inhibitors with CDK4/6 inhibitors can further enhance the suppression of tumor growth. Additionally, the study identifies that high levels of Cyclin E play a significant role in resistance to the combined therapy. These results suggest that continuing CDK4/6 inhibitors along with the strategic use of CDK2 inhibitors could be an effective strategy to overcome treatment resistance in hormone receptor-positive breast cancer. However, several issues need to be addressed before considering its publication.

      Strengths:

      (1) Continuous CDK4/6 Inhibitor Treatment Significantly Suppresses the Growth of Drug-Resistant HR+ Breast Cancer: The study demonstrates that the continued use of CDK4/6 inhibitors, even after disease progression, can significantly inhibit the growth of drug-resistant breast cancer.

      (2) Potential of Combined Use of CDK2 Inhibitors with CDK4/6 Inhibitors: The research highlights the potential of combining CDK2 inhibitors with CDK4/6 inhibitors to effectively suppress CDK2 activity and overcome drug resistance.

      (3) Discovery of Cyclin E Overexpression as a Key Driver: The study identifies overexpression of cyclin E as a key driver of resistance to the combination of CDK4/6 and CDK2 inhibitors, providing insights for future cancer treatments.

      (4) Consistency of In Vitro and In Vivo Experimental Results: The study obtained supportive results from both in vitro cell experiments and in vivo tumor models, enhancing the reliability of the research.

      (5) Validation with Multiple Cell Lines: The research utilized multiple HR+/HER2- breast cancer cell lines (such as MCF-7, T47D, CAMA-1) and triple-negative breast cancer cell lines (such as MDA-MB-231), validating the broad applicability of the results.

      Comments on revisions:

      The authors made a significant effort to improve the manuscript. My comments were sufficiently addressed.

    1. Reviewer #3 (Public review):

      Summary:

      The authors of this manuscript have addressed a key concept in T cell development: how early thymus gd T cell subsets are specified and the elements that govern gd T17 versus other gd T cell subsets or ab T cell subsets are specified. They show that the transcriptional regulator HEB/Tcf12 plays a critical role in specifying the gd T17 lineage and, intriguingly, that it upregulates the inhibitor Id3, which is later required for further gd T17 maturation.

      Strengths:

      The conclusions drawn by the authors are amply supported by a detailed analysis of various stages of T cell maturation in WT and KO mouse strains at the single cell level, both phenotypically, by flow cytometry for various diagnostic surface markers, and transcriptionally, by single cell sequencing. Their conclusions are balanced and well supported by the data and citations of previous literature.

      Weaknesses:

      I actually found this work to be quite comprehensive. I have a few suggestions for additional analyses the authors could explore that are unrelated to the predominant conclusions of the manuscript, but I failed to find major flaws in the current work.

      I note that HEB is expressed in many hematopoietic lineages from the earliest progenitors and throughout T cell development. It is also noteworthy that abortive gamma and delta TCR rearrangements have been observed in early NK cells and ILCs, suggesting that, particularly in early thymic development, specification of these lineages may have lower fidelity. It might prove interesting to see whether their single-cell sequencing or flow data reveal changes in the frequency of these other T-cell-related lineages. Is it possible that HEB is playing a role not only in the fidelity of gdT17 cell specification, but also perhaps in the separation of T cells from NK cells and ILCs or the frequency of DN1, DN2, and DN3 cells? Perhaps their single-cell sequencing data or flow analyses could examine the frequency of these cells? That minor caveat aside, I find this to be an extremely exciting body of work.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Chaya and Syed focuses on understanding the link between cell cycle and temporal patterning in central brain type II neural stem cells (NSCs). To investigate this, the authors perturb the progression of the cell cycle by delaying the entry into M phase and preventing cytokinesis. Their results convincingly show that temporal factor expression requires progression of the cell cycle in both Type 1 and Type 2 NSCs in the Drosophila central brain. Overall, this study establishes an important link between the two timing mechanisms of neurogenesis.

      Strengths:

      The authors provide solid experimental evidence for the coupling of cell cycle and temporal factor progression in Type 2 NSCs. The quantified phenotype shows an all-or-none effect of cell cycle block on the emergence of subsequent temporal factors in the NSCs, strongly suggesting that both nuclear division and cytokinesis are required for temporal progression. The authors also extend this phenotype to Type 1 NSCs in the central brain, providing a generalizable characterization of the relationship between cell cycle and temporal patterning.

      Weaknesses:

      One major weakness of the study is that the authors do not explore the mechanistic relationship between the cell cycle and temporal factor expression. Although their results are quite convincing, they do not provide an explanation as to why Cdk1 depletion affects Syp and EcR expression but not the onset of svp. This result suggests that at least a part of the temporal cascade in NSCs is cell-cycle independent, which isn't addressed or sufficiently discussed.

    1. Reviewer #3 (Public review):

      Summary:

      Hensley et al. present an important study into the force-detachment behaviour of kinesin-1, the most well-characterised motor protein. One of the key techniques used to characterise kinesins is in vitro optical trapping of purified proteins, which has provided remarkable insights into the biochemical and mechanical mechanisms of motor proteins under single- and multi-motor conditions. This study presents an adapted (from Urbanska et al.) methodological approach of DNA-tethering kinesin-1 to a bead, both under single- and multi-motor conditions, which is then trapped to characterise the run length, processivity, and stall behaviour under unloaded and loaded (both assisting and hindering) conditions. The new approach reduces the vertical or z-force and thus provides insights into the role of horizontal or x-forces acting on the motor. Based on their method of imposing dominant horizontal forces on the motor and their data, they conclude that kinesin-1 exhibits a higher asymmetry in its force-detachment kinetics, is less slippery, and exhibits slip-bond behaviour, particularly under hindering loads. Under assisting loads, similar slip-bond kinetics ensue, but detachment from the microtubule is far more sensitive. To demonstrate the implications of their method and data, they conduct a multi-motor assay and show that multiple kinesin-1 motors can generate significantly higher forces, almost proportional to motor number. Overall, this is important work, and the data are compelling.

      Strengths:

      The method of DNA-tethered motor trapping is effective in reducing vertical forces and can be easily optimised for other motors and protein characterisation. The major strength of the paper is characterising kinesin-1 under low z-forces, which is likely to reflect the physiological scenario. They report that kinesin-1 is more robust and less prone to premature detachment. The motors exhibit higher stall rates and times. Under hindering and assisting loads, kinesin-1 detachment is more asymmetric and sensitive, and with low z-force shows that slip-behaviour kinetics prevail. Another achievement of this paper is the demonstration of the multi-motor kinesin-1 assay using their low-z force method, showing that multiple kinesin-1 motors are capable of generating higher forces (up to 15 pN, and nearly proportional to motor number), thus opening an avenue to study multiple motor coordination.

      Weaknesses:

      The method of DNA-tethered motor trapping to enable low z-force is not entirely novel, but adapted from Urbanska (2021) for use in conventional optical trapping laboratories without reliance on microfluidics. However, I appreciate that they have fully established it here to share with the community. The authors could strengthen their methods section by being transparent about protein weight, protein labelling, and DNA ladders shown in the supplementary information. What organism is the protein from? Presumably human, but this should be specified in the methods. While the figures show beautiful data and exemplary traces, the total number of molecules analysed or events is not consistently reported. Overall, certain methodological details should be made sufficient for reproducibility.

      The major limitation the study presents is overarching generalisability, starting with the title. I recommend that the title be specific to kinesin-1. The study uses two constructs: a truncated K560 for conventional high-force assays, and full-length Kif5b for the low z-force method. However, for the multi-motor assay, the authors use K560 with the rationale of preventing autoinhibition due to binding with DNA, but that would also have limited characterisation in the single-molecule assay. Overall, the data generated are clear, high-quality, and exciting in the low z-force conditions. But why have they not compared or validated their findings with the truncated construct K560? This is especially important in the force-feedback experiments and in comparison with Andreasson et al. and Carter et al., who use Drosophila kinesin-1. Could kinesin-1 across organisms exhibit different force-detachment kinetics? It is quite possible. Similarly, the authors test backward slipping of Kif5b and K560 and measure dwell times in multi-motor assays. Why not detail the backward slippage kinetics of Kif5b and any step-size impact under low z-forces? For instance, with the traces they already have, the authors could determine slip times, distances, and frequency in horizontal force experiments. Overall, the manuscript could be strengthened by analysing both constructs more fully.

      Appraisal and impact:

      This study contributes to important and debated evidence on kinesin-1 force-detachment kinetics. The authors conclude that kinesin-1 exhibits a slip-bond interaction with the microtubule under increasing forces, while other recent studies (Noell et al. and Kuo et al.), which also use low z-force setups, conclude catch-bond behaviour under hindering loads. I find the results not fully aligned with their interpretation. The first comparison of low z-forces in their setup with Noell et al. (2024), based on stall times, does not hold, because it is an apples-to-oranges comparison. Their data show a stall time constant of 2.52 s, which is comparable to the 3 s reported by Noell et al., but the comparison is made with a weighted average of 1.49 s. The authors do report that detachment rates are lower in low z-force conditions under unloaded scenarios. So, to completely rule out catch-bond-like behaviour is unfair. That said, their data quality is good and does show that higher hindering forces lead to higher detachment rates. However, on closer inspection, the range of 0-5 pN shows either a decrease or no change in detachment rate, which suggests that under a hindering force threshold, catch-bond-like or ideal-bond-like behaviour is possible, followed by slip-bond behaviour, which is amazing resolution. Under assisting loads, the slip-bond character is consistent, as expected. Overall, the study contributes to an important discussion in the biophysical community and is needed, but requires cautious framing, particularly without evidence of motor trapping in a high microtubule-affinity state rather than genuine bond strengthening.

    1. Reviewer #3 (Public review):

      This study makes excellent use of a uniquely large dataset of reaching movements collected over several decades to evaluate the origins of systematic motor biases. The analyses convincingly demonstrate that these biases are not explained by errors in sensed hand position or by biomechanical constraints, but instead arise from a misalignment between eye-centric and body-centric representations of position. By testing multiple computational models across diverse contexts-including different effectors, visible versus occluded start positions-the authors provide strong evidence for their transformation model. My earlier concerns have been addressed, and I find the work to be a significant and timely contribution that will be of broad interest to researchers studying visuomotor control, perception, and sensorimotor integration.

    1. Reviewer #3 (Public review):

      Liff et al. have made considerable effort to improve their manuscript. In their revised manuscript, the authors have substantiated their claims of intergenerationally inherited changes in the olfactory system in response to odor-dependent fear conditioning. Several new experiments and analyses now strengthen this study.

      I still find that the statement that the study provides "insight into the heritability of acquired phenotypes" is somewhat misleading. In their response to this initially raised point the authors correctly point out that their "results provide basic knowledge that will accelerate our ability to uncover the mechanisms driving heritable changes." That said, current "insights" are not mechanistic in nature.

    1. Reviewer #3 (Public review):

      In the study the authors performed longitudinal 1P calcium imaging of mouse mPFC across 8 weeks during learning of an olfactory-guided task, including habituation, training, and sleep periods. The authors' goal was to determine how the mPFC representation of the task changed and what aspects of activity emerged between the learning and the learned conditions of the task. The task had 3 arms. Odor was sampled at the end of the middle arm (named the "Sample" period). The animal then needed to run to one of the two other arms (R or L) based on the odor. The whole period until they reached the end of one of the choice arms was the "Outward" period. The time at the reward end was the "Reward" period. They noted several changes from the learning condition to the learned condition:

      (1) They classified cells in a few ways. First each cell was classified as SI (spatially informative) if it had significantly more spatial information than shuffled activity, and ~50% of cells ended up being SI cells. Then among the SI cells they classified a cell as a TC (task cell) if it had statistically similar activity maps for R versus L arms, and a GC (goal arm cell) otherwise. Note that there are 4 kinds of these cells: outer arm TCs and GCs and middle arm TCs and GCs (with middle arm GCs essentially being like "splitter cells" since they are not similarly active in the middle arm for R versus L trials). There was an increase in TCs from the learning to the learned condition sessions. They also note the sources of these TCs (some came from GCs, others from non-SI cells).

      (2) They analyze activity sequences across cells. They extracted 500 ms duration bursts (defined as periods of activity > 0.5 standard deviations over what I assume is the mean, which is a permissive threshold encompassing a significant fraction of the activity in non-sleep, non-habituation periods). They first noted that the resulting "Burst rates were significantly larger during behavioral epochs than during sleep and during periods of habituation to the arena" and "Moreover, burst rates during correct trials were significantly lower than during error trials". For the sequence analysis they only considered bursts consisting of at least 5 active cells. A cell's activity within the burst was set to the center of mass calcium activity. Then they took all the sequences from all learned and learning sessions together and hierarchically clustered them based on the Spearman's rank correlation between the order of activity in each pair of sequences (among the cells active in both). The iterative hierarchical clustering process produces groups (clusters) of sequences such that there are multiple repeats of sequences within a cluster. Different sequences are expressed across all the longitudinally recorded sessions. They noted "large differences of sequence activation between learning and learned condition, both in the spatial patterns (example animal in Fig. 4D) and the distribution of the sequences (Fig. 4D,E). Rastermap plots (Fig. 4D) also reveal little similarity of sequence expression between task and habituation or sleep condition." They also note the difference in the sequences between learning and learned condition was larger than the different between correct and error trials within each condition. They conclude that during task learning new representations are established, as measured by the burst sequence content. They do additional analyses of the sequence clusters by assessing the spatial informativeness (SI) of each sequence cluster. Over learning they find an increase in clusters that are spatially informative (clusters that tend to occur in specific locations). Finally, they analyzed the SI clusters in a similar manner as SI cells and classified them as task phase selective sequences (TSs) and goal arm selective sequences (GSs) and did some further analysis. However, they themselves conclude that the frequency of TSs and GSs is limited because most sequence clusters were non-SI. In the discussion they say "In addition to GSs and TSs, we found that most of the recurring sequences are not related to behavior (not SI)".

      (3) As an alternative to analyzing individual cells and sequences of individual cells, they then look for trajectory replay using Bayesian population decoding of location during bursts. They analyze TS bursts, GS bursts, and non-SI bursts. They say "we found correlations of decoded position with time bin (within a 500 ms burst) strongly exceeding chance level only during outward and reward phase, for both GSs and TSs (Fig 5H)." Fig5H shows distributions indicating statistically significant bias in the forward direction (using correlations of decoded location versus time bin across 10 bins of 50 ms each within each 500ms burst). They find that the Outward trajectories appear to reflect the actual trajectory during running itself, so are likely not replay. But the sequences at the Reward are replay as they do not reflect the current location. Furthermore, replay at the Reward is in the forward direction (unlike the reverse replay at Reward seen in the hippocampus) and this replay is only seen in the learned and not the learning condition. At the same time, they find that replay is not seen during odor Sampling, from which they conclude there is no evidence of replay used for planning. Instead they say the replay at the Reward could possibly be for evaluation during the Reward phase, though this would only be for the learned condition. They conclude "Together with our finding of strong changes in sequence expression after learning (Fig 4E) these findings suggest that a representation of task develops during learning".

      This study provides valuable new information about the evolution of mPFC activity during the learning of a odor-based 2AFC T-maze-like task. They show convincing evidence of changes in single cell tuning, population sequences, and replay events. They also find novel forward replay at the Reward, and find that this is present only after the animal learned the task. In the discussion the authors note "the present study, to our knowledge, identified for the first time fast recurring neural sequence activity from 1-p calcium data, based on correlation analysis". Overall, they find a substantial amount of change among the features they analyzed and according to their methods, though they note a small amount of activity was preserved through learning.

      One comment is that the threshold for extracting burst events (0.5 standard deviations, presumably above the mean) seems lower than what one usually sees as a threshold for population burst detection, and the authors show (in Supplementary Fig 1) that this means bursts cover ~20-40% of the data. However, it is potentially a strength of this work that their results are found by using this more permissive threshold.

    1. Reviewer #3 (Public review):

      Summary:

      The authors are reanalyzing previously published data to test the hypothesis that serotonin neurons encode state value. Here, the authors focus on analyzing the firing rate of serotonin neurons during the inter-trial interval, in which no cues or outcomes are delivered. The goal is to quantify and find neurons whose activity is explained by value encoding, and for those that have this property, determine what the timescale of reward integration is (e.g., a few trials, tens of trials, or the entire session) in individual neurons.

      Strengths:

      The major strengths are the use of a Bayesian modelling approach to extract value and thirst coding features from individual neurons, and comparison of the time course of adaptation of serotonin neurons with a behavioral output, licking in this case. I also appreciate the use of a separate dataset to establish prior distributions for baseline firing rate to be used in the modelling done here, which is an attempt to deal with the main weakness of this study:

      Weaknesses:

      The weakness of this study is the small number of neurons available for analysis, resulting in a small number of neurons that unequivocally are modulated by value.

      The authors did achieve their aims, but the results show that it is hard to unequivocally separate value-coding neurons with long timescales from thirst-coding neurons, which is acknowledged by the authors.

      While the experimental results do not allow for a strong conclusion regarding the distinction of value versus thirst coding in serotonin neurons, the methods employed and the rationale for using them are of great utility to the community and for considerations of behavioral task design and data analysis in future studies. This is a point that the authors could discuss/develop more.

      Additional significance of the work:

      The comparison between time courses for behavior (anticipatory licking) and serotonin activity (as well as the reference to dopamine activity's time course from a previous study) is of great significance for any researcher studying behavioral control. Mounting evidence suggests that multiple brain circuits contribute to any given action selection. Therefore, expecting a perfect alignment between the time course of neuromodulator activity and behavioral output might be unreasonable. For future studies, modelling behavioral output as a combination of policies determined by multiple brain circuits or neuromodulators might be a promising approach.

    1. Reviewer #3 (Public review):

      Summary:

      Fritz et al. investigate the changes in synaptic connectivity between two different life stages of the Drosophila larva, L1 and L3. They focus on 3 types of nociceptive mechanosensory neurons and their connecting 6 downstream interneurons. Connectomic analysis reveals that connectivity and dendritic density are stable across development; however, axonal density, axodendritic overlap, and the number of synapses increase. Finally, using a modeling approach, they demonstrate that this conservation of most features enables stable output across life stages.

      Strengths:

      The authors analyse two different connectomes from fly larvae in two different life stages. By now, there are only very few such samples available; thus, this is a novel approach and will be helpful to guide further comparative connectomic studies in the future.

      Weaknesses:

      The authors analyze only a minimal circuit with 9 different cell types on each hemisphere; thus, their findings might be specialised for this specific nociceptive sensory to interneuron peripheral circuit. Also, more animals might need to be analyzed in different life stages to generalize these findings.

    1. Reviewer #3 (Public review):

      Summary:

      The study uses the food choice task, a well-established method in eating disorder research, particularly in anorexia nervosa. However, it introduces a novel analytical approach-the diffusion decision model-to deconstruct food choices and assess the influence of negative affect on how and when tastiness and healthiness are considered in decision-making among individuals with bulimia nervosa and healthy controls.

      Strengths:

      The introduction provides a comprehensive review of the literature, and the study design appears robust. It incorporates separate sessions for neutral and negative affect conditions and counterbalances tastiness and healthiness ratings. The statistical methods are rigorous, employing multiple testing corrections.

      A key finding-that negative affect induction biases individuals with bulimia nervosa toward prioritizing tastiness over healthiness-offers an intriguing perspective on how negative affect may drive binge eating behaviors.

      Weaknesses:

      A notable limitation is the absence of a sample size calculation, which, combined with the relatively small sample, may have contributed to null findings. Additionally, while the affect induction method is validated, it is less effective than alternatives such as image or film-based stimuli (Dana et al., 2020), potentially influencing the results.

    1. Reviewer #3 (Public review):

      Summary

      This paper investigates how disinformation affects reward learning processes in the context of a two-armed bandit task, where feedback is provided by agents with varying reliability (with lying probability explicitly instructed). They find that people learn more from credible sources, but also deviate systematically from optimal Bayesian learning: They learned from uninformative random feedback and updated too quickly from fully credible feedback (especially following low-credibility feedback). People also appeared to learn more from positive feedback and there is tentative evidence that this bias is exacerbated for less credible feedback.

      Overall, this study highlights how misinformation could distort basic reward learning processes, without appeal to higher order social constructs like identity.

      Strengths - The experimental design is simple and well-controlled; in particular, it isolates basic learning processes by abstracting away from social context - Modeling and statistics meet or exceed standards of rigor - Limitations are acknowledged where appropriate, especially those regarding external validity and challenges in dissociating positivity bias from perseveration - The comparison model, Bayes with biased credibility estimates, is strong; deviations are much more compelling than e.g. a purely optimal model - The conclusions are of substantial interest from both a theoretical and applied perspective

      Weaknesses

      The authors have done a great job addressing my concerns with the two previous submission. The one issue that they were not able to truly address is the challenge of dissociating positivity bias from perseveration; this challenge weakens evidence for the conclusion that less credible feedback yields a stronger positivity bias. However, the authors have clearly acknowledged this limitation and tempered their conclusions accordingly. Furthermore, the supplementary analyses on this point are suggestive (if not fully conclusive) and do a better job of at least trying to address the confound than most work on positivity/confirmation bias.

      I include my previous review describing the challenge in more detail for reference. I encourage interested readers to see the author response as well. It has convinced me that this weakness is not a reflection of the work, but is instead a fundamental challenge for research on positivity bias.

      Absolute or relative positivity bias?

      The conclusion of greater positivity bias for lower credible feedback (Fig 5) hinges on the specific way in which positivity bias is defined. Specifically, we only see the effect when normalizing the difference in sensitivity to positive vs. negative feedback by the sum. I appreciate that the authors present both and add the caveat whenever they mention the conclusion. However, without an argument that the relative definition is more appropriate, the fact of the matter is that the evidence is equivocal.

      There is also a good reason to think that the absolute definition is more appropriate. As expected, participants learn more from credible feedback. Thus, normalizing by average learning (as in the relative definition) amounts to dividing the absolute difference by increasingly large numbers for more credible feedback. If there is a fixed absolute positivity bias (or something that looks like it), the relative bias will necessarily be lower for more credible feedback. In fact, the authors own results demonstrate this phenomenon (see below). A reduction in relative bias thus provides weak evidence for the claim.

      It is interesting that the discovery study shows evidence of a drop in absolute bias. However, for me, this just raises questions. Why is there a difference? Was one just a fluke? If so, which one?

      Positivity bias or perseveration?

      Positivity bias and perseveration will both predict a stronger relationship between positive (vs. negative) feedback and future choice. They can thus be confused for each other when inferred from choice data. This potentially calls into question all the results on positivity bias.

      The authors clearly identify this concern in the text and go to considerable lengths to rule it out. However, the new results (in revision 1) show that a perseveration-only model can in fact account for the qualitative pattern in the human data (the CA parameters). This contradicts the current conclusion:

      Critically, however, these analyses also confirmed that perseveration cannot account for our main finding of increased positivity bias, relative to the overall extent of CA, for low-credibility feedback.

      Figure 24c shows that the credibility-CA model does in fact show stronger positivity bias for less credible feedback. The model distribution for credibility 1 is visibly lower than for credibilities 0.5 and 0.75.

      The authors need to be clear that it is the magnitude of the effect that the perseveration-only model cannot account for. Furthermore, they should additionally clarify that this is true only for models fit to data; it is possible that the credibility-CA model could capture the full size of the effect with different parameters (which could fit best if the model was implemented slightly differently).

      The authors could make the new analyses somewhat stronger by using parameters optimized to capture just the pattern in CA parameters (for example by MSE). This would show that the models are in principle incapable of capturing the effect. However, this would be a marginal improvement because the conclusion would still rest on a quantitative difference that depends on specific modeling assumptions.

      New simulations clearly demonstrate the confound in relative bias

      Figure 24 also speaks to the relative vs. absolute question. The model without positivity bias shows a slightly stronger absolute "positivity bias" for the most credible feedback, but a weaker relative bias. This is exactly in line with the logic laid out above. In standard bandit tasks, perseveration can be quite well-captured by a fixed absolute positivity bias, which is roughly what we see in the simulations (I'm not sure what to make of the slight increase; perhaps a useful lead for the authors). However, when we divide by average credit assignment, we now see a reduction. This clearly demonstrates that a reduction in relative bias can emerge without any true differences in positivity bias.

      Given everything above, I think it is unlikely that the present data can provide even "solid" evidence for the claim that positivity bias is greater with less credible feedback. This confound could be quickly ruled out, however, by a study in which feedback is sometimes provided in the absence of a choice. This would empirically isolate positivity bias from choice-related effects, including perseveration.

      Comments on revisions:

      Great work on this. The new paper is very interesting as well. I'm delighted to see that the excessive amount of time I spent on this review has had a concrete impact.

    1. Reviewer #3 (Public review):

      Summary:

      Rong et al., compare EEG image responses from a large-scale dataset to state-of-the-art vision and language models, as well as their fusion. They find that the fusion of models provides the best predictivity, with early contribution from vision models and later predictivity from language models. The paper has several strengths: high temporal resolution data (though at the expense of spatial resolution), detailed comparison of alignment (and differences) between vision and language model embeddings, and comparison of "fusion" of different DNN models.

      Despite the paper's strengths, it is not clear what is at stake with these findings or how they advance our knowledge beyond other recent studies showing vision versus language model predictions of visual cortex responses with fMRI.

      Strengths:

      The authors use a large-scale EEG dataset and a comprehensive modeling approach. The methods are sound and involve multiple model comparisons. In particular, the disentangling of vision and language model features is something that has been largely ignored in prior related studies.

      Weaknesses:

      (1) The authors state their main hypothesis (lines 48-51) that human neural responses to visual stimulation are better modelled by combining representations from a vision DNN and an LLM than by the representations from either of the two components alone, and that the vision DNN and LLM components would uniquely predict earlier and later stages of visual processing, respectively.

      While they confirm this hypothesis in largely compelling ways, it is not clear whether these results tell us something about the brain beyond how to build the most predictive model.

      In particular, why do language models offer advantages over vision models, and what does this tell us about human visual processing? In several places, the discussion of advantages for the language model felt somewhat trivial and did not seem to advance our understanding of human vision, e.g., "responses for visual stimulation encode detailed information about objects and their properties" (lines 266-270) and "LLM representations capture detailed visuo-semantic information about the stimulus images" (line 293).

      (2) It is not clear what the high temporal resolution EEG data tell us that the whole-brain fMRI data do not. The latency results seem to be largely in line with fMRI findings, where the early visual cortex is better predicted by vision models, and the language model is better in later/more anterior regions. In addition, it would help to discuss whether the EEG signals are likely to be restricted to the visual cortex, or could the LLM predictivity explain downstream processing captured by whole-brain EEG signals?

      Relatedly, it would help the authors to expand on the implications of the frequency analysis.

      (3) While the authors test many combinations of vision and language models and show their "fusion" advantages are largely robust to these changes, it is still hard to ignore the vast differences between vision and language models, in terms of architecture and how they are trained. Two studies (Wang et al., 2023, and Conwell et al., 2024) have now shown that when properly controlling for architecture and dataset, there is little to no advantage of language alignment in predicting visual cortex responses. It would help for the authors to both discuss this aspect of the prior literature and to try to address the implications for their own findings (related to pt 1 about what, if anything, is "special" about language models).

      (4) Model features - it would help to state the dimensionality of the input embeddings for each model and how much variance is explained and preserved after the PCA step? I wonder how sensitive the findings are to this choice of dimensionality reduction, and whether an approach that finds the optimal model layer (in a cross-validated way) would show less of a difference between vision/language models (I realize this is not feasible with models like GPT-3).

      (5) To better understand the fusion advantage, it would help to look at the results, look for a pair of vision models and a pair of language models. Can a similar advantage be found by combining models from the same modality?

    1. Reviewer #4 (Public review):

      Summary:

      In this manuscript, authors used a learning paradigm in C. elegans; when worms were fed in a saltless plate, its chemotaxis to salt is greatly reduced. To identify learning-related proteins, authors employed nervous system-specific transcriptome analysis to compare whole proteins in neurons between high-salt-fed animals and saltless-fed animals. Authors identified "learning-specific proteins" which are observed only after saltless feeding. They categorized these proteins by GO analyses, pathway analyses and expression site analyses, and further stepped forward to test mutants in selected genes identified by the proteome analysis. They find several mutants that are defective or hyper-proficient for learning, including acc-1/3 and lgc-46 acetylcholine receptors, F46H5.3 putative arginine kinase, and kin-2, a cAMP pathway gene. These mutants were not previously reported to have abnormality in the learning paradigm.

      Concerns:

      Upon revision, authors addressed all concerns of this reviewer, and the results are now presented in a way that facilitates objective evaluation. Authors' conclusions are supported by the results presented, and the strength of the proteomics approach is persuasively demonstrated.

      Significance:

      (1) Total neural proteome analysis has not been conducted before for learning-induced changes, though transcriptome analysis has been performed for odor learning (Lakhina et al., http://dx.doi.org/10.1016/j.neuron.2014.12.029). This warrants the novelty of this manuscript, because for some genes, protein levels may change even though mRNA levels remain the same. Although in a few reports TurboID has been used in C. elegans, this is the first report of a systematic analysis of tissue-specific differential proteomics.

      (2) Authors found five mutants that have abnormality in the salt learning. These genes have not been described to have the abnormality, providing novel knowledge to the readers, especially those who work on C. elegans behavioural plasticity. Especially, involvement of acetylcholine neurotransmission has not been addressed before. Although transgenic rescue experiments have not been performed except kin-2, and the site of action (neurons involved) has not been tested in this manuscript, it will open the venue to further determine the way in which acetylcholine receptors, cAMP pathway etc. influences the learning process.

    1. Reviewer #3 (Public review):

      Summary:

      The authors demonstrate that CRF neurons in the extended amygdala form GABAergic synapses onto cholinergic interneurons and that CRF can excite these neurons. The evidence is strong, however, the authors fail to make a compelling connection showing CRF released from these extended amygdala neurons is mediating any of these effects. Further, they show that acute alcohol appears to modulate this action, although the effect size is not particularly robust.

      Strengths:

      This is an exciting connection from the extended amygdala to the striatum that provides a new direction for how these regions can modulate behavior. The work is rigorous and well done.

      Weaknesses:

      While the authors show that opto stim of these neurons can increase firing, this is not shown to be CRFR1 dependent. In addition, the effects of acute ethanol are not particularly robust or rigorously evaluated. Further, the opto stim experiments are conducted in an Ai32 mouse, so it is impossible to determine if that is from CEA and BNST, vs. another population of CRF-containing neurons. This is an important caveat.

    1. Reviewer #3 (Public review):

      Summary:

      In this study, Philipp et al. investigate how a monkey learns to compensate for a large, chronic biomechanical perturbation - a tendon transfer surgery, swapping the actions of two muscles that flex and extend the fingers. After performing the surgery and confirming that the muscle actions are swapped, the authors follow the monkeys' performance on grasping tasks over several months. There are several main findings:

      (1) There is an initial stage of learning (around 60 days), where monkeys simply swap the activation timing of their flexors and extensors during the grasp task to compensate for the two swapped muscles.

      (2) This is (seemingly paradoxically) followed by a stage where muscle activation timing returns almost to what it was pre-surgery, suggesting that monkeys suddenly swap to a new strategy that is better than the simple swap.

      (3) Muscle synergies seem remarkably stable through the entire learning course, indicating that monkeys do not fractionate their muscle control to swap the activations of only the two transferred muscles.

      (4) Muscle synergy activation shows a similar learning course, where the flexion synergy and extension synergy activations are temporarily swapped in the first learning stage and then revert to pre-surgery timing in the second learning stage.

      (5) The second phase of learning seems to arise from making new, compensatory movements (supported by other muscle synergies) that get around the problem of swapped tendons.

      Strengths:

      This study is quite remarkable in scope, studying two monkeys over a period of months after a difficult tendon-transfer surgery. As the authors point out, this kind of perturbation is an excellent testbed for the kind of long-term learning that one might observe in a patient after stroke or injury, and provides unique benefits over more temporary perturbations like visuomotor transformations and studying learning through development. Moreover, while the two-stage learning course makes sense, I found the details to be genuinely surprising--specifically the fact that: (1) muscle synergies continue to be stable for months after the surgery, despite now being maladaptive; and (2) muscle activation timing reverts to pre-surgery levels by the end of the learning course. These two facts together initially make it seem like the monkey simply ignores the new biomechanics by the end of the learning course, but the authors do well to explain that this is mainly because the monkeys develop a new kind of movement to circumvent the surgical manipulation.

      I found these results fascinating, especially in comparison to some recent work in motor cortex, showing that a monkey may be able to break correlations between the activities of motor cortical neurons, but only after several sessions of coaching and training (Oby et al. PNAS 2019). Even then, it seemed like the monkey was not fully breaking correlations but rather pushing existing correlations harder to succeed at the virtual task (a brain-computer interface with perturbed control).

      Weaknesses:

      I found the analysis to be reasonably well considered and relatively thorough. However, I do have a few suggestions that I think may elevate the work, should the authors choose to pursue them.

      First, I find myself wondering about the physical healing process from the tendon transfer surgery and how it might contribute to the learning. Specifically, how long does it take for the tendons to heal and bear forces? If this itself takes a few months, it would be nice to see some discussion of this.

      Second, I see that there are some changes in the muscle loadings for each synergy over the days, though they are relatively small. The authors mention that the cosine distances are very small for the conserved synergies compared to distances across synergies, but it would be good to get a sense for how variable this measure is within synergy. For example, what is the cosine similarity for a conserved synergy across different pre-surgery days? This might help inform whether the changes post-surgery are within a normal variation or whether they reflect important changes in how the muscles are being used over time.

      Last, and maybe most difficult (and possibly out of scope for this work): I would have ideally liked to see some theoretical modeling of the biomechanics so I could more easily understand what the tendon transfer did or how specific synergies affect hand kinematics before and after the surgery. Especially given that the synergies remained consistent, such an analysis could be highly instructive for a reader or to suggest future perturbations to further probe the effects of tendon transfer on long-term learning.

    1. Reviewer #4 (Public review):

      Thank you to the authors for their detailed responses and changes in relation to my questions. They have addressed all my concerns around methodological and inference clarity. I would still recommend against the use of feature/pathway selection techniques where there is no way of applying formal error control. I am pleased to read, however, that the authors are planning to develop this in future work. My edited review reflects these changes:

      The authors apply what I gather is a novel methodology titled "Multi-gradient Permutation Survival Analysis" to identify genes that are robustly associated with prognosis ("GEARs") using tumour expression data from 15 cancer types available in the TCGA. The resulting lists of GEARs are then interrogated for biological insights using a range of techniques including connectivity and gene enrichment analysis.

      I reviewed this paper primarily from a statistical perspective. Evidently an impressive amount of work has been conducted, concisely summarised, and great effort has been undertaken to add layers of insight to the findings. I am no stranger to what an undertaking this would have been. My primary concern, however, is that the novel statistical procedure proposed, and applied to identify the gene lists, as far as I can tell offers no statistical error control nor quantification. Consequently we have no sense what proportion of the highlighted GEAR genes and networks are likely to just be noise.

      Major comments:

      The main methodology used to identify the GEAR genes, "Multi-gradient Permutation Survival Analysis" does not formally account for multiple testing and offers no formal error control. Meaning we are left without knowing what the family wise (aka type 1) error rate is among the GEAR lists, nor the false discovery rate. I appreciate the emphasis on reproducibility, but I would generally recommend against the use of any feature selection methodology which does not provide error quantification because otherwise we do not know if we are encouraging our colleagues and/or readers to put resource into lists of genes that contain more noise than not. I am glad though and appreciative that the authors intend to develop this in future work.

