7,584 Matching Annotations
  1. Last 7 days
    1. Reviewer #2 (Public review):

      The physiology and behaviour of animals are regulated by a huge variety of neuropeptide signalling systems. In this paper, the authors focus on the neuropeptide ion transport peptide (ITP), which was first identified and named on account of its effects on the locust hindgut (Audsley et al. 1992). Using Drosophila as an experimental model, the authors have mapped the expression of three different isoforms of ITP, all of which are encoded by the same gene.

      The authors then investigated candidate receptors for isoforms of ITP. Firstly, Drosophila orthologs of G-protein coupled receptors (GPCRs) that have been reported to act as receptors for ITPa or ITPL in the insect Bombyx mori were investigated. Importantly, the authors report that ITPa does not act as a ligand for the GPCRs TkR99D and PK2-R1. Therefore, the authors investigated other putative receptors for ITPs. Informed by a previously reported finding that ITP-type peptides cause an increase in cGMP levels in cells/tissues (Dircksen, 2009, Nagai et al., 2014), the authors investigated guanylyl cyclases as candidate receptors for ITPs. In particular, the authors suggest that Gyc76C may act as an ITP receptor in Drosophila. Evidence that Gyc76C may be involved in mediating effects of ITP in Bombyx was first reported by Nagai et al. (2014) and here the authors present further evidence, based on a proposed concordance in the phylogenetic distribution ITP-type neuropeptides and Gyc76C and experimental demonstration that ITPa causes dose-dependent stimulation of cGMP production in HEK cells expressing Gyc76C. Having performed detailed mapping of the expression of Gyc76C in Drosophila, the authors then investigated if Gyc76C knockdown affects the bioactivity of ITPa in Drosophila. The inhibitory effect of ITPa on leucokinin- and diuretic hormone-31-stimulated fluid secretion from Malpighian tubules was found to be abolished when expression of Gyc76C was knocked down in stellate cells and principal cells, respectively.

      Having investigated the proposed mechanism of ITPa signalling in Drosophila, the authors then investigate its physiological roles at a systemic level. The authors present evidence that ITPa is released during desiccation and accordingly overexpression of ITPa increases survival when animals are subjected to desiccation. Furthermore, knockdown of Gyc76C in stellate or principal cells of Malphigian tubules decreases survival when animals are subject to desiccation. Furthermore, the relevance of the phenotypes observed to potential in vivo actions of ITPa is also explored and publicly available connectomic data and single-cell transcriptomic data are analysed to identify putative inputs and outputs of ITPa expressing neurons.

      Strengths of this paper.

      (1) The main strengths of this paper are:

      i) the detailed analysis of the expression and actions of ITP and the phenotypic consequences of over-expression of ITPa in Drosophila.

      ii). the detailed analysis of the expression of Gyc76C and the phenotypic consequences of knockdown of Gyc76C expression in Drosophila.

      iii). the experimental demonstration that ITPa causes dose-dependent stimulation of cGMP production in HEK cells expressing Gyc76C, providing biochemical evidence that the effects of ITPa in Drosophila are, at least in part, mediated by Gyc76C.

      (2) Furthermore, the paper is generally well written and the figures are of good quality.

      Weaknesses of this paper.

      A weakness of this paper is the phylogenetic analysis to investigate if there is correspondence in the phylogenetic distribution of ITP-type and Gyc76C-type genes/proteins. Unfortunately, the evidence presented is rather limited in scope. Essentially, the authors report that they only found ITP-type and Gyc76C-type genes/proteins in protostomes, but not in deuterostomes. What is needed is a more fine-grained analysis at the species level within the protostomes. However, I recognise that such a detailed analysis may extend beyond the scope of this paper, which is already rich in data.

    1. Reviewer #2 (Public review):

      Summary:

      Whole-brain network modeling is a common type of dynamical systems-based method to create individualized models of brain activity incorporating subject-specific structural connectome inferred from diffusion imaging data. This type of model has often been used to infer biophysical parameters of the individual brain that cannot be directly measured using neuroimaging but may be relevant to specific cognitive functions or diseases. Here, Ziaeemehr et al introduce a new toolkit, named "Virtual Brain Inference" (VBI), offering a new computational approach for estimating these parameters using Bayesian inference powered by artificial neural networks. The basic idea is to use simulated data, given known parameters, to train artificial neural networks to solve the inverse problem, namely, to infer the posterior distribution over the parameter space given data-derived features. The authors have demonstrated the utility of the toolkit using simulated data from several commonly used whole-brain network models in case studies.

      Strength:

      Model inversion is an important problem in whole-brain network modeling. The toolkit presents a significant methodological step up from common practices, with the potential to broadly impact how the community infers model parameters.

      Notably, the method allows the estimation of the posterior distribution of parameters instead of a point estimation, which provides information about the uncertainty of the estimation, which is generally lacking in existing methods.

      The case studies were able to demonstrate the detection of degeneracy in the parameters, which is important. Degeneracy is quite common in this type of models. If not handled mindfully, they may lead to spurious or stable parameter estimation. Thus, the toolkit can potentially be used to improve feature selection or to simply indicate the uncertainty.

      In principle, the posterior distribution can be directly computed given new data without doing any additional simulation, which could improve the efficiency of parameter inference on the artificial neural network is well-trained.

      Weaknesses:

      The z-scores used to measure prediction error are generally between 1-3, which seems quite large to me. It would give readers a better sense of the utility of the method if comparisons to simpler methods, such as k-nearest neighbor methods, are provided in terms of accuracy.

      A lot of simulations are required to train the posterior estimator, which is computationally more expensive than existing approaches. Inferring from Figure S1, at the required order of magnitudes of the number of simulations, the simulation time could range from days to years, depending on the hardware. The payoff is that once the estimator is well-trained, the parameter inversion will be very fast given new data. However, it is not clear to me how often such use cases would be encountered. It would be very helpful if the authors could provide a few more concrete examples of using trained models for hypothesis testing, e.g., in various disease conditions.

    1. Reviewer #2 (Public review):

      Summary:

      The geographic range of highly pathogenic avian influenza cases changed substantially around the period 2020, and there is much interest in understanding why. Since 2020 the pathogen irrupted in the Americas and the distribution in Asia changed dramatically. This study aimed to determine which spatial factors (environmental, agronomic and socio-economic) explain the change in numbers and locations of cases reported since 2020 (2020--2023). That's a causal question which they address by applying correlative environmental niche modelling (ENM) approach to the avian influenza case data before (2015--2020) and after 2020 (2020--2023) and separately for confirmed cases in wild and domestic birds. To address their questions they compare the outputs of the respective models, and those of the first global model of the HPAI niche published by Dhingra et al 2016.

      ENM is a correlative approach useful for extrapolating understandings based on sparse geographically referenced observational data over un- or under-sampled areas with similar environmental characteristics in the form of a continuous map. In this case, because the selected covariates about land cover, use, population and environment are broadly available over the entire world, modelled associations between the response and those covariates can be projected (predicted) back to space in the form of a continuous map of the HPAI niche for the entire world.

      Strengths:

      The authors are clear about expected bias in the detection of cases, such geographic variation in surveillance effort (testing of symptomatic or dead wildlife, testing domestic flocks) and in general more detections near areas of higher human population density (because if a tree falls in a forest and there is no-one there, etc), and take steps to ameliorate those. The authors use boosted regression trees to implement the ENM, which typically feature among the best performing models for this application (also known as habitat suitability models). They ran replicate sets of the analysis for each of their model targets (wild/domestic x pathogen variant), which can help produce stable predictions. Their code and data is provided, though I did not verify that the work was reproducible.

      The paper can be read as a partial update to the first global model of H5Nx transmission by Dhingra and others published in 2016 and explicitly follows many methodological elements. Because they use the same covariate sets as used by Dhingra et al 2016 (including the comparisons of the performance of the sets in spatial cross-validation) and for both time periods of interest in the current work, comparison of model outputs is possible. The authors further facilitate those comparisons with clear graphics and supplementary analyses and presentation. The models can also be explored interactively at a weblink provided in text, though it would be good to see the model training data there too.

      The authors' comparison of ENM model outputs generated from the distinct HPAI case datasets is interesting and worthwhile, though for me, only as a response to differently framed research questions.

      Weaknesses:

      This well-presented and technically well-executed paper has one major weakness to my mind. I don't believe that ENM models were an appropriate tool to address their stated goal, which was to identify the factors that "explain" changing HPAI epidemiology.

      Here is how I understand and unpack that weakness:

      (1) Because of their fundamentally correlative nature, ENMs are not a strong candidate for exploring or inferring causal relationships.

      (2) Generating ENMs for a species whose distribution is undergoing broad scale range change is complicated and requires particular caution and nuance in interpretation (e.g., Elith et al, 2010, an important general assumption of environmental niche models is that the target species is at some kind of distributional equilibrium (at time scales relevant to the model application). In practice that means the species has had an opportunity to reach all suitable habitats and therefore its absence from some can be interpreted as either unfavourable environment or interactions with other species). Here data sets for the response (N5H1 or N5Hx case data in domestic or wild birds ) were divided into two periods; 2015--2020, and 2020--2023 based on the rationale that the geographic locations and host-species profile of cases detected in the latter period was suggestive of changed epidemiology. In comparing outputs from multiple ENMs for the same target from distinct time periods the authors are expertly working in, or even dancing around, what is a known grey area, and they need to make the necessary assumptions and caveats obvious to readers.

      (3) To generate global prediction maps via ENM, only variables that exist at appropriate resolution over the desired area can be supplied as covariates. What processes could influence changing epidemiology of a pathogen and are their covariates that represent them? Introduction to a new geographic area (continent) with naive population, immunity in previously exposed populations, control measures to limit spread such as vaccination or destruction of vulnerable populations or flocks? Might those control measures be more or less likely depending on the country as a function of its resources and governance? There aren't globally available datasets that speak to those factors, so the question is not why were they omitted but rather was the authors decision to choose ENMs given their question justified? How valuable are insights based on patterns of correlation change when considering different temporal sets of HPAI cases in relation to a common and somewhat anachronistic set of covariates?

      (4) In general the study is somewhat incoherent with respect to time. Though the case data come from different time periods, each response dataset was modelled separately using exactly the same covariate dataset that predated both sets. That decision should be understood as a strong assumption on the part of the authors that conditions the interpretation: the world (as represented by the covariate set) is immutable, so the model has to return different correlative associations between the case data and the covariates to explain the new data. While the world represented by the selected covariates *may* be relatively stable (could be statistically confirmed), what about the world not represented by the covariates (see point 3)?

      References:

      Dhingra et al, 2016, Global mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 2.3.4.4 viruses with spatial cross-validation, eLife 5, https://doi.org/10.7554/eLife.19571

      Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range‐shifting species. Methods in Ecology and Evolution, 1(4), 330-342.

    1. Reviewer #2 (Public review):

      Summary:

      HIV-1 infection induces CPSF6 aggregates in the nucleus that contain the viral protein CA. The study of the functions and composition of these nuclear aggregates have raised considerable interest in the field, and they have emerged as sites in which reverse transcription is completed and in the proximity of which viral DNA becomes integrated. In this work, the authors have mutated several regions of the CPSF6 protein to identify the domains important for nuclear aggregation, in addition to the already-known FG-region; they have characterized the kinetics of fusion between CPSF6 aggregates and SC35 nuclear speckles and have determined the role of two nuclear speckle components in this process (SRRM2, SUN2).

      Strengths:

      The work examines systematically the domains of CPSF6 of importance for nuclear aggregate formation in an elegant manner in which these mutants complement an otherwise CPSF6-KO cell line. In addition, this work evidences a novel role for the protein SRRM2 in HIV-induced aggregate formation, overall advancing our comprehension of the components required for their formation and regulation.

    1. Reviewer #2 (Public review):

      Summary:

      The authors present a study of how modulatory activity from outside the classical receptive field (cRF) differs from cRF stimulation. They study neural activity across the different layers of V1 in two anesthetized monkeys using Neuropixels probes. The monkeys are presented with drifting gratings and border-ownership tuning stimuli. They find that border-ownership tuning is organized into columns within V1, which is unexpected and exciting, and that the flow of activity from cell-to-cell (as judged by cross-correlograms between single units) is influenced by the type of visual stimulus: border-ownership tuning stimuli vs. drifting-grating stimuli.

      Strengths:

      The questions addressed by the study are of high interest, and the use of Neuropixels probes yields extremely high numbers of single-units and cross-correlation histograms (CCHs) which makes the results robust. The study is well-described.

      Comments on revisions:

      The results are interesting and seem robust. However, several of my main points were not addressed. The authors do not analyze or discuss the problem the border ownership stimuli do uniquely isolate feedback from feedforward influences. Here are my remaining points/recommendations:

      (1) In my previous review I indicated that the border-ownership signal also provides a strong feedforward drive, a black-white edge, in addition to the border ownership signal. Calling this a "nCRF stimulus" is a misnomer. Please correct this terminology and replace it by something that is appropriate, e.g. changing it into "grating stimulation" (instead of CRF stimulation) and BO-stimulation (instead of nCRF stimulation).

      (2) In my previous review I asked if the initial response for the border ownership stimulus show the feedforward signature. It is unclear to me why this suggestions did not lead to an analysis of the feedforward response. I repeat the text from my previous review: "The authors state that they did not look at cross-correlations during the initial response, but if they do, do they see the feedforward-dominated pattern? The jitter CCH analysis might suffice in correcting for the response transient." Can the authors address this point?

      (3) In my previous review I asked the authors show the average time course of the response elicited by preferred and nonpreferred border ownership stimuli across all significant neurons. It remains unclear why this plot was not provided.

    1. Reviewer #2 (Public review):

      The authors made an atlas of single-cell transcriptome of on a pure population of leukocytes isolated from the brain of adult Tg(cd45:DsRed) transgenic animals by flow cytometry. Seven major leukocyte populations were identified, comprising microglia, macrophages, dendritic-like cells, T cells, natural killer cells, innate lymphoid-like cells and neutrophils. Each cluster was analyzed to characterize subclusters. Among lymphocytes, in addition to 2 subclusters expressing typical T cell markers, a group of il4+ il13+ gata3+ cells was identified as possible ILC2. This hypothesis is supported by the presence of this population in rag2KO fish, in which the frequency of lck and zap70+ cells is strongly reduced. The use of KO lines for such validations is a strength of this work (and the zebrafish model).

      The subcluster analysis of mpeg1.1 + myeloid cells identified 4 groups of microglial cells, one novel group of macrophage like cells (expressing s100a10b, sftpbb, icn, fthl27, anxa5b, f13a1b and spi1b), and several groups of DC like cells expressing the markers siglec15l, ccl19a.1, ccr7, id2a, xcr1a.1, batf3, flt3, chl1a and hepacam2.Combining these new markers and transgenic reporter fish lines, the authors then clarified the location of leukocyte subsets within the brain, showing for example that DC-like cells stand as a parenchymal population along with microglia. Reporter lines were also used to perform detailed analysis of cell subsets, and cross with a batf3 mutant demonstrated that DC like cells are batf3 dependent, which was similar to mouse and human cDC1. Finally, analysis of classical mononuclear phagocyte deficient zebrafish lines showed they have reduced numbers of microglia but exhibit distinct DC-like cell phenotypes. A weakness of this study is that it is mainly based on FACS sorting, which might modify the proportion of different subtypes.

      This atlas of zebrafish brain leukocytes is an important new resource to scientists using the zebrafish models for neurology, immunology and infectiology, and for those interested in the evolution of brain and immune system.

    1. Reviewer #2 (Public review):

      Summary:

      The work seeks to improve detection of RNA m6A modifications using Nanopore sequencing through improvements in raw data analysis. These improvements are said to be in the segmentation of the raw data, although the work appears to position the alignment of raw data to the reference sequence and some further processing as part of the segmentation, and result statistics are mostly shown on the 'data-assigned-to-kmer' level.<br /> As such, the title, abstract and introduction stating the improvement of just the 'segmentation' does not seem to match the work the manuscript actually presents, as the wording seems a bit too limited for the work involved.<br /> The work itself shows minor improvements in m6Anet when replacing Nanopolish' eventalign with this new approach, but clear improvements in the distributions of data assigned per kmer. However, these assignments were improved well enough to enable m6A calling from them directly, both at site-level and at read-level.

      A large part of the improvements shown appear to stem from the addition of extra, non-base/kmer specific, states in the segmentation/assignment of the raw data, removing a significant portion of what can be considered technical noise for further analysis. Previous methods enforced assignment of (almost) all raw data, forcing a technically optimal alignment that may lead to suboptimal results in downstream processing as datapoints could be assigned to neighbouring kmers instead, while random noise that is assigned to the correct kmer may also lead to errors in modification detection.

      For an optimal alignment between the raw signal and the reference sequence, this approach may yield improvements for downstream processing using other tools.<br /> Additionally, the GMM used for calling the m6A modifications provides a useful, simple and understandable logic to explain the reason a modification was called, as opposed to the black models that are nowadays often employed for these types of tasks.

      Weaknesses:

      The manuscript suggests the eventalign results are improved compared to Nanopolish. While this is believably shown to be true (Table 1), the effect on the use case presented, downstream differentiation between modified and unmodified status on a base/kmer, is likely limited for during downstream modification calling the noisy distributions are often 'good enough'. E.g. Nanopolish uses the main segmentation+alignment for a first alignment and follows up with a form of targeted local realignment/HMM test for modification calling (and for training too), decreasing the need for the near-perfect segmentation+alignment this work attempts to provide. Any tool applying a similar strategy probably largely negates the problems this manuscript aims to improve upon. Should a use-case come up where this downstream optimisation is not an option, SegPore might provide the necessary improvements in raw data alignment.

      Appraisal:

      The authors have shown their methods ability to identify noise in the raw signal and remove their values from the segmentation and alignment, reducing its influences for further analyses. Figures directly comparing the values per kmer do show a visibly improved assignment of raw data per kmer. As a replacement for Nanopolish' eventalign it seems to have a rather limited, but improved effect, on m6Anet results. At the single read level modification modification calling this work does appear to improve upon CHEUI.

      Impact:

      With the current developments for Nanopore based modification calling largely focusing on Artificial Intelligence, Neural Networks and the likes, improvements made in interpretable approaches provide an important alternative that enables deeper understanding of the data rather than providing a tool that plainly answers the question of wether a base is modified or not, without further explanation. The work presented is best viewed in context of a workflow where one aims to get an optimal alignment between raw signal data and the reference base sequence for further processing. For example, as presented, as a possible replacement for Nanopolish' eventalign. Here it might enable data exploration and downstream modification calling without the need for local realignments or other approaches that re-consider the distribution of raw data around the target motif, such as a 'local' Hidden Markov Model or Neural Networks. These possibilities are useful for a deeper understanding of the data and further tool development for modification detection works beyond m6A calling.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors apply a variety of biophysical and computational techniques to characterize the effects of mutations in the SARS-CoV-2 N protein on the formation of ribonucleoprotein particles (RNPs). They find convergent evolution in multiple repeated independent mutations strengthening binding interfaces, compensating for other mutations that reduce RNP stability but which enhance viral replication.

      Strengths:

      The authors assay the effects of a variety of mutations found in SARS-CoV-2 variants of concern using a variety of approaches, including biophysical characterization of assembly properties of RNPs, combined with computational prediction of the effects of mutations on molecular structures and interactions. The findings of the paper contribute to our increasing understanding of the principles driving viral self-assembly, and increase the foundation for potential future design of therapeutics such as assembly inhibitors.

      Weaknesses:

      For the most part, the paper is well-written, the data presented support the claims made, and the arguments are easy to follow. However, I believe that parts of the presentation could be substantially improved. I found portions of the text to be overly long and verbose and likely could be substantially edited; the use of acronyms and initialisms is pervasive, making parts of the exposition laborious to follow; and portions of the figures are too small and difficult to read/understand.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript by Rainaldi et al. reports a new sub-pathway for isoleucine biosynthesis by demonstrating the promiscuous activity of the native enzyme acetohydroxyacid synthase II (AHAS II). AHAS-II is primarily known to catalyze the condensation of 2-ketobutyrate (2KB) with pyruvate to form a further downstream intermediate, AHB, in the isoleucine biosynthesis pathway. However, the catalysis of pyruvate and glyoxylate condensation to produce 2KB via the ilvG encoded AHAS II is reported in this manuscript for the first time.

      Using an isoleucine/2KB auxotrophic E. coli strain, the authors report (i) repair of the inactivating frameshift mutation in the ilvG gene, which encodes AHAS-II, supports growth in glyoxylate-supplemented media, (ii) the promiscuity of AHAS-II in glyoxylate and pyruvate condensation, resulting in the formation of isoleucin precursors (2-KB), aiding the biosynthesis of isoleucine, and (iii) comparable efficiency of the recursive AHAS-II route to the canonical routes of isoleucin biosynthesis via computational Flux-based analysis.

      Strengths:

      The authors have used laboratory evolution to uncover a non-canonical metabolic route. The metabolomics and FBA have been used to strengthen the claim.

      Weaknesses:

      While the manuscript proposes an interesting metabolic route for the isoleucine biosynthesis, the data lack key controls, biological replicates, and consistency. The figures and methods are presented inadequately. In the current state, the data fails to support the claims made in the manuscript.

    1. Reviewer #2 (Public review):

      Sasaki et al. use a combination of live-cell biosensors and patch-clamp electrophysiology to investigate the effect of membrane potential on the ERK MAPK signaling pathway, and probe associated effects on proliferation. This is an effect that has long been proposed, but a convincing demonstration has remained elusive, because it is difficult to perturb membrane potential without disturbing other aspects of cell physiology in complex ways. The time-resolved measurements here are a nice contribution to this question, and the perforated patch clamp experiments with an ERK biosensor are fantastic - they come closer to addressing the above difficulty of perturbing voltage than any prior work. It would have been difficult to obtain these observations with any other combination of tools.

      Comments on previous revisions:

      The authors have done a good job addressing the comments on the previous submission.

    1. Reviewer #2 (Public review):

      Summary:

      The current study aims to shed light on why previous work on perceptual rhythmicity has led to inconsistent results. They propose that the differences may stem from conceptual and methodological issues. In a series of experiments, the current study reports perceptual rhythmicity in different frequency bands that differ between different ear stimulations and behavioral measures. The study suggests challenges regarding the idea of universal perceptual rhythmicity in hearing.

      Strengths:

      The study aims to address differences observed in previous studies about perceptual rhythmicity. This is important and timely because the existing literature provides quite inconsistent findings. Several experiments were conducted to assess perceptual rhythmicity in hearing from different angles. The authors use sophisticated approaches to address the research questions. The manuscript has greatly improved after the revision.

      Weaknesses:

      Additional variance: In several experiments, a fixation cross preceded - at a variable interval - the onset of the background noise that aimed to reset the phase of an ongoing oscillation. There is the chance that the fixation cross also resets the phase, potentially adding variance to the data. In addition, the authors used an adaptive procedure during the experimental blocks such that the stimulus intensity was adjusted throughout. There is good reason for doing so, but it means that correctly identified/discriminated targets will on average have a greater stimulus intensity. This may add variance to the data. These two aspects may potentially contribute to the observation of weak perceptual rhythmicity.

      Figures: The text in Figures 4 and 6 is small. I think readers would benefit from a larger font size. Moreover, Figure 1A is not very intuitive. Perhaps it could be made clearer. The new Figure 5 was not discussed in the text. I wonder whether analyses with traditional t-tests could be placed in the supplements.

      50% significant samples: The authors consider 50% of significant bootstrapped samples robust. For example: "This revealed that the above‐mentioned effects prevail for at least 50% of the simulated experiments, corroborating their robustness within the participant sample". Many of the effects have even lower than 50% of significant samples. It is a matter of opinion of what is robust or not, but I think combined with the overall variable nature of the effects in different frequency bands and ears etc. leaves more the impression that the effects are not very robust. I think the authors state it correctly in the last sentence of the first paragraph of the discussion: "At the same time the prevalence of significant effects in random samples of participants were mostly below 50%, raising questions as to the ubiquity of such effects." I think the authors should update the abstract in this regard to avoid that readers who only read the abstract get the wrong impression about the robustness of the effects. It is not clear to me if the same study (using the same conditions) was done in a different lab that the results would come out similarly to the results reported here.

    1. Reviewer #2 (Public review):

      Summary:

      Kumar et al. aimed to assess the role of the understudied H3K115 acetylation mark, which is located in the nucleosomal core. To this end, the authors performed ChIP-seq experiments of H3K115ac in mouse embryonic stem cells as well as during differentiation into neuronal progenitor cells. Subsequent bioinformatic analyses revealed an association of H3K115ac with fragile nucleosomes at CpG island promoters, as well as with enhancers and CTCF binding sites. This is an interesting study, which provides important novel insights into the potential function of H3K115ac. However, the study is mainly descriptive, and functional experiments are missing.

      Strengths:

      (1) The authors present the first genome-wide profiling of H3K115ac and link this poorly characterized modification to fragile nucleosomes, CpG island promoters, enhancers, and CTCF binding sites.

      (2) The study provides a valuable descriptive resource and raises intriguing hypotheses about the role of H3K115ac in chromatin regulation.

      (3) The breadth of the bioinformatic analyses adds to the value of the dataset

      Weaknesses:

      (1) I am not fully convinced about the specificity of the antibody. Although the experiment in Figure S1A shows a specific binding to H3K115ac-modified peptides compared to unmodified peptides, the authors do not show any experiment that shows that the antibody does not bind to unrelated proteins. Thus, a Western of a nuclear extract or the chromatin fraction would be critical to show. Also, peptide competition using the H3K115ac peptide to block the antibody may be good to further support the specificity of the antibody. Also, I don't understand the experiment in Figure S1B. What does it tell us when the H3K115ac histone mark itself is missing? The KLF4 promoter does not appear to be a suitable positive control, given that hundreds of proteins/histone modifications are likely present at this region.

      It is important to clearly demonstrate that the antibody exclusively recognizes H3K115ac, given that the conclusion of the manuscript strongly depends on the reliability of the obtained ChIP-Seq data.

      (2) The association of H3K115ac with fragile nucleosomes based on MNase-Sensitivity and fragment length, which are indirect methods and can have technical bias. Experiments that support that the H3K115ac modified nucleosomes are indeed more fragile are missing.

      (3) The comparison of H3K115ac with H3K122ac and H3K64ac relies on publicly available datasets. Since the authors argue that these marks are distinct, data generated under identical experimental conditions would be more convincing. At a minimum, the limitations of using external datasets should be discussed.

      (4) The enrichment of H3K115ac at enhancers and CTCF binding sites is notable but remains descriptive. It would be interesting to clarify whether H3K115ac actively influences transcription factor/CTCF binding or is a downstream correlate.

      (5) No information is provided about how H3K115ac may be deposited/removed. Without this information, it is difficult to place this modification into established chromatin regulatory pathways.

      At the very least, the authors should acknowledge these limitations and provide additional validation of antibody specificity.

    1. Reviewer #2 (Public review):

      In this manuscript, Meier et al. engineer a new class of light-regulated two-component systems. These systems are built using bathy-bacteriophytochromes that respond to near-infrared (NIR) light. Through a combination of genetic engineering and systematic linker optimization, the authors generate bacterial strains capable of selective and tunable gene expression in response to NIR stimulation. Overall, these results are an interesting expansion of the optogenetic toolkit into the NIR range. The cross-species functionality of the system, modularity, and orthogonality have the potential to make these tools useful for a range of applications.

      Strengths:

      (1) The authors introduce a novel class of near-infrared light-responsive two-component systems in bacteria, expanding the optogenetic toolbox into this spectral range.

      (2) Through engineering and linker optimization, the authors achieve specific and tunable gene expression, with minimal cross-activation from red light in some cases.

      (3) The authors show that the engineered systems function robustly in multiple bacterial strains, including laboratory E. coli, the probiotic E. coli Nissle 1917, and Agrobacterium tumefaciens.

      (4) The combination of orthogonal two-component systems can allow for simultaneous and independent control of multiple gene expression pathways using different wavelengths of light.

      (5) The authors explore the photophysical properties of the photosensors, investigating how environmental factors such as pH influence light sensitivity.

      Comments on revisions:

      The authors have addressed all my prior concerns.

    1. Reviewer #2 (Public review):

      Summary:

      The authors have improved clarity overall and have spoken to most of the issues raised by the reviewers. There are still two outstanding problems however, where issues raised during the review were inappropriately dismissed in the manuscript. These should be explicitly addressed as limitations to the results presented (no eye tracking), and early pilot experiments that informed the experiments as presented (pink noise) rather than brushed off as 'unnecessary' and 'would be uninformative'.

      Eye tracking:

      It is generally accepted that experiments testing stimuli presented at specific locations in peripheral vision require eye tracking to ensure that the stimulus is presented as expected, in particular, in the correct location. As I stated in the previous round of review, while a stimulus presentation time of 200ms does help eliminate some saccades, it does not eliminate the possibility that subjects were not fixating well during stimulus onset. I am also unclear what the authors mean by 'trained observer' in this context, though the authors state that an author subject in a different portion of the paper is an 'expert observer'. Does this mean the 'trained observers' are non-expert recruited subjects? Given the conditions tested differ from previous work (Freeman & Simoncelli, 2011) *these differences are a main contribution of the paper!* which DID include eye tracking in a subset of subjects, it is entirely possible to get similar results to this work in the context of non eye-tracking controlled stimulus presentation. The reasons now in the manuscript are not reasons that make eye tracking 'considered unnecessary'.

      I appreciate that the authors now state the lack of eye tracking explicitly, but believe the paper needs to at least state that this is a limitation of the results reported, and eyetracking being 'considered unnecessary' is unreasonable, nor a norm in this subfield.

      N=1: The authors now state clearly the limitations of a single subject in the manuscript, and state the expertise level of this subject.

      Large number of trials: The authors now address this and include an enumeration of the large number of trials.

      Simple Models / Physiology comparison: I support the choice to reduce claims regarding tight connections to physiology, and appreciate the explanation of the luminance model.

      Previous Work: I appreciate the author's changes to the introduction, both in discussing previous work and citation fixes.

      Blurred White, Pink Noise: While the authors now address pink noise, the explanation for such stimuli being expected to be uninformative is confusing to me. The manuscript now first states that pink noise is a natural choice, then claims it would be uninformative, while also stating in the rebuttal (not the manuscript) that they tried it and it indeed reduced the artifacts they note. The logic of the experiments indeed relies on finding the smallest critical scaling value, which is measured by subjects determining if a synthesis is similar or different to a target or second synth. A synthesis free from artifacts would surely affect the subjects responses and the smallest critical scaling measured.

      The statement that the authors experimented with pink noise early on and found this able to address the artifacts should be stated in the manuscript itself, not just in the rebuttal, and the blanket statement that this experiment would be 'uninformative' is incorrect. Surely this early pilot the authors mention in the rebuttal was informative to designing the experiments that appear in the final paper, and would be an informative experiment to include.

    1. Reviewer #2 (Public review):

      Summary:

      Neurons in motor-related areas have increasingly shown to carry also other, non-motoric signals. This creates a problem of avoidance of interference between the motor and non-motor-related signals. This is a significant problem that likely affects many brain areas. The specific example studied here is interference between saccade-related activity and slow-changing arousal signals in the superior colliculus. The authors identify neuronal activity related to saccades and arousal. Identifying saccade-related activity is straightforward, but arousal-related activity is harder to identify. The authors first identify a potential neuronal correlate of arousal using PCA to identifying a component in the population activity corresponding to slow drift over the recording session. Next, they link this component to arousal by showing that the component is present across different brain areas (SC and PFC), and that it is correlated with pupil size, an external marker of arousal. Having identified an arousal-related component in SC, the authors show next that SC neurons with strong motor-related activity are less strongly affected by this arousal component (both SC and PFC). Lastly, they show that SC population activity pattern related to saccades and pupil size form orthogonal subspaces in the SC population.

      Strengths:

      A great strength of this research is the clear description of the problem, its relationship with the performed analysis and the interpretation of the results. the paper is very well written and easy to follow. An additional strength is the use of fairly sophisticated analysis using population activity.

      Weaknesses:

      (1) The greatest weakness in the present research is the fact that arousal is a functionally less important non-motoric variable. The authors themself introduce the problem with a discussion of attention, which is without any doubt the most important cognitive process that needs to be functionally isolated from oculomotor processes. Given this introduction, one cannot help but wonder, why the authors did not design an experiment, in which spatial attention and oculomotor control are differentiated. Absent such an experiment, the authors should spend more time on explaining the importance of arousal and how it could interfere with oculomotor behavior.

      (2) In this context, it is particularly puzzling that one actually would expect effects of arousal on oculomotor behavior. Specifically, saccade reaction time, accuracy, and speed could be influenced by arousal. The authors should include an analysis of such effects. They should also discuss the absence or presence of such effects and how they affect their other results.

      (3) The authors use the analysis shown in Figure 6D to argue that across recording sessions the activity components capturing variance in pupil size and saccade tuning are uncorrelated. however, the distribution (green) seems to be non-uniform with a peak at very low and very high correlation specifically. The authors should test if such an interpretation is correct. If yes, where are the low and high correlations respectively? Are there potentially two functional areas in SC?

      Comments on revised manuscript:

      I remain somewhat concerned that the authors jump immediately into an analysis of the 'arousal-related' effects on SC activity. Before that, I would like to see a more detailed discussion justifying the use pupil size alone (i.e., w/o other indicators such as RT) as indicative of fluctuations in general arousal that are causal to concomitant changes in SC activity. Instead, in its current form, the authors find changes in SC activity and describe them immediately as 'arousal-related'.

      Other than this conceptual issue, I do not have major problems with the analysis per se.

    1. Reviewer #2 (Public review):

      Summary:

      In this article, the authors investigate enhancing the therapeutic and regenerative properties of mesenchymal stem cells (MSCs) through genetic modification, specifically by overexpressing genes involved in the glycogen synthesis pathway. By creating a non-phosphorylatable mutant form of glycogen synthase (GYSmut), the authors successfully increased glycogen accumulation in MSCs, leading to significantly improved cell survival under starvation conditions. The study highlights the potential of glycogen engineering to improve MSC function, especially in inflammatory or energy-deficient environments. However, critical gaps in the study's design, including the lack of validation of key findings, limited differentiation assessments, and missing data on MSC-GYSmut resistance to reactive oxygen species (ROS), necessitate further exploration.

      Strengths:

      (1) Novel Approach: The study introduces an innovative method of enhancing MSC function by manipulating glycogen metabolism.

      (2) Increased Glycogen Storage: The genetic modification of GYS1, resulting in GYSmut, significantly increased glycogen accumulation, leading to improved MSC survival under starvation, which has strong implications for enhancing MSC therapeutic properties in energy-deficient environments.

      (3) Potential Therapeutic Impact: The findings suggest significant therapeutic potential for MSCs in conditions that require improved survival, persistence, and immunomodulation, especially in inflammatory or energy-limited settings.

      (4) In Vivo Validation: The in vivo murine model of pulmonary fibrosis demonstrated the improved survival and persistence of MSC-GYSmut, supporting the translational potential of the approach.

      Weaknesses:

      (1) Lack of Differentiation Assessments: The study did not evaluate key MSC differentiation pathways, including chondrogenic and osteogenic differentiation. The absence of analysis of classical MSC surface markers and multipotency limits the understanding of the full potential of MSC-GYSmut.

      (2) Missing Validation of RNA Sequencing Data: Although RNA sequencing data revealed promising transcriptomic changes in chondrogenesis and metabolic pathways, these findings were not experimentally validated, limiting confidence.

      (3) Lack of ROS Resistance Analysis: Resistance to reactive oxygen species (ROS), an important feature for MSCs under regenerative conditions, was not assessed, leaving out a critical aspect of MSC function.

      (4) Limited Exploration of Immunosuppressive Properties: The study did not address the immunosuppressive functions of MSC-GYSmut, which are critical for MSC-based therapies in clinical settings.

      Conclusion:

      The study presents an exciting new direction for enhancing MSC function through glycogen metabolism engineering. While the results show promise, key experiments and validations are missing, and several areas, such as differentiation capacity, ROS resistance, and immunosuppressive properties, require further investigation. Addressing these gaps would solidify the conclusions and strengthen the potential clinical applications of MSC-GYSmut in regenerative medicine.

    1. Reviewer #2 (Public review):

      Summary:

      The authors test how sample size and demographic balance of reference cohorts affect the reliability of normative models in ageing and Alzheimer's disease. Using OASIS-3 and replicating in AIBL, they change age and sex distributions and number of samples and show that age alignment is more important than overall sample size. They also demonstrate that models adapted from a large dataset (UK Biobank) can achieve stable performance with fewer samples. The results suggest that moderately sized but demographically well-balanced cohorts can provide robust performance.

      Strengths:

      The study is thorough and systematic, varying sample size, age, and sex distributions in a controlled way. Results are replicated in two independent datasets with relatively large sample sizes, thereby strengthening confidence in the findings. The analyses are clearly presented and use widely applied evaluation metrics. Clinical validation (outlier detection, classification) adds relevance beyond technical benchmarks. The comparison between within-cohort training and adaptation from a large dataset is valuable for real-world applications.

      The work convincingly shows that age alignment is crucial and that adapted models can reach good performance with fewer samples. However, some dataset-specific patterns (noted above) should be acknowledged more directly, and the practical guidance could be sharper.

      Weaknesses:

      The paper uses a simple regression framework, which is understandable for scalability, but limits generalization to multi-site settings where a hierarchical approach could better account for site differences. This limitation is acknowledged; a brief sensitivity analysis (or a clearer discussion) would help readers weigh trade-offs. Other than that, there are some points that are not fully explained in the paper:

      (1) The replication in AIBL does not fully match the OASIS results. In AIBL, left-skewed age sampling converges with other strategies as sample size grows, unlike in OASIS. This suggests that skew effects depend on where variability lies across the age span.

      (2) Sex imbalance effects are difficult to interpret, since sex is included only as a fixed effect, and residual age differences may drive some errors.

      (3) In Figure 3, performance drops around n≈300 across conditions. This consistent pattern raises the question of sensitivity to individual samples or sub-sampling strategy.

      (4) The total outlier count (tOC) analysis is interesting but hard to generalize. For example, in AIBL, left-skew sometimes performs slightly better despite a weaker model fit. Clearer guidance on how to weigh model fit versus outlier detection would strengthen the practical message.

      (5) The suggested plateau at n≈200 seems context-dependent. It may be better to frame sample size targets in relation to coverage across age bins rather than as an absolute number.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript "Independent validation of transgenerational inheritance of learned pathogen avoidance in C. elegans" by Akinosho and Vidal-Gadea offers evidence that learned avoidance of the pathogen PA14 can be inherited for at least two generations. In spite of initial preference for the pathogen when exposed in a 'training session', 24 hours of feeding on this pathogen evoked avoidance. The data are robust, replicated in 4 trials, and the authors note that diminished avoidance is inherited in generations F1 and F2.

      Strengths:

      These results contrast with those reported by Gainey et al, who only observed intergenerational inheritance for a single generation. Although the authors' study does not explain why Gainey et el fail to reproduce the Murphy lab results, one possibility is that a difference in a media ingredient could be responsible.

      Comments on revised version:

      The responses to the reviewer comments appear reasonable for the most part.

    1. Reviewer #2 (Public review):

      Summary:

      The authors address a critical problem in olfactory coding. It has long been known that adult neurogenesis, specifically in the form of adult-born granule cells that embed into the existing inhibitory networks on the olfactory bulb, can potentially alter the responses of Mitral/Tufted neurons that project activity to the Piriform Cortex and to other areas of the brain. Fundamentally, it would seem that these granule cells could alter the stability of neural codes in the OB over time. The authors develop a spiking network model to explore how stability can be achieved both in the OB over time and in the PC, which receives inputs. The model recapitulates published activity recordings of M/T cells and shows how activity in different M/T cells from the same glomerulus shifts over time in ways that, in spite of the shift, preserve population/glomerular level codes. However, these different M/T cells fan out onto different pyramidal cells of the PC, which gives rise to instability at that level. STDP then, is necessary to maintain stability at the PC level as long as odor environments remain constant. These results may also apply to a similar neurogenesis-based change in the Dentate Gyrus, which generates instability in CA1/3 regions of the hippocampus

      Strengths:

      A robust network model that untangles important, seemingly contradictory mechanisms that underlie olfactory coding.

      Weaknesses:

      The work is a significant contribution to understanding olfactory coding. But the manuscript would benefit from a brief discussion of why neurogenesis occurs in the first place - e.g., injury, ongoing needs for plasticity, and adapting to turnover of ORNs. There is literature on this topic. It seems counterintuitive to have a process in the MOB (and for that matter in the DG) that potentially disrupts the ability to generate stable codes both in the MOB and PC, and in particular a disruption that requires two different mechanisms - multiple M/T cells per glomerulus in the MOB and STDP in the PC - to counteract.

      Given that neurogenesis has an important function, and a mechanism is in place to compensate for it in the MOB, why would it then be disrupted in fan-out projections to the PC? The answer may lie in the need for fan-out projections so that pyramidal neurons in the PC can combinatorially represent many different inputs from the MOB. So something like STDP would be needed to maintain stability in the face of the need for this coding strategy.

      This kind of discussion, or something like it, would help readers understand why these mechanisms occur in the first place. It is interesting that PC stability requires that odor environments be stable, and that this stability drives PC representational stability. This result suggests experimental work to test this hypothesis. As such, it is a novel outcome of the research.

    1. Reviewer #2 (Public review):

      Summary:

      This article reports measurements of iEEG signals on the rat auditory cortex during cochlear implant or sound stimulation in separate groups of rats. The observations indicate some spatial organization of cochlear implant stimuli, but that is very different from cochlear implants.

      Strengths:

      The study includes interesting analyses of the sound and cochlear implant representation structure based on decoders.

      Weaknesses:

      The observation that responses to cochlear implant stimulation (stimulation) are spatially organized is not new (e.g., Adenis et al. 2024).

      The claim that spatial and temporal dimensions contribute information about the sound is also not new; there is a large literature on this topic. Moreover, the results shown here are extremely weak. They show similar levels of information in the spatial and temporal dimensions, and no synergy between the two dimensions. This is however, likely the consequence of high measurement noise leading to poor accuracy in the information estimates, as the authors state.

      The main claim of the study - the mismatch between cochlear implant and sound representation - is not supported. The responses to each modality are measured in different animals. The authors do not show that they actually can compare representations across animals (e.g., for the same sounds). Without this positive control, there is no reason to think that it is possible to decode from one animal with a decoder trained on another, and the negative result shown by the authors is therefore not surprising.

    1. Reviewer #2 (Public review):

      The authors address a long-standing controversy regarding the functional role of neural oscillations in cortical computations and layer-specific signalling. Several studies have implicated gamma oscillations in bottom-up processing, while lower-frequency oscillations have been associated with top-down signalling. Therefore, the question the authors investigate is both timely and theoretically relevant, contributing to our understanding of feedforward and feedback communication in the brain. This paper presents a novel and complicated data acquisition technique, the application of simultaneous EEG and fMRI, to benefit from both temporal and spatial resolution. A sophisticated data analysis method was executed in order to understand the underlying neural activity during a visual oddball task. Figures are well-designed and appropriately represent the results, which seem to support the overall conclusions. However, some of the claims (particularly those regarding the contribution of gamma oscillations) feel somewhat overstated, as the results offer indeed some significant evidence, but most seem more like a suggestive trend. Nonetheless, the paper is well-written, addresses a relevant and timely research question, introduces a novel and elegant analysis approach, and presents interesting findings. Further investigation will be important to strengthen and expand upon these insights.

