Reviewer #2 (Public Review):
M. El Amri et al., investigated the functions of Marcks and Marcks like 1 during spinal cord (SC) development and regeneration in Xenopus laevis. The authors rigorously performed loss of function with morpholino knock-down and CRISPR knock-out combining rescue experiments in developing spinal cord in embryo and regeneration in tadpole stage.
For the assays in the developing spinal cord, a unilateral approach (knock-down/out only one side of the embryo) allowed the authors to assess the gene functions by direct comparing one-side (e.g. mutated SC) to the other (e.g. wild type SC on the other side). For the assays in regenerating SC, the authors microinject CRISPR reagents into 1-cell stage embryo. When the embryo (F0 crispants) grew up to tadpole (stage 50), the SC was transected. They then assessed neurite outgrowth and progenitor cell proliferation. The validation of the phenotypes was mostly based on the quantification of immunostaining images (neurite outgrowth: acetylated tubulin, neural progenitor: sox2, sox3, proliferation: EdU, PH3), that are simple but robust enough to support their conclusions. In both SC development and regeneration, the authors found that Marcks and Marcksl1 were necessary for neurite outgrowth and neural progenitor cell proliferation.<br /> The authors performed rescue experiments on morpholino knock-down and CRISPR knock-out conditions by Marcks and Marcksl1 mRNA injection for SC development and pharmacological treatments for SC development and regeneration. The unilateral mRNA injection rescued the loss-of-function phenotype in the developing SC. To explore the signalling role of these molecules, they rescued the loss-of-function animals by pharmacological reagents They used S1P: PLD activator, FIPI: PLD inhibitor, NMI: PIP2 synthesis activator and ISA-2011B: PIP2 synthesis inhibitor. The authors found the activator treatment rescued neurite outgrowth and progenitor cell proliferation in loss of function conditions. From these results, the authors proposed PIP2 and PLD are the mediators of Marcks and Marcksl1 for neurite outgrowth and progenitor cell proliferation during SC development and regeneration. The results of the rescue experiments are particularly important to assess gene functions in loss of function assays, therefore, the conclusions are solid. In addition, they performed gain-of-function assays by unilateral Marcks or Marcksl1 mRNA injection showing that the injected side of the SC had more neurite outgrowth and proliferative progenitors. The conclusions are consistent with the loss-of-function phenotypes and the rescue results. Importantly, the authors showed the linkage of the phenotype and functional recovery by behavioral testing, that clearly showed the crispants with SC injury swam less distance than wild types with SC injury at 10-day post surgery.<br /> Prior to the functional assays, the authors analyzed the expression pattern of the genes by in situ hybridization and immunostaining in developing embryo and regenerating SC. They confirmed that the amount of protein expression was significantly reduced in the loss of function samples by immunostaining with the specific antibodies that they made for Marcks and Marcksl1. Although the expression patterns are mostly known in previous works during embryo genesis, the data provided appropriate information to readers about the expression and showed efficiency of the knock-out as well.
MARCKS family genes have been known to be expressed in the nervous system. However, few studies focus on the function in nerves. This research introduced these genes as new players during SC development and regeneration. These findings could attract broader interests from the people in nervous disease model and medical field. Although it is a typical requirement for loss of function assays in Xenopus laevis, I believe that the efficient knock-out for four genes by CRISPR/Cas9 was derived from their dedication of designing, testing and validation of the gRNAs and is exemplary.
Weaknesses,<br /> 1) Why did the authors choose Marcks and Marcksl1?<br /> The authors mentioned that these genes were identified with a recent proteomic analysis of comparing SC regenerative tadpole and non-regenerative froglet (Line (L) 54-57). However, although it seems the proteomic analysis was their own dataset, the authors did not mention any details to select promising genes for the functional assays (this article). In the proteomic analysis, there must be other candidate genes that might be more likely factors related to SC development and regeneration based on previous studies, but it was unclear what the criteria to select Marcks and Marcksl1 was.
2) Gene knock-out experiments with F0 crispants,<br /> The authors described that they designed and tested 18 sgRNAs to find the most efficient and consistent gRNA (L191-195). However, it cannot guarantee the same phenotypes practically, due to, for example, different injection timing, different strains of Xenopus laevis, etc. Although the authors mentioned the concerns of mosaicism by themselves (L180-181, L289-292) and immunostaining results nicely showed uniformly reduced Marcks and Marcksl1 expression in the crispants, they did not refer to this issue explicitly.
3) Limitations of pharmacological compound rescue<br /> In the methods part, the authors describe that they performed titration experiments for the drugs (L702-704), that is a minimal requirement for this type of assay. However, it is known that a well characterized drug is applied, if it is used in different concentrations, the drug could target different molecules (Gujral TS et al., 2014 PNAS). Therefore, it is difficult to eliminate possibilities of side effects and off targets by testing only a few compounds.