      The authors make a good point that, despite lack of validation in an external independent dataset, it is still compelling work given the functional characterisation and literature validation. I am pleased though that the authors agree validation in an independent dataset is an important next step, and plan to do so in future work.

    1. Reviewer #3 (Public review):

      Summary:

      In the manuscript " Dynamics of mesoscale brain network during decision-making learning revealed by chronic, large-scale single-unit recording", Wang et al investigated mesoscale network reorganization during visual stimulus discrimination learning in mice using chronic, large-scale single-unit recordings across 10 cortical/subcortical regions. During learning, mice improved task performance mainly by suppressing licking on no-go trials. The authors found that learning induced restructuring of functional connectivity, with visual (V1, V2M) and frontal (OFC, M2) regions forming a task-relevant subnetwork during the acquisition of correct No-Go (CR) trials.

      Learning also compressed sequential neural activation and broadened stimulus encoding across regions. In addition, a region's network connectivity rank correlated with its timing of peak visual stimulus encoding.

      Optogenetic inhibition of orbitofrontal cortex (OFC) and high order visual cortex (V2M) impaired learning, validating its role in learning. The work highlights how mesoscale networks underwent dynamic structuring during learning.

      Strengths:

      The use of ultra-flexible microelectrode arrays (uFINE-M) for chronic, large-scale recordings across 10 cortical/subcortical regions in behaving mice represents a significant methodological advancement. The ability to track individual units over weeks across multiple brain areas will provide a rare opportunity to study mesoscale network plasticity.

      While limited in scope, optogenetic inhibition of OFC and V2M directly ties connectivity rank changes to behavioral performance, adding causal depth to correlational observations.

      Weaknesses:

      The weakness is also related to the strength provided by the method. It is demonstrated in the original method that this approach in principle can track individual units for four months (Luan et al, 2017). The authors have not showed chronically tracked neurons across learning. Without demonstrating that and taking advantage of analyzing chronically tracked neurons, this approach is not different from acute recording across multiple days during learning. Many studies have achieved acute recording across learning using similar tasks. These studies have recorded units from a few brain areas or even across brain-wide areas.

      Another weakness is that major results are based on analyses of functional connectivity that is calculated using the cross-correlation score of spiking activity (TSPE algorithm). Functional connection strengthen across areas is then ranked 1-10 based on relative strength. Without ground truth data, it is hard to judge the underlying caveats. I'd strongly advise the authors to use complementary methods to verify the functional connectivity and to evaluate the mesoscale change in subnetworks. Perhaps the authors can use one key information of anatomy, i.e. the cortex projects to the striatum, while the striatum does not directly affect other brain structures recorded in this manuscript.

    1. Reviewer #3 (Public review):

      Summary:

      The authors investigate how sleep loss and circadian disruption affect whole-organism metabolism in Drosophila melanogaster. They used chamber-based flow-through respirometry to measure oxygen consumption and carbon dioxide production in wild-type flies and in mutants with impaired sleep or circadian function. These measurements were then integrated with a previously published metabolomics dataset to explore how respiratory dynamics align with metabolic pathways. The central claim is that wild-type flies display anticipatory coordination of metabolic processes with circadian time, while mutants exhibit reactive shifts in substrate use, redox imbalance, and signs of mitochondrial stress.

      Strengths:

      The study has several strengths. Continuous high-resolution respirometry in flies is challenging, and its application across multiple genotypes provides good comparative insight. The conceptual framework distinguishing anticipatory from reactive metabolic regulation is interesting. The translational framing helps place the work in a broader context of sleep, circadian biology, and metabolic health.

      Weaknesses:

      At the same time, the evidence supporting the conclusions is somewhat limited. The metabolomics data were not newly generated but repurposed from prior work, reducing novelty. The biological replication in the respirometry assays is low, with only a small number of chambers per genotype. Importantly, respiratory parameters in flies are strongly influenced by locomotor activity, yet no direct measurements of activity were included, making it difficult to separate intrinsic metabolic changes from behavioral differences in mutants. In addition, repeated claims of "mitochondrial stress" are not directly substantiated by assays of mitochondrial function. The study also excluded female flies entirely, despite well-documented sex differences in metabolism, which narrows the generality of the findings.

    1. Reviewer #3 (Public review):

      Summary:

      The focus of the research is to understand how transcription factors with high expression in neural crest cell-derived cancers (e.g., neuroblastoma) and roles in neural crest cell development function to promote malignancy. The focus is on the transcription factor FOXC1 and using murine cell culture, gain- and loss-of-function approaches, and ChIP profiling, among other techniques, to place PKAC inhibitor ARHGAP36 mechanistically between FOXC1 and another pathway associated with malignancy, Sonic Hedgehog (SHH).

      Strengths:

      Major strengths are the mechanistic approaches to identify FOXC1 direct targets, definitively showing that FOXC1 transcriptional regulation of ARHGAP36 leads to dysregulation of SHH signaling downstream of ARHGAP36 inhibition of PKC. Starting from a screen of Foxc1 OE to get to ARHGAP36 and then using genetic and pharmacological manipulation to work through the mechanism is very well done. There is data that will be of use to others studying FOXC1 in mesenchymal cell types, in particular, the FOXC1 ChIP-seq.

      Weaknesses:

      Work is almost all performed in NIH3T3 or similar cells (mouse cells, not patient or mouse-derived cancer cells), so the link to neuroblastoma that forms the major motivation of the work is not clear. The authors look at ARHGAP36 levels in association with the neuroblastoma patient survival; however, the finding, though interesting and quite compelling, is misaligned with what the literature shows about FOXC1 and SHH, their high expression is associated with increased malignancy (also maybe worse outcomes?). Therefore, ARHGAP36 expression may be more complicated in a tumor cell or may be unrelated to FOXC1 or SHH, leaving one to wonder what the work in NIH3T3 cells, though well done, is telling us about the mechanisms of FOXC1 as an oncogene in neuroblastoma cells or in any type of cancer cell. Does it really function as an SHH activator to drive tumor growth? The 'oncogenic relevance' and 'contribution to malignancy' claimed in the last paragraph of the introduction are currently weakly supported by the data as presented. This could be improved by studying some of these mechanisms in patient-derived neuroblastoma cells with high FOXC1 expression. Does inhibiting FOXC1 change SHH and ARHGAP36 and have any effect on cell proliferation or migration? Alternatively, does OE of FOXC1 in NIH3T3 cells increase their migration or stimulate proliferation in some way, and is this dependent on ARHGAP36 or SHH? Application of their mechanistic approaches in cancer cells or looking for hallmarks of cancer phenotypes with FOXC1 OE (and dependent on SHH or ARHGAP36) could help to make a link with cellular phenotypes of malignant cells.

    1. Reviewer #3 (Public review):

      Summary:

      The authors present an in vitro evaluation of drug-drug interactions between artemisinins and quinoline antimalarials, as an important aspect for screening the current artemisinin-based combination therapies for Plasmodium falciparum. Using a revised pulsing assay, they report antagonism between dihydroartemisinin (DHA) and several quinolines, including chloroquine, piperaquine (PPQ), and amodiaquine. This antagonism is increased in CQ-resistant strains in isobologram analyses. Moreover, CQ co-treatment was found to induce artemisinin resistance even in parasites lacking K13 mutations during the ring-stage survival assay. This implies that drug-drug interactions, not just genetic mutations, can influence resistance phenotypes. By using a chemical probe for reactive heme, the authors demonstrate that quinolines inhibit artemisinin activation by rendering cytosolic heme chemically inert, thereby impairing the cytotoxic effects of DHA. The study also observed negative interactions in triple-drug regimens (e.g., DHA-PPQ-Mefloquine) and in combinations involving OZ439, a next-generation peroxide antimalarial. Taken together, these findings raise significant concerns regarding the compatibility of artemisinin and quinoline combinations, which may promote resistance or reduce efficacy.

      Throughout the manuscript, no combinations were synergistic, which necessitates comparing the claims to a synergistic combination as a control. The lack of this positive control makes it difficult to contextualize the observed antagonism. Including a known synergistic pair (e.g., artemisinin + lumefantrine) throughout the study would have provided a useful benchmark to assess the relative impact of the drug interactions described.

      Strengths:

      This study demonstrates the following strengths:

      (1) The use of a pulsed in vitro assay that is more physiologically relevant than the traditional 48h or 72h assays.

      (2) Small molecule probes, H-FluNox, and Ac-H-FluNox to detect reactive cytosolic heme, demonstrating that quinolines render heme inert and thereby block DHA activation.

      (3) Evaluates not only traditional combinations but also triple-drug combinations and next-generation artemisinins like OZ439. This broad scope increases the study's relevance to current treatment strategies and future drug development.

      (4) By using the K13 wild-type parasites, the study suggests that resistance phenotypes can emerge from drug-drug interactions alone, without requiring genetic resistance markers.

      Weaknesses:

      (1) No combinations are shown as synergistic: it could be valuable to have a combination that shows synergy as a positive control (e.g, artemisinin + lumefantrine) throughout the manuscript. The absence of a synergistic control combination in the experimental design makes it more challenging to evaluate the relative impact of the described drug interactions.

      (2) Evaluation of the choice of drug-drug interactions: How generalizable are the findings across a broad range of combinations, especially those with varied modes of action?

      (3) The study would also benefit from a characterization of the molecular basis for the observed heme inactivation by quinolines to support this hypothesis - while the probe experiments are valuable, they do not fully elucidate how quinolines specifically alter heme chemistry at the molecular level.

      (4) Suggestion of alternative combinations that show synergy could have improved the significance of the work.

      (5) All data are derived from in vitro experiments, without accompanying an in vivo validation. While the pulsing assay improves physiological relevance, it still cannot fully capture the complexity of drug pharmacokinetics, host-parasite interactions, or immune responses present in living organisms.

      (6) The absence of pharmacokinetic/pharmacodynamic modeling leaves questions about how the observed antagonism would manifest under real-world dosing conditions.

  3. Oct 2025
    1. Reviewer #3 (Public review):

      Summary:

      The authors present a clearly written and beautifully presented piece of work demonstrating clear evidence to support the idea that BK channels and Cav1.3 channels can co-assemble prior to their assertion in the plasma membrane.

      Strengths:

      The experimental records shown back up their hypotheses and the authors are to be congratulated for the large number of control experiments shown in the ms.

    1. Reviewer #3 (Public review):

      Summary

      Kong and coauthors describe and implement a method to correct local deformations due to beam-induced motion in cryo-EM movie frames. This is done by fitting a 3D spline model to a stack of micrograph frames using cross-correlation-based local patch alignment to describe the deformations across the micrograph in each frame, and then computing the value of the deformed micrograph at each pixel by interpolating the undeformed micrograph at the displacement positions given by the spline model. A graphical interface in cisTEM allows the user to visualise the deformations in the sample, and the method has been proven to be successful by showing improvements in 2D template matching (2DTM) results on the corrected micrographs using five in situ samples.

      Impact

      This method has great potential to further streamline the cryo-EM single particle analysis pipeline by shortening the required processing time as a result of obtaining higher quality particles early in the pipeline, and is applicable to both old and new datasets, therefore being relevant to all cryo-EM users.

      Strengths

      (1) One key idea of the paper is that local beam induced motion affects frames continuously in space (in the image plane) as well as in time (along the frame stack), so one can obtain improvements in the image quality by correcting such deformations in a continuous way (deformations vary continuously from pixel to pixel and from frame to frame) rather than based on local discrete patches only. 3D splines are used to model the deformations: they are initialised using local patch alignments and further refined using cross-correlation between individual patch frames and the average of the other frames in the same patch stack.

      (2) Another strength of the paper is using 2DTM to show that correcting such deformations continuously using the proposed method does indeed lead to improvements. This is shown using five in situ datasets, where local motion is quantified using statistics based on the estimated motions of ribosomes.

      Weaknesses

      (1) While very interesting, it is not clear how the proposed method using 3D splines for estimating local deformations compares with other existing methods that also aim to correct local beam-induced motion by approximating the deformations throughout the frames using other types of approximation, such as polynomials, as done, for example MotionCor2.

      (2) The use of 2DTM is appropriate, and the results of the analysis are enlightening, but one shortcoming is that some relevant technical details are missing. For example, the 2DTM SNR is not defined in the article, and it is not clear how the authors ensured that no false positives were included in the particles counted before and after deformation correction. The Jupyter notebooks where this analysis was performed have not been made publicly available.

      (3) It is also not clear how the proposed deformation correction method is affected by CTF defocus in the different samples (are the defocus values used in the different datasets similar or significantly different?) or if there is any effect at all.

    1. Reviewer #3 (Public review):

      Summary:

      In the reviewed manuscript, researchers aimed to overcome the obstacles of high-resolution imaging of intact liver tissue. They report successful modification of the existing CUBIC protocol into Liver-CUBIC, a high-resolution multiplex 3D imaging method that integrates multicolor metallic compound nanoparticle (MCNP) perfusion with optimized liver tissue clearing, significantly reducing clearing time and enabling simultaneous 3D visualization of the portal vein, hepatic artery, bile ducts, and central vein spatial networks in the mouse liver. Using this novel platform, the researchers describe a previously unrecognized perivascular structure they termed Periportal Lamellar Complex (PLC), regularly distributed along the portal vein axis. The PLC originates from the portal vein and is characterized by a unique population of CD34⁺Sca-1⁺ dual-positive endothelial cells. Using available scRNAseq data, the authors assessed the CD34⁺Sca-1⁺ cells' expression profile, highlighting the mRNA presence of genes linked to neurodevelopment, biliary function, and hematopoietic niche potential. Different aspects of this analysis were then addressed by protein staining of selected marker proteins in the mouse liver tissue. Next, the authors addressed how the PLC and biliary system react to CCL4-induced liver fibrosis, implying PLC dynamically extends, acting as a scaffold that guides the migration and expansion of terminal bile ducts and sympathetic nerve fibers into the hepatic parenchyma upon injury.

      The work clearly demonstrates the usefulness of the Liver-CUBIC technique and the improvement of both resolution and complexity of the information, gained by simultaneous visualization of multiple vascular and biliary systems of the liver at the same time. The identification of PLC and the interpretation of its function represent an intriguing set of observations that will surely attract the attention of liver biologists as well as hepatologists; however, some claims need more thorough assessment by functional experimental approaches to decipher the functional molecules and the sequence of events before establishing the PLC as the key hub governing the activity of biliary, arterial, and neuronal liver systems. Similarly, the level of detail of the methods section does not appear to be sufficient to exactly recapitulate the performed experiments, which is of concern, given that the new technique is a cornerstone of the manuscript.

      Nevertheless, the work does bring a clear new insight into the liver structure and functional units and greatly improves the methodological toolbox to study it even further, and thus fully deserves the attention of readers.

      Strengths:

      The authors clearly demonstrate an improved technique tailored to the visualization of the liver vasulo-biliary architecture in unprecedented resolution.

      This work proposes a new biological framework between the portal vein, hepatic arteries, biliary tree, and intrahepatic innervation, centered at previously underappreciated protrusions of the portal veins - the Periportal Lamellar Complexes (PLCs).

      Weaknesses:

      Possible overinterpretation of the CD34+Sca1+ findings was built on re-analysis of one scRNAseq dataset.

      Lack of detail in the materials and methods section greatly limits the usefulness of the new technique to other researchers.

    1. Reviewer #3 (Public review):

      Summary:

      Recent studies have established that trypanocidal drugs, including pentamidine and melarsoprol, enter the trypanosomes via the glyceroaquaporin AQP2 (TbAQP2). Interestingly, drug resistance in trypanosomes is, at least in part, caused by recombination with the neighbouring gene, AQP3, which is unable to permeate pentamidine or melarsoprol. The effect of the drugs on cells expressing chimeric proteins is significantly reduced. In addition, controversy exists regarding whether TbAQP2 permeates the drugs like an ion channel, or whether it serves as a receptor that triggers downstream processes upon drug binding. In this study the authors set out to achieve these objectives: 1) to understand the molecular interactions between TbAQP2 and glycerol, pentamidine, and melarsoprol, and 2) to determine the mechanism by which mutations that arise from recombination with TbAQP3 result in reduced drug permeation.

      The cryo-EM structures provide details of glycerol and drug binding, and show that glycerol and the drugs occupy the same space within the pore. Finally, MD simulations and lysis assays are employed to determine how mutations in TbAQP2 result in reduced permeation of drugs by making entry and exit of the drug relatively more energy-expensive. Overall, the strength of evidence used to support the author's claims is solid.

      Strengths:

      The cryo-EM portion of the study is strong, and while the overall resolution of the structures is in the 3.5Å range, the local resolution within the core of the protein and the drug binding sites is considerably higher (~2.5Å).<br /> I also appreciated the MD simulations on the TbAQP2 mutants and the mechanistic insights that resulted from this data.

      Weaknesses:

      (1) The authors do not provide any experimental validation the drug binding sites in TbAQP2 due to lacking resources. However, the claims have been softened in the revised paper.

    1. Reviewer #3 (Public review):

      Summary:

      The study consists of extensive computational analyses of their previously released Patch-seq data on single MN1-Ib and MNISN-Is neurons. The authors demonstrate the diversity of A>I editing events at single-cell resolution in two different neuronal cell types, identifying numerous A>I editing events that vary in their proportion, including those that cause missense mutations in conserved amino acids. They also consider "noncanonical" edits, such as C>T and G>A, and integrate publicly available data to support these analyses.

      In general, the study contains a valuable resource to assess RNA editing in single neurons and opens several questions regarding the diversity and functional implications of RNA editing at single-cell resolution. The conclusions from the study are generally supported by their data; however, the study is currently based on computational predictions and would therefore benefit from experimentation to support their hypotheses and demonstrate the effects of the editing events identified on neuronal function and phenotype.

      Strengths:

      The study uses samples that are technically difficult to prepare to assess cell-type-specific RNA editing events in a natural model. The study also uses public data from different developmental stages that demonstrate the importance of considering cell type and developmental stage-specific RNA regulation. These critical factors, particularly that of developmental timing, are often overlooked in mechanistic studies.

      Extensive computational analysis, using public pipelines, suitable filtering criteria, and accessible custom code, identifies a number of RNA editing events that have the potential to impact conserved amino acids and have subsequent effects on protein function. These observations are supported through the integration of several public data sets to investigate the occurrence of the edits in other data sets, with many identified across multiple data sets. This approach allowed the identification of a number of novel A>I edits, some of which appear to be specific to this study, suggesting cell/developmental specificity, whilst others are present in the public data sets but went unannotated.

      The study also considers the role of Adar in the generation of A>I edits, as would be expected, by assessing the effect of Adar expression on editing rates using public data from adar mutant tissue to demonstrate that the edits conserved between experiments are mainly Adar-sensitive. This would be stronger if the authors also performed Patch-seq experiments in adar mutants to increase confidence in the identified edit sites.

      Weaknesses:

      Whilst the study makes interesting observations using advanced computational approaches, it does not demonstrate the functional implications of the observed editing events. The functional impact of the edits is inferred from either the nature of the change to the coding sequence and the amino acid conservation, or through integration of other data sets. Although these could indeed imply function, further experimentation would be required to confirm such as using their Alphafold models to predict any changes in structure. This limitation is acknowledged by the authors, but the overall strength of the interpretation of the analysis could be softened to represent this.

      The study uses public data from more diverse cellular populations to confirm the role of Adar in introducing the A>I edits. Whilst this is convincing, the ideal comparison to support the mechanism behind the identified edits would be to perform patch-seq experiments on 1b or 1s neurons from adar mutants. However, although this should be considered when interpreting the data, these experiments would be a large amount of work and beyond the scope of the paper.

      By focusing on the potential impact of editing events that cause missense mutations in the CDS, the study may overlook the importance of edits in noncoding regions, which may impact miRNA or RNA-binding protein target sites. Further, the statement that noncanonical edits and those that induce silent mutations are likely to be less impactful is very broad and should be reconsidered. This is particularly the case when suggesting that silent mutations may not impact the biology. Given the importance of codon usage in translational fidelity, it is possible that silent mutations induced by either A>I or noncanonical editing in the CDS impact translation efficiency. Indeed, this could have a greater impact on protein production and transcript levels than a single amino acid change alone.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript aims to determine cultural biases and misconceptions in inclusive sex research and evaluate the efficacy of interventions to improve knowledge and shift perceptions to decrease perceived barriers for including both sexes in basic research.

      Overall, this study demonstrates that despite the intention to include both sexes and a general belief in the importance of doing so, relatively few people routinely include both sexes. Further, the perceptions of barriers to doing so are high, including misconceptions surrounding sample size, disaggregation, and variability of females. There was also a substantial number of individuals without the statistical knowledge to appropriately analyze data in studies inclusive of sex. Interventions increased knowledge and decreased perception of barriers.

      Strengths:

      (1) This manuscript provides evidence for the efficacy of interventions for changing attitudes and perceptions of research.

      (2) This manuscript also provides a training manual for expanding this intervention to broader groups of researchers.

    1. Reviewer #3 (Public review):

      Summary:

      Hull et al examine Drosophila mutants for the Gaucher's disease locus GBA1/Gba1b, a locus that, when heterozygous, is a risk factor for Parkinson's. Focusing on the Malpighian tubules and their function, they identify a breakdown of cell junctions, loss of haemolymph filtration, sensitivity to ionic imbalance, water retention, and loss of endocytic function in nephrocytes. There is also an imbalance in ROS levels between the cytoplasm and mitochondria, with reduced glutathione levels, rescue of which could not improve longevity. They observe some of the same phenotypes in mutants of Parkin, but treatment by upregulation of autophagy via rapamycin feeding could only rescue the Gba1b mutant and not the Parkin mutant.

      Strengths:

      The paper uses a range of cellular, genetic, and physiological analyses and manipulations to fully describe the renal dysfunction in the GBa1b animals. The picture developed has depth and detail; the data appears sound and thorough.

      Weaknesses:

      The paper relies mostly on the biallelic Gba1b mutant, which may reflect dysfunction in Gaucher's patients, though this has yet to be fully explored. The claims for the heterozygous allele and a role in Parkinson's is a little more tenuous, making assumptions that heterozygosity is a similar but milder phenotype than the full loss-of-function.

    1. Reviewer #3 (Public review):

      Summary:

      The authors aimed to define the somatic mutational landscape and transcriptomic expression of the ZNF217, ZNF703, and ZNF750 genes in breast cancers from Kenyan women and to investigate associations with clinicopathological features like HER2 status and cancer stage. They employed whole-exome and RNA-sequencing on 23 paired tumor-normal samples to achieve this.

      Strengths:

      (1) A major strength is the focus on a Kenyan cohort, addressing a critical gap in genomic studies of breast cancer, which are predominantly based on European or Asian populations.

      (2) The integration of DNA- and RNA-level data from the same patients provides a comprehensive view, linking genetic alterations to expression changes.

      Weaknesses:

      (1) The small cohort size (n=23) significantly limits the statistical power to detect associations between genetic features and clinical subgroups (e.g., HER2 status, stage), rendering the negative findings inconclusive.

      (2) The study is primarily descriptive. While it effectively catalogs mutations and expression changes, it does not include functional experiments to validate the biological impact of the identified alterations.

    1. Reviewer #3 (Public review):

      Summary:

      In this study, the authors investigate how the structural state of the microtubule lattice influences the accessibility of the α-tubulin C-terminal tail (CTT). By developing and applying new biosensors, they reveal that the tyrosinated CTT is largely inaccessible under normal conditions but becomes more accessible upon changes to the tubulin conformational state induced by taxol treatment, MAP expression, or GTP-hydrolysis-deficient tubulin. The combination of live imaging, biochemical assays, and simulations suggests that the lattice conformation regulates the exposure of the CTT, providing a potential mechanism for modulating interactions with microtubule-associated proteins. The work addresses a highly topical question in the microtubule field and proposes a new conceptual link between lattice spacing and tail accessibility for tubulin post-translational modification.

      Strengths:

      (1) The study targets a highly relevant and emerging topic-the structural plasticity of the microtubule lattice and its regulatory implications.

      (2) The biosensor design represents a methodological advance, enabling direct visualization of CTT accessibility in living cells.

      (3) Integration of imaging, biochemical assays, and simulations provides a multi-scale perspective on lattice regulation.

      (4) The conceptual framework proposed lattice conformation as a determinant of post-translational modification accessibility is novel and potentially impactful for understanding microtubule regulation.

      Weaknesses:

      There are a number of weaknesses in the paper, many of which can be addressed textually. Some of the supporting evidence is preliminary and would benefit from additional experimental validation and clearer presentation before the conclusions can be considered fully supported.

      In particular, the authors should directly test in vitro whether Taxol addition can induce lattice exchange (see comments below).

    1. Reviewer #3 (Public review):

      Summary:

      The AAA+ protease LON1P is a central component of mitochondrial protein quality control and has crucial functions in diverse processes. Cryo-EM structures of LON1P defined inactive and substrate-processing active states. Here, the authors determined multiple new LON1P structural states by cryo-EM in the presence of diverse substrates. The structures are defined as on-pathway intermediates to LON1P activation. A C3-symmetry state is suggested to function as a checkpoint to scan for LON1P substrates and link correct substrate selection to LON1P activation.

      Strengths:

      The determination of multiple structures provides relevant information on substrate-triggered activation of LON1P. The authors support structural data by biochemical analysis of structure-based mutants.

      Weaknesses:

      How substrate selection is achieved remains elusive, also because substrates are not detectable in the diverse structures. It also remains in parts unclear whether mutant phenotypes can be specifically linked to a single structural state (C3). Some mutant phenotypes appear complex and do not seem to be in line with the model proposed.

    1. Reviewer #3 (Public review):

      Summary:

      This article is about the neural circuitry underlying motion vision in the fruit fly. Specifically, it regards the roles of two identified neurons, called C2 and C3, that form columnar connections between neurons in the lamina and medulla, including neurons that are presynaptic to the elementary motion detectors T4 and T5. The approach takes advantage of specific fly lines in which one can disable the synaptic outputs of either or both of the C2/3 cell types. This is combined with optical recording from various neurons in the circuit, and with behavioral measurements of the turning reaction to moving stimuli.

      The experiments are planned logically. The effects of silencing the C2/C3 neurons are substantial in size. The dominant effect is to make the responses of downstream neurons more sustained, consistent with a circuit role in feedback or feedforward inhibition. Silencing C2/C3 also makes the motion-sensitive neurons T4/T5 less direction-selective. However, the turning response of the fly is affected only in subtle ways. Detection of motion appears unaffected. But the response fails to discriminate between two motion pulses that happen in close succession. One can conclude that C2/C3 are involved in the motion vision circuit, by sharpening responses in time, though they are not essential for its basic function of motion detection.

      Strengths:

      The combination of cutting-edge methods available in fruit fly neuroscience. Well-planned experiments carried out to a high standard. Convincing effects documenting the role of these neurons in neural processing and behavior.

      Weaknesses:

      The report could benefit from a mechanistic argument linking the effects at the level of single neurons, the resulting neural computations in elementary motion detectors, and the altered behavioral response to visual motion.

    1. Reviewer #3 (Public review):

      Donofrio et al. report a new observation that in normal aging mice, anti-calbindin whole-mount staining and coronal immunohistochemistry in the cerebellum often show a sagittally patterned loss of Purkinje cells with age. The authors address a central concern that calbindin antibody staining alone is not sufficient to definitively assess Purkinje cell loss, and corroborate their antibody staining data with transgenic Pcp2-CRE x flox-GFP reporter mice and Neutral Red staining. The authors then investigate whether this patterned Purkinje loss correlates with the known parasagittal expression of zebrin-II, finding a strong but imperfect correlation with zebrin-II antibody staining. They next draw a connection between this age-related Purkinje loss to the age-related decline in motor function in mice, with trending but non-significant statistical association between the severity/patterning of Purkinje loss and motor phenotypes within cohorts of aged mice. Finally, the authors look at post-mortem human cerebellar tissues from deceased healthy donors between 21 and 74 years of age, finding a positive correlation between Purkinje degeneration and age, but with unknown spatial patterning.

      The conclusions drawn from this study are well supported by the data provided, with image quantification corroborating visual observations. The authors highlight several examples of parasagittal patterning of Purkinje cell degeneration in disease, and they show that proper methodologies must be used to account for these patterns to avoid highly variable data in the sagittal plane. The authors aptly point out that additional work is needed to investigate the spatial patterns of Purkinje cell loss in the human cerebellum.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Edwards et al. describe hamFISH, a customizable and cost-efficient method for performing targeted spatial transcriptomics. hamFISH utilizes highly amplified multiplexed branched DNA amplification, and the authors extensively describe hamFISH development and its advantages over prior variants of this approach.

      The authors then used hamFISH to investigate an important circuit in the mouse brain for social behavior, the medial amygdala (MeA). To develop a hamFISH probe set capable of distinguishing MeA neurons, the authors mined published single cell RNA-sequencing datasets of the MeA, ultimately creating a panel of 32 hamFISH probes that mostly cover the identified MeA cell types. They evaluated over 600,000 MeA cells and classified neurons into 16 inhibitory and 10 excitatory types, many of which are spatially clustered.

      The authors combined hamFISH with viral and other circuit tracer injections to determine whether the identified MeA cell populations sent and/or received unique inputs from connected brain regions, finding evidence that several cell types had unique patterns of input and output. Finally, the authors performed hamFISH on the brains of male mice that were placed in behavioral conditions that elicit aggressive, infanticidal, or mating behaviors, finding that some cell populations are selectively activated (as assessed by c-fos mRNA expression) in specific social contexts.

      Strengths:

      (1) The authors developed an optimized tissue preparation protocol for hamFISH and implemented oligopools instead of individually synthesized oligonucleotides to reduce costs. The branched DNA amplification scheme improved smFISH signal compared to previous methods, and multiple variants provide additional improvements in signal intensity and specificity. Compared to other spatial transcriptomics methods, the pipeline for imaging and analysis is streamlined, and is compatible with other techniques like fluorescence-based circuit tracing. This approach is cost-effective and has several advantages that make it a valuable addition to the list of spatial transcriptomics toolkits.

      (2) Using 31 probes, hamFISH was able to detect 16 inhibitory and 10 excitatory neuron types in the MeA subregions, including the vast majority of cell types identified by other transcriptomics approaches. The authors quantified the distributions of these cell types along the anterior-posterior, dorsal-ventral, and medial-lateral axes, finding spatial segregation among some, but not all, MeA excitatory and inhibitory cell types. The authors additionally identified a class of inhibitory neurons expressing Ndnf (and a subset of these that express Chrna7) that project to multiple social chemosensory circuits.

      (3) The authors combined hamFISH with MeA input and output mapping, finding cell-type biases in the projections to the MPOA, BNST, and VMHvl, and inputs from multiple regions.

      (4) The authors identified excitatory and inhibitory cell types, and patterns of activity across cell types, that were selectively activated during various social behaviors, including aggression, mating, and infanticide, providing new insights and avenues for future research into MeA circuit function.

      Weaknesses:

      (1) Gene selection for hamFISH is likely to still be a limiting factor, even with the expanded (32-probe) capacity. This may have contributed to the lack of ability to identify sexually dimorphic cell types (Fig. S2B). This is an expected tradeoff for a method that has major advantages in terms of cost and adaptability.

      (2) Adaptation of hamFISH, for example, to adapt it to other brain regions or tissues, may require extensive optimization. This does not preclude it from being highly useful for other brain regions with extra effort.

      (3) Pairing this method with behavioral experiments is likely to require further optimization, as c-fos mRNA expression is an indirect and incomplete survey of neuronal activity (e.g. not all cell types upregulate c-fos when electrically active). As such, there is a risk of false negative results that limit its utility for understanding circuit function.

      (4) The incompatibility of hamFISH with thicker tissue samples and minimal optical sectioning introduce additional technical limitations. For example, it would be difficult to densely sample larger neural circuits using serial 20 micron sections.

    1. Reviewer #3 (Public review):

      Summary:

      The authors present data demonstrating that optogenetic inhibition of either D1- or D2-MSNs in the NAc Shell attenuates expression of sensory-specific PIT while largely sparing value-based decision on an instrumental task. They also provide evidence that SS-PIT depends on D1-MSN projections from the NAc-Shell to the VP, whereas projections from D2-MSNs to the VP do not contribute to SS-PIT.

      Strengths:

      This is clearly written. The evidence largely supports the authors' interpretations, and these effects are somewhat novel, so they help advance our understanding of PIT and NAc-Shell function.

      Weaknesses:

      I think the interpretation of some of the effects (specifically the claim that D1-MSNs do not contribute to value-based decision making) is not fully supported by the data presented.

    1. Reviewer #3 (Public review):

      Jo and colleagues set out to investigate the origins and functions of localized FGF/ERK signaling for the differentiation and spatial patterning of primitive streak fates of human embryonic stem cells in a well-established micropattern system. They demonstrate that endogenous FGF signaling is required for ERK activation in a ring-domain in the micropatterns, and that this localized signaling is directly required for differentiation and spatial patterning of specific cell types. Through high-resolution microscopy and transwell assays, they show that cells receive FGF signals through basally localized receptors. Finally, the authors find that there is a requirement for exogenous FGF2 to initiate primitive streak-like differentiation, but endogenous FGFs, especially FGF4 and FGF17, fully take over at later stages.

      Even though some of the authors' findings - such as the localized expression of FGF ligands during gastrulation and the importance of FGF/ERK signaling for cell differentiation in the primitive streak - have been reported in model organisms before, this is one of the first studies to investigate the role of FGF signaling during primitive streak-like differentiation of human cells. In doing so, the paper reports a number of interesting and valuable observations, namely the basal localization of FGF receptors which mirrors that of BMP and Nodal receptors, as well as the existence of a positive feedback loop centered on FGF signaling that drives primitive-streak differentiation. In the revised version of their work, the authors have furthermore dissected the role of different FGFs through knockdown approaches. These experiments reveal discrete functions for different FGF genes in their system, as well as interesting differences between the role of specific FGFs in human compared to model systems.

      Comments on revisions:

      The authors have appropriately addressed all comments and suggestions from the previous round of review. The only textual change that I would still like to suggest is to write explicitly in the main text corresponding to Fig. 1 that the mTESR1 medium used for these initial experiments already contains FGF. This is something that is probably known to experts in the field, but not necessarily to a broader readership.

    1. Reviewer #4 (Public review):

      Summary:

      Mason DE et al. have extended their previous study on continuous migration of cells regulated by a feedback loop that controls gene expression by YAP and TAZ. Time scale of the negative feedback loop is derived from the authors' adhesion-spreading-polarization-migration (ASPM) assay. Involvement of transcription-translation in the negative feedback loop is evidenced by the experiments using Actinomycin D. The time scale of mechanotransduction-dependent feedback demonstrated by cytoskeletal alteration in the actinomycin D-treated endothelial colony forming cells (ECFCs) and that shown in the ECFCs depleted of YAP/TAZ by siRNA. The authors examine the time scale when ECFCs are attached to MeHA matrics (soft, moderate, and stiff substrate) and show the conserved time scale among the conditions they use, although instantaneous migration, cell area, and circularity vary. Finally, they tried to confirm that the time scale of the feedback loop-dependent endothelial migration by the effect of washout of Actinomycin D (inhibition of gene transcription), Puromycin (translational inhibition), and Verteporfin (YAP/TAZ inhibitor) on ISV extension during sprouting angiogenesis. They conclude that endothelial motility required for vascular morphogenesis is regulated by a mechanotransduction-mediated feedback loop that is dependent on YAP/TAZ-dependent transcriptional regulation.