      One of the main strengths of the paper lies in the use of a well-established and straightforward experimental paradigm (the visual oddball task). As a result, the behavioural effects reported were largely expected and reassuring to see replicated. The acquisition technique used is very novel, and while this may introduce challenges for data analysis, the authors appear to have addressed these appropriately.

      Later findings are very interesting, and mainly in line with our current understanding of feedback and feedforward signalling. However, the layer weight calculation is lacking in the manuscript. While it is discussed in the methods, it would help to briefly explain in the results how these weights are calculated, so that the reader can better follow what is being interpreted.

      Line 104 states there is one virtual channel per hemisphere for low and high frequencies. It may be helpful to include the number of channels (n=4) in the results section, as specified in the methods. Also, this raises the question of whether a single virtual channel (i.e., voxel) provides sufficient information for reproducibility.

      One area that would benefit from further clarification is the interpretation of gamma oscillations. The evidence for gamma involvement in the observed effects appears somewhat limited. For example, no significant gamma-related clusters were found for the feature-unspecific BOLD signal (Figure 2). Significant effects emerged only when the analysis was restricted to positively responding voxels, and even then, only for the contrast between EEG-coherent and EEG-incoherent conditions in the feature-specific BOLD response. It remains unclear how to interpret this selective emergence of gamma-related effects. Given previous literature linking gamma to feedforward processing, one might expect more robust involvement in broader, feature-unspecific contrasts. The current discussion presents the gamma-related findings with some confidence, and the manuscript would benefit from a more nuanced reflection on why these effects may not have appeared more broadly. The explanation provided in line 230, that restricting the analysis to positively responding voxels may have increased the SNR, is reasonable, but it may not fully account for the absence of gamma effects in V1's feature-unspecific response. Including the actual beta values from Figure 4 in the legend or main text would also help readers better assess the strength and specificity of the reported effects.

      Relating to behavioural findings for underlying neural activity, could the authors test on a trial-by-trial basis how behavioural performance relates to the BOLD signal / oscillatory activity change? Line 305 states that "Since behavioural performance in the present study was consistently high at 94% on average and participants were instructed to respond quickly to potential oddball stimuli, a higher alpha frequency might reflect a more successful stimulus encoding and hence faster and more accurate behavioural performance." Also, this might help to relate the findings to the lower vs upper alpha functionality difference.

      In Figure 4, the EEG alpha specificity plot shows relatively large error bars, and there is visible overlap between the lower and upper alpha in both congruent and incongruent conditions. While upper alpha shows a positive slope across conditions and lower alpha remains flat, the interaction appears to be driven by the change from congruent to incongruent in upper alpha. It is worth clarifying whether the simple effects (e.g., lower vs upper within each condition) were tested, given the visual similarity at the incongruent condition. Overall, the significant interaction (p < 0.001, FDR-corrected) is consistent with diverging trends, but a breakdown of simple effects would help interpret the result more clearly. Was there a significant difference between lower and upper alpha in congruent or incongruent conditions?

      Overall, this study provides a valuable contribution to the literature on oscillatory dynamics and laminar fMRI, though some interpretations would benefit from further clarification or qualification.

    1. Reviewer #2 (Public review):

      Summary:

      This paper addresses an interesting issue: how is the search for a visual target affected by its orientation (and the viewer's) relative to other items in the scene and gravity? The paper describes a series of visual search tasks, using recognizable targets (e.g., a cat) positioned within a natural scene. Reaction times and accuracy at determining whether the target was present or absent, trial-to-trial, were measured as the target's orientation, that of the context, and of the viewer themselves (via rotation in a flight simulator) were manipulated. The paper concludes that search is substantially affected by these manipulations, primarily by the reference frame of gravity, then visual context, followed by the egocentric reference frame.

      Strengths:

      This work is on an interesting topic, and benefits from using natural stimuli in VR / flight simulator to change participants' POV and body position.

      Weaknesses:

      There are several areas of weakness that I feel should be addressed.

      (1) The literature review/introduction seems to be lacking in some areas. The authors, when contemplating the behavioral consequences of searching for a 'rotated' target, immediately frame the problem as one of rotation, per se (i.e., contrasting only rotation-based explanations; "what rotates and in which 'reference frame[s]' in order to allow for successful search?"). For a reader not already committed to this framing, many natural questions arise that are worth addressing.

      1a) Why do we need to appeal to rotation at all as opposed to, say, familiarity? A rotated cat is less familiar than a typically oriented one. This is a long-standing literature (e.g., Wang, Cavanagh, and Green (1994)), of course, with a lot to unpack.

      1b) What are the triggers for the 'corrective' rotation that presumably brings reference frames back into alignment? What if the rotation had not been so obvious (i.e. for a target that may not have a typical orientation, like a hand, or a ball, or a learned, nonsense object?) or the background had not had such clear orientation (like a cluttered non-naturalistic background of or a naturalistic backdrop, but viewed from an unfamiliar POV (e.g., from above) or a naturalistic background, but not all of the elements were rotated)? What, ultimately, is rotated? The entire visual field? Does that mean that searching for multiple targets at different angles of rotation would interfere with one another?

      1c) Relatedly, what is the process by which the visual system comes to know the 'correct' rotation? (Or, alternatively, is 'triggered to realize' that there is a rotation in play?) Is this something that needs to be learned? Is it only learned developmentally, through exposure to gravity? Could it be learned in the context of an experiment that starts with unfamiliar stimuli?

      1d) Why the appeal to natural images? I appreciate any time a study can be moved from potentially too stripped-down laboratory conditions to more naturalistic ones, but is this necessary in the present case? Would the pattern of results have been different if these were typical laboratory 'visual search' displays of disconnected object arrays?

      1e) How should we reconcile rotation-based theories of 'rotated-object' search with visual search results from zero gravity environments (e.g., for a review, see Leone (1998))?

      1f) How should we reconcile the current manipulations with other viewpoint-perspective manipulations (e.g., Zhang & Pan (2022))?

      (2) The presentation/interpretation of results would benefit from more elaboration and justification.

      2a) All of the current interpretations rely on just the RT data. First, the RT results should also be presented in natural units (i.e., seconds/ms), not normalized. As well, results should be shown as violin plots or something similar that captures distribution - a lot of important information is lost when just presenting one 'average' dot across participants. More fundamentally, I think we need to have a better accounting for performance (percent correct or d') to help contextualize the RT results. We should at least be offered some visualization (Heitz, 2014) of the speed accuracy trade-off for each of the conditions. Following this, the authors should more critically evaluate how any substantial SAT trends could affect the interpretation of results.

      2b) Unless I am missing something, the interpretation of the pattern of results (both qualitatively and quantitatively in their 'relative weight' analysis) relies on how they draw their contrasts. For instance, the authors contrast the two 'gravitational' conditions (target 0 deg versus target 90 deg) as if this were a change in a single variable/factor. But there are other ways to understand these manipulations that would affect contrasts. For instance, if one considers whether the target was 'consistent' (i.e., typically oriented) with respect to the context, egocentric, and gravitational frames, then the 'gravitational 0 deg' condition is consistent with context, egocentric view, but inconsistent with gravity. And, the 'gravitational 90 deg' condition, then, is inconsistent with context, egocentric view, but consistent with gravity. Seen this way, this is not a change in one variable, but three. The same is true of the baseline 0 deg versus baseline 90 deg condition, where again we have a change in all three target-consistency variables. The 'one variable' manipulations then would be: 1) baseline 0 versus visual context 0 (i.e., a change only in the context variable); 2) baseline 0 versus egocentric 0 (a change only in the egocentric variable); and 3) baseline 0 versus gravitational 0 (a change only in the gravitational variable). Other contrasts (e.g., gravitational 90 versus context 90) would showcase a change in two variables (in this case, a change in both context and gravity). My larger point is, again, unless I am really missing something, that the choice of how to contrast the manipulations will affect the 'pattern' of results and thereby the interpretation. If the authors agree, this needs to be acknowledged, plausible alternative schemes discussed, and the ultimate choice of scheme defended as the most valid.

      2c) Even with this 'relative weight' interpretation, there are still some patterns of results that seem hard to account for. Primarily, the egocentric condition seems hard to account for under any scheme, and the authors need to spend more time discussing/reconciling those results.

      2d) Some results are just deeply counterintuitive, and so the reader will crave further discussion. Most saliently for me, based on the results of Experiment 2 (specifically, the fact that gravitational 90 had better performance than gravitational 0), designers of cockpits should have all gauges/displays rotate counter to the airplane so that they are always consistent with gravity, not the pilot. Is this indeed a fair implication of the results?

      2e) I really craved some 'control conditions' here to help frame the current results. In keeping with the rhetorical questions posed above in 1a/b/c/d, if/when the authors engage with revisions to this paper, I would encourage the inclusion of at least some new empirical results. For me the most critical would be to repeat some core conditions, but with a symmetric target (e.g. a ball) since that would seem to be the only way (given the current design) to tease out nuisance confounding factors such as, say, the general effect of performing search while sideways (put another way, the authors would have to assume here that search (non-normalized RT's and search performance) for a ball-target in the baseline condition would be identical to that in the gravitational condition.)

    1. Reviewer #2 (Public review):

      Summary:

      In this work, the authors recruited a large sample of participants to complete two well-established paradigms: the predictive inference task and the volatile reversal learning task. With this dataset, they not only replicated several classical findings on uncertainty-based learning from previous research but also demonstrated that individual differences in learning behavior are not systematically associated with internalizing psychopathology. These results provide valuable large-scale evidence for this line of research.

      Strengths:

      (1) Use of two different tasks.

      (2) Recruitment of a large sample of participants.

      (3) Inclusion of multiple experiments with different conditions, demonstrating strong scientific rigor.

      Weaknesses:

      Below are questions rather than 'weaknesses':

      (1) This study uses a large human sample, which is a clear strength. However, was the study preregistered? It would also be useful to report a power analysis to justify the sample size.

      (2) Previous studies have tested two core hypotheses: (a) that internalizing psychopathology is associated with overall higher learning rates, and (b) that it is associated with learning rate adaptation. In the first experiment, the findings seem to disconfirm only the first hypothesis. I found it unclear how, in the predator task, participants were expected to adjust their learning rate to adapt to volatility. Could the authors clarify this point?

      (3) According to the Supplementary Information, Model 13 showed the best fit, yet the authors selected Model 12 due to the larger parameter variance in Model 13. What would the results of Model 13 look like? Furthermore, do Models 12 and 13 correspond to the optimal models identified by Gagne et al. (2020)? Please clarify.

      (4) In the Discussion, the authors addressed both task reliability and parameter reliability. However, the term reliability seems to be used differently in these two contexts. For example, good parameter recovery indicates strong reliability in one sense, but can we then directly equate this with parameter reliability? It would be helpful to define more precisely what is meant by reliability in each case.

      (5) The Discussion also raises the possibility that limited reliability may represent a broader challenge facing the interdisciplinary field of computational psychiatry. What, in the authors' view, are the key future directions for the field to mitigate this issue?

    1. Reviewer #2 (Public review):

      Summary:

      The authors present MerQuaCo, a computational tool for quality control in image-based spatial transcriptomic, especially MERSCOPE. They assessed MerQuaCo on 641 slides that are produced in their institute in terms of the ratio of imperfection, transcript density, and variations of quality by different planes (x-axis).

      Strengths:

      This looks to be a valuable work that can be a good guideline of quality control in future spatial transcriptomics. A well-controlled spatial transcriptomics dataset is also important for the downstream analysis.

      Weaknesses:

      The results section needs to be more structured.

    1. Reviewer #3 (Public review):

      Summary:

      MerQuaCo is an open-source computational tool developed for quality control in image-based spatial transcriptomics data, with a primary focus on data generated by the Vizgen MERSCOPE platform. The authors analyzed a substantial dataset of 641 fresh-frozen adult mouse brain sections to identify and quantify common imperfections, aiming to replace manual quality assessment with an automated, objective approach, providing standardized data integrity measures for spatial transcriptomics experiments.

      Strengths:

      The manuscript's strengths lie in its timely utility, rigorous empirical validation, and practical contributions to methodology and biological discovery in spatial transcriptomics.

      Weaknesses:

      While MerQuaCo demonstrates utility in large datasets and cross-platform potential, its generalizability and validation are currently limited by the availability of sufficient datasets from non-MERSCOPE platforms and non-brain tissues. The evaluation of data imperfections' impact on downstream analyses beyond cell typing (e.g., differential expression, spatial statistics, and cell-cell interactions) is also constrained by space and scope. However, these represent valuable directions for future work as more datasets become available.

    1. Reviewer #2 (Public review):

      Summary:

      This valuable work aims to infer, from microbiome data, microbial species interaction patterns associated with healthy and unhealthy human gut microbiomes. Using solid techniques from statistical physics, the authors propose that healthy and unhealthy microbiome interaction patterns substantially differ. Unhealthy microbiomes are closer to instability and single-strain dominance; whereas healthy microbiomes showcase near-neutral dynamics, mostly driven by demographic noise and immigration.

      Strengths:

      This is a well-written article, relatively easy to follow and transparent despite the high degree of technicality of the underlying theory. The authors provide a powerful inferring procedure, which bypasses the issue of having only compositional data. This work shows that embracing the complexity of microbial systems can be used to our advantage, instead of being an insurmountable obstacle. This is a powerful counterpoint to the classic reductionist view that pushes researchers to study much simpler systems, and only hope to one day scale up their findings.

      Weaknesses:

      As acknowledged by the authors themselves, this is only a proof of concept. Further research is to better understand the dynamical nature of gut-microbiomes. The authors do however point at ways in which species abundance distributions could be better reproduced by dynamical models. They also suggest that they work could explain prior empirical findings invoking the "Anna Karenina principle", where healthy microbiomes resemble one another, but disease states tend to all differ.

    1. Reviewer #2 (Public review):

      Summary:

      This article presents a study on a mutant form of RNA polymerase I (RNAPI) in yeast, referred to as SuperPol, which demonstrates increased rRNA production compared to the wild-type enzyme. While rRNA production levels are elevated in the mutant, RNAPI occupancy as detected by CRAC is reduced at the 5' end of rDNA transcription units. The authors interpret these findings by proposing that the wild-type RNAPI pauses in the external transcribed spacer (ETS), leading to premature transcription termination (PTT) and degradation of truncated rRNAs by the RNA exosome (Rrp6). They further show that SuperPol's enhanced activity is linked to a lower frequency of PTT events, likely due to altered elongation dynamics and reduced RNA cleavage activity, as supported by both in vivo and in vitro data.

      The study also examines the impact of BMH-21, a drug known to inhibit Pol I elongation, and shows that SuperPol is less sensitive to this drug, as demonstrated through genetic, biochemical, and in vivo approaches. The authors show that BMH-21 treatment induces premature termination in wild-type Pol I, but only to a lesser extent in SuperPol. They suggest that BMH-21 promotes termination by targeting paused Pol I complexes and propose that PTT is an important regulatory mechanism for rRNA production in yeast.

      The data presented are of high quality and support the notion that 1) premature transcription termination occurs at the 5' end of rDNA transcription units; 2) SuperPol has an increased elongation rate with reduced premature termination; and 3) BMH-21 promotes both pausing and termination. The authors employ several complementary methods, including in vitro transcription assays. These results are significant and of interest for a broad audience.

      Adding experiments in different growth conditions to support the claim of regulation by PTT (as the authors propose) will also be an important addition. The revisions further support the claim, with in particular the notion that increased elongation rate of superpol occurs at the expense of fidelity.

      Significance:

      These results are significant and of interest for a basic research audience.

    1. Reviewer #2 (Public review):

      Summary:

      The author proposes a novel method for mapping single-cell data to specific locations with higher resolution than several existing tools.

      Strengths:

      The spatial mapping tests were conducted on various tissues, including the mouse cortex, human PDAC, and intestinal villus.

      Comments on revised version:

      The authors have sufficiently addressed all of my comments.

    1. Reviewer #3 (Public review):

      Summary:

      In this study, the authors perform multimodal single-cell transcriptomic and epigenomic profiling of 9,394 mouse TM cells, identifying three transcriptionally distinct TM subtypes with validated molecular signatures. TM1 cells are enriched for extracellular matrix genes, TM2 for secreted ligands supporting Schlemm's canal, and TM3 for contractile and mitochondrial/metabolic functions. The transcription factor LMX1B, previously linked to glaucoma, shows the highest expression in TM3 cells and appears to regulate mitochondrial pathways. In Lmx1bV265D mutant mice, TM3 cells exhibit transcriptional signs of mitochondrial dysfunction associated with elevated IOP. Notably, vitamin B3 treatment significantly mitigates IOP elevation, suggesting a potential therapeutic avenue.<br /> This is an excellent and collaborative study involving investigators from two institutions, offering the most detailed single-cell transcriptomic and epigenetic profiling of the mouse limbal tissues-including both TM and Schlemm's canal (SC), from wild-type and Lmx1bV265D mutant mice. The study defines three TM subtypes and characterizes their distinct molecular signatures, associated pathways, and transcriptional regulators. The authors also compare their dataset with previously published murine and human studies, including those by Van Zyl et al., providing valuable cross-species insights.

      Strengths:

      (1) Comprehensive dataset with high single-cell resolution

      (2) Use of multiple bioinformatic and cross-comparative approaches

      (3) Integration of 3D imaging of TM and SC for anatomical context

      (4) Convincing identification and validation of three TM subtypes using molecular markers.

      Weaknesses:

      (1) Insufficient evidence linking mitochondrial dysfunction to TM3 cells in Lmx1bV265D mice: While the identification of TM3 cells as metabolically specialized and Lmx1b-enriched is compelling, the proposed link between Lmx1b mutation and mitochondrial dysfunction remains underdeveloped. It is unclear whether mitochondrial defects are a primary consequence of Lmx1b-mediated transcriptional dysregulation or a secondary response to elevated IOP. Although authors have responded to this, the manuscript is not sufficiently altered to address these points. I would like to suggest that authors tone down mitochondrial connection with Lmx1b from the title and abstract, and clearly discuss that these events are associated, and future work is needed to dissect the role of mitochondria in this pathway.<br /> Furthermore, the protective effects of nicotinamide (NAM) are interpreted as evidence of mitochondrial involvement, but no direct mitochondrial measurements (e.g., immunostaining, electron microscopy, OCR assays) are provided. It is essential to validate mitochondrial dysfunction in TM3 cells using in vivo functional assays to support the central conclusion of the paper. Without this, the claim that mitochondrial dysfunction drives IOP elevation in Lmx1bV265D mice remains speculative. Alternatively, authors should consider revising their claims that mitochondrial dysfunction in these mice is a central driver of TM dysfunction.

      (2) Mechanism of NAM-mediated protection is unclear: The manuscript states that NAM treatment prevents IOP elevation in Lmx1bV265D mice via metabolic support, yet no data are shown to confirm that NAM specifically rescues mitochondrial function. Do NAM-treated TM3 cells show improved mitochondrial integrity? Are reactive oxygen species (ROS) reduced? Does NAM also protect RGCs from glaucomatous damage? Addressing these points would clarify whether the therapeutic effects of NAM are indeed mitochondrial.

    1. Reviewer #2 (Public review):

      Summary:

      The authors found that cGAS, a DNA sensor, relocalizes to organelle membranes (ER, Golgi, endosomes) upon DNA stimulation, revealing spatial regulation of its activity. ZDHHC18 and MARCH8 recruit cGAS to Golgi/endosomes via intrinsically disordered regions (IDRs), driving phase-separated condensates. This sequestration of cGAS-dsDNA complexes suppresses innate immune signaling, uncovering a novel regulatory mechanism.

      Strengths:

      The work overall is very interesting. The authors provided molecular and biochemical evidence.

      Weaknesses:

      Overall, the work is very interesting. However, the quality of some of the data does need to be improved, and more experiments need to be performed.

      The following points need to be addressed:

      (1) In Figure S7, no direct binding between cGAS and MARCH8 or ZD18 IDR is observed, and the interaction only occurs after DNA stimulation. However, Figure 5 shows cGAS recruitment to ZD18 or MARCH8 IDR droplets, suggesting direct interactions. This apparent discrepancy should be clarified.

      (2) The authors propose that recruiting cGAS to organelle membranes reduces its activity, as demonstrated by the FKBP experiment. However, ZD18 and MARCH8 also post-translationally modify cGAS. Do both mechanisms contribute to this effect, and can the authors test this?

      (3) To demonstrate the functional importance of MEMCA, the authors should test IFN production or STING activation in cells.

      (4) Does the IDR of MARCH8 or ZD18 influence the interaction between cGAS and DNA?

      (5) Which region of cGAS does the IDR of MARCH8 or ZD18 interact with: the cGAS-CD or the cGAS-N-terminus?

      (6) The in vitro LLPS experiments with cGAS, DNA, and ZD18/MARCH8 should be conducted under physiological conditions.

    1. Reviewer #2 (Public review):

      Summary:

      This study provides a library of RNA sequencing analysis from brown fat, liver, and white fat of mice treated with two stressors - cold challenge and methionine restriction - alone and in combination (interaction between diet and temperature). They characterize the physiologic response of the mice to the stressors, including effects on weight, food intake, and metabolism. This paper provides evidence that while both stressors increase energy expenditure, there are complex tissue-specific responses in gene expression, with additive, synergistic, and antagonistic responses seen in different tissues.

      Strengths:

      The study design and implementation are solid and well-controlled. Their writing is clear and concise. The authors do an admirable job of distilling the complex transcriptome data into digestible information for presentation in the paper. Most importantly, they do not overreach in their interpretation of their genomic data, keeping their conclusions appropriately tied to the data presented. The discussion is well thought out and addresses some interesting points raised by their results.

      Weaknesses:

      The major weakness of the paper is the almost complete reliance on RNA sequencing data, but it is presented as a transcriptomic resource.

    1. Reviewer #2 (Public review):

      Summary:

      The study demonstrates that CRISPR-Sirius provides a powerful approach to investigating chromosome dynamics in living cells during environmental stress. By focusing on serum starvation, the authors show that this process induces global nuclear changes, including a reduction in nuclear area and increased morphological dynamism, while at the same time driving specific reorganization of chromosome 1. Chromosome 1 relocates toward the nuclear periphery and displays distinctive patterns of motion, maintaining overall motility but punctuated by occasional long-distance displacements, particularly near the nuclear envelope. Importantly, the analysis reveals that homologous copies of chromosome 1 do not behave uniformly: peripheral loci become more mobile and responsive to starvation, whereas central homologs remain comparatively stable, often associated with nucleolar subcompartments. By integrating live imaging with machine learning and explainable AI analysis, the study highlights the complexity of nuclear organization and provides valuable insights into how chromosome-specific and locus-specific responses to stress are orchestrated within the three-dimensional nuclear landscape.

      Strengths:

      The study uses live-cell imaging to investigate the dynamics of loci during starvation. Live-cell tracking and data interpretation are carried out using machine learning and AI models, which is a major strength.

      Weaknesses:

      The manuscript is at times difficult to follow, partly because the methodological descriptions are highly specialized, especially for non-expert biologists. In addition, the observations are not tested for a mechanistic basis. Experiments that could provide deeper insights are missing, for example, why chromosome 1 moves, why the peripheral homologue dislocates, or why a "long jump" is observed at the periphery even though the speed of the loci does not change. It is also unclear whether a displacement of 0.5 μm is functionally meaningful.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript by Hosack and Arce-McShane examines the directional tuning of neurons in macaque primary motor (MIo) and somatosensory (SIo) cortex. The neural basis of tongue control is far less studied than, for example, forelimb movements, partly because the tongue's kinematics and kinetics are difficult to measure. A major technical advantage of this study is using biplanar video-radiography, processed with modern motion tracking analysis software, to track the movement of the tongue inside the oral cavity. Compared to prior work, the behaviors are more naturalistic behaviors (feeding and licking water from one of three spouts), although the animals were still head-fixed.

      The study's main findings are that:

      • A majority of neurons in MIo and a (somewhat smaller) percentage of SIo modulated their firing rates during tongue movements, with different modulation depending on the direction of movement (i.e., exhibited directional tuning). Examining the statistics of tuning across neurons, there was anisotropy (e.g., more neurons preferring anterior movement) and a lateral bias in which tongue direction neurons preferred that was consistent with the innervation patterns of tongue control muscles (although with some inconsistency between monkeys).<br /> • Consistent with this encoding, tongue position could be decoded with moderate accuracy even from small ensembles of ~28 neurons.<br /> • There were differences observed in the proportion and extent of directional tuning between the feeding and licking behaviors, with stronger tuning overall during feeding. This potentially suggests behavioral context-dependent encoding.<br /> • The authors then went one step further and used a bilateral nerve block to the sensory inputs (trigeminal nerve) from the tongue. This impaired the precision of tongue movements and resulted in an apparent reduction and change in neural tuning in Mio and SIo.

      Strengths:

      The data are difficult to obtain and appear to have been rigorously measured, and provide a valuable contribution to this under-explored subfield of sensorimotor neuroscience. The analyses adopt well-established methods especially from the arm motor control literature, and represent a natural starting point for characterizing tongue 3D direction tuning.

      Weaknesses:

      There are alternative explanations from some of the interpretations, but those interpretations are described in a way that clearly distinguishes results from interpretations, and readers can make their own assessments. Some of these limitations are described in more detail below.

      One weakness of the current study is that there is substantial variability in some of the results between monkeys, including the tuning characteristics of primary somatosensory cortex neurons during drinking, and the effect of nerve block on tongue movements and the associated changes in single neuron tuning.

      This study focuses on describing directional tuning using the preferred direction (PD) / cosine tuning model popularized by Georgopoulous and colleagues for understanding neural control of arm reaching in the 1980s. This is a reasonable starting point and a decent first order description of neural tuning. However, the arm motor control field has moved far past that viewpoint, and in some ways an over-fixation on static representational encoding models and PDs held that field back for many years. The manuscript benefit from drawing the readers' attention (perhaps in their Discussion) that PDs are a very simple starting point for characterizing how cortical activity relates to kinematics, but that there is likely much richer population-level dynamical structure and that a more mechanistic, control-focused analytical framework may be fruitful. A good review of this evolution in the arm field can be found in Vyas S, Golub MD, Sussillo D, Shenoy K. 2020. Computation Through Neural Population Dynamics. Annual Review of Neuroscience. 43(1):249-75. A revised version of the manuscript incorporates more population-level analyses, but with inconsistent use of quantifications/statistics and without sufficient contextualization of what the reader is to make of these results.

      The described changes in tuning after nerve block could also be explained by changes in kinematics between these conditions, which temper the interpretation of these interesting results.

      I am not convinced of the claim that tongue directional encoding fundamentally changes between drinking and feeding given the dramatically different kinematics and the involvement of other body parts like the jaw (e.g., the reference to Laurence-Chasen et al. 2023 just shows that there is tongue information independent of jaw kinematics, not that jaw movements don't affect these neurons' activities). I also find the nerve block results inconsistent (more tuning in one monkey, less in the other?) and difficult to really learn something fundamental from, besides that neural activity and behavior both change - in various ways - after nerve block (not at all surprising but still good to see measurements of).

      The manuscript states that "Our results suggest that the somatosensory cortex may be less involved than the motor areas during feeding, possibly because it is a more ingrained and stereotyped behavior as opposed to tongue protrusion or drinking tasks". An alternative explanation be more statistical/technical in nature: that during feeding, there will be more variability in exactly what somatosensation afferent signals are being received from trial to trial (because slight differences in kinematics can have large differences in exactly where the tongue is and the where/when/how of what parts of it are touching other parts of the oral cavity)? This variability could "smear out" the apparent tuning using these types of trial-averaged analyses. Given how important proprioception and somatosensation are for not biting the tongue or choking, the speculation that somatosensory cortical activity is suppressed during feedback is very counter-intuitive to this reviewer. In the revised manuscript the authors note these potential confounds and other limitations in the Discussion.

    1. Reviewer #2 (Public review):

      Summary:

      Nanodiscs and synthesized EGFR are co-assembled directly in cell-free reactions. Nanodiscs containing membranes with different lipid compositions are obtained by providing liposomes with corresponding lipid mixtures in the reaction. The authors focus on the effects of lipid charge and fluidity on EGFR activity.

      Strengths:

      The authors implement a variety of complementary techniques to analyze data and to verify results. They further provide a new pipeline to study lipid effects on membrane protein function.

      Weaknesses:

      Due to the relative novelty of the approach, a number of concerns remain.

      (1) I am a little skeptical about the good correlation of the nanodisc compositions with the liposome compositions. I would rather have expected a kind of clustering of individual lipid types in the liposome membrane, in particular of cholesterol. This should then result in an uneven distribution upon nanodisc assembly, i.e., in a notable variation of lipid composition in the individual nanodiscs. Could this be ruled out by the implemented assays, or can just the overall lipid composition of the complete nanodisc fraction be analyzed?

      (2) Both templates have been added simultaneously, with a 100-fold excess of the EGFR template. Was this the result of optimization? How is the kinetics of protein production? As EGFR is in far excess, a significant precipitation, at least in the early period of the reaction, due to limiting nanodiscs, should be expected. How is the oligomeric form of the inserted EGFR? Have multiple insertions into one nanodisc been observed?

      (3) The IMAC purification does not discriminate between EGFR-filled and empty nanodiscs. Does the TEM study give any information about the composition of the particles (empty, EGFR monomers, or EGFR oligomers)? Normalizing the measured fluorescence, i.e., the total amount of solubilized receptor, with the total protein concentration of the samples could give some data on the stoichiometry of EGFR and nanodiscs.

      (4) The authors generally assume a 100% functional folding of EGFR in all analyzed environments. While this could be the case, with some other membrane proteins, it was shown that only a fraction of the nanodisc solubilized particles are in functional conformation. Furthermore, the percentage of solubilized and folded membrane protein may change with the membrane composition of the supplied nanodiscs, while non-charged lipids mostly gave rather poor sample quality. The authors normalize the ATP binding to the total amount of detectable EGFR, and variations are interpreted as suppression of activity. Would the presence of unfolded EGFR fractions in some samples with no access to ATP binding be an alternative interpretation?

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript by Beirowski, Huang, and Babetto revisits the proposed role of Death Receptor 6 (DR6/Tnfrsf21) in Wallerian degeneration (WD). A prior study (Gamage et al., 2017) suggested that DR6 deletion delays axon degeneration and alters Schwann cell responses following peripheral nerve injury. Here, the authors comprehensively test this claim using two DR6 knockout mouse models (the line used in the earlier report plus a CMV-Cre derived floxed ko line) and multiple WD assays in vivo and in vitro, aligned with three positive controls, Sarm1 WldS and Phr1/Mycbp2 mutants. Contrary to the prior findings, they find no evidence that DR6 deletion affects axon degeneration kinetics or Schwann cell dynamics (assessed by cJun expression or [intact+degenerating] myelin abundance after injury) during WD. Importantly, in DRG explant assays, neurites from DR6-deficient mice degenerated at rates indistinguishable from controls. The authors conclude that DR6 is dispensable for WD, and that previously reported protective effects may have been due to confounding factors such as genetic background or spontaneous mutations.

      Strengths:

      The authors employ two independently generated DR6 knockout models, one overlapping with the previously published study, and confirm loss of DR6 expression by qPCR and Western blotting.<br /> Multiple complementary readouts of WD are applied (structural, ultrastructural, molecular, and functional), providing a robust test of the hypothesis.

      Comparisons are drawn with established positive controls (WldS, SARM1, Phr1/Mycbp2 mutants), reinforcing the validity of the assays.

      By directly addressing an influential but inconsistent prior report, the manuscript clarifies the role of DR6 and prevents potential misdirection of therapeutic strategies aimed at modulating WD in the PNS. The discussion thoughtfully considers possible explanations for the earlier results, including colony-specific second-site mutations that could explain the incomplete penetrance of the earlier reported phenotype of only 36%.

      Weaknesses:

      (1) The study focuses on peripheral nerves. The manuscript frequently refers to CNS studies to argue for consistency with their findings. It would be more accurate to frame PNS/CNS similarities as reminiscences rather than as consistencies (e.g., line 205ff in the Discussion).

      (2) The DRG explant assays are convincing, though the slight acceleration of degeneration in the DR6 floxed/Cre condition is intriguing (Figure 4E). Could the authors clarify whether this is statistically robust or biologically meaningful?

      (3) In the summary (line 43), the authors refer to Hu et al. (2013) (reference 5) as the study that previously reported AxD delay and SC response alteration after injury. However, this study did not investigate the PNS, and I believe the authors intended to reference Gamage et al. (2017) (reference 10) at this point.

      (4) In line 74ff of the results section, the authors claim that developmental myelination is not altered in DR6 mutants at postnatal day 1. However, the variability in Figure S2 appears substantial, and the group size seems underpowered to support this claim. Colombo et al. (2018) (reference 11) reported accelerated myelination at P1, but this study likewise appears underpowered. Possible reasons for these discrepancies and the large variability could be that only a defined cross-sectional area was quantified, rather than the entire nerve cross-section.

      (5) The authors stress the data of Gamage et al. (2017) on altered SC responses in DR6 mutants after injury. They employed cJun quantification to show that SC reprogramming after injury is not altered in DR6 mutants. This approach is valid and the conclusion trustworthy. Here, the addition of data showing the combined abundance of intact and degenerated myelin does not add much insight. However, Gamage et al. (2017) reported altered myelin thickness in a subset of axons at 14 days after injury, which is considerably later than the time points analyzed in the present study. While, in the Reviewer's view, the thin myelin observed by Gamage et al. in fact resembles remyelination, the authors may wish to highlight the difference in the time points analyzed.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript reports all-atom molecular dynamics simulations on the outer membrane of Mycobacterium tuberculosis. This is the first all-atom MD simulation of the MTb outer membrane and complements the earlier studies, which used coarse-grained simulation.

      Strengths:

      The simulation of the outer membrane consisting of heterogeneous lipids is a challenging task, and the current work is technically very sound.

      The observation about membrane heterogeneity and ordered inner leaflets vs disordered outer leaflets is a novel result from the study. This work will also facilitate other groups to work on all-atom models of mycobacterial outer membrane for drug transport, etc.

      Weaknesses:

      Beyond a challenging simulation study, the current manuscript only provides qualitative explanations on the unusual membrane structure of MTb and does not demonstrate any practical utility of the all-atom membrane simulation. It will be difficult for the general biology community to appreciate the significance of the work, based on the manuscript in its current form, because of the high content of technical details and limited evidence on the utility of the work.

      Major Points:

      (1) The simulation by Basu et al (Phys Chem Chem Phys 2024) has studied drug transports through mycolic acid monolayers. Since the authors of the current study have all atom models of MTb outer membrane, they should carry out drug transport simulations and compare them to the outer membranes of other bacteria through which drugs can permeate. In the current manuscript, it is only discussed in lines 388-392. Can the disruption of MA cyclopropanation be simulated to show its effect on membrane structure ?

      (2) In line 277, the authors mention about 6 simulations which mimic lipid knockout strains. The results of these simulations, specifically the outcomes of in silico knockout of lipids, are not described in detail.

      (3) Figure 5 shows PDIM and PAT-driven lipid redistribution, which is a significant novel observation from the study. However, comparison of 3B and 3D shows that at 313K, the movement of the PDIM head group is much less. Since MD simulations are sensitive to random initial seeds, repeated simulations with different random seeds and initial structures may be necessary.

      (4) As per Figure 1, in the initial structure, the head group of PAT should be on the membrane surface, similar to TDM and TMM, while PDIM is placed towardsthe interior of the outer membrane. However, Figure 5 shows that at t=0, PAT has the same Z position as PDIM. It will be necessary to provide Z-position Figures for TMM and TDM to understand the difference. Is it really dependent on the chemical structure of the lipid moiety or the initial position of the lipid in the bilayer at the beginning of the simulation?

      Minor Point:

      In view of the complexity of the system undertaken for the study, the manuscript in its current form may not be informative for readers who are not experts in molecular simulations.

    1. Reviewer #2 (Public review):

      This manuscript describes the use of a powerful technique called microfluidics to elucidate the mechanisms explaining how overexpression (OE) of Ssd1 and caloric restriction (CR) in yeast extend replicative lifespan (RLS). Microfluidics measures RLS by trapping cells in chambers mounted to a slide. The chambers hold the mother cell but allow daughters to escape. The slide, with many chambers, is recorded during the entire process, roughly 72 hours, with the video monitored afterwards to count how many daughters each of the trapped mothers produces. The power of the method is what can be done with it. For example, the entire process can be viewed by fluorescence so that GFP and mCherry-tagged proteins can be followed as cells age. The budding yeast is the only model where bona fide replicative aging can be measured, and microfluidics is the only system that allows protein localization and levels to be measured in a single cell while aging. The authors do a wonderful job of showing what this combination of tools can do.

      The authors had previously shown that Ssd1, an mRNA-binding protein, extends RLS when overexpressed. This was attributed to Ssd1 sequestering away specific mRNAs under stress, likely leading to reduced ribosomal function. It remained completely unknown how Ssd1 OE extended RLS. The authors observed that overexpressed, but not normally expressed, Ssd1 formed cytoplasmic condensates during mitosis that are resolved by cytokinesis. When the condensates fail to be resolved at the end of mitosis, this signals death.

      It has become clear in the literature that iron accumulation increases with age within the cell. The transcriptional programs that activate the iron regulon also become elevated in aging cells. This is thought to be due to impaired mitochondrial function in aging cells, with increased iron accumulation as an attempt at restoring mitochondrial activity. The authors show that Ssd1 OE and CR both reduce the expression of the iron regulon. The data presented indicate that iron accumulation shortens RLS: deletion of iron regulon components extends RLS, and adding iron to WT cells decreases RLS, but not when Ssd1 is overexpressed or when cells are calorically restricted. Interestingly, iron chelation using BPS has no impact on WT RLS, but decreases the elevated RLS in CR cells and cells overexpressing Ssd1. It was not initially clear why iron chelation would inhibit the extended lifespan seen with CR and Ssd1 OE. This was addressed by an experiment where it was shown that the iron regulon is induced (FIT2 induction) when iron is chelated. Thus, the detrimental effects of induction of the iron regulon by BPS and iron accumulation on RLS cannot be tempered by Ssd1 OE and CR once turned on.

      I did not find any weaknesses to be addressed in this paper. The draft was well-written, and the extensive experimentation was well-designed, performed, and controlled. However, I did make minor comments that I recommend the authors address:

      (1) Why would BPS not reduce RLS in WT cells? The authors could test whether OE of FIT2 reduces RLS in WT cells.

      (2) The authors should add a brief explanation for why the GDP1 promoter was chosen for Ssd1 OE.

      (3) On page 12, growth to saturation was described as glucose starvation. This is more accurately described as nutrient deprivation. Referring to it as glucose starvation is akin to CR, which growing to saturation is not. Ssd1 OE formed condensates upon saturation but not in CR. Why do the authors think Ssd1 OE did not form condensates upon CR? Too mild a stress?

      (4) The authors conclude that the main mechanism for RLS extension in CR and Ssd1 OE is the inhibition of the iron regulon in aging cells. The data certainly supports this. However, this may be an overstatement as other mutations block CR, such as mutations that impair respiration. The authors do note that induction of the iron regulon in aging cells could be a response to impaired mitochondrial function. Thus, it seems that the main goal of CR and Ssd1 OE may be to restore mitochondrial function in aging cells, one way being inactivation of the iron regulon. A discussion of how other mutations impact CR would be of benefit.

      (5) The cell cycle regulation of Ssd1 OE condensates is very interesting. There does not appear to be literature linking Ssd1 with proteasome-dependent protein turnover. Many proteins involved in cell cycle regulation and genome stability are regulated through ubiquitination. It is not necessary to do anything here about it, but it would be interesting to address how Ssd1 condensates may be regulated with such precision.

      (6) While reading the draft, I kept asking myself what the relevance to human biology was. I was very impressed with the extensive literature review at the end of the discussion, going over how well conserved this strategy is in yeast with humans. I suggest referring to this earlier, perhaps even in the abstract. This would nail down how relevant this model is for understanding human longevity regulation.

      In conclusion, I enjoyed reading this manuscript, describing how Ssd1 OE and CR lead to RLS increases, using different mechanisms. However, since the 2 strategies appear to be using redundant mechanisms, I was surprised that synergism was not observed.

    1. Reviewer #2 (Public review):

      Summary:

      In this work, the authors investigate the role of fluid flow in shaping the colony size of a freshwater cyanobacterium Microcystis. To do so, they have created a novel assay by combining a rheometer with a bright field microscope. This allows them to exert precise shear forces on cyanobacterial cultures and field samples, and then quantify the effect of these shear forces on the colony size distribution. Shear force can affect the colony size in two ways: reducing size by fragmentation and increasing size by aggregation. They find limited aggregation at low shear rates, but high shear forces can create erosion-type fragmentation: colonies do not break in large pieces, but many small colonies are sheared off the large colonies. Overall, bacterial colonies from field samples seem to be more inert to shear than laboratory cultures, which the authors explain in terms of enhanced intercellular adhesion mediated by secreted polysaccharides.

      Strengths:

      • This study is timely, as cyanobacterial blooms are an increasing problem in freshwater lakes. They are expected to increase in frequency and severeness because of rising temperatures, and it is worthwhile learning how these blooms are formed. More generally, how physical aspects such as flow and shear influence colony formation is often overlooked, at least in part because of experimental challenges. Therefore, the method developed by the authors is useful and innovative, and I expect applications beyond the presented system here.

      • A strong feature of this paper is the highly quantitative approach, combining theory with experiments, and the combination of laboratory experiments and field samples.

      Weaknesses:

      • Especially the introduction seems to imply that shear force is a very important parameter controlling colony formation. However, if one looks at the results this effect is overall rather modest, especially considering the shear forces that these bacterial colonies may experience in lakes. The main conclusion seems that not shear but bacterial adhesion is the most important factor in determining colony size. The writing could have done more justice to the fact that the importance of adhesion had been described elsewhere. This being said, the same method can be used to investigate systems where shear forces are biologically more relevant.
    1. Reviewer #2 (Public review):

      Summary:

      The article by Waleed et al discusses the self-organization of actin cytoskeleton using the theory of active nematics. Linear stability analysis of the governing equations and computer simulations show that the system is unstable to density fluctuations and self-organized structures can emerge.

      Strengths:

      (i) Analytical calculations complemented with simulations (ii) Theory for cytoskeletal network

      Weaknesses:

      Not placed in the context or literature on active nematics.

      Comments on revised version:

      The authors have satisfactorily responded to the comments

    1. Reviewer #2 (Public review):

      Summary:

      The authors report the generation and validation of new knock-in mouse lines enabling precise targeting of basal ganglia projection neurons and midbrain dopamine neurons. By inserting recombinase sequences at endogenous loci, they provide tools that improve on older BAC-based models, with the additional benefit that all lines are openly available through Jackson Laboratories. This work is timely, fills a longstanding gap for the community, and will support both basic circuit mapping and disease-related research.