      Strengths:

      The authors conduct ASPM assay to find the time scale of feedback when ECFCs attach to three different matrics. They observe the common time scale of feedback. Thus, under very specific conditions they use, the reproducibility is validated by their ASPM assay. The feedback loop mediated by inhibition of gene expression by Actinomycin D is similar to that obtained from YAP/TAZ-depleted cells, suggesting the mechanotranduction might be involved in the feedback loop. The time scale representing infection point might be interesting when considering the continuous motility in cultured endothelial cells, although it might not account for the migration of endothelial cells that is controlled by a wide variety of extracellular cues. In vivo, stiffness of extracellular matrix is merely one of the cues.

      Weaknesses:

      ASPM assay is based on attachment-dependent phenomenon. The time scale, including the inflection point determined by ASPM experiments using cultured cells and the mechanotransduction-based theory, do not seem to fit in vivo ISV elongation. Although it is challenging to find the conserved theory of continuous cell motility of endothelial cells, the data is preliminary and does not support the authors' claim. There is no evidence that mechanotransduction solely determines the feedback loop during elongation of ISVs.

      Comments on revisions:

      The authors' methods using ASPM assay might suggest the feedback loop by their in vitro culture assay. They still need to confirm the loop in vivo using zebrafish intersegmental vessels. The time course of the feedback loop is supported by the ASPM assay. However, the feedback loop is not confirmed in vivo, although it might be suggested by the phenotypes of the ISV treated with drugs. Thus, in the abstract and in the results section, they had better rewrite the interpretation. They have not yet confirmed the feedback loop in vivo.

    1. Reviewer #3 (Public review):

      Summary:

      Cuentas-Condori et al. generate cell-specific tools for visualizing the endogenous expression of, as well as knocking out, four different classes of neurotransmitter vesicular transporters (glutamatergic, cholinergic, GABAergic, and monoaminergic) in C. elegans. They then use these tools in an intersectional strategy to provide evidence for the co-expression of these transporters in individual neurons, suggesting co-transmission of the associated neurotransmitters.

      Strengths:

      A major strength of the work is the generation of several endogenous tools that will be of use to the community. Additionally, this adds to accumulating evidence of co-transmission of different classes of neurotransmitters in the nervous system.

      Weaknesses:

      A weakness of the study is a lack of comparison to previously published single-cell sequencing data. These tools are alternatively described in the manuscript as superior to the sequencing data and as validation of the sequencing data, but neither claim can be assessed without knowing how they compare and contrast to that data. It is thus not clear to what extent the conclusions of this paper are an advance over what could be determined from the sequencing data on its own. Finally, some technical considerations should be discussed as potential caveats to the robustness of their intersectional strategy for concluding that certain genes are indeed co-expressed. Overall, claims about co-transmission should be tempered by the caveats presented in the discussion, suggesting that co-expression of these transporters is not in and of itself sufficient for neurotransmitter release.

    1. Reviewer #3 (Public review):

      In this manuscript, the authors introduce Megabouts, a software package designed to standardize the analysis of larval zebrafish locomotion, through clustering the 2D posture time series into canonical behavioral categories. Beyond a first, straightforward segmentation that separates glides from powered movements, Megabouts uses a Transformer neural network to classify the powered movements (bouts). This Transformer network is trained with supervised examples. The authors apply their approach to improve the quantification of sensorimotor transformations and enhance the sensitivity of drug-induced phenotype screening. Megabouts also includes a separate pipeline that employs convolutional sparse coding to analyze the less predictable tail movements in head-restrained fish.

      I presume that the software works as the authors intend, and I appreciate the focus on quantitative behavior. My primary concerns reflect an implicit oversimplification of animal behavior. Megabouts is ultimately a clustering technique, categorizing powered locomotion into distinct, labelled states which, while effective for analysis, may confuse the continuous and fluid nature of animal behavior. Certainly, Megabouts could potentially miss or misclassify complex, non-stereotypical movements that do not fit the defined categories. In fact, it appears that exactly this situation led the authors to design a new clustering for head-restrained fish. Can we anticipate even more designs for other behavioral conditions?

      Ultimately, I am not yet convinced that Megabouts provides a justifiable picture of behavioral control. And if there was a continuous "control knob", which seems very likely, wouldn't that confuse the clustering process, as many distinct clusters would correspond to, say, different amplitudes of the same control knob?

      There has been tremendous recent progress in the measurement and analysis of animal behavior, including both continuous and discrete perspectives. However, the supervised clustering approach described here feels like a throwback to an earlier era. Yes, it's more automatic and quantifiable, and the amount of data is fantastic. But ultimately, the method is conceptually bound to the human eye in conditions where we are already familiar.

    1. Reviewer #3 (Public review):

      Summary:

      In this paper, Winchester and colleagues investigated melodic perception in natural music listening. They highlight the central role of attentional processes in identifying one particular stream in polyphonic material, and propose to compare several theoretical accounts, namely (1) divided attention, (2) figure-ground separation, and (3) stream integration. In parallel, the authors compare the relative strength of exogenous attentional effects (i.e., salience) produced by two common traits of melodies: high-pitch (compared to other voices), and attractive statistics. To ensure the generalisability of their results to real-life listening contexts, they developed a new uninstructed listening paradigm in which participants can freely attend to any part of a musical stimulus.

      Major strengths and weaknesses of the methods and results:

      (1) Winchester and colleagues capitalized on previous attention decoding techniques and proposed an uninstructed listening paradigm. This is an important innovation for the study of music perception in ecological settings, and it is used here to investigate the spontaneous attentional focus during listening. The EEG decoding results obtained are coherent with the behavioral data, suggesting that the paradigm is robust and relevant.

      (2) The authors first evaluate the relative importance of high-pitch and statistics in producing an attentional bias (Figure 2). Behavioral results show a clear pattern, in which both effects are present, with a dominance of the high-pitch one. The only weakness inherent to this protocol is that behavioral responses are measured based on a second presentation of short samples, which may induce a different attentional focus than in the first uninstructed listening.

      (3) Then, the analyses of EEG data compare the decoding results of each melody (the high or low voice, and with "richer" or "poorer" statistics), and show a similar pattern of results. However, this report leaves open the possibility of a confounding factor. In this analysis, a TRF decoding model is first trained based on the presentation of monophonic samples, and it is later used to decode the envelope of the corresponding melodies in the polyphonic scenario. The fitting scores of the training phase are not reported. If the high-pitch or richer melodies were to produce higher decoding scores during monophonic listening (due to properties of the physiological response, or to perceptual processes), a similar difference could be expected during polyphonic listening. To capture attentional biases specifically, the decoding scores in the polyphonic conditions should be compared to the scores in the monophonic conditions, and attention could be expected to increase the decoding of the attended stream or decrease the unattended one.

      (4) Then, Winchester and colleagues investigate the processing of melodic information by evaluating the encoding of melodic surprise and uncertainty (Figure 3). They compare the surprise and uncertainty estimated from a monophonic or a polyphonic model (Anticipatory Music Transformer), and analyse the data with a CCA analysis. The results show a double dissociation, where the processing of melodies with a strong attentional bias (high-pitch, rich statistics) is better approximated with a monophonic model, while a polyphonic model better classifies the other melodies. While this global result is compelling, it remains a preliminary and intriguing finding, and the manuscript does not further investigate it. As it stands, the result appears more like a starting point for further exploration than a definitive finding that can support strong theoretical claims. First, it could be complemented by a comparison of the encoding of individual melodies (e.g., AMmono high-voice vs AMmono low-voice, in PolyOrig and PolyInv conditions) to highlight a more direct correspondence with the previous results (Figure 2) and allow a more precise interpretation. Second, additional analyses or experiments would be needed to unpack this result and provide greater explanatory power. Additionally, the CCA analysis is not described in the method. The statistical testing conducted on this analysis seems to be performed across the 250 repetitions of the evaluation rather than across the 40 participants, which may bias the resulting p-values. Moreover, the choice and working principle of the Anticipatory Music Transformer are not described in the method. Overall, these results seem at first glance solid, but the missing parts of the method do not allow for full evaluation or replication of them.

      An appraisal of whether the authors achieved their aims, and whether the results support their conclusions:

      (1) Winchester and colleagues aimed at identifying the melodic stream that attracts attention during the listening of natural polyphonic music, and the underlying attentional processes. Their behavioral results confirm that high-pitched and attractive statistics increase melodic salience with a greater effect size of the former, as stated in the discussion. The TRF analyses of EEG data seem to show a similar pattern, but could also be explained by confounding factors. Next, the authors interpret the CCA results as the results of stream segregation when there is a high melodic salience, and stream integration when there are weaker attentional biases. These interpretations seem to be supported by the data, but unfortunately, no additional analyses or experiments have been conducted to further evaluate this hypothesis. The authors also acknowledge that their results do not show whether stream segregation occurs via divided attention or figure-ground separation. However, the lack of information about the music model used (Anticipatory Music Model) and the way it was set up raises some questions about its relevance and limits as a model of cognition (e.g. Is this transformer a "better" model of the listeners' expectations than the well-established IDyOM model, and why ?), and about the validity of those results.

      (2) Overall, the authors achieved most of the aims presented in the introduction, although they couldn't give a more precise account of the attentional processes at stake. The interpretations are sound and not overstated, with the exception of potential confounding factors that could compromise the conclusions on the neural tracking of salient melodies (EEG results, Figure 2).

      Impact of the work on the field, and the utility of the methods and data to the community:

      The new uninstructed listening paradigm introduced in this paper will likely have an important impact on psychologists and neuroscientists working on music perception and auditory attention, enabling them to conduct experiments in more ecological settings. While the attentional biases towards melodies with high-pitch and attractive statistics are already known, showing their relative effect is an important step in building precise models of auditory attention, and allows future paradigms to explore more fine-grained effects. Finally, the stream segregation and integration shown with this paradigm could be important for researchers working on music perception. Future work may be necessary to identify the models (Markov chains, deep learning) and setup (data analysis, stimuli, control variables) that do or do not replicate these results.

    1. Reviewer #3 (Public review):

      Summary:

      In this study, Wang et al. investigate how herbivorous insects overcome plant receptor-mediated immunity by targeting plant receptor-like proteins. The authors identify two independently evolved salivary effectors, BtRDP in whiteflies and NlSP694 in brown planthoppers, that promote the degradation of plant RLP4 through the ubiquitin-dependent proteasome pathway. NtRLP4 from tobacco and OsRLP4 from rice are shown to confer resistance against herbivores by activating defense signaling, while BtRDP and NlSP694 suppress these defenses by destabilizing RLP4 proteins.

      Strengths:

      This work highlights a convergent evolutionary strategy in distinct insect lineages and advances our understanding of insect-plant coevolution at the molecular level.

      Weaknesses:

      (1) I found the naming of BtRDP and NlSP694 somewhat confusing. The authors defined BtRDP as "B. tabaci RLP-degrading protein," whereas NlSP694 appears to have been named after the last three digits of its GenBank accession number (MF278694, presumably). Is there a standard convention for naming newly identified proteins, for example, based on functional motifs or sequence characteristics? As it stands, the inconsistency makes it difficult for readers to clearly distinguish these proteins from those reported in other studies.

      (2) Figure 2 and other figures. Transgenic experiments require at least two independent lines, because results from a single line may be confounded by position effects or unintended genomic alterations, and multiple lines provide stronger evidence for reproducibility and reliability.

      (3) Figure 3e. Quantitative analysis of NtRLP4 was required. Additionally, since only one band was observed in oeRLP, were any tags included in the construct?

      (4) Figure 4a. The RNAi effect appears to be well rescued in Line 1 but poorly in Line 2. Could the authors clarify the reason for this difference?

      (5) ROS accumulation is shown for only a single leaf. A quantitative analysis of ROS accumulation across multiple samples would be necessary to support the conclusion. The same applies to Figure 16f.

      (6) Figure 4f: NtRLP4 abundance was significantly reduced in oeBtRDP plants but not in oeBtRDP-SP. Although coexpression analysis suggests that BtRDP promotes NtRLP4 degradation in an ubiquitin-dependent manner, the reduced NtRLP4 levels may not result from a direct interaction between BtRDP and NtRLP4. It is possible that BtRDP influences other factors that indirectly affect NtRLP4 abundance. The authors should discuss this possibility.

      (7) The statement in lines 335-336 that 'Overexpression of NtRLP4 or NtSOBIR1 enhances insect feeding, while silencing of either gene exerts the opposite effect' is not supported by the results shown in Figures S16-S19. The authors should revise this description to accurately reflect the data.

      (8) BtRDP is reported to attach to the salivary sheath. Does the planthopper NlSP694 exhibit a similar secretion localization (e.g., attachment to the salivary sheath)? The authors should supplement this information or discuss the potential implications of any differences in secretion localization between BtRDP and NlSP694 for their respective modes of action.

    1. Reviewer #3 (Public review):

      Summary:

      The authors aim to investigate the mechanisms of anxiety. The paper focuses on the supramammillary nucleus (SuM) based on a fos screen and recordings showing that footshock and social defeat stress increase activity in this region. Using activity-dependent tagging, they show that reactivation of stress-activated neurons in SuM has an anxiety-like effect, reducing open-arm exploration in the elevated zero task. They then investigate the ventral subiculum as a potential source of anxiety-related information for SuM. They show that ventral subiculum (vSub) inputs to SuM are more strongly activated than dSub when mice explore the open arms of the elevated zero. Finally, they show that DREADD-mediated inhibition of vSub-SuM projections alleviates stress-enhanced anxiety. Overall, the results provide good evidence that SuM contains a stress-activated neuronal population whose later activity increases anxiety-like behavior. It further provides evidence that vSub projects to SuM are activated by stress, and their inhibition alleviates some effects of stress.

      Strengths:

      Strengths of this paper include the use of convergent methods (e.g., fos plus electrode recordings, footshock, and social defeat) to demonstrate that the SuM is activated by different forms of stress. The activity-dependent tagging experiment shows that footshock-activated SuM neurons are reactivated by social defeat but not by sucrose is also compelling because it provides evidence that SuM neurons are driven by some integrative aspect of stress rather than by a simple sensory stimulus.

      Weaknesses:

      The strength of some of the evidence is judged to be incomplete. The paper provides good evidence that SuM contains stress-responsive neurons, and the activity of these neurons increases some measure of anxiety-like behavior. However, the evidence that the vSub-SuM projection "encodes anxiety" and that the SuM is a key regulator of anxiety is judged to be incomplete. The claim that SuM generates an "anxiety engram" is also judged to be incompletely supported by the evidence. Namely, what is unclear is whether these cells/regions encode anxiety per se versus modulate behaviors (like exploration) that tend to correlate with anxiety. Since many brain regions respond to footshock and other stressors, the response of SuM to these stimuli is not strong evidence for a role in anxiety. I am not convinced that the identified SuM cells have a specific anxiety function. As the authors mention in the introduction, SuM regulates exploration and theta activity. Since theta potently regulates hippocampal function, there is the concern that SuM manipulations could have broad effects. As shown in Supplementary Figure 2, stimulating stress-responsive cells in SuM potently reduces general locomotor exploration. This raises concerns that the manipulation could have broader effects that go beyond just changes in anxiety-like behavior. Furthermore, the meaning of an "anxiety engram" is unclear. Would this engram encode stress, the sense of a potential threat, or the behavioral response? A more developed analysis of the behavioral correlates of SuM activity and the behavioral effects of SuM manipulations could give insight into these questions.

    1. Reviewer #3 (Public review):

      Summary:

      Zhang et al. investigated how germline tumors influence the development of neighboring wild-type (WT) germline stem cells (GSC) in the Drosophila ovary. They report that germline tumors inhibit the differentiation of neighboring WT GSCs by arresting them in an undifferentiated state, resulting from reduced expression of the differentiation-promoting factor Bam. They find that these tumor cells produce low levels of the niche-associated signaling molecules Dpp and Gbb, which suppress bam expression and consequently inhibit the differentiation of neighboring WT GSCs non-cell-autonomously. Based on these findings, the authors propose that germline tumors mimic the niche to suppress the differentiation of the neighboring stem cells.

      Strengths:

      This study addresses an important biological question concerning the interaction between germline tumor cells and WT germline stem cells in the Drosophila ovary. If the findings are substantiated, they could provide valuable insights applicable to other stem cell systems.

      Weaknesses:

      Previous work from Xie's lab demonstrated that bam and bgcn mutant GSCs can outcompete WT GSCs for niche occupancy. Furthermore, a large body of literature has established that the interactions between escort cells (ECs) and GSC daughters are essential for proper and timely germline differentiation (the differentiation niche). Disruption of these interactions leads to arrest of germline cell differentiation in a status with weak BMP signaling activation and low bam expression, a phenotype virtually identical to what is reported here.

      Thus, it remains unclear whether the observed phenotype reflects "direct inhibition by tumor cells" or "arrested differentiation due to the loss of the differentiation niche". Because most data were collected at a very late stage (more than 10 days after clonal induction), when tumor cells already dominate the germarium, this question cannot be solved. To distinguish between these two possibilities, the authors could conduct a time-course analysis to examine the onset of the WT GSC-like single-germ-cell (SGC) phenotype and determine whether early-stage tumor clones with a few tumor cells can suppress the differentiation of neighboring WT GSCs with only a few tumor cells present. If tumor cells indeed produce Dpp and Gbb (as proposed here) to inhibit the differentiation of neighboring germline cells, a small cluster or probably even a single tumor cell generated at an early stage might prevent the differentiation of their neighboring germ cells.

      The key evidence supporting the claim that tumor cells produce Gpp and Gbb comes from Figures 5 and 6, which suggest that tumor-derived dpp and gbb are required for this inhibition. However, interpretation of these data requires caution.

      In Figure 5, the authors use dpp-lacZ to support the claim that dpp is upregulated in tumor cells (Figure 5A and 5B). However, the background expression in somatic cells (ECs and pre-follicular cells) differs noticeably between these panels. In Figure 5A, dpp-lacZ expression in somatic cells in 5A is clearly higher than in 5B, and the expression level in tumor cells appears comparable to that in somatic cells (dpp-lacZ single channel). Similarly, in Figure 5B, dpp-lacZ expression in germline cells is also comparable to that in somatic cells. Providing clear evidence of upregulated dpp and gbb expression in tumor cells (for example, through single-molecular RNA in situ) would be essential.

      Most tumor data present in this study were collected from the bam[86] null allele, whereas the data in Figure 6 were derived from a weaker bam[BG] allele. This bam[BG] allele is not molecularly defined and shows some genetic interaction with dpp mutants. As shown in Figure 6E, removal of dpp from homozygous bam[BG] mutant leads to germline differentiation (evidenced by a branched fusome connecting several cystocytes, located at the right side of the white arrowhead). In Figure 6D, fusome is likely present in some GFP-negative bam[BG]/bam[BG] cells. To strengthen their claim that the tumor produces Dpp and Gbb to inhibit WT germline cell differentiation, the authors should repeat these experiments using the bam[86] null allele.

      It is well established that the stem niche provides multiple functional supports for maintaining resident stem cells, including physical anchorage and signaling regulation. In Drosophila, several signaling molecules produced by the niche have been identified, each with a distinct function - some promoting stemness, while others regulate differentiation. Expression of Dpp and Gbb alone does not substantiate the claim that these tumor cells have acquired the niche-like property. To support their assertion that these tumors mimic the niche, the authors should provide additional evidence showing that these tumor cells also express other niche-associated markers. Alternatively, they could revise the manuscript title to more accurately reflect their findings.

      In the Method section, the authors need to provide details on how dpp-lacZ expression levels were quantified and normalized.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, the authors explore dynamic chromosomal mobility and transcriptional bursting events in mammalian cells, particularly focusing on ERα-dependent gene activation. The authors investigate how the physical movement of DNA loci changes during different phases of gene transcription (bursting vs. non-bursting, acute vs. chronic stimulation). Using advanced live-cell imaging techniques, including SMT of ERα and dual DNA/RNA visualization, the study reveals a multi-state model of DNA mobility linked to the formation of transcription factor condensates. The authors conclude that differential DNA kinetics serve as a reliable indicator for detecting condensate formation during gene activation, offering new insights into the mechanisms regulating gene expression within the nucleus.

      Strengths:

      The authors have done substantial work, and a major strength of the manuscript is being able to image both DNA and RNA from the same gene, as well as the TF that acts on that gene. This multi-pronged approach leads to complementary insights into transcription bursting mechanisms.

      Weaknesses:

      A major weakness of the manuscript is the lack of appropriate controls that support the specificity of the effects observed. The exclusive focus on condensates as the underlying mechanism to explain their data is also a bit limiting.

    1. Reviewer #3 (Public review):

      Summary:

      CTF18-RFC is an alternative eukaryotic PCNA sliding clamp loader which is thought to specialize in loading PCNA on the leading strand. Eukaryotic clamp loaders (RFC complexes) have an interchangeable large subunit which is responsible for their specialized functions. The authors show that the CTF18 large subunit has several features responsible for its weaker PCNA loading activity, and that the resulting weakened stability of the complex is compensated by a novel beta hairpin backside hook. The authors show this hook is required for the optimal stability and activity of the complex.

      Relevance:

      The structural findings are important for understanding RFC enzymology and novel ways that the widespread class of AAA ATPases can be adapted to specialized functions. A better understanding of CTF18-RFC function will also provide clarity into aspects of DNA replication, cohesion establishment and the DNA damage response.

      Strengths:

      The cryo-EM structures are of high quality enabling accurate modelling of the complex and providing a strong basis for analyzing differences and similarities with other RFC complexes.

      Weaknesses:

      The manuscript would have benefited from a more detailed biochemical analysis using mutagenesis and assays to tease apart the differences with the canonical RFC complex. Analysis of the FRET assay could be improved.

      Overall appraisal:

      Overall, the work presented here is solid and important. The data is mostly sufficient to support the stated conclusions.

      Comments on revisions:

      While the authors addressed my previous specific concerns, they have now added a new experiment which raises new concerns.

      The FRET clamp loading experiments (Fig. 6) appear to be overfitted so that the fitted values are unlikely to be robust and it is difficult to know what they mean, and this is not explained in this manuscript. Specifically, the contribution of two exponentials is floated in each experiment. By eye, CTF18-RFC looks much slower than RFC1-RFC (as also shown previously in the literature) but the kinetic constants and text suggest it is faster. This is because the contribution of the fast exponential is substantially decreased, and the rate constants then compensate for this. There is a similar change in contribution of the slow and fast rates between WT CTF18 and the variant (where the data curves look the same) and this has been balanced out by a change in the rate constants, which is then interpreted as a defect. I doubt the data are strong enough to confidently fit all these co-dependent parameters, especially for CTF18, where a fast initial phase is not visible. I would recommend either removing this figure or doing a more careful and thorough analysis.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Troyer et al quantitatively measured the membrane localization and diffusion of RNase E, an essential ribonuclease for mRNA turnover as well as tRNA and rRNA processing in bacteria cells. Using single-molecule tracking in live E. coli cells, the authors investigated the impact of membrane targeting sequence (MTS) and the C-terminal domain (CTD) on the membrane localization and diffusion of RNase E under various perturbations. Finally, the authors tried to correlate the membrane localization of RNase E to its function on co- and post-transcriptional mRNA decay using lacZ mRNA as a model.

      The major findings of the manuscripts include:

      (1) WT RNase E is mostly membrane localized via MTS, confirming previous results. The diffusion of RNase E is increased upon removal of MTS or CTD, and more significantly increased upon removal of both regions.

      (2) By tagging RNase E MTS and different lengths of LacY transmembrane domain (LacY2, LacY6 or LacY12) to mEos3.2, the results demonstrate that short LacY transmembrane sequence (LacY2 and LacY6) can increase the diffusion of mEos3.2 on the membrane compared to MTS, further supported by the molecular dynamics simulation. The similar trend was roughly observed in RNase E mutants with MTS switched to LacY transmembrane domains.

      (3) The removal of RNase E MTS significantly increases the co-transcriptional degradation of lacZ mRNA, but has minimal effect on the post-transcriptional degradation of lacZ mRNA. Removal of CTD of RNase E overall decrease the mRNA decay rates, suggesting the synergistic effect of CTD on RNase E activity.

      Strengths:

      (1) The manuscript is clearly written with very detailed methods description and analysis parameters.

      (2) The conclusions are mostly supported by the data and analysis.

      (3) Some of the main conclusions are interesting and important for understanding the cellular behavior and function of RNase E.

      Weaknesses:

      The authors have addressed my previous concerns in the revised manuscript.

      Comments on revisions:

      I have one additional comment. When interpreting the small increase in the diffusion coefficient of RNase E when treating the cell with rifampicin, the authors rule out the possibility that only a small fraction of RNase E interacts with mRNA and suggest that it is more likely the mRNA-RNase E interaction is transient. However, I am wondering about an alternative possibility that RNase E prefers mRNAs with low ribosome density or even untranslated mRNAs?

    1. Reviewer #3 (Public review):

      Summary:

      The authors examine the role of the medial frontal cortex of mice in exploiting statistical structure in tasks. They claim that mice are "proactive": they predict upcoming changes, rather than responding in a "model-free" way to environmental changes. Further, they speculate that the estimation of future change (i.e., prediction of upcoming events, based on learning temporal regularities) might be "a main ... function of dorsal medial frontal cortex (dmFC)." Unfortunately, the current manuscript contains flaws such that the evidence supporting these claims is inadequate.

      Strengths:

      Understanding the neural mechanisms by which we learn about statistical structure in the world is an important goal. The authors developed an interesting task and used model-based techniques to try to understand the mechanisms by which perturbation of dmFC influenced behavior. They demonstrate that lesions and optogenetic silencing of dmFC influence behavior, showing that this region has a causal influence on the task.

      Weaknesses:

      I was concerned that the main behavioral effects shown in Figure 1F were a statistical artifact. By requiring the Geometric block length to be preceded by a performance-based block, the authors introduce a dependence that can generate the phenomena they describe as anticipation.

      To demonstrate this, I simulated their task with an agent that does not have any anticipation of the change point (Reviewer image 1). The agent repeats the previous action with probability `p(repeat)` (similar to the choice kernel in the author's models). If the agent doesn't repeat then the next choice depends on the previous outcome. If the previous choice was rewarded, it stays with `P(WS)` and chooses randomly with `1-P(WS)`. If the previous choice was unrewarded, it switches with `P(LS)` and chooses randomly with `1-P(LS)`.

      Review image 1.

      An agent with `P(WS)=P(LS)=P(repeat)=0.85` shows the same phenomena as the mice: a difference in performance before the block switch and "earlier" crossing of the midpoint after the switch. https://imgdrop.io/image/aHn6y. The phenomena go away in the simulations when a fixed block length of 20 trials is followed by a Geometric block length.

      The authors did not completely rely on the phenomena of Figure 1F for their conclusions. They did a model comparison to provide evidence that animals are anticipating the switch. Unfortunately, the authors did not use state-of-the-art methods in this section of the paper. In particular, they failed to show that under a range of generative parameters for each model class, the model selection process chooses the correct model class (i.e. a confusion matrix). A more minor point, they used BIC instead of a more robust cross-validated metric for model selection. Finally, instead of comparing their "best" anticipating model to their 2nd best model (without anticipation), they compared their best to their 4th best (Supp Fig 3.5). This seems misleading.

      Given all of the the above issues, it is hard to critically evaluate the model-based analysis of the effects of lesions/optogenetics.

    1. Reviewer #3 (Public Review):

      The manuscript presents an intriguing explanation for why grid cell firing fields do {\em not} lie on a lattice whose axes aligned to the walls of a square arena. This observation, by itself, merits the manuscript's dissemination to the journals audience.

      The presentation is quirky (but keep the quirkiness!).

      But let me recast the problem presented by the authors as one of combinatorics. Given repeating, spatially separated firing fields across cells, one obtains temporal sequences of grid cells firing. Label these cells by integers from $[n]$. Any two cells firing in succession should uniquely identify one of six directions (from the hexagonal lattice) in which the agent is currently moving.

      Now, take the symmetric group $\Sigma$ of cyclic permutations on $n$ elements.<br /> We ask whether there are cyclic permutations of $[n]$ such that

      So, for instance, $(4,2,3,1)$ would not be counted as a valid permutation of $(1,2,3,4)$, as $(2,3)$ and $(1,4)$ are adjacent.

      Furthermore, given $[n]$, are there two distinct cyclic permutations such that {\em no} adjacencies are preserved when considering any pair of permutations (among the triple of the original ordered sequence and the two permutations)? In other words, if we consider the permutation required to take the first permutation into the second, that permutation should not preserve any adjacencies.

      {\bf Key question}: is there any difference between the solution to the combinatorics problem sketched above and the result in the manuscript? Specifically, the text argues that for $n=7$ there is only {\em one} solution.

      Ideally, one would strive to obtain a closed-form solution for the number of such permutations as a function of $n$.

    1. Reviewer #3 (Public review):

      Summary:

      BicD2 is a motor adapter protein that facilitates cellular transport pathways, which are impacted by human disease mutations of BicD2 causing spinal muscular atrophy with lower extremity dominance (SMALED2). The authors provide evidence that some of these mutations result in interactome changes, which may be the underlying cause of the disease. This is supported by proximity biotin ligation screens, immunoprecipitation and cell biology assays. The authors identify several novel BicD2 interactions such as the HOPS complex that participates in the fusion of late endosomes and autophagosomes with lysosomes, which could have important functions. Three BicD2 disease mutants studied had changes in the interactome, which could be an underlying cause for SMALED2. The study extends our understanding of the BicD2 interactome under physiological conditions, as well as of the changes of cellular transport pathways that result in SMALED2. It will be of great interest for the BicD2 and dynein fields.

      Strengths:

      Extensive interactomes are presented for both WT BicD2 as well as the disease mutants, which will be valuable for the community. The HOPS complex was identified as a novel interactor of BicD2, which is important for fusion of late endosomes and lysosomes, which is of interest, since some of the BicD2 disease mutations result in Golgi-fragmentation phenotypes. The interaction with the HOPS complex is affected by the R747C mutation, which also results in a gain of function interaction with GRAMD1A.

      Weaknesses:

      The manuscript should be strengthened by further evidence of the BicD2/HOPS complex interaction and the functional implications for spinal muscular atrophy by changes in the interactome through mutations. Which functional implications does the loss of the BicD2/HOPS complex interaction and the gain of function interaction with GRAMD1A have in the context of the R747C mutant?

      Major points:

      (1) In the biotin proximity ligation assay, a large number of targets were identified, but it is not clear why only the HOPS complex was chosen for further verification. Immunoprecipitation was used for target verification, but due to the very high number of targets identified in the screen, and the fact that the HOPS complex is a membrane protein that could potentially be immunoprecipitated along with lysosomes or dynein, additional experiments to verify the interaction of BicD2 with the HOPS complex (reconstitution of a complex in vitro, GST-pull down of a complex from cell extracts or other approaches) are needed to strengthen the manuscript.<br /> (2) In the biotin proximity ligation assay, a large number of BicD2 interactions were identified that are distinct between the mutant and the WT, but it was not clear why particularly GRAMD1A was chosen as gain of function interaction, and what the functional role of a BicD2/GRAMD1A interaction may be. A Western blot shows a strengthened interaction with the R747C mutant but GRAMD1A also interacts with WT BicD2.<br /> (3) Furthermore, functional implications of changed interactions with HOPS and GRAMD1A in the R747C mutant are unclear. Additional experiments are needed to establish the functional implication of the loss of the BicD2/HOPS interaction in the BicD2/R747C mutant. For the GRAMD1A gain of function interaction, according to the authors a significant amount of the protein localized with BicD2/R747C at the centrosomal region. This changed localization is not very clear from the presented images (no centrosomal or other markers were used, and the changed localization could also be an effect of dynein hyper activation in the mutant). Furthermore, the functional implication of a changed localization of GRAMD1A is unclear from the presented data.

      Comments on revisions:

      After a major revision, the manuscript is much improved. Additional evidence for the HOPS complex/BicD2 interaction was provided (the interaction was identified in multiple independent screens), and while the authors unfortunately were not able to confirm a direct interaction between BicD2 and the HOPS complex, additional caveats were added in the result section, which clearly state these limitations. The authors also included a very nice discussion of potential physiological roles of the GRAMD1A mislocalization in the disease mutant, which could potentially affect cholesterol transport and homostatis. Limitations of the presented approaches were clearly described as caveats.

    1. Reviewer #3 (Public review):

      Summary:

      The authors developed an interesting novel paradigm to probe the effects of cerebellar climbing fiber activation on short-term adaptation of somatosensory neocortical activity during repetitive whisker stimulation. Normally, RWS potentiated whisker responses in pyramidal cells and weakly suppressed them in interneurons, lasting for at least 1h. Crusii Optogenetic climbing fiber activation during RWS reduced or inverted these adaptive changes. This effect was generally mimicked or blocked with chemogenetic SST or VIP activation/suppression as predicted based on their "sign" in the circuit.

      Strengths:

      The central finding about CF modulation of S1 response adaptation is interesting, important, and convincing, and provides a jumping-off point for the field to start to think carefully about cerebellar modulation of neocortical plasticity.

      Weaknesses:

      The SST and VIP results appeared slightly weaker statistically, but I do not personally think this detracts from the importance of the initial finding (if there are multiple underlying mechanisms, modulating one may reproduce only a fraction of the effect size). I found the suggestion that zona incerta may be responsible for the cerebellar effects on S1 to be a more speculative result (it is not so easy with existing technology to effectively modulate this type of polysynaptic pathway), but this may be an interesting topic for the authors to follow up on in more detail in the future.

    1. Reviewer #3 (Public review):

      Summary:

      The authors have studied a previously published large dataset on the fitness landscape of a 9 base-pair region of the folA gene. The objective of the paper is to understand various aspects of epistasis in this system, which the authors have achieved through detailed and computationally expensive exploration of the landscape. The authors describe epistasis in this system as "fluid", meaning that it depends sensitively on the genetic background, thereby reducing the predictability of evolution at the genetic level. However, the study also finds two robust patterns. The first is the existence of a "pivot point" for a majority of mutations, which is a fixed growth rate at which the effect of mutations switches from beneficial to deleterious (consistent with a previous study on the topic). The second is the observation that the distribution of fitness effects (DFE) of mutations is predicted quite well by the fitness of the genotype, especially for high-fitness genotypes. While the work does not offer a synthesis of the multitude of reported results, the information provided here raises interesting questions for future studies in this field.

      Strengths:

      A major strength of the study is its detailed and multifaceted approach, which has helped the authors tease out a number of interesting epistatic properties. The study makes a timely contribution by focusing on topical issues like the prevalence of global epistasis, the existence of pivot points, and the dependence of DFE on the background genotype and its fitness. The methodology is presented in a largely transparent manner, which makes it easy to interpret and evaluate the results.

      The authors have classified pairwise epistasis into six types and found that the type of epistasis changes depending on background mutations. Switches happen more frequently for mutations at functionally important sites. Interestingly, the authors find that even synonymous mutations in stop codons can alter the epistatic interaction between mutations in other codons. Consistent with these observations of "fluidity", the study reports limited instances of global epistasis (which predicts a simple linear relationship between the size of a mutational effect and the fitness of the genetic background in which it occurs). Overall, the work presents some evidence for the genetic context-dependent nature of epistasis in this system.

      Weaknesses:

      Despite the wealth of information provided by the study, there are some shortcomings of the paper which must be mentioned.

      (1) In the Significance Statement, the authors say that the "fluid" nature of epistasis is a previously unknown property. This is not accurate. What the authors describe as "fluidity" is essentially the prevalence of certain forms of higher-order epistasis (i.e., epistasis beyond pairwise mutational interactions). The existence of higher-order epistasis is a well-known feature of many landscapes. For example, in an early work, (Szendro et. al., J. Stat. Mech., 2013), the presence of a significant degree of higher-order epistasis was reported for a number of empirical fitness landscapes. Likewise, (Weinreich et. al., Curr. Opin. Genet. Dev., 2013) analysed several fitness landscapes and found that higher-order epistatic terms were on average larger than the pairwise term in nearly all cases. They further showed that ignoring higher-order epistasis leads to a significant overestimate of accessible evolutionary paths. The literature on higher-order epistasis has grown substantially since these early works. Any future versions of the present preprint will benefit from a more thorough contextual discussion of the literature on higher-order epistasis.

      (2) In the paper, the term 'sign epistasis' is used in a way that is different from its well-established meaning. (Pairwise) sign epistasis, in its standard usage, is said to occur when the effect of a mutation switches from beneficial to deleterious (or vice versa) when a mutation occurs at a different locus. The authors require a stronger condition, namely that the sum of the individual effects of two mutations should have the opposite sign from their joint effect. This is a sufficient condition for sign epistasis, but not a necessary one. The property studied by the authors is important in its own right, but it is not equivalent to sign epistasis.

      (3) The authors have looked for global epistasis in all 108 (9x12) mutations, out of which only 16 showed a correlation of R^2 > 0.4. 14 out of these 16 mutations were in the functionally important nucleotide positions. Based on this, the authors conclude that global epistasis is rare in this landscape, and further, that mutations in this landscape can be classified into one of two binary states - those that exhibit global epistasis (a small minority) and those that do not (the majority). I suspect, however, that a biologically significant binary classification based on these data may be premature. Unsurprisingly, mutational effects are stronger at the functional sites as seen in Figure 5 and Figure 2, which means that even if global epistasis is present for all mutations, a statistical signal will be more easily detected for the functionally important sites. Indeed, the authors show that the means of DFEs decrease linearly with background fitness, which hints at the possibility that a weak global epistatic effect may be present (though hard to detect) in the individual mutations. Given the high importance of the phenomenon of global epistasis, it pays to be cautious in interpreting these results.

      (4) The study reports that synonymous mutations frequently change the nature of epistasis between mutations in other codons. However, it is unclear whether this should be surprising, because, as the authors have already noted, synonymous mutations can have an impact on cellular functions. The reader may wonder if the synonymous mutations that cause changes in epistatic interactions in a certain background also tend to be non-neutral in that background. Unfortunately, the fitness effect of synonymous mutations has not been reported in the paper.

      (5) The authors find that DFEs of high-fitness genotypes tend to depend only on fitness and not on genetic composition. This is an intriguing observation, but unfortunately, the authors do not provide any possible explanation or connect it to theoretical literature. I am reminded of work by (Agarwala and Fisher, Theor. Popul. Biol., 2019) as well as (Reddy and Desai, eLife, 2023) where conditions under which the DFE depends only on the fitness have been derived. Any discussion of possible connections to these works could be a useful addition.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript Majnik et al. developed a computational algorithm to track individual developing interneurons in the rodent cortex at postnatal stages. Considerable development in cortical networks takes place during the first postnatal weeks, however, tools to study them longitudinally at a single cell level are scarce. This paper provides a valuable approach to study both single cell dynamics across days and state-drive network changes. The authors used Gad67Cre mice together with virally introduced TdTom to track interneurons based on their anatomical location in the FOV and AAVSynGCaMP8m to follow their activity across the second postnatal week, a period during which the cortex is known to undergo marked decorrelation in spontaneous activity. Using Track2P, the authors show feasibility to track populations of neurons in the same mice capturing with their analysis previously described developmental decorrelation and uncovering stable representations of neuronal activity, coincident with the onset of spontaneous active movement. The quality of the imaging data is compelling, and the computational analysis is thorough, providing a widely applicable tool for the analysis of emerging neuronal activity in the cortex. Below are some points for the authors to consider.

      Major points

      The authors use a viral approach to label cortical interneurons. It is unclear how Track2P will perform in dense networks of excitatory cells using GCaMP transgenic mice.

      The authors used 20 neurons to generate a ground truth data set. The rational for this sample size is unclear. Figure 1 indicates capability to track ~728 neurons. A larger ground truth data set will increase the robustness of the conclusions.

      It is unclear how movement was scored in the analysis shown in Fig 5A. Was the time that the mouse spent moving scored after visual inspection of the videos? Were whisker and muscle twitches scored as movement or was movement quantified as amount of time in which the treadmill was displaced?

      The rational for binning the data analysis in early P11 is unclear. As the authors acknowledged, it is likely that the decoder captured active states from P11 onwards. Because active whisking begins around P14, it is unlikely to drive this change in network dynamics at P11. Does pupil dilation in the pups change during locomotor and resting states? Does the arousal state of the pups abruptly change at P11?

      Comments on revisions:

      The authors have addressed carefully all my comments. This is an interesting paper.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript provides detailed information on the construction of open-source systems to monitor ingestive behavior with low-cost equipment. Overall, this is a welcome addition to the arsenal of equipment that could be used to make measurements. The authors show interesting applications with data that reveal important neurophysiological properties of neurons in the lateral hypothalamus. The identification of previously unknown "meal-related" neurons in the LH highlights the utility of the device and is a novel insight that should spark further investigation on the LH. This manuscript and videos provide a wealth of useful information that should be a must-read for anyone in the ingestive behavior or hypothalamus fields.

      A scholarly introduction to the history and utility of various ways feeding is measured in rodents is provided. One point - the microstructure of eating solid food - has been studied extensively (for one of many studies, see https://doi.org/10.1371/journal.pone.0246569 ). However, I agree that the crunchometer will allow for more people to access recordings during food intake and temporally lock consummatory behavior to neural activity.

      Questions on results:

      (1) It is unclear why 10% sucrose solution was used as a liquid instead of water, given that the study is focusing on the solid food source.

      (2) It is unclear how essential the human verification is in the pipeline - results for Figure 1 keep referring to the verification as essential. Is that dispensable once the ML algorithms have been trained?

      (3) The ability to extrapolate food quantity consumed is limited, with high variability. This limitation does not undercut the utility of the crunchometer, but should be highlighted as one of the parameters that are not suitable for this system. This limitation should be added to the limitations section.

      (4) The ability to discriminate between gnawing and consummatory behavior is a strength (Figure 5), and these findings are important. However, it is unclear what can be made of mice that have 'gnawing' behavior in the fasted state (like in Figure 3). It seems they would need to be eliminated from the analysis with this tool?

      (5) Why is there a post-semaglutide fed group and not a fasted group in Figure 4? It seems both would have been interesting, as one could expect an effect on feeding even 24h after semaglutide treatment. This would help parse the preference better because the animals eat such a small amount on semaglutide, that it is hard to compare to the fasted condition with saline treatment.

      (6) The identification of 'meal-related' neurons in the LH is another strength of the manuscript. Although there is currently insufficient data, could similar recordings be used to give a neurophysiological definition of a 'meal' duration/size? Typically, these were somewhat arbitrarily defined behaviorally. Having a neural correlate to a 'meal' would be a powerful tool for understanding how meals are involved in overall caloric intake.

      (7) The conclusion in the title of Figure 8 is premature, given the pilot nature and small number of neurons and mice sampled.

      Conclusion:

      Overall, this report on the Crunchometer is well done and provides a valuable tool for all who study food intake and the behaviors around food intake. Clarification or answers to the points above will only further the utility and understanding of the tool for the research community. I am excited to see the future utility of this tool in emerging research.

    1. Reviewer #3 (Public review):

      Summary:

      The paper 'A stretching mechanism evokes mechano-electrical transduction in auditory chordotonal neurons' by Chaiyasitdhi et al. presents a study that aims to address the mechanical model for scolopidia in Schistocerca gregaria Müller's organ, the basic mechanosensory units in insect chordotonal organs. The authors combine high-resolution ultrastructural analysis (FIB-SEM), sound-evoked motion tracking (OCT and high-speed light microscopy), and electrophysiological recordings of transduction currents during direct mechanical stimulation of individual scolopidia. They conclude that axial stretching along the ciliary axis is an adequate mechanical stimulus for activating mechanotransduction channels.

      Strengths/Highlights:

      (1) The 3D FIB-SEM reconstruction provides high resolution of scolopidial architecture, including the newly described "scolopale lid" and the full extent of the cilium.

      (2) High-speed microscopy clearly demonstrates axial stretch as the dominant motion component in the auditory receptors, which confirms a long-standing question of what the actual motion of a stretch receptor is upon auditory stimulation.

      (3) Patch-clamp recordings directly link mechanical stretch to transduction currents, a major advance over previous indirect models.

      Weaknesses/Limitations:

      (1) The text is conceptually unclear or written in an unclear manner in some places, for example, when using the proposed model to explain the sensitivity of Nanchung-Inactive in the discussion.

      (2) The proposed mechanistic models (direct-stretch, stretch-compression, stretch-deformation, stretch-tilt) are compelling but remain speculative without direct molecular or biophysical validation. For example, examining whether the organ is pre-stretched and identifying the mechanical components of cells (tissues), such as the extracellular matrix and cytoskeleton, would help establish the mechanical model and strengthen the conclusion.

      (3) To some extent, the weaknesses of the paper are part of its strengths and vice versa. For example, the direct push/pull and up/down stimulations are a great experimental advance to approach an answer to the question of how the underlying cellular components are deformed and how the underlying ion channels are forced. However, as the authors clearly state, neither of their stimulations can limit all forces to only one direction, and both orthogonal forces evoke responses in the neurons. The question of which of the two orthogonal forces 'causes' the response cannot be answered with these experiments and has not been answered by this manuscript. But the study has brought the field a considerable step closer to answering the question. The answer, however, might be that both longitudinal ('stretch') and perpendicular ('compression') forces act together to open the ion channels and that both dendritic extension via stretch and bending can provide forces for ion channel gating. The current paper has identified major components (longitudinal stretch components) for the neurons they analysed, but these will surely have been chosen according to their accessibility, and as such, the variety of mechanical responses in Müller's organ might be greater. In light of these considerations, the authors might acknowledge such uncertainties more clearly in their paper. The paper is an impressive methodological progress and breakthrough, but it simply does not "demonstrate that axial stretch along the cilium is the adequate stimulus or the key mechanical input that activates mechano-electrical transduction" as the authors write at the start of their discussion. They do show that axial stretch dominates for the neurons they looked at, which is important information. The same applies to the end of the discussion: The authors write, "This relative motion within the organ then drives an axial stretch of the scolopidium, which in turn evokes the mechano-electrical transduction current." Reading the manuscript, the certainty and display of confidence are not substantiated by the data provided. But they are also not necessary. The study has paved the road to answer these questions. Instead, the authors are encouraged to make suggestions on how the remaining uncertainties could be removed (and what experiments or model might be used).

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript demonstrates that mice lacking the denitrosylase enzyme SCoR2/AKR1A1 demonstrate a robust cardioprotection resulting from reprogramming of multiple metabolic pathways, revealing<br /> widespread, coordinated metabolic regulation by SCoR2.

      Strengths:

      The extensive experimental evidence provided the use of the knockout model

      Weaknesses:

      No direct evidence for the underlying mechanism.

      The mouse model used is not a tissue-specific knock-out.

    1. Reviewer #3 (Public review):

      Summary:

      This study uses bulk mRNA sequencing to profile transcriptional changes in intestinal cells during the early postnatal period in mice - a developmental window that has received relatively little attention despite its importance. This developmental stage is particularly significant because it parallels late gestation in humans, a time when premature infants are highly vulnerable to necrotizing enterocolitis (NEC). By sampling closely spaced timepoints from birth through postnatal week four, the authors generate a resource that helps define transcriptional trajectories during this phase. Although the primary focus is on murine tissue, the authors also present limited data from human fetal intestinal biopsy samples and organoids. In addition, they discuss potential links between observed gene expression changes and factors that may contribute to NEC.

      Strengths:

      The close temporal sampling in mice offers a detailed view of dynamic transcriptional changes across the first four weeks after birth. The authors leverage these close timepoints to perform hierarchical clustering to define relationships between developmental stages. This is a useful approach, as it highlights when transcriptional states shift most dramatically and allows for functional predictions about classes of genes that vary over time. This high-level analysis provides an effective entry point into the dataset and will be useful for future investigations. The inclusion of human fetal intestinal samples, although limited, is especially notable given the scarcity of data from late fetal timepoints. The authors are generally careful in their presentation of results, acknowledging the limitations of their approach and avoiding over-interpretation. As they note, this dataset is intended as a foundation for their lab and others, with secondary approaches required to more fully explore the biological questions raised.

      Weaknesses:

      One limitation of the study is the use of bulk mRNA sequencing to draw conclusions about individual cell types. It has been documented that a few genes are exclusively expressed in single cell types. For instance, markers such as Lgr5 and Olfm4 are enriched in intestinal stem cells (ISCs), but they are also expressed at lower levels in other lineages and in differentiating cells. Using these markers as proxies for specific cell populations lowers confidence in the conclusions, particularly without complementary validation to confirm cell type-specific dynamics.

      Validation of the sequencing data was itself limited, relying primarily on qPCR, which measures expression at the same modality rather than providing orthogonal support. It is unclear how the authors selected the subset of genes for validation; many key genes highlighted in the sequencing data were not assessed. Moreover, the regional differences reported in Lgr5, Olfm4, and Ascl2, appearing much higher in proximal samples than in distal ones, were not recapitulated by qPCR validation of Olfm4, and this discrepancy was not addressed. Resolving such inconsistencies will be important for interpreting the dataset.

      The basis for linking particular gene sets to NEC susceptibility rests largely on their spatial restriction to the distal intestine and their temporal regulation between early (day 0-14) and later (weeks 3-4) developmental stages. While this is a reasonable approach for generating hypotheses, the correlations have limited interpretive power without experimental validation, which is not provided here. Many factors beyond NEC may drive regional and temporal differences in intestinal development.

      Finally, the contribution of human fetal biopsy samples is minimal. The central figure presenting these data (Figure 4A) shows immunofluorescence for LGR5, a single stem cell marker. The staining at day 35 is not convincing, and the conclusions that can be drawn are limited to confirming the localization of LGR5-positive cells to crypts as early as 26 weeks.

    1. Reviewer #3 (Public review):

      Summary:

      This work reports a new case of hybridogenetic reproduction in the frog genus Quasipaa. Only one other example of this peculiar reproductive mode is known in amphibians, and fewer than a dozen across the tree of life. Interestingly, a population of one of the parental species (Q. robertingeri) was found away from the core of its distribution, within the distribution of the hybridogens. This range expansion might have been mediated by hybridogenesis, whereby two copies of the same parental genome came together again after many generations of hybridogenesis.

      Strengths:

      Evidence for hybridogenesis is solid. The state of the art would be to genotype parents and offspring, but other known alternative scenarios have been considered carefully and can be ruled out convincingly. In addition, the authors are very careful in their phrasing and made sure to never overinterpret their data.

      The explicit predictions under different reproductive modes (and Table 1) are a useful resource for future studies and could inspire new findings of unusual reproductive modes in other taxa.

      The sampling is very impressive, with over 50 populations sampled across a very large area.

      The comparison of p-distances between pairs of species involved in hybridogenesis is interesting.

      Weaknesses:

      The current phylogenetic reconstruction with the F1s does not enable to infer the number of origins of hybridogenesis, nor whether the population of Q. robertingeri that was found far from the core of the species' distribution indeed derives from hybridogenesis. This is because some of the signal is driven by the Q. boulengeri haplome, which is replaced every generation and therefore does not reflect the evolutionary history of the lineage.

      All known reproductive modes except hybridogenesis can be excluded, but without genotyping parents and offspring, it is impossible to rule out another, yet undescribed reproductive mode.

    1. Reviewer #3 (Public review):

      Summary:

      During development, neural circuits undergo brief windows of heightened neuronal plasticity (e.g., critical periods) that are thought to set the lifelong functional properties of underlying circuits. These authors, in addition to others within the Drosophila community, previously characterized a critical period in late fly embryonic development, during which alterations to neuronal activity impact late-stage larval crawling behavior. In the current study, the authors use an ethologically-relevant activation paradigm (increased temperature) to boost motor activity during embryogenesis, followed by a series of electrophysiology and imaging-based experiments to explore how 3 distinct levels of the circuit remodel in response to increases in embryonic motor activity. Specifically, they find that each level of the circuit responds differently, with increased excitatory drive from excitatory pre-motor neurons, reduced excitability in motor neurons, and no physiological changes at the NMJ despite dramatic morphological differences. Together, these data suggest that early life experience in the motor neuron drives compensatory changes at each level of the circuit to stabilize overall network output.

      Strengths:

      The study was well-written, and the data presented were clear and an important contribution to the field.

      Weaknesses:

      The sample sizes and what they referred to throughout the distinct studies were unclear. In the legends, the authors should clearly state for each experiment N=X, and if N refers to an NMJ, for example, instead of an individual animal, they should state N=X NMJs per N=X animals. This will help readers better understand the statistical impact of the study.

    1. Reviewer #3 (Public review):

      Summary:

      The authors establish a behavioral task to explore effort discounting in C. elegans. By using bacterial food that takes longer to consume, the authors show that for equivalent effort, as measured by pumping rate, animals obtain less food, as measured by fat deposition.

      The authors formalize the task by applying a neuroeconomic decision making model that includes, value, effort, and discounting. They use this to estimate the discounting C. elegans apply based on ingestion effort by using a population level 2-choice T-maze.

      They then analyze the behavioral dynamics of individual animals transitioning between on-food and off-food states. Harder to ingest bacteria led to increased food patch leaving.

      Finally, they examined a set of mutants defective in different aspects of dopamine signaling, as dopamine plays a key role in discounting in vertebrates and regulates certain aspects of C. elegans foraging.

      In their response to the first set of reviews, the authors take care to ensure their task is analogous to at least some of those used in mammals and make changes to the text to better clarify some of their conclusions. My view is the same--that this is an interesting paper for methodological and scientific reasons that brings an important theoretical framework to bear on C. elegans foraging behavior. While I think the mutant results are somewhat unsatisfying, this is not the principal contribution of the work.

      Strengths:

      The behavioral experiments and neuroeconomic analysis framework are compelling and interesting and make a significant contribution to the field. While these foraging behaviors have been extensively studied, few include clearly articulated theoretical models to be tested.

      Demonstrating that C. elegans effort discounting fits model predictions and has stable indifference points is important for establishing these tasks as a model for decision making.

      Weaknesses:

      The dopamine experiments are harder to interpret. The authors point out the perplexing lack of an effect of dat-1 and cat-2. dop-3 leads to general indifference. I am not sure this is the expected result if the argument is a parallel functional role to discounting in vertebrates. dop-3 causes a range of locomotor phenotypes and may affect feeding (reduced fat storage), and thus there may be a general defect in the ability to perform the task rather than anything specific to discounting.

      That said, some of the other DA mutants also have locomotor defects and do not differ from N2. But there is no clear result here-my concern is that global mutants in such a critical pathway exhibit such pleiotropy that it's difficult to conclude there is a clear and specific role for DA in effort discounting. This would require more targeted or cell-specific approaches. The authors state these experiments are outside the scope of the current study, and that at minimum their results implicate dopamine signaling in some form. I tend to agree but still think locomotion defects of DA mutants complicate this question.

      Meanwhile, there are other pathways known to affect responses to food and patch leaving decisions-5HT, PDF, tyramine, etc. in their response the authors state they focus on dopamine because of its role in discounting behavior in mammals.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript investigates the regulation of host-seeking behavior in Anopheles stephensi females across different life stages and mating states. Through transcriptomic profiling, the authors identify differential gene expression between "blood-hungry" and "blood-sated" states. Two neuropeptides, sNPF and RYamide, are highlighted as potential mediators of host-seeking behavior. RNAi knockdown of these peptides alters host-seeking activity, and their expression is anatomically mapped in the mosquito brain (sNPF and RYamide) and midgut (sNPF only).

      Strengths:

      (1) The study addresses an important question in mosquito biology, with relevance to vector control and disease transmission.

      (2) Transcriptomic profiling is used to uncover gene expression changes linked to behavioral states.

      (3) The identification of sNPF and RYamide as candidate regulators provides a clear focus for downstream mechanistic work.

      (3) RNAi experiments demonstrate that these neuropeptides are necessary for normal host-seeking behavior.

      (4) Anatomical localization of neuropeptide expression adds depth to the functional findings.

      Weaknesses:

      (1) The title implies that the neuropeptides promote host-seeking, but sufficiency is not demonstrated (for example, with peptide injection or overexpression experiments).

      (2) The proposed model regarding central versus peripheral (gut) peptide action is inconsistently presented and lacks strong experimental support.

      (3) Some conclusions appear premature based on the current data and would benefit from additional functional validation.

    1. Reviewer #3 (Public review):

      Summary:

      The goal of this paper is to characterize an anti-diuretic signaling system in insects using Drosophila melanogaster as a model. Specifically, the authors wished to characterize a role for ion transport peptide (ITP) and its isoforms in regulating diverse aspects of physiology and metabolism. The authors combined genetic and comparative genomic approaches with classical physiological techniques and biochemical assays to provide a comprehensive analysis of ITP and its role in regulating fluid balance and metabolic homeostasis in Drosophila. The authors further characterized a previously unrecognized role for Gyc76C as a receptor for ITPa, an amidated isoform of ITP, and in mediating the effects of ITPa on fluid balance and metabolism. The evidence presented in favor of this model is very strong as it combines multiple approaches and employs ideal controls. Taken together, these findings represent an important contribution to the field of insect neuropeptides and neurohormones and has strong relevance for other animals. The authors have addressed all weaknesses raised in my previous review.

    1. Reviewer #3 (Public review):

      Summary:

      The authors aimed to elucidate the mechanisms underlying the regional patterning of enteroendocrine cell (EE) subtypes along the Drosophila midgut. Through detailed immunohistochemical mapping and genetic perturbation of Notch, WNT, and BMP signaling pathways, they sought to determine how extrinsic morphogen gradients and intrinsic stem cell identity contribute to EE diversity.

      Strengths:

      A major strength of this work is the meticulous regional analysis of EE pairs and the use of multiple genetic tools to manipulate signaling pathways in a spatiotemporally controlled manner. The data robustly demonstrate that WNT and BMP signaling gradients play key roles in specifying EE subtypes and division modes across different gut regions.

      Weaknesses:

      However, the study does not fully explore the mechanistic basis for the region-specific dependence on Notch signaling. Additionally, while the authors propose that symmetric divisions occur in R1a and R4b, the observed heterogeneity in CCHa2 expression within AstC+ pairs in R4b suggests that asymmetric mechanisms may still be at play, possibly involving apical-basal polarity as previously reported.

      Appraisal of achievements:

      The authors successfully achieve their aims by providing a compelling model in which intercalated WNT and BMP gradients regulate EE subtype specification and EEP division modes. The genetic data strongly support the conclusion that these pathways are central to establishing regional EE diversity during pupal development.

    1. Reviewer #3 (Public review):

      Summary:

      Different types of retinal ganglion cell (RGC) have different temporal properties - most prominently a distinction between sustained vs. transient responses to contrast. This has been well established in multiple species, including mouse. In general, RGCs with dendrites that stratify close to the ganglion cell layer (GCL) are sustained; whereas those that stratify near the middle of the inner plexiform layer (IPL) are transient. This difference in RGC spiking responses aligns with similar differences in excitatory synaptic currents as well as with differences in glutamate release in the respective layers - shown previously and here, with a glutamate sensor (iGluSnFR) expressed in the RGCs of interest. Differences in glutamate release were not explained by differences in the distinct presynaptic bipolar cells' voltage responses, which were quite similar to one another. Rather, the difference in transient vs. sustained responses seems to emerge at the bipolar cell axon terminals in the form of glutamate release. This difference in the temporal pattern of glutamate release was correlated with differences in the size of synaptic ribbons (larger in the bipolar cells with more sustained responses), which also correlated with a greater number of vesicles in the vicinity of the larger ribbons.

      The main conclusion of the study relates to a correlation (because it is difficult to manipulate ribbon size or vesicle density experimentally): the bipolar cells with increased ribbon size/vesicle number would have a greater possibility of sustained release, which would be reflected in the postsynaptic RGC synaptic currents and RGC firing rates. This model proposes a mechanism for temporal channels that is independent of synaptic inhibition. Indeed, some experiments in the paper suggest that inhibition cannot explain the transient nature of glutamate release onto one of the RGC types. Still, it is surprising that such a diverse set of inhibitory interneurons in the retina would not play some role in diversifying the temporal properties of RGC responses.

      Strengths:

      (1) The study uses a systematic approach to evaluating temporal properties of retinal ganglion cell (RGC) spiking outputs, excitatory synaptic inputs, presynaptic voltage responses, and presynaptic glutamate release. The combination of these experiments demonstrates an important step in the conversion from voltage to glutamate release in shaping response dynamics in RGCs.

      (2) The study uses a combination of electrophysiology, two-photon imaging and scanning block face EM to build a quantitative and coherent story about specific retinal circuits and their functional properties.

      Weaknesses:

      (1) There were some interesting aspects of the study that were not completely resolved, and resolving some of these issues may go beyond the current study. For example, it was interesting that different extracellular media (Ames medium vs. ACSF) generated different degrees of transient vs. sustained responses in RGCs, but it was unclear how these media might have impacted ion channels at different levels of the circuit that could explain the effects on temporal tuning.

      (2) It was surprising that inhibition played such a small role in generating temporal tuning. The authors explored this further in the revision, which supported the original claim that inhibition plays a minor role in glutamate release dynamics from the bipolar cells under study.

    1. Reviewer #3 (Public Review):

      Summary:

      There are two major flaws that fundamentally undermine the value of the study. First, nearly all the central conclusions drawn here rely on the unfounded assumption that the effects observed are direct. No rigorous cause-and-effect relationships are established to support the claims. Second, the quality of the experimental data is substandard. Collectively, these concerns significantly limit any advances that might be gained in our understanding of the UBP1 pathway or Mediator function.

      Weaknesses:

      (1) The decrease in 1,6-hexanediol-treated cells of MED16 is modest, variable, not quantified, and internally inconsistent. For example, in Figure 1A, 1,6-hexanediol treatment should not have an impact on the level of the protein being directly IP. For MED12 (and CDK8 and MED1 to a lesser extent), 1,6-hexanediol treatment alters the level of the target protein in the IP. Along these lines, Figure 1A shows a no 1,6H-D dependent decrease in MED1 or MED12 levels in the CDK8 IP, whereas Figure 1B does show a decrease. Figure 1A shows no 1,6H-D dependent decrease in CDK8 levels in the MED1 IP, whereas Figure 1B shows a dramatic decrease. MED24 levels in the MED12 IP increase upon 1,6H-D in Figure 1A, but decrease in Figure 1B. Internal inconsistencies of this nature persist in the other Figures.

      (2) Undermining the value of Figure 1E/F, UBP1 and TFCP2 may also associate with the small amount of MED16 in the 2MDa fractions. This is not tested, and therefore, the conclusion that they just associate with the dissociable form of MED16 is not supported.

      (3) Domain mapping studies in Figure 2 are overinterpreted. Since the interactions could be indirect, it is not accurate to conclude "Therefore, the N-terminal WDR domain of MED16 is crucial for its integration into the Mediator complex, while the C-terminal αβ-domain is essential for interacting with UBP1-TFCP2. "

      (4) A close examination of Figure 2C undermines confidence in the association studies. The bait protein in lanes 5-8 should be equal. Also, there is significant binding of GST to UBP1 and TFCP2, in roughly the same patterns as they bind to GST-MED16 αβ. The absence of input samples makes the results even more difficult to interpret.

      (5) The domain deletion mutants are utilized throughout the manuscript as evidence of the importance of the UBP1-MED16 interaction. However, in Figure 2F lanes 7 and 8, the delta-S mutant binds MED16 as well as full-length UBP1. This undermines much of the subsequent data and conclusions about specificity.

      (6) Even if the delta-S mutant were defective for MED16 binding, the result in Figure 3B does not "confirm that MED16 is required for the transcriptional activity of UBP1,". Removal of that domain may have other effects.

      (7) As Mediator is critical for the activation of many genes, it is not accurate to assume that the impact of its deletion in Figure 3E/F demonstrates a direct requirement in UBP1-driven transcription. This could easily be an indirect effect.

      (8) Without documenting the relative protein expression levels in Figure 3G/H, conclusions cannot be drawn about the titration experiments, nor the co-expression experiments. These findings are likely the result of squelching or some form of competition that is not directly related to the UBP1-mediated transcription. A great deal of validation would be required in order to support the model that these effects are a result of MED16 overexpression sequestering UBP1 away from holo-Mediator.

      (9) The lack of any documentation of expression levels for the various ectopic proteins in the majority of Figures, renders mechanistic claims meaningless (Figures 3, 4, 5, 6, 7, S2, S3). This is particularly relevant since the model presented for many of the results invokes concentration-dependent competition.

    1. Reviewer #3 (Public review):

      Summary:

      This paper by Zhu et al explores zonal gene expression changes and stress responses in the liver after APAP injury. 3-6 hours after APAP, zone 2 hepatocytes demonstrate important gene expression changes. There is an increase in stress response/cell survival genes such as Hmox1, Hspa8, Atf3, and protein degradation/autophagy genes such as Ubb, Ubc, and Sqstm1. This is hypothesized to be a "stress adaption" which happens during the initial phases of acute liver injury. Furthermore, there is a spatial redistribution of Cyp450 expression that then establishes the Mid-zone as the primary site of APAP metabolism during early AILI. This particular finding was identified previously by other groups in several single-cell papers. Ddit3 (Chop) expression also increases in zone 2. The authors focused mostly on the Atf4-Ddit3 axis in stress adaptation. Importantly, they probe the functionality of this axis by overexpressing either ATF4 or DDIT3 using AAV tools, and they show that these manipulations block APAP-induced injury and necrosis. This is somewhat convincing evidence that these stress response proteins are probably important during injury and regeneration.

      Strengths:

      Overall, I think this is a useful study, showing that the Mid-lobular zone 2 hepatocytes turn on a stress-responsive gene program that suppresses proliferation, and that this is functionally important for efficient, long-term regeneration and homeostasis. This adds to the body of literature showing the importance of zone 2 cells in hepatic regeneration, and also provides an additional mechanism that tells us how they are better at surviving chemical injuries.

      Weaknesses:

      The main concern is that the overexpression of ATF4 and DDIT3 is causing reduced cell death and damage by APAP. This makes it harder to understand if these genes are truly increasing survival or if they are just reducing the injury caused by APAP. It may be better to perform overexpression immediately after, or at the same time as APAP delivery. Alternatively, loss-of-function experiments using AAV-shRNAs against these targets could be useful.

    1. Reviewer #3 (Public review):

      Summary of concerns about the revised submission from the Reviewing Editor:

      With respect to Originality of the work, in the last 18 months, there have been 38 publications on combined topics of: (i) UK Biobank data, (ii) Mendelian randomization, (iii) and prostate cancer. The authors should consider the literature addressing prostate cancer via Mendelian randomization--specifically those using the UK Biobank data--published from 2024 onwards. A proper and comprehensive synthesis of recent findings should be made, to allow readers to compare and contrast how the work supports (or differs) from the findings presented in these other published studies.

      With respect to the significance of the findings, we feel the study data are incomplete for the strength of evidence. Given the deluge of manuscripts and publications on similar topics, the study offers incremental evidence and lacks a synthesis of all currently published findings.

    1. Reviewer #3 (Public review):

      Summary:

      This study investigates the role of BICC1 in the regulation of PKD1 and PKD2 and its impact on cytogenesis in ADPKD. By utilizing co-IP and functional assays, the authors demonstrate physical, functional, and regulatory interactions between these three proteins.

      Strengths:

      (1) The scientific principles and methodology adopted in this study are excellent, logical, and reveal important insights into the molecular basis of cystogenesis.

      (2) The functional studies in animal models provide tantalizing data that may lead to a further understanding and may consequently lead to the ultimate goal of finding a molecular therapy for this incurable condition.

      (3) In describing the patients from the Arab cohort, the authors have provided excellent human data for further investigation in large ADPKD cohorts. Even though there was no patient material available, such as HUREC, the authors have studied the effects of BICC1 mutations and demonstrated its functional importance in a Xenopus model.

      Weaknesses:

      This is a well-conducted study and could have been even more impactful if primary patient material was available to the authors. A further study in HUREC cells investigating the critical regulatory role of BICC1 and potential interaction with mir-17 may yet lead to a modifiable therapeutic target.

      Conclusion:<br /> The authors achieve their aims. The results reliably demonstrate the physical and functional interaction between BICC1 and PKD1/PKD2 genes and their products.

      The impact is hopefully going to be manifold:

      (1) Progressing the understanding of the regulation of the expression of PKD1/PKD2 genes.

      Comments on revision:

      My comments have been addressed and sorted.

    1. Reviewer #3 (Public review):

      In this manuscript, the Xie et al. delineate two cardiac lineage trajectories using pseudo-time and epigenetic analyses, tracing development from E6.5 to E8.5, culminating in cardiomyocytes (CMs). The authors propose that mutual regulation between the transcription factors Hand1 and Foxf1 plays a role in specifying a first cardiac lineage.

      Following the first round of revision, the authors have renamed their EEM-JCF/FHF (MJH) and PM-SHF (PSH) trajectories JCF and SHF. However, their use of this terminology is confusing. The so-called JCF trajectory appears to represent a mixture of JCF and FHF, as Hand1-expressing early extraembryonic mesoderm contributes to FHF-derived cardiomyocytes (e.g., HCN4+, Tbx5+). The authors then argue that JCF arises from Hand1+ cells and is therefore distinct from FHF, yet elsewhere suggest that both JCF and SHF contribute to FHF. This introduces conceptual inconsistencies.

      Furthermore, the expression of Hand1, Foxf1, and Bmp4 in the lateral plate mesoderm complicates the assertion that JCF is distinct from FHF (Development 2015; 142: 3307-3320; Nat Rev Mol Cell Biol, https://www.nature.com/articles/nrm2618; Circ Res 2021, https://doi.org/10.1161/CIRCRESAHA.121.318943). Mab21l2 expression also overlaps with the cardiac crescent. The designation of Tbx20 as a "key JCF-specific gene" is problematic, why should it not equally be considered an FHF-specific marker (https://pmc.ncbi.nlm.nih.gov/articles/PMC10629681)? Perhaps the JCF trajectory represent a subset of FHF. A designation such as "JCF/FHF" may therefore be more appropriate.

      In Figure 1A, the decision to define a single CM state as the endpoint of both trajectories is also problematic. FHF and SHF are known to give rise to distinct CM subtypes, yet in the authors' reconstruction both lineages converge on one CM population. This was the point raised in Question 1 of my initial review. If both trajectories converge on the same CM state, are they truly independent lineages? This interpretation remains unclear and potentially misleading.

    1. Reviewer #3 (Public review):

      Rovira, et al., aim to characterize immune cells in the brain parenchyma and identify a novel macrophage population referred to as "dendritic-like cells". They use a combination of single-cell transcriptomics, immunohistochemistry, and genetic mutants to conclude the presence of this "dendritic-like cell" population in the brain. The strength of this manuscript is the identification of dendritic cells in the brain, which are typically found in the meningeal layers and choroid plexus. In addition, Rovira, et al., findings are supported by the findings of the Wen lab and a recent Cell Reports paper. Congratulations on the nice work!