      Strengths:

      The major strength of this study is the provision of new genetic resources that will be widely used by the basal ganglia and dopamine research communities. Anatomical and electrophysiological data indicate appropriate expression and preserved intrinsic properties. The Flp lines, in particular, show labeling largely confined to basal ganglia circuits, making them especially attractive for circuit-based studies. A further strength is the use of a T2A-recombinase insertion at the native gene stop codon, which preserves endogenous regulation and maintains near-physiological expression of Adora2a, Drd1a, and DAT. The availability of both Cre and Flp versions enables powerful intersectional strategies, and open distribution through Jackson Laboratories ensures broad accessibility and long-term value.

      Weaknesses:

      The major limitation is the discrepancy between Cre and Flp lines, with Cre generally driving broader expression than Flp. This raises concerns about anatomical fidelity that require validation at the cellular level. For the DAT-FlpO line, efficiency remains insufficiently quantified, and higher-resolution co-labeling with TH immunostaining is needed. Electrophysiological comparisons between Cre and Flp versions are also incomplete; current data suggest potential physiological differences, which warrant additional statistical testing and, at a minimum, explicit discussion in the manuscript.

    1. Reviewer #2 (Public review):

      Summary

      Briola and co-authors have performed a structural analysis of the human CTF18 clamp loader bound to PCNA. The authors purified the complexes and formed a complex in solution. They used cryo-EM to determine the structure to high resolution. The complex assumed an auto-inhibited conformation, where DNA binding is blocked, which is of regulatory importance and suggests that additional factors could be required to support PCNA loading on DNA. The authors carefully analysed the structure and compared it to RFC and related structures.

      Strength & Weakness

      Their overall analysis is of high quality, and they identified, among other things, a human-specific beta-hairpin in Ctf18 that flexible tethers Ctf18 to Rfc2-5. Indeed, deletion of the beta-hairpin resulted in reduced complex stability and a reduction in a primer extension assay with Pol ε. Moreover, the authors identify that the Ctf18 ATP-binding domain assumes a more flexible organisation.

      The data are discussed accurately and relevantly, which provides an important framework for rationalising the results.

      All in all, this is a high-quality manuscript that identifies a key intermediate in CTF18-dependent clamp loading.

      Comments on revisions:

      The authors have done a nice job with the revision.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript by Kumar and Zhang presents compelling evidence that Edc3 and Scd6 decapping activators, present a high degree of redundancy that can only be overcome by double mutants of both. In addition, the authors provide strong evidence for their role in regulating starvation-induced pathways as evidenced by measurements of mitochondrial membrane potential, metabolomics and analysis of the flux of Krebs cycle intermediates.

      Strengths:

      Kumar, Zhang et al provide multiple source of evidence of the direct mechanism of Edc3 and Scd6, by using and comparing different approaches such as mRNA-seq, ribosome occupancies and translational efficiencies. By extensive analysis the authors show that this complex can also regulate genes outside the Environmental Stress Response (non-iESR) that are significantly up-regulated in all three mutants. Remarkably, the gene ontology analysis of these non-iESR genes identify enrichment for mitochondrial proteins that are implicated in the Krebs cycle. Overall, this study adds novel mechanistic insight into how nutrients control gene expression by modulating decapping and translational repression.

      Weaknesses:

      The authors show very nicely that growth phenotypes from scd6Δedc3∆ can be rescued by transformation of EDC3 (pLfz614-7) or SCD6 (pLfz615-5). Future work could make use of these rescue strategies, for example as a platform to further characterise protein-protein interactions between Edc3, Scd6 and Dhh1.

    1. Reviewer #3 (Public review):

      Summary:

      By expressing protein in a strain that is unable to phosphorylate KdpFABC, the authors achieve structures of the active wildtype protein, capturing a new intermediate state, in which the terminal phosphoryl group of ATP has been transferred to a nearby Asp, and ADP remains covalently bound. The manuscript examines the coupling of potassium transport and ATP hydrolysis by a comprehensive set of mutants. The most interesting proposal revolves around the proposed binding site for K+ as it exits the channel near T75. Nearby mutations to charged residues cause interesting phenotypes, such as constitutive uncoupled ATPase activity, leading to a model in which lysine residues can occupy/compete with K+ for binding sites along the transport pathway.

      Strengths:

      The high resolution (2.1 Å) of the current structure is impressive, and allows many new densities in the potassium transport pathway to be resolved. The authors are judicious about assigning these as potassium ions or water molecules, and explain their structural interpretations clearly. In addition to the nice structural work, the mechanistic work is thorough. A series of thoughtful experiments involving ATP hydrolysis/transport coupling under various pH and potassium concentrations bolsters the structural interpretations and lends convincing support to the mechanistic proposal. The SSME experiments are generally rigorous.

      Weaknesses:

      The present SSME experiments do not support quantitative comparisons of different mutants, as in Figures 4D and 5E. Only qualitative inferences can be drawn among different mutant constructs.

    1. Reviewer #2 (Public review):

      Summary:

      This is a compelling and methodologically rich manuscript. The authors used a variety of methods, including psychophysics, computational modeling, and artificial neural networks, to reveal a non-monotonic, center-surround "Mexican-hat" profile of expectation in orientation space. Their data convincingly extend analogous findings in attention and working memory, and the modeling nicely teases apart sharpening vs. shift mechanisms.

      Strengths:

      The findings are novel and important in elucidating the potential neural mechanisms by which expectation shapes perception. The authors conducted a series of well-designed psychophysical experiments to careful examination of the profile of expectation's modulation. Computational modeling also provides further insights, linking the neural mechanisms of expectation to behavioral results.

      Comments on revisions:

      I think the authors did a great job in addressing my previous comments. I have no further comments.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript evaluates the generalizability of two phenomena of great interest to early-career scientists and scientific policymakers. These phenomena describe how early funding success can promote future funding success (the Matthew Effect) and how initially unsuccessful applicants may later succeed (the early-career setback effect). Given the often-normative aspirations of science-of-science studies, the manuscript represents a much-needed and highly significant effort, as it allows a broader audience to assess whether they should reconsider their behavior or policies.

      Strengths:

      The evidence provided by the authors for the generalizability of the Matthew Effect is very strong and convincing. The manuscripts addresses an important topic of practical concern to early-career scientists and scientific policymakers.

      Weaknesses: If I am correctly interpreting S11 and S12, the statements on the early-career setback effect could be stronger and more direct. The argument in the main text relies on assumptions and simulations to suggest that observations of the early-career setback effect may depend on reapplications. In contrast, S11 and S12 appear to provide more direct evidence against its generalizability, showing that the effect seems to exist in, and be driven by, only one of the six funding agencies considered (FWF). This narrow replication may not be obvious to readers ("the early-career setback effect also replicates, but is not robust across funders").

      I would also suggest that the authors provide a more nuanced discussion of the limitations of their Bayesian model. While the model seems appropriate for accounting for major factors, it appears to exclude others, such as the emergence of new scientific fields or the strategic reorientation of funders toward such fields.

    1. Reviewer #2 (Public review):

      Summary:

      The authors have developed a behavioral paradigm to experimentally manipulate the sense of control experienced by participants by varying the level of difficulty in a wheel-stopping task. In the first study, this manipulation is tested by administering the task in a factorial design with two levels of controllability and two levels of stressor intensity to a large number of participants online, while simultaneously recording subjective ratings of perceived control, anxiety, and stress. In a second study, the authors employed the wheel stopping task to induce a high sense of controllability and investigate whether this manipulation buffers the response to a subsequent stress induction when compared to a neutral task, such as watching pleasant videos.

      Strengths:

      (1) The authors validate a method to manipulate stress.

      (2) The authors use an experimental manipulation to induce an enhanced sense of controllability to test its impact on the response to stress induction.\

      (3) The studies involved big sample sizes.

      Weaknesses:

      (1) The study was not preregistered.

      (2) The control manipulation is conflated with task difficulty and, therefore, the reward rate. In the revised version of the manuscript, the authors perform statistical analysis to demonstrate that the relationship between perceived level of control and subjective stress remains robust after the inclusion of win rate in the model. This analysis strengthens the authors's claims, but the evidence would more substantial if the design did not conflate reward rate and control. The authors properly discuss this issue in the revised manuscript.

      This study will be of interest to psychologists and cognitive scientists who are interested in understanding how controllability and its subjective perception influence how people respond to stress exposure. The demonstration that an increased sense of control buffers/protects against subsequent stress is important and may trigger further studies to characterize this phenomenon better. However, beyond the highlighted weaknesses, the current study only studied the effect of stress induction consequent to the performance of the WS task on the same day, and its generalizability is not warranted.

    1. Reviewer #2 (Public review):

      Summary:

      The authors are trying to explain how the metabolite itaconate evolved, since although it's involved in host defense, it can also limit mitochondrial function. They are trying to probe the trade-off between these two functions.

      Strengths:

      The evolutionary aspect is novel; this is the first time to my knowledge that the evolution of IRG1 has been analysed, and there are interesting findings here. The key finding appears to be that subcellular localisation is an important aspect, allowing host defense in some organisms without compromising bioenergetics. This is an interesting finding in the context of immunomebolism, although it needs extra analysis.

      Weaknesses:

      The work concerning sub-mitochondrial localisation is confusing and needs better analysis.

    1. Reviewer #2 (Public review):

      Summary:

      The paper used fMRI data while reading a set of sentences. The sentences are designed to disentangle syntax from meaning. RSA was performed using voxel activations and a variety of language models. The results show that transformers are inferior to models with explicit syntactic representation in terms of matching brain representations.

      Strengths:

      (1) The study controls for some variables that allow for an investigation of sentence structure in the brain. This controlled setting has an advantage over naturalistic stimuli in targeting more specific linguistic phenomena.

      (2) The study combines fMRI data with behavioral similarity ratings and a variety of language models (static, transformers, graph-based models).

      Weaknesses:

      (1) The stimuli are not fully controlled for lexical content across conditions. Residual lexical differences between sentences could still influence both brain and model similarity patterns. To more cleanly isolate syntactic effects, it would be useful to systematically vary only a single structural element while keeping all other lexical content constant (e.g., the boy kicked the ball / the ball kicked the boy). It would be better to engage more with the minimal pair paradigm, which is widely used in large language model probing research.

      (2) The comparisons are done across fundamentally different model types, including static embeddings, graph-based parsers, and transformers. The inherent differences in dimensionality and training objectives might make the conclusion drawn from RSA inconclusive. Transformer embeddings typically occupy much higher-dimensional, anisotropic representational spaces, and their similarity structure may reflect richer, more heterogeneous information than models explicitly encoding semantic roles. A lower RSA correlation in this study does not necessarily imply that transformers fail to encode syntactic information; rather, they may represent additional aspects of meaning or context that diverge from the narrow structural contrasts probed here.

      (3) The interpretation of the RSA correlation largely depends on the understanding of models. The authors suggest that because hybrid models correlate better than transformers, this implies that transformers are inferior at representing syntax. However, this is not a direct test of syntactic ability. Transformers may encode syntactic information, but it may not be expressed in a way that aligns with the RSA paradigm or the chosen stimuli. RSA does not reveal what the model encodes, and the models might achieve a good correlation for non-syntactic reasons (e.g., length of sentence, orthographic similarity, lexical features).

    1. Reviewer #2 (Public review):

      Summary:

      Hughes et al present a new single-molecule RNA fluorescence in situ hybridization (smFISH) probe design software, termed "TrueProbes" in this manuscript. They claim that all existing smFISH (and variants) probe design software packages have limitations that ultimately impact experimental performance. The author's claim to address the majority of these limitations in TrueProbes by introducing multiple computational steps to ensure high-quality probe design. The manuscript's goal is clear, and the authors provide some evidence by designing and targeting one gene. Overall, the manuscript lacks rigorous evidence to support the claims, does not demonstrate its suitability for a variety of smFISH-type experiments, and some of the provided quantification data are unclear. While TrueProbes clearly has potential, more data is required, or the authors should tone down the claims.

      Strengths:

      (1) The problem is well-articulated in the abstract and the introduction.

      (2) Figures 3 and 4 follow a consistent color scheme where each probe design method has its own color, which helps the reader visually compare methods.

      (3) The authors compared multiple probe design software packages both computationally and experimentally.

      (4) TrueProbes does produce visually and quantitatively better results when compared to 2 of the 4 existing smFISH probe design packages (Paintshop and MERFISH panel designer).

      (5) The authors introduce a comprehensive steady-state thermodynamic model to help optimally guide probe design.

      Weaknesses:

      (1) The abstract describes the problem well and introduces the solution (the TrueProbes software), but fails to provide specific ways in which the TrueProbes software performs better. The authors state that "...[TrueProbes] consistently outperformed alternatives across multiple computational metrics and experimental validation assays", but specific, quantitative evidence of improved performance would strengthen the statement.

      (2) The text claims that TrueProbes outperforms all other probe design software, but Figure 3 indicates that TrueProbes has neither the greatest number of on-target binding nor the lowest number of off-target binding. The data in Figure 3 does not support the claims made in the text. Specifically, the authors claim that "RNA FISH Experimental Results Demonstrate that Off Target and Binding Affinity Inclusive Probe Design Improve RNA FISH Signal Discrimination" (lines 217-218). However, despite their claim that Stellaris and Oligostan-HT produce more off-target probes when evaluated with the TrueProbes framework, the experiment results are nearly identical. The authors should consider modifying their claims or performing new experiments that more clearly demonstrate their claims.

      (3) The bar graphs in Figure 3 do not seem to agree with the probability graphs in Figure 4. For example, Figure 3 indicates that Stellaris probes have higher off-target binding than TrueProbes; however, in Figure 4, their probability graphs lie almost on top of each other.

      (4) The authors performed validation for only one gene (ARF4), because "...it had the highest gene expression (in TPM units) and the fewest isoforms among all candidate genes for the Jurkat cell line" (lines 176-177). While the results do look good, this is a minimal use case and does not really showcase the power of their method. One experiment that could be helpful would be two-color (or more) smFISH in tissue, where the chances for off-target binding contributing to higher errors are much greater than in an adherent cell line.

      (5) A common strategy for both smFISH and highly multiplexed methods is to use secondary DNA oligos with dye molecules instead of direct conjugation. Given that this is a primary design goal of PaintSHOP and the Zhuang lab's MERFISH probe design code, it would be helpful to demonstrate that TrueProbes can design a two-layer probe strategy for high-quality RNA-FISH labeling.

      (6) The authors claim, "For every probe set, TrueProbes can simulate expected smRNA FISH outcomes including optimal probe, RNA, and salt concentrations and optionally account for probe secondary structure, hybridization temperature, multiple targets, fluorophore choice, DNA, nascent RNA, and photon count statistics (Figures S2A, S2B). The model can be used to generate predictions for temperature and cell line sensitivity, multi-target discrimination, multiple fluorophore colocalization; when provided transcript expression levels and probe/background intensity, it can start to generate predictions for spot intensity, background, signal to noise ratio, and false negative rates (Figure S2C)." (lines 156-163). Figure S2 is a flow chart and does not provide evidence for any of these items. The authors should provide evidence for these claims, either as a figure or an example script in their software repository. If that is not possible, then it should be removed.

      (7) All thermodynamic equations are performed at steady state. The authors do not justify this assumption, and there is no discussion of the potential impacts of either low molecule numbers or violations of the well-mixed assumption. Can the authors please include a discussion on the potential impacts non non-steady state dynamics?

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors examine the mechanisms by which stimulation of the infralimbic cortex (IL) facilitates the retention and retrieval of inhibitory memories. Previous work has shown that optogenetic stimulation of the IL suppresses freezing during extinction but does not improve extinction recall when extinction memory is probed one day later. When stimulation occurs during a second extinction session (following a prior stimulation-free extinction session), freezing is suppressed during the second extinction as well as during the tone test the following day. The current study was designed to further explore the facilitatory role of the IL in inhibitory learning and memory recall. The authors conducted a series of experiments to determine whether recruitment of IL extends to other forms of inhibitory learning (e.g., backward conditioning) and to inhibitory learning involving appetitive conditioning. Further, they assessed whether their effects could be explained by stimulus familiarity. The results of their experiments show that backward conditioning, another form of inhibitory learning, also enabled IL stimulation to enhance fear extinction. This phenomenon was not specific to aversive learning, as backward appetitive conditioning similarly allowed IL stimulation to facilitate extinction of aversive memories. Finally, the authors ruled out the possibility that IL facilitated extinction merely because of prior experience with the stimulus (e.g., reducing the novelty of the stimulus). These findings significantly advance our understanding of the contribution of IL to inhibitory learning. Namely, they show that the IL is recruited during various forms of inhibitory learning, and its involvement is independent of the motivational value associated with the unconditioned stimulus.

      Strengths:

      (1) Transparency about the inclusion of both sexes and the representation of data from both sexes in figures.

      (2) Very clear representation of groups and experimental design for each figure.

      (3) The authors were very rigorous in determining the neurobehavioral basis for the effects of IL stimulation on extinction. They considered multiple interpretations and designed experiments to address these possible accounts of their data.

      (4) The rationale for and the design of the experiments in this manuscript are clearly based on a wealth of knowledge about learning theory. The authors leveraged this expertise to narrow down how the IL encodes and retrieves inhibitory memories.

      Weaknesses:

      (1) In Experiment 1, although not statistically significant, it does appear as though the stimulation groups (OFF and ON) differ during Extinction 1. It seems like this may be due to a difference between these groups after the first forward conditioning. Could the authors have prevented this potential group difference in Extinction 1 by re-balancing group assignment after the first forward conditioning session to minimize the differences in fear acquisition (the authors do report a marginally significant effect between the groups that would undergo one vs. two extinction sessions in their freezing during the first conditioning session)?

      (2) Across all experiments (except for Experiment 1), the authors state that freezing during the initial conditioning increased across "days". The figures that correspond to this text, however, show that freezing changes across trials. In the methods, the authors report that backward conditioning occurred over 5 days. It would be helpful to understand how these data were analyzed and collated to create the final figures. Was the freezing averaged across the five days for each trial for analyses and figures?

      (3) In Experiment 3, the authors report a significant Protocol X Virus interaction. It would be useful if the authors could conduct post-hoc analyses to determine the source of this interaction. Inspection of Figure 4B suggests that freezing during the two different variants of backward conditioning differs between the virus groups. Did the authors expect to see a difference in backward conditioning depending on the stimulus used in the conditioning procedure (light vs. tone)? The authors don't really address this confounding interaction, but I do think a discussion is warranted.

      (4) In this same experiment, the authors state that freezing decreased during extinction; however, freezing in the Diff-EYFP group at the start of extinction (first bin of trials) doesn't look appreciably different than their freezing at the end of the session. Did this group actually extinguish their fear? Freezing on the tone test day also does not look too different from freezing during the last block of extinction trials.

      (5) The Discussion explored the outcomes of the experiments in detail, but it would be useful for the authors to discuss the implications of their findings for our understanding of circuits in which the IL is embedded that are involved in inhibitory learning and memory. It would also be useful for the authors to acknowledge in the Discussion that although they did not have the statistical power to detect sex differences, future work is needed to explore whether IL functions similarly in both sexes.

    1. Reviewer #2 (Public review):

      Enhancer elements are regulatory DNA sequences that are capable of driving specific expression patterns. As these elements are generally short and context-independent, enhancers can be used in expression vectors (e.g., packaged in an adeno-associated virus, AAV) to limit expression to target cell populations. This approach was identified as a major strategy for cell-type-specific manipulation in the brain and has been pursued by both standard research studies as well as large-scale efforts led by the BRAIN Initiative. This manuscript describes a major effort to generate enhancer-AAVs targeting astrocytes and oligodendrocytes orchestrated by a large research team led by the Allen Institute for Brain Science. This manuscript parallels other recent publications describing sets of enhancer-AAVs, following rigorous, similar methods with relatively broad testing and application.

      To identify and screen candidate enhancers, the scientists prioritized candidates via analysis of single-nucleus accessibility and methylation datasets (i.e., snATAC-seq) and tested them in mice. The scientists prioritized candidate enhancers that exhibited specificity of accessibility in the target cell type. Following selection, the scientists cloned the candidate sequences into AAV vectors with a minimal promoter and reporter gene, packaged the virus, delivered it to the mouse brain, and screened for activity based on reporter expression. Candidates that passed initial screening were further characterized via imaging and sorting, followed by single-cell RNA-seq. This process had around a 50% success rate and yielded 25 astrocyte and 21 oligodendrocyte enhancer-AAVs with the targeted cell-type-specific expression patterns.

      The scientists went on to test for subtype-specific activity patterns, finding wide diversity in astrocyte activities across sub-populations and conversely, homogenous oligodendrocyte activation. They optimized a few of these via concatenating the enhancer core sequence to increase expression levels of the reporter gene and showed strong specificity and completeness of cell targeting for a set of these enhancer-AAVs. Following characterization and validation, they then deployed these enhancer-AAVs in a number of demonstration applications to show the utility for basic and translational science. All the constructs developed here are available for public use via Addgene, ensuring that these new tools can be used by other researchers.

      There really are no obvious weaknesses in the work presented here, from the generation of the enhancer-AAVs to use in sophisticated validation studies. The enhancer-AAV testing is rigorous and provides critical information necessary for other scientists to select and use these constructs. The applications demonstrate the power of enhancer-AAV approaches. The toolbox presented here may not enable specific targeting of all relevant cellular subtypes or activity states for astrocytes and oligodendrocytes, and future work will be needed to fully understand the activity of the enhancers, identity of the target cell types, and context-dependent utility of these constructs. However, the set of enhancer-AAVs developed here should be transformative for researchers working on accessing and manipulating these cell types and have a major impact on the field.

    1. Reviewer #2 (Public review):

      Summary:

      Okuno et al. investigate the structure-function relationship in the fruit fly Drosophila melanogaster. To do so, they combine published data from two recent synapse-level connectomes ("hemibrain" and "FlyWire") with a dataset comprising functional whole-brain calcium imaging and behavioural data. First, they investigate the applicability of fMRI pre-processing techniques on data from calcium imaging. They then cross-correlate this pre-processed functional data with structural data extracted from the connectomes, including a comparison to humans. The authors proceed to compare the two connectomes and find significant differences, which they attribute to differences in the accuracy of the synapse detections. Next, they present a novel algorithm to quantify whether neurons are segregated (pre- and postsynapses are spatially separate) or unsegregated (pre- and postsynapses are mixed). Using this approach, they find that unsegregated neurons may contribute more to function than segregated neurons. Applying a general linear model to the functional dataset suggests that activity in two brain areas (Wedge and AVLP) is suppressed during walking. The authors identify a GABAergic neuron in the connectome that could be responsible for this effect and suggest it may provide feedback to the fly's "compass" in the central complex.

      Strengths:

      The study tackles a relevant question in connectomics by exploring the relationship between structural and functional connectivity in the Drosophila brain. The authors apply a range of established and adapted analytical methods, including fMRI-style preprocessing and a novel synaptic segregation index. The effort to integrate multiple datasets and to compare across species reflects a broad and methodical approach.

      Weaknesses:

      The manuscript would benefit from a clearer overarching narrative to unify the various analyses, which currently appear somewhat disjointed. While the technical methods are extensive, the writing is often convoluted and lacks crucial details, making it difficult to follow the logic and interpret key findings. Additionally, the conclusions are relatively incremental and lack a compelling conceptual advance, limiting the overall impact of the work.

      (1) The introduction currently contains a number of findings and conclusions that would be better placed in the results and discussion to clearly delineate past findings from new results and speculations.

      (2) The narrative would benefit greatly from some clear statements along the lines of "we wanted to find out X, therefore we did Y".

      (3) More concise terminology would be helpful. For example, the connectomes are currently referred to as either "hemibrain", "FlyEM", "whole-brain", or "FlyWire".

      (4) The abstract claims "a new, more robust method to quantify the degree of pre- and post-synaptic segregation". However, the study fails to provide evidence that this method is indeed more robust than existing methods.

      (5) The authors define unsegregated neurons as having mixed pre- and postsynapses in the same space. However, this ignores the neurons' topology: a neuron can exhibit a clearly defined dendrite with (mostly) postsynapses and a clearly defined axon with (mostly) presynapses, which then occupy the same space. This is different from genuinely unsegregated neurons with no distinct dendritic and axonal compartments, such as CT1.

      (6) It is not entirely clear where the marmoset dataset originates from. Was it generated for this study? If not, why is there a note in the Ethics Declaration?

      (7) On the differences between hemibrain and FlyWire: What is the "18.8 million post-synapses" for FlyWire referring to? The (thresholded) FlyWire synapse table has 130M connections (=postsynapses). Subsetting that synapse cloud to the hemibrain volume still gives ~47M synapses. Further subsetting to only connections between proofread neurons inside the hemibrain volume gives 19.4M - perhaps the authors did something like that? Similarly, the hemibrain synapse table contains 64M postsynapses. Do the 21M "FlyEM" post-synapses refer to proofread neurons only? If the authors indeed used only (post-)synapses from proofread neurons, they need to make that explicit in results and methods, and account for differences in reconstruction status when making any comparisons. For example, the mushroom body in the hemibrain got a lot more attention than in FlyWire, which would explain the differences reported here. For that reason, connection weights are often expressed as, e.g., a fraction of the target's inputs instead of the total number of synapses when comparing connectivity across connectomic datasets. Furthermore, in Figure 3b, it looks like the FlyWire synapse cloud was not trimmed to the exact hemibrain boundaries: for example, the trimmed FlyWire synapse cloud seems to extend further into the optic lobes than the hemibrain volume does.

    1. Reviewer #2 (Public review):

      Summary:

      The authors provide convincing evidence that Rab27 and STYL5 work together to regulate mitochondrial activity and homeostasis.

      Strengths:

      The development of models which allow the function to be dissected, and the rigous approach and testing of mitochondrial activity.

      This work is carefully done, and supports the importance of the roles of Rab27A and STYL5.

  2. Oct 2025
    1. Reviewer #2 (Public review):

      Summary:

      In this work, the authors take a holistic view at the Drosophila immunity by selecting four major components of fly immunity often studied separately (Toll signaling, Imd signaling, phagocytosis and melanization), and studying their combinatory effects on the efficiency of the immune response. They achieve this by using fly lines mutant for one of these components, or modules, as well as for a combination of them, and testing the survival of these flies upon infection with a plethora of pathogens (bacterial, viral and fungal).

      Strengths:

      It is clear that this manuscript has required a large amount of hands-on work, considering the number of pathogens, mutations and timepoints tested. In my opinion, this work is a very welcome addition to the literature on fly immune responses, which obviously do not occur one type of a response at a time, but in parallel, subsequently and/or are interconnected. I find that the major strength of this work is the overall concept, which is made possible by the mutations designed to target the specific immune function of each module, without effects on other functions. I believe that the combinatory mutants will be of use for the fly community and enable further studies of interplay of these components of immune response in various settings.

      To control for the effects arising from the genetic variation other than the intended mutations, the mutants have been backcrossed into a widely used, isogenized Drosophila strain called w1118. Therefore, the differences accounted for by the genotype are controlled.

      I also appreciate that the authors have investigated the two possible ways of dealing with an infection: tolerance and resistance, and how the modules play into those.

      Weaknesses:

      While controlling for the background effects is vital, the w1118 background is problematic (an issue not limited to this manuscript) because of the wide effects of the white mutation on several phenotypes (also other than eye color/eyesight). It is a possibility that the mutation influences the functionality of the immune response components. I acknowledge that it is not reasonable to ask for data in different backgrounds better representing a "wild type" fly, but I think this matter should be brought up and discussed.

      The whole study has been conducted on male flies. Immune responses show quite extensive sex-specific variation across a variety of species studied, also in the fly. But the reasons for this variation are not fully understood. Therefore, I suggest that the authors would conduct a subset of experiments on female flies to see if the findings apply to both sexes, especially the infection-specificity of the module combinations.

      Comments on the revised manuscript:

      I appreciate the author's responses to the points I raised and the additional work they have conducted. The authors have now discussed the possible background effect and added an experiment on female flies showing that the module function is applicable to both sexes.

    1. Reviewer #2 (Public Review):

      The authors use ThT dye as a Nernstian potential dye in E. coli. Quantitative measurements of membrane potential using any cationic indicator dye are based on the equilibration of the dye across the membrane according to Boltzmann's law.

      Ideally, the dye should have high membrane permeability to ensure rapid equilibration. Others have demonstrated that E.coli cells in the presence of ThT do not load unless there is blue light present, that the loading profile does not look like it is expected for a cationic Nernstian dye. They also show that the loading profile of the dye is different for E.coli cells deleted for the TolC pump. I, therefore, objected to interpreting the signal from the ThT as a Vm signal when used in E.coli. Nothing the authors have said has suggested that I should be changing this assessment.

      Specifically, the authors responded to my concerns as follows:

      (1) 'We are aware of this study, but believe it to be scientifically flawed. We do not cite the article because we do not think it is a particularly useful contribution to the literature.' This seems to go against ethical practices when it comes to scientific literature citations. If the authors identified work that handles the same topic they do, which they believe is scientifically flawed, the discussion to reflect that should be included.

      (2)'The Pilizota group invokes some elaborate artefacts to explain the lack of agreement with a simple Nernstian battery model. The model is incorrect not the fluorophore.'<br /> It seems the authors object to the basic principle behind the usage of Nernstian dyes. If the authors wish to use ThT according to some other model, and not as a Nernstian indicator, they need to explain and develop that model. Instead, they state 'ThT is a Nernstian voltage indicator' in their manuscript and expect the dye to behave like a passive voltage indicator throughout it.

      (3)'We think the proton effect is a million times weaker than that due to potassium i.e. 0.2 M K+<br /> versus 10-7 M H+. We can comfortably neglect the influx of H+ in our experiments.'<br /> I agree with this statement by the authors. At near-neutral extracellular pH, E.coli keeps near-neutral intracellular pH, and the contribution from the chemical concentration gradient to the electrochemical potential of protons is negligible. The main contribution is from the membrane potential. However, this has nothing to do with the criticism to which this is the response of the authors. The criticism is that ThT has been observed not to permeate the cell without blue light. The blue light has been observed to influence the electrochemical potential of protons (and given that at near-neutral intracellular and extracellular pH this is mostly the membrane potential, as authors note themselves, we are talking about Vm effectively). Thus, two things are happening when one is loading the ThT, not just expected equilibration but also lowering of membrane potential. The electrochemical potential of protons is coupled via the membrane potential to all the other electrochemical potentials of ions, including the mentioned K+.

      (4) 'The vast majority of cells continue to be viable. We do not think membrane damage is dominating.' In response to the question on how the authors demonstrated TMRM loading and in which conditions (and while reminding them that TMRM loading profile in E.coli has been demonstrated in Potassium Phosphate buffer). The request was to demonstrate TMRM loading profile in their condition as well as to show that it does not depend on light. Cells could still be viable, as membrane permeabilisation with light is gradual, but the loading of ThT dye is no longer based on simple electrochemical potential (of the dye) equilibration.

      (5) On the comment on the action of CCCP with references included, authors include a comment that consists of phrases like 'our understanding of the literature' with no citations of such literature. Difficult to comment further without references.

      (6) 'Shielding would provide the reverse effect, since hyperpolarization begins in the dense centres of the biofilms. For the initial 2 hours the cells receive negligible blue light. Neither of the referee's comments thus seem tenable.'<br /> The authors have misunderstood my comment. I am not advocating shielding (I agree that this is not it) but stating that this is not the only other explanation for what they see (apart from electrical signaling). The other I proposed is that the membrane has changed in composition and/or the effective light power the cells can tolerate. The authors comment only on the light power (not convincingly though, giving the number for that power would be more appropriate), not on the possible changes in the membrane permeability.

      (7) 'The work that TolC provides a possible passive pathway for ThT to leave cells seems slightly niche. It just demonstrates another mechanism for the cells to equilibrate the concentrations of ThT in a Nernstian manner i.e. driven by the membrane voltage.' I am not sure what the authors mean by another mechanism. The mechanism of action of a Nernstian dye is passive equilibration according to the electrochemical potential (i.e. until the electrochemical potential of the dye is 0).

      (8) 'In the 70 years since Hodgkin and Huxley first presented their model, a huge number of similar models have been proposed to describe cellular electrophysiology. We are not being hyperbolic when we state that the HH models for excitable cells are like the Schrödinger<br /> equation for molecules. We carefully adapted our HH model to reflect the currently understood electrophysiology of E. coli.'

      I gave a very concrete comment on the fact that in the HH model conductivity and leakage are as they are because this was explicitly measured. The authors state that they have carefully adopted their model based on what is currently understood for E.coli electrophysiology. It is not clear how. HH uses gKn^4 based on Figure2 here https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/pdf/jphysiol01442-0106.pdf, i.e. measured rise and fall of potassium conductance on msec time scales. I looked at the citation the authors have given and found a resistance of an entire biofilm of a given strain at 3 applied voltages. So why n^4 based on that? Why does unknown current have gqz^4 form? Sodium conductance in HH is described by m^3hgNa (again based on detailed conductance measurements), so why unknown current in E.coli by gQz^4? Why leakage is in the form that it is, based on what measurement?

      Throughout their responses, the authors seem to think that collapsing the electrochemical gradient of protons is all about protons, and this is not the case. At near neutral inside and outside pH, the electrochemical potential of protons is simply membrane voltage. And membrane voltage acts on all ions in the cell.

      Authors have started their response to concrete comments on the usage of ThT dye with comments on papers from my group that are not all directly relevant to this publication. I understand that their intention is to discredit a reviewer but given that my role here is to review this manuscript, I will only address their comments to the publications/part of publications that are relevant to this manuscript and mention what is not relevant.

      Publications in the order these were commented on.

      (1) In a comment on the paper that describes the usage of ThT dye as a Nernstian dye authors seem to talk about a model of an entire active cell.<br /> 'Huge oscillations occur in the membrane potentials of E. coli that cannot be described by the SNB model.' The two have nothing to do with each other. Nernstian dye equilibrates according to its electrochemical potential. Once that happens it can measure the potential (under the assumption that not too much dye has entered and thus lowered too much the membrane potential under measurement). The time scale of that is important, and the dye can only measure processes that are slower than that equilibration. If one wants to use a dye that acts under a different model, first that needs to be developed, and then coupled to any other active cell model.

      (2) The part of this paper that is relevant is simply the usage of TMRM dye. It is used as Nernstian dye, so all the above said applies. The rest is a study of flagellar motor.

      (3) The authors seem to not understand that the electrochemical potential of protons is coupled to the electrochemical potentials of all other ions, via the membrane potential. In the manuscript authors talk about, PMF~Vm, as DeltapH~0. Other than that this publication is not relevant to their current manuscript.

      (4) The manuscript in fact states precisely that PMF cannot be generated by protons only and some other ions need to be moved out for the purpose. In near neutral environment it stated that these need to be cations (K+ e.g.). The model used in this manuscript is a pump-leak model. Neither is relevant for the usage of ThT dye.

      Further comments include, along the lines of:

      'The editors stress the main issue raised was a single referee questioning the use of ThT as an indicator of membrane potential. We are well aware of the articles by the Pilizota group and we believe them to be scientifically flawed. The authors assume there are no voltage-gated ion channels in E. coli and then attempt to explain motility data based on a simple Nernstian battery model (they assume E. coli are unexcitable<br /> matter). This in turn leads them to conclude the membrane dye ThT is faulty, when in fact it is a problem with their simple battery model.'

      The only assumption made when using a cationic Nernstian dye is that it equilibrates passively across the membrane according to its electrochemical potential. As it does that, it does lower the membrane potential, which is why as little as possible is added so that this is negligible. The equilibration should be as fast as possible, but at the very least it should be known, as no change in membrane potential can be measured that is faster than that.

      This behaviour should be orthogonal to what the cell is doing, it is a probe after all. If the cell is excitable, a Nernstian dye can be used, as long as it's still passively equilibrating and doing so faster than any changes in membrane potential due to excitations of the cells. There are absolutely no assumptions made on the active system that is about to be measured by this expected behaviour of a Nernstian dye. And there shouldn't be, it is a probe. If one wants to use a dye that is not purely Nernstian that behaviour needs to be described and a model proposed. As far as I can find, authors do no such thing.

      There is a comment on the use of a flagellar motor as a readout of PMF, stating that the motor can be stopped by YcgR citing the work from 2023. Indeed, there is a range of references such as https://doi.org/10.1016/j.molcel.2010.03.001 that demonstrate this (from around 2000-2010 as far as I am aware). The timescale of such slowdown is hours (see here Figure 5 https://www.cell.com/cell/pdf/S0092-8674(10)00019-X.pdf). Needless to say, the flagellar motor when used as a probe, needs to stay that in the conditions used. Thus one should always be on the lookout at any other such proteins that could slow it down and we are not aware of yet or make the speed no longer proportional to the PMF. In the papers my group uses the motor the changes are fast, often reversible, and in the observation window of 30min. They are also the same with DeltaYcgR strain, which we have not included as it seemed given the time scales it's obvious, but certainly can in the future (as well as stay vigilant on any conditions that would render the motor a no longer suitable probe for PMF).

    1. Reviewer #2 (Public review):

      Summary:

      This elegant study by Tolman and colleagues provides fundamental findings that substantially advance our knowledge of the major cell types within the limbus of the mouse eye, focusing on the aqueous humor outflow pathway. The authors used single-cell and single-nuclei RNAseq to very clearly identify 3 subtypes of the trabecular meshwork (TM) cells in the mouse eye, with each subtype having unique markers and proposed functions. The U. Columbia results are strengthened by an independent replication in a different mouse strain at a separate laboratory (Duke). Bioinformatics analyses of these expression data were used to identify cellular compartments, molecular functions, and biological processes. Although there were some common pathways among the 3 subtypes of TM cells (e.g., ECM metabolism), there also were distinct functions. For example:

      • TM1 cell expression supports heavy engagement in ECM metabolism and structure, as well as TGFβ2 signaling.

      • TM2 cells were enriched in laminin and pathways involved in phagocytosis, lysosomal function, and antigen expression, as well as End3/VEGF/angiopoietin signaling.

      • TM3 cells were enriched in actin binding and mitochondrial metabolism.

      They used high-resolution immunostaining and in situ hybridization to show that these 3 TM subtypes express distinct markers and occupy distinct locations within the TM tissue. The authors compared their expression data with other published scRNAseq studies of the mouse as well as the human aqueous outflow pathway. They used ATAC-seq to map open chromatin regions in order to predict transcription factor binding sites. Their results were also evaluated in the context of human IOP and glaucoma risk alleles from published GWAS data, with interesting and meaningful correlations. Although not discussed in their manuscript, their expression data support other signaling pathways/ proteins/ genes that have been implicated in glaucoma, including: TGFβ2, BMP signaling (including involvement of ID proteins), MYOC, actin cytoskeleton (CLANs), WNT signaling, etc.

      In addition to these very impressive data, the authors used scRNAseq to examine changes in TM cell gene expression in the mouse glaucoma model of mutant Lmxb1-induced ocular hypertension. In man, LMX1B is associated with Nail-Patella syndrome, which can include the development of glaucoma, demonstrating the clinical relevance of this mouse model. Among the gene expression changes detected, TM3 cells had altered expression of genes associated with mitochondrial metabolism. The authors used their previous experience using nicotinamide to metabolically protect DBA2/J mice from glaucomatous damage, and they hypothesized that nicotinamide supplementation of mutant Lmx1b mice would help restore normal mitochondrial metabolism in the TM and prevent Lmx1b-mediated ocular hypertension. Adding nicotinamide to the drinking water significantly prevented Lmxb1 mutant mice from developing high intraocular pressure. This is a laudable example of dissecting the molecular pathogenic mechanisms responsible for a disease (glaucoma) and then discovering and testing a potential therapy that directly intervenes in the disease process and thereby protects from the disease.

      Strengths:<br /> There are numerous strengths in this comprehensive study including:<br /> • Deep scRNA sequencing that was confirmed by an independent dataset in another mouse strain at another university.<br /> • Identification and validation of molecular markers for each mouse TM cell subset along with localization of these subsets within the mouse aqueous outflow pathway.<br /> • Rigorous bioinformatics analysis of these data as well as comparison of the current data with previously published mouse and human scRNAseq data.<br /> • Correlating their current data with GWAS glaucoma and IOP "hits".<br /> • Discovering gene expression changes in the 3 TM subgroups in the mouse mutant Lmx1b model of glaucoma.<br /> • Further pursuing the indication of dysfunctional mitochondrial metabolism in TM3 cells from Lmx1b mutant mice to test the efficacy of dietary supplementation with nicotinamide. The authors nicely demonstrate the disease modifying efficacy of nicotinamide in preventing IOP elevation in these Lmx1b mutant mice, preventing the development of glaucoma. These results have clinical implications for new glaucoma therapies.

      Weaknesses:<br /> • Occasional over-interpretation of data. The authors have used changes in gene expression (RNAseq) to implicate functions and signaling pathways. For example: they have not directly measured "changes in metabolism", "mitochondrial dysfunction" or "activity of Lmx1b".<br /> • In their very thorough data set, there is enrichment of or changes in gene expression that support other pathways that have been previously reported to be associated with glaucoma (such as TGFβ2, BMP signaling, actin cytoskeletal organization (CLANs), WNT signaling, ossification, etc. that appears to be a lost opportunity to further enhance the significance of this work.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript presents a technically oriented application of UMI-based long-read sequencing to study intra-host diversity in influenza virus populations. The authors aim to minimize sequencing artifacts and improve the detection of rare variants, proposing that this approach may inform predictive models of viral evolution. While the methodology appears robust and successfully reduces sequencing error rates, key experimental and analytical details are missing, and the biological insight is modest. The study includes only four samples, with no independent biological replicates or controls, which limits the generalizability of the findings. Claims related to rare variant detection and evolutionary selection are not fully supported by the data presented.

      Strengths:

      The study addresses an important technical challenge in viral genomics by implementing a UMI-based long-read sequencing approach to reduce amplification and sequencing errors. The methodological focus is well presented, and the work contributes to improving the resolution of low-frequency variant detection in complex viral populations.

      Weaknesses:

      The application of UMI-based error correction to viral population sequencing has been established in previous studies (e.g., in HIV), and this manuscript does not introduce a substantial methodological or conceptual advance beyond its use in the context of influenza.

      The study lacks independent biological replicates or additional viral systems that would strengthen the generalizability of the conclusions. Potential sources of technical error are not explored or explicitly controlled. Key methodological details are missing, including the number of PCR cycles, the input number of molecules, and UMI family size distributions. These are essential to support the claimed sensitivity of the method.

      The assertion that variants at {greater than or equal to}0.1% frequency can be reliably detected is based on total read count rather than the number of unique input molecules. Without information on UMI diversity and family sizes, the detection limit cannot be reliably assessed.

      Although genetic variation is described, the functional relevance of observed mutations in HA and NA is not addressed or discussed in the context of known antigenic or evolutionary features of influenza. The manuscript is largely focused on technical performance, with limited exploration of the biological implications or mechanistic insights into influenza virus evolution.

      The experimental scale is small, with only four viral populations derived from single particles analyzed. This limited sample size restricts the ability to draw broader conclusions about quasispecies dynamics or evolutionary pressures.