    1. Reviewer #3 (Public review):

      In this study, the authors investigate the requirements for the formation of CPSF6 puncta induced by HIV-1 under a high multiplicity of infection conditions. Not surprisingly, they observe that mutation of the Phe-Gly (FG) repeat responsible for CPSF6 binding to the incoming HIV-1 capsid abrogates CPSF6 punctum formation. Perhaps more interestingly, they show that the removal of other domains of CPSF6, including the mixed-charge domain (MCD), does not affect the formation of HIV-1-induced CPSF6 puncta. The authors also present data suggesting that CPSF6 puncta form individual before fusing with nuclear speckles (NSs) and that the fusion of CPSF6 puncta to NSs requires the intrinsically disordered region (IDR) of the NS component SRRM2. While the study presents some interesting findings, there are some technical issues that need to be addressed and the amount of new information is somewhat limited. Also, the authors' finding that deletion of the CPSF6 MCD does not affect the formation of HIV-1-induced CPSF6 puncta contradicts recent findings of Jang et al. (https://doi.org/10.1093/nar/gkae769).

      Comments on revisions:

      The authors have generally addressed my comments.

    1. Reviewer #3 (Public review):

      Summary:

      The paper by Zhu et al is on an important topic in visual neuroscience, the emergence in the visual cortex of signals about figure and ground. This topic also goes by the name border ownership. The paper utilizes modern recording techniques very skillfully to extend what is known about border ownership. It offers new evidence about the prevalence of border ownership signals across different cortical layers in V1 cortex. Also, it uses pairwise cross correlation to study signal flow under different conditions of visual stimulation that include the border ownership paradigm.

      Strengths: The paper's strengths are results of its use of multi-electrode probes to study border ownership in many neurons simultaneously across the cortical layers in V1. Also it provides new useful data about the dynamics of interaction of signals from the non-classical receptive field (NCRF) and the Classical receptive field (CRF).

      Weaknesses:

      The paper's weakness is that it does not challenge consensus beliefs about mechanisms. Also, the paper combines data about border ownership with data about the NCRF without making it clear how they are similar or different.

      Critique:

      The border ownership data on V1 offered in the paper replicate experimental results obtained by Zhou and von der Heydt (2000) and confirm the earlier results. The incremental addition is that the authors found border ownership in all cortical layers of V1, extending Zhou and von der Heydt's results that were only about layer 2/3 in V2 cortex. This is an interesting new result using the same stimuli but new measurement techniques.

      The cross-correlation results show that the pattern of the cross correlogram (CCG) is influenced by the visual pattern being presented. However, in the initial submitted ms. the results were not analyzed mechanistically, and the interpretation was unclear. For instance, the authors show in Figure 3 (and in Figure S2) that the peak of the CCG can indicate layer 2/3 excites layer 4C when the visual stimulus is the border ownership test pattern, a large square 8 deg on a side. More than one reviewer asked, " how can layer 2/3 excite layer 4C"? . In the revised ms. the authors added a paragraph to the Discussion to respond to the reviewers about this point. The authors could provide an even better response to the reviewers by emphasizing that, consistently, layer 5/6 neurons lead neurons in layer 4, and for the CRF pattern and even more when the NCRF patterns are used.

      The problems in understanding the CCG data are indirectly caused by the lack of a critical analysis of what is happening in the responses that reveal the border ownership signals, as in Fig.2. Let's put it bluntly--are border ownership signals excitatory or inhibitory? As the authors pointed out in their rebuttal, Zhang and von der Heydt (2010, JNS) did experiments to answer this question but I do not agree with the authors rebuttal letter about what Zhang and von der Heydt (2010) reported. If you examine Zhang and von der Heydt's Figure 6, you see that the major effect of stimulating border ownership neurons is suppression from the non-preferred side. That result is consistent with many papers on the NCRF (many cited by the authors) that indicate that it is mostly suppressive. That experimental fact about border ownership should be mentioned in the present paper.

      What I should have pointed out in the first round, but didn't understand it then, is that there is a disconnect between the the border ownership laminar analysis (Figure 2) and the laminar correlations with CCGs (Figures 3-5) because the CCGs are not limited to border ownership neurons (or at least we are not told they were limited to them). So the CCG results are not mostly about border ownership--they are about the difference between signal flow in responses to small drifting Gabor patterns vs big flashed squares. Since only 21% of all recorded neurons were border ownership neurons, it is likely that most of the CCG statistics is based on neurons that do not show border ownership. Nevertheless, Figures 3 and 4 are very useful for the study of signal flow in the NCRF. It wasn't clear to me and I think the authors could make it clearer what those figures are about.<br /> And I wonder if it might be possible to make a stronger link with border ownership by restricting the CCG analysis to pairs of neurons in which one neuron is a border ownership neuron. Are there enough data?

      My critique of the CCG analysis applies to Figure 5 also. That figure shows a weak correlation of CCG asymmetry with Border Ownership Index. Perhaps a stronger correlation might be present if the population were restricted to the much smaller population of neuron pairs that had at least one border ownership neuron.

    1. Reviewer #3 (Public review):

      Summary:

      Nucleotide modifications are important regulators of biological function, however, until recently, their study has been limited by the availability of appropriate analytical methods. Oxford Nanopore direct RNA sequencing preserves nucleotide modifications, permitting their study, however many different nucleotide modifications lack an available base-caller to accurately identify them. Furthermore, existing tools are computationally intensive, and their results can be difficult to interpret.

      Cheng et al. present SegPore, a method designed to improve the segmentation of direct RNA sequencing data and boost the accuracy of modified base detection.

      Strengths:

      This method is well described and has been benchmarked against a range of publicly available base callers that have been designed to detect modified nucleotides.

      Weaknesses:

      However, the manuscript has a significant drawback in its current version. The most recent nanopore RNA base callers can distinguish between different ribonucleotide modifications, however, SegPore has not been benchmarked against these models.

      The manuscript would be strengthened by benchmarking against the rna004_130bps_hac@v5.1.0 and rna004_130bps_sup@v5.1.0 dorado models, which are reported to detect m5C, m6A_DRACH, inosine_m6A and PseU.

      A clear demonstration that SegPore also outperforms the newer RNA base caller models will confirm the utility of this method.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript investigates how mutations in the SARS-CoV-2 nucleocapsid protein (N) alter ribonucleoprotein (RNP) assembly, stability, and viral fitness. The authors focus on mutations such as P13L, G214C, and G215C, combining biophysical assays (SV-AUC, mass photometry, CD spectroscopy, EM), VLP formation, and reverse genetics. They propose that SARS-CoV-2 exploits "fuzzy complex" principles, where distributed weak interfaces in disordered regions allow both stability and plasticity, with measurable consequences for viral replication.

      Strengths:

      (1) The paper demonstrates a comprehensive integration of structural biophysics, peptide/protein assays, VLP systems, and reverse genetics.

      (2) Identification of both de novo (P13L) and stabilizing (G214C/G215C) interfaces provides a mechanistic insight into RNP formation.

      (3) Strong application of the "fuzzy complex" framework to viral assembly, showing how weak/disordered interactions support evolvability, is a significant conceptual advance in viral capsid assembly.

      (4) Overall, the study provides a mechanistic context for mutations that have arisen in major SARS-CoV-2 variants (Omicron, Delta, Lambda) and a mechanistic basis for how mutations influence phenotype via altered biomolecular interactions.

      Weaknesses:

      (1) The arrangement of N dimers around LRS helices is presented in Figure 1C, but the text concedes that "the arrangement sketched in Figure 1C is not unique" (lines 144-146) and that AF3 modeling attempts yielded "only inconsistent results" (line 149).<br /> The authors should therefore present the models more cautiously as hypotheses instead. Additional alternative arrangements should be included in the Supplementary Information, so the readers do not over-interpret a single schematic model.

      (2) Negative-stained EM fibrils (Figure 2A) and CD spectra (Figure 2B) are presented to argue that P13L promotes β-sheet self-association. However, the claim could benefit from more orthogonal validation of β-sheet self-association. Additional confirmation via FTIR spectra or ThT fluorescence could be used to further distinguish structured β-sheets from amorphous aggregation.

      (3) In the main text, the authors alternate between emphasizing non-covalent effects ("a major effect of the cysteines already arises in reduced conditions without any covalent bonds," line 576) and highlighting "oxidized tetrameric N-proteins of N:G214C and N:G215C can be incorporated into RNPs". Therefore, the biological relevance of disulfide redox chemistry in viral assembly in vivo remains unclear. Discussing cellular redox plausibility and whether the authors' oxidizing conditions are meant as a mechanistic stress test rather than physiological mimicry could improve the interpretation of these results.

      The paper could benefit if the authors provide a summary figure or table contrasting reduced vs. oxidized conditions for G214C/G215C mutants (self-association, oligomerization state, RNP stability). Explicitly discuss whether disulfides are likely to form in infected cells.

      (4) VLP assays (Figure 7) show little enhancement for P13L or G215C alone, whereas Figure 8 shows that P13L provides clear fitness advantages. This discrepancy is acknowledged but not reconciled with any mechanistic or systematic rationale. The authors should consider emphasizing the limitations of VLP assays and the sources of the discrepancy with respect to Figure 8.

      (5) Figures 5 and 6 are dense, and the several overlays make it hard to read. The authors should consider picking the most extreme results to make a point in the main Figure 5 and move the other overlays to the Supplementary. Additionally, annotating MP peaks directly with "2×, 4×, 6× subunits" can help non-experts.

      (6) The paper has several names and shorthand notations for the mutants, making it hard to keep up. The authors could include a table that contains mutation keys, with each shorthand (Ancestral, Nο/No, Nλ, etc.) mapped onto exact N mutations (P13L, Δ31-33, R203K/G204R, G214C/G215C, etc.). They could then use the same glyphs (Latin vs Greek) consistently in text and figure labels.

      (7) The EM fibrils (Figure 2A) and CD spectra (Figure 2B) were collected at mM peptide concentrations. These are far above physiological levels and may encourage non-specific aggregation. Similarly, the authors mention" ultra-weak binding energies that require mM concentrations to significantly populate oligomers". On the other hand, the experiments with full-length protein were performed at concentrations closer to biologically relevant concentrations in the micromolar range. While I appreciate the need to work at high concentrations to detect weak interactions, this raises questions about physiological relevance. Specifically:

      a) Could some of the fibril/β-sheet features attributed to P13L (Figure 2A-C) reflect non-specific aggregation at high concentrations rather than bona fide self-association motifs that could play out in biologically relevant scenarios?

      b) How do the authors justify extrapolating from the mM-range peptide behaviors to the crowded but far lower effective concentrations in cells?

      The authors should consider adding a dedicated section (either in Methods or Discussion) justifying the use of high concentrations, with estimation of local concentrations in RNPs and how they compare to the in vitro ranges used here. For concentration-dependent phenomena discussed here, it is vital to ensure that the findings are not artefacts of non-physiological peptide aggregation..

    1. Reviewer #3 (Public review):

      Summary:

      This paper demonstrates that membrane depolarization induces a small increase in cell entry into mitosis. Based on previous work from another lab, the authors propose that ERK activation might be involved. They show convincingly using a combination of assays that ERK is activated by membrane depolarization. They show this is Ca2+ independent and is a result of activation of the whole K-Ras/ERK cascade which results from changed dynamics of phosphatidylserine in the plasma membrane that activates K-Ras. Although the activation of the Ras/ERK pathway by membrane depolarization is not new, linking it to an increase in cell proliferation is novel.

      Strengths:

      A major strength of the study is the use of different techniques - live imaging with ERK reporters, as well as Western blotting to demonstrate ERK activation as well as different methods for inducing membrane depolarization. They also use a number of different cell lines. Via Western blotting the authors are also able to show that the whole MAPK cascade is activated.

      Weaknesses:

      In the previous round of revisions, the authors addressed the issues with Figure 1, and the data presented are much clearer. The authors did also attempt to pinpoint when in the cell cycle ERK is having its activity, but unfortunately, this was not conclusive.

    1. Reviewer #3 (Public review):

      Summary:

      The finding of rhythmic activity in the brain has for a long time engendered the theory of rhythmic modes of perception, that humans might oscillate between improved and worse perception depending on states of our internal systems. However, experiments looking for such modes have resulted in conflicting findings, particularly in those where the stimulus itself is not rhythmic. This paper seeks to take a comprehensive look at the effect and various experimental parameters which might generate these competing findings: in particular, the presentation of the stimulus to one ear or the other, the relevance of motor involvement, attentional demands, and memory: each of which are revealed to effect the consistency of this rhythmicity.

      The need the paper attempts to resolve is a critical one for the field. However, as presented, I remain unconvinced that the data would not be better interpreted as showing no consistent rhythmic mode effect.

      Strengths:

      The paper is strong in its experimental protocol and its comprehensive analysis which seeks to compare effects across several analysis types and slight experiment changes to investigate which parameters could effect the presence or absence of an effect of rhythmicity. The prescribed nature of its hypotheses and its manner to set out to test them is very clear which allows for a straightforward assessment of its results

      Weaknesses:

      The papers cited to justify a rhythmic mode are largely based on the processing of rhythmic stimuli. The authors assume the rhythmic mode to be the general default but its not so clear to me why this would be so. The task design seems better suited to a continuous vigilance mode task.

      Secondly, the analysis to detect a "rhythmic mode", assumes a total phase rest at noise onset which is highly implausible given standard nonlinear dynamical analysis of oscillator performance. It's not clear that a rhythmic mode (should it be applied in this task) would indeed generate a consistent phase as the analysis searches for.

      Thirdly, the number of statistical tests used here make trusting any single effect quite difficult and very few of the effects replicate more than once. I think the better would be interpreted as not confirming evidence for rhythmic mode processing in the ears.

      Comments on revised version:

      No further comments. The paper has much of the same issues that I expressed in the initial review but I don't think they can be addressed without a replication study which I appreciate is not always plausible.

    1. Reviewer #3 (Public review):

      Summary:

      This paper by Meier et al introduces a new optogenetic module for regulation of bacterial gene expression based on "bathy-BphP" proteins. Their paper begins with a careful characterization of kinetics and pH dependence of a few family members, followed by extensive engineering to produce infrared-regulated transcriptional systems based on the authors' previous design of the pDusk and pDERusk systems, and closing with characterization of the systems in bacterial species relevant for biotechnology.

      Strengths:

      The paper is important from the perspective of fundamental protein characterization, since bathy-BphPs are relatively poorly characterized compared to their phytochrome and cyanobacteriochrome cousins. It is also important from a technology development perspective: the optogenetic toolbox currently lacks infrared-stimulated transcriptional systems. Infrared light offers two major advantages: it can be multiplexed with additional tools, and it can penetrate into deep tissues with ease relative to the more widely used blue light activated systems. The experiments are performed carefully and the manuscript is well written.

      Weaknesses:

      Some of the light-inducible responses described in this compelling paper are complex and difficult to rationalize, such as the dependence of light responses on linker length and differences in responses observed from the bathy-BphPs in isolation versus strains in which they are multiplexed. Nevertheless, the authors should be commended for carrying out rigorous experiments and reporting these results accurately. These are minor weaknesses in an overall very strong paper.

    1. Reviewer #3 (Public review):

      Summary:

      This study looked at slow changes in neuronal activity (on the order of minutes to hours) in the superior colliculus (SC) and prefrontal cortex (PFC) of two monkeys. They found that SC activity shows slow drift in neuronal activity like in the cortex. They then computed a motor index in SC neurons. By definition, this index is low if the neuron has stronger visual responses than motor response, and it is low if the neuron has weaker visual responses and stronger motor responses. The authors found that the slow drift in neuronal activity was more prevalent in the low motor index SC neurons and less prevalent in the high motor index neurons. In addition, the authors measured pupil diameter and found it to correlate with slow drifts in neuronal activity, but only in the neurons with lower motor index of the SC. They concluded that arousal signals affecting slow drifts in neuronal modulations are brain-wide. They also concluded that these signals are not present in the deepest SC layers, and they interpreted this to mean that this minimizes the impact of arousal on unwanted eye movements.

      Strengths:

      The paper is clear and well-written.

      Showing slow drifts in the SC activity is important to demonstrate that cortical slow drifts could be brain-wide.

      Weaknesses:

      The authors find that the SC cells with the low motor index are modulated by pupil diameter. However, this could be completely independent of an "arousal signal". These cells have substantial visual sensitivity. If the pupil diameter changes, then their activity should be influenced since the monkey is watching a luminous display. So, in this regard, the fact that they do not see "an arousal signal" in the most motor neurons (through the pupil diameter analyses) is not evidence that the arousal signal is filtered out from the motor neurons. It could simply be that these neurons simply do not get affected by the pupil diameter because they do not have visual sensitivity. So, even with the pupil data, it is still a bit tricky for me to interpret that arousal signals are excluded from the "output layers" of the SC.

      Of course, the general conclusion is that the motor neurons will not have the arousal signal. It's just the interpretation that is different in the sense that the lack of the arousal signal is due to a lack of visual sensitivity in the motor neurons.

      I think that it is important to consider the alternative caveat of different amounts of light entering the system. Changes in light level caused by pupil diameter variations can be quite large. Please also note that I do not mean the luminance transient associated with the target onset. I mean the luminance of the gray display. it is a source of light. if the pupil diameter changes, then the amount of light entering to the visually sensitive neurons also changes.

      Comments on revised manuscript:

      The authors have addressed my first primary comment. For the light comment, I'm still not sure they addressed it. At the very least, they should explicitly state the possibility that the amount of light entering from the gray background can matter greatly, and it is not resolved by simply changing the analysis interval to the baseline pre-stimulus epoch. I provide more clear details below:

      In line 194 of the redlined version of the article (in the Introduction), the citation to Baumann et al., PNAS, 2023 is missing near the citation of Jagadisan and Gandhi, 2022. Besides replicating Jagadisan and Gandhi, 2022, this other study actually showed that the subspaces for the visual and motor epochs are orthogonal to each other

      Line 683 (and around) of the redlined version of the article (in the Results): I'm very confused here. When I mentioned visual modulation by changed pupil diameter, I did not mean the transient changes associated with the brief onset of the cue in the memory-guided saccade task. I meant the gray background of the display itself. This is a strong source of light. If the pupil diameter changes across trials, then the amount of light entering the eye also changes from the gray background. Thus, visually-responsive neurons will have different amount of light driving them. This will also happen in the baseline interval containing only a fixation spot. The arguments made by the authors here do not address this point at all. So, please modify the text to explicitly state the possibility that the global luminance of the display (as filtered by the pupil diameter) alters the amount of light driving the visually-responsive neurons and could contribute to the higher effects seen in the more visual neurons.

      The figures (everywhere, including the responses to reviewers) are very low resolution and all equations in methods are missing.

      I'm very confused by Fig. 2 - supplement 2. Panel B shows a firing rate burst aligned to *microsaccade* onset. Does that mean you were in the foveal SC? i.e. how can neurons have a motor burst to the target of the memory-guided saccade and also for microsaccades? And which microsaccade directions caused such a burst? And what does it mean to compute the motor index and spike count for microsaccades in panel C? if you were in the proper SC location for the saccade target, then shouldn't you *not* get any microsaccade-related burst at all? This is very confusing to me and needs to be clarified

    1. Reviewer #3 (Public review):

      Summary:

      This short paper aims to provide an independent validation of the transgenerational inheritance of learned behaviour (avoidance) that has been published by the Murphy lab. The robustness of the phenotype has been questioned by the Hunter lab. In this paper, the authors present one figure showing that transgenerational inheritance can be replicated in their hands. Overall, it helps to shed some light on a controversial topic.

      Strengths:

      The authors clearly outline their methods, particularly regarding the choice of assay, so that attempting to reproduce the results should be straightforward. It is nice to see these results repeated in an independent laboratory.

      Comments on revised version:

      I'm happy with the response to reviewers.

    1. Reviewer #3 (Public review):

      Summary

      The authors set out to explore the potential relationship between adult neurogenesis of inhibitory granule cells in the olfactory bulb and cumulative changes over days in odor-evoked spiking activity (representational drift) in the olfactory stream. They developed a richly detailed spiking neuronal network model based on Izhikevich (2003), allowing them to capture the diversity of spiking behaviors of multiple neuron types within the olfactory system. This model recapitulates the circuit organization of both the main olfactory bulb (MOB) and the piriform cortex (PCx), including connections between the two (both feedforward and corticofugal). Adult neurogenesis was captured by shuffling the weights of the model's granule cells, preserving the distribution of synaptic weights. Shuffling of granule cell connectivity resulted in cumulative changes in stimulus-evoked spiking of the model's M/T cells. Individual M/T cell tuning changed with time, and ensemble correlations dropped sharply over the temporal interval examined (long enough that almost all granule cells in the model had shuffled their weights). Interestingly, these changes in responsiveness did not disrupt low-dimensional stability of olfactory representations: when projected into a low-dimensional subspace, population vector correlations in this subspace remained elevated across the temporal interval examined. Importantly, in the model's downstream piriform layer, this was not the case. There, shuffled GC connectivity in the bulb resulted in a complete shift in piriform odor coding, including for low-dimensional projections. This is in contrast to what the model exhibited in the M/T input layer. Interestingly, these changes in PCx extended to the geometrical structure of the odor representations themselves. Finally, the authors examined the effect of experience on representational drift. Using an STDP rule, they allowed the inputs to and outputs from adult-born granule cells to change during repeated presentations of the same odor. This stabilized stimulus-evoked activity in the model's piriform layer.

      Strengths

      This paper suggests a link between adult neurogenesis in the olfactory bulb and representational drift in the piriform cortex. Using an elegant spiking network that faithfully recapitulates the basic physiological properties of the olfactory stream, the authors tackle a question of longstanding interest in a creative and interesting manner. As a purely theoretical study of drift, this paper presents important insights: synaptic turnover of recurrent inhibitory input can destabilize stimulus-evoked activity, but only to a degree, as representations in the bulb (the model's recurrent input layer) retain their basic geometrical form. However, this destabilized input results in profound drift in the model's second (piriform) layer, where both the tuning of individual neurons and the layer's overall functional geometry are restructured. This is a useful and important idea in the drift field, and to my knowledge, it is novel. The bulb is not the only setting where inhibitory synapses exhibit turnover (whether through neurogenesis or synaptic dynamics), and so this exploration of the consequences of such plasticity on drift is valuable. The authors also elegantly explore a potential mechanism to stabilize representations through experience, using an STDP rule specific to the inhibitory neurons in the input layer. This has an interesting parallel with other recent theoretical work on drift in the piriform (Morales et al., 2025 PNAS), in which STDP in the piriform layer was also shown to stabilize stimulus representations there. It is fascinating to see that this same rule also stabilizes piriform representations when implemented in the bulb's granule cells.

      The authors also provide a thoughtful discussion regarding the differential roles of mitral and tufted cells in drift in piriform and AON and the potential roles of neurogenesis in archicortex.

      In general, this paper puts an important and much-needed spotlight on the role of neurogenesis and inhibitory plasticity in drift. In this light, it is a valuable and exciting contribution to the drift conversation.

      Weaknesses

      I have one major, general concern that I think must be addressed to permit proper interpretation of the results.

      I worry that the authors' model may confuse thinking on drift in the olfactory system, because of differences in the behavior of their model from known features of the olfactory bulb. In their model, the tuning of individual bulbar neurons drifts over time. This is inconsistent with the experimental literature on the stability of odor-evoked activity in the olfactory bulb.

      In a foundational paper, Bhalla & Bower (1997) recorded from mitral and tufted cells in the olfactory bulb of freely moving rats and measured the odor tuning of well-isolated single units across a five-day interval. They found that the tuning of a single cell was quite variable within a day, across trials, but that this variability did not increase with time. Indeed, their measure of response similarity was equivalent within and across days. In what now reads as a prescient anticipation of the drift phenomenon, Bhalla and Bower concluded: "it is clear, at least over five days, that the cell is bounded in how it can respond. If this were not the case, we would expect a continual increase in relative response variability over multiple days (the equivalent of response drift). Instead, the degree of variability in the responses of single cells is stable over the length of time we have recorded." Thus, even at the level of single cells, this early paper argues that the bulb is stable.

      This basic result has since been replicated by several groups. Kato et al. (2012) used chronic two-photon calcium imaging of mitral cells in awake, head-fixed mice and likewise found that, while odor responses could be modulated by recent experience (odor exposure leading to transient adaptation), the underlying tuning of individual cells remained stable. While experience altered mitral cell odor responses, those responses recovered to their original form at the level of the single neuron, maintaining tuning over extended periods (two months). More recently, the Mizrahi lab (Shani-Narkiss et al., 2023) extended chronic imaging to six months, reporting that single-cell odor tuning curves remained highly similar over this period. These studies reinforce Bhalla and Bower's original conclusion: despite trial-to-trial variability, olfactory bulb neurons maintain stable odor tuning across extended timescales, with plasticity emerging primarily in response to experience. (The Yamada et al., 2017 paper, which the authors here cite, is not an appropriate comparison. In Yamada, mice were exposed daily to odor. Therefore, the changes observed in Yamada are a function of odor experience, not of time alone. Yamada does not include data in which the tuning of bulb neurons is measured in the absence of intervening experience.)

      Therefore, a model that relies on instability in the tuning of bulbar neurons risks giving the incorrect impression that the bulb drifts over time. This difference should be explicitly addressed by the authors to avoid any potential confusion. Perhaps the best course of action would be to fit their model to Mizrahi's data, should this data be available, and see if, when constrained by empirical observation, the model still produces drift in piriform. If so, this would dramatically strengthen the paper. If this is not feasible, then I suggest being very explicit about this difference between the behavior of the model and what has been shown empirically. I appreciate that in the data there is modest drift (e.g., Shani-Narkiss' Figure 8C), but the changes reported there really are modest compared to what is exhibited by the model. A compromise would be to simply apply these metrics to the model and match the model's similarity to the Shani-Narkiss data. Then the authors could ask what effect this has on drift in piriform.

      The risk here is that people will conclude from this paper that drift in piriform may simply be inherited from instability in the bulb. This view is inconsistent with what has been documented empirically, and so great care is warranted to avoid conveying that impression to the community.

      Major comments (all related to the above point)

      (1) Lines 146-168: The authors find in their model that "individual M/T cells changed their responses to the same odor across days due to adult-neurogenesis, with some cells decreasing the firing rate responses (Fig.2A1 top) while other cells increased the magnitude of their responses (Fig. 2A2 bottom, Fig. S2)" they also report a significant decrease in the "full ensemble correlation" in their model over time. They claim that these changes in individual cell tuning are "similar to what has been observed by others using calcium imaging of M/T cell activity (Kato et al., 2012 and Yamada et al., 2017)" and that the decrease in full ensemble correlation is "consistent with experimental observations (Yamada et al., 2017)." However, the conditions of the Kato and Yamada experiments that demonstrate response change are not comparable here, as odors were presented daily to the animals in these experiments. Therefore, the changes in odor tuning found in the Kato and Yamada papers (Kato Figure 4D; Yamada Figure 3E) are a function of accumulated experience with odor. This distinction is crucial because experience-induced changes reflect an underlying learning process, whereas changes that simply accumulate over time are more consistent with drift. The conditions of their model are more similar to those employed in other experiments described in Kato et al. 2012 (Figure 6C) as well as Shani-Narkiss et al. (2023), in which bulb tuning is measured not as a function of intervening experience, but rather as a function of time (Kato's "recovery" experiment). What is found in Kato is that even across two months, the tuning of individual mitral cells is stable. What alters tuning is experience with odor, the core finding of both the Kato et al., 2012 paper and also Yamada et al., 2017. It is crucial that this is clarified in the text.

      (2) The authors show that in a reduced-space correlation metric, the correlation of low-dimensional trajectories "remained high across all days"..."consistent with a recent experimental study" (Shani-Narkiss et al., 2023). It is true that in the Shani-Narkiss paper, a consistent low-dimensional response is found across days (t-SNE analysis in Shani-Narkiss Figure 7B). However, the key difference between the Shani-Narkiss data and the results reported here is that Shani-Narkiss also observed relative stability in the native space (Shani-Narkiss Figure 8). They conclude that they "find a relatively stable response of single neurons to odors in either awake or anesthetized states and a relatively stable representation of odors by the MC population as a whole (Figures 6-8; Bhalla and Bower, 1997)." This should be better clarified in the text.

      (3) In the discussion, the authors state that "In the MOB, individual M/T cells exhibited variable odor responses akin to gain control, altering their firing rate magnitudes over time. This is consistent with earlier experimental studies using calcium-imaging." (L314-6). Again, I disagree that these data are consistent with what has been published thus far. Changes in gain would have resulted in increased variability across days in the Bhalla data. Moreover, changes in gain would be captured by Kato's change index ("To quantify the changes in mitral cell responses, we calculated the change index (CI) for each responsive mitral cell-odor pair on each trial (trial X) of a given day as (response on trial X - the initial response on day 1)/(response on trial X + the initial response on day 1). Thus, CI ranges from −1 to 1, where a value of −1 represents a complete loss of response, 1 represents the emergence of a new response, and 0 represents no change." Kato et al.). This index will capture changes in gain. However, as shown in Figure 4D (red traces), Figure 6C (Recovery and Odor set B during odor set A experience and vice versa), the change index is either zero or near zero. If the authors wish to claim that their model is consistent with these data, they should also compute Kato's change index for M/T odor-cell pairs in their model and show that it also remains at 0 over time, absent experience.

    1. Reviewer #3 (Public review):

      Summary:

      Through micro-electroencephalography, Hight and colleagues studied how the auditory cortex in its ensemble responds to cochlear implant stimulation compared to the classic pure tones. Taking advantage of a double-implanted rat model (Micro-ECoG and Cochlear Implant), they tracked and analyzed changes happening in the temporal and spatial aspects of the cortical evoked responses in both normal hearing and cochlear-implanted animals. After establishing that single-trial responses were sufficient to encode the stimuli's properties, the authors then explored several decoder architectures to study the cortex's ability to encode each stimulus modality in a similar or different manner. They conclude that a) intracranial EEG evoked responses can be accurately recorded and did not differed between normal hearing and cochlear-implanted rats; b) Although coarsely spatially organized, CI-evoked responses had higher trial-by-trial variability than pure tones; c) Stimulus identity is independently represented by temporal and spatial aspect of cortical representations and can be accurately decoded by various means from single trials; d) and that Pure tones trained decoder can't decode CI-stimulus identity accurately.

      Strength:

      The model combining micro-eCoG and cochlear implantation and the methodology to extract both the Event Related Potentials (ERPs) and High-Gammas (HGs) is very well designed and appropriately analyzed. Likewise, the PCA-LDA and TCA-LDA are powerful tools that take full advantage of the information provided by the cortical ensembles.

      The overall structure of the paper, with a paced and exhaustive progress through each step and evolution of the decoder, is very appreciable and easy to follow. The exploration of single-trial encoding and stimulus identity through temporal and spatial domains is providing new avenues to characterize the cortical responses to CI stimulations and their central representation. The fact that single trials suffice to decode the stimulus identity regardless of their modality is of great interest and noteworthy. Although the authors confirm that iEEG remains difficult to transpose in the clinic, the insights provided by the study confirm the potential benefit of using central decoders to help in clinic settings.

      Weaknesses:

      The conclusion of the paper, especially the concept of distinct cortical encoding for each modality, is unfortunately partially supported by the results, as the authors did not adequately consider fundamental limitations of CI-related stimulation.

      First, the reviewer assumed that the authors stimulated in a Monopolar mode, which, albeit being clinically relevant, notoriously generates a high current spread in rodent models. Second, comparing the averaged BF maps for iEEG (Figure 2A, C), BFs ranged from 4 to 16kHz with a predominance of 4kHz BFs. The lack of BFs at higher frequencies hints at a potential location mismatch between the frequency range sampled at the level of the cortex (low to medium frequencies) and the frequency range covered by the CI inserted mostly in the first turn-and-a-half of the cochlea (high to medium frequencies). Looking at Figure 2F (and to some extent 2A), most of the CI electrodes elicited responses around the 4kHz regions, and averaged maps show a predominance of CI-3-4 across the cortex (Figure 2C, H) from areas with 4kHz BF to areas with 16kHz BF. It is doubtful that CI-3-4 are located near the 4kHz region based on Müller's work (1991) on the frequency representation in the rat cochlea.

      Taken together with the Pearsons correlations being flat, the decoder examples showing a strong ability to identify CI-4 and 3 and the Fig-8D, E presenting a strong prediction of 4kHz and 8kHz for all the CI electrodes when using a pure tone trained decoder, it is possible that current spread ended stimulating indistinctly higher turns of the cochlea or even the modiolus in a non-specific manner, greatly reducing (or smearing) the place-coding/frequency resolution of each electrode, which in turn could explain the coarse topographic (or coarsely tonotopic according to the manuscript) organization of the cortical responses. Thus, the conclusion that there are distinct encodings for each modality is biased, as it might not account for monopolar smearing. To that end, and since it is the study's main message and title, it would have benefited from having a subgroup of animals using bipolar stimulations (or any focused strategy since they provide reduced current spread) to compare the spatial organization of iEEG responses and the performances of the different decoders to dismiss current spread and strengthen their conclusion.

      Nevertheless, the reviewer wants to reiterate that the study proposed by Hight et al. is well constructed, relevant to the field, and that the overall proposal of improving patient performances and helping their adaptation in the first months of CI use by studying central responses should be pursued as it might help establish new guidelines or create new clinical tools.

    1. Reviewer #3 (Public review):

      Summary:

      Clausner et al. investigate the relationship between cortical oscillations in the alpha and gamma bands and the feature-specific and feature-unspecific BOLD signals across cortical layers. Using a well-designed stimulus and GLM, they show a method by which different BOLD signals can be differentiated and investigated alongside multiple cortical oscillatory frequencies. In addition to the previously reported positive relationship between gamma and BOLD signals in superficial layers, they show a relationship between gamma and feature-specific BOLD in the deeper layers. Alpha-band power is shown to have a negative relationship with the negative BOLD response for both feature-specific and feature-unspecific contrasts. When separated into lower (8-10Hz) and upper (11-13Hz) alpha oscillations, they show that higher frequency alpha showed a significantly stronger negative relationship with congruency, and can therefore be interpreted as more feature-specific than lower frequency alpha.

      Strengths:

      The use of interleaved EEG-fMRI has provided a rich dataset that can be used to evaluate the relationship of cortical layer BOLD signals with multiple EEG frequencies. The EEG data were of sufficient quality to see the modulation of both alpha-band and gamma-band oscillations in the group mean VE-channel TFS. The good EEG data quality is backed up with a highly technical analysis pipeline that ultimately enables the interpretation of the cortical layer relationship of the BOLD signal with a range of frequencies in the alpha and gamma bands. The stimulus design allowed for the generation of multiple contrasts for the BOLD signal and the alpha/gamma oscillations in the GLM analysis. Feature-specific and unspecific BOLD contrasts are used with congruently or incongruently selected EEG power regressors to delineate between local and global alpha modulations. A transparent approach is used for the selection of voxels contributing to the final layer profiles, for which statistical analysis is comprehensive but uses an alternative statistical test, which I have not seen in previous layer-fMRI literature.

      A significant negative relationship between alpha-band power and the BOLD signal was seen in congruently (EEGco) selected voxels (predominantly in superficial layers) and in feature-contrast (EEGco-inco) selected (superficial and deep layers). When separated into lower (8-10Hz) and upper (11-13Hz) alpha oscillations, they show that higher frequency alpha showed a significantly stronger negative relationship with congruency than lower frequency alpha. This is interpreted as a frequency dissociation in the alpha-BOLD relationship, with upper frequency alpha being feature-specific and lower frequency alpha corresponding to general modulation. These results are a valuable addition to the current literature and improve our current understanding of the role of cortical alpha oscillations.

      There is not much work in the literature on the relationship between alpha power and the negative BOLD response (NBR), so the data provided here are particularly valuable. The negative relationship between the NBR and alpha power shown here suggests that there is a reduction in alpha power, linked to locally reduced BOLD activity, which is in line with the previously hypothesized inhibitory nature of alpha.

      Weaknesses:

      It is not entirely clear how the draining vein effect seen in GE-BOLD layer-fMRI data has been accounted for in the analysis. For the contrast of congruent-incongruent, it is assumed that the underlying draining effect will be the same for both conditions, and so should be cancelled out. However, for the other contrasts, it is unclear how the final layer profiles aren't confounded by the bias in BOLD signal towards the superficial layers. Many of the profiles in Figure 3 and Figure 4A show an increased negative correlation between alpha power and the BOLD signal towards the superficial layers.

      When investigating if high alpha (8-10 Hz) and low alpha (11-13 Hz) are two different sources of alpha, it would be beneficial to show if this effect is only seen at the group level or can be seen in any single subjects. Inter-subject variability in peak alpha power could result in some subjects having a single low alpha peak and some a single high alpha peak rather than two peaks from different sources.

      The figure layout used to present the main findings throughout is an innovative way to present so much information, but it is difficult to decipher the main findings described in the text. The readability would be improved if the example (Appendix 0 - Figure 1) in the supplementary material is included as a second panel inside Figure 3, or, if this is not possible, the example (Appendix 0 - Figure 1) should be clearly referred to in the figure caption.

    1. Reviewer #3 (Public review):

      The study tested how people search for objects in natural scenes using virtual reality. Participants had to find targets among other objects, shown upright or tilted. The main results showed that upright objects were found faster and more accurately. When the scene or body was rotated, performance changed, showing that people use cues from the environment and gravity to guide search.

      The manuscript is clearly written and well designed, but there are some aspects related to methods and analyses that would benefit from stronger support.

      First, the sample size is not justified with a power analysis, nor is it explained how it was determined. This is an important point to ensure robustness and replicability.

      Second, the reaction time data were processed using different procedures, such as the use of the median to exclude outliers and an ad hoc cut-off of 50 ms. These choices are not sufficiently supported by a theoretical rationale, and could appear as post-hoc decisions.

      Third, the mixed-model analyses are overall well-conducted; however, the specification of the random structure deserves further consideration. The authors included random intercepts for participants and object categories, which is appropriate. However, they did not include random slopes (e.g., for orientation or set size), meaning that variability in these effects across participants was not modelled. This simplification can make the models more stable, but it departs from the maximal random structure recommended by Barr et al. (2013). The authors do not explicitly justify this choice, and a reviewer may question why participant-specific variability in orientation effects, for example, was not allowed. Given the modest sample sizes (20 in Experiment 1 and 10 in Experiment 2), convergence problems with more complex models are likely. Nonetheless, ignoring random slopes can, in principle, inflate Type I error rates, so this issue should at least be acknowledged and discussed.

    1. Reviewer #3 (Public review):

      Summary:

      MerQuaCo is an open-source computational tool developed for quality control in image-based spatial transcriptomics data, with a primary focus on data generated by the Vizgen MERSCOPE platform. The authors analyzed a substantial dataset of 641 fresh-frozen adult mouse brain sections to identify and quantify common imperfections, aiming to replace manual quality assessment with an automated, objective approach, providing standardized data integrity measures for spatial transcriptomics experiments.

      Strengths:

      The manuscript's strengths lie in its timely utility, rigorous empirical validation, and practical contributions to methodology and biological discovery in spatial transcriptomics.

      Weaknesses:

      While MerQuaCo demonstrates utility in large datasets and cross-platform potential, its generalizability and validation require expansion, particularly for non-MERSCOPE platforms and real-world biological impact.

    1. Reviewer #3 (Public review):

      Summary:

      I found the manuscript to be well-written. I have a few questions regarding the model, though the bulk of my comments are requests to provide definitions and additional clarity. There are concepts and approaches used in this manuscript that are clear boons for understanding the ecology of microbiomes but are rarely considered by researchers approaching the manuscript from a traditional biology background. The authors have clearly considered this in their writing of S1 and S2, so addressing these comments should be straightforward. The methods section is particularly informative and well-written, with sufficient explanations of each step of the derivation that should be informative to researchers in the microbial life sciences that are not well-versed with physics-inspired approaches to ecology dynamics.

      Strengths:

      The modeling efforts of this study primarily rely on a disordered for of the generalized Lotka-Volterra (gLV) model. This model can be appropriate for investigating certain systems and the authors are clear about when and how more mechanistic models (i.e., consumer-resource) can lead to gLV. Phenomenological models such as this have been found to be highly useful for investigating the ecology of microbiomes, so this modeling choice seems justified, and the limitations are laid out.

      Weaknesses:

      The authors use metagenomic data of diseased and healthy patients that was first processed in Pasqualini et al. (2024). The use of metagenomic data leads me into a question regarding the role of sampling effort (i.e., read counts) in shaping model parameters such as $h$. This parameter is equal to the average of 1/# species across samples because the data are compositional in nature. My understanding is that $h$ was calculated using total abundances (i.e., read counts). The number of observed species is strongly influenced by sampling effort and the authors addressed this point in their revised manuscript.

      However, the role of sampling effort can depend on the type of data and my instinct about the role that sampling effort plays in species detection is primarily based on 16S data. The dependency between these two variables may be less severe for the authors' metagenomic pipeline. This potential discrepancy raises a broader issue regarding the investigation of microbial macroecological patterns and the inference of ecological parameters. Often microbial macroecology researchers rely on 16S rRNA amplicon data because that type of data is abundant and comparatively low-cost. Some in microbiology and bioinformatics are increasingly pushing researchers to choose metagenomics over 16S. Sometimes this choice is valid (discovery of new MAGs, investigate allele frequency changes within species, etc.), sometimes it is driven by the false equivalence "more data = better". The outcome though is that we have a body of more-or-less established microbial macroecological patterns which rest on 16S data and are now slowly incorporating results from metagenomics. To my knowledge there has not been a systematic evaluation of the macroecological patterns that do and do not vary by one's choice in 16S vs. metagenomics. Several of the authors in this manuscript have previously compared the MAD shape for 16S and metagenomic datasets in Pasqualini et al., but moving forward a more comprehensive study seems necessary (2024). These points were addressed by the authors in their revised manuscript.

      Final review: The authors addressed all comments and I have no additional comments.

      References

      Pasqualini, Jacopo, et al. "Emergent ecological patterns and modelling of gut microbiomes in health and in disease." PLOS Computational Biology 20.9 (2024): e1012482.

    1. Reviewer #3 (Public review):

      In the manuscript "Ribosomal RNA synthesis by RNA polymerase I is regulated by premature termination of transcription", Azouzi and co-authors investigate the regulatory mechanisms of ribosomal RNA (rRNA) transcription by RNA Polymerase I (RNAPI) in the budding yeast S. cerevisiae. They follow up on exploring the molecular basis of a mutant allele of the second-largest subunit of RNAPI, RPA135-F301S, also dubbed SuperPol, that they had previously reported (Darrière et al, 2019), and which was shown to rescue Rpa49-linked growth defects, possibly by increasing rRNA production.

      Through a combination of genomic and in vitro approaches, the authors test the hypothesis that RNAPI activity could be subjected to a premature transcription termination (PTT) mechanism, akin to what is observed for RNA Polymerase II (RNAPII). The authors demonstrate that SuperPol increased processivity "desensitizes" RNAPI to abortive transcription cycles at the expense of decreased fidelity. In agreement, SuperPol is shown to be resistant to BMH-21, a drug previously shown to impair RNAPI elongation.

      Overall, this work expands the mechanistic understanding of the early dynamics of RNAPI transcription. The presented results are of interest for researchers studying transcription regulation, particularly those interested in RNAPI's transcription mechanisms and fidelity.

      Strengths:

      Overall, the experiments are performed with rigor and include the appropriate controls and statistical analyses. Conclusions are drawn from appropriate experiments. Both the figures and the text present the data clearly. The Materials and Methods section is detailed enough.

      Weaknesses:

      The biological significance of this phenomenon remains unaddressed and thus unclear. The lack of experiments to test a specific regulatory function (such as UTP-A loading checkpoint or other mechanisms) limit these termination events to possibly abortive actions of unclear significance.

      Comments on revised version:

      I appreciated the additional experiments and the other changes made by the authors in the revised version.

    1. Reviewer #3 (Public review):

      Summary:

      The authors have provided a thorough and constructive response to the comments. They effectively addressed concerns regarding the dependence on marker gene selection by detailing the incorporation of multiple feature selection strategies, such as highly variable genes and spatially informative markers (e.g., via Moran's I), which enhance glmSMA's robustness even when using gene-limited reference atlases.

      Furthermore, the authors thoughtfully acknowledged the assumption underlying glmSMA-that transcriptionally similar cells are spatially proximal-and discussed both its limitations and empirical robustness in heterogeneous tissues such as human PDAC. Their use of real-world, heterogeneous datasets to validate this assumption demonstrates the method's practical utility and adaptability.

      Overall, the response appropriately contextualizes the limitations while reinforcing the generalizability and performance of glmSMA. The authors' clarifications and experimental justifications strengthen the manuscript and address the reviewer's concerns in a scientifically sound and transparent manner.

    1. Reviewer #3 (Public review):

      Summary:

      In this study by Shi et al., the authors evaluate if cGAS is recruited to the membranes of intracellular organelles. Using a combination of biochemical fractionation and imaging techniques, the authors propose that upon recognition of DNA, cGAS translocates to various subcellular locations, including the golgi, endoplasmic reticulum, and endosomes. Mechanistically, the authors propose that upon localizing to the Golgi or endosome, cGAS binding to MARCH8 and ZDHHC18 prevents cGAS activity by incorporating cGAS and dsDNA into biomolecular condensates. However, in its current form, the study does not directly address this question.

      Strengths:

      The question of evaluating cGAS sub-cellular localization as a mechanism for controlling activity is interesting, and there is some evidence that cGAS is localized to sub-cellular organelle membranes.

      Weaknesses:

      (1) The well-established nuclear localization of cGAS is not adequately addressed in the cell lines used and is inconsistent with the findings.

      (2) Previous studies have shown that ZDHHC18 and MARCH8 control cGAS activity, which detracts somewhat from the novelty.

      (3) A lot of inconsistency in the cell lines and artificial expression systems used across the study.

      (4) A key element missing is showing that in the absence of ZDHHC18 or MARCH8, the loss of endogenous cGAS localization to the various sub-cellular organelles increases cGAMP synthesis and downstream STING activation in primary cells. There is an over-reliance on artificial expression systems. An important experiment to validate the hypothesis would be to evaluate endogenous cGAS localization in MARCH8- and ZDHHC18-deficient primary cells. Further, there should be evaluation of endogenous STING responses in MARCH8- and ZDHHC18-deficient primary cells in tandem with the localization studies.

      (5) There are a large number of grammatical errors throughout the manuscript which should be addressed.

    1. Reviewer #3 (Public review):

      Summary:

      Ruppert et al. present a well-designed 2×2 factorial study directly comparing methionine restriction (MetR) and cold exposure (CE) across liver, iBAT, iWAT, and eWAT, integrating physiology with tissue-resolved RNA-seq. This approach allows a rigorous assessment of where dietary and environmental stimuli act additively, synergistically, or antagonistically. Physiologically, MetR progressively increases energy expenditure (EE) at 22{degree sign}C and lowers RER, indicating a lipid utilization bias. By contrast, a 24-hour 4 {degree sign}C challenge elevates EE across all groups and eliminates MetR-Ctrl differences. Notably, changes in food intake and activity do not explain the MetR effect at room temperature.

      Strengths:

      The data convincingly support the central claim: MetR enhances EE and shifts fuel preference to lipids at thermoneutrality, while CE drives robust EE increases regardless of diet and attenuates MetR-driven differences. Transcriptomic analysis reveals tissue-specific responses, with additive signatures in iWAT and CE-dominant effects in iBAT. The inclusion of explicit diet×temperature interaction modeling and GSEA provides a valuable transcriptomic resource for the field.

      Weaknesses:

      Limitations include the short intervention windows (7 d MetR, 24 h CE), use of male-only cohorts, and reliance on transcriptomics without complementary proteomic, metabolomic, or functional validation. Greater mechanistic depth, especially at the level of WAT thermogenic function, would strengthen the conclusions.

    1. Reviewer #3 (Public review):

      Summary

      In this study, the authors aim to uncover how 3D tongue direction is represented in the Motor (M1o) and Somatosensory (S1o) cortex. In non-human primates implanted with chronic electrode arrays, they use X-ray based imaging to track the kinematics of the tongue and jaw as the animal is either chewing food or licking from a spout. They then correlate the tongue kinematics with the recorded neural activity. They perform both single-unit and population level analyses during feeding and licking. Then, they recharacterize the tuning properties after bilateral lidocaine injections in the two sensory branches of the trigeminal nerve. They report that their nerve block causes a reorganization of the tuning properties and population trajectories. Overall, this paper concludes that M1o and S1o both contain representations of the tongue direction, but their numbers, their tuning properties and susceptibility to perturbed sensory input are different.

      Strengths

      The major strengths of this paper are in the state-of-the-art experimental methods employed to collect the electrophysiological and kinematic data. In the revision, the single-unit analyses of tuning direction are robustly characterized. The differences in neural correlations across behaviors, regions and perturbations are robust. In addition to the substantial amount of largely descriptive analyses, this paper makes two convincing arguments 1) The single-neuron correlates for feeding and licking in OSMCx are different - and can't be simply explained by different kinematics and 2) Blocking sensory input alters the neural processing during orofacial behaviors. The evidence for these claims is solid.

      Weaknesses

      The main weakness of this paper is in providing an account for these differences to get some insight into neural mechanisms. For example, while the authors show changes in neural tuning and different 'neural trajectory' shapes during feeding and drinking - their analyses of these differences are descriptive and provide limited insight for the underlying neural computations.

    1. Reviewer #3 (Public review):

      Summary:

      The authors revisit the role of DR6 in axon degeneration following physical injury (Wallerian degeneration), examining both its effects on axons and its role in regulating the Schwann cell response to injury. Surprisingly, and in contrast to previous studies, they find that DR6 deletion does not delay the rate of axon degeneration after injury, suggesting that DR6 is not a mediator of this process.

      Overall, this is a valuable study. As the authors note, the current literature on DR6 is inconsistent, and these results provide useful new data and clarification. This work will help other researchers interpret their own data and re-evaluate studies related to DR6 and axon degeneration.

      Strengths:

      (1) The use of two independent DR6 knockout mouse models strengthens the conclusions, particularly when reporting the absence of a phenotype.

      (2) The focus on early time points after injury addresses a key limitation of previous studies. This approach reduces the risk of missing subtle protective phenotypes and avoids confounding results with regenerating axons at later time points after axotomy.

      Weaknesses:

      (1) The study would benefit from including an additional experimental paradigm in which DR6 deficiency is expected to have a protective effect, to increase confidence in the experimental models, and to better contextualize the findings within different pathways of axon degeneration. For example, DR6 deletion has been shown in more than one study to be partially axon protective in the NGF deprivation model in DRGs in vitro. Incorporating such an experiment could be straightforward and would strengthen the paper, especially if some of the neuroprotective effects previously reported are confirmed.

      (2) The quality of some figures could be improved, particularly the EM images in Figure 2. As presented, they make it difficult to discern subtle differences.

    1. Reviewer #3 (Public review):

      In this paper, the authors investigate how the RNA-binding protein Ssd1 and calorie restriction (CR) influence yeast replicative lifespan, with a particular focus on age-dependent iron uptake and activation of the iron regulon. For this, they use microfluidics-based single-cell imaging to monitor replicative lifespan, protein localization, and intracellular iron levels across aging cells. They show that both Ssd1 overexpression and CR act through a shared pathway to prevent the nuclear translocation of the iron-regulon regulator Aft1 and the subsequent induction of high-affinity iron transporters. As a result, these interventions block the age-related accumulation of intracellular free iron, which otherwise shortens lifespan. Genetic and chemical epistasis experiments further demonstrate that suppression of iron regulon activation is the key mechanism by which Ssd1 and CR promote replicative longevity.

      Overall, the paper is technically rigorous, and the main conclusions are supported by a substantial body of experimental data. The microfluidics-based assays in particular provide compelling single-cell evidence for the dynamics of Ssd1 condensates and iron homeostasis.

      My main concern, however, is that the central reasoning of the paper-that Ssd1 overexpression and CR prevent the activation of the iron regulon-appears to be contradicted by previous findings, and the authors may actually be misrepresenting these studies, unless I am mistaken. In the manuscript, the authors state on two occasions:

      "Intriguingly, transcripts that had altered abundance in CR vs control media and in SSD1 vs ssd1∆ yeast included the FIT1, FIT2, FIT3, and ARN1 genes of the iron regulon (8)"

      "Ssd1 and CR both reduce the levels of mRNAs of genes within the iron regulon: FIT1, FIT2, FIT3 and ARN1 (8)"

      However, reference (8) by Kaeberlein et al. actually says the opposite:

      "Using RNA derived from three independent experiments, a total of 97 genes were observed to undergo a change in expression >1.5-fold in SSD1-V cells relative to ssd1-d cells (supplemental Table 1 at http://www.genetics.org/supplemental/). Of these 97 genes, only 6 underwent similar transcriptional changes in calorically restricted cells (Table 2). This is only slightly greater than the number of genes expected to overlap between the SSD1-V and CR datasets by chance and is in contrast to the highly significant overlap in transcriptional changes observed between CR and HAP4 overexpression (Lin et al. 2002) or between CR and high external osmolarity (Kaeberlein et al. 2002). Intriguingly, of the 6 genes that show similar transcriptional changes in calorically restricted cells and SSD1-V cells, 4 are involved in iron-siderochrome transport: FIT1, FIT2, FIT3, and ARN1 (supplemental Table 1 at http://www.genetics.org/supplemental/)."

      Although the phrasing might be ambiguous at first reading, this interpretation is confirmed upon reviewing Matt Kaeberlein's PhD thesis: https://dspace.mit.edu/handle/1721.1/8318 (page 264 and so on).

      Moreover, consistent with this, activation of the iron regulon during calorie restriction (or the diauxic shift) has also been observed in two other articles:

      https://doi.org/10.1016/S1016-8478(23)13999-9

      https://doi.org/10.1074/jbc.M307447200

      Taken together, these contradictory data might blur the proposed model and make it unclear how to reconcile the results.

    1. Reviewer #3 (Public review):

      The manuscript "Theory of active self-organization of dense nematic structures in the actin cytoskeleton" analysis self-organized pattern formation within a two-dimensional nematic liquid crystal theory and uses microscopic simulations to test the plausibility of some of the conclusions drawn from that analysis. After performing an analytic linear stability analysis that indicates the possibility of patterning instabilities, the authors perform fully non-linear numerical simulations and identify the emergence of stripe-like patterning when anisotropic active stresses are present. Following a range of qualitative numerical observations on how parameter changes affect these patterns, the authors identify, besides isotropic and nematic stress, also active self-alignment as an important ingredient to form the observed patterns. Finally, microscopic simulations are used to test the plausibility of some of the most crucial assumptions underlying continuum simulations.

      The paper is well written, figures are mostly clear, and the theoretical analysis presented in both, main text and supplement, is rigorous. Mechano-chemical coupling has emerged in recent years as a crucial element of cell cortex and tissue organization and it is plausible to think that both, isotropic and anisotropic active stresses, are present within such effectively compressible structures. Even though not explicitly stated this way by the authors, I would argue that combining these two is one of the key ingredients that distinguishes this theoretical paper from similar ones.

      The diversity of patterning processes experimentally observed and theoretically described is nicely elaborated on in the introduction of the paper. The theory development and discussion of the continuum model itself is also well-embedded in a review of the relevant broad literature on active liquid crystals and active nematics, which includes plenty of previous results by the authors themselves. Interestingly, several of the patterns identified in the present work, such as 2D hexagonal and pulsatory patterns (Kumar et al, PRL, 2014), as well as contractile patches (Mietke et al, PRL 2019) have been observed previously in different, but related, active isotropic fluid models. In light of this crowded literature, the authors do good job in delineating key results obtained in the present manuscript from existing work.

      The results of numerical simulations are well-presented. The discussion of numerical observations is comprehensive, but also at many times qualitative. Some of the observations resonate with recent discussions in the field, for example the observation of effectively extensile dynamics in a contractile system, which is interesting and reminiscent of ambiguities about extensile/contractile properties discussed in recent preprints (Nejad et al, Nat Comm 2024). It is convincingly concluded that, besides nematic stress on top of isotropic one, active self-alignment is a key ingredient to produce the observed patterns.

      The authors must be complimented for trying to gain further mechanistic insights into their conclusions using microscopic filament simulations that were diligently performed. It is rightfully stated that these simulations only provide plausibility tests about key assumptions underlying the hydrodynamic theory. Within this scope, I would say the authors are successful. At the same time, it leaves open questions that could have been discussed more carefully. For example, I wonder what can be said about the regime \kappa>0 microscopically, in which the continuum theory does also predict the formation of stripe patterns? How does the spatial inhomogeneous organization the continuum theory predicts fit in the presented, microscopic picture and vice versa? The authors clearly explain the scope and limitations of the microscopic model, which suggests that questions like these will be interesting directions of future investigations.

      Overall, the paper represents a valuable contribution to the field of active matter that should provide a fruitful basis to develop new hypothesis about the dynamic self-organisation and mechanics of dense filamentous bundles in biological systems.

    1. Reviewer #3 (Public review):

      Summary:

      Using latest knock-in technology, the authors generated a set of five mouse lines with expression of recombinases in striatal projection neurons and dopaminergic neurons for public use. They rigorously characterize the expression of the recombinases by intersectional crossing with reporter lines to demonstrate that these lines are faithful, and they perform electrophysiological experiments in slices to provide evidence that the respective neurons show the expected features in these assays.

      Strengths:

      The characterization of the new mouse lines is exceptional, and these will be widely used by the community. The mouse lines are openly available for the community to use.

      Weaknesses:

      No weaknesses were identified by this Reviewer.

    1. Reviewer #3 (Public review):

      Summary:

      In this paper, Kumar et al investigated the role of two decapping activators, Edc3 and Scd6, in regulating mRNA decay and translation in yeast. Using a variety of approaches including RNA-seq, ribosome profiling, proteomics, polysome analysis, and metabolomics the authors demonstrate that whereas single deletions of Edc3 or Scd6 have modest effects, the double mutant leads to increased abundance of mRNAs, many of which overlap with those targeted by the decapping activators Dhh1 and Pat1. The data suggest that Edc3 and Scd6 function redundantly to recruit Dhh1 to the Dcp2 decapping complex, thereby promoting mRNA turnover and translational repression. The authors show that these factors cooperate with Dhh1/Pat1 to repress transcripts involved in respiration, mitochondrial function, and alternative carbon source utilization, linking post-transcriptional regulation to nutrient responses. The study establishes Edc3 and Scd6 as important, but redundant regulators that fine-tune gene expression and metabolic adaptation in response to nutrient availability.

      Strengths:

      The paper has several strengths, including the comprehensive approach taken by the authors using multiple experimental techniques (RNA-seq, ribosome profiling, Western blotting, TMT-MS, polysome profiling, and metabolomics) to provide multiple lines of evidence to support their conclusions. The authors demonstrate clear redundancy of the factors by using single and double mutants for Edc3 and Scd6 and their global approach enables an understanding of these factors' roles across the yeast transcriptome. The work connects post-transcriptional processes to nutrient-dependent gene regulation, providing insights into how cells adapt to changes in their environment. The authors demonstrate the redundant roles of Edc3 and Scd6 in mRNA decapping and translation repression. Their RNA-seq and ribosome profiling results convincingly show that many mRNAs are derepressed only in the double mutants, confirming their hypothesis of redundancy. Furthermore, the functional cooperation between Edc3/Scd6 and Dhh1/Pat1 in regulating specific metabolic pathways, including mitochondrial function and carbon source utilization, is supported by the metabolomic data.

      Weaknesses:

      The study uses indirect evidence to support claims about the effect on mRNA stability rather than directly measuring mRNA stability. However, the combination of Pol II occupancy and RNA abundance measurements is consistent with the claims regarding mRNA stability. The addition of new experiments in the revision co-IPing Dhh1 and Dcp2 strengthens the argument that Edc3 and Scd6 recruit these factors.

    1. Reviewer #3 (Public review):

      Summary:

      This paper investigates the Matthew effect, where early success in funding peer review can translate into potentially unwarranted later success. It also investigated the previously found "setback" effect for those who narrowly miss out on funding.

      Strengths:

      The study used data from six funding agencies, which increases the generalisability, and was able to link bibliographic data for around 95% of applicants. The authors nicely illustrate how the previously found "setback" effect for near-miss applicants could be a collider bias due to those who chose to apply sometime later. This is a good explanation for the counter-intuitive effect and is nicely shown in Figure 5.

      Weaknesses:

      Most of the methods were clearly presented, but I have a few questions and comments, as outlined below.

      In Figure 4(a) why are the "post" means much lower than the "pre"? This contradicts the expected research trajectory of researchers. Or is this simply due to less follow-up time? But doesn't the field citation ratio control for follow-up time?

      The choice of the log-normal distribution for latent quality was not entirely clear to me. This would create some skew, rather than a symmetric distribution, which may be reasonable but log-normal distributions can have a very long tail which might not mimic reality, as I would not expect a small number of researchers to be extremely above the crowd. However, then the skew was potentially dampened by using percentile scores. Some further reasoning and plots of the priors would help.

      Can the authors confirm the results of Figure S9 which show no visible effect of altering the standard deviation for the review parameter or the mean citations? Is this just because the prior for quality is dominated by the data? Could it be that the width of the distribution for quality does not matter, as it's the relative difference/ranking that counts? So the beta in equation 6 changes to adjust to the different quality scale?

      The contrary result for the FWF is not explained (Table S3). Does this funder have different rules around re-applicants or many other competing funders?

      The outlined qualitative research sounds worthwhile. Another potential mechanism (based on anecdote) is that some researchers react irrationally to rejection or acceptance, tending to think that the whole agency likes or hates their work based on one experience. Many researchers do not appreciate that it was a somewhat random selection of reviewers who viewed their work, and it will unlikely be the same reviewers next time.

      "A key implication is the importance of encouraging promising, but initially unsuccessful applicants to reapply." Yes, A policy implication is to give people multiple chances to be lucky, perhaps by giving fewer grants to more people, which could be achieved by shortening the funding period (e.g., 4 year fellowships instead of 5 years). Although this will have some costs as applicants would need to spend more time on applications and suffer increased stress of shorter-term contracts. The bridge grants is potentially an ideal half-way house between many short-term and few long-term awards. Giving more grants to fewer people is supported by this analysis showing a diminishing returns in research outputs with more funding, DOI: 10.1371/journal.pone.0065263.

      Making more room for re-applicants also made me wonder if there should be an upper cap on funding, potentially for people who have been incredibly successful. Of course, funders generally want to award successful researchers, but people who've won over some limit, for example $50 million, could likely be expected to win funding from other sources such as philanthropy and business. Graded caps could occur by career stage.

    1. Reviewer #3 (Public review):

      Summary:

      This is an interesting investigation on the benefits of perceiving control and its impact on the subjective experience of stress. To assess the subjective sense of control, the authors introduce a novel wheel stopping (WS) task where control is manipulated via size and speed to induce conditions of low and high control. The authors demonstrate that the subjective sense of control is associated with experienced subjective stress and individual differences related to mental health measures. In a second experiment, they further demonstrate that an increased sense of control buffers subjective stress induced by a trier social stress manipulation, more so than a typical stress-buffering mechanism of watching neutral/calming videos.

      Strengths:

      Several strengths of the manuscript can be highlighted. For instance, the paper introduces a new paradigm and a clever manipulation to test a significant and important question. Additionally, it is a well-powered investigation that allows for confidence in replicability and demonstrate both high internal consistency and high external validity, along with an interesting set of individual difference analyses. Finally, the results are quite interesting and support prior literature, while also making a significant contribution to the field in understanding the benefits of perceiving control.

      Weaknesses:

      The authors have addressed all my queries, and I believe the revised paper has been improved and will make an important contribution to the literature.

    1. Reviewer #3 (Public review):

      Summary:

      IRG1 is highly expressed in activated human and mouse myeloid cells. It encodes the mitochondrial enzyme cis-aconitate decarboxylase 1 (ACOD1) that generates itaconate. Itaconate has anti-microbial activity and acts immunoregulatory by interfering with cellular metabolism, signaling to cytokine production, and multiple other processes.

      The authors perform a phylogenetic analysis of IRG1 to obtain insight into the evolution of itaconate biosynthesis. Combining BLAST with human IRG1 and a MmgE/Ptrp domain search, they find CAD in all domains of life, but the presence of IRG1 homologs is patchy in eukaryotes, indicating that itaconate biosynthesis is not essential. The phylogenetic analysis showed a more distant relationship of fungal and metazoan CAD/IRG1 to many prokaryotic sequences, suggesting independent acquisition of these metazoan and fungal CAD genes. In metazoans, three subbranches of paleo-IRG1 (in mollusks/early chordates) and two paralogous vertebrate forms (IRG1 and IRG1-like) were identified, with the latter derived from paleo-IRG1, and by genome duplication. While most jawed vertebrates have both IRG1 and IRG1L, metatherian and eutherian mammals have lost IRG1L and contain only IRG1.

      Interestingly, sequence analysis of both paralogues showed that many IRG1L genes contain an N-terminal mitochondrial targeting sequence (MTS) that is absent from most IRG1 sequences. Limited proteolysis of submitochondrial localization confirmed that zebrafish IRG1L is only sensitive to proteases in the presence of high Triton X-100, indicative of association with mitochondrial matrix. In contrast, a recent paper from the Galan lab (Lian 2003 Nature Microbiology) reported that human IRG1 is not localized to the mitochondrial matrix, although enriched in mitochondria. Here, the authors generated a matrix-targeted human IRG1 by adding the N-terminal MTS and found that it localizes to the matrix based on a limited proteolysis assay. The loss of MTS-containing IRG1L from most mammals appears, therefore, to indicate that itaconate generation is directed to the cytoplasm, potentially reducing inhibition of TCA cycle activity in the mitochondria.

      Next, the authors confirmed that the recombinant IRG1L protein has CAD activity in vitro. The last part of the manuscript addresses the expression of paleo-IRG1 in oysters and amphioxus, where they found high mRNA levels in oyster hemocytes which was further increased by poly(I:C), which was also the case in amphioxus tissues after feeding of LPS or poly(I:C), indicating a role for paleo-IRG1/itaconate in early metazoan innate immunity.

      Strengths

      (1) Phylogenetic perspective largely lacking so far in the IRG1/itaconate field.

      (2) Manuscript clearly written and understandable across disciplines.

      (3) Phylogenetic analyses complemented by biochemical and gene expression analyses to link to function.

      (4) Lack of MTS in IRG1 and change in localization from mitochondria, highly relevant antimicrobial and cellular effects of itaconate.

      Weaknesses:

      (1) Biochemical and functional analysis of different CAD mRNA and proteins lacks depth.

      (2) The submitochondrial localization assay lacks a native human IRG1 control.

      (3) CAD activity shown for IRG1L but not paleo-IRG1.

      (4) Itaconate production by early metazoans after PAMP stimulation?

      (5) No measurement of energy metabolism (trade-offs?).

      I acknowledge that some of these limitations are inevitable because the range of detailed experimental analysis is necessarily limited. However, some of these data would be important to support central claims of the manuscript (further discussed below).

    1. Reviewer #3 (Public review):

      Summary:

      Large Language Models have revolutionized Artificial Intelligence and can now match or surpass human language abilities on many tasks. This has fueled interest in cognitive neuroscience in exposing representational similarities between Language Models and brain recordings of language comprehension. The current study breaks from this mold by: (1) Systematically identifying sentence structures for which brain and Large Language Model representations diverge. (2) Demonstrating that brain representations for these sentences can be better accounted for by a model structured by the semantic roles of words in the sentence. As such, the study may now fuel interest in characterizing how Large Language Models and brain representations differ, which may prompt new, more brain-like language models.

      Strengths:

      (1) This study presents a bold and solid challenge to a literature trend that has touted similarities between Transformer models and human cognition based on representational correlations with brain activity. This challenge is substantiated by identifying sentences for which brain and model representations of sentences diverge and explaining those divergences using models structured by semantic roles/syntax.

      (2) This study conducts a rigorous pre-registered analysis of a comprehensive selection of the state-of-the-art Large Language Models, on a controlled sentence comprehension fMRI dataset. The analysis is conducted within a Representation Similarity framework to support similarity comparisons between graph structures and brain activity without needing to vectorize graphs. Transformer models are predicted and shown to diverge from brain representations on subsets of sentences with similar word-level content but different sentence structures.

      (3) The study introduces a 7T fMRI sentence comprehension dataset and accompanying human sentence similarity ratings, which may be a fruitful resource for developing more human-like language models. Unlike other model-based sentence datasets, the relation between grammatical structure and word-level content is controlled, and subsets of sentences for which models and brains diverge are identified.

      Weaknesses:

      (1) The interpretation of findings is nuanced. Although Transformers underperform as brain models on the critical subsets of controlled sentences, a Transformer outperforms all other models when evaluated on the union of all sentences when both word-level content and structure vary. Transformers also yield equivalent or better models of human behavioral data. Thus, although Transformers have demonstrable flaws as human models, which are pinpointed here, in the general case, (some) Transformers are more human-like than the other models considered.

      (2) There may be confounds between the critical sentence structure manipulations and visual representations of sentence stimuli. This is inconvenient because activation in brain regions that process semantics tends to partially correlate with visual cortex representations, and computational models tend to reflect the number of words/tokens/elements in sentences. Although the study commendably controls for confounds associated with sentence length, there could still be residual effects that remain. For instance, the Graph model correlates most strongly with the visual cortex despite these sentence length controls.

      (3) Sentence similarity computations are emphasized as the basis for unifying comparative analyses of graph structures and vector data. A strength of this approach is that correlation is not always the ideal similarity metric. However, a weakness is that similarity computations are not unified across models. This has practical consequences here because different similarity metrics applied to the same model produce positive or negative correlations with brain data.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript introduces a new platform termed "TrueProbes" for designing mRNA FISH probes. In comparison to existing design strategies, the authors incorporate a comprehensive thermodynamic and kinetic model to account for probe states that may contribute to nonspecific background. The authors validate their design pipeline using Jurkat cells and provide evidence of improved probe performance.

      Strengths:

      A notable strength of TrueProbes is the consideration of genome-wide binding affinities, which aims to minimize off-target signals. The work will be of interest to researchers employing mRNA FISH in certain human cell lines.

      Weaknesses:

      However, in my view, the experimental validation is not sufficient to justify the broad claims of the platform. Given the number of assumptions in the model, additional experimental comparisons across probe design methods, ideally targeting transcripts with different expression levels, would be necessary to establish the general superiority of this approach.

    1. Reviewer #3 (Public review):

      Summary:

      This is a really nice manuscript with different lines of evidence to show that the IL encodes inhibitory memories that can then be manipulated by optogenetic stimulation of these neurons during extinction. The behavioral designs are excellent, with converging evidence using extinction/re-extinction, backwards/forwards aversive conditioning, and backwards appetitive/forwards aversive conditioning. Additional factors, such as nonassociative effects of the CS or US, are also considered, and the authors evaluate the inhibitory properties of the CS with tests of conditioned inhibition.