    1. Reviewer #2 (Public Review):

      The goal of the present study is to better understand the 'control objectives' that subjects adopt in a video-game-like virtual-balancing task. In this task, the hand must move in the opposite direction from a cursor. For example, if the cursor is 2 cm to the right, the subject must move their hand 2 cm to the left to 'balance' the cursor. Any imperfection in that opposition causes the cursor to move. E.g., if the subject were to move only 1.8 cm, that would be insufficient, and the cursor would continue to move to the right. If they were to move 2.2 cm, the cursor would move back toward the center of the screen. This return to center might actually be 'good' from the subject's perspective, depending on whether their objective is to keep the cursor still or keep it near the screen's center. Both are reasonable 'objectives' because the trial fails if the cursor moves too far from the screen's center during each six-second trial.

      This task was recently developed for use in monkeys (Quick et al., 2018), with the intention of being used for the study of the cortical control of movement, and also as a task that might be used to evaluate BMI control algorithms. The purpose of the present study is to better characterize how this task is performed. What sort of control policies are used. Perhaps more deeply, what kind of errors are those policies trying to minimize? To address these questions, the authors simulate control-theory style models and compare with behavior. They do in both in monkeys and in humans.

      These goals make sense as a precursor to future recording or BMI experiments. The primate motor-control field has long been dominated by variants of reaching tasks, so introducing this new task will likely be beneficial. This is not the first non-reaching task, but it is an interesting one and it makes sense to expand the presently limited repertoire of tasks. The present task is very different from any prior task I know of. Thus, it makes sense to quantify behavior as thoroughly as possible in advance of recordings. Understanding how behavior is controlled is, as the authors note, likely to be critical to interpreting neural data.

      From this perspective - providing a basis for interpreting future neural results - the present study is fairly successful. Monkeys seem to understand the task properly, and to use control policies that are not dissimilar from humans. Also reassuring is the fact that behavior remains sensible even when task-difficulty become high. By 'sensible' I simply mean that behavior can be understood as seeking to minimize error: position, velocity, or (possibly) both, and that this remains true across a broad range of task difficulties. The authors document why minimizing position and minimizing velocity are both reasonable objectives. Minimizing velocity is reasonable, because a near-stationary cursor can't move far in six seconds. Minimizing position error is reasonable, because the trial won't fail if the cursor doesn't stray far from the center. This is formally demonstrated by simulating control policies: both objectives lead to control policies that can perform the task and produce realistic single-trial behavior. The authors also demonstrate that, via verbal instruction, they can induce human subjects to favor one objective over the other. These all seem like things that are on the 'need to know' list, and it is commendable that this amount of care is being taken before recordings begin, as it will surely aid interpretation.

      Yet as a stand-alone study, the contribution to our understanding of motor control is more limited. The task allows two different objectives (minimize velocity, minimize position) to be equally compatible with the overall goal (don't fail the trial). Or more precisely, there exists a range of objectives with those two at the extreme. So it makes sense that different subjects might choose to favor different objectives, and also that they can do so when instructed. But has this taught us something about motor control, or simply that there is a natural ambiguity built into the task? If I ask you to play a game, but don't fully specify the rules, should I be surprised that different people think the rules are slightly different?

      The most interesting scientific claim of this study is not the subject-to-subject variability; the task design makes that quite likely and natural. Rather, the central scientific result is the claim that individual subjects are constantly switching objectives (and thus control policies), such that the policy guiding behavior differs dramatically even on a single-trial basis. This scientific claim is supported by a technical claim: that the authors' methods can distinguish which objective is in use, even on single trials. I am uncertain of both claims.

      Consider Figure 8B, which reprises a point made in Figure 1&3 and gives the best evidence for trial-to-trial variability in objective/policy. For every subject, there are two example trials. The top row of trials shows oscillations around the center, which could be consistent with position-error minimization. The bottom row shows tolerance of position errors so long as drift is slow, which could be consistent with velocity-error minimization. But is this really evidence that subjects were switching objectives (and thus control policies) from trial to trial? A simpler alternative would be a single control policy that does not switch, but still generates this range of behaviors. The authors don't really consider this possibility, and I'm not sure why. One can think of a variety of ways in which a unified policy could produce this variation, given noise and the natural instability of the system.

      Indeed, I found that it was remarkably easy to produce a range of reasonably realistic behaviors, including the patterns that the authors interpret as evidence for switching objectives, based on a simple fixed controller. To run the simulations, I made the simple assumption that subjects simply attempt to match their hand position to oppose the cursor position. Because subjects cannot see their hand, I assumed modest variability in the gain, with a range from -1 to -1.05. I assumed a small amount of motor noise in the outgoing motor command. The resulting (very simple) controller naturally displayed the basic range of behaviors observed across trials (see Image 1)

      Peer review image 1.

      Some trials had oscillations around the screen center (zero), which is the pattern the authors suggest reflects position control. In other trials the cursor was allowed to drift slowly away from the center, which is the pattern the authors suggest reflects velocity control. This is true even though the controller was the same on every trial. Trial-to-trial differences were driven both by motor noise and by the modest variability in gain. In an unstable system, small differences can lead to (seemingly) qualitatively different behavior on different trials.

      This simple controller is also compatible with the ability of subjects to adapt their strategy when instructed. Anyone experienced with this task likely understands (or has learned) that moving the hand slightly more than 'one should' will tend to shepherd the cursor back to center, at the cost of briefly high velocity. Using this strategy more sparingly will tend to minimize velocity even if position errors persist. Thus, any subject using this control policy would be able to adapt their strategy via a modest change in gain (the gain linking visible cursor position to intended hand position).

      This model is simple, and there may be reasons to dislike it. But it is presumably a reasonable model. The nature of the task is that you should move your hand opposite where the cursor is. Because you can't see your hand, you will make small mistakes. Due to the instability of the system, those small mistakes have large and variable effects. This feature is likely common to other controllers as well; many may explicitly or implicitly blend position and velocity control, with different trials appearing more dominated by one versus the other. Given this, I think the study presents only weak evidence that individual subjects are switching their objective on individual trials. Indeed, the more parsimonious explanation may be that they aren't. While the study certainly does demonstrate that the control policy can be influenced by verbal instructions, this might be a small adjustment as noted above.

      I thus don't feel convinced that the authors can conclusively tell us the true control policy being used by human and monkey subjects, nor whether that policy is mostly fixed or constantly switching. The data are potentially compatible with any of these interpretations, depending on which control-style model one prefers.

      I see a few paths that the authors might take if they chose.<br /> --First, my reasoning above might be faulty, or there might be additional analyses that could rule out the possibility of a unified policy underlying variable behavior. If so, the authors may be able to reject the above concerns and retain the present conclusions. The main scientifically novel conclusion of the present study is that subjects are using a highly variable control policy, and switching on individual trials. If this is indeed the case, there may be additional analyses that could reveal that.<br /> --Second, additional trial types (e.g., with various perturbations) might be used as a probe of the control policy. As noted below, there is a long history of doing this in the pursuit system. That additional data might better disambiguate control policies both in general, and across trials.<br /> --Third, the authors might find that a unified controller is actually a good (and more parsimonious) explanation. Which might actually be a good thing from the standpoint of future experiments. Interpretation of neural data is likely to be much easier if the control policy being instantiated isn't in constant flux.

      In any case, I would recommend altering the strength of some conclusions, particularly the conclusion that the presented methods can reliably discriminate amongst objectives/policies on individual trials. This is mentioned as a major motivation on multiple occasions, but in most of these instances, the subsequent analysis infers the objective only across trial (e.g., one must observe a scatterplot of many trials). By Figure 7, they do introduce a method for inferring the control policy on individual trials, and while this seems to work considerably better than chance, it hardly appears reliable.

      In this same vein I would suggest toning down aspects of the Introduction and Discussion. The Introduction in particular is overly long, and tries to position the present study as unique in ways that seem strained. Other studies have built links between human behavior, monkey behavior, and monkey neural data (for just one example, consider the corpus of work from the Scott lab that includes Pruszynski et al. 2008 and 2011). Other studies have used highly quantitative methods to infer the objective function used by subjects (e.g. Kording and Wolpert 2004). The very issue that is of interest in the present study - velocity-error-minimization versus position-error-minimization - has been extensively addressed in the smooth pursuit system. That field has long combined quantitative analyses of behavior in humans and monkeys, along with neural recordings. Many pursuit experiments used strategies that could be fruitfully employed to address the central questions of the present study. For example, error stabilization was important for dissecting the control policy used by the pursuit system. By artificially stabilizing the error (position or velocity) at zero, or at some other value, one can determine the system's response. The classic Rashbass step (1961) put position and velocity errors in opposition, to see which dominates the response. Step and sinusoidal perturbations were useful in distinguishing between models, as was the imposition of artificially imposed delays. The authors note the 'richness' of the behavior in the present task, and while one could say the same of pursuit, it was still the case that specific and well-thought through experimental manipulations were pretty critical. It would be better if the Introduction considered at least some of the above-mentioned work (or other work in a similar vein). While most would agree with the motivations outlined by the authors - they are logical and make sense - the present Introduction runs the risk of overselling the present conclusions while underselling prior work.

    1. Reviewer #2 (Public review):

      Summary:

      Kunkel et al aim to answer a fundamental question: Do placebo and nocebo effects differ in magnitude or longevity? To address this question, they used a powerful within-participants design, with a very large sample size (n=104), in which they compared placebo and nocebo effects - within the same individuals - across verbal expectations, conditioning, testing phase, and a 1-week follow-up. With elegant analyses, they establish that different mechanisms underlie the learning of placebo vs nocebo effects, with the latter being acquired faster and extinguished slower. This is an important finding for both the basic understanding of learning mechanisms in humans and for potential clinical applications to improve human health.

      Strengths:

      Beyond the above - the paper is well-written and very clear. It lays out nicely the need for the current investigation and what implications it holds. The design is elegant, and the analyses are rich, thoughtful, and interesting. The sample size is large which is highly appreciated, considering the longitudinal, in-lab study design. The question is super important and well-investigated, and the entire manuscript is very thoughtful with analyses closely examining the underlying mechanisms of placebo versus nocebo effects.

      Comments on revisions:

      The authors have addressed all of my concerns and comments - one point for them to verify is that indeed analyses that have not been preregistered will be flagged as such. The provided pre-registration link doesn't specify much about the analysis plans and specific tests used.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors develop a highly detailed pipeline to analyze hemodynamic signals from in vivo two-photon fluorescence microscopy. This includes motion correction, segmentation of the vascular network, diameter measurements across time, mapping neuronal position relative to the vascular network, and analyzing vascular network properties (interactions between different vascular segments). For the segmentation, the authors use a Convolution Neural Network to identify vessel (or neural) and background pixels and train it using ground truth images based on semi-automated mapping followed by human correction/annotation. Considerable processing was done on the segmented images to improve accuracy, extract vessel center lines, and compute frame-by-frame diameters. The model was tested with artificial diameter increases and Gaussian noise and proved robust to these manipulations.

      Network-level properties include Assortativity - a measure of how similar a vessel's response is to nearby vessels - and Efficiency - the ease of flow through the network (essentially, the combined resistance of a path based on diameter and vessel length between two points).

      Strengths:

      This is a very powerful tool for cerebral vascular biologists as many of these tasks are labor intensive, prone to subjectivity, and often not performed due to the complexity of collecting and managing volumes of vascular signals. Modelling is not my specialty so I cannot speak too specifically, but the model appears to be well-designed and robust to perturbations. It has many clever features for processing the data.

      The authors rightly point out that there is a real lack in the field of knowledge of vascular network activity at single-vessel resolution. Network anatomy has been studied, but hemodynamics are typically studied either with coarse resolution or in only one or a few vessels at a time. This pipeline has the potential to change that.

      [Editors' note: this work has been through three rounds of revisions, and most recently the authors have added caveats to the discussion. This version of the paper has been assessed by the editors and the weaknesses identified previously remain with earlier versions of the work.]

    1. Reviewer #2 (Public review):

      Summary:

      Gu and Liang et. al investigated how auditory information is mapped and transformed as it enters and exits a auditory cortex. They use anterograde transsynaptic tracers to label and perform calcium imaging of thalamorecipient neurons in A1 and retrograde tracers to label and perform calcium imaging of corticothalamic output neurons. They demonstrate a degradation of tonotopic organization from the input to output neurons.

      Strengths:

      The experiments appear well executed, well described, and analyzed.

      Weaknesses:

      (1) Given that the CT and TR neurons were imaged at different depths, the question as to whether not these differences could otherwise be explained by layer-specific differences is still not 100% resolved. Control measurements would be needed either by recording 1) CT neurons upper layers 2) TR in deeper layers 3) non-CT in deeper layers and/or 4) non-TR in upper layers.

      (2) What percent of the neurons at the depths being are CT neurons? Similar questions for TR neurons?

      (3) V-shaped, I-shaped, or O-shaped is not an intuitively understood nomenclature, consider changing. Further, the x/y axis for Figure 4a is not labeled, so it's not clear what the heat maps are supposed to represent.

      (4). Many references about projection neurons and cortical circuits are based on studies from visual or somatosensory cortex. Auditory cortex organization is not necessarily the same as other sensory areas. Auditory cortex references should be used specifically, and not sources reporting on S1, V1.

      Comments on revisions:

      The authors have fully addressed my concerns.

    1. Reviewer #2 (Public review):

      Summary:

      In this paper, Chittajallu and colleagues present compelling evidence that mu opioid receptor (MOR) activation can potentiate synaptic neurotransmission in a medial habenula to interpeduncular nucleus (mHb-IPN) subcircuit. While, projections from mHb tachykinin 1 (Tac1) neurons onto lateral IPN neurons show a canonical opioid-induced synaptic depression in glutamate release, excitatory neurotransmission in mHb choline acetyltransferase (ChAT) projections to the rostral IPN is potentiated by opioids. This function emerges around age P27 in mice, when MOR expression in the IPN peaks.

      Strengths:

      Carefully executed electrophysiological experiments with appropriate controls. Interesting description of a neurodevelopmental change in the effects of opioids on mHb-IPN signaling.

      Weaknesses:

      A minor concern is that the genetic strategy used to target the mHb-IPN pathway (constitutive ChR2 expression in all ChAT+ and Tac1+ neurons) might not specifically target this projection. Future studies are needed to examine the precise mechanism whereby MOR signaling can potentiate glutamatergic neurotransmission in ChAT+ MHb-IPN projections."

    1. Reviewer #2 (Public review):

      Summary:

      The molecular mechanisms underlying ciliogenesis are not well understood. Previously, work from the same group (Wu et al., 2018) identified myosin-Va as an important protein in transporting preciliary vesicles to the mother vesicles, allowing for initiation of ciliogenesis. The exocyst complex has previously been implicated in ciliogenesis and protein trafficking to cilia. Here, Lin et al. investigate the role of exocyst complex protein EXOC6A in cilia formation. The authors find that EXOC6A localizes to preciliary vesicles, ciliary vesicles, and the ciliary sheath. EXOC6A colocalizes with Myo-Va in the ciliary vesicle and the ciliary sheath, and both proteins are removed from fully assembled cilia. EXOC6A is not required for Myo-Va localization, but Myo-VA and EHD1 are required for EXOC6A to localize in ciliary vesicles. The authors propose that EXOC6A vesicles continually remodel the cilium: FRAP analysis demonstrates that EXOC6A is a dynamic protein, and live imaging shows that EXOC6A fuses with and buds off from the ciliary membrane. Loss of EXOC6A reduces, but does not eliminate, the number of cilia formed in cells. Any cilia that are still present are structurally abnormal, with either bent morphologies or the absence of some transition zone proteins. Overall, the analyses and imaging are well done, and the conclusions are well supported by the data. The work will be of interest to cell biologists, especially those interested in centrosomes and cilia.

      Strengths:

      The TEM micrographs are of excellent quality. The quality of the imaging overall is very good, especially considering that these are dynamic processes occurring in a small region of the cell. The data analysis is well done and the quantifications are very helpful. The manuscript is well-written and the final figure is especially helpful in understanding the model.

      Weaknesses:

      Additional information about the functional and mechanistic roles of EXOC6A would improve the manuscript greatly.

    1. Reviewer #2 (Public review):

      Summary:

      In this study, Gamen et al. investigated the roles of hypoxia and HIF1a signaling in regulating epicardial function during cardiac development and neonatal heart regeneration. The authors identified hypoxic regions in the epicardium during development and demonstrated that genetic and pharmacological stabilization of HIF1a during neonatal heart injury prolonged epicardial activation, preserved myocardium, enhanced infarct resolution, and maintained cardiac function beyond the normal postnatal regenerative window.

      Strengths:

      HIF1a signaling was manipulated in an epicardium-specific manner using appropriate genetic tools.

      Weaknesses:

      Some conclusions still need clarification.

      Comments on revisions:

      (1) The authors' comment on the partial overlap of HP1 and HIF1a IF signals (HIF1a is highly unstable ... broader regions of hypoxia) is reasonable and would help readers interpret the data if included in the text describing Fig. 1.

      (2) The conclusion regarding WT1+ cells in Fig. 2a and b remains unclear. Both panels display larger and smaller magenta cells, and when all are taken into account, the overall number does not appear substantially different. Additional clarification is needed on how the quantification was performed.

      (3) Regarding Figure 6-figure supplement 1c, it seems difficult to conclude the endothelial identity of WT1+ cells based on EMCN staining, as the markers do not overlap. The authors note that WT1 is upregulated in endothelial cells, but this has been reported in the context of injury, which differs from the context of the present study involving Molidustat.

    1. Reviewer #2 (Public review):

      Summary:

      The authors meticulously characterized EC-specific Tgfbr1, Tgfbr2, or double knockout in the retina, demonstrating through convincing immunostaining data that loss of TGF-β signaling disrupts retinal angiogenesis and choroidal neovascularization. Compared to other genetic models (Fzd4 KO, Ndp KO, VEGF KO), the Tgfbr1/2 KO retina exhibits the most severe immune cell infiltration. The authors proposed that TGF-β signaling loss triggers vascular inflammation, attracting immune cells - a phenotype specific to CNS vasculature, as non-CNS organs remain unaffected.

      Strengths:

      The immunostaining results presented are clear and robust. The authors performed well-controlled analyses against relevant mouse models. snRNA-seq corroborates immune cell leakage in the retina and vascular inflammation in the brain.

      Comments on revisions:

      The authors have revised the manuscript and addressed all my questions.

    1. Reviewer #2 (Public review):

      Summary:

      This study investigates whether individuals can learn to adopt egalitarian norms that incur a personal monetary cost, such as rejecting offers that benefit them more than the giver (advantageous inequitable offers). While these behaviors are uncommon, two experiments aim to demonstrate that individuals can learn to reject such offers by observing a "teacher" who follows these norms. The authors use computational modelling to argue that learners adopt these norms through a sophisticated process, inferring the latent structure of the teacher's preferences, akin to theory of mind.

      Strengths:

      This paper is well-written and tackles an important topic relevant to social norms, morality, and justice. The findings are promising (though further control conditions are necessary to support the conclusions). The study is well-situated in the literature, with a clever experimental design and a computational approach that may offer insights into latent cognitive processes. In the revision, the authors clarified some questions related to the initial submission.

      Weaknesses:

      Despite these strengths, I remain unconvinced that the current evidence supports the paper's central claims. Below, I outline several issues that, in my view, limit the strength of the conclusions.

      (1) Experimental Design and Missing Control Condition:

      The authors set out to test whether observing a "teacher" who is averse to advantageous inequity (Adv-I) will affect observers' own rejection of Adv-I offers. However, I think the design of the task lacks an important control condition needed to address this question. At present, participants are assigned to one of two teachers: DIS or DIS+ADV. Behavioral differences between these groups can only reveal relative differences in influence; they cannot establish whether (and how) either teacher independently affects participants' own behavior. For example, a significant difference between conditions can emerge even if participants are only affected by the DIS teacher and are not affected at all by the DIS+ADV teacher. What is crucially missing here is a no-teacher control condition, which can then be compared with each teacher condition separately. This control condition would also control for pure temporal effects unrelated to teacher influence (e.g., increasing Adv-I rejections due to guilt build-up).

      While this criticism applies to both experiments, it is especially apparent in Experiment 2. As shown in Figure 4, the interaction for 10:90 offers reflects a decrease in rejection rates following the DIS teacher, with no significant change following the DIS+ADV teacher. Ignoring temporal effects, this pattern suggests that participants may be learning NOT to reject from the DIS teacher, rather than learning to reject from the DIS+ADV teacher. On this basis, I do not see convincing evidence that participants' own choices were shaped by observing Adv-I rejections.

      In the Discussion, the authors write that "We found that participants' own Adv-I-averse preferences shifted towards the preferences of the Teacher they just observed, and the strength of these contagion effects related to the degree of behavior change participants exhibited on behalf of the Teachers, suggesting that they internalized, at least somewhat, these inequity preferences." However, there is no evidence that directly links the degree of behaviour change (on the teacher's behalf) to contagion effects (own behavioural change). I think there was a relevant analysis in the original version, but it was removed from the current version.

      (2) Modelling Efforts: The modelling approach is underdeveloped. The identification of the "best model" lacks transparency, as no model-recovery results are provided. Additionally, behavioural fits for the losing models are not shown, leaving readers in the dark about where these models fail. Readers would benefit from seeing qualitative/behavioural patterns that favour the winning model. Moreover, the reinforcement learning (RL) models used are overly simplistic, treating actions as independent when they are likely inversely related. For example, the feedback that the teacher would have rejected an offer provides evidence that rejection is "correct" but also that acceptance is "an error," and the latter is not incorporated into the modelling. In other words, offers are modelled as two-armed bandits (where separate values are learned for reject and accept actions), but the situation is effectively a one-armed bandit (if one action is correct, the other is mistaken). It is unclear to what extent this limitation affects the current RL formulations. Can the authors justify/explain their reasoning for including these specific variants? The manuscript only states Q-values for reject actions, but what are the Q-values for accept actions? This is unclear.

      In Experiment 2, only the preferred model is capable of generalization, so it is perhaps unsurprising that this model "wins." However, this does not strongly support the proposed learning mechanism, lacking a comparison with simpler generalizing mechanisms (see following comments).

      (3) Conceptual Leap in Modelling Interpretation: The distinction between simple RL models and preference-inference models seems to hinge on the ability to generalize learning from one offer to another. Whereas in the RL models, learning occurs independently for each offer (hence no cross-offer generalization), preference inference allows for generalization between different offers. However, the paper does not explore "model-free" RL models that allow generalization based on the similarity of features of the offers (e.g., payment for the receiver, payment for the offer-giver, who benefits more). Such models are more parsimonious and could explain the results without invoking a theory of mind or any modelling of the teacher. In such model versions, a learner acquires a functional form that allows prediction of the teacher's feedback based on offer features (e.g., linear or quadratic weighting). Because feedback for an offer modulates the parameters of this function (feature weights), generalization occurs without necessarily evoking any sophisticated model of the other person. This leaves open the possibility that RL models could perform just as well or even outperform the preference learning model, casting doubt on the authors' conclusions.

      Of note: even the behaviourists knew that when Little Albert was taught to fear rats, this fear generalized to rabbits. This could occur simply because rabbits are somewhat similar to rats. But this doesn't mean Little Albert had a sophisticated model of animals that he used to infer how they behave.

      In their rebuttal letter, the authors acknowledge these possibilities, but the manuscript still does not explore or address alternative mechanisms.

      (4) Limitations of the Preference-Inference Model: The preference-inference model struggles to capture key aspects of the data, such as the increase in rejection rates for 70:30 DI offers during the learning phase (e.g., Fig. 3A, AI+DI blue group). This is puzzling. Thinking about this, I realized the model makes quite strong, unintuitive predictions which are not examined. For example, if a subject begins the learning phase rejecting the 70:30 offer more than 50% of the time (meaning the starting guilt parameter is higher than 1.5), then, over learning, the tendency to reject will decrease to below 50% (the guilt parameter will be pulled down below 1.5). This is despite the fact that the teacher rejects 75% of the offers. In other words, as learning continues, learners will diverge from the teacher. On the other hand, if a participant begins learning by tending to accept this offer (guilt < 1.5), then during learning, they can increase their rejection rate but never above 50%. Thus, one can never fully converge on the teacher. I think this relates to the model's failure in accounting for the pattern mentioned above. I wonder if individuals actually abide by these strict predictions. In any case, these issues raise questions about the validity of the model as a representation of how individuals learn to align with a teacher's preferences (given that the model doesn't really allow for such an alignment).

      In their rebuttal letter, the authors acknowledged these anomalies and stated that they were able to build a better model (where anomalies are mitigated, though not fully eliminated). But they still report the current model and do not develop/discuss alternatives. A more principled model may be a Bayesian model where participants learn a belief distribution (rather than point estimates) regarding the teacher's parameters.

      (5) Statistical Analysis: The authors state in their rebuttal letter that they used the most flexible random effect structure in mixed-effects models. But this seems not to be the case in the model reported in Table SI3 (the very same model was used for other analyses too). Indeed, here it seems only intercepts are random effects. This left me confused about which models were used.

    1. Reviewer #2 (Public review):

      Summary:

      This important study by Turner et al., examines the functional role of a sparse but unique population of neurons in the cortex that express Nitric oxide synthase (Nos1). To do this, they pharmacolologically ablate these neurons in focal region of whisker related primary somatosensory (S1) cortex using a saponin-Substance P conjugate. Using widefield and 2-photon microscopy, as well as field recordings, they examine the impact of this cell specific lesion on blood flow dynamics and neuronal population activity. Within primary somatosensory cortex after Nos1 ablation, they find changes in neural activity patterns, decreased delta band power, reduced sensory evoked changes in blood flow (specifically eliminates the sustained blood flow change after stimulation) and decreased vasomotion.

      Strengths:

      This was a technically challenging study and the experiments were executed in an expert manner. The manuscript was well written and I appreciated the cartoon summary diagrams included in each figure. The analysis was rigorous and appropriate. Their discovery that Nos1 neurons can have significant effects on blood flow dynamics and neural activity is quite novel that should seed many follow up, mechanistic experiments to explain this phenomenon. The conclusions were justified by the convincing data presented.

      Weaknesses:

      I did not find any major flaws with the study. I originally noted some potential issues with the authors' characterization of the lesion and its extent, but that has been resolved in the revised manuscript.

      Comments on revisions:

      The authors have thoughtfully addressed the relatively minor concerns I had originally raised. Congratulations to the authors for producing this important paper.

    1. Reviewer #2 (Public review):

      eQTLs have emerged as a method for interpreting GWAS signals. However, some GWAS signals are difficult to explain with eQTLs. In this paper, the authors demonstrated that caQTLs can explain these signals. This suggests that for GWAS signals to actually lead to disease phenotypes, they must be accessible in the chromatin. This implies that for GWAS signals to translate into disease phenotypes, they need to be accessible within the chromatin.

      However, fundamentally, caQTLs, like GWAS, have the limitation of not being able to determine which genes mediate the influence on disease phenotypes. This limitation is consistent with the constraints observed in this study.

      (1) Reproducibility / Methods. The concrete numbers provided in the authors' response (e.g., 20 YRI LCL ATAC‑seq samples used only for peak discovery; caQTL mapping restricted to 100 GBR LCLs; 99,320 ATAC peaks tested vs 14,872 genes for eQTL; 373 European RNA‑seq samples, with clarification of overlap) do not appear to be reflected in the Methods. These specifics should be incorporated directly into the Methods sections.

      (2) Experimental evidence demonstrating transcription factor binding at representative caQTL peaks would strengthen causal interpretation of these loci.

      (3) Tissue/cell‑type specificity of caQTLs: Prior work supports that chromatin‑level effects are broadly shared across cellular states, whereas expression effects are more context‑specific; thus, caQTLs are generally less "state‑specific" than eQTLs. However, this does not imply equivalence across distinct cell types: caQTLs derived from different cell types may yield different results, particularly where accessibility is cell‑type restricted.

    1. Reviewer #2 (Public review):

      Summary:

      The authors investigated whether the total DNA concentration in gastric fluid (gfDNA), collected via routine esophagogastroduodenoscopy (EGD), could serve as a diagnostic and prognostic biomarker for gastric cancer. In a large patient cohort (initial n=1,056; analyzed n=941), they found that gfDNA levels were significantly higher in gastric cancer patients compared to non-cancer, gastritis, and precancerous lesion groups. Unexpectedly, higher gfDNA concentrations were also significantly associated with better survival prognosis and positively correlated with immune cell infiltration. The authors proposed that gfDNA may reflect both tumor burden and immune activity, potentially serving as a cost-effective and convenient liquid biopsy tool to assist in gastric cancer diagnosis, staging, and follow-up.

      Strengths:

      This study is supported by a robust sample size (n=941) with clear patient classification, enabling reliable statistical analysis. It employs a simple, low-threshold method for measuring total gfDNA, making it suitable for large-scale clinical use. Clinical confounders, including age, sex, BMI, gastric fluid pH, and PPI use, were systematically controlled. The findings demonstrate both diagnostic and prognostic value of gfDNA, as its concentration can help distinguish gastric cancer patients and correlates with tumor progression and survival. Additionally, preliminary mechanistic data reveal a significant association between elevated gfDNA levels and increased immune cell infiltration in tumors (p=0.001).

      Weaknesses:

      The study has several notable weaknesses. The association between high gfDNA levels and better survival contradicts conventional expectations and raises concerns about the biological interpretation of the findings. The diagnostic performance of gfDNA alone was only moderate, and the study did not explore potential improvements through combination with established biomarkers. Methodological limitations include a lack of control for pre-analytical variables, the absence of longitudinal data, and imbalanced group sizes, which may affect the robustness and generalizability of the results. Additionally, key methodological details were insufficiently reported, and the ROC analysis lacked comprehensive performance metrics, limiting the study's clinical applicability.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript reports high-resolution functional MRI data and MEG data revealing additional mechanistic information about an established paradigm studying how foveal regions of primary visual cortex (V1) are involved in processing peripheral visual stimuli. Because of the retinotopic organization of V1, peripheral stimuli should not evoke responses in the regions of V1 that represent stimuli in the center of the visual field (the fovea). However, functional MRI responses in foveal regions do reflect the characteristics of peripheral visual stimuli - this is a surprising finding first reported in 2008. The present study uses fMRI data with sub-millimeter resolution to study the how responses at different depths in the foveal gray matter do or don't reflect peripheral object characteristics during 2 different tasks: one in which observers needed to make detailed judgments about object identity, and one in which observers needed to make more coarse judgments about object orientation. FMRI results reveal interesting and informative patterns in these two conditions. A follow-on MEG study yields information about the timing of these responses. Put together, the findings settle some questions in the field and add new information about the nature of visual feedback to V1.

      Strengths:

      (1) Rigorous and appropriate use of "laminar fMRI" techniques.

      (2) The introduction does an excellent job of contextualizing the work.

      (3) Control experiments and analyses are designed and implemented well

      Weaknesses:

      (1) The use of the term "low order" to describe object orientation is potentially confusing. During review, the authors considered this issue and responded that they would continue with the use of the term low-order to describe object orientation because a low-pass spatial frequency filter would provide object orientation information. This is certainly a reasonable perspective; nonetheless, this reviewer thinks spatial frequencies that low are not readily represented by neurons in early visual cortex and it is common to use "low-order" to refer to features extracted in early visual areas, so I think this causes confusion.

      (2) The methods contain a nice description of the methods for "correcting the vascular-related signals". I'm guessing this is the method that removed, e.g., 22% of foveal voxels (previous paragraph), but it's not entirely clear whether the voxel selection methods described in the "correcting the vascular-related signals" are describing the same processing step referred to in the previous paragraph as "a portion of voxels was removed based on large vein distribution".

      (3) It is quite difficult to perform laminar analyses across multiple visual areas because distortion compensation is not perfect and registration of functional to anatomical data will always be a bit better in some places and a bit worse in others. An ideal manuscript would include some images showing registration quality in V1, LOC, and IPS regions for a few different participants, or include some kind of quality metric indicating the confidence in depth assignments in different regions.

      (4) For the decoding analysis, it would be helpful to have more information about how samples were defined for each condition -- were the beta values for entire blocks used as samples for each condition, or were separate timepoints during a block used in the SVM as repeated samples for each condition?

    1. Reviewer #2 (Public review):

      Summary:

      This important study shows that betulin from wild peach trees disrupts neural signaling in aphids by targeting a conserved site in the insect GABA receptor. The authors present a nicely integrated set of molecular, physiological, and genetic experiments to establish the compound's species-specific mode of action. While the mechanistic evidence is solid, the manuscript would benefit from a broader discussion of evolutionary conservation and potential off-target ecological effects.

      Strengths:

      The main strengths of the study lie in its mechanistic clarity and experimental rigor. The identification of a betulin-binding single threonine residue was supported by (1) site-directed mutagenesis and (2) functional assays. These experiments strongly support the specificity of action. Furthermore, the use of comparative analyses between aphids and fruit flies demonstrates an important effort to explore species specificity, and the integration of quantitative data further enhances the robustness of the conclusions.

      Comments on revisions:

      The revision satisfactorily addresses my concerns on evolutionary context, methodological clarity, and ecological risk.

    1. Reviewer #2 (Public review):

      Summary:

      In classical models of signaling network, the signaling activity increases monotonically with the ligand affinity. However, certain receptors prefer ligands of intermediate affinity. In the paper, the authors present a new minimal model to derive generic conditions for ligand specificity. In brief, this requires multi-site phosphorylation and that high-affinity complexes be more prone to degrade. This particular type of kinetic discrimination allows to overcome equilibrium constraints.

      Strengths:

      The model is simple, and it adds only a few parameters to classical generic models. They moreover vary these additional parameters in ranges based on experimental observations. They explain how the introduction of these new parameters is essential to ligand specificity. Their model quantitatively reproduces the ligand specificity of a certain receptor. They finally provide testable prediction.

      Weaknesses:

      The naming of multiple variables as activity without precise definitions may be confusing to readers.

      Comments on revisions:

      I thank the authors for addressing my comments. One point remains regarding the naming of multiple variables as activity. Besides using other words, the authors may consider giving precise definitions of terms, e.g. by writing "We define kinase activity as the phosphorylation rate $\omega=k_p\tau$." A connection that appears only at line 204 in the present manuscript.

    1. Reviewer #2 (Public review):

      Summary:

      Cupollilo et al. investigate the properties of hippocampal CA3 neurons that express the immediate early gene cFos in response to a single foot shock. They compare ex-vivo the electrophysiological properties of these "engram neurons" labeled with two different cFos promoter-driven green markers: Their new virally delivered tool FLEN labels neurons 2-6 h after activity, while RAM contains additional enhancers and peaks considerably later (>24 h). Since the fraction of labeled CA3 cells is comparable with both constructs, it is assumed (but not tested) that they label the same population of activated neurons at different time points. Both FLEN+ and RAM+ neurons in CA3 receive more synaptic inputs compared to non-expressing control neurons, which could be a causal factor for cFos activation, or a very early consequence thereof. Frequency facilitation and E/I ratio of mossy fiber inputs were also tested, but are not different in both cFos+ groups of neurons. One day after foot shock, RAM+ neurons are more excitable than RAM- neurons, suggesting a slow increase in excitability as a major consequence of cFos activation.

      Strengths:

      The study is conducted to high standards and contributes significantly to our understanding of memory formation and consolidation in the hippocampus. Modifications of intrinsic neuronal properties seem to be more salient than overall changes in the total number of (excitatory and inhibitory) inputs, although a switch in the source of the synaptic inputs would not have been detected by the methods employed in this study

      Weaknesses:

      The new tool FLEN is not quantitatively compared to e.g. the TetTag reporter mouse. Nevertheless, the fluorescent images of FLEN+ neurons are quite convincing.

    1. Reviewer #2 (Public review):

      Summary:

      Using the theory of efficient coding, the authors study how neural gains may be adjusted to optimize information transmission by noisy neural populations while minimizing metabolic cost, under the assumption that other aspects of neural activity (i.e. tuning) are determined by the computation performed by the network.

      The manuscript first presents mathematical results for the general case where the computational goals of the neural population are not specified (the computation is implicit in the assumed tuning curves). It then develops the theory for a specific probabilistic coding scheme. The general theory provides an explanation for firing rate homeostasis at the level of neural clusters with firing rate heterogeneity within clusters. The specific application further explains stimulus-specific adaptation in visual cortex.

      The mathematical derivations, simulations and application to visual cortex data are solid as far as I can tell.

      This remains a highly technical manuscript although the authors have improved the clarity of presentation of the general theory (which is the bulk of the work presented) and better motivated/explained modeling assumptions and choices. In the second part, the manuscript focuses on a specific code (homeostatic DDC) showing that this can be implemented by divisive normalization and can explain stimulus-specific adaptation.

      Strengths:

      The problem of efficient coding is a long-standing and important one. This manuscript contributes to that field by proposing a theory of efficient coding through gain adjustments, independent of the computational goals of the system. The main assumption, and insight, is that computational goals and efficiency can be in some sense factorized: tuning curve shapes are determined by the computational goal, whereas gains can be adjusted to optimize transmission of information.

      One key result is a normative explanation for firing rate homeostasis at the level of neural clusters (groups of neurons that perform a similar computation) with firing rate heterogeneity within each cluster. Both phenomena are widely observed, and reconciling them under one theory is important.

      The mathematical derivations are thorough. Although the model of neural activity is artificial, the authors make sure to include many aspects of cortical physiology, while also keeping the models quite general.

      Section 2.5 derives the conditions in which homeostasis would be near-optimal in cortex, which appear to be consistent with many empirical observations in V1. This indicates that homeostasis in V1 might be indeed a close to optimal solution to code efficiently in the face of noise.

      The application to the data of Benucci et al 2013 is the first to offer a normative explanation of stimulus-specific adaptation in V1.

      The novelty and significance of the work are presented clearly in the newly extended Introduction and Discussion.

      Weaknesses:

      The manuscript remains hard to read. The general theory occupies most of the manuscript, as needed to convey it fully. But as a result the second part on homeostatic DDC and adaptation is somewhat underdeveloped and risks having less visibility than it might deserve.

      The paper Benucci et al 2013 shows that homeostasis holds for some stimulus distributions, but not others i.e. when the 'adapter' is present too often. This manuscript, like the Benucci paper, discards those datasets. But from a theoretical standpoint, it seems important to consider why that would be the case, and if it can be predicted by the theory proposed here. The authors now acknowledge this limitation in the Discussion.

    1. Reviewer #3 (Public review):

      Summary:

      The authors convincingly demonstrate that a population of CCK+ spinal neurons in the deep dorsal horn express the G protein coupled estrogen receptor GPR30 to modulate pain sensitivity in the chronic constriction injury (CCI) model of neuropathic pain in mice. Using complementary pharmacological and genetic knockdown experiments they convincingly show that GPR30 inhibition or knockdown reverses mechanical, tactile and thermal hypersensitivity, conditioned place aversion, and c-fos staining in the spinal dorsal horn after CCI. They propose that GPR30 mediates an increase in postsynaptic AMPA receptors after CCI using slice electrophysiology which may underlie the increased behavioral sensitivity. They then use anterograde tracing approaches to show that CCK and GPR30 positive neurons in the deep dorsal horn may receive direct connections from primary somatosensory cortex. Chemogenetic activation of these dorsal horn neurons proposed to be connected to S1 increased nociceptive sensitivity in a GPR30 dependent manner. Overall, the data are very convincing and the experiments are well conducted and adequately controlled. However, the proposed model of descending corticospinal facilitation of nociceptive sensitivity through GPR30 in a population of CCK+ neurons in the dorsal horn is not fully supported.

      Strengths:

      The experiments are very well executed and adequately controlled throughout the manuscript. The data are nicely presented and supportive of a role for GPR30 signaling in the spinal dorsal horn influencing nociceptive sensitivity following CCI. The authors also did an excellent job of using complementary approaches to rigorously test their hypothesis.

      Weaknesses:

      The primary weakness in this manuscript involves overextending the interpretations of the data to still propose a role for corticospinal descending facilitation. While the viral tracing demonstrates a potential connection between S1 and CCK+ or GPR30+ spinal neurons, no direct evidence is provided for S1 in facilitating any activity of these neurons in the dorsal horn.

      Comments on the latest version:

      The authors did an excellent job addressing many of the critiques raised. Despite acknowledging that a direct functional corticospinal projection to CCK/GPR30+neurons is not supported by the data and revising the title, these claims still persist throughout the manuscript. Manipulating gene expression or the activity of postsynaptic neurons through a trans-synaptic labeling strategy does not directly support any claim that those upstream neurons are directly modulating spinal neurons through the proposed pathway. Indeed they might, but that is not demonstrated here.

    1. Reviewer #2 (Public review):

      Summary:

      This is a very interesting study from Vandendoren and colleagues examining the role of PVN oxytocin neurons during thermoregulatory behaviors, in particular during thermoregulatory huddling. The findings are important and compelling, and have implications for the thermoregulation field as well as the social/naturalistic behavior field.

      Strengths:

      The study is very creative and tackles a challenging task to examine how natural and social behavior influences neural circuits for a homeostatic system such as thermoregulation. The authors use a combination of state-of-the-art tools (photometry, optogenetics, automated behavior tracking, thermal imaging, and core body temperature measurement), often in combination with each other, to produce a rigorous and high-dimensional dataset. Carrying out tightly temperature-controlled experiments and examining natural behavior, neural activity, and body physiology simultaneously is quite a feat. I applaud the authors for taking this on in a rigorous and detailed manner. This paper will be valuable for both the thermoregulation field as well as for researchers interested in naturalistic social behaviors. The conclusions are supported by the data.

      Weaknesses:

      I have a number of questions and suggestions for clarification that would help improve the interpretation of the findings.

      (1) Figure 1D-F: It would be helpful to include representative images of cFos expression in the PVN, LS, and DMH during both quiescent and solo huddling conditions, to better illustrate the reported differences.

      (2) Figure 1C: The data suggest a general suppression of neural activity during sleep-associated quiescent huddling, which somewhat complicates the interpretation of what specifically the active huddling cells are responding to. A more informative control might have been a comparison between huddling and a more generic form of social engagement (e.g., dyadic sniffing) to assess whether huddling-responsive neurons are broadly tuned to social stimuli. While it may not be feasible to add this experimentally at this time, a brief discussion of this limitation in the main text would be valuable.

      (3) Figure 2H-J vs. Figure 1: The fiber photometry data suggest increased PVN activity during quiescent huddling vs active huddling, which appears to contrast with the cFos results from Figure 1. It would be helpful for the authors to comment on possible reasons for this discrepancy-e.g., methodological differences, temporal resolution, or cell-type specificity.

      (4) Figure 2O: A comparable linear regression for active huddling would be informative to assess whether the observed relationships extend across behavioral states.

      (5) Temperature manipulation: The use of floor temperature changes presents a distinct physiological and sensory experience from, for example, manipulation of ambient temperature. A discussion of how this choice may affect neural circuit engagement or interpretation of thermoregulatory responses would be beneficial.

      (6) Correlations with behavior: Across the manuscript, it would be informative to see correlations between huddle duration and neural activity (e.g., cFos expression, calcium signal magnitude). Similarly, do longer huddles produce greater thermogenic effects?

      (7) Lactating vs. virgin mothers: The inclusion of maternal data is intriguing but feels somewhat disconnected from the central huddling-thermoregulation narrative. If these experiments are to remain, additional explanation of their rationale and how they fit into the broader story would help clarify their relevance.

      (8) Optogenetic manipulation: Have the authors tested the effect of PVN OT neuron stimulation or inhibition during huddling? Even a negative result would be of interest to the field. If these data exist (main or supplementary), I apologize for missing them. If not, the authors might consider including them or commenting briefly on any attempts or challenges in carrying out these experiments.

    1. Reviewer #2 (Public review):

      Summary:

      This study investigates the role of the enzyme Alcohol Dehydrogenase 5 (ADH5) in brown adipose tissue (BAT) during aging. BAT is crucial for thermogenesis and energy balance, but its function and mass diminish with age, contributing to metabolic dysfunction and age-related diseases. ADH5, also known as S-nitrosoglutathione reductase, regulates nitric oxide (NO) signaling by damaging S-nitrosylation modifications from proteins. The authors show that aging in mice leads to increased protein S-nitrosylation but reduced ADH5 expression in BAT, resulting in impaired metabolic and cognitive functions. Deletion of ADH5 in BAT accelerates tissue senescence and systemic metabolic decline.

      Mechanisticaremoving lly, aging suppresses ADH5 via downregulation of heat shock factor 1 (HSF1), a master regulator of protein homeostasis. Importantly, pharmacologically boosting HSF1 improves BAT function and mitigates both metabolic and cognitive declines in aged mice. The findings highlight a critical HSF1-ADH5 pathway in BAT that protects against aging-related dysfunction, suggesting that targeting this pathway may offer new therapeutic strategies for improving metabolic health and cognition during aging.

      Strengths:

      This research provides insight into the interplay between redox biology, proteostasis, and metabolic decline in aging. By identifying a specific enzyme that controls SNO status in BAT and further developing a therapy to target ADH5 in BAT to prevent age-related decline, the authors have identified a putative mechanism to combat age-related decline in BAT function.

      Weaknesses:

      (1) Sex needs to be considered as a biological variable, at a minimum in the reporting of the phenotypes observed in this manuscript, but also potentially by further experimentation. The only mention of sex I could find is that the authors reported the general protein SNO status in BAT is increased with age in male C57Bl/6J mice. Is this also true in female mice? For all of the ADH5 knockout mouse data, are these also male mice? Do female ADH5 knockout mice have a consistent phenotype, or are the sex differences?

      (2) It would be helpful to know the extent of ADH5 loss in the adipose tissue of knockout mice, either by mRNA or by immunoblotting for ADH5. It could also be helpful to know if ADH5 is deleted from the inguinal adipose tissue of these mice, especially since they seem to accumulate fat mass as they age (Figure 2B).

      (3) For Figure 4D, the ChiP, it would be better to show the IgG control pulldowns. Also, there's an unexpected thing where all the values for the Adh5 flox mice are exactly the same - how is this possible? Finally, it's not clear how these BAT samples were treated with HSF1A - was this done in vivo or ex vivo?

      (4) I didn't understand what was on the y-axis in Figure 5A, nor how it was measured. I assume it's HSF1A, and maybe it's the part in the methods with the Metabolomic Analysis, but this wasn't clear. It would also help if release from the NC-Vehicle formulation could be included as a negative control.

      (5) What happens to BAT protein S-nitrosylation in HSF1A-treated mice?

      (6) Figure 1B: What is the age of the positive (ADH5BKO) and negative (Adh5 fl) mice?

      (7) Figure 1F: Can you clarify what I'm looking at in the P16ink4a panels? The red staining? Is the blue staining DAPI? This is also a problem in Figures 3C, 3D and 5G, and 5I. Figure 4B looks great - maybe this could be used as an example?

      (8) Figure 3B looks a bit odd since 7 of the 12 total mice seem to have an IL-beat level of exactly 5. I was a bit unclear about why arbitrary units were used for IL-1β levels since it says an ELISA was used to quantify IL-1β; however, in the methods the authors describe a Bio-Rad Laboratories Bio-plex Pro Mouse Cytokine 23-Plex approach, which I don't think is an ELISA. Can the approach to measuring IL-1β be clarified, and could the authors explain why they can't show units of mass for IL-1β levels?

      (9) Figure 2C and 2D: I don't really understand why the Heat or VO2 need to be expressed as fold changes. Can't these just be expressed with absolute units? It's also confusing why the heat fold change is 1.0 in the light and the dark for the floxed animal. I bet this is because the knockout is normalized to the floxed animal for light and then normalized again for the dark period, but since both are on the same graph, readers could be confused into thinking there is no difference in the heat production or VO2 between light and dark, which would be surprising. This could all just be solved if absolute units were used.

    1. Reviewer #2 (Public review):

      Summary:

      The intracellular pathogen Toxoplasma gondii scavenges metal ions such as iron and zinc to support its replication; however, mechanistic studies of iron and zinc uptake are limited. This study investigates the function of a putative iron and zinc transporter, ZFT. In this paper, the authors provide evidence that ZFT mediates iron and zinc uptake by examining the regulation of ZFT expression by iron and zinc levels, the impact of altered ZFT expression on iron sensitivity, and the effects of ZFT depletion on intracellular iron and zinc levels in the parasite. The effects of ZFT depletion on parasite growth are also investigated, showing the importance of ZFT function for the parasite.

      Strengths:

      A key strength of the study is the use of multiple complementary approaches to demonstrate that ZFT is involved in iron and zinc uptake. Additionally, the authors build on their finding that loss of ZFT impairs parasite growth by showing that ZFT depletion induces stage conversion and leads to defects in both the apicoplast and mitochondrion.

      Weaknesses:

      (1) Excess zinc was shown not to alter ZFT expression, but a cation chelator (TPEN) did lead to decreased expression. While TPEN is often used to reduce zinc levels, does it have any effect on iron levels? Could the reduction in ZFT after TPEN treatment be due to a reduction in the level of iron or another cation?

      (2) ZFT expression was found to be dynamic depending on the size of the vacuole, based on mean fluorescence intensity measurements. Looking at protein levels by Western blot at different times during infection would strengthen this finding.

      (3) ZFT localization remained at the parasite periphery under low iron conditions. However, in the images shown in Figure S1c, larger vacuoles (containing 4-8 parasites) are shown for the untreated conditions, and single parasite-containing vacuoles are shown for the low iron condition. As ZFT localization is predominantly at the basal end of the parasite in larger PV and at the parasite periphery for smaller vacuoles, it would be better to compare vacuoles of similar size between the untreated and low-iron conditions.

    1. Reviewer #2 (Public review):

      Summary:

      The authors find that the bacterial pathogen Shigella flexneri uses the T3SS effector IpaH1.4 to induce degradation of the IFNg-induced protein RNF213. They show that in the absence of IpaH1.4, cytosolic Shigella is bound by RNF213. Furthermore, RNF213 conjugates linear and lysine-linked ubiquitin to Shigella independently of LUBAC. Intriguingly, they find that Shigella lacking ipaH1.4 or mxiE, which regulates the expression of some T3SS effectors, are not killed even when ubiquitylated by RNF213 and that these mutants are still able to replicate within the cytosol, suggesting that Shigella encodes additional effectors to escape from host defenses mediated by RNF213-driven ubiquitylation.

      Strengths:

      The authors take a variety of approaches, including host and bacterial genetics, gain-of-function and loss-of-function assays, cell biology, biochemistry, . Overall, the experiments are elegantly designed, rigorous, and convincing.

    1. Reviewer #2 (Public review):

      Summary:

      The authors present a very interesting collection of methods and results using brain ultrasound localization microscopy (ULM) in awake mice. They emphasize the effect of the level of anesthesia on the quantifiable elements assessable with this technique (i.e. vessel diameter, flow speed, in veins and arteries, area perfused, in capillaries) and demonstrate the possibility of achieving longitudinal cerebrovascular assessment in one animal during several weeks with their protocol.

      The authors made a good rewriting the article based on the reviewers' comments. One of the message of the first version of the manuscript was that variability in measurements (vessel diameter, flow velocity, vascularity) were much more pronounced under changes of anesthesia than when considering longitudinal imaging across several weeks. This message is now not quite mitigated, as longitudinal imaging seems to show a certain variability close to the order of magnitude observed under anesthesia. In that sense, the review process was useful in avoiding hasty conclusion and calls for further caution in ULM awake longitudinal imaging, in particular regarding precision of positioning and cancellation of tissue motion.

      Strengths:

      Even if the methods elements considered separately are not new (brain ULM in rodents, setup for longitudinal awake imaging similar to those used in fUS imaging, quantification of vessel diameters/bubble flow/vessel area), when masterfully combined as it is done in this paper, they answer two questions that have been long-running in the community: what is the impact of anesthesia on the parameters measured by ULM (and indirectly in fUS and other techniques)? Is it possible to achieve ULM in awake rodents for longitudinal imaging? The manuscript is well constructed, well written, and graphics are appealing.

      The manuscript has been much strengthened by the round of review, with more animals for the longitudinal imaging study.

      Weaknesses:

      The manuscript has been only marginally modified since our last round of review, so there is probably not much we reviewers can additionally elaborate to improve it. Therefore my last concerns about the reliability of longitudinal quantifications and on certain discrepancies remains for this paper. As a general piece of advice, I would just say that every claim (' is higher', is lower', is stable') should be supported by evidence and statistical testing if it is not already the case.

      Response 06: the authors' response is not satisfactory. Even if the difference in terms of ROI boundaries between fig 4e and fig 4j has been underlined by the authors, they only provide a wordy comment and no additional quantitative analysis that could explain the discrepancy I pointed out. By doing so they take the risk of making misinterpretations. The reader is left with a discrepancy that could be explained by 2 mechanisms: -pial vessel population behave differently from penetrating arterioles and venules OR - the imaging of pial vessels with ULM is not good enough to enable proper quantification because the vessels are not clearly visible (out of plane extent). In any case Figure 4j does not "provides a more comprehensive representation of cortical vasculature" as stated. If the changes in pial vessels cannot be reliably measured, they should be excluded from the ROI.

      Line 161: be careful with the use of vessel density, as pointed by reviewer 1.

      Line 196: "the decrease in venous vessel area (averaging 55% across mice) was greater than that of arterial (averaging 35%)" no stat test has been performed.

    1. Reviewer #2 (Public review):

      Summary:

      This paper aims to elucidate the gene regulatory network governing the development of cone photoreceptors, the light-sensing neurons responsible for high acuity and color vision in humans. The authors provide a comprehensive analysis through stage-matched comparisons of gene expression and chromatin accessibility using scRNA-seq and scATAC-seq from the cone-dominant 13-lined ground squirrel (13LGS) retina and the rod-dominant mouse retina. The abundance of cones in the 13LGS retina arises from a dominant trajectory from late retinal progenitor cells (RPCs) to photoreceptor precursors and then to cones, whereas only a small proportion of rods are generated from these precursors.

      Strengths:

      The paper presents intriguing insights into the gene regulatory network involved in 13LGS cone development. In particular, the authors highlight the expression of cone-promoting transcription factors such as Onecut2, Pou2f1, and Zic3 in late-stage neurogenic progenitors, which may be driven by 13LGS-specific cis-regulatory elements. The authors also characterize candidate cone-promoting genes Zic3 and Mef2C, which have been previously understudied. Overall, I found that the across-species analysis presented by this study is a useful resource for the field.

      Weaknesses:

      The functional analysis on Zic3 and Mef2C in mice does not convincingly establish that these factors are sufficient or necessary to promote cone photoreceptor specification. Several analyses lack clarity or consistency, and figure labeling and interpretation need improvement.

    1. Reviewer #2 (Public review):

      Summary:

      The paper introduced the pipeline to analyze brain imaging of freely moving animals: registering deforming tissues and maintaining consistent cell identities over time. The pipeline consists of three neural networks that are built upon existing models: BrainAlignNet for non-rigid registration, AutoCellLabeler for supervised annotation of over 100 neuronal types, and CellDiscoveryNet for unsupervised discovery of cell identities. The ambition of the work is to enable high-throughput and largely automated pipelines for neuron tracking and labeling in deforming nervous systems.

      Strengths:

      (1) The paper tackles a timely and difficult problem, offering an end-to-end system rather than isolated modules.

      (2) The authors report high performance within their dataset, including single-pixel registration accuracy, nearly complete neuron linking over time, and annotation accuracy that exceeds individual human labelers.

      (3) Demonstrations across two organisms suggest the methods could be transferable, and the integration of supervised and unsupervised modules is of practical utility.

      Weaknesses:

      (1) Lack of solid evaluation. Despite strong results on their own data, the work is not benchmarked against existing methods on community datasets, making it hard to evaluate relative performance or generality.

      (2) Lack of novelty. All three models do not incorporate state-of-the-art advances from the respective fields. BrainAlignNet does not learn from the latest optical flow literature, relying instead on relatively conventional architectures. AutoCellLabeler does not utilize the advanced medNeXt3D architectures for supervised semantic segmentation. CellDiscoveryNet is presented as unsupervised discovery but relies on standard clustering approaches, with limited evaluation on only a small test set.

      (3) Lack of robustness. BrainAlignNet requires dataset-specific training and pre-alignment strategies, limiting its plug-and-play use. AutoCellLabeler depends heavily on raw intensity patterns of neurons, making it brittle to pose changes. By contrast, current state-of-the-art methods incorporate spatial deformation atlases or relative spatial relationships, which provide robustness across poses and imaging conditions. More broadly, the ANTSUN 2.0 system depends on numerous manually tuned weights and thresholds, which reduces reproducibility and generalizability beyond curated conditions.

      Evaluation:

      To make the evaluation more solid, it would be great for the authors to (1) apply the new method on existing datasets and (2) apply baseline methods on their own datasets. Otherwise, without comparison, it is unclear if the proposed method is better or not. The following papers have public challenging tracking data: https://elifesciences.org/articles/66410, https://elifesciences.org/articles/59187, https://www.nature.com/articles/s41592-023-02096-3.

      Methodology:

      (1) The model innovations appear incrementally novel relative to existing work. The authors should articulate what is fundamentally different (architectural choices, training objectives, inductive biases) and why those differences matter empirically. Ablations isolating each design choice would help.

      (2) The pipeline currently depends on numerous manually set hyperparameters and dataset-specific preprocessing. Please provide principled guidelines (e.g., ranges, default settings, heuristics) and a robustness analysis (sweeps, sensitivity curves) to show how performance varies with these choices across datasets; wherever possible, learn weights from data or replace fixed thresholds with data-driven criteria.

      Appraisal:

      The authors partially achieve their aims. Within the scope of their dataset, the pipeline demonstrates impressive performance and clear practical value. However, the absence of comparisons with state-of-the-art algorithms such as ZephIR, fDNC, or WormID, combined with small-scale evaluation (e.g., ten test volumes), makes the strength of evidence incomplete. The results support the conclusion that the approach is useful for their lab's workflow, but they do not establish broader robustness or superiority over existing methods.

      Impact:

      Even though the authors have released code, the pipeline requires heavy pre- and post-processing with numerous manually tuned hyperparameters, which limits its practical applicability to new datasets. Indeed, even within the paper, BrainAlignNet had to be adapted with additional preprocessing to handle the jellyfish data. The broader impact of the work will depend on systematic benchmarking against community datasets and comparison with established methods. As such, readers should view the results as a promising proof of concept rather than a definitive standard for imaging in deformable nervous systems.

    1. Reviewer #2 (Public review):

      Summary:

      Pablo Ruiz Cuenca et al. conducted a GPS logger study with 124 adult participants across four different slum areas in Salvador, Brazil, recording GPS locations every 35 seconds for 48 hours. The aim of their study was to investigate step-selection models, a technique widely used in movement ecology to quantify contact with environmental risk factors for exposure to leptospires (open sewers, community streams, and rubbish piles). The authors built two different types of models based on distance and based on buffer areas to model human environmental exposure to risk factors. They show differences in movement/contact with these risk factors based on gender and seropositivity status. This study shows the existence of modest differences in contact with environmental risk factors for leptospirosis at small spatial scales based on socio-demographics and infection status.

      Strengths:

      The authors assembled a rich dataset by collecting human GPS logger data, combined with field-recorded locations of open sewers, community streams, and rubbish piles, and testing individuals for leptospirosis via serology. This study was able to capture fine-scale exposure dynamics within an urban environment and shows differences by gender and seropositive status, using a method novel to epidemiology (step selection).

      [Editors' note: I have reviewed the authors' revised submission and confirm that they have adequately addressed the reviewers' comments for this manuscript.]

    1. Reviewer #2 (Public review):

      This work presents theoretical results concerning the effect of punctuated mutation on multistep adaptation and empirical evidence for that effect in cancer. The empirical results seem to agree with the theoretical predictions. However, it is not clear how strong the effect should be on theoretical grounds, and there are other plausible explanations for the empirical observations.

      For various reasons, the effect of punctuated mutation may be weaker than suggested by the theoretical and empirical analyses:

      (1) The effect of punctuated mutation is much stronger when the first mutation of a two-step adaptation is deleterious (Figure 2). For double inactivation of a TSG, the first mutation--inactivation of one copy--would be expected to be neutral or slightly advantageous. The simulations depicted in Figure 4, which are supposed to demonstrate the expected effect for TSGs, assume that the first mutation is quite deleterious. This assumption seems inappropriate for TSGs, and perhaps the other synergistic pairs considered, and exaggerates the expected effects.

      (2) More generally, parameter values affect the magnitude of the effect. The authors note, for example, that the relative effect decreases with mutation rate. They suggest that the absolute effect, which increases, is more important, but the relative effect seems more relevant and is what is assessed empirically.

      (3) Routes to inactivation of both copies of a TSG that are not accelerated by punctuation will dilute any effects of punctuation. An example is a single somatic mutation followed by loss of heterozygosity. Such mechanisms are not included in the theoretical analysis nor assessed empirically. If, for example, 90% of double inactivations were the result of such mechanisms with a constant mutation rate, a factor of two effect of punctuated mutagenesis would increase the overall rate by only 10%. Consideration of the rate of apparent inactivation of just one TSG copy and of deletion of both copies would shed some light on the importance of this consideration.

      Several factors besides the effects of punctuated mutation might explain or contribute to the empirical observations:

      (1) High APOBEC3 activity can select for inactivation of TSGs (references in Butler and Banday 2023, PMID 36978147). This selective force is another plausible explanation for the empirical observations.

      (2) Without punctuation, the rate of multistep adaptation is expected to rise more than linearly with mutation rate. Thus, if APOBEC signatures are correlated with a high mutation rate due to the action of APOBEC, this alone could explain the correlation with TSG inactivation.

      (3) The nature of mutations caused by APOBEC might explain the results. Notably, one of the two APOBEC mutation signatures, SBS13, is particularly likely to produce nonsense mutations. The authors count both nonsense and missense mutations, but nonsense mutations are more likely to inactivate the gene, and hence to be selected.

    1. Reviewer #2 (Public review):

      Summary:

      Cheverra et al. present a comprehensive anatomical and functional analysis of the motor neurons innervating the male reproductive tract in Drosophila melanogaster, addressing a gap in our understanding of the peripheral circuits underlying ejaculation and male fertility. They identify two classes of multi-transmitter motor neurons-OGNs (octopamine/glutamate) and SGNs (serotonin/glutamate)-with distinct innervation patterns across reproductive organs. The authors further characterize the differential expression of glutamate, octopamine, and serotonin receptors in both epithelial and muscular tissues of these organs. Behavioral assays reveal that SGNs are essential for male fertility, whereas OGNs and glutamatergic transmission are dispensable. This work provides a high-resolution map linking neuromodulatory identity to organ-specific motor control, offering a valuable framework to explore the neural basis of male reproductive function.

      Strengths:

      Through the use of an extensive set of GAL4 drivers and antibodies, this work successfully and precisely defines the neurons that innervate the male reproductive tract, identifying the specific organs they target and the nature of the neurotransmitters they release. It also characterizes the expression patterns and localization of the corresponding neurotransmitter receptors across different tissues. The authors describe two distinct groups of dual-identity neurons innervating the male reproductive tract: OGNs, which co-express octopamine and glutamate, and SGNs, which co-express serotonin and glutamate. They further demonstrate that the various organs within the male reproductive system differentially express receptors for these neurotransmitters. Based on these findings, the authors propose that a single neuron capable of co-releasing a fast-acting neurotransmitter alongside a slower-acting one may more effectively synchronize and stagger events that require precise timing. This, together with the differential expression of ionotropic glutamate receptors and metabotropic aminergic receptors in postsynaptic muscle tissue, adds an additional layer of complexity to the coordinated regulation of fluid secretion, organ contractility, and directional sperm movement-all contributing to the optimization of male fertility.

      Weaknesses:

      The main weakness of the manuscript is the lack of detail in the presentation of the results. Specifically, all microscopy image figures are missing information about the number of samples (N), and in the case of colocalization experiments, quantitative analyses are not provided. Additionally, in the first behavioral section, it would be beneficial to complement the data table with figures similar to those presented later in the manuscript for consistency and clarity.

      Wider context:

      This study delivers the first detailed anatomical map connecting multi-transmitter motor neurons with specific male reproductive structures. It highlights a previously unrecognized functional specialization between serotonergic and octopaminergic pathways and lays the groundwork for exploring fundamental neural mechanisms that regulate ejaculation and fertility in males. The principles uncovered here may help explain how males of Drosophila and other organisms adjust reproductive behaviors in response to environmental changes. Furthermore, by shedding light on how multi-transmitter systems operate in reproductive control, this model could provide insights into therapeutic targets for conditions such as male infertility and prostate cancer, where similar neuronal populations are involved in humans. Ultimately, this genetically accessible system serves as a powerful tool for uncovering how multi-transmitter neurons orchestrate coordinated physiological actions necessary for the functioning of complex organs.

    1. Reviewer #2 (Public review):

      Summary:

      In this EEG study, Huang et al. investigated the relative contribution of two accounts to the process of conflict control, namely the stimulus-control association (SC), which refers to the phenomenon that the ratio of congruent vs. incongruent trials affects the overall control demands, and the stimulus-response association (SR), stating that the frequency of stimulus-response pairings can also impact the level of control. The authors extended the Stroop task with novel manipulation of item congruencies across blocks in order to test whether both types of information are encoded and related to behaviour. Using decoding and RSA, they showed that the SC and SR representations were concurrently present in voltage signals, and they also positively co-varied. In addition, the variability in both of their strengths was predictive of reaction time. In general, the experiment has a solid design, but there are some confounding factors in the analyses that should be addressed to provide strong support for the conclusions.

      Strengths:

      (1) The authors used an interesting task design that extended the classic Stroop paradigm and is potentially effective in teasing apart the relative contribution of the two different accounts regarding item-specific proportion congruency effect, provided that some confounds are addressed.

      (2) Linking the strength of RSA scores with behavioural measures is critical to demonstrating the functional significance of the task representations in question.

      Weakness:

      (1) While the use of RSA to model the decoding strength vector is a fitting choice, looking at the RDMs in Figure 7, it seems that SC, SR, ISPC, and Identity matrices are all somewhat correlated. I wouldn't be surprised if some correlations would be quite high if they were reported. Total orthogonality is, of course, impossible depending on the hypothesis, but from experience, having highly covaried predictors in a regression can lead to unexpected results, such as artificially boosting the significance of one predictor in one direction, and the other one to the opposite direction. Perhaps some efforts to address how stable the timed-resolved RSA correlations for SC and SR are with and without the other highly correlated predictors will be valuable to raising confidence in the findings.

      (2) In "task overview", SR is defined as the word-response pair; however, in the Methods, lines 495-496, the definition changed to "the pairing between word and ISPC" which is in accordance with the values in the RDMs (e.g., mccbb and mcirb have similarity of 1, but they are linked to different responses, so should they not be considered different in terms of SR?). This needs clarification as they have very different implications for the task design and interpretation of results, e.g., how correlated the SC and SR manipulations were.

    1. Reviewer #2 (Public review):

      Summary:<br /> This article reports a cost-effectiveness comparison of intramural and extramural that NIH funded between 2009 and 2019. Using data obtained from NIH RePORTER, they linked total project costs to publication output, using robust validated metrics including Relative Citation Ratio (RCR), Approximate Potential to Translate (APT), and clinical citations. They find that after adjusting for confounders in regression and propensity-score analyses, extramural projects were generally more cost-effective, though intramural projects were more cost effective for generating clinical citations. They also describe differences in the topics of intramural- and extramural-funded publications, with intramural projects more likely to generate papers on viral infections and immunity or cancer metastases and survival, but less likely to generate papers on pregnancy and maternal health, brain connectivity and tasks, and adolescent experiences and depression. The authors aptly describe the different natures of the intramural and extramural funding models, including that extramural researchers spend much time writing grant applications and that the work described in extramural publications often receives funding from sources other than NIH grants.

      Strengths:<br /> The authors leveraged publicly available data (including RePORTER and the iCite repository) and used robust validated metrics (RCR, APT, clinical citations). They carefully considered a large number of confounders, including those related to the PI, and performed several well-described regression analyses.

      Weaknesses:<br /> Figure 3A shows intramural projects producing about 2.75 papers per year in 2009, whereas extramural projects are producing just over 1 paper per year. Extramural projects appear to catch up over the next five years. While the authors attempt to explain the difference in their figure legend, another explanation is that the intramural projects started well before 2009 but, as the authors state, intramural data only became available in 2009.

      As the authors note, funding information is often complex and difficult to characterize for an analysis like this. How did the authors handle: i) publications linked to multiple extramural grants; ii) publications linked to intramural and extramural grants; iii) publications linked NIH grants and non-NIH grants?<br /> I would think it necessary to somehow apportion credit, as otherwise it would appear that extramural projects are more productive than they truly are.

      Also, it is not clear if the authors took account of the indirect costs paid by the NIH to universities that have received extramural grants.

    1. Reviewer #2 (Public review):

      Summary:

      In this paper, the authors used a multi-level modelling approach to reanalyse trial data from Takeda's Phase III randomised control trial investigating the efficacy of the TAK-003 vaccine against dengue. The aim of the paper is to refine uncertainty by incorporating all the available data into the model and pooling across stratifications that are correlated. A major challenge in constructing a likelihood that allows for data available at differing levels of aggregation by group and outcome, and at different time intervals. This is done by first supposing that the data is available without aggregation for all groups, outcomes and time points, and then marginalising over the aggregated levels. The model is validated using simulations and then applied to trial data from Takeda. Results appear to corroborate those of Takeda with reduced uncertainty in the estimates.

      Strengths:

      The main strength of the paper is the multi-level modelling approach. It is a particularly natural one for this setting. One reason for this, as discussed in the paper, is that correlations across stratifications can arise when there are similarities in their underlying causal structure. It is more realistic to model this nested data structure hierarchically. Another reason, also well discussed in the paper, is the reduction in uncertainty you get when you pool estimates across related groups. Multi-level modelling is also beneficial when group sizes are different. For example, there were too few cases of DENV-4 from seronegatives, which resulted in hospitalised disease for the original analysis to produce estimates, but by using multi-level modelling, this paper can produce estimates. The modelling framework developed in this paper will be simple to extend to further trial data collected in the future.

      Another strength is that it is reanalysing existing trial data, which is both cost-effective and beneficial for scientific reproducibility. This approach also helps to assess the robustness of conclusions about the efficacy of the TAK-003 vaccine to use of different analytical methods.

      The paper is well-written. The tables and figures presented in this paper are particularly informative. Protection conferred by the vaccine varies depending upon which variant a person is exposed to, their serostatus, and time since vaccination. The analysis presented supports the discussed conclusions. Comparisons between the results of this paper and the results of the original trial analysis are also shown and demonstrate a reduction in the uncertainty of parameter estimates, as desired.

      Weaknesses:

      The weakness of the paper is that it reports per-exposure protection instead of vaccine efficacy. This is methodologically sound, but it does limit the comparability of this study with the original trial analyses, which reported vaccine efficacy. It is therefore unclear whether the reduction in uncertainty observed is due solely to the multi-level modelling approach or whether it may be due in part to the parameters of interest being slightly different.

    1. Reviewer #2 (Public review):

      Summary:

      Across two experiments, this work presents a novel spatial predictive inference paradigm that facilitates the investigation of meta-learning across multiple environments with distinct statistics, as well as more local learning from sequences of observations within an environment. The authors present behavioral data indicating that people can indeed learn to distinguish between noise levels and calibrate their learning rates accordingly across environments, even on initial trials when revisiting an environment. They complement their behavioral results with computational modeling, further bolstering claims of both local and global adaptation. Additional fMRI results support the role of OFC in this meta-learning process, with central OFC activity reflecting similarity between environments. This similarity emerges over time with task experience. Holistically, this paradigm and these data add to our understanding of how humans dynamically adapt their behavior on different timescales.

      Strengths:

      The novel paradigm represents a clever and creative expansion of spatial predictive inference tasks. The cover story was well chosen to facilitate an intuitive understanding of both the differences between environments and the estimation of the mean within environments.

      Additionally, the authors present complementary results from two experiments, which strengthen the behavioral findings. This is especially effective as the initial experiment's results were a bit noisy, and the modifications within the second experiment increased both power and the specificity/accuracy of participant predictions. Taken together, the behavioral results provide convincing evidence that participants did distinguish environments based on their underlying statistics and adapted their initial behavior accordingly.

      Beyond this, the combination of behavioral results, computational modeling, and neuroimaging enhances the impact of the work. It paints a fuller picture of whether and how humans meta-learn the global statistics of environments, and this is an important direction for the field of adaptive learning.

      Weaknesses:

      (1) The authors make the distinction between meta-learned "global" learning rates and within-environment learning rate adaptation in response to "local" fluctuations/observations. Though the experimental paradigm is novel, there are certainly links to prior work - for instance, though change point structures don't entail revisiting unique environments, they do require meta-learning from environmental statistics that is distinct from transient local adaptation to prediction errors. This tendency to increase one's learning rate after large prediction errors is appropriate in change point environments, though, as is true in this study, the amount of increase should be dependent on. This represents a similar kind of slower-timescale learning or reuse of more "global" parameters, and can be seen to different extents in prior work. It might benefit readers if the authors were to link the current work to previous research more explicitly to draw clearer connections between the approaches and findings.

      (2) Throughout much of the paper, the authors refer to the distinctions between environments primarily as differences in "initial learning rates" or "environment-specific learning rates." This is particularly prominent when discussing fMRI results. Though the optimal initial learning rate did differ across environments, this was the result of differences in underlying task statistics. It will be important to clarify this throughout the text, because of the confounds between task statistics and initial learning rate (and to some extent, the position on the screen), it is not possible to separate the impact of these specific variables. This is also relevant to understanding the justification for using methods like RSA to test whether brain regions represent task states similarly. If the main hypothesis is that neural activity reflects the (initial) learning rate itself, then a univariate analysis approach would seem more natural.

      (3) For the neuroimaging results in particular, the specificity of some of the results (e.g. ventral striatum showing an effect of prediction error only in the low noise condition in the second half of task experience, only on the first trial) is a bit surprising. Additional justification of or context for these results would be useful to help readers gauge how expected or surprising these findings are.

      (4) There are some methodological details that are unclear (e.g., how were the positions of the crabs selected relative to the location they emerged from? Looking at Figure 1C, it looks like the crabs spread out unevenly, and that the single position they emerge from is not necessarily at the center of the crab locations.) Additional detail and clarity would help address some unanswered questions (more details below).

    1. Reviewer #2 (Public review):

      Summary:

      The authors aim to develop Squidly, a sequence-only catalytic residue prediction method. By combining protein language model (ESM2) embedding with a biologically inspired contrastive learning pairing strategy, they achieve efficient and scalable predictions without relying on three-dimensional structure. Overall, the authors largely achieved their stated objectives, and the results generally support their conclusions. This research has the potential to advance the fields of enzyme functional annotation and protein design, particularly in the context of screening large-scale sequence databases and unstructured data. However, the data and methods are still limited by the biases of current public databases, so the interpretation of predictions requires specific biological context and experimental validation.

      Strengths:

      The strengths of this work include the innovative methodological incorporation of EC classification information for "reaction-informed" sample pairing, thereby enhancing the discriminative power of contrastive learning. Results demonstrate that Squidly outperforms existing machine learning methods on multiple benchmarks and is significantly faster than structure prediction tools, demonstrating its practicality.

      Weaknesses:

      Disadvantages include the lack of a systematic evaluation of the impact of each strategy on model performance. Furthermore, some analyses, such as PCA visualization, exhibit low explained variance, which undermines the strength of the conclusions.

    1. Reviewer #2 (Public review):

      Summary:

      The authors derive an integrate-and-fire model to describe the dynamics of a more complex Wang-Buzsaki model and compare the two models. A detailed discussion of bifurcation schemes in both models is convincing and allows us to evaluate the simpler model.

      Strengths:

      The idea is interesting, and the mathematical approach appears to be convincing. In addition, differences between the simple and original models are also discussed.

      Weaknesses:

      A comparison to experimental data is necessary to support the theoretical work.

    1. Reviewer #3 (Public review):

      Summary:

      In this contribution, the authors report atomistic, coarse-grained and lattice simulations to analyze the mechanism of supercomplex (SC) formation in mitochondria. The results highlight the importance of membrane deformation as one of the major driving forces for the SC formation, which is not entirely surprising given prior work on membrane protein assembly, but certainly of major mechanistic significance for the specific systems of interest.

      Strengths:

      The combination of complementary approaches, including an interesting (re)analysis of cryo-EM data, is particularly powerful, and might be applicable to the analysis of related systems. The calculations also revealed that SC formation has interesting impacts on the structural and dynamical (motional correlation) properties of the individual protein components, suggesting further functional relevance of SC formation. In the revision, the authors further clarified and quantified their analysis of membrane responses, leading to further insights into membrane contributions. They have also toned down the decomposition of membrane contributions into enthalpic and entropic contributions, which is difficult to do. Overall, the study is rather thorough, highly creative and the impact on the field is expected to be significant.

      Weaknesses:

      Upon revision, I believe the weakness identified in previous work has been largely alleviated.

    1. Reviewer #3 (Public review):

      Summary:

      Lmx1a is an orthologue of apterous in flies, which is important for dorsal-ventral border formation in the wing disc. Previously, this research group has described the importance of the chicken Lmx1b in establishing the boundary between sensory and non-sensory domains in the chicken inner ear. Here, the authors described a series of cellular changes during border formation in the chicken inner ear, including alignment of cells at the apical border and concomitant constriction basally. The authors extended these observations to the mouse inner ear and showed that these morphological changes occurred at the border of Lmx1a positive and negative regions, and these changes failed to develop in Lmx1a mutants. Furthermore, the authors demonstrated that the ROCK-dependent actomyosin contractility is important for this border formation and blocking ROCK function affected epithelial basal constriction and border formation in both in vitro and in vivo systems.

      Strengths:

      The morphological changes described during border formation in the developing inner ear are interesting. Linking these changes to the function of Lmx1a and ROCK dependent actomyosin contractile function are provocative.

      Weaknesses:

      There are several outstanding issues that need to be clarified before one can pin the morphological changes observed being causal to border formation and that Lmx1a and ROCK are involved.

      Comments on the latest version:

      The revised manuscript has provided clarity of their results on some levels, but unfortunately, the basal restriction during border formation remains unclear and the study did not advance the understanding of role of Lmx1a in boundary formation. Overall comments are indicated below:

      (1) The authors states in the rebuttal, "we do not think that ROCK activity is required for the formation or maintenance of the basal constriction at the interface of Lmx1a-expressing and non-expressing cells"<br /> If the above is the sentiment of the authors, then the manuscript is not written to support this sentiment clearly, starting with this misleading sentence in the Abstract, "The boundary domain is absent in Lmx1a-deficient mice, which exhibit defects in sensory organ segregation, and is disrupted by the inhibition of ROCK-dependent actomyosin contractility."

      (2) As acknowledged by the authors, the data as they currently stand could be explained by Lmx1a functioning in specifying the non-sensory fate and may not function directly in boundary formation. With this caveat in mind, the role of Lmx1a in boundary formation remains unclear.

      (3) I feel like the word "orchestrate" in the title is an overstatement.

    1. Reviewer #2 (Public review):

      This study presents a useful inventory of polyadenylated RNAs cleaved by the double-stranded RNA endonuclease Rnt1 in yeast. The data were obtained with solid methodology based on high-throughput sequencing, and the evidence that Rnt1 contributes to cellular homeostasis through controlling the turnover of selected mRNAs is convincing.

      Comments on revisions:

      I appreciate the authors' thorough and thoughtful response, and I find that the manuscript has been substantially strengthened by the additional data, analyses, and textual clarifications.

    1. Reviewer #2 (Public review):

      Summary:

      Wethington et al. investigated the mechanistic principles underlying antigen-specific proliferation and memory formation in mouse natural killer (NK) cells following exposure to mouse cytomegalovirus (MCMV), a phenomenon predominantly associated with CD8+ T cells. Using a stochastic modeling approach, the authors aimed to develop a quantitative model of NK cell clonal dynamics during MCMV infection. Starting from a single immature Ly49+CD27+ NK cell, a two-state linear model (with a death variant) explained the negative correlation between clone size at 8 dpi and the CD27+ fraction, but failed to reproduce the first and second moments of CD27+ and CD27− NK cell populations at 8 dpi. To address this limitation, the authors added an intermediate maturation state, yielding a three-stage model (CD27+Ly6C− → CD27−Ly6C− → CD27−Ly6C+) that fits the first and second moments under two constraints: CD27+ NK cells proliferate faster than CD27− NK cells, and clone size is negatively correlated with the CD27+ fraction (upper bound of −0.2). The model predicts high proliferation in the intermediate state and high death in mature CD27−Ly6C+ cells, and it was validated using Adams et al. (2021) NK reporter mice tracking CD27+/− populations after tamoxifen, allowing discrimination between bone marrow-derived and pre-existing peripheral NK cells. To test the prediction that mature CD27− NK cells have a higher death rate, the authors measured Ly49H+ NK cell viability in the mouse spleen at different time points post-MCMV infection. Data confirmed lower viability of mature (CD27−) than immature (CD27+) cells during days 4-8 post-infection, and a model variant supported that higher CD27− death increases their proportion in the dead cell compartment. Altogether, the authors propose a three-stage quantitative model of antigen-specific expansion and maturation of naïve Ly49H+ NK cells with the trajectory CD27+Ly6C− (immature) → CD27−Ly6C− (mature I) → CD27−Ly6C+ (mature II), highlighting high proliferation in the mature I state and increased death in the mature II state.

      Strengths:

      Models explaining correlations and first and second moments, supported by analytical investigations, stochastic simulations, and model selection, identify key processes in antigen-specific NK expansion and maturation. The work distinguishes expansion, contraction, and memory in NK cells from CD8+ T cells and informs NK therapy development.

      Weaknesses (relating to initial submission):

      The conclusions of this paper are largely supported by the available data. However, a comparative analysis with more recent works in the field would be desirable. Clarifications:

      (1) Initial Conditions and Grassmann Data: The Grassmann data is used solely as a constraint, while the simulated values of CD27+/CD27− cells could have been directly fitted to the Grassmann data, which assumes a 1:1 ratio of CD27+/CD27− at t = 0. This would allow an alternative initial condition rather than starting from a single CD27+ cell.

      (2) Correlation Coefficients in the Three-State Model: Although the parameter scan of the three-stage model (Figure 2) demonstrates the potential for negative correlations between colony size and the fraction of CD27+ cells, the calculated correlation coefficients using the fitted parameter values are not shown. Including these would validate that the fitted parameters lie in the negative-correlation regime.

      (3) Viability Dynamics and Adaptive Response: The authors measured the time evolution of CD27+/− dynamics and viability over 30 days post-infection (Figure 4). It would be valuable to test whether the three-state model can reproduce the adaptive response of CD27− cells to MCMV infection, particularly the observed drop in CD27− viability at 5 dpi and its rebound at 8 dpi. Demonstrating this would test whether the model can simultaneously explain viability dynamics and moment dynamics, and would enable sensitivity analysis of CD27− viability with respect to model parameters.

    1. Reviewer #2 (Public review):

      Summary:

      Meiotic recombination initiates with the formation of DNA double-strand break (DSB) formation, catalyzed by the conserved topoisomerase-like enzyme Spo11. Spo11 requires accessory factors that are poorly conserved across eukaryotes. Previous genetic studies have identified several proteins required for DSB formation in C. elegans to varying degrees; however, how these proteins interact with each other to recruit the DSB-forming machinery to chromosome axes remains unclear.

      In this study, Raices et al. characterized the biochemical and genetic interactions among proteins that are known to promote DSB formation during C. elegans meiosis. The authors examined pairwise interactions using yeast two-hybrid (Y2H) and co-immunoprecipitation and revealed an interaction between a chromatin-associated protein HIM-17 and a transcription factor XND-1. They further confirmed the previously known interaction between DSB-1 and SPO-11 and showed that DSB-1 also interacts with a nematode-specific HIM-5, which is essential for DSB formation on the X chromosome. They also assessed genetic interactions among these proteins, categorizing them into four epistasis groups by comparing phenotypes in double vs. single mutants. Combining these results, the authors proposed a model of how these proteins interact with chromatin loops and are recruited to chromosome axes, offering insights into the process in C. elegans compared to other organisms.

      Weaknesses:

      This work relies heavily on Y2H, which is notorious for having high rates of false positives and false negatives. Although the interactions between HIM-17 and XND-1 and between DSB-1 and HIM-5 were validated by co-IP, the significance of these interactions was not tested in vivo. Cataloging Y2H and genetic interactions does not yield much more insight. The model proposed in Figure 4 is also highly speculative.

  3. Sep 2025
    1. Reviewer #2 (Public review):

      Summary:

      The authors quantify human fMRI BOLD responses in pulvinar and mediodorsal thalamic nuclei during a fear conditioning and extinction task across two days, in a large sample size (hundreds of participants). They show that the BOLD responses in these areas differentiate the conditioned (CS+) and safety (CS-) stimuli. Additionally, this changes with repeated trials, which could be a neural correlate of fear learning. They show that the anterior pulvinar is most correlated with the MD, and that this is not due to anatomical proximity. They perform graph analysis on the pulvinar subnuclei, which suggests that the medial pulvinar is a hub between the sensory (lateral/inferior) and associative (anterior) pulvinar. They show different patterns of thalamic activity across conditioning, extinction, recall, and renewal.

      Strengths:

      The data has a large sample size (n=293 in some measures, n=412 in others). This is a validated human fear conditioning/extinction task that Dr Milad's group has been working with for several years. Few labs have investigated the thalamus activity during fear conditioning and extinction, particularly with a large sample size. There is an independent replication of the pulvinar network structure (Figure 3), which suggests that the processing in the more sensory-related inferior and lateral pulvinar is relayed to the anterior pulvinar (and possibly thereby to more action-related prefrontal areas) via an intermediate step in the medial pulvinar - potentially a novel discovery, but that needs more validation.

      Weaknesses:

      (1) The authors cannot make causal claims about their results based on correlational neuroimaging evidence. Causal claims should be pared back. E.g., sentence 1 in the Results section: "The anterior pulvinar and MD contribute to early associative threat learning, as evidenced by increased functional activation in response to CS+ compared to CS- at the block level (Fig. 1b-c)." needs to be reworded to something like "The anterior pulvinar and MD have increased functional activation... This suggests that these areas may contribute to early associate threat learning."

      (2) Figure 1: The fact that the difference in BOLD activity between CS+ and CS- goes away on the third trial is not addressed. This is a very large effect in the data.