      Strengths:

      The experimental designs are very rigorous with an unusual level of behavioral sophistication.

      Weaknesses:

      (1) More justification for parametric choices (number of days of backwards vs forwards conditioning) could be provided.

      (2) The current discussion could be condensed and could focus on broader implications for the literature.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Okuno et al. re-analyze whole-brain imaging data collected in another paper (Brezovec et al., 2024) in the context of the two currently available Drosophila connectome datasets: the partial "FlyEM" (hemibrain) dataset (Scheffer et al., 2020) and the whole-brain "FlyWire" dataset (Dorkenwald et al., 2024). They apply existing fMRI signal processing algorithms to the fly imaging data and compute function-structure correlations across a variety of post-processing parameters (noise reduction methods, ROI size), demonstrating an inverse relationship between ROI size and FC-SC correlation. The authors go on to look at structural connectivity amongst more polarized or less polarized neurons, and suggest that stronger FC-SC correlations are driven by more polarized neurons.

      Strengths:

      (1) The result that larger mesoscale ROIs have a higher correlation with structural data is interesting. This has been previously discussed in Drosophila in Turner et al., 2021, but here it is quantified more extensively.

      (2) The quantification of neuron polarization (PPSSI) as applied to these structural data is a promising approach for quantifying differences in spatial synapse distribution.

      Weaknesses:

      One should not score noise/nuisance removal methods solely by their impact on FC-SC correlation values, because we do not know a priori that direct structural connections correspond with strong functional correlations. In fact, work in C. elegans, where we have access to both a connectome and neuron-resolution functional data, suggests that this relationship is weak (Yemini et al., 2021; Randi et al., 2023). Similarly, I don't think it's appropriate to tune the confidence scores on the EM datasets using FC-SC correlations as an output metric.

      Any discussion of FC-SC comparisons should include an analysis of excitatory/inhibitory neurotransmitters, which are available in the fly connectome dataset. However, here the authors do not perform any analyses with neurotransmitter information.<br /> Comparisons between fly and human MRI data are also premature here. Firstly, the fly connectomes, which are derived from neuron-scale EM reconstructions, are a qualitatively different kind of data from human connectomes, which are derived from DSI imaging of large-scale tracts. Likewise, calcium data and fMRI data are very different functional data acquisition methods-the fact that similar processing steps can be used on time-series data does not make them surprisingly similar, and does not in my view, constitute evidence of "similar design concepts."

      The comparison of FlyEM/FlyWire connectomes concludes that differences are more likely a result of data processing than of inter-individual variability. If this is the case, the title should not claim that the manuscript covers individual variability.<br /> The analysis of the wedge-AVLP neuron strikes me as highly speculative, given that the alignment precision between the connectome and the functional data is around 5 microns (Brezovec* et al, PNAS 2024).

    1. Reviewer #3 (Public review):

      In the manuscript by Lapao et al., the authors uncover a role for the RAB27A effector protein SYTL5 in regulating mitochondrial function and apparent selective turnover of mitochondrial components. The authors find that SYTL5 localizes to mitochondria in a RAB27A dependent way and that loss of SYTL5 (or RAB27A) impairs lysosomal turnover of MTCO1 (but not a matrix-based reporter/other mitochondrial proteins). The authors go on to show that loss of SYTL5 impacts mitochondrial respiration and ECAR and as such may influence the Warburg effect and tumorigenesis. Of relevance here, the authors go on to show that SYTL5 expression is reduced in adrenocortical carcinomas and this correlates with reduced survival rates.

      As previously reviewed, this is a very intriguing body of work and reveals a new role for SYTL5/RAB27A at the mitochondria. Unfortunately, it appears that SYTL5 is challenging protein to detect endogenously and the authors' cell lines "comprise a heterogenous pool with high variability", which means that a lot of my original concerns remain. It is still also not clear if the conventional autophagy machinery is required for this pathway, especially if SYTL5/RAB27A mitochondrial recruitment is upstream of this. Hopefully, in future work, the authors (and/or others) will be able to address this and build on the mechanisms of this interesting and potentially important pathway.

    1. Reviewer #3 (Public Review):

      This manuscript by Akabuogu et al. investigates membrane potential dynamics in E. coli. Membrane potential fluctuations have been observed in bacteria by several research groups in recent years, including in the context of bacterial biofilms where they have been proposed to play a role in cellular communication. Here, these authors investigate membrane potential in E. coli, in both single cells and biofilms. I have reviewed the revised manuscript provided by the authors, as well as their responses to the initial reviews; my opinion about the manuscript is largely unchanged. I have focused my public review on those issues that I believe to be most pressing, with additional comments included in the review to authors. Although these authors are working in an exciting research area, the evidence they provide for their claims is inadequate, and several key control experiments are still missing. In some cases, the authors allude to potentially relevant data in their responses to the initial reviews, but unfortunately these data are not shown. Furthermore, I cannot identify any traveling wavefronts in the data included in this manuscript. In addition to the challenges associated with the use of Thioflavin-T (ThT) raised by the second reviewer, these caveats make the work presented in this manuscript difficult to interpret.

      First, some of the key experiments presented in the paper lack required controls:

      (1) This paper asserts that the observed ThT fluorescence dynamics are induced by blue light. This is a fundamental claim in the paper, since the authors go on to argue that these dynamics are part of a blue light response. This claim must be supported by the appropriate negative control experiment measuring ThT fluorescence dynamics in the absence of blue light- if this idea is correct, these dynamics should not be observed in the absence of blue light exposure. If this experiment cannot be performed with ThT since blue light is used for its excitation, TMRM can be used instead.

      In response to this, the authors wrote that "the fluorescent baseline is too weak to measure cleanly in this experiment." If they observe no ThT signal above noise in their time lapse data in the absence of blue light, this should be reported in the manuscript- this would be a satisfactory negative control. They then wrote that "It appears the collective response of all the bacteria hyperpolarization at the same time appears to dominate the signal." I am not sure what they mean by this- perhaps that ThT fluorescence changes strongly only in response to blue light? This is a fundamental control for this experiment that ought to be presented to the reader.

      (2) The authors claim that a ∆kch mutant is more susceptible to blue light stress, as evidenced by PI staining. The premise that the cells are mounting a protective response to blue light via these channels rests on this claim. However, they do not perform the negative control experiment, conducting PI staining for WT the ∆kch mutant in the absence of blue light. In the absence of this control it is not possible to rule out effects of the ∆kch mutation on overall viability and/or PI uptake. The authors do include a growth curve for comparison, but planktonic growth is a very different context than surface-attached biofilm growth. Additionally, the ∆kch mutation may have impacts on PI permeability specifically that are not addressed by a growth curve. The negative control experiment is of key importance here.

      Second, the ideas presented in this manuscript rely entirely on analysis of ThT fluorescence data, specifically a time course of cellular fluorescence following blue light treatment. However, alternate explanations for and potential confounders of the observed dynamics are not sufficiently addressed:

      (1) Bacterial cells are autofluorescent, and this fluorescence can change significantly in response to stress (e.g. blue light exposure). To characterize and/or rule out autofluorescence contributions to the measurement, the authors should present time lapse fluorescence traces of unstained cells for comparison, acquired under the same imaging conditions in both wild type and ∆kch mutant cells. In their response to reviewers the authors suggested that they have conducted this experiment and found that the autofluorescence contribution is negligible, which is good, but these data should be included in the manuscript along with a description of how these controls were conducted.

      (2) Similarly, in my initial review I raised a concern about the possible contributions of photobleaching to the observed fluorescence dynamics. This is particularly relevant for the interpretation of the experiment in which catalase appears to attenuate the decay of the ThT signal; this attenuation could alternatively be due to catalase decreasing ThT photobleaching. In their response, the authors indicated that photobleaching is negligible, which would be good, but they do not share any evidence to support this claim. Photobleaching can be assessed in this experiment by varying the light dosage (illumination power, frequency, and/or duration) and confirming that the observed fluorescence dynamics are unaffected.

      Third, the paper claims in two instances that there are propagating waves of ThT fluorescence that move through biofilms, but I do not observe these waves in any case:

      (1) The first wavefront claim relates to small cell clusters, in Fig. 2A and Video S2 and S3 (with Fig. 2A and Video S2 showing the same biofilm.) I simply do not see any evidence of propagation in either case- rather, all cells get brighter and dimmer in tandem. I downloaded and analyzed Video S3 in several ways (plotting intensity profiles for different regions at different distances from the cluster center, drawing a kymograph across the cluster, etc.) and in no case did I see any evidence of a propagating wavefront. (I attempted this same analysis on the biofilm shown in Fig. 2A and Video S2 with similar results, but the images shown in the figure panels and especially the video are still both so saturated that the quantification is difficult to interpret.) If there is evidence for wavefronts, it should be demonstrated explicitly by analysis of several clusters. For example, a figure of time-to-peak vs. position in the cluster demonstrating a propagating wave would satisfy this. Currently, I do not see any wavefronts in this data.

      (2) The other wavefront claim relates to biofilms, and the relevant data is presented in Fig. S4 (and I believe also in what is now Video S8, but no supplemental video legends are provided, and this video is not cited in text.) As before, I cannot discern any wavefronts in the image and video provided; Reviewer 1 was also not able to detect wave propagation in this video by kymograph. Some mean squared displacements are shown in Fig. 7. As before, the methods for how these were obtained are not clearly documented either in this manuscript or in the BioRXiv preprint linked in the initial response to reviewers, and since wavefronts are not evident in the video it is hard to understand what is being measured here- radial distance from where? (The methods section mentions radial distance from the substrate, this should mean Z position above the imaging surface, and no wavefronts are evident in Z in the figure panels or movie.) Thus, clear demonstration of these wavefronts is still missing here as well.

      Fourth, I have some specific questions about the study of blue light stress and the use of PI as a cell viability indicator:

      (1) The logic of this paper includes the premise that blue light exposure is a stressor under the experimental conditions employed in the paper. Although it is of course generally true that blue light can be damaging to bacteria, this is dependent on light power and dosage. The control I recommended above, staining cells with PI in the presence and absence of blue light, will also allow the authors to confirm that this blue light treatment is indeed a stressor- the PI staining would be expected to increase in the presence of blue light if this is so.

      (2) The presence of ThT may complicate the study of the blue light stress response, since ThT enhances the photodynamic effects of blue light in E. coli (Bondia et al. 2021 Chemical Communications). The authors could investigate ThT toxicity under these conditions by staining cells with PI after exposing them to blue light with or without ThT staining.

      (3) In my initial review, I wrote the following: "In Figures 4D - E, the interpretation of this experiment can be confounded by the fact that PI uptake can sometimes be seen in bacterial cells with high membrane potential (Kirchhoff & Cypionka 2017 J Microbial Methods); the interpretation is that high membrane potential can lead to increased PI permeability. Because the membrane potential is largely higher throughout blue light treatment in the ∆kch mutant (Fig. 3[BC]), this complicates the interpretation of this experiment." In their response, the authors suggested that these results are not relevant in this case because "In our experiment methodology, cell death was not forced on the cells by introducing an extra burden or via anoxia." However, the logic of the paper is that the cells are in fact dying due to an imposed external stressor, which presumably also confers an increased burden as the cells try to deal with the stress. Instead, the authors should simply use a parallel method to confirm the results of PI staining. For example, the experiment could be repeated with other stains, or the viability of blue light-treated cells could be addressed more directly by outgrowth or colony-forming unit assays.

      The CFU assay suggested above has the additional advantage that it can also be performed on planktonic cells in liquid culture that are exposed to blue light. If, as the paper suggests, a protective response to blue light is being coordinated at the biofilm level by these membrane potential fluctuations, the WT strain might be expected to lose its survival advantage vs. the ∆kch mutant in the absence of a biofilm.

      Fifth, in several cases the data are presented in a way that are difficult to interpret, or the paper makes claims that are different to observe in the data:

      (1) The authors suggest that the ThT and TMRM traces presented in Fig. S1D have similar shapes, but this is not obvious to me- the TMRM curve has very little decrease after the initial peak and only a modest, gradual rise thereafter. The authors suggest that this is due to increased TMRM photobleaching, but I would expect that photobleaching should exacerbate the signal decrease after the initial peak. Since this figure is used to support the use of ThT as a membrane potential indicator, and since this is the only alternative measurement of membrane potential presented in text, the authors should discuss this discrepancy in more detail.

      (2) The comparison of single cells to microcolonies presented in figures 1B and D still needs revision:

      First, both reviewer 1 and I commented in our initial reviews that the ThT traces, here and elsewhere, should not be normalized- this will help with the interpretation of some of the claims throughout the manuscript.

      Second, the way these figures are shown with all traces overlaid at full opacity makes it very difficult to see what is being compared. Since the point of the comparison is the time to first peak (and the standard deviation thereof), histograms of the distributions of time to first peak in both cases should be plotted as a separate figure panel.<br /> Third, statistical significance tests ought to be used to evaluate the statistical strength of the comparisons between these curves. The authors compare both means and standard deviations of the time to first peak, and there are appropriate statistical tests for both types of comparisons.

      (3) The authors claim that the curve shown in Fig. S4B is similar to the simulation result shown in Fig. 7B. I remain unconvinced that this is so, particularly with respect to the kinetics of the second peak- at least it seems to me that the differences should be acknowledged and discussed. In any case, the best thing to do would be to move Fig. S4B to the main text alongside Fig. 7B so that the readers can make the comparison more easily.

      (4) As I wrote in my first review, in the discussion of voltage-gated calcium channels, the authors refer to "spiking events", but these are not obvious in Figure S3E. Although the fluorescence intensity changes over time, these fluctuations cannot be distinguished from measurement noise. A no-light control could help clarify this.

      (5) In the lower irradiance conditions in Fig. 4A, the ThT dynamics are slower overall, and it looks like the ThT intensity is beginning to rise at the end of the measurement. The authors write that no second peak is observed below an irradiance threshold of 15.99 µW/mm2. However, could a more prominent second peak be observed in these cases if the measurement time was extended? Additionally, the end of these curves looks similar to the curve in Fig. S4B, in which the authors write that the slow rise is evidence of the presence of a second peak, in contrast to their interpretation here.

      Additional considerations:

      (1) The analysis and interpretation of the first peak, and particularly of the time-to-fire data is challenging throughout the manuscript the time resolution of the data set is quite limited. It seems that a large proportion of cells have already fired after a single acquisition frame. It would be ideal to increase the time resolution on this measurement to improve precision. This could be done by imaging more quickly, but that would perhaps necessitate more blue light exposure; an alternative is to do this experiment under lower blue light irradiance where the first spike time is increased (Figure 4A).

      (2) The authors suggest in the manuscript that "E. coli biofilms use electrical signalling to coordinate long-range responses to light stress." In addition to the technical caveats discussed above, I am missing a discussion about what these responses might be. What constitutes a long-range response to light stress, and are there known examples of such responses in bacteria?

      (3) The presence of long-range blue light responses can also be interrogated experimentally, for example, by repeating the Live/Dead experiment in planktonic culture or the single-cell condition. If the protection from blue light specifically emerges due to coordinated activity of the biofilm, the ∆kch mutant would not be expected to show a change in Live/Dead staining in non-biofilm conditions. The CFU experiment I mentioned above could also implicate coordinated long-range responses specifically, if biofilms and liquid culture experiments can be compared (although I know that recovering cells from biofilms is challenging.)

      4. At the end of the results section, the authors suggest a critical biofilm size of only 4 μm for wavefront propagation (not much larger than a single cell!) The authors show responses for various biofilm sizes in Fig. 2C, but these are all substantially larger (and this figure also does not contain wavefront information.) Are there data for cell clusters above and below this size that could support this claim more directly?

      (5) In Fig. 4C, the overall trajectories of extracellular potassium are indeed similar, but the kinetics of the second peak of potassium are different than those observed by ThT (it rises minutes earlier)- is this consistent with the idea that Kch is responsible for that peak? Additionally, the potassium dynamics also include the first ThT peak- is this surprising given that the Kch channel has no effect on this peak according to the model?

      Detailed comments:

      Why are Fig. 2A and Video S2 called a microcluster, whereas Video S3, which is smaller, is called a biofilm?

      "We observed a spontaneous rapid rise in spikes within cells in the center of the biofilm" (Line 140): What does "spontaneous" mean here?

      "This demonstrates that the ion-channel mediated membrane potential dynamics is a light stress relief process.", "E. coli cells employ ion-channel mediated dynamics to manage ROS-induced stress linked to light irradiation." (Line 268 and the second sentence of the Fig. 4F legend): This claim is not well-supported. There are several possible interpretations of the catalase experiment (which should be discussed); this experiment perhaps suggests that ROS impacts membrane potential but does not indicate that these membrane potential fluctuations help the cells respond to blue light stress. The loss of viability in the ∆kch mutant might indicate a link between these membrane potential experiments and viability, but it is hard to interpret without the no light controls I mention above.

      "The model also predicts... the external light stress" (Lines 338-341): Please clarify this section. Where does this prediction arise from in the modeling work? Second, I am not sure what is meant by "modulates the light stress" or "keeps the cell dynamics robust to the intensity of external light stress" (especially since the dynamics clearly vary with irradiance, as seen in Figure 4A).

      "We hypothesized that E. coli not only modulates the light-induced stress but also handles the increase of the ROS by adjusting the profile of the membrane potential dynamics" (Line 347): I am not sure what "handles the ROS by adjusting the profile of the membrane potential dynamics" means. What is meant by "handling" ROS? Is the hypothesis that membrane potential dynamics themselves are protective against ROS, or that they induce a ROS-protective response downstream, or something else? Later the authors write that changes in the response to ROS in the model agree with the hypothesis, but just showing that ROS impacts the membrane potential does not seem to demonstrate that this has a protective effect against ROS.

      "Mechanosensitive ion channels (MS) are vital for the first hyperpolarization event in E. coli." (Line 391): This is misleading- mechanosensitive ion channels totally ablate membrane potential dynamics, they don't have a specific effect on the first hyperpolarization event. The claim that mechanonsensitive ion channels are specifically involved in the first event also appears in the abstract.

      Also, the apparent membrane potential is much lower even at the start of the experiment in these mutants (Fig. 6C-D)- is this expected? This seems to imply that these ion channels also have a blue light-independent effect.

      Throughout the paper, there are claims that the initial ThT spike is involved in "registering the presence of the light stress" and similar. What is the evidence for this claim?

      "We have presented much better quantitative agreement of our model with the propagating wavefronts in E. coli biofilms..." (Line 619): It is not evident to me that the agreement between model and prediction is "much better" in this work than in the cited work (reference 57, Hennes et al. 2023). The model in Figure 4 of ref. 57 seems to capture the key features of their data.

      In methods, "Only cells that are hyperpolarized were counted in the experiment as live" (Line 745): what percentage of cells did not hyperpolarize in these experiments?

      Some indication of standard deviation (error bars or shading) should be added to all figures where mean traces are plotted.

      Video S8 is very confusing- why does the video play first forwards and then backwards? It is easy to misinterpret this as a rise in the intensity at the end of the experiment.

    1. Reviewer #3 (Public review):

      Summary:In this study, the authors perform multimodal single-cell transcriptomic and epigenomic profiling of 9,394 mouse TM cells, identifying three transcriptionally distinct TM subtypes with validated molecular signatures. TM1 cells are enriched for extracellular matrix genes, TM2 for secreted ligands supporting Schlemm's canal, and TM3 for contractile and mitochondrial/metabolic functions. The transcription factor LMX1B, previously linked to glaucoma, shows the highest expression in TM3 cells and appears to regulate mitochondrial pathways. In Lmx1bV265D mutant mice, TM3 cells exhibit transcriptional signs of mitochondrial dysfunction associated with elevated IOP. Notably, vitamin B3 treatment significantly mitigates IOP elevation, suggesting a potential therapeutic avenue.

      This is an excellent and collaborative study involving investigators from two institutions, offering the most detailed single-cell transcriptomic and epigenetic profiling of the mouse limbal tissues-including both TM and Schlemm's canal (SC), from wild-type and Lmx1bV265D mutant mice. The study defines three TM subtypes and characterizes their distinct molecular signatures, associated pathways, and transcriptional regulators. The authors also compare their dataset with previously published murine and human studies, including those by Van Zyl et al., providing valuable cross-species insights.

      Strengths:

      (1) Comprehensive dataset with high single-cell resolution<br /> (2) Use of multiple bioinformatic and cross-comparative approaches<br /> (3) Integration of 3D imaging of TM and SC for anatomical context<br /> (4) Convincing identification and validation of three TM subtypes using molecular markers.

      Weaknesses:

      (1) Insufficient evidence linking mitochondrial dysfunction to TM3 cells in Lmx1bV265D mice: While the identification of TM3 cells as metabolically specialized and Lmx1b-enriched is compelling, the proposed link between Lmx1b mutation and mitochondrial dysfunction remains underdeveloped. It is unclear whether mitochondrial defects are a primary consequence of Lmx1b-mediated transcriptional dysregulation or a secondary response to elevated IOP. Additional evidence is needed to clarify whether Lmx1b directly regulates mitochondrial genes (e.g., via ChIP-seq, motif analysis, or ATAC-seq), or whether mitochondrial changes are downstream effects.<br /> Furthermore, the protective effects of nicotinamide (NAM) are interpreted as evidence of mitochondrial involvement, but no direct mitochondrial measurements (e.g., immunostaining, electron microscopy, OCR assays) are provided. It is essential to validate mitochondrial dysfunction in TM3 cells using in vivo functional assays to support the central conclusion of the paper. Without this, the claim that mitochondrial dysfunction drives IOP elevation in Lmx1bV265D mice remains speculative. Alternatively, authors should consider revising their claims that mitochondrial dysfunction in these mice is a central driver of TM dysfunction.

      (2) Mechanism of NAM-mediated protection is unclear: The manuscript states that NAM treatment prevents IOP elevation in Lmx1bV265D mice via metabolic support, yet no data are shown to confirm that NAM specifically rescues mitochondrial function. Do NAM-treated TM3 cells show improved mitochondrial integrity? Are reactive oxygen species (ROS) reduced? Does NAM also protect RGCs from glaucomatous damage? Addressing these points would clarify whether the therapeutic effects of NAM are indeed mitochondrial.

      (3) Lack of direct evidence that LMX1B regulates mitochondrial genes: While transcriptomic and motif accessibility analyses suggest that LMX1B is enriched in TM3 cells and may influence mitochondrial function, no mechanistic data are provided to demonstrate direct regulation of mitochondrial genes. Including ChIP-seq data, motif enrichment at mitochondrial gene loci, or perturbation studies (e.g., Lmx1b knockout or overexpression in TM3 cells) would greatly strengthen this central claim.

      (4)Focus on LMX1B in Fig. 5F lacks broader context: Figure 5F shows that several transcription factors (TFs)-including Tcf21, Foxs1, Arid3b, Myc, Gli2, Patz1, Plag1, Npas2, Nr1h4, and Nfatc2-exhibit stronger positive correlations or motif accessibility changes than LMX1B. Yet the manuscript focuses almost exclusively on LMX1B. The rationale for this focus should be clarified, especially given LMX1B's relatively lower ranking in the correlation analysis. Were the functions of these other highly ranked TFs examined or considered in the context of TM biology or glaucoma? Discussing their potential roles would enhance the interpretation of the transcriptional regulatory landscape and demonstrate the broader relevance of the findings.

      Other weaknesses:

      (1) In abstract, they say a number of 9,394 wild-type TM cell transcriptomes. The number of Lmx1bV265D/+ TM cell transcriptomes analyzed is not provided. This information is essential for evaluating the comparative analysis and should be clearly stated in the Abstract and again in the main text (e.g., lines 121-123). Including both wild-type and mutant cell counts will help readers assess the balance and robustness of the dataset.

      (2) Did the authors monitor mouse weight or other health parameters to assess potential systemic effects of treatment? It is known that the taste of compounds in drinking water can alter fluid or food intake, which may influence general health. Also, does Lmx1bV265D/+ have mice exhibit non-ocular phenotypes, and if so, does nicotinamide confer protection in those tissues as well? Additionally, starting the dose of the nicotinamide at postnatal day 2, how long the mice were treated with water containing nicotinamide, and after how many days or weeks IOP was reduced, and how long the decrease in the IOP was sustained.<br /> (3) While the IOP reduction observed in NAM-treated Lmx1bV265D/+ mice appears statistically significant, it is unclear whether this reflects meaningful biological protection. Several untreated mice exhibit very high IOP values, which may skew the analysis. The authors should report the mean values for IOP in both untreated and NAM-treated groups to clarify the magnitude and variability of the response.<br /> (4) Additionally, since NAM has been shown to protect RGCs in other glaucoma models directly, the authors should assess whether RGCs are preserved in NAM-treated Lmx1b V265D/+ mice. Demonstrating RGC protection would support a synergistic effect of NAM through both IOP reduction and direct neuroprotection, strengthening the translational relevance of the treatment.<br /> (5) Can the authors add any other functional validation studies to explore to understand the pathways enriched in all the subtypes of TM1, TM2, and TM3 cells, in addition to the ICH/IF/RNAscope validation?<br /> (6) The authors should include a representative image of the limbal dissection. While Figure S1 provides a schematic, mouse eyes are very small, and dissecting unfixed limbal tissue is technically challenging. It is also difficult to reconcile the claim that the majority of cells in the limbal region are TM and endothelium. As shown in Figure S6, DAPI staining suggests a much higher abundance of scleral cells compared to TM cells within the limbal strip. Additional clarification or visual evidence would help validate the dissection strategy and cellular composition of the captured region.

    1. Reviewer #3 (Public review):

      Summary:

      The authors performed wide-field and 2-photon imaging in vivo in awake head-fixed mice, to compare receptive fields and tonotopic organization in thalamocortical recipient (TR) neurons vs corticothalamic (CT) neurons of mouse auditory cortex. TR neurons were found in all cortical layers while CT neurons were restricted to layer 6. The TR neurons at nominal depths of 200-400 microns have a remarkable degree of tonotopy (as good if not better than tonotopic maps reported by multiunit recordings). In contrast, CT neurons were very heterogenous in terms of their best frequency (BF), even when focusing on the low vs high frequency regions of primary auditory cortex. CT neurons also had wider tuning.

      Strengths:

      This is a thorough examination using modern methods, helping to resolve a question in the field with projection-specific mapping.

      Weaknesses:

      There are some limitations due to the methods, and it's unclear what the importance of these responses are outside of behavioral context or measured at single timepoints given the plasticity, context-dependence, and receptive field 'drift' that can occur in cortex.

      (1) Probably the biggest conceptual difficulty I have with the paper is comparing these results to past studies mapping auditory cortex topography, mainly due to differences in methods. Conventionally, tonotopic organization is observed for characteristic frequency maps (not best frequency maps), as tuning precision degrades and best frequency can shift as sound intensity increases. The authors used six attenuation levels (30-80 dB SPL) and report that the background noise of the 2-photon scope is <30 dB SPL, which seems very quiet. The authors should at least describe the sound-proofing they used to get the noise level that low, and some sense of noise across the 2-40 kHz frequency range would be nice as a supplementary figure. It also remains unclear just what the 2-photon dF/F response represents in terms of spikes. Classic mapping using single-unit or multi-unit electrodes might be sensitive to single spikes (as might be emitted at characteristic frequency), but this might not be as obvious for Ca2+ imaging. This isn't a concern for the internal comparison here between TR and CT cells as conditions are similar, but is a concern for relating the tonotopy or lack thereof reported here to other studies.

      (2) It seems a bit peculiar that while 2721 CT neurons (N=10 mice) were imaged, less than half as many TR cells were imaged (n=1041 cells from N=5 mice). I would have expected there to be many more TR neurons even mouse for mouse (normalizing by number of neurons per mouse), but perhaps the authors were just interested in a comparison data set and not being as thorough or complete with the TR imaging?

      (3) The authors definitions of neuronal response type in the methods needs more quantitative detail. The authors state: ""Irregular" neurons exhibited spontaneous activity with highly variable responses to sound stimulation. "Tuned" neurons were responsive neurons that demonstrated significant selectivity for certain stimuli. "Silent" neurons were defined as those that remained completely inactive during our recording period (> 30 min). For tuned neurons, the best frequency (BF) was defined as the sound frequency associated with the highest response averaged across all sound levels." The authors need to define what their thresholds are for 'highly variable', 'significant', and 'completely inactive'. Is best frequency the most significant response, the global max (even if another stimulus evokes a very close amplitude response), etc.

      Comments on revisions:

      I think the authors misunderstood my point about sound level and characteristic frequency vs best frequency tonotopic maps. Yes, many studies of cortical responses present stimuli at higher intensities than the characteristic frequencies, but as tuning curves widen with sound level, the macroscopic tonotopic organization of primary auditory cortex breaks down at higher intensities. This is why most of the classic studies of tonotopy e.g., from the Merzenich lab) generated maps of characteristic frequency. As I mentioned before, this isn't so much of an issue for the authors' comparisons of TR vs CT organization in their own study, but in general, this makes it difficult to compare aspects of spatially-organized tonotopy from imaging studies with the older electrophysiological 'truer' tonotopic maps. That said, this means that CT cells also might be tonotopically organized if the authors had been able to look at lower intensity tuning properties.

    1. Reviewer #3 (Public review):

      Summary:

      Here the authors describe the role of mORs in synaptic glutamate release from substance P and cholinergic neurons in the medial habenula to interpeduncular nucleus (IPN) circuit in adult mice. They show that mOR activation reduces evoked glutamate release from substance P neurons yet increases evoked glutamate release and Ach release from cholinergic neurons. Unlike glutamate release, Ach release is only detected when potassium channels are blocked with 4-AP or dendrotoxin. The authors also report a previously unidentified glutamatergic input to IPR from SP neurons and describe the developmental timing of mOR- facilitation in adolescent mice.

      Strengths:

      - The experiments provide new insight into the role of mORs in controlling evoked glutamate release in a circuit with high levels of mORs and established roles in relevant behaviors.

      - The experiments are rigorous, and the results are clear cut. The conclusions are supported by the data.

      - The findings will be of interest to those working in the field of synaptic transmission and those interested in the function of the medial habenula or interpeduncular nucleus, as well as those seeking to understand the role of opioids on normal and pathological behaviors.

      Weaknesses:

      - The mechanistic underpinnings of these interesting and novel results are not pursued.

    1. Reviewer #3 (Public review):

      Summary:

      Lin et al report on the dynamic localization of EXOC6A and Myo-Va at pre-ciliary vesicles, ciliary vesicles, and ciliary sheath membrane during ciliogenesis using three-dimensional structured illumination microscopy and ultrastructure expansion microscopy. The authors further confirm the interaction of EXOC6A and Myo-Va by co-immunoprecipitation experiments and demonstrated the requirement of EHD1 for the EXOC6A-labeled ciliary vesicles formation. Additional experiments using gene-silencing by siRNA and pharmacological tools identified the involvement of dynein-, microtubule-, and actin in the transport mechanism of EXOC6A-labeled vesicles to the centriole, as they have previously reported for Myo-Va. Notably, loss of EXOC6A severely disrupts ciliogenesis, with the majority of cells becoming arrested at the ciliary vesicle (CV) stage, highlighting the involvement of EXOC6A at later stages of ciliogenesis. As the authors observe dynamic EXOC6A-positive vesicle release and fusion with the ciliary sheath, this suggests a role in membrane and potentially membrane protein delivery to the growing cilium past the ciliary vesicle stage. While CEP290 localization at the forming cilium appears normal, the recruitment of other transition zone components, exemplified by several MKS and NPHP module components, was also impaired in EXOC6A-deficient cells.

      Strengths:

      (1) By applying different microscopy approaches, the study provides deeper insight into the spatial and temporal localization of EXOC6A and Myo-Va during ciliogenesis.

      (2) The combination of complementary siRNA and pharmacological tools targeting different components strengthens the conclusions.

      (3) This study reveals a new function of EXOC6A in delivering membrane and membrane proteins during ciliogenesis, both to the ciliary vesicle as well as to the ciliary sheath.

      (4) The overall data quality is high. The investigation of EXOC6A at different time points during ciliogenesis is well schematized and explained.

      Weaknesses:

      (1) Since many conclusions are based on EXOC6A immunostaining, it would strengthen the study to validate antibody specificity by demonstrating the absence of staining in EXOC6A-deficient cells.

      (2) While the authors generated an EXOC6A-deficient cell line, off-target effects can be clone-specific. Validating key experiments in a second independent knockout clone or rescuing the phenotype of the existing clone by re-expressing EXOC6A would ensure that the observed phenotypes are due to EXOC6A loss rather than unintended off-target effects.

      (3) Some experimental details are lacking from the materials and methods section. No information on how the co-immunoprecipitation experiments have been performed can be found. The concentrations of pharmacological agents should be provided to allow proper interpretation of the results, as higher or lower doses can produce nonspecific effects. For example, the concentrations of ciliobrevin and nocodazole used to treat RPE1 cells are not specified and should be included. More precise settings for the FRAP experiments would help others reproduce the presented data. Some details for the siRNA-based knockdowns, such as incubation times, can only be found in the figure legends.

      Taken together, the authors achieved their goal of elucidating the role of EXOC6A in ciliogenesis, demonstrating its involvement in vesicle trafficking and membrane remodeling in both early and late stages of ciliogenesis. Their findings are supported by experimental evidence. This work is likely to have an impact on the field by expanding our understanding of the molecular machinery underlying cilia biogenesis, particularly the coordination between the exocyst complex and cytoskeletal transport systems. The methods and data presented offer valuable tools for dissecting vesicle dynamics and cilium formation, providing a foundation for future research into ciliary dysfunction and related diseases. By connecting vesicle trafficking to structural maturation of an organelle, the study adds important context to the broader description of cellular architecture and organelle biogenesis.

    1. Reviewer #3 (Public review):

      Summary:

      The author's research here was to understand the role of hypoxia and hypoxia-induced transcription factors Hif-1a in the epicardium. The authors noted that hypoxia was prevalent in the embryonic heart and this persisted into neonatal stages until post natal day 7 (P7). Hypoxic regions in the heart were noted in the outer layer of the heart and expression of Hif-1a coincided with the epicardial gene WT1. It has been documented that at P7, the mouse heart cannot regenerate after myocardial infarction and the authors speculated that the change in epicardial hypoxic conditions could play a role in regeneration. The authors then used genetic and pharmacological tools to increase the activity of Hif genes in the heart and noted that there was a significant improvement in cardiac function when Hif-1a was active in the epicardium. The authors speculated that the presence of Hif-1a improved cell survival.

      Strengths:

      A focus on hypoxia and its effects on the epicardium in development and after myocardial infraction. This study outlines a potential to extend the regenerative time window in neonatal mammalian hearts.

      Weaknesses:

      While the observations of improved cardiac function is clear, the exact mechanism of how increased Hif-1a activity causes these effects is not completely revealed. The authors mention improved myocardium survival, but do not include studies to demonstrate this.

      There is an indication that fibrosis is decreased in hearts where Hif activity is prolonged, but there are no studies to link hypoxia and fibrosis.

      Comments on revisions:

      In the manuscript revision, the authors address my comments. They outline differences between genetic disruption of Phd2 and chemical inactivation could be due to dosing and drug half-life of Molidustat. The other comments are addressed by explaining that they have analyzed enough heart sections and hearts to come to their conclusions. The authors also state they cannot generate more numbers for this study, therefore I accept their conclusions as stated.

    1. Reviewer #3 (Public review):

      Summary:

      The authors aimed to elucidate the relationship between physiological state (i.e., behavioral status and thermogenic sympathetic activity) and the activity of hypothalamic paraventricular oxytocin (PVNOT) neurons in female mice. They studied this by combining automated classification of mouse behavior via video-based analysis with calcium imaging of PVNOT neuron activity. Sympathetic thermogenesis was inferred from surface temperature changes captured by infrared thermography, and the authors provided their custom analysis scripts in the manuscript. Notably, they found that a strong, pulsatile activation of PVNOT neurons was "occasionally" observed immediately before the animals transitioned from a resting to an active state. This pulsatile activity was observed in both pair-housed and individually housed animals. While PVNOT neurons are often associated with social behaviors, this finding suggests that the oxytocinergic system is also engaged during naturalistic behaviors, even in the absence of social interactions. If experiments were more convincingly performed and presented, the results would point to a broader physiological role of central oxytocin, including in the regulation of fundamental brain states and homeostatic processes, and offer a new perspective on the functional significance of central oxytocin signaling.

      Strengths:

      The oxytocinergic neural system is believed to subserve a wide range of physiological functions, and elucidating these roles requires monitoring PVNOT neuronal activity under various behavioral contexts, as well as manipulating this activity to establish causal links. In the present study, the authors show a technically sound experimental framework that integrates behavioral tracking in both individually and group-housed mice with the observation and manipulation of PVNOT neuron activity. This experimental setup represents a valuable methodological resource for researchers investigating the physiological functions of oxytocin.

      Weaknesses:

      While this study successfully established a new experimental setup for simultaneous analyses of behavior and PVNOT neuronal activity, there are several concerns regarding the interpretation of the results and the robustness of the conclusions, which should be more thoroughly addressed.

      (1) The study relies on the assumption that calcium imaging and optogenetic manipulation were restricted only to PVNOT neurons. However, the specificity of AAV-mediated gene expression was not verified quantitatively. A fair number of cell bodies in the PVN expressed GCaMP8s, but not OT, indicating potential off-target expression (see Figure S2A, B). The lack of quantitative validation weakens confidence in the causal interpretation of the results.

      (2) The study focuses on the transition from rest to active states following pulsatile activity of PVNOT neurons. However, the physiological significance of this pulsatile activity remains unclear. According to the authors, pulsatile activity occurred with an approximately 20% probability within 100 seconds prior to the end of the resting state. This implies that, in the remaining 80% of rest-to-active transitions, pulsatile PVNOT activity did not occur, suggesting that it is not essential for initiating the transition. A comparative analysis of behavioral and thermogenic changes between transitions with and without pulsatile PVNOT activity would help to further clarify the functional relevance of this phenomenon and strengthen the authors' interpretation of the findings.

      (3) The study identifies a correlation between pulsatile activity of PVNOT neurons and rest-to-active transitions, and tests for a causal relationship using optogenetic stimulation. However, since PVNOT neurons are known to co-release other neurotransmitters such as glutamate, it remains unclear whether the observed effects are mediated specifically through oxytocin receptor signaling. To address this question, functional intervention experiments using oxytocin receptor antagonists or receptor knockout mice are necessary.

      (4) The authors attempted to detect BAT thermogenesis and skin vasomotion using infrared thermography. This technique measures only skin hair temperatures (since the skin was not shaved), but does not measure "BAT temperature" or "vasomotor tone". As seen in Figure 5E, the temperatures of the body surface areas ("BAT", "Rump", and "Dorsal surface") mostly changed in parallel, indicating that these temperatures are strongly affected by body core temperature. Therefore, the thermographic measurements in this study did not provide convincing information on BAT thermogenesis or skin vasomotion. To avoid misleading reports, the authors need to use other techniques to directly measure temperatures, such as telemetry.

      (5) Photostimulation of PVNOT neurons increased Tb after 400 sec (6.6 min) (Figure 5). This latency is too long to conclude that the neuronal stimulation elicited BAT thermogenesis. A more reasonable explanation is that the increase in Tb was caused by the induction of physical activity (Figure S4C), which slowly generates heat and contributes to the elevation of Tb. However, this view contradicts the authors' claim. To address this concern, the authors should directly measure BAT thermogenesis and compare it with the rate of Tb elevation. If BAT thermogenesis occurs, the rate at which the BAT temperature increases must exceed the rate at which Tb rises.

    1. Reviewer #3 (Public review):

      Summary:

      Aghabi et al set out to characterize a T. gondii transmembrane protein with a ZIP domain, termed ZFT. The authors investigate the consequences of ZFT downregulation and overexpression for parasite fitness. Downregulation of ZFT causes defects in the parasite's endosymbiotic organelles, the apicoplast and the mitochondrion. Specifically, lack of ZFT causes a decrease in mitochondrial respiration, consistent with its role as an iron transporter. This impact on the mitochondria appears to trigger partial differentiation to bradyzoites. The authors furthermore demonstrate that expression of TgZFT can rescue a yeast mutant lacking its zinc transporter and perform an array of direct metal ion measurements, including X-ray fluorescence microscopy and inductively coupled mass spectrometry (ICP-MS). These reveal reduced metal ions in parasites depleted in ZFT. Overall, the data by Aghabi et al. reveal that ZFT is a major metal ion transporter in T. gondii, importing iron and zinc for diverse essential processes.

      Strengths:

      This study's strength lies in the thorough characterization of the transporter. The authors combine a number of techniques to measure the impact of ZFT depletion, ranging from the direct measurement of metal ions to determining the consequences for the parasite's metabolism (mitochondrial respiration), as well as performing a yeast mutant complementation. This work is very thorough and clearly presented, leaving little doubt about this protein's function.

      Weaknesses:

      This study offers no major novel insights into the biology of T. gondii. The transporter was already annotated as a zinc transporter (ToxoDB), was deemed essential (PMID: 27594426), and localized to the plasma membrane (PMID: 33053376). This study mostly confirms and validates these previous datasets. The authors identify three other proteins with a ZIT domain. Particularly, the role of TGME49_225530 is intriguing, as it is likely fitness-conferring (score: -2.8, PMID: 27594426) and has no subcellular localization assigned. Characterizing this protein as well, revealing its localization, and identifying if and how these transporters coordinate metal ion transport would have been worthwhile.

      Another weakness is the data related to the impact of ZFT downregulation on the apicoplast in Figure 4. The authors show that downregulation of ZFT causes an increase in elongated apicoplasts (Figure 4d). The subsequent panels seem to show that the parasites present a dramatic growth defect at that time point. This growth arrest can directly explain the elongated apicoplast, but does not allow any conclusion about an impact on the organelle. In any case, an assessment of 'delayed death' as presented in Figure 4c seems futile, since the many other processes affected by zinc and iron depletion likely cause a rapid death, masking any potential delayed death.

    1. Reviewer #3 (Public review):

      Summary:

      In this study the authors set out to investigate whether and how Shigella avoids cell autonomous immunity initiated through M1-linked ubiquitin and the immune sensor and E3 ligase RNF213. The key findings are that the Shigella flexneri T3SS effector, IpaH1.4 induces degradation of RNF213. Without IpaH1.4, the bacteria are marked with RNF213 and ubiquitin following stimulation with IFNg. Interestingly, this is not sufficient to initiate the destruction of the bacteria, leading the authors to conclude that Shigella deploys additional virulence factors to avoid this host immune response. The second key finding of this study is that M1 chains decorate the mxiE/ipaH Shigella mutant independent of LUBAC, which is by and large, considered the only enzyme capable of generating M1-linked ubiquitin chains. These findings are fundamental in nature and of general interest.

      Strengths and weaknesses:

      The data is well-controlled and clearly presented with appropriate methodology. The authors provide compelling evidence that demonstrates that IpaH1.4 is the effector responsible for the degradation of RNF213 via the proteasome and their conclusions are well supported. They have clearly demonstrated how Shigella disarms RNF213-mediated immunity.

      This work builds on prior work from the same laboratory that suggests that M1 ubiquitin chains can be formed independently of LUBAC (in the prior publication this related to Chlamydia inclusions). Two key pieces of evidence support this statement - fluorescence microscopy-based images and accompanying quantification in Hoip and Hoil knockout cells for association of M1-ub, using an M1 specific antibody, and the use of an internally tagged Ub-K7R mutant. Whilst it remains possible that the M1 antibody is non-specific, as acknowledged by the authors, the data in supplementary figure 1, comparing K7R-ub and the N-terminally tagged K7R ub variant, provides evidence that during Shigella infection, LUBAC independent M1-ubiquitin chains are indeed formed. This represents an important new angle in ubiquitin biology.

      The importance of IFNgamma priming for RNF213 association to the mxiE or ipaH1.4 remains an interesting question that awaits future studies that compare different intracellular bacteria and the role of RNF213.

      Overall, the findings are important for the host-pathogen field, cell autonomous/innate immune signaling fields and microbial pathogenesis fields and the work is a very valuable addition to the recent advances in understanding the role of RNF213 in host immune responses to bacteria.

    1. Reviewer #3 (Public review):

      Summary:

      The authors perform deep transcriptomic and epigenetic comparisons between mouse and 13-lined ground squirrel (13LGS) to identify mechanisms that drive rod vs cone-rich retina development. Through cross-species analysis, the authors find extended cone generation in 13LGS, gene expression within progenitor/photoreceptor precursor cells consistent with a lengthened cone window, and differential regulatory element usage. Two of the transcription factors, Mef2c and Zic3, were subsequently validated using OE and KO mouse lines to verify the role of these genes in regulating competence to generate cone photoreceptors.

      Strengths:

      Overall, this is an impactful manuscript with broad implications toward our understanding of retinal development, cell fate specification, and TF network dynamics across evolution and with the potential to influence our future ability to treat vision loss in human patients. The generation of this rich new dataset profiling the transcriptome and epigenome of the 13LGS is a tremendous addition to the field that assuredly will be useful for numerous other investigations and questions of a variety of interests. In this manuscript, the authors use this dataset and compare it to data they previously generated for mouse retinal development to identify 2 new regulators of cone generation and shed insights into their regulation and their integration into the network of regulatory elements within the 13LGS compared to mouse.

      Weaknesses:

      (1) The authors chose to omit several cell classes from analyses and visualizations that would have added to their interpretations. In particular, I worry that the omission of 13LGS rods, early RPCs, and early NG from Figures 2C, D, and F is notable and would have added to the understanding of gene expression dynamics. In other words, (a) are these genes of interest unique to late RPCs or maintained from early RPCs, and (b) are rod networks suppressed compared to the mouse?

      (2) The authors claim that the majority of cones are generated by late RPCs and that this is driven primarily by the enriched enhancer network around cone-promoting genes. With the temporal scRNA/ATACseq data at their disposal, the authors should compare early vs late born cones and RPCs to determine whether the same enhancers and genes are hyperactivated in early RPCs as well as in the 13LGS. This analysis will answer the important question of whether the enhancers activated/evolved to promote all cones, or are only and specifically activated within late RPCs to drive cone genesis at the expense of rods.

      (3) The authors repeatedly use the term 'evolved' to describe the increased number of local enhancer elements of genes that increase in expression in 13LGS late RPCs and cones. Evolution can act at multiple levels on the genome and its regulation. The authors should consider analysis of sequence level changes between mouse, 13LGS, and other species to test whether the enhancer sequences claimed to be novel in the 13LGS are, in fact, newly evolved sequence/binding sites or if the binding sites are present in mouse but only used in late RPCs of the 13LGS.

      (4) The authors state that 'Enhancer elements in 13LGS are predicted to be directly targeted by a considerably greater number of transcription factors than in mice'. This statement can easily be misread to suggest that all enhancers display this, when in fact, this is only the cone-promoting enhancers of late 13LGS RPCs. In a way, this is not surprising since these genes are largely less expressed in mouse vs 13LGS late RPCs, as shown in Figure 2. The manuscript is written to suggest this mechanism of enhancer number is specific to cone production in the 13LGS- it would help prove this point if the authors asked the opposite question and showed that mouse late RPCs do not have similar increased predicted binding of TFs near rod-promoting genes in C7-8.

    1. Reviewer #3 (Public review):

      Summary:

      This work provides an overview of the motor neuron landscape in the male reproductive system. Some work had been done to elucidate the circuits of ejaculation in the spine, as well as the cord, but this work fills a gap in knowledge at the level of the reproductive organs. Using complementary approaches, the authors show that there are two types of motor neurons that are mutually exclusive: neurons that co-express octopamine and glutamate and neurons that co-express serotonin and glutamate. They also show evidence that both types of neurons express large dense core vesicles, indicating that neuropeptides play a role in male fertility. This paper provides a thorough characterization of the expression of the different glutamate, octopamine, and serotonin receptors in the different organs and tissues of the male reproductive system. The differential expression in different tissues and organs allows building initial theories on the control of emission and expulsion. Additionally, the authors characterize the expression of synaptic proteins and the neuromuscular junction sites. On a mechanistic level, the authors show that neither octopamine/glutamate neuron transmission nor glutamate transmission in serotonin/glutamate neurons is required for male fertility. This final result is quite surprising and opens up many questions on how ejaculation is coordinated.

      Strengths:

      This work fills an important gap in the characterization of innervation of the male reproductive system by providing an extensive characterization of the motor neurons and the potential receptors of motor neuron release. The authors show convincing evidence of glutamate/monoamine co-release and of mutual exclusivity of serotonin/glutamate and octopamine/glutamate neurons.

      Weaknesses:

      (1) Often, it is mentioned that the expression is higher or lower or regional without quantification or an indication of the number of samples analysed.

      (2) The experiment aimed at tracking sperm in the male reproductive system is difficult to interpret when it is not assessed whether ejaculation has occurred.

      (3) The experiment looking at peristaltic waves in the male organs is missing labeling of the different regions and quantification of the observed waves.

    1. Reviewer #3 (Public review):

      Summary:<br /> The manuscript "Comparing the outputs of intramural and extramural grants funded by National Institutes of Health" demonstrates a comparative study on two funding mechanisms adopted by the National Institutes of Health (NIH). The authors adopted a quantitative approach and introduced five metrics to compare the output of intramural and extramural grants. These findings reveal the impacts of intramural and extramural grants on the scientific community, providing funders with insights into the future decisions of funding mechanisms they should take.

      Strengths:<br /> The authors clearly presented their methods for processing the NIH project data and classifying projects into either intramural or extramural categories. The limitations of the study are also well-addressed.

      Weaknesses:<br /> The article would benefit from a more thorough discussion of the literature, a clearer presentation of the results (especially in the figure captions), and the inclusion of evidence to support some of the claims.

    1. Reviewer #3 (Public review):

      Summary:

      The authors provide estimates of the efficacy of the dengue vaccine, which is notoriously complex given the different serotypes and complex immunity. Through their method using publicly available data, the estimates have less uncertainty and are of use to the field in understanding the future possible impact of the vaccine.

      Strengths:

      This is an elegant analysis addressing an important question. The pooling of common factors for estimation is nice and adds strength to the analysis. It is an important analysis for the field and our understanding of the vaccine, and for the analysis of future multi-site trials for the dengue vaccine.

      Weaknesses:

      It would be useful to have more understanding of how the way the vaccine efficacy is defined here is related to the previous estimates and a greater understanding of how the estimated impact changes over time.

    1. Reviewer #3 (Public review):

      The goal of this work is to understand the regulation of double-strand break formation during meiosis in C. elegans. The authors have analyzed physical and genetic interactions among a subset of factors that have been previously implicated in DSB formation or the number of timing of DSBs: CEP-1, DSB-1, DSB-2, DSB-3, HIM-5, HIM-17, MRE-11, REC-1, PARG-1, and XND-1.

      The 10 proteins that are analyzed here include a diverse set of factors with different functions, based on prior analyses in many published studies. The term "Spo11 accessory factors" has been used in the meiosis literature to describe proteins that directly promote Spo11 cleavage activity, rather than factors that are important for the expression of meiotic proteins or that influence the genome-wide distribution or timing of DSBs. Based on this definition, the known SPO-11 accessory factors in C. elegans include DSB-1, DSB-2, DSB-3, and the MRN complex (at least MRE-11 and RAD-50). These are all homologs of proteins that have been studied biochemically and structurally in other organisms. DSB-1 & DSB-2 are homologs of Rec114, while DSB-3 is a homolog of Mei4. Biochemical and structural studies have shown that Rec114 and Mei4 directly modulate Spo11 activity by recruiting Spo11 to chromatin and promoting its dimerization, which is essential for cleavage. The other factors analyzed in this study affect the timing, distribution, or number of RAD-51 foci, but they likely do so indirectly. As elaborated below, XND-1 and HIM-17 are transcription factors that modulate the expression of other meiotic genes, and their role in DSB formation is parsimoniously explained by this regulatory activity. The roles of HIM-5 and REC-1 remain unclear; the reported localization of HIM-5 to autosomes is consistent with a role in transcription (the autosomes are transcriptionally active in the germline, while the X chromosome is largely silent), but its loss-of-function phenotypes are much more limited than those of HIM-17 and XND-1, so it may play a more direct role in DSB formation. The roles of CEP-1 (a Rad53 homolog) and PARG-1 are also ambiguous, but their homologs in other organisms contribute to DNA repair rather than DSB formation.

      An additional significant limitation of the study, as stated in my initial review, is that much of the analysis here relies on cytological visualization of RAD-51 foci as a proxy for DSBs. RAD-51 associates transiently with DSB sites as they undergo repair and is thus limited in its ability to reveal details about the timing or abundance of DSBs since its loading and removal involve additional steps that may be influenced by the factors being analyzed.

      The paper focuses extensively on HIM-5, which was previously shown through genetic and cytological analysis to be important for breaks on the X chromosome. The revised manuscript still claims that "HIM-5 mediates interactions with the different accessory factors sub-groups, providing insights into how components on the DNA loops may interact with the chromosome axis." The weak interactions between HIM-5 and DSB-1/2 detected in the Y2H assay do not convincingly support such a role. The idea that HIM-5 directly promotes break formation is also inconsistent with genetic data showing that him-5 mutants lack breaks on the X chromosomes, while HIM-5 has been shown to be is enriched on autosomes. Additionally, as noted in my comment to the authors, the localization data for HIM-5 shown in this paper are discordant with prior studies; this discrepancy should be addressed experimentally.

      This paper describes REC-1 and HIM-5 as paralogs, based on prior analysis in a paper that included some of the same authors (Chung et al., 2015; DOI 10.1101/gad.266056.115). In my initial review I mentioned that this earlier conclusion was likely incorrect and should not be propagated uncritically here. Since the authors have rebutted this comment rather than amending it, I feel it is important to explain my concerns about the conclusions of previous study. Chung et al. found a small region of potential homology between the C. elegans rec-1 and him-5 genes and also reported that him-5; rec-1 double mutants have more severe defects than either single mutant, indicative of a stronger reduction in DSBs. Based on these observations and an additional argument based on microsynteny, they concluded that these two genes arose through recent duplication and divergence. However, as they noted, genes resembling rec-1 are absent from all other Caenorhabditis species, even those most closely related to C. elegans. The hypothesis that two genes are paralogs that arose through duplication and divergence is thus based on their presence in a single species, in the absence of extensive homology or evidence for conserved molecular function. Further, the hypothesis that gene duplication and divergence has given rise to two paralogs that share no evident structural similarity or common interaction partners in the few million years since C. elegans diverged from its closest known relatives is implausible. In contrast, DSB-1 and DSB-2 are both homologs of Rec114 that clearly arose through duplication and divergence within the Caenorhabditis lineage, but much earlier than the proposed split between REC-1 and HIM-5. Two genes that can be unambiguously identified as dsb-1 and dsb-2 are present in genomes throughout the Elegans supergroup and absent in the Angaria supergroup, placing the duplication event at around 18-30 MYA, yet DSB-1 and DSB-2 share much greater similarity in their amino acid sequence, predicted structure, and function than HIM-5 and REC-1. Further, Raices place HIM-5 and REC-1 in different functional complexes (Figure 3B).

      The authors acknowledge that HIM-17 is a transcription factor that regulates many meiotic genes. Like HIM-17, XND-1 is cytologically enriched along the autosomes in germline nuclei, suggestive of a role in transcription. The Reinke lab performed ChIP-seq in a strain expressing an XND-1::GFP fusion protein and showed that it binds to promoter regions, many of which overlap with the HIM-17-regulated promoters characterized by the Ahringer lab (doi: 10.1126/sciadv.abo4082). Work from the Yanowitz lab has shown that XND-1 influences the transcription of many other genes involved in meiosis (doi: 10.1534/g3.116.035725) and work from the Colaiacovo lab has shown that XND-1 regulates the expression of CRA-1 (doi: 10.1371/journal.pgen.1005029). Additionally, loss of HIM-17 or XND-1 causes pleiotropic phenotypes, consistent with a broad role in gene regulation. Collectively, these data indicate that XND-1 and HIM-17 are transcription factors that are important for the proper expression of many germline-expressed genes. Thus, as stated above, the roles of HIM-17 and XND-1 in DSB formation, as well as their effects on histone modification, are parsimoniously explained by their regulation of the expression of factors that contribute more directly to DSB formation and chromatin modification. I feel strongly that transcription factors should not be described as "SPO-11 accessory factors."

  4. Sep 2025
    1. Reviewer #3 (Public review):

      Summary:

      The present work was aimed at investigating the specific contributions of thalamic nuclei to associative threat learning and extinction. Using fMRI, they examined activation patterns across pulvinar divisions, the lateral geniculate nucleus (LGN), and the mediodorsal thalamus (MD) during threat acquisition, extinction, and recall. Their goal was to uncover whether distinct thalamic systems support different modes of learning-automatic survival mechanisms versus more deliberate processes - and to propose a hierarchical pulvinar model of fear conditioning. They also try to refine current neuroanatomical models of threat learning and memory, highlighting the role of thalamic nuclei in it.

      Strengths:

      (1) Valuable theoretical elaboration and modeling regarding the differential role of pulvinar subdivisions on feedforward (inferior, lateral) and higher-order integration (anterior), and their functional interplay with other relevant subcortical and cortical structures in associative threat and extinction learning.

      (2) Large sample sizes and multipronged analytical approaches were used for hypothesis testing.

      (3) Exhaustive literature review in the field of associative threat, as well as regarding the role of thalamic nuclei and other brain structures in it.

      Weaknesses:

      (1) Several weaknesses should be pointed out regarding how fMRI data were collected, as well as decisions regarding how the fMRI data were preprocessed and analyzed:

      a) fMRI data have low resolution (3 cubic mm), which certainly limits the examination of small nuclei such as the ones investigated here, and especially the examination of the LGN and inferior pulvinar.

      b) fMRI was normalized to standard space. Analyzing the data in individual-subject space would have given you the options of avoiding altering every participant's brain and of using a probabilistic thalamic atlas that better adapts to each subject's brain and thalamic nuclei (see, for instance, Iglesias et al., 2018). This would have been ideal and would have given the authors more precision, especially considering the low resolution of the fMRI data and the size of the thalamic nuclei of interest.

      c) On top of the two previous points, the authors decided to smooth the data to 6mm, which means that every single voxel within these small nuclei was blurred/mixed with the 2 immediately contiguous voxels (if they followed the standard SPM12 normalization resampling default which resamples, or upsamples the data in this case, to 2 x 2 x 2mm). Given the strong changes in structural connectivity and function that can occur, especially in the thalamus, on voxels of this size, this and the previous 2 decisions do not favor anatomical precision.

      d) Motion during scanning was poorly controlled in the preprocessing. Including the motion parameters as covariates of no interest in the GLM does not fully guarantee that motion is not influencing the results, and that motion is not differentially influencing some experimental conditions more than others.

      (2) It is not clearly indicated in the manuscript how many subjects and how many trials went into each of the analyses. It would be important to indicate this in the text and/or the figures.

      (3) It is not clear either, why, given the large sample size, some of the results were not conducted using reproducibility strategies such as dividing the sample into 2 or 3 groups or using further cross-validation strategies.

      (4) Limited testing of alternative hypotheses. The results clearly seem to be a selection of the findings supporting the hypotheses that the authors sought to confirm. (just one example: in the analysis reported in Figures 1-2; are there other correlations between the activation of the anterior pulvinar and MD with other pulvinar nuclei? only the MD-anterior Puv is reported).

      (5) The manuscript does not contain a limitations subsection. Practically every study has limitations, and this one is not an exception. Better to tell the limitations to the readers upfront so they can factor them into their evaluation of the relevance of the manuscript and reported evidence.

      (6) Data should be made available to the scientific community. Code too. Even if you just used standard fMRI toolboxes, any code used to run analyses will be helpful to the community, or if someone decides to try to replicate your findings.

      Despite these weaknesses and what can be derived from them, this manuscript constitutes a valuable contribution to the field to start characterizing and conceptualizing the involvement of thalamic nuclei and their interactions with other brain regions in the associative threat learning circuitries. It also paves the road for further testing of the functional dynamics among these regions and circuitries, and modeling testing.

    1. Reviewer #3 (Public review):

      Summary:

      Knoerzer-Suckow et al. explore the mechanisms of organelle inheritance during endodyogeny in Toxoplasma gondii using an innovative dual-labeling approach to track the distribution of maternal organelles into daughter parasites. They can clearly distinguish between maternal and daughter-derived organelles using their dual-labeling Halo Tag approach. They reveal that different organelles are trafficked to daughter parasites in three broad patterns, which they have binned into groups. Their findings reveal a role for MyoF in the inheritance of micronemes and rhoptries, and notably, they observe that the inner membrane complex (IMC) is not recycled. Instead, the IMC undergoes a pronounced relocalization to the posterior of the maternal cell, where it is likely targeted for degradation.

      Strengths:

      The data surrounding their MyoF knockdown experiments, IMC degradation, and trafficking of MIC2 after auxin washout are compelling. These data add to the knowledge of how organelle inheritance occurs in T. gondii, increasing the field's understanding of endodyogeny.

      Weaknesses:

      (1) The evidence provided to support the claim that microneme and rhoptry inheritance specifically traffics through the residual body does not sufficiently substantiate the claim. The temporal resolution of the imaging is inadequate to precisely trace the path of microneme and rhoptry inheritance. From the data shown in the manuscript, it can be concluded that at least some of the micronemes and rhoptries might be recycled through the residual body, but it is unclear whether many or most of these organelles do so.

      (2) The absence of specific markers for the residual body brings into question whether microneme inheritance occurs through a discrete residual body or simply via the basal end of the maternal parasite. The authors need a robust way to visualize and define the residual body to claim that micronemes and rhoptries are specifically transported through this structure.

    1. Reviewer #3 (Public review):

      Summary:

      Fan et al utilize large omics data sets to give an overview of proteomic and gene expression changes after 4 months of intermittent fasting (IF) in liver, muscle, and brain tissue. They describe common and distinct pathways altered under IF across tissues using different analysis approaches. The main conclusions presented are the variability in responses across tissues with IF. Some common pathways were observed, but there were notable distinctions between tissues.

      Strengths:

      (1) The IF study was well conducted and ran out to 4 months, which was a nice long-term design.

      (2) The multiomics approach was solid, and additional integrative analysis was complementary to illustrate the differential pathways and interactions across tissues.

      (3) The authors did not overstep their conclusions and imply an overreached mechanism.

      Weaknesses:

      The weaknesses, which are minor, include the use of only male mice and the early start (6 weeks) of the IF treatment. See specifics in the recommendations section.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript provides a comprehensive characterization of the Plasmodium falciparum protein LSA3, combining biochemical, genetic, and in vivo approaches. The authors convincingly demonstrate that LSA3 is expressed during liver stage infection and that disruption of the gene leads to a modest but reproducible reduction in liver stage parasite load in humanized mice.

      Strengths:

      Their biochemical and cell biological analysis of blood stages provides strong evidence that LSA3 is exported to the infected erythrocyte, and the detailed analysis of its PEXEL motif processing is well executed.

      Weaknesses:

      The study suggests LSA3 as one of only two known P. falciparum PEXEL proteins contributing to this stage, although there is no evidence for the export beyond the vacuolar membrane. Several key conclusions, particularly regarding antibody specificity, localization in liver stage parasites, and the interpretation of the phenotypic data, are not fully supported by the current experiments.

    1. Reviewer #3 (Public review):

      This work aims to establish cell-type specific changes in gene expression upon exposure to different flavors of commercial e-cigarette aerosols compared to control or vehicle. Kaur et al. conclude that immune cells are most affected, with the greatest dysregulation found in myeloid cells exposed to tobacco-flavored e-cigs and lymphoid cells exposed to fruit-flavored e-cigs. The up- and down-regulated genes are heavily associated with innate immune response. The authors suggest that a Ly6G-deficient subset of neutrophils is found to be increased in abundance for the treatment groups, while gene expression remains consistent, which could indicate impaired function. Increased expression of CD4+ and CD8+ T cells along with their associated markers for proliferation and cytotoxicity is thought to be a result of activation following this decline in neutrophil-mediated immune response.

      Strengths:

      - Single cell sequencing data can be very valuable in identifying potential health risks and clinical pathologies of lung conditions associated with e-cigarettes considering they are still relatively new.

      - Not many studies have been performed on cell-type specific differential gene expression following exposure to e-cig aerosols.

      - The assays performed address several factors of e-cig exposure such as metal concentration in the liquid and condensate, coil composition, cotinine/nicotine levels in serum and the product itself, cell types affected, which genes are up- or down-regulated and what pathways they control.

      - Considerations were made to ensure clinical relevance such as selecting mice whose ages corresponded with human adolescents so that data collected was relevant.

      Weaknesses:

      - The exposure period of 1 hour a day for 5 days is not representative of chronic use and this time point may be too short to see a full response in all cell types. The experimental design is not well-supported based on the literature available for similar mouse models. Clinical relevance of this short exposure remains unclear.

      - Several claims lack supporting evidence or use data that is not statistically significant. In particular, there were no statistical analyses to compare results across sex, so conclusions stating there is a sex bias for things like Ly6G+ neutrophil percentage by condition are observational.

      - Overall, the paper and its discussion are relatively surface-level and do not delve into the significance of the findings or how they fit into the bigger picture of the field. It is not clear whether this paper is intended to be used as a resource for other researchers or as an original research article.

      - The manuscript has some validation of findings but not very comprehensive.

      This paper provides a strong foundation for follow-up experiments that take a closer look at the effects of e-cig exposure on innate immunity. There is still room to elaborate on the differential gene expression within and between various cell types.

      Comments on revisions:

      The reviewers have addressed major concerns with better validation of data and improved organization of the paper. However, we still have some concerns and suggestions pertaining to the statistical analyses and justifications for experimental design.

      - We appreciate the nuance of this experimental design, and the reviewers have adequately commented on why they chose nose-only exposure over whole body exposure. However, the justification for the duration of the exposure, and the clinical relevance of a short exposure, have not been addressed in the revised manuscript.

      - The presentation of cell counts should be represented by a percentage/proportion rather than a raw number of cells. Without normalization to the total number of cells, comparisons cannot be made across groups/conditions. This comment applies to several figures.

      - We appreciate that the authors have taken the reviewers' advice to validate their findings. However, we have concerns regarding the immunofluorescent staining shown in Figure 4. If the red channel is showing a pan-neutrophil marker (S100A8) and the green channel is showing only a subset of neutrophils (LY6G+), then the green channel should have far less signal than the red channel. This expected pattern is not what is shown in the figure, with the Ly6G marker apparently showing more expression than S100A8. Additionally, the FACS data states that only 4-5% of cells are neutrophils, but the red channel co-localizes with far more than 4-5% of the DAPI stain, meaning this population is overrepresented, potentially due to background fluorescence (noise). In addition, some of the shapes in the staining pattern do not look like true neutrophils, although it is difficult to tell because there remains a lot of background staining. The authors need to verify that their S100A8 and Ly6G antibodies work and are specific to the populations they intend to target. It is possible that only the brightest spots are truly S100A8+ or Ly6G+.

      - Paraffin sections do not always yield the best immunostaining results and the images themselves are low magnification and low resolution.

      - Please change the scale bars to white so they are more visible in each channel.

      - We appreciate that this is a preliminary test used as a resource for the community, but there is interesting biology regarding immune cells that warrants DEG analysis by the authors. This computational analysis can be easily added with no additional experiments required.

    1. Reviewer #3 (Public review):

      Summary:

      The aim of this study was to investigate the temporal progression of the neural response to event boundaries in relation to uncertainty and error. Specifically, the authors asked (1) how neural activity changes before and after event boundaries, (2) if uncertainty and error both contribute to explaining the occurrence of event boundaries, and (3) if uncertainty and error have unique contributions to explaining the temporal progression of neural activity.

      Strengths:

      One strength of this paper is that it builds on an already validated computational model. It relies on straightforward and interpretable analysis techniques to answer the main question, with a smart combination of pattern similarity metrics and FIR. This combination of methods may also be an inspiration to other researchers in the field working on similar questions. The paper is well written and easy to follow. The paper convincingly shows that (1) there is a temporal progression of neural activity change before and after an event boundary, and (2) event boundaries are predicted best by the combination of uncertainty and error signals.

      Weaknesses:

      Regarding question 3, I am less convinced by the results. They show that overlapping but somewhat distinct sets of brain regions relate to uncertainty and error boundaries over time. And that some regions show distinct patterns of temporal progressions in pattern change with both types of boundaries. However, most of the effects they observe in this analysis may still be driven by shared variance, as suggested by the results in Figure 6 and the high correlation between the two boundary time series. More specific comments are provided below.

      Impact:

      If these comments can be addressed sufficiently, I expect that this work will impact the field in its thinking on what drives event boundaries and spur interest in understanding the mechanisms behind the temporal progression of neural activity around these boundaries.

      Comments

      (1) The current analysis of the neural data does not convincingly show that uncertainty and prediction error both contribute to the neural responses. As both terms are modelled in separate FIR models, it may be that the responses we see for both are mostly driven by shared variance. Given that the correlation between the two is very high (r=0.49), this seems likely. The strong overlap in the neural responses elicited by both, as shown in Figure 6, also suggests that what we see may mainly be shared variance. To improve the interpretability of these effects, I think it is essential to know whether uncertainty and error explain similar or unique parts of the variance. The observation that they have distinct temporal profiles is suggestive of some dissociation, but not as convincing as adding them both to a single model.

      (2) The results for uncertainty and error show that uncertainty has strong effects before or at boundary onset, while error is related to more stabilization after boundary onset. This makes me wonder about the temporal contribution of each of these. Could it be the case that increases in uncertainty are early indicators of a boundary, and errors tend to occur later?

      (3) Given that there is a 24-second period during which the neural responses are shaped by event boundaries, it would be important to know more about the average distance between boundaries and the variability of this distance. This will help establish whether the FIR model can properly capture a return to baseline.

      (4) Given that there is an early onset and long-lasting response of the brain to these event boundaries, I wonder what causes this. Is it the case that uncertainty or errors already increase at 12 seconds before the boundaries occur? Or if there are other makers in the movie that the brain can use to foreshadow an event boundary? And if uncertainty or errors do increase already 12 seconds before an event boundary, do you see a similar neural response at moments with similar levels of error or uncertainty, which are not followed by a boundary? This would reveal whether the neural activity patterns are specific to event boundaries or whether these are general markers of error and uncertainty.

      (5) It is known that different brain regions have different delays of their BOLD response. Could these delays contribute to the propagation of the neural activity across different brain areas in this study?

      (6) In the FIR plots, timepoints -12, 0, and 12 are shown. These long intervals preclude an understanding of the full temporal progression of these effects.