      (3) Figure 3: Could the observed network structure be due to anatomical proximity? Perhaps the authors should do an analogous analysis to what they did in Figure 2 for this intra-pulvinar analysis. This analysis doesn't take into account the indirect connections through corticothalamic and thalamocortical connections with the visual cortex and the pulvinar. There is an implicit assumption that there are interconnections between the pulvinar subnuclei, but there are few strong excitatory projections between these subnuclei to my knowledge. If visual areas are included in the graph, it would make things more complex, but would probably dramatically change the story. In this way, the message is somewhat constructed or arbitrary.

      (3) In the results section describing Figures 4-7, there are no statistics supporting the claims made. There needs to be a set of graphs comparing the results across the study sessions and days, with statistical comparisons between the different experiments to confirm differences.

      (4) Figure 7 does not include the major corticothalamic and thalamocortical projections from early, mid-level, and higher visual cortex to the different pulvinar nuclei. I doubt that there are strong direct projections between the pulvinar nuclei; rather, the functional connections are probably mediated through interconnections with cortical visual areas.

      (5) Stylistic: There are a lot of hypotheses and interpretations presented in this primary literature paper, which may be better suited for a review or perspective piece.

      (6) In the discussion, there is an assumption that the fMRI BOLD responses to CS+ and CS- need to be different to indicate that an area is processing these distinctly, but the BOLD signal can only detect large-scale changes in overall activity. It's easy to imagine that an area could be involved in processing these two stimuli distinctly without showing an overall difference in the gross amount of activity.

      (7) There is strong evidence that the BOLD responses to the threat-related and safety-related stimuli are different, modest evidence for their claims of learning/plasticity in these pathways, and circumstantial evidence supporting their hypothesized graph network models. Overall, most of the claims made in the discussion are better considered possible interpretations rather than proven findings - this is not a criticism, as these experiments and subject matter are extremely complex.

      This study continues to validate the power and utility of this in human fear conditioning/extinction paradigm, and extends this paradigm to investigating fear learning beyond the traditional limbic system pathways. It's possible that their models for the pulvinar nuclei interconnections could guide future neuromodulation or DBS studies that could provide more causal evidence for their hypotheses.

    1. Reviewer #2 (Public review):

      Summary:

      Toxoplasma gondii is an obligate intracellular parasite and the causative agent of Toxoplasmosis. Parasite invasion into host cells, intracellular replication, and then egress, which results in the destruction of the infected cell, is central to pathogenicity. This manuscript focuses on understanding how maternal resources (in this case, cellular organelles) are shared between daughter parasites during cell division. Many organelles are single copy, meaning that division and inheritance by the daughters is crucial for successful replication. The major strength of this study was the use of a Halo-based pulse chase assay to characterize patterns of organelle inheritance. The results show that both microneme and rhoptries (secretory vesicles) previously thought to be synthesized de novo are inherited by daughter parasites. Thus, this paper adds new insight to our understanding of cell division in this important parasite.

      Strengths:

      This study demonstrated that pulse labeling of proteins can be used to monitor protein synthesis, turnover, and movement. This approach will be of great interest to the field. Using this method, the authors demonstrate three main modes of organelle inheritance.

      (1) Organelles, where there are multiple copies (such as secretory vesicles, micronemes, and rhoptries), are divided between the daughter parasites, with additional contribution of newly formed vesicles. New and old material remain as separate entities in the cell.

      (2) Single-copy organelles, which are expanded to include newly synthesized material prior to division, such as the Golgi and apicoplast.

      (3) Cytoskeletal structures that are synthesized anew during each round of division. These studies provide more refined insight into patterns or organelle inheritance and demonstrate that secretory organelles are not made de novo during each round of division as previously thought. The paper has a logical flow, and overall, the data is presented in a clear and organized fashion.

      Weaknesses:

      (1) Descriptions of methodology and statistical analysis were incomplete.

      (2) There are inconsistencies between the data in Figures 1 and 5. In Figure 1, a small amount of maternal IMC is visible in stage 2 parasites. Although this is a ~90% reduction, these parasites should be quantified as parasites with material IMC. However, the graph in Figure 5C indicates that no material parasites have GAPM1a, given that graph 5C is a binary measure (present vs. absent), one would expect a non-zero percent of parasites to have maternal material.

      (3) The conclusion from Figure 6 was not justified based on the data. I agree with the author's conclusion that the accumulation of micronemes and rhoptries in the residual body was time-dependent. In Figure 6A, the signal observed in the residual body at times 6:30, 13, and 14 hours is not observed in subsequent time points. However, the fate of these micronemes and rhoptries is unclear. It cannot be concluded that these vesicles are recycled back to the mother. They could also have been degraded. In fact, the graphs of microneme inheritance in Figure 2B show a decrease in maternal signal from 100% to 80% between stages 1 and 2, indicating that some microneme degradation is taking place.

      (4) To convincingly demonstrate that the redistribution of micronemes and rhoptries was due to recovery of MyoF protein levels after auxin washout, a Western blot should be performed to show MyoF protein levels over time. In addition, the decrease in mMIC2 protein levels in the residual body in Figure 8F should be measured and normalized for photobleaching. Both apical and basal signals appear to be reduced over the time course of imaging.

    1. Reviewer #2 (Public review):

      Summary:

      Fan and colleagues measure proteomics and transcriptomics in 3 organs (liver, skeletal muscle, cerebral cortex) from male C57BL/6 mice to investigate whether intermittent fasting (IF; 16h daily fasting over 4 months) produces systemic and organ-specific adaptations.

      They find shared signaling pathways, certain metabolic changes, and organ-specific responses that suggest IF might affect energy utilization, metabolic flexibility, while promoting resilience at the cellular level.

      Strengths:

      The fact that there are 3 organs and 2 -omics approaches is a strength of this study.

      Weaknesses:

      The analytical approach of the data generated by the present study is not well posed, because it doesn't help to answer key questions implicit in the experimental design. Consequently, the paper, as it is for now, reads as a mere description of results and not a response to specific questions.

      The presentation of the figures, the knowledge of the literature, and the inclusion of only one sex (male) are all weaknesses.

    1. Reviewer #2 (Public review):

      Summary:

      The authors analyzed PopART data to better characterize the age and sex-specific heterosexual HIV transmission dynamics in Zambia, with the goal of allocating resources.

      Strengths:

      Important analysis to hone in on the key driver of HIV transmission in Zambia, which hopefully can be used to tune prevention efforts to maximize effect while limiting required resources. Two analytic approaches were used, and while the phylogenetic data were markedly more limited, they mirrored the simulated epidemic. The authors did a nice job reviewing the limitations of the data and the analyses. The authors did a nice job of providing analyses to support their goals and hypothesis, and this work may have more impact now that resources in SSA for HIV prevention and treatment may become more scarce

      Weaknesses:

      To increase the impact and utility of this work, it would be helpful to parse the analysis just a bit further to estimate the roles of undiagnosed vs diagnosed and untreated subpopulations on this transmission. PopART is a multifaceted intervention, but the cost, effort, and approach to reengagement in care vs testing/treatment can be quite different.

    1. Reviewer #2 (Public review):

      Summary:

      In this study, the authors identified a previously unrecognized organ interaction where limb immobilization induces thermogenesis in BAT. They showed that limb immobilization by cast fixation enhances the expression of UCP1 as well as amino acid transporters in BAT, and amino acids are supplied from skeletal muscle to BAT during this process, likely contributing to increased thermogenesis in BAT. Furthermore, the experiments with IL-6 knockout mice and IL-6 administration to these mice suggest that this cytokine is likely involved in the supply of amino acids from skeletal muscle to BAT during limb immobilization.

      Strengths:

      The function of BAT plays a crucial role in the regulation of an individual's energy and body weight. Therefore, identifying new interventions that can control BAT function is not only scientifically significant but also holds substantial promise for medical applications. The authors have thoroughly and comprehensively examined the changes in skeletal muscle and BAT under these conditions, convincingly demonstrating the significance of this organ interaction.

      Weaknesses:

      Through considerable effort, the authors have demonstrated that limb-immobilized mice exhibit changes in thermogenesis and energy metabolism dynamics at their steady state. However, The impact of immobilization on the function of skeletal muscle and BAT during cold exposure has not been thoroughly analyzed.

      Comments on revisions:

      The authors appropriately responded to the reviewers' recommendations made during the previous round of peer review.

    1. Reviewer #2 (Public review):

      Summary:

      Immunogenic Plasmodium falciparum proteins that could be targeted to prevent parasite development in the liver are of significant interest for novel anti-malarial vaccine development. In this study, McConville et al evaluate the trafficking and functional importance of LSA3, a protein expressed in the blood and liver stages and previously shown to provide protection in immunized chimpanzees. LSA3 contains a PEXEL motif, but the authors have previously shown that this protein does not appear to be exported beyond the PVM in the liver stage (McConville et al, PNAS 2024). However, LSA3 trafficking and functional importance have not been comprehensively evaluated across stages. In the present study, the authors find that blood-stage LSA3 undergoes PEXEL processing, and a portion of the protein is exported into the erythrocyte, where it localizes to punctate structures distinct from Maurer's clefts. Using a knockout mutant, LSA3 is shown to be dispensable for blood and mosquito stages but important to liver-stage development. Collectively, these results validate LSA3 as a liver-stage target and place it among several other PEXEL proteins that display differential trafficking beyond the PVM in the erythrocyte but not the hepatocyte.

      Strengths:

      (1) The authors present a thorough analysis of LSA3 trafficking in the blood stage. PEXEL processing by Plasmepsin 5 is clearly demonstrated through a combination of mini LSA3-GFP reporters and Plasmepsin 5 inhibitors. Importantly, an LSA3 knockout mutant is used to show that the LSA3-C anti-sera also react with additional, unidentified parasite proteins in the blood stage. Nonetheless, comparison between the WT and KO parasites clearly indicates that a portion of LSA3 is exported into the erythrocyte, which is further supported by protease-protection assays with fractionated iRBCs. This contrasts with the liver stage, where LSA3 does not appear to traffic beyond the PVM, similar to what has been observed for other PEXEL proteins in the rodent malaria model.

      (2)This study provides the first direct analysis of LSA3 function by reverse genetics, showing this protein is important for liver stage development in chimeric human liver mice. Several PEXEL proteins in P. berghei have been shown to be exported into the host cell in the blood stage, but do not appear to cross the PVM in the liver stage. These observations reinforce that even without detectable export into the hepatocyte, PEXEL proteins play critical roles during liver stage development.

      Weaknesses:

      (1) A previous study reported that anti-LSA3 antibodies inhibit blood-stage growth, suggesting a role for LSA3 during erythrocyte infection. While the authors carefully evaluate the LSA3 mutant in mosquito and liver stages, the impact on blood stage fitness is not tested. While the knockout shows LSA3 is not essential in the blood stage, its importance during erythrocyte infection remains unclear.

      (2) The authors previously reported that anti-LSA3-C signal in the liver stage localizes within the parasite and at the parasite periphery but is not exported into the hepatocyte. In the present study, it is shown that anti-LSA3-C reacts with other parasite proteins beyond LSA3 in the blood stage, and this may also occur in the liver stage. However, since liver-stage IFAs were only performed on samples co-infected with both WT and ∆LSA3 parasites, non-specific anti-LSA3-C reactivity at this stage could not be determined, and the localization of LSA3 in the liver stage remains somewhat unclear.

    1. Reviewer #2 (Public review):

      The manuscript by Yang et al. investigates how a prior experience (notably by the activation of sensory/reinforcing dopaminergic neurons) alters olfactory response and memory expression in Drosophila. They refer to a priming effect with the definition: "Priming is a process by which exposure to a stimulus affects the response to a subsequent stimulus in Humans". The authors observed that exposing flies to a series of shocks (or the optogenetic activation of aversively reinforcing dopaminergic neurons) decreases ensuing odour avoidance. Conversely, optogenetic activation of sweet-sensing neurons increases following odour avoidance. They proposed that the reduced odour avoidance was due to the involvement of reward dopaminergic neurons involved during shock (or the optogenetic activation of aversively reinforcing dopaminergic neurons). They indeed show the involvement of reward dopaminergic neurons innervating the mushroom body (the fly learning and memory centre) during shock preexposure. Recording (calcium activity) from reward dopaminergic neurons before and after shock preexposure shows that only a small subset of dopaminergic neurons innervating the mushroom body γ4 compartment increases their response to odour after shock. They then showed the requirement of the γ4 reward dopaminergic neurons during shock preexposure on ensuing odour avoidance. They also tested the role of the dopamine receptor in the mushroom body. They finally recorded from different mushroom body output neurons, including the one (MBON-γ4γ5) likely affected by the increased activity of the corresponding γ4 reward dopaminergic neurons after shock preexposure. They recorded odour-evoked responses from these neurons before and after shock preexposure, but did not find any plasticity, while they found a logical effect during spaced cycles of aversive training.

      Overall, the study is very interesting with a substantial amount of behavioural analysis and in vivo 2-photon calcium imaging data, but some major (and some minor) issues have to be resolved to strengthen their conclusions.

      (1) According to neuropsychological work (Henson, Encyclopedia of Neuroscience (2009), vol. 7, pp. 1055-1063), « Priming refers to a change in behavioral response to a stimulus, following prior exposure to the same, or a related, stimulus. Examples include faster reaction times to make a decision about the stimulus, a bias to produce that stimulus when generating responses, or the more accurate identification of a degraded version of the stimulus". Or "Repetition priming refers to a change in behavioural response to a stimulus following re-exposure" (PMID: 18328508). I therefore do not think that the effects observed by the authors are really the investigation of the neural mechanisms of priming. To me, the effect they observed seems more related to sensitisation, especially for the activation of sweet-sensing neurons. For the shock effect, it could be a safety phenomenon, as in Jacob and Waddell, 2020, involving (as for sugar reward) different subsets for short-term and long-term safety.

      (2) The author missed the paper from Thomas Preat, The Journal of Neuroscience, October 15, 1998, 18(20):8534-8538 (Decreased Odor Avoidance after Electric Shock in Drosophila Mutants Biases Learning and Memory Tests). In this paper, one of the effects observed by the authors has already been described, and the molecular requirement of memory-related genes is investigated. This paper should be mentioned and discussed.

      (3) Overall, the bidirectional effect they observed is interesting; however, their results are not always clear, and the use of a delta PI is sometimes misleading. The authors have mentioned that shocks induced attraction to the novel odour, while they should stick to the increase or decrease in preference/avoidance. As not all experiments are done in parallel logic, it is not always easy to understand which protocol the authors are using. For example, only optogenetics is used in the appetitive preexposure. Does exposing flies to sugar or activating reward dopaminergic neurons also increase odour avoidance? The observed increased odour avoidance after optogenetic activation of sweet-sensing neurons involve reward (e.g., decreased response) and/or punishment (e.g., increased response) to increase odour avoidance? The author should always statistically test the fly behavioural performances against 0 to have an idea of random choice or a clear preference toward an odour. On the appetitive side, the internal hunger state would play an important role. The author should test it or at least discuss it.

      (4) The authors found a discrepancy between genetic backgrounds; sometimes the same odour can be attractive or aversive. Different effects between the T-maze and the olfactory arena are found. The authors proposed that: "Punishment priming effect was still not detected, probably due to the insensitivity of the optogenetic arena". This is unclear to me, considering all prior work using this arena. The author should discuss it more clearly. They mentioned that flies could not be conditioned with air and electric shock. However, flies could be conditioned with the context + shock, which is changing in the T-maze and not in the optogenetic area.

    1. Reviewer #2 (Public review):

      Summary:

      In this single center, single arm, open label non-randomised study the authors tested the use of paclitaxel at 180-220 mg/m2 and cisplatin at 60mg/m2 in patients with squamous NSCLC and pemetrexed at 500mg/m2 and cisplatin at 60mg/m2 in adenocarcinoma of lung origin in the neoadjuvant setting. The chemotherapy appears to have been given at a relatively standard dose; though the platin dose at 60mg/m2 is somewhat lower than has been used in the checkmate 816 trial (75mg/m2/dose), this is a well-established dose for NSCLC.

      Key differences to currently approved neoadjuvant chemo-ICI treatment is that anti-PD1 antibody sintilimab (at 200mg/dose) was given on day 5 and that only 2 cycles of chemotherapy were given pre surgery, but then repeated on two occasions post surgery. Between May/2020 and Nov/2023 50 patients were screened, 38 went on to have this schedule of tx, 31 (~82%) went on to have surgery and 27 had the adjuvant treatment. The rate of surgery is entirely consistent with the checkmate 816 data.

      Question to the authors:

      It would be very helpful to understand why 7 (~18% of the population) patients did not make it to surgery and whether this is related to disease progression, toxicity or other reasons for withdrawal.

      The key clinical endpoints were pCR and mPR rates. 2/38 patients are reported to have achieved a radiological pCR but only 31 patients underwent surgery with histological verification. Supp table2 suggests that 10/31 patients achieved a pCR, 6/31 additional patients achieved a major pathological response and that 13/31 did not achieve a major pathological response

      It would be really helpful for understanding the clinical outcome to present the histopathological findings in the text in a bit more detail and to refer the outcome to the radiological findings. I note that the reference for pathological responses incorrectly is 38 patients as only 31 patients underwent surgery and were evaluated histologically.

      The treatment was very well tolerated with only 1 grade 3 AE reported. The longer term outcome will need to be assessed over time as the cohort is very 'young'. It is not clear what the adjuvant chemo-ICI treatment would add and how this extra treatment would be evaluated for benefit - if all the benefit is in the neoadjuvant treatment then the extra post-operative tx would only add toxicity

      Please consider what the two post-operative chemo-ICI cycles might add to the outcome and how the value of these cycles would be assessed. Would there be a case for a randomised assessment in the patients who have NOT achieved a mPR histologically?

      While the clinical dataset identifies that the proposed reduced chemo-ICI therapy has clinical merit and should be assessed in a randomized study, the translational work is less informative.

      The authors suggest that the treatment has a positive impact on T lymphocytes. Blood sampling was done at day 0 and day 5 of each of the four cycle of chemotherapy with an additional sample post cycle 4. The authors state that data were analysed at each stage.

      The data in Figure 3B are reported for three sets of pairs: baseline to pre day 5 in cycle 1, day 5 to day 21 in cycle 1, baseline of cycle to to day 5. It remains unclear whether the datasets contain the same top 20 clones and it would be very helpful to show kinetic change for the individual 'top 20 clones' throughout the events in individual patients; as it stands the 'top20 clones' may vary widely from timepoint to timepoint. Of note, the figures do not demonstrate that the top 20 TCR clones were 'continuously increased'.

      Instead, the data suggest that there are fluctuations in the relative distributions over time but that may simply be a reflection of shifts in T cell populations following chemotherapy rather than of immunological effects in the cancer tissue.<br /> Consistent with this the authors conclude (line 304/5): "No significant difference was observed in the diversity, evenness, and clonality of TCR clones across the whole treatment procedure" and this seems to be a more persuasive conclusion than the statement 'that a positive effect on T lymphocytes was observed' - where it is also not clear what 'positive' means.

      The text needs a more balanced representation of the data: only a small subset of four patients appear to have been evaluated to generate the data for figure 3B and only three patients (P5, P6, P7) can have contributed to figure 3C if the sample collection is represented accurately in Figure 3A.

      The text refers to flow cytometric results in SF3. However, no information is given on the flow cytometry in M&M, markers or gating strategy.

      Please consider changing the terminology of the 'phases' into something that is easier to understand. One option would be to use a reference to a more standard unit (cycle 1-4 of chemotherapy and then d0/d5/d21).

      Please make it explicit in the text that molecular analyses were undertaken for some patients only, and how many patients contribute to the data in figures 3B-F. Figure 3A suggests paired mRNA data were obtained in 2 patients (P2 and P5) but I cannot find the results on these analyses; four individual blood samples to assess TCR changes int PH1/PH2/PH3and PH4 were only available in four patients (P4,P5,P7,P9). Only three patients seem to have the right samples collected to allow the analysis for 'C3' in figure 3C.

      Please display for each of the 'top 20 clones' at any one timepoint how these clones evolve throughout the study; I expect that a clone that is 'top 20' at a given timepoint may not be among the 'top twenty' at all timepoints.

      Please also assess if the expanded clonotypes are present (and expanded) in the cancer tissue at resection, to link the effect in blood to the tumour. Given that tissue was collected for 31 patients, mRNA sequencing to generate TCR data should be possible to add to the blood analyses in the 12 patients in Figure 3A. Without this data no clear link can be made to events in the cancer.

      Please provide in M&M the missing information on the flow cytometry methodology (instrument, antibody clones, gating strategy) and what markers were used to define T cell subsets (naïve, memory, central memory, effector memory).

      The authors also describe that ctDNA reduces after chemo-ICI treatment. This is well documented in their data but ultimately irrelevant: if the cancer volume is reduced to the degree of a radiological or pathological response /complete response then the quantity of circulating DNA from the cancer cells must reduce. More interesting would be the question whether early changes predict clinical outcome and whether recurrent ct DNA elevations herald recurrence.

      Please probe whether the molecular data identify good radiological or pathological outcomes before cycle 2 is started and whether the ctDNA levels identify patients who will have a poor response and/or who relapse early.

    1. Reviewer #2 (Public review):

      This study provides some interesting observations on how different flavour e-cigarettes can affect lung immunology; however, there are numerous flaws, including a low replicate number and a lack of effective validation methods, meaning findings may not be repeated. This is a revised article but several weaknesses remain related to the analysis and interpretation of the data.

      Strengths:

      The strength of the study is the successful scRNA-seq experiment which gives some preliminary data that can be used to create new hypotheses in this area.

      Weaknesses:

      Although some text weaknesses have been addressed since resubmission, other specific weaknesses remain: The major weakness is the n-number and analysis methods. Two biological n per group is not acceptable to base any solid conclusions. Any validatory data was too little (only cell % data) and not always supporting the findings (e.g. figure 3D does not match 3B/4A). Other examples include:

      (1) There aren't enough cells to justify analysis - only 300-1500 myeloid cells per group with not many of these being neutrophils or the apparent 'Ly6G- neutrophils'

      (2) The dynamic range of RNA measurement using scRNAseq is known to be limited - how do we know whether genes are not expressed or just didn't hit detection? This links into the Ly6G negative neutrophil comments, but in general the lack of gene expression in this kind of data should be viewed with caution, especially with a low n number and few cells. The data in the entire paper is not strong enough to base any solid conclusion - it is not just the RNA-sequencing data.

      (3) There is no data supporting the presence of Ly6G negative neutrophils. In the flow cytometry only Ly6G+ cells are shown with no evidence of Ly6G negative neutrophils (assuming equal CD11b expression). There is no new data to support this claim since resubmission and the New figures 4C and D actually show there are no Ly6G negative cells - the cells that the authors deem Ly6G negative are actually positive - but the red overlay of S100A8 is so strong it blocks out the green signal - looking to the Ly6G single stains (green only) you can see that the reported S100A8+Ly6G- cells all have Ly6G (with different staining intensities).

      (4) Eosinophils are heavily involved in lung macrophage biology, but are missing from the analysis - it is highly likely the RNA-sequence picked out eosinophils as Ly6G- neutrophils rather than 'digestion issues' the authors claim

      (5) After author comments, it appears the schematic in Figure 1A is misleading and there are not n=2/group/sex but actually only n=1/group/sex (as shown in Figure 6A). Meaning the n number is even lower than the previous assumption.

    1. Reviewer #2 (Public review):

      This manuscript submitted by Takagi et al. details the molecular characterization of the FT-expressing cell at a single-cell level. The authors examined what genes are expressed specifically in FT-expressing cells and other phloem companion cells by exploiting bulk nuclei and single-nuclei RNA-seq and transgenic analysis. The authors found the unique expression profile of FT-expressing cells at a single-cell level and identified new transcriptional repressors of FT such as NIGT1.2 and NIGT1.4.

      Although previous researchers have known that FT is expressed in phloem companion cells, they have tended to neglect the molecular characterization of the FT-expressing phloem companion cells. To understand how FT, which is expressed in tiny amounts in phloem companion cells that make up a very small portion of the leaf, can be a key molecule in the regulation of the critical developmental step of floral transition, it is important to understand the molecular features of FT-expressing cells in detail. In this regard, this manuscript provides insight into the understanding of detailed molecular characteristics of the FT-expressing cell. This endeavor will contribute to the research field of flowering time.

      During the initial review process, I proposed the following two points for improving this manuscript:

      (1) The most noble finding of this manuscript is the identification of NTGI1.2 as the upstream regulator of FT-expressing cluster 7 gene expression. The flowering phenotypes of the nigtQ mutant and the transgenic plants in which NIGT1.2 was expressed under the SUC2 gene promoter support that NIGT1.2 functions as a floral repressor upstream of the FT gene. Nevertheless, the expression patterns of NIGT1.2 genes do not appear to have much overlap with those of NIGT1.2-downstream genes in the cluster 7 (Figs S14 and F3). An explanation for this should be provided in the discussion section.

      (2) To investigate gene expression in the nuclei of specific cell populations, the authors generated transgenic plants expressing a fusion gene encoding a Nuclear Targeting Fusion protein (NTF) under the control of various cell type-specific promoters. Since the public audience would not know about NTF without reading reference 16, some explanation of NTF is necessary in the manuscript. Please provide a schematic of the constructs the authors used to make the transformants.

      The revised manuscript has addressed my comments well. I am deeply grateful for the authors' efforts to address concerns raised by me and other reviewers.<br /> I have no doubt that the manuscript in its current form is worthy of publication in this journal and will provide valuable insights into flowering time for many readers.

    1. Reviewer #3 (Public review):

      This paper introduces the Avian Vocalization Network (AVN), a novel birdsong analysis pipeline using deep learning. By automating vocal annotation tasks, the AVN generates interpretable song features and song similarity scores on novel datasets without retraining. The performance of the network is solid and is comparable to that of human annotators.

      The authors have improved the manuscript in several aspects, such as the comparison with the Goffinet work. Overall, the AVN feature set could become a useful tool for evaluating birdsongs. But the authors also chose not to address a certain number of criticisms, and some issues remain poorly addressed, and the work is not reproducible at this stage. With a little effort, these issues could get resolved in my view. I will just pick on four issues that I think can be easily addressed:

      (1) Limitation of feature set: They claim that AVN satisfies the criteria (line 60) of "creating a common feature space for the comparison of behavioural phenotypes ..."(line 51), but then on LDA analysis, explained on line 910 they say "excluding amplitude and amplitude modulation features as they were found to vary". Since their feature set is not stable and not truly 'common' to all tasks, this limitation needs addressing in the discussion (that some features seem to vary undesirably, and they need exclusion based on some criteria to be defined).

      (2) Missing information on classification training loss: The Authors insist that their triplet loss is not related to classification, and they brush off my request for more information. In their rebuttal, they write: 'The loss function is related to the relative distance between embeddings of syllables with the same or different labels, not the classification of syllables as same or different.' Perplexingly, however, in the revised paper, authors speak themselves of 'classes', in Line 1004: this allows the model to begin learning an easier task, of separating syllables of different classes by a smaller margin.' So it seems the authors actually agree with me that there is an underlying classification task. I am therefore going to make it a bit more explicit here what I'm asking for, hoping this will better resonate with them.

      In line 984 they define their loss function and in lines 994-996 they define 'hard' and 'semi-hard' triplets. Authors then train a system to minimize the loss with a ratio of 75 percent semi-hard triplets and 25 percent hard triplets and a final weighing parameter value alpha=0.7. What I'm asking for is this 'classification' loss their trained model achieves, or in other words, the fraction of triplets that end up producing a loss, either of the 'hard' or 'semi-hard' type. For example, if their model manages to separate all 'possible triplets' by a margin of at least alpha, then the loss would be zero. If the model achieves to separate all triplets except one, then the loss would correspond to the amount by which the separation differences between the anchor and the positive vs negative samples exceeds alpha. So, an important number to provide in the paper is the fraction of triplets that incur a nonzero loss, i.e., the fraction of semi-hard triplets. And another important quantity is the fraction of hard triplets, i.e. the fraction of triplets that would incur a loss if alpha were set to zero, or, in other words, the triplets for which the negative sample is closer to the anchor than the positive sample. By the way, I assume this latter fraction of hard cases will be zero - that their model does not confuse any positive and negative training samples...<br /> Note: the quantification chosen by the authors termed 'contrast index' is interesting, but it is a derived quantity, it is not the quantity authors chose to optimize during training. If authors were to report both the training loss achieved and the 'contrast index', follow-up work could be benchmarked against both these quantities. If for example, a follow-up model achieves smaller loss but worse contrast, then the loss is not a good placeholder measure for optimizing contrast. Alternatively, follow-up work could focus on the contrast index as training objective, obliterating the need for the triplet loss as an intermediate step (I don't buy the authors' argument that such an optimization would be infeasible).

      (3) Reproducibility: they explain the way they train the CNN with triplet loss to produce the embeddings, but we're missing both actual scripts on GitHub to train and inference from scratch, and model weights, or even hyper parameters they used. Authors only provide the architecture, and I don't think that's enough to be considered replicable in today's standards. I would suggest they release complete model checkpoint weights for the result they report, the exact data splits, the hyper parameters they used and training and testing code, so that one can very easily verify their claims and apply their methods to other datasets. Note: for example, the code to extract the embeddings is incomplete (the function definition of single_bird_extract_embeddings cannot be found on GitHub) and the model weights they used are missing.

      (4) With regards to the age prediction model, the authors should specify that this model is mainly useful for comparisons across studies but less so for precise evaluation of the effects of a treatment within a study. Namely, the effect on song of a treatment is best assessed by comparison to within-subject past song, and by comparison to age-matched control birds (ideally siblings) raised in identical conditions, rather than to invoke a generic model trained on other birds and from different colonies and breeding conditions as authors propose to do. In other words, to introduce a generic model for evaluation of song maturity introduces measurement noise in terms of the additional birds and their variable conditions, which can hinder precise assessment of treatment effects. Note that to state that in past work such maturity models were used is not a good justification, scientifically speaking.

      Finally, the authors write that methods for syllable segmentation have not been systematically compared but the whisperseg work they use did such a comparison. So the authors should revise their novelty claim of being the first to compare syllable segmentation methods.

    1. Reviewer #2 (Public review):

      Summary:

      Tan et al. examined how multivoxel patterns shift in time windows surrounding event boundaries caused by both prediction errors and prediction uncertainty. They observed that some regions of the brain show earlier pattern shifts than others, followed by periods of increased stability. The authors combine their recent computational model to estimate event boundaries that are based on prediction error vs. uncertainty and use this to examine the moment-to-moment dynamics of pattern changes. I believe this is a meaningful contribution that will be of interest to memory, attention, and complex cognition research.

      Strengths:

      The authors have shown exceptional transparency in terms of sharing their data, code, and stimuli, which is beneficial to the field for future examinations and to the reproduction of findings. The manuscript is well written with clear figures. The study starts from a strong theoretical background to understand how the brain represents events and has used a well-curated set of stimuli. Overall, the authors extend the event segmentation theory beyond prediction error to include prediction uncertainty, which is an important theoretical shift that has implications in episodic memory encoding, the use of semantic and schematic knowledge, and attentional processing.

      Weaknesses:

      The data presented is limited to the cortex, and subcortical contributions would be interesting to explore. Further, the temporal window around event boundaries of 20 seconds is approximately the length of the average event (21.4 seconds), and many of the observed pattern effects occur relatively distal from event boundaries themselves, which makes the link to the theoretical background challenging. Finally, while multivariate pattern shifts were examined at event boundaries related to either prediction error or prediction uncertainty, there was no exploration of univariate activity differences between these two different types of boundaries, which would be valuable.

    1. Reviewer #2 (Public review):

      Summary:

      The authors set out to dissect the mechanistic basis of their previously published finding that encountering cutaneous antigen augments the persistence of CD8+ memory T cells that enter skin (TRM) (Hirai et al., 2021, Immunity). Here they use the same murine model to study the fate of CD8+ T cells after antigen-priming in the lymph nodes, (1) those that re-encounter antigen in the skin via vaccinia virus (VV) versus (2) those that do not encounter antigen in skin but rather are recruited via topical dinitrofluorobenzene (DNFB) (so-called "bystander TRM"). The authors' previous publication establishes that this first group of CD8+ TRM has a persistence advantage over bystander TRM under TGFb-limiting conditions. The current paper advances this finding by elucidating the role of TGFBR3 in regulating CD8+ TRM skin persistence upon topical antigen exposure. Key novelty of the work lies in generation and use of the CD8+ T cell-specific TGFBR3 knockout model, which allows them to demonstrate the role of TGFBR3 in fine tuning the degree of CD8+ T cell skin persistence and that TGFBR3 expression is promoted by CD8+ TRM encountering their cognate antigen upon initial skin entry. Future work directly measuring active TGFb in the skin under different conditions would help identify physiologic scenarios which yield active TGFb-limiting conditions, thus establishing physiologic relevance.

      Strengths:

      Technical strengths of the paper include (1) complementary imaging and flow cytometry analyses, (2) integration of their scRNA-seq data with the existing CD8+ TRM literature via pathway analysis, and (3) use of orthogonal models where possible. Using a vaccina virus (VV) model, with and without ovalbumin (OVA), the authors investigate how topical antigen exposure and TCR strength regulate CD8+ TRM skin recruitment and retention. The authors use both FTY720 and a Thy1.1 depleting antibody to demonstrate that skin CD8+ TRM expand locally following both a primary and secondary recall response to topical OVA application.

      A conceptual strength of the paper is the authors' observation that TCR signal strength upon initial TRM tissue entry helps regulate the extent of their local re-expansion on subsequent antigen re-exposure. They achieved this by applying peptides of varying affinity for the OT-I TCR on the DNFB-exposed flank in tandem with initial VV-OVA + DNFB treatment. They then measured TRM expansion after OVA peptide rechallenge, revealing that encountering a higher affinity peptide upon skin entry leads to greater subsequent re-expansion. Additionally, by generating an OT-I Thy1.1+ E8i-creERT2 huNGFR Tgfbr3fl/fl (Tgfbr3∆CD8) mouse, the authors were able to elucidate a unique role for TGFBR3 in CD8+TRM persistence when active TGFb in skin is limited.

      Weaknesses:

      Overall, the authors' conclusions are well supported although there are some instances where additional controls, experiments, or clarifications would add rigor. The conclusions regarding skin localized TCR signaling leading to increased skin CD8+ TRM proliferation in-situ and increased TGFBR3 expression would be strengthened by assessing skin CD8+ TRM proliferation and TGFBR3 expression in models of high versus low avidity topical OVA-peptide exposure. The authors could further increase the impact of the paper by fully exploring whether TGFBR3 is regulated at the RNA or protein level; analysis of scRNAseq data included in the rebuttal did show an increase in Tgfbr3 RNA transcript levels in VV-treated compared to DNFB-treated back skin.

      Quantification of the skin TRM population relies primarily on imaging analysis, which the authors indicate is more sensitive and consistent for quantifying this population. While flow cytometry is used to perform some phenotyping of TRMs, there remain some missed opportunities for more extensive analysis of markers expressed by this population. Finally, quantifying right and left skin draining lymph node CD8+ T cell numbers would clarify the skin specificity and cell trafficking dynamics of the authors' model.

      This work heavily utilizes models developed and defined in previously published work (Hirai, T., et al., Competition for Active TGFβ Cytokine Allows for Selective Retention of Antigen-Specific Tissue- Resident Memory T Cells in the Epidermal Niche. Immunity, 2021. 54(1): p. 84-98.e5). Rather than repeating control experiments for this manuscript, the authors reference data included in this prior work. Thus, readers interested in a more in-depth understanding of these tools and concepts would be encouraged to read both papers.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript investigates which social navigation mechanisms, with different cognitive demands, can explain experimental data collected from homing pigeons. Interestingly, the results indicate that the simplest strategy - route averaging - aligns best with the experimental data, while the most demanding strategy - selectively propagating the best route - offers no advantage. Further, the results suggest that a mixed strategy of weighted averaging may provide significant improvements.

      The manuscript addresses the important problem of identifying possible mechanisms that could explain observed animal behavior by systematically comparing different candidate models. A core aspect of the study is the calculation of collective routes from individual bird routes using different models that were hypothesized to be employed by the animals, but which differ in their cognitive demands.

      The manuscript is well-written, with high-quality figures supporting both the description of the approach taken and the presentation of results. The results should be of interest to a broad community of researchers investigating (collective) animal behavior, ranging from experiment to theory. The general approach and mathematical methods appear reasonable and show no obvious flaws. The statistical methods also appear.

      Strengths:

      The main strength of the manuscript is the systematic comparison of different meta-mechanisms for social navigation by modeling social trajectories from solitary trajectories and directly comparing them with experimental results on social navigation. The results show that the experimentally observed behavior could, in principle, arise from simple route averaging without the need to identify "knowledgeable" individuals. Another strength of the work is the establishment of a connection between social navigation behavior and the broader literature on the wisdom of crowds through the concept of effective group size.

      Weaknesses:

      However, there are two main weaknesses that should be addressed:

      (1) The first concerns the definition of "mechanism" as used by the authors, for example, when writing "navigation mechanism." Intuitively, one might assume that what is meant is a behavioral mechanism in the sense of how behavior is generated as a dynamic process. However, here it is used at a more abstract (meta) level, referring to high-level categories such as "averaging" versus "leader-follower" dynamics. It is not used in the sense of how an individual makes decisions while moving, where the actual route followed in a social context emerges from individuals navigating while simultaneously interacting with conspecifics in space and time. In the presented work, the approach is to directly combine (global) route data of solitary birds according to the considered "meta-mechanisms" to generate social trajectories. Of course, this is not how pigeon social navigation actually works-they do not sit together before the flight and say, "This is my route, this is your route, let's combine them in this way." A mechanistic modeling approach would instead be some form of agent-based model that describes how agents move and interact in space and time. Such a "bottom-up" approach, however, has its drawbacks, including many unknown parameters and often strongly simplifying (implicit) assumptions. I do not expect the authors to conduct agent-based modeling, but at the very least, they should clearly discuss what they mean by "mechanism" and clarify that while their approach has advantages-such as naturally accounting for the statistical features of solitary routes and allowing a direct comparison of different meta-mechanisms is also limited, as it does not address how behavior is actually generated. For example, the approach lacks any explicit modeling of errors, uncertainty, or stochasticity more broadly (e.g., due to environmental influences). Thus, while the presented study yields some interesting results, it can only be considered an intermediate step toward understanding actual behavioral mechanisms.

      (2) While the presented study raises important questions about the applicability and viability of cumulative cultural evolution (CCE) in explaining certain animal behaviors such as social navigation, I find that it falls short in discussing them. What are the implications regarding the applicability of CCE to animal data and to previously claimed experimental evidence for CCE? Should these experiments be re-analyzed or critically reassessed? If not, why? What are good examples from animal behavior where CCE should not be doubted? Furthermore, what about the cited definitions and criteria of CCE? Are they potentially too restrictive? Should they be revised-and if so, how? Conversely, if the definitions become too general, is CCE still a useful concept for studying certain classes of animal behavior? I think these are some of the very important questions that could be addressed or at least raised in the discussion to initiate a broader debate within the community.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript investigates the role of EV-D68 proteases 2A and 3C in nuclear pore complex (NPC) dysfunction and their contribution to motor neuron toxicity. The authors demonstrate that both proteases cleave only a limited number of nucleoporins, with 2A^pro showing the strongest impact by inhibiting nuclear import and export of proteins and disrupting NPC permeability without affecting RNA export. Importantly, treatment with the 2A^pro inhibitor telaprevir reduced neuronal cell death in a dose-dependent manner, achieving neuroprotection at concentrations below those required to inhibit viral replication. The study addresses a relevant mechanism underlying EV-D68-induced neuropathology and explores a potential therapeutic intervention.

      Strengths:

      (1) Provides significant mechanistic insight into how EV-D68 proteases alter NPC function and contribute to neuronal toxicity.

      (2) The use of recombinant 2A and 3C proteins allows clear dissection of the specific contribution of each protease.

      (3) Demonstrates a therapeutic effect of telaprevir, with neuroprotection independent of viral replication inhibition, adding translational value to the findings.

      (4) The topic is highly relevant given the association of EV-D68 with acute flaccid myelitis.

      Weaknesses:

      (1) Most experiments were performed with recombinant proteases, lacking validation in the context of viral infection, where both proteases act simultaneously.

      (2) The conclusion that RNA export is unaffected requires confirmation during actual infection.

      (3) The reduction of neurotoxicity by telaprevir does not fully demonstrate that the protective effect is solely mediated through NPC preservation; additional analyses of eIF4G cleavage, nucleoporin integrity, and stress granules are needed.

      (4) The study would be strengthened by including another 2A inhibitor (e.g., boceprevir) to confirm the specificity of telaprevir's protective effects.

    1. Reviewer #2 (Public review):

      Summary:

      In the present study, Rishiq et al. investigated whether the RadD protein expressed by Fusobacterium nucleatum subsp. Nucleatum serves as a natural ligand for the NK-activating receptor NKp46, and whether RadD-NKp46 interaction enhances NK cell cytotoxicity against tumor cells. To address this, the authors first performed an association analysis of F. nucleatum abundance and NKp46 expression in head and neck squamous cell carcinoma (HNSC) and colorectal cancer (CRC) using the TCMA and TCGA databases, respectively. While a positive association between NKp46⁺ and F. nucleatum⁺ status with improved overall survival was observed in HNSC patients, no such correlation was found in CRC.

      Next, they examined the binding of NKp46-Ig to various F. nucleatum strains. To confirm that this interaction was mediated specifically by RadD, they employed a RadD-deficient mutant strain. Finally, to establish the functional relevance of the RadD-NKp46 interaction in promoting NK cell cytotoxicity and anti-tumor responses, they utilized a syngeneic mouse breast cancer model. In this setup, AT3 cells were orthotopically implanted into the mammary fat pad of C57BL/6 wild-type (WT) or Ncr1-deficient (NCR1⁻/⁻; murine orthologue of human NKp46) mice, followed by intravenous inoculation with either WT F. nucleatum or the ∆RadD mutant strain.

      Strengths:

      A notable strength of the work is that it identifies a previously unrecognized activating interaction between F. nucleatum RadD and the NK cell receptor NKp46, demonstrating that the same bacterial protein can engage distinct NK cell receptors (activating or inhibitory) to exert context-dependent effects on anti-tumor immunity. This dual-receptor insight adds depth to our understanding of F. nucleatum-immune interactions and highlights the complexity of microbial modulation of the tumor microenvironment.

      Weaknesses:

      (1) A previous study by this group (PMID: 38952680) demonstrated that RadD of F. nucleatum binds to NK cells via Siglec-7, thereby diminishing their cytotoxic potential. They further proposed that the RadD-Siglec-7 interaction could act as an immune evasion mechanism exploited by tumor cells. In contrast, the present study reports that RadD of F. nucleatum can also bind to the activating receptor NKp46 on NK cells, thereby enhancing their cytotoxic function.

      While F. nucleatum-mediated tumor progression has been documented in breast and colon cancers, the current study proposes an NK-activating role for F. nucleatum in HNSC. However, it remains unclear whether tumor-infiltrating NK cells in HNSC exhibit differential expression of NKp46 compared to Siglec-7. Furthermore, heterogeneity within the NK cell compartment, particularly in the relative abundance of NKp46⁺ versus Siglec-7⁺ subsets, may differ substantially among breast, colon, and HNSC tumors. Such differences could have been readily investigated using publicly available single-cell datasets. A deeper understanding of this subset heterogeneity in NK cells would better explain why F. nucleatum is passively associated with a favorable prognosis in HNSC but correlates with poor outcomes in breast and colon cancers.

      (2) The in vivo tumor data (Figure 5D-F) appear to contradict the authors' claims. Specifically, Figure 5E suggests that WT mice engrafted with AT3 breast tumors and inoculated with WT F. nucleatum exhibited an even greater tumor burden compared to mice not inoculated with F. nucleatum, indicating a tumor-promoting effect. This finding conflicts with the interpretation presented in both the results and discussion sections.

      (3) Although the authors acknowledge that F. nucleatum may have tumor context-specific roles in regulating NK cell responses, it is unclear why they chose a breast cancer model in which F. nucleatum has been reported to promote tumor growth. A more appropriate choice would have been the well-established preclinical oral cancer model, such as the 4-nitroquinoline 1-oxide (4NQO)-induced oral cancer model in C57BL/6 mice, which would more directly relate to HNSC biology.

      (4) Since RadD of F. nucleatum can bind to both Siglec-7 and NKp46 on NK cells, exerting opposing functional effects, the expression profiles of both receptors on intratumoral NK cells should be evaluated. This would clarify the balance between activating and inhibitory signals in the tumor microenvironment and provide a more mechanistic explanation for the observed tumor context-dependent outcomes.

    1. Reviewer #2 (Public review):

      Summary:

      The study by Zhang et al. focuses on how phase separation of a chromatin-associated protein MORC2, could regulate gene expression. Their study shows that MORC2 forms dynamic nuclear condensates in cells. In vitro, MORC2 phase separation is driven by dimerization and multivalent interactions involving the C-terminal domain. A key finding is that the intrinsically disordered region (IDR) of MORC2 exhibits strong DNA binding. They report that DNA binding enhances MORC2's phase separation and its ATPase activity, offering new insights into how MORC2 contributes to chromatin organization and gene regulation. The authors try to correlate MORC2's condensate-forming ability with its gene silencing function, but this warrants additional controls and validation. Moreover, they investigate the effect of disease-linked mutations in the N-terminal domain of MORC2 on its ability to form cellular condensates, ATPase activity, and DNA-binding, though the findings appear inconclusive in the manuscript's current form.

      Strengths:

      The authors determined a 3.1 Å resolution crystal structure of the dimeric coiled-coil 3 (CC3) domain of MORC2, revealing a hydrophobic interface that stabilizes dimer formation. They present extensive evidence that MORC2 undergoes liquid-liquid phase separation (LLPS) across multiple contexts, including in vitro, in cellulo, and in vivo. Through systematic cellular screening, they identified the C-terminal domain of MORC2 as a key driver of condensate formation. Biophysical and biochemical analyses further show that the IDR within the C-terminal domain interacts with the C-terminal end region (IBD) and also exhibits strong DNA-binding capacity, both of which promote MORC2 phase separation. Together, this study emphasizes that interactions mediated by multiple domains-CC3, IDR, and IBD- drives MORC2 phase separation. Finally, the authors quantified the effect of removing the CC3 on the upregulation and downregulation of target gene expression.

      Weaknesses:

      Though the findings appear compelling in isolation, the study lacks discussion on how its findings compare with previous studies. Particularly in the context of MORC2-DNA binding, there are previous studies extensively exploring MORC2-DNA binding (Tan, W., Park, J., Venugopal, H. et al. Nat Commun 2025), and its effect on ATPase activity (ref 22). The contradictory results in ref 22 about the impact of DNA-binding on ATPase activity, and ATPase activity on transcriptional repression, warrant proper discussion. The authors performed extensive in-cellulo screening for the investigation of domain contribution in MORC2 condensate formation, but the study does not consider/discuss the possibility of some indirect contributions from the complex cellular environment. Alternatively, the domain-specific contributions could be quantified in vitro by comparing phase diagrams for their variants. While the basis of this study is to investigate the mechanism of MORC2 condensate-mediated gene silencing, the findings in Figure 6 appear incomplete because the CC3 deletion not only affects phase separation of MORC2 but also dimerization. Furthermore, their investigation on disease-linked MORC2 mutations appears very preliminary and inconclusive because there are no obvious trends from the data. Overall, the discussion appears weak as it is missing references to previous studies and, most importantly, how their findings compare to others'.

    1. Reviewer #2 (Public review):

      Summary:

      In this study from Stahl et al., the authors demonstrate that medaka pluripotent embryonic cells can self-organise into eye organoids containing both retina and lens tissues. While these organoids can self-organize into an eye structure that resembles the vertebrate eye, they are built from a fundamentally different morphogenetic process - an "inside-out" mechanism where the lens forms centrally and moves outward, rather than the normal "outside-in" embryonic process. This is a very interesting discovery, both for our understanding of developmental biology and the potential for tissue engineering applications. The study would benefit from some additional experiments and a few clarifications. The authors suggest that the lens cells are the ones that move from the central to a more superficial position. Is this an active movement of lens cells or just the passive consequence of the retina cells acquiring a cup shape? Are the retina cells migrating behind the lens or the lens cells pushing outwards? High-resolution imaging of organoid cup formation, tracking retina cells in combination with membrane labeling of all cells would help elucidate the morphogenetic processes occurring in the organoids. Membrane labeling would also be useful as Prox1 positive lens cells appear elongated in embryos while in the organoids, cell shapes seem less organised, less compact and not elongated (for example as shown in Fig 3f,g).

      The organoids could be a useful tool to address how cell fate is linked to cell shape acquisition. In the forming organoids, retinal tissue initially forms on the outside, while non-retinal tissue is located in the centre; this central tissue later expresses lens markers. Do the authors have any insights into why fate acquisition occurs in this pattern? Is there a difference in proliferation rates between the centrally located cells and the external ones? Could it be that highly proliferative cells give rise to neural retina (NR), while lower proliferating cells become lens?

      What happens in organoids that do not form lenses? Do these organoids still generate foxe3 positive cells that fail to develop into a proper lens structure? And in the absence of lens formation, does the retina still acquire a cup shape?

      The author suggest that lens formation occurs even in the absence of Matrigel. Is the process slower in these conditions? Are the resulting organoids smaller? While there are indeed some LFC expressing cells by day2, these cells are not very well organised and the pattern of expression seems dotty. Moreover, LFC staining seems to localise posterior to the LFC negative, lens-like structure (e.g. Fig.S1 3o'clock).

      How do these organoids develop beyond day 4? Do they maintain their structural integrity at later stages?

      The role of HEPES in promoting organoid formation is intriguing. Do the authors have any insights into why it is important in this context? Have the authors tried other culture conditions and does culture condition influence the morphogenetic pathways occurring within the organoids?

      Significance:

      This is a very interesting paper, and it will be important to determine whether this alternative morphogenetic process is specific to medaka or if similar developmental routes can be recapitulated in organoid cultures from other vertebrate species.

    1. Reviewer #3 (Public review):

      Summary:

      Microexons are highly conserved alternative splice variants, the individual functions of which have thus far remained mostly elusive. Inclusion of microexons in mature mRNAs increases during development, specifically in neural tissues, and is regulated by SRRM proteins. Investigation of individual microexon function is a vital avenue of research, since microexon inclusion is disrupted in diseases like autism. This study provides one of the first rigorous screens (using zebrafish larvae) of the functions of individual microexons in neurodevelopment and behavioural control. The authors precisely excise 21 microexons from the genome of zebrafish using CRISPR-Cas9 and assay the downstream impacts on neurite outgrowth, larvae motility and sociality. A small number of mild phenotypes were observed, which contrasts with the more dramatic phenotypes observed when microexon master regulators SRRM3/4 are disrupted. Importantly, this study attempts to address the reasons why mild/few phenotypes are observed and identifies transcriptomic changes in microexon mutants that suggest potential compensatory gene regulatory mechanisms.

      Strengths:

      (1) The manuscript is well written with excellent presentation of the data in the figures.

      (2) The experimental design is rigorous and explained in sufficient detail.

      (3) The identification of a potential microexon compensatory mechanism by transcriptional alterations represents a valued attempt to begin to explain complex genetic interactions.

      Overall this is a study with robust experimental design that addresses a gap in knowledge of the role of microexons in neurodevelopment.

    1. Reviewer #2 (Public review):

      Summary:

      This is a thought-provoking perspective by Reichmann et al, outlining supportive evidence that Mycobacterium tuberculosis co-evolved with its host Homo Sapiens to both increase susceptibility to infection and reduce rates of fatal disease through decreased virulence. TB is an ancient disease where two modes of virulence are likely to have evolved through different stages of human evolution: one before the Neolithic Demographic Transition, where humans lived in sparse hunter-gatherer communities, which likely selected for prolonged Mtb infection with reduced virulence to allow for transmission across sparse populations. Conversely, following the agricultural and industrial revolutions, Mtb virulence is likely to have evolved to attack a higher number of susceptible individuals. These different disease modalities highlight the central idea that there are different immunological routes to TB disease, which converge on a disease phenotype characterized by high bacterial load and destruction of the extracellular matrix. The writing is very clear and provides a lot of supportive evidence from population studies and the recent clinical trials of novel TB vaccines, like M72 and H56. However, there are areas to support the thesis that have been described only in broad strokes, including the impact of host and Mtb genetic heterogeneity on this selection, and the alternative model that there are likely different TB diseases (as opposed to different routes to the same disease), as described by several groups advancing the concept of heterogeneous TB endotypes. I expand on specific points below.

      Strengths:

      (1) The idea that Mtb evolved to both increase transmission (and possible commensalism with humans) with low rates of reactivation is intriguing. The heterogeneous TB phenotypes in the collaborative cross model (PMID: 35112666) support this idea, where some genetic backgrounds can tolerate a high bacterial load with minimal pathology, while others show signs of pathogenesis with low bacterial loads. This supports the idea that the underlying host state, driven by a number of factors like genetics and nutrition, is likely to explain whether someone will co-exist with Mtb without pathology, or progress to disease. I particularly enjoyed the discussion of the protective advantages provided by Mtb infection, which may have rewired the human immune system to provide protection against heterologous pathogens- this is supported by recent studies showing that Mtb infection provides moderate protection against SARS-CoV-2 (PMID: 35325013, and 37720210), and may have applied to other viruses that are likely to have played a more significant role in the past in the natural selection of Homo Sapiens.

      (2) Modeling from Marcel Behr and colleagues (PMID: 31649096) indeed suggests that there are at least TB clinical phenotypes that likely mirror the two distinct phases of Mtb co-evolution with humans. Most of the TB disease progression occurs rapidly (within 1-2 years of exposure), and the rest are slow cases of reactivation over time. I enjoyed the discussion of the difference between the types of immune hits needed to progress to disease in the two scenarios, where you may need severe immune hits for rapid progression, a phenotype that likely evolved after the Neolithic transition to larger human populations. On the other hand, a series of milder immune events leading to reactivation after a long period of asymptomatic infection likely mirrors slow progression in the hunter-gatherer communities, to allow for prolonged transmission in scarce populations. Perhaps a clearer analysis of these models would be helpful for the reader.

      Weaknesses:

      (1) The discussion of genetic heterogeneity is limited and only discusses evidence from MSMD studies. Genetics is an important angle to consider in the co-evolution of Mtb and humans. There is a large body of literature on both host and Mtb genetic associations with TB disease. The very fact that host variants in one population do not necessarily cross-validate across populations is evidence in support of population-specific adaptations. Specific Mtb lineages are likely to have co-evolved with distinct human populations. A key reference is missing (PMID: 23995134), which shows that different lineages co-evolved with human migrations. Also, meta-analyses of human GWAS studies to define variants associated with TB are very relevant to the topic of co-evolution (e.g., PMID: 38224499). eQTL studies can also highlight genetic variants associated with regulating key immune genes involved in the response to TB. The authors do mention that Mtb itself is relatively clonal with ~2K SNPs marking Mtb variation, much of which has likely evolved under the selection pressure of modern antibiotics. However, some of this limited universe of variants can still explain co-adaptations between distinct Mtb lineages and different human populations, as shown recently in the co-evolution of lineage 2 with a variant common in Peruvians (PMID: 39613754).

      (2) Although the examples of anti-TNF and anti-PD1 treatments are relevant as drivers of TB in limited clinical contexts, the bigger picture is that they highlight major distinct disease endotypes. These restricted examples show that TB can be driven by immune deficiency (as in the case of anti-TNF, HIV, and malnutrition) or hyperactivation (as in the case of anti-PD1 treatment), but there are still certainly many other routes leading to immune suppression or hyperactivation. Considering the idea of hyper-activation as a TB driver, the apparent higher rate of recurrence in the H56 trial referenced in the review is likely due to immune hyperactivation, especially in the context of residual bacteria in the lung. These different TB manifestations (immune suppression vs immune hyperactivation) mirror TB endotypes described by DiNardo et al (PMID: 35169026) from analysis of extensive transcriptomic data, which indicate that it's not merely different routes leading to the same final endpoint of clinical disease, but rather multiple different disease endpoints. A similar scenario is shown in the transcriptomic signatures underlying disease progression in BCG-vaccinated infants, where two distinct clusters mirrored the hyperactivation and immune suppression phenotypes (PMID: 27183822). A discussion of how to think about translating the extensive information from system biology into treatment stratification approaches, or adjunct host-directed therapies, would be helpful.

    1. Reviewer #2 (Public review):

      The goal of HiJee Kang et al. in this study is to explore the interaction between assemblies of neurons with similar pure-tone selectivity in mouse auditory cortex. Using holographic optogenetic stimulation in a small subset of target cells selective for a given pure tone (PTsel), while optically monitoring calcium activity in surrounding non-target cells, they discovered a subtle rebalancing process: co-tuned neurons that are not optogenetically stimulated tend to reduce their activity. The cortical network reacts as if an increased response to PTsel in some tuned assemblies is immediately offset by a reduction in activity in the rest of the PTsel-tuned assemblies, leaving the overall response to PTsel unchanged. The authors show that this rebalancing process affects only the responses of neurons to PTsel, not to other pure tones. They also show that assemblies of neurons that are not selective for PTsel don't participate in the rebalancing process. They conclude that assemblies of neurons with similar pure-tone selectivity must interact in some way to organize this rebalancing process, and they suggest that mechanisms based on homeostatic signaling may play a role.

      The authors have successfully controlled for potential artefacts resulting from their optogenetic stimulation. This study is therefore pioneering in the field of the auditory cortex (AC), as it is the first to use single-cell optogenetic stimulation to explore the functional organization of AC circuits in vivo. The conclusions of this paper are very interesting. They raise new questions about the mechanisms that could underlie such a rebalancing process.

      (1) This study uses an all-optical approach to excite a restricted group of neurons chosen for their functional characteristics (their frequency tuning), and simultaneously record from the entire network observable in the FOV. As stated by the authors, this approach is applied for the first time to the auditory cortex, which is a tour de force. However, such approach is complex and requires precise controls to be convincing. The authors provide important controls to demonstrate the precise ability of their optogenetic methods. In particular, holographic patterns used to excite 5 cells simultaneously may be associated with out-of-focus laser hot spots. Cells located outside of the FOV could be activated, therefore engaging other cells than the targeted ones in the stimulation. This would be problematic in this study as their tuning may be unrelated to the tuning of the targeted cells. To control for such effect, the authors have decoupled the imaging and the excitation planes, and checked for the absence of out-of-focus unwanted excitation (Suppl Fig1).

      (2) In the auditory cortex, assemblies of cells with similar pure-tone selectivity are linked together not only by their ability to respond to the same sound, but also by other factors. This study clearly shows that such assemblies are structured in a way that maintains a stable global response through a rebalancing process. If a group of cells within an assembly increases its response, the rest of the assembly must be inhibited to maintain the total response.<br /> The boundary between assemblies is smooth as the rebalancing process occurring in one assembly seem to affect also the response of the other assembly comprising cells tuned to a the other frequency. This trend is not significant but visible for both tested frenquencies in Fig. 3 and Fig S3.

    1. Reviewer #2 (Public review):

      Summary:

      The authors present a combined experimental and theoretical workflow to study partitioning noise arising during cell division. Such quantifications usually require time-lapse experiments, which are limited in throughput. To bypass these limitations, the authors propose to use flow-cytometry measurements instead and analyse them using a theoretical model of partitioning noise. The problem considered by the authors is relevant and the idea to use statistical models in combination with flow cytometry to boost statistical power is elegant. The authors demonstrate their approach using experimental flow cytometry measurements and validate their results using time-lapse microscopy. The approach focuses on a particular case, where the dynamics of the labelled component depends predominantly on partitioning, while turnover of components is not taken into account. The description of the methods is significantly clearer than in the previous version of the manuscript. I have only two comments left:

      • In eq. (1) the notation has been changed/corrected, but the text immediately after it still refers to the old notation.

      • Maybe I don't fully understand the reasoning provided by the authors, but it is still not entirely clear to me why microscopy-based estimates are expected to be larger. Fewer samples will increase the estimation uncertainty, but this can go either way in terms of the inferred variability.

    1. Reviewer #2 (Public review):

      The authors use Xenopus embryos to study feedback interactions between the planar cell polarity (PCP) proteins in the context of convergence and extension. They show that binding of the cytoplasmic polarity protein Pk2 to Vangl2 is needed for them to synergistically suppress defects in convergence and extension caused by Dvl overexpression. They then examine protein localizations in animal cap cells, and show that Wnt11-induced accumulation of Fzd7, Ror2 and Dvl into plasma membrane patches is disrupted by the functional Vangl2/Pk complex. This disperses Fzd and causes its endocytosis, while Dvl remains at the plasma membrane. Interestingly, Ror2 and Vangl2 tend to have a broader localization within the membrane patches than Fzd7/Dvl, leading to a model in which Ror2 mediates the transfer of Dvl from Vangl2/Pk to Fzd7 in response to Wnt11.

      This work uses a mixture of biochemical approaches, phenotypic assays in Xenopus and imaging. The data is carefully quantitated and the imaging is high quality. This is an interesting paper, showing mechanisms by which Vangl2/Pk can functionally antagonize Fzd/Dvl during planar cell polarity.

    1. Reviewer #2 (Public Review):

      Intrinsic properties of a neuron refer to the ion channels that a neuron expresses. These ion channels determine how a neuron responds to its inputs. How intrinsic properties link to behavior remains poorly understood. Medina and Margoliash address this question using the zebra finch, a well-studied songbird. Previous studies from their lab and other labs have shown that the intrinsic properties of adult songbird basal-ganglia projecting premotor neurons, are more similar within a bird than across birds. Across birds, this similarity is related to the extent of similarity in the songs; the more similar the song between two birds, the more similar the intrinsic properties between the neurons of these two birds. Finally, the intrinsic properties of these neurons change over the course of development and are sensitive to intact auditory feedback. However, the song features that relate to these intrinsic properties and the function of the within-bird homogeneity of intrinsic properties are unclear.

      In this manuscript, the authors address these two questions by examining the intrinsic properties of basal-ganglia projecting premotor neurons in zebra finch brain slices. Specifically, they focus on the Ih current (as this is related to rhythmic activity in many pattern-generating circuits) and correlate the properties of the Ih current with song features. They find that the sag ratio (a measure of the driving force of the Ih current) and the rebound area (a measure of the post-inhibitory depolarisation) are both correlated with the temporal features of the song. First, they show the presence of correlations between the length of the song motif and the length of the longest syllable (most often a harmonic stack syllable). Based on this, they conclude that longer song motifs are composed of longer syllables. Second, they show that HVCX neurons within a bird have more similar sag ratios and rebound areas than across birds. Third, the mean sag ratio and mean rebound areas across birds were correlated with the duration of the longest harmonic stack within the song. These two results suggest that IPs are correlated with the temporal structure of the song. To further test this, the authors used natural and experimental tutoring procedures to have birds that learned two different types of songs that only differed in length; the longer song had an extra harmonic stack at the end. Using these two sets of birds, the authors find larger sag ratios and higher firing frequencies in birds with longer songs. Fifth, they show that the post-inhibitory rebound area allows neurons to respond to excitatory inputs and produce spikes. Neurons with a larger rebound area have a larger time window for responding to excitatory inputs. Based on this, they speculate that HVCX neurons with larger rebound areas integrate over larger time windows. Finally, they make a network model of HVC and show that one specific model could explain sequence-specific bursting of HVCX neurons.

      Strengths:

      The question being addressed is an interesting question and the authors use appropriate techniques. The authors find a new temporal structure within the song, specifically, they find that longer songs typically have more syllables and longer syllables. As far as I know, this has not been shown earlier. The authors build on existing literature to suggest that IPs of HVCX neurons are correlated with the temporal structure of songs.

      Comments on revised version:

      I have read through the revised paper and I also feel that my comments have been addressed.

    1. Reviewer #2 (Public review):

      Summary:

      The authors present a report of a large Pseudomonas aeruginosa hospital outbreak affecting more than 80 patients with first sampling dates in 2011 that stretched over more than 10 years and was only identified through genomic surveillance in 2020. The outbreak strain was assigned to the sequence type 621, an ST that has been associated with carpabapenem resistance across the globe. Ongoing transmission coincided with both increasing resistance without acquisition of carbapenemase genes as well as convergence of mutations towards a host-adapted lifestyle.

      Strengths:

      The convincing genomic analyses indicate spread throughout the hospital since the beginning of the century and provide important benchmark findings for future comparison

      The sampling was based on all organisms sent to the Multidrug resistant Organism Repository and Surveillance Network across the U.S. Military Health System.

      Using sequencing data from patient and environmental samples for phylogenetic and transmission analyses as well as determining recurring mutations in outbreak isolates allows for insights into the evolution of potentially harmful pathogens with the ultimate aim of reducing their spread in hospitals.

      Weaknesses:

      The epidemiological information was limited and the sampling methodology was inconsistent, thus complicating inference of exact transmission routes. Epidemiological data relevant for this analysis include information on the reason for sampling, patient admission and discharge data and underlying frequency of sampling and sampling results in relation to patient turnover.

      Comments on revisions:

      Thank you for the careful revision and consideration of my comments.

      I am pleased to confirm that all my concerns have been comprehensively addressed.

      The changes and additions made have resolved my initial feedback, and I see no need to alter my evaluation.

    1. Reviewer #2 (Public review):

      Summary:

      This work used multiple approaches to show that CCK is critical for long-term potentiation (LTP) in the auditory thalamocortical pathway. They also showed that the CCK mediation of LTP is age-dependent and supports frequency discrimination. This work is important because is opens up a new avenue of investigation of the roles of neuropeptides in sensory plasticity.

      Strengths:

      The main strength is the multiple approaches used to comprehensively examine the role of CCK in auditory thalamocortical LTP. Thus, the authors do provide a compelling set of data that CCK mediates thalamocortical LTP in an age-dependent manner.

      Weaknesses:

      The behavioral assessment is relatively limited, but may be fleshed out in future work.

    1. Reviewer #2 (Public review):

      Summary:

      This work addresses an important question of chromosome architecture changes associated with organotopic metastatic traits, showing important trends in genome reorganization. The most important observation is that 3D genome changes consistent with adaptations for new microenvironment, including lung metastatic breast cells exhibiting signatures of the genome architecture typical to a lung cell-like conformation and brain metastatic prostate cancer cells showing compartment shifts toward a brain-like state.

      Strengths:

      This work presents interesting original results, which will be important for future studies and biomedical implications of epigenetic regulation in norm and pathology.

    1. Reviewer #2 (Public review):

      Summary:

      This valuable paper presents Spyglass, a comprehensive software framework designed to address the critical challenges of reproducibility and data sharing in neuroscience. The authors have developed a robust ecosystem built on community standards such as NWB and DataJoint, and demonstrate its utility by applying it to datasets from two independent labs, successfully validating the framework's ability to reproduce and extend published findings. While the framework offers a powerful blueprint for modern, reproducible research, its immediate broad impact may be tempered by the significant upfront investment required for adoption and its current focus on electrophysiological data. Nevertheless, Spyglass stands as an important and practical contribution, providing a well-documented and thoughtfully designed path toward more transparent and collaborative science.

      Strengths:

      (1) Principled solution to a foundational challenge:

      The work offers a concrete and comprehensive framework for reproducibility in neuroscience, moving beyond abstract principles to provide an implemented, end-to-end ecosystem.

      (2) Pragmatic and robust architectural design:

      Features such as the "cyclic iteration" motif for spike-sorting curation and the "merge" motif for pipeline consolidation demonstrate deep, practical experience with neurophysiological analysis and address real-world challenges.

      (3) Cross-laboratory validation:

      The successful replication and extension of published hippocampal decoding findings across independent datasets strongly support the framework's utility and underscore its potential for enabling reproducible science.

      (4) Accessibility through documentation and demos:

      Extensive tutorials and the availability of a public demo environment lower some of the barriers to adoption.

      Weaknesses:

      (1) High barrier to adoption:

      The requirement to convert all data into NWB, maintain a relational database, and train users in structured workflows is a significant hurdle, particularly for smaller labs.

      (2) Limited tool integration:

      The current pipelines, while useful, still resemble proof-of-principle demonstrations. Closer integration with established analysis libraries such as Pynapple and others could broaden the toolkit and reduce duplication of effort.

      (3) Experimental metadata support:

      While NWB provides a solid foundation for storing neurophysiology data streams, it still lacks broad and standardized support for experimental metadata, including descriptions of conditions, subject details, and procedures, as well as links across datasets. This limitation constrains one of Spyglass's key promises: enabling reproducible, cross-laboratory science. The authors should clarify how Spyglass plans to address or mitigate this gap - for example, by adopting or contributing to metadata extensions, providing templates for experimental conditions, or integrating with complementary systems that manage metadata across datasets.

      (4) Cross-laboratory interoperability:

      While demonstrated across two datasets, the manuscript does not fully address how Spyglass will handle the diversity of metadata standards, acquisition systems, and lab-specific practices that remain major obstacles to reproducibility.

      (5) Visualization limitations:

      Beyond the export system and Figurl, NWB offers relatively few options for interactive data exploration. The ability to explore data flexibly and discover new phenomena remains limited, which constrains one of the potential strengths of standardized pipelines.

      Spyglass is well-positioned to become a community framework for reproducible neuroscience workflows, with the potential to set new standards for transparency and data sharing. With expanded modality coverage, tighter integration of existing community tools, stronger solutions for cross-lab interoperability, and richer visualization capabilities, it could have a transformative impact on the field.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript examines decision-making in a context where the information for the decision is not continuous, but separated by a short temporal gap. The authors use a standard motion direction discrimination task over two discrete dot motion pulses (but unlike previous experiments, fill the gaps in evidence with 0-coherence random dot motion of differently coloured dots). Previous studies using this task (Kiani et al., 2013; Tohidi-Moghaddam et al., 2019; Azizi et al., 2021; 2023) or other discrete sample stimuli (Cheadle et al., 2014; Wyart et al., 2015; Golmohamadian et al., 2025) have shown decision-makers to integrate evidence from multiple samples (although with some flexible weighting on each sample). In this experiment, decision-makers tended not to use the second motion pulse for their decision. This allows the separation of neural signatures of momentary decision-evidence samples from the accumulated decision-evidence. In this context, classic electroencephalography signatures of accumulated decision-evidence (central-parietal positivity) are shown to reflect the momentary decision-evidence samples.

      Strengths:

      The authors present an excellent analysis of the data in support of their findings. In terms of proportion correct, participants show poorer performance than predicted if assuming both evidence samples were integrated perfectly. A regression analysis suggested a weaker weight on the second pulse, and in line with this, the authors show an effect of the order of pulse strength that is reversed compared to previous studies: A stronger second pulse resulted in worse performance than a stronger first pulse (this is in line with the visual condition reported in Golmohamadian et al., 2025). The authors also show smaller changes in electrophysiological signatures of decision-making (central parietal positivity and lateralised motor beta power) in response to the second pulse. The authors describe these findings with a computational model which allows for early decision-commitment, meaning the second pulse is ignored on the majority of trials. The model-predicted electrophysiological components describe the data well. In particular, this analysis of model-predicted electrophysiology is impressive in providing simple and clear predictions for understanding the data.

      Weaknesses:

      Some readers may be left questioning why behaviour in this experiment is so different from previous experiments, which use almost exactly the same design (Kiani et al., 2013; Tohidi-Moghaddam et al., 2019; Azizi et al., 2021; 2023). The authors suggest this may be due to the staircase procedure used to calibrate the coherence of (single-pulse) dot motion stimuli for individuals at the start of the experiment. But it remains unclear why overall performance in this experiment is so bad. Participants achieved ~85% correct following 400 ms of 33 - 45% coherent motion. In previous work, performance was ~90% correct following 240ms of 12.8% coherent motion. It seems odd that adding the 0% coherent motion in the temporal gaps would impair performance so greatly, given it was clearly colour-coded. There is a lack of detail about the stimulus presentation parameters to understand whether visual processing explains the declined performance, or if there is a more cognitive/motivational explanation.

    1. Reviewer #2 (Public review):

      Summary:

      This paper investigates putative networks associated with prediction errors in task-based and resting-state fMRI. It attempts to test the idea that prediction errors minimisation includes abstract cognitive functions, referred to as the global prediction error hypothesis, by establishing a parallel between networks found in task-based fMRI where prediction errors are elicited in a controlled manner and those networks that emerge during "resting state".

      Strengths:

      Clearly, a lot of work and data went into this paper, including 2 task-based fMRI experiments and the resting state data for the same participants, as well as a third EEG-fMRI dataset. Overall, well written with a couple of exceptions on clarity, as per below, and the methodology appears overall sound, with a couple of exceptions listed below that require further justification. It does a good job of acknowledging its own weakness.

      Weaknesses:

      (1) The paper does a good job of acknowledging its greatest weakness, the fact that it relies heavily on reverse inference, but cannot quite resolve it. As the authors put it, "finding the same networks during a prediction error task and during rest does not mean that the networks' engagement during rest reflects prediction error processing". Again, the authors acknowledge the speculative nature of their claims in the discussion, but given that this is the key claim and essence of the paper, it is hard to see how the evidence is compelling to support that claim.

      (2) Given how uncontrolled cognition is during "resting-state" experiments, the parallel made with prediction errors elicited during a task designed for that effect is a little difficult to make. How often are people really surprised when their brains are "at rest", likely replaying a previously experienced event or planning future actions under their control? It seems to be more likely a very low prediction error scenario, if at all surprising.

      (3) The quantitative comparison between networks under task and rest was done on a small subset of the ROIs rather than on the full network - why? Noting how small the correlation between task and rest is (r=0.021) and that's only for part of the networks, the evidence is a little tenuous. Running the analysis for the full networks could strengthen the argument.

      (4) Looking at the results in Figure 2C, the four-quadrant description of the networks labelled for low and high PE appears a little simplistic. The authors state that this four-quadrant description omits some ROIs as motivated by prior knowledge. This would benefit from a more comprehensive justification. Which ROIs are excluded, and what is the evidence for exclusion?

      (5) The EEG-fMRI analysis claiming 3-6Hz fluctuations for PE is hard to reconcile with the fact that fMRI captures activity that is a lot slower, while some PEs are as fast as 150 ms. The discussion acknowledges this but doesn't seem to resolve it - would benefit from a more comprehensive argument.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript by Altin et al. examines the dynamics of bacterial assemblies, building on previously published work documenting mechanical spiral waves. The authors show that the emergent dynamics can be influenced by various factors, including the strain of bacteria and water content in the sample. While the topic of this paper would be of broad interest, and the preliminary results are certainly interesting, various aspects of this paper are underdeveloped and require further exploration.

      Strengths:

      One of the nice features of this system is the ability to transition between the different states based on the addition or withdrawal of water. The authors use a similar experimental model system and mathematical model to previously published work (Reference 49), but extend by showing that the behaviour can be modified through simple interventions. Specifically, the authors show that adding water droplets or drying the sample through heating can result in changes in the observed wave structure. This represents a possible way of controlling active matter.

      The mathematical model proposed in this paper involves a phase-oscillator model of Kuramoto-style coupling (similar to previously reported models). A non-reciprocal phase lag is introduced in order to facilitate the patterns seen in experiments. The qualitative agreement in the behaviour is quite striking, showing both spiral waves and travelling waves.

      Weaknesses:

      The principal observation of the paper - that spiral waves emerge in these systems and can be controlled in various ways - is not linked to microscale dynamics at the cell level. It is recognised that hydrodynamics can introduce non-reciprocity, an essential ingredient of this model. However, in this work the authors have not identified a physical mechanism for the lag, e.g., either through steric interactions or hydrodynamic disturbances. This is also relevant in the phase oscillator modelling section. In low Reynolds number flows, dynamics are instantaneously determined. In this light, what does the phase lag term represent? What is the origin of the coupling term, b? Can this be varied systematically or derived from experimental measurements or parameters?

      Classification of wave properties is an important aspect of this paper, but is not accomplished in a quantitative sense. What is the method for distinguishing between travelling and spiral waves? There is a range of quantitative tools that could be used to investigate these dynamics (and also compare quantitatively with the models). For example, examining the correlation functions and order parameters could assist with the extraction of wave features (see extensive literature on oscillator models).

      The methodology of changing the dynamics through moisture content appears to be slightly underdeveloped, e.g., adding water involves a droplet, and removing water is accomplished by heating (which presumably could cause other effects). Could the dynamics not be controlled more directly by varying the humidity? At the same time, the authors also mention that temperature itself plays a role in shaping the behaviour. What is the mechanism for this? Is it just through evaporation? Since the frequency increases with temperature, could it just be that activity increases with temperature?

    1. Reviewer #2 (Public review):

      Summary:

      This study establishes a platform for studying mosquito flight activity over the course of several weeks and demonstrates key applications of such a paradigm: the comparison of daily activity profiles across different Aedes aegypti populations and the quantification of responses to physiological and environmental perturbations.

      Strengths:

      (1) Overall, the authors succeed in setting up a low-cost, scalable tracking system that stably records mosquito flight activity for several weeks and uses it to demonstrate compelling use cases.

      (2) The text is organized well, is easy to read, and is understandable for a broad audience.

      (3) Instructions for constructing housing and for performing tracking with a dedicated GUI are available on an accompanying website, with open-source (and well-organized) code.

      (4) A complementary pair of methods (one testing for activity signals at specific times of the day, and the other capturing broader daily patterns) is used effectively.

      Weaknesses:

      (1) In the interval-based GLMM results, since each time interval is tested independently, p-values should be corrected for multiple hypotheses (for instance, through controlling the false discovery rate).

      (2) The accompanying GUI application needs some modifications to fully work out of the box on a sample video.

    1. Reviewer #2 (Public review):

      Summary:

      Understanding the mechanisms of neural specification is a central question in neurobiology. In Drosophila, the mushroom body (MB), which is the associative learning region in the brain, consists of three major cell types: γ, α'/β', and α/β kenyon cells. These classes can be further subdivided into seven subtypes, together comprising ~2000 KCs per hemi-brain. Remarkably, all of these neurons are derived from just four neuroblasts in each hemisphere. Therefore, a lot of endeavors are put into understanding how the neuron is specified in the fly MB.

      Over the past decade, studies have revealed that MB neuroblasts employ a temporal patterning mechanism, producing distinct neuronal types at different developmental stages. Temporal identity is conveyed through transcription factor expression in KCs. High levels of Chinmo, a BTB-zinc finger transcription factor, promote γ-cell fate (Zhu et al., Cell, 2006). Reduced Chinmo levels trigger expression of mamo, a zinc finger transcription factor that specifies α'/β' identity (Liu et al., eLife, 2019). However, the specification of α/β neurons remains poorly understood. Some evidence suggests that microRNAs regulate the transition from α'/β' to α/β fate (Wu et al., Dev Cell, 2012; Kucherenko et al., EMBO J, 2012). One hypothesis even proposes that α/β represents a "default" state of MB neurons, which could explain the difficulty in identifying dedicated regulators.

      The study by Chung et al. challenges this hypothesis. By leveraging previously published RNA-seq datasets (Shih et al., G3, 2019), they systematically screened BAC transgenic lines to selectively label MB subtypes. Using these tools, they analyzed the consequences of manipulating E93 expression and found that E93 is required for α/β specification. Furthermore, loss of E93 impairs MB-dependent behaviors, highlighting its functional importance.

      Strengths:

      The authors conducted a thorough analysis of E93 manipulation phenotypes using LexA tools generated from the Janelia Farm and Bloomington collections. They demonstrated that E93 knockdown reduces expression of Ca-α1T, a calcium channel gene identified as an α/β marker. Supporting this conclusion, one LexA line driven by a DNA fragment near EcR (R44E04) showed consistent results. Conversely, overexpression of E93 in γ and α'/β' Kenyon cells led to downregulation of their respective subtype markers.

      Another notable strength is the authors' effort to dissect the genetic epistasis between E93 and previously known regulators. Through MARCM and reporter analyses, they showed that Chinmo and Mamo suppress E93, while E93 itself suppresses Mamo. This work establishes a compelling molecular model for the regulatory network underlying MB cell-type specification.

      Weaknesses:

      The interpretation of E93's role in neuronal specification requires caution. Typically, two criteria are used to establish whether a gene directs neuronal identity:<br /> (1) gene manipulation shifts the neuronal transcriptome from one subtype to another, and<br /> (2) gene manipulation alters axonal projection patterns.

      The results presented here only partially satisfy the first criterion. Although markers are affected, it remains possible that the reporter lines and subtype markers used are direct transcriptional targets of E93 in α/β neurons, rather than reflecting broader fate changes. Future studies using single-cell transcriptomics would provide a more comprehensive assessment of neuronal identity following E93 perturbation.

      With respect to the second criterion, the evidence is also incomplete. While reporter patterns were altered, the overall morphology of the α/β lobes appeared largely intact after E93 knockdown. Overexpression of E93 in γ neurons produced a small subset of cells with α/β-like projections, but this effect warrants deeper characterization before firm conclusions can be drawn. While the results might be an intrinsic nature of KC types in flies, the interpretation of the reader of the data should be more careful, and the authors should also mention this in their main text.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript by Kawadkar et al investigates the role of Nup107 in developmental progression via regulation of ecdysone signaling. The authors identify an interesting phenotype of Nup107 whole body RNAi depletion in Drosophila development - developmental arrest at the late larval stage. Nup107-depleted larvae exhibit mis-localization of the Ecdysone receptor (EcR) from the nucleus to the cytoplasm and reduced expression of EcR taret genes in salivary glands, indicative of compromised ecdysone signaling. This mis-localization of EcR in salivary glands was phenocopied when Nup107 was depleted only in the prothoracic gland (PG), suggesting that it is not nuclear transport of EcR but presence of ecdysone (normally secreted from PG) that is affected. Consistently, whole body levels of ecdysone were shown to be reduced in Nup107 KD, particularly at the late third instar stage when a spike in ecdysone normally occurs. Importantly, the authors could rescue the developmental arrest and EcR mis-localization phenotypes of Nup107 KD by adding exogenous ecdysone, supporting the notion that Nup107 depletion disrupts biosynthesis of ecdysone, which arrests normal development. Additionally, they found that rescue of Nup107 KD phenotype can also be achieved by over-expression of the receptor tyrosine kinase torso, which is thought to be the upstream regulator of ecdysone synthesis in the PG. Transcript levels of torso are also shown to be downregulated in the Nup107KD, as are transcript levels of multiple ecdysone biosynthesis genes. Together, these experiments reveal a new role of Nup107 or nuclear pore levels in hormone-driven developmental progression, likely via regulation of levels of torso and torso-stimulated ecdysone biosynthesis.

      Strengths:

      The developmental phenotypes of an NPC component presented in the manuscript are striking and novel, and the data appears to be of high quality. The rescue experiments are particularly significant, providing strong evidence that Nup107 functions upstream of torso and ecdysone levels in regulation of developmental timing and progression.

      Weaknesses:

      The underlying mechanism is however not clear, and any insight into how Nup107 may regulate these pathways would greatly strengthen the manuscript. Some suggestions to address this are detailed below.

      Major questions:

      (1) Determining how specific this phenotype is to Nup107 vs. to reduced NPC levels overall would give some mechanistic insight. Does knocking down other components of the Nup107 subcomplex (the Y-complex) lead to similar phenotypes? Given the published gene regulatory function of Nup107, do other gene regulatory Nups such as Nup98 or Nup153 produce these phenotypes?

      (2) In a related issue, does this level of Nup107 KD produce lower NPC levels? It is expected to, but actual quantification of nuclear pores in Nup107-depleted tissues should be added. These and above experiments would help address a key mechanistic question - is this phenotype the result of lower numbers of nuclear pores or specifically of Nup107?

      (3) Additional experiments on how Nup107 regulates torso would provide further insight. Does Nup107 regulate transcription of torso or perhaps its mRNA export? Looking at nascent levels of the torso transcript and the localization of its mRNA can help answer this question. Or alternatively, does Nup107 physically bind torso?

      (4) The depletion level of Nup107 RNAi specifically in the salivary gland vs. the prothoracic gland should be compared by RT-qPCR or western blotting.

      (5) The UAS-torso rescue experiment should also include the control of an additional UAS construct - so Nup107; UAS-control vs Nup107; UAS-torso should be compared in the context of rescue to make sure the Gal4 driver is functioning at similar levels in the rescue experiment.

      Minor:

      (6) Figures and figure legends can stand to be more explicit and detailed, respectively.

      Comments on revisions:

      The revised manuscript addresses several outstanding issues, most importantly the question of whether the developmental delay phenotype of Nup107 is exhibited by other Nups.

      I recommend that the authors include the data they provide in the rebuttal letter on Nup153 KD not showing the delay phenotype (Figure R1) into the actual manuscript. It's an important mechanistic question raised by multiple reviewers, and would strengthen the authors' conclusions. Ideally, knock downs of other Nups of the Nup107 complex should be investigated, especially given that all those RNAi lines are publicly available.

      Figure 6B should also specify whether the torso transcript being measured is mRNA or nascent, as it would help understand whether it's transcription or mRNA stability that is affected by Nup107 KD.

    1. Reviewer #2 (Public review):

      Epigenetic silencing of target genes by the Polycomb pathway is central to maintenance of cell fates during development and depends on repressive chromatin states involving Polycomb complexes and histone modifications. However, the mechanisms by which these chromatin states are built at the earliest stages of development are unclear. Here, Gonzaga-Saavedra and colleagues use the premier experimental system for studying Polycomb gene regulation, Drosophila development, to investigate when Polycomb domains emerge and how they are assembled. Using a combination of CRISPR gene editing, imaging, and genomic profiling, they determine that while H3K27me3 is initially present in the first nuclear cycles, it quickly dissipates and does not re-emerge until mid-nuclear cycle 14, during the major wave of zygotic genome activation (ZGA). This finding helps resolve current discrepancies in the field, informs potential mechanisms of transgenerational inheritance, and indicates that repressive Polycomb domains are built de novo on target genes in embryogenesis. The authors then set out to examine how Polycomb domains are built. Through live imaging and immunofluorescence, they determine that the histone H3K27 methyltransferase, E(z), is present in nuclei at high levels throughout cleavage and blastoderm stages. By contrast, they determine that several Polycomb proteins that bind PREs (cis elements that demarcate Polycomb targets in the genome) are absent from early cleavage nuclei and progressively increase following nuclear cycle 10. These findings suggest that the absence of H3K27me3 in early embryos may be due to failure to assemble functional Polycomb complexes at target genes. Lastly, the authors test the requirement of two transcription factors with important roles in ZGA, GAF, and ZLD. Despite binding to many PREs and regulating chromatin accessibility in early embryos, they find that GAF is largely dispensable for the emergence of H3K27me3 domains. On the other hand, they find that the pioneer factor ZLD is required for proper H3K27me3 emergence; in its absence, some Polycomb domains accumulate greater levels of H3K27me3, whereas other Polycomb domains accumulate less H3K27me3.

      Strengths:

      The strengths of this study are manifold. It studies an important topic with broad interest to the chromatin and epigenetics fields. It is well-written with detailed method descriptions. In addition, the experimental design and rigor of execution are exceptional despite working with very small amounts of biological material. Example strengths include that the Polycomb proteins studied were tagged with the same epitope, permitting direct quantitative comparisons in imaging and in genomics experiments. Microscopy studies are quantified and performed both via live imaging and via immunofluorescence. The microscopy studies reinforce and extend conclusions made via ChIP. Sophisticated loss-of-function analyses allow for direct mechanistic tests of Polycomb domain emergence.

      Weaknesses:

      Overall, the study is quite strong already, but it can be further strengthened in several ways. First, several conclusions should be refined based on the data presented. Second, the extent to which ZLD is important for initiating Polycomb domain formation should be made clearer. Third, additional genomic profiling experiments are needed to provide insight into models explaining why H3K27me3 is absent prior to NC14.

    1. Reviewer #2 (Public review):

      Summary:

      Mutations in the prolyl hydroxylase, PHD2, cause erythrocytosis and, in some cases, can result in tumorigenesis. Taber and colleagues test the structural and functional consequences of seven patient-derived missense mutations in PHD2 using cell-based reporter and stability assays, and multiple biophysical assays, and find that most mutations are destabilizing. Interestingly, they discover a PHD2 mutant that can hydroxylate the C-terminal ODD, but not the N-terminal ODD, which suggests the importance of N-terminal ODD for biology. A major strength of the manuscript is the multidisciplinary approach used by the authors to characterize the functional and structural consequences of the mutations. However, the manuscript had several major weaknesses, such as an incomplete description of how the NMR was performed, a justification for using neighboring residues as a surrogate for looking at prolyl hydroxylation directly, or a reference to the clinical case studies describing the phenotypes of patient mutations. Additionally, the experimental descriptions for several experiments are missing descriptions of controls or validation, which limits their strength in supporting the claims of the authors.

      Strengths:

      (1) This manuscript is well-written and clear.

      (2) The authors use multiple assays to look at the effects of several disease-associated mutations, which support the claims.

      (3) The identification of P317R as a mutant that loses activity specifically against NODD, which could be a useful tool for further studies in cells.

      Weaknesses:

      Major:

      (1) The source data for the patient mutations (Figure 1) in PHD2 is not referenced, and it's not clear where this data came from or if it's publicly available. There is no section describing this in the methods.

      (2) The NMR hydroxylation assay.

      A. The description of these experiments is really confusing. The authors have published a recent paper describing a method using 13C-NMR to directly detect proly-hydroxylation over time, and they refer to this manuscript multiple times as the method used for the studies under review. However, it appears the current study is using 15N-HSQC-based experiments to track the CSP of neighboring residues to the target prolines, so not the target prolines themselves. The authors should make this clear in the text, especially on page 9, 5th line, where they describe proline cross-peaks and refer to the 15N-HSQC data in Figure 5B.<br /> B. The authors are using neighboring residues as reporters for proline hydroxylation, without validating this approach. How well do CSPs of A403 and I566 track with proline hydroxylation? Have the authors confirmed this using their 13C-NMR data or mass spec?<br /> C. Peak intensities. In some cases, the peak intensities of the end point residue look weaker than the peak intensities of the starting residue (5B, PHD2 WT I566, 6 ct lines vs. 4 ct lines). Is this because of sample dilution (i.e., should happen globally)? Can the authors comment on this?

      (3) Data validating the CRISPR KO HEK293A cells is missing.

      (4) The interpretation of the SEC data for the PHD2 mutants is a little problematic. Subtle alterations in the elution profiles may hint at different hydrodynamic radii, but as the samples were not loaded at equal concentrations or volumes, these data seem more anecdotal, rather than definitive. Repeating this multiple times, using matched samples, followed by comparison with standards loaded under identical buffer conditions, would significantly strengthen the conclusions one could make from the data.

      Minor:

      (1) Justification for picking the seven residues is not clearly articulated. The authors say they picked 7 mutants with "distinct residue changes", but no further rationale is provided.

      (2) A major finding of the paper is that a disease-associated mutation, P317R, can differentially affect HIF1 prolyhydroxylation, however, additional follow-up studies have not been performed to test this in cells or to validate the mutant in another method. Is it the position of the proline within the catalytic core, or the identity of the mutation that accounts for the selectivity?

      Comments on revision:

      The revised manuscript addresses most of my concerns, i.e performing SEC experiments under matched sample concentrations, and incorporating additional data to justify the use of surrogate residues to monitor proline hydroxylation. I appreciate the improvements in the text to clarify the NMR experiments, but I still find their description confusing. Although the authors are using neighboring residues to monitor proline hydroxylation (which they justify convincingly using supplementary data), the language in the text suggests they are (and can?) monitor them directly (i.e. referring to proline cross-peaks in an 15N-HSQC spectrum). The axis labels in Figure 5B also seem to have become mislabeled in this revised version.

    1. Reviewer #2 (Public review):

      In this manuscript, the authors leverage multiple cellular models including the drosophila fat body and cultured hepatocytes to investigate the metabolic programs governing cell size. By profiling gene programs in the larval fat body during the third instar stage - in which cells cease proliferation and initiate a period of cell growth - the authors uncover a coordinated downregulation of genes involved in mitochondrial pyruvate import and metabolism. Enforced expression of the mitochondrial pyruvate carrier restrains cell size, despite active signaling of mTORC1 and other pathways viewed as traditional determinants of cell size. Mechanistically, the authors find that mitochondrial pyruvate import restrains cell size by fueling gluconeogenesis through the combined action of pyruvate carboxylase and phosphoenolpyruvate carboxykinase. Pyruvate conversion to oxaloacetate and use as a gluconeogenic substrate restrains cell growth by siphoning oxaloacetate away from aspartate and other amino acid biosynthesis, revealing a tradeoff between gluconeogenesis and provision of amino acids required to sustain protein biosynthesis. Overall, this manuscript is extremely rigorous, with each point interrogated through a variety of genetic and pharmacologic assays. The major conceptual advance is uncovering the regulation of cell size as a consequence of compartmentalized metabolism, which is dominant even over traditional signaling inputs. The work has implications for understanding cell size control in cell types that engage in gluconeogenesis but more broadly raise the possibility that metabolic tradeoffs determine cell size control in a variety of contexts.

      Comments on revised version:

      I have had a chance to review the manuscript and response to reviewer comments. I was extremely positive about this manuscript at first submission, and thought that the manuscript rigorously reported a surprising observation with broad implications across fields. The notion that intracellular metabolic networks can be dominant determinants of cell size, even over traditional signaling inputs, is surprising and important. The authors also provide convincing mechanistic insights into how the observed metabolic changes could affect cell size regulation. I think my previous comments and summary remain applicable for the revised manuscript.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Zhu, Emanuelli, and colleagues describe a novel pharmacological activator of the Integrated Stress Response kinase GCN2. The work is conclusive and biochemically solid. This work significantly adds to the pharmacological arsenal targeting the ISR and, in particular, GCN2.

      Strengths:

      Strong biochemistry, novel molecular activator of GCN2 (GCN1 independent).

      Weaknesses:

      The rationale for the screen is not exploited in the results (e.g., pathogenic GCN2 mutants), and lots of cell-based read-outs are not endogenous.

      Major points

      (1) Regarding the justification of the work. Since the authors justify the screen for GCN2 activators with loss-of-function mutants associated with diseases, it would be of interest to evaluate whether the best compounds identified in the study are indeed able to prompt activation of those mutants (or at least of the most prevalent). This approach could actually go in parallel with the docking experiments carried out in the last figure of the manuscript, where mutants could be modelized as well.

      (2) The compounds are only tested using « artificial » proximal signaling outputs. It would be interesting to evaluate whether the best identified compounds are capable of prompting endogenous eIF2alpha phosphorylation in cellular models.

      (3) Other GCN2 activators (other than GCN2iB, e.g., HC-7366) were recently identified. In this context, it would be of interest to carry out a small benchmarking study to evaluate how the compounds identified in the current study perform against the previously identified molecules.

    1. Reviewer #2 (Public review):

      The authors address an important challenge in developmental biology: the quantitative description of tissue deformation during organogenesis. They have developed a new pipeline to quantify early heart tube morphogenesis in the mouse, with cellular resolution. They adopt an elegant approach by integrating multiple 3D time-lapse datasets into a dynamic atlas of cardiac morphogenesis in order to compute spatio-temporal deformation patterns. The main findings highlight a strong compartmentalization of cell behaviors, with tissue growth and anisotropy exhibiting complementary and spatially segregated patterns. Using these data, the authors developed an in-silico fate mapping tool to interrogate cell displacement within the myocardium. This virtual model provides new mechanistic insights into how the bilateral cardiac primordia converge and transform into a three-dimensional heart tube. The authors identify "belt-like" constraints at the arterial and venous poles that prevent tissue expansion and thus shape the ventricular barrel morphology.

      The computational framework is highly innovative and impressive, providing an unprecedented 3D model of tissue deformation during heart morphogenesis. It also opens avenues for testing hypotheses regarding tissue growth and the forces that cause cell motion. However, the proposed model of ventricular chamber formation with the two constraining belts remains hypothetical, lacking biological validation and requiring strengthening or modulation.

      Overall, this carefully performed study provides a new model for exploring tissue deformation during organogenesis and will be of broad interest to computational and developmental biologists.

    1. Reviewer #2 (Public review):

      Summary:

      This study by Suzuki et al. reports an interesting stereo-selective role of D-serine in regulating one-carbon metabolism during neurodevelopment to adapt the functional transition, probably through the competition with mitochondrial transport of L-serine. The authors provide a multi-layered set of evidence, including metabolomics, enzyme assays, mitochondrial transport competition, and functional assays in immature/neural progenitor cells, to build up a conceptual integration of D-serine as both a neurotransmitter and a metabolic regulator in the central neural system, which raises a broad potential interest to the neuroscience and metabolism communities.

      Strengths:

      This work provides a conceptual advance that D-serine not only serves as a traditional neurotransmitter in the central neural system but also critically contributes to metabolic regulation of neural cells. The authors performed solid metabolomic assays to validate the suppressive effect of D-serine on the one-carbon metabolic pathway, providing some evidence that D-serine competitively inhibits mitochondrial serine transport, but not directly impairs SHMT2 enzymatic activity. All these data indicate a critical role of D-serine synthesis during neural maturation and suggest a potential translational strategy for targeting serine metabolism in neural tumors.

      Weaknesses:

      (1) The detailed mechanism by which D-serine competes with L-serine for its mitochondrial transport is not investigated. For example, although the authors made some discussion, they did not provide direct genetic or biochemical evidence linking these effects to the specific transporters, such as SFXN1.

      (2) Unlike tumor cells, where SHMT2 usually plays a predominant role in catalyzing serine/THF-derived one-carbon metabolism, normal cells may employ both SHMT1 and SHMT2 to do the work. Even under certain conditions that SHMT2-mediated one-carbon metabolism is suppressed, the activity of SHMT1 could be elevated for compensation. Thus, it is important to investigate whether D-serine affects SHMT1 activity or changes the balance between SHMT1- and SHMT2-mediated one-carbon metabolism. To this aim, the authors are strongly encouraged to perform a metabolic flux assay (MFA) by using 13C-labeled L-serine in the model cells in the presence and absence of D-serine.

      (3) A defect in serine-derived one-carbon metabolism may cause multiple cellular stress responses. It is valuable to detect whether cellular NADPH/NADH, GSH, or ROS is altered before and after D-serine treatment.

      (4) The physiological relevance between D-serine and neural cell maturation/death should be further tested and discussed, since the dosage of D-serine used in the in vitro assay is much higher than that in physiological conditions.

    1. Reviewer #2 (Public review):

      Summary:

      The authors aim to address whether nuclear pore complex components localize and function at PD in plant cells to mediate cell-to-cell communication.

      Strengths:

      (1) Novelty and Significance:<br /> The core hypothesis, drawing parallels between PD and NPC transport, is highly original and addresses a critical gap in understanding plant intercellular communication. The idea that phase-separated domains formed by FG-NUPs could act as diffusion barriers at PD offers a plausible and sophisticated explanation for their complex transport properties, including size exclusion and facilitated translocation. This could fundamentally change how we view PD function.

      (2) Comprehensive Evidence:<br /> The study employs a rigorous and diverse set of experimental approaches, including a comprehensive bioinformatic analysis of both moss and Arabidopsis NUPs in available PD proteomic datasets, extensive imaging analysis of Nup localization in vivo, and functional transport assays using a loss-of-function nup mutant (cpr5). The transport assay is particularly important to provide functional evidence linking CPR5 to PD-mediated transport. The finding that callose levels were not significantly different in cpr5 mutants under these conditions is helpful and supports a distinct, callose-independent mechanism of transport regulation.

      (3) Objectivity:<br /> The authors are forthright in discussing the limitations and potential artifacts of their own data, clearly distinguishing between observations and definitive conclusions.

      Weaknesses:

      While the claims are generally justified as hypotheses or consistent observations, the authors themselves extensively detail the caveats, which are worth reiterating for clarity:

      (1) Potential Overexpression Artifacts in Localization:<br /> Although efforts were made to control expression levels, the authors acknowledge that transient overexpression could still lead to NUP accumulation at PD, either as a physiologically relevant accumulation under excess conditions or due to mis-targeting, or even as storage depots. The resolution of confocal microscopy also does not allow for a definitive conclusion on the nature of the location.

      (2) Proteomics Purity:<br /> The authors note that the presence of NUPs in PD fractions/proteomics cannot definitively rule out contamination, as PD cannot currently be purified to absolute homogeneity and is often contaminated with other organelles, including the nucleus.

      (3) CPR5 Mutant Interpretation:<br /> While cpr5 mutants exhibited reduced macromolecular transport, the authors state that they cannot exclude that the reduced transport is due to secondary effects in the cpr5 mutants, which show rather severe phenotypic defects. This is an important distinction, as CPR5 has known roles in defense responses and hormone signaling that could indirectly influence PD integrity, independent of callose deposition. The lack of effect on small molecule transport is a good control, but the broader pleiotropic effects of cpr5 mutants remain a consideration.

      (4) Conceptual Distinction between NPC and PD:<br /> The authors correctly point out that while similarities exist, the physical assembly of NUPs at PD must differ from that at the NPC due to the presence of the desmotubule and smaller cytoplasmic sleeve width at PD. Moreover, nucleocytoplasmic transport depends on karyopherin proteins that interact with the NPC central channel to complete the transport. Yet the role of karyopherins in this case is not clear. Therefore, the proposed "PD pore complex" may bear some NPC features, but not be identical.

    1. Reviewer #2 (Public review):

      The manuscript describes an interesting approach towards designing genetic circuits to sense different RAS mutants in the context of cancer therapeutics. The authors created sensors for mutant RAS and incorporated feed-forward control that leverages endogenous RAS/MAPK signaling pathways in order to dramatically increase the circuits' dynamic range. The modularity of the system is explored through the individual screening of several RAS binding domains, transmembrane domains, and MAPK response elements, and the author further extensively screened different combinations of circuit components. This is an impressive synthetic biology demonstration that took it all the way to cancer cell lines. However, given the sole demonstrated output in the form of fluorescent proteins, the authors' claims related to therapeutic implications require additional empirical evidence or, otherwise, expository revision.

      Major comments:

      "These therapies are limited to cancers with KRASG12C mutations" is technically accurate. However, in this fast-moving field, there are examples such as MRTX1133 which holds the promise to target the very G12D mutation that is the focus of this paper. There are broader efforts too. It would help the readers better appreciate the background if the authors could update the intro to reflect the most recent landscape of RAS-targeting drugs.

      Only KRASG12D was used as a model in the design and optimization work of the genetic circuits. Other mutations should be quite experimentally feasible and comparisons of the circuits' performances across different KRAS mutations would allow for stronger claims on the circuits' generalizability. Particularly, the cancer cell line used for circuit validation harbored a KRASG13D mutation. While the data presented do indeed support the circuit's "generalizability," the model systems would not have been consistent in the current set of data presented.

      In Figure 2a, the text claims that "inactivation of endogenous RAS with NF1 resulted in a lower YFP/RBDCRD-NarX expression," but Figure 2a does not show a statistically significant reduction in expression of SYFP (measured by "membrane-to-total signal ratio [RU]).

      The therapeutic index of the authors' systems would be better characterized by a functional payload, other than florescent proteins, that for example induce cell death, immune responses, etc.

      Regarding data presented in "Mechanism of action" (Figure 2), the observations are interesting and consistent across different fluorescent reporters. However, with regard to interpretations of the underlying molecular mechanisms, it is not clear whether the different output levels in 2b, 2c, and 2d are due to the pathway as described by the authors or simply from varied expression levels of RBDCRD-NarX itself (2a) that is nonlinearly amplified by the rest of the circuit. From a practical standpoint, this caveat is not critical with respect to the signal-to-noise ratios in later parts of the paper. From a mechanistic interpretation standpoint, claims made forth in this section are not clearly substantiated. Some additional controls would be nice. For example, if the authors express NarXs that constitutively dimerize on the membrane, what would the RasG12D-responsiveness look like? Does RasG12D alter the input-output curve of NarL-RE? How would Figure 4f compare to a NaxR constitutively dimerized control that only relies on transcriptional amplification of the Ras-dependent promoters? It's also possible that these Ras could affect protein production at the post-transcriptional or even post-translational levels, which were not adequately considered.

      The text claims that "in contrast to what we saw in HEK293 overexpressing RAS (Figure 5d), the "AND-gate" RAS-targeting circuits do not generate higher output than the EF1a-driven, binding-triggered RAS sensor in HCT-116. Instead, the improved dynamic range results from decreased leakiness in HCT- 116k.o." Comparing the experiment from Figure 5d, which looks at activation in KRASG12D and KRASWT, to the experiments in Figure 6b-d, which looks at activation in HCT-116WT and HCT-116KO is misleading. In Fig 5d., cells are transfected with KRASG12D and KRASWT to emulate high levels of mutant RAS and high levels of wild-type RAS. In Figures 6b-d, HCT-116WT has endogenous levels of mutant RAS, while the KCT-116KO is a knock-out cell line, and does not have mutant or WT RAS. Therefore, the improved dynamic range or "decreased leakiness in HCT-116KO" in comparison to Figure 5d. is more comparable to the NF1 condition from Figure 2, which deactivates endogenous RAS. While this may not be feasible, the most accurate comparison would have been an HCT-116KO line with KRASWT stably integrated.

      We couldn't locate the citation or discussion of Figure 4d in the text. Conversely, based on the text description, Figure 6g would contain exciting results. But we couldn't find Figure 6g anywhere ... unless it was a typo and the authors meant Figure 6f, in which case the cool results in Figure S8 could use more elaboration in the main text.

      Comments on revisions:

      Now that the authors have extensively addressed my comments through text and additional experiments, I am supportive of its conclusions. I thank them for the rigorous updates and congratulate them on an important piece demonstrating the potential of synthetic biology circuits.

    1. Reviewer #2 (Public review):

      Summary:

      The authors generate an optimized small molecule inhibitor of SMARCA2/4 and test it in a panel of cell lines. All uveal melanoma (UM) cell lines in the panel are growth inhibited by the inhibitor making the focus of the paper. This inhibition is correlated with loss of promoter occupancy of key melanocyte transcription factors e.g. SOX10. SOX10 overexpression and a point mutation in SMARCA4 can rescue growth inhibition exerted by the SMARCA2/4 inhibitor. Treatment of a UM xenograft model results in growth inhibition and regression which correlates with reduced expression of SOX10 but not discernible toxicity in the mice. Collectively, the data suggest a novel treatment of uveal melanoma.

      Strengths:

      There are many strengths of the study, including the strong challenge of the on-target effect, the assays used and the mechanistic data. The results are compelling as are the effects of the inhibitor. The in vivo data is dose-dependent and doses are low enough to be meaningful and associated with evidence of target engagement.

      Weaknesses:

      The authors have addressed weaknesses in the revised version.

    1. Reviewer #2 (Public review):

      Summary:

      This study addresses the population genetic underpinnings of the extraordinary diversity of genes in the MHC, which is widespread among jawed vertebrates. This topic has been widely discussed and studied, and several hypotheses have been suggested to explain this diversity. One of them is based on the idea that heterozygote genotypes have an advantage over homozygotes. While this hypothesis lost early on support, a reason study claimed that there is good support for this idea. The current study highlights an important aspect that allows us to see results presented in the earlier published paper in a different light, changing strongly the conclusions of the earlier study, i.e., there is no support for a heterozygote advantage. This is a very important contribution to the field. Furthermore, this new study presents an alternative hypothesis to explain the maintenance of MHC diversity, which is based on the idea that gene duplications can create diversity without heterozygosity being important. This is an interesting idea, but not entirely new.

      Strengths:

      (1) A careful re-evaluation of a published model, questioning a major assumption made by a previous study.

      (2) A convincing reanalysis of a model that, in the light of the re-analysis-loses all support.

      (3) A convincing suggestion for an alternative hypothesis.

      Weaknesses:

      (1) The statement that the model outcome of Siljestam and Rueffler is very sensitive to parameter values is, in this form, not correct. The sensitivity is only visible once a strong assumption by Siljestam and Rueffler is removed. This assumption is questionable, and it is well explained in the manuscript by J. Cherry why it should not be used. This may be seen as a subtle difference, but I think it is important to pin done the exact nature of the problem (see, for example, the abstract, where this is presented in a misleading way).

      (2) The title of the study is very catchy, but it needs to be explained better in the text.

    1. Reviewer #2 (Public review):

      Summary:

      In 2021 (PMID: 33503405) and 2024 (PMID: 38578830) Constantinou and colleagues published two elegant papers in which they demonstrated that the Topbp1 checkpoint adaptor protein could assemble into mesoscale phase-separated condensates that were essential to amplify activation of the PIKK, ATR, and its downstream effector kinase, Chk1, during DNA damage signalling. A key tool that made these studies possible was the use of a chimeric Topbp1 protein bearing a cryptochrome domain, Cry2, which triggered condensation of the chimeric Topbp1 protein, and thus activation of ATR and Chk1, in response to irradiation with blue light without the myriad complications associated with actually exposing cells to DNA damage.

      In this current report Morano and co-workers utilise the same optogenetic Topbp1 system to investigate a different question, namely whether Topbp1 phase-condensation can be inhibited pharmacologically to manipulate downstream ATR-Chk1 signalling. This is of interest, as the therapeutic potential of the ATR-Chk1 pathway is an area of active investigation, albeit generally using more conventional kinase inhibitor approaches.

      The starting point is a high throughput screen of 4730 existing or candidate small molecule anti-cancer drugs for compounds capable of inhibiting the condensation of the Topbp1-Cry2-mCherry reporter molecule in vivo. A surprisingly large number of putative hits (>300) were recorded, from which 131 of the most potent were selected for secondary screening using activation of Chk1 in response to DNA damage induced by SN-38, a topoisomerase inhibitor, as a surrogate marker for Topbp1 condensation. From this the 10 most potent compounds were tested for interactions with a clinically used combination of SN-38 and 5-FU (FOLFIRI) in terms of cytotoxicity in HCT116 cells. The compound that synergised most potently with FOLFIRI, the GSK3-beta inhibitor drug AZD2858, was selected for all subsequent experiments.

      AZD2858 is shown to suppress the formation of Topbp1 (endogenous) condensates in cells exposed to SN-38, and to inhibit activation of Chk1 without interfering with activation of ATM or other endpoints of damage signalling such as formation of gamma-H2AX or activation of Chk2 (generally considered to be downstream of ATM). AZD2858 therefore seems to selectively inhibit the Topbp1-ATR-Chk1 pathway without interfering with parallel branches of the DNA damage signalling system, consistent with Topbp1 condensation being the primary target. Importantly, neither siRNA depletion of GSK3-beta, or other GSK3-beta inhibitors were able to recapitulate this effect, suggesting it was a specific non-canonical effect of AZD2858 and not a consequence of GSK3-beta inhibition per se.

      To understand the basis for synergism between AZD2858 and SN-38 in terms of cell killing, the effect of AZD2858 on the replication checkpoint was assessed. This is a response, mediated via ATR-Chk1, that modulates replication origin firing and fork progression in S-phase cell under conditions of DNA damage or when replication is impeded. SN-38 treatment of HCT116 cells markedly suppresses DNA replication, however this was partially reversed by co-treatment with AZD2858, consistent with the failure to activate ATR-Chk1 conferring a defect in replication checkpoint function.

      Figures 4 and 5 demonstrate that AZD2858 can markedly enhance the cytotoxic and cytostatic effects of SN-38 and FOLFIRI through a combination of increased apoptosis and growth arrest according to dosage and treatment conditions. Figure 6 extends this analysis to cells cultured as spheroids, sometimes considered to better represent tumor responses compared to single cell cultures.

      Significance:

      Liquid phase separation of protein complexes is increasingly recognised as a fundamental mechanism in signal transduction and other cellular processes. One recent and important example was that of Topbp1, whose condensation in response to DNA damage is required for efficient activation of the ATR-Chk1 pathway. The current study asks a related but distinct question; can protein condensation be targeted by drugs to manipulate signalling pathways which in the main rely on protein kinase cascades?

      Here, the authors identify an inhibitor of GSK3-beta as a novel inhibitor of DNA damage-induced Topbp1 condensation and thus of ATR-Chk1 signalling.

      This work will be of interest to researchers in the fields of DNA damage signalling, biophysics of protein condensation, and cancer chemotherapy.

      Comments on latest version:

      Having read the revised manuscript and rebuttal I am satisfied that the authors have resolved my various original concerns through a combination of clarification/ explanation and textual changes necessary to make the description of certain data precise. My impression is that they have also largely or completely satisfied the concerns of the other reviewers, with the possible exception of reviewer 1's point about the relative toxicity of AZD and FOLFIRI in colorectal cancer cell lines versus the untransformed CCD841 cell line. This is of course an important point with respect to the possible practical application of this combination for cancer therapy, however this seems somewhat subsidiary to the main novelty and significance of the findings, which are that protein liquid phase separation/ condensation can be manipulated pharmacologically to modify signal transduction processes and that existing drugs can be re-purposed to this end.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors probe the mechanisms by which Dyngo-4a, a dynamin inhibitor used to block endocytosis, disrupts caveolae dynamics. They provide compelling evidence that Dyngo-4a inhibits caveolae dynamics and endocytosis (as well as several other aspects of plasma membrane dynamics) by a dynamin-independent mechanism. They also provide strong computational and experimental data showing that Dyngo-4a inserts into membranes and decreases lipid packing in the outer leaflet of the plasma membrane. Finally, they demonstrate that the addition of excess cholesterol to cells reverses the effects of Dyngo-4a on caveolae dynamics, presumably by reversing lipid packing defects. Based on these findings they conclude that lipid packing regulates caveolae dynamics and endocytosis in a cholesterol-dependent manner.

      This work should be of value to cell biologists interested in plasma membrane remodeling and membrane trafficking, biophysicists that study small molecule/membrane interactions and membrane remodeling processes, and chemists interested in designing drugs to target membrane trafficking machinery and pathways.

      Strengths:

      This work addresses the important topic of how a widely used endocytic inhibitor actually works. In the process of addressing this question, the authors uncover unexpected connections between how lipids are packed in cell membranes and membrane dynamics. The methods are appropriate and many of the claims made in this work are well supported by data.

      Weaknesses:

      I appreciate that the manuscript has already gone through one round of revisions and that many of the concerns from the previous reviewers appear to have been addressed. However, as an interested reader, I would like to offer several additional comments for the authors to consider.

      (1) It is not clear based on the data presented whether the effects of Dyngo-4a on lipid packing give rise to defects in caveolae dynamics or if these effects are merely correlated. To show this more definitively, one might expect additional experimental approaches to be used to perturb lipid packing. I appreciate this is probably beyond the scope of the current study. However, it seems important for the manuscript to be clear about how far this interpretation can be pushed in the absence of additional independent lines of evidence.

      (2) On a related note, it is not obvious how changes in lipid packing in the outer leaflet could impact caveolae dynamics. It would be helpful to include a cartoon illustrating how this might work.

      (3) The authors note that Dyngo-4a inhibits several dynamic processes including generalized plasma membrane mobility (Fig 4A&B), transferrin uptake (Fig S4C), and fusion of fusogenic liposomes (Fig S4G). This clearly indicates there is a major disruption of the plasma membrane going on here that is not limited to caveolae. They go on to show that the addition of cholesterol reverses the effects of Dyngo-4a on caveolae dynamics. However, they do not discuss whether adding back cholesterol has similar effects on plasma membrane mobility and transferrin uptake. This information could help to further pinpoint whether the mechanisms of action are shared, and if the role of cholesterol is more general in controlling these events or is instead specific to caveolae.

      (4) In Fig 4C, the morphology of the neck region of the Dyngo04a treated caveolae structure appears to be "pinched" compared to the control. I appreciate that more EM studies are underway. It would be useful to specifically compare the morphology of the caveolae as part of those studies.

      (5) In Line 91, a statement is made that 8S complex formation requires cholesterol. This is debatable, as they appear to form in E. coli in the absence of cholesterol (reference 14).

    1. Reviewer #2 (Public review):

      Summary:

      This work is important because it complements other single-molecule mechanics approaches, in particular optical trapping, which inevitably exerts off-axis loads. The nanospring method has its own weaknesses (individual steps cannot be seen), but it brings new clarity to our picture of KIF1A and will influence future thinking on the kinesins-3 and on kinesins in general.

      Strengths:

      By tethering single copies of the kinesin-3 dimer under test via a DNA nanospring to a strong binding mutant dimer of kinesin-1, the forces developed and experienced by the motor are constrained into a single axis, parallel to the microtubule axis. The method is imaging-based, which should improve accessibility. In principle, at least, several single-motor molecules can be simultaneously tested. The arrangement ensures that only single molecules can contribute. Controls establish that the DNA nanospring is not itself interacting appreciably with the microtubule. Forces are convincingly calibrated, and reading the length of the nanospring by fitting to the oblate fluorescent spot is carefully validated. The excursions of the wild-type KIF1A leucine zipper-stabilised dimer are compared with those of neuropathic KIF1A mutants. These mutants can walk to a stall plateau, but the force is much reduced. The forces from mutant/WT heterodimers are also reduced.

      Weaknesses:

      The tethered nanospring method has some weaknesses; it only allows the stall force to be measured in the case that a stall plateau is achieved, and the thermal noise means that individual steps are not apparent. The nanospring does not behave like a Hookean spring - instead linearly increasing force is reported by exponentially smaller extensions of the nanospring under tension. The estimated stall force for Kif1A (3.8 pN) is in line with measurements made using 3-bead optical trapping, but those earlier measurements were not of a stall plateau, but rather of limiting termination (detachment) force, without a stall plateau. More confidence in the 3.7 pN stall plateau determined in the current work could be obtained by demonstrating that a stall at a higher force is obtained using the nanospring method on kinesin-1, which stalls at >7 pN in single bead optical trapping.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript by Boda et al. describes the results of a targeted RNAi screen in the background of Vps16A-depleted Drosophila larval fat body cells. In this background, lysosomal fusion is inhibited, allowing the authors to analyze the motility and localization specifically of autophagosomes, prior to their fusion with lysosomes to become autolysosomes. In this Vps16A-deleted background, mCherry-Atg8a labeled autophagosomes accumulate in the perinuclear area, through an unknown mechanism.

      The authors found that depletion of multiple subunits of the dynein/dynactin complex caused an alternation of this mCherry-Atg8a localization, moving from the perinuclear region to the cell periphery. Interactions with kinesin overexpression suggest these motor proteins may compete for autophagosome binding and transport. The authors extended these findings by examining potential upstream regulators including Rab proteins and selected effectors, and they also examined effects on lysosomal movement and autolysosome size. Altogether, the results are consistent with a model in which specific Rab/effector complexes direct movement of lysosomes and autophagosomes toward the MTOC, promoting their fusion and subsequent dispersal throughout the cell.

      Strengths:

      Although previous studies of the movement of autophagic vesicles have identified roles for microtubule-based transport, this study moves the field forward by distinguishing between effects on pre- and post-fusion autophagosomes, and by its characterization of the roles of specific Dynein, Dynactin, and Rab complexes in regulating movement of distinct vesicle types. Overall, the experiments are well controlled, appropriately analyzed, and largely support the authors' conclusions..

      Weaknesses:

      One limitation of the study is the genetic background that serves as basis for the screen. In addition to preventing autophagosome-lysosome fusion, disruption of Vps16A has been shown to inhibit endosomal maturation and to block trafficking of components to the lysosome from both the endosome and Golgi apparatus. Additional effects previously reported by the authors include increased autophagosome production and reduced mTOR signaling. Thus Vps16A-depleted cells have a number of endosome, lysosome and autophagosome-related defects, with unknown downstream consequences. Additionally, the cause and significance of the perinuclear localization of autophagosomes in this background is unclear. Thus, interpretations of the observed reversal of this phenotype are difficult, and have the caveat that they may apply only to this condition, rather than to normal autophagosomes. Additional experiments to observe autophagosome movement or positioning in a more normal environment would improve the manuscript.

      Comments on revision:

      The revised manuscript and author responses have satisfactorily met my concerns. I have no further issues and congratulate the authors on this work.

    1. Reviewer #3 (Public review):

      Summary:

      In their revised manuscript, the authors addressed most of the reviewers' concerns. One concern was the emphasis on increased MLEC-OST interactions during infection, which the authors toned down in the revision. They clarified that MLEC interaction with OST is maintained-rather than increased-during infection, while its interaction with other QC factors decreases. They also added context and discussion of the co-localization of viral proteins with ER and mitochondrial proteins, noting that both nsp2 and MLEC localize to mitochondria-associated membranes (MAMs), providing a plausible explanation for these interactions.

      Another concern involved the effects of MLEC KD on the cellular environment. To address this, the authors analyzed stress pathway activation and glycosylation of endogenous proteins in MLEC KD cells. They found only modest upregulation of the HSF1 pathway and no changes in the UPR or other stress responses, suggesting MLEC KD does not broadly disrupt ER proteostasis. Additionally, glycopeptide profiling showed only minor changes in host protein glycosylation, supporting a more direct role for MLEC in viral replication rather than general host glycoprotein disruption.

      However, some weaknesses remain. Direct interaction between MLEC and nsp2 during infection was not detected, and the identified viral glycopeptides were limited to only five Spike sites. Furthermore, the mechanism by which MLEC promotes viral replication is still unclear.

      In summary, the authors strengthened the manuscript by addressing reviewers' concerns through additional data, clarified language, and expanded discussion. While the overall support for MLEC's pro-viral role is solid, its precise mechanism of action remains speculative. Future work will be needed to directly link MLEC's activity to specific steps in viral protein biogenesis and replication.

      Original summary: In this study, Davies and Plate set out to discover conserved host interactors of coronavirus non-structural proteins (Nsp). They used 293T cells to ectopically express flag-tagged Nsp2 and Nsp4 from five human and mouse coronaviruses, including SARS-CoV-1 and 2, and analyzed their interaction with host proteins by affinity purification mass-spectrometry (AP-MS). To confirm whether such interactors play a role in coronavirus infection, the authors measured the effects of individual knockdowns on replication of murine hepatitis virus (MHV) in mouse Delayed Brain Tumor cells. Using this approach, they identified a previously undescribed interactor of Nsp2, Malectin (Mlec), which is involved in glycoprotein processing and shows a potent pro-viral function in both MHV and SARS-CoV-2. Although the authors were unable to confirm this interaction in MHV-infected cells, they show that infection remodels many other Mlec interactions, recruiting it to the ER complex that catalyzes protein glycosylation (OST). Mlec knockdown reduced viral RNA and protein levels during MHV infection, although such effects were not limited to specific viral proteins. However, knockdown reduced the levels of five viral glycopeptides that map to Spike protein, suggesting it may be affected by Mlec.

      Strengths:

      This is an elegant study that uses a state-of-the-art quantitative proteomic approach to identify host proteins that play critical roles in viral infection. Instead of focusing on a single protein from a single virus, it compares the interactomes of two viral proteins from five related viruses, generating a high confidence dataset. The functional follow-ups using multiple live and reporter viruses, including MHV and CoV2 variants, convincingly depict a pro-viral role for Mlec, a protein not previously implicated in coronavirus biology.

      Weaknesses:

      Although a commonly used approach, AP-MS of ectopically expressed viral proteins may not accurately capture infection-related interactions. The authors observed Mlec-Nsp2 interactions in transfected 293T cells (1C) but were unable to reproduce those in mouse cells infected with MHV (3C). EIF4E2/GIGYF2, two bonafide interactors of CoV2 Nsp2 from previous studies, are listed as depleted compared to negative controls (S1D). Most other CoV2 Nsp2 interactors are also depleted by the same analysis (S1D). Previously reported MERS Nsp2 interactors, including ASCC1 and TCF25, are also not detected (S1D). Furthermore, although GIGYF2 was not identified as an interactor of MHV Nsp2/4 in human cells (S1D), its knockdown in mouse cells reduced MHV titers about 1000 fold (S4). The authors should attempt to explain these discrepancies.

      More importantly, the authors were unable to establish a direct link between Mlec and the biogenesis of any viral or host proteins, by mass-spectrometry or otherwise. Although it is clear that Mlec promotes coronavirus infection, the mechanism remains unclear. Its knockdown does not affect the proteome composition of uninfected cells (S15B), suggesting it is not required for proteome maintenance under normal conditions. The only viral glycopeptides detected during MHV infection originated from Spike (5D), although other viral proteins are also known to be glycosylated. Cells depleted for Mlec produce ~4-fold less Spike protein (4E) but no more than 2-fold less glycosylated spike peptides (5D), compounding the interpretation of Mlec effects on viral protein biogenesis. Furthermore, Spike is not essential for the pro-viral role of Mlec, given that Mlec knockdown reduces replication of SARS-CoV-2 replicons that express all viral proteins except for Spike (6A/B).

      Any of the observed effects on viral protein levels could be secondary to multiple other processes. Interventions that delay infection for any reason could lead to imbalance of viral protein levels, because Spike and other structural proteins are produced at a much higher rate than non-structural proteins due to the higher abundance of their cognate subgenomic RNAs. Similarly, the observation that Mlec depletion attenuates MHV-mediated changes to the host proteome (S15C/D) can also be attributed to indirect effects on viral replication, regardless of glycoprotein processing. In the discussion, the authors acknowledge that Mlec may indirectly affect infection through modulation of replication complex formation or ER stress, but do not offer any supporting evidence. Interestingly, plant homologs of Mlec are implicated in innate immunity, favoring a more global role for Mlec in mammalian coronavirus infections.

      Finally, the observation that both Nsp2 (3C) and Mlec (3E/F) are recruited to the OST complex during MHV infection neither support nor refute any of these alternate hypotheses, given that Mlec is known to interact with OST in uninfected cells and that Nsp2 may interact with OST as part of the full length unprocessed Orf1a, as it co-translationally translocates into the ER.

      Therefore, the main claims about the role of Mlec in coronavirus protein biogenesis are only partially supported.

      Comments on revisions:

      Figure 7B should be revised to show that MLEC maintains interactions with rather than recruited to the OST.

    1. Reviewer #2 (Public review):

      Summary:

      The study explores the functional consequence of CDK12 loss in prostate cancer. While CDK12 loss has been shown to confer homologous recombination (HR) deficiency through premature intronic polyadenylation of HR genes, the response of PARPi monotherapy has failed. This study therefore performed an in-depth analysis of genomic sequencing data from mCRPC patient tumors, and showed that tumors with CDK12 loss lack pertinent HR signatures and scars. Furthermore, functional exploration in human prostate cancer cell lines showed that while the acute inhibition of CDK12 resulted in aberrant polyadenylation of HR genes like BRCA1/2, HR-specific effects were overall modest or absent in cell lines or xenografts adapted to chronic CDK12 loss. Instead, vulnerability to genetically targeting CDK13 resulted in a synthetic lethality in tumors with CDK12 loss, as shown in vivo with SR4825, a CDK12/13 inhibitor - thus serving as a potential therapeutic avenue.

      The evidence supporting this study is based on in-depth genomic analyses of human patients, acute knockdown studies of CDK12 using a CDK12/13 inhibitors SR4835, adaptive knockout of CDK12 using LuCaP 189.4_CL and inducible re-expression of CDK12, CDK12 single clones in 22Rv1 (KO2 and KO5) and Skov3 (KO1), Tet-inducible knockdown of BRCA2 or CDK12 followed by ionizing radiation and measurement of RAD51 foci, lack of sensitivity generally to PARPi and platinum chemotherapy in cells adapted to CDK12 loss, loss of viability of CDK13 knockout in CDK12 knockout cells, and in vivo testing of SE4825 in LuCaP xenografts with intact and CDK12 loss.

      Strengths:

      Overall, this study is robust and of interest to the broader homologous recombination and CDK field. First, the topic is clinically relevant given the lack of PARPi response in CDK12 loss tumors. Second, the strength of the genomic analysis in CDK12 lost PCa tumors is robust with clear delineation that BRCA1/2 genes and maintenance of most genes regulating HR are intact. Specifically, the authors find that there is no mutational signature or genomic features suggestive of HR, such as those found in BRCA1/2 tumors. Lastly, novel lines are generated in this study, including de novo LuCaP 189.4_CL with CDK12 loss that can be profound for potential synthetic lethalities.

      Weakness:

      One caveat that continues to be unclear as presented, is the uncoupling of cell cycle/essentiality of CDK12/13 from HR-directed mechanisms. Is this purely a cell cycle arrest phenotype acutely with associated down-regulation of many genes?

      While the RAD51 loading ssRNA experiments are informative, the Tet-inducible knockdown of BRCA2 and CDK12 is confusing as presented in Figure 5, shBRCA2 + and -dox are clearly shown. However, were the CDK12_K02 and K05 also knocked down using inducible shRNA or a stable knockout? The importance of this statement is the difference between acute and chronic deletion of CDK12. Previously, the authors showed that acute knockdown of CDK12 led to an HR phenotype, but here it is unclear whether CDK12-K02/05 are acute knockdowns of CDK12 or have been chronically adapted after single cell cloning from CRISPR-knockout.

      Given the multitude of lines, including some single-cell clones with growth inhibitory phenotypes and ex-vivo derived xenografts, the variability of effects with SR4835, ATM, ATR, and WEE1 inhibitors in different models can be confusing to follow. Overall, the authors suggest that the cell lines differ in therapeutic susceptibility as they may have alternate and diverse susceptibilities. It may be possible that the team could present this more succinctly and move extraneous data to the supplement.

      The in-vitro data suggests that SR4835 causes growth inhibition acutely in parental lines such as 22RV1. However, in vivo, tumor attenuation appears to be observed in both CDK12 intact and deficient xenografts, LuCAP136 and LuCaP 189.4 (albeit the latter is only nominally significant). Is there an effect of PARPi inhibition specifically in either model? What about the the 22RV1-K02/05? Do these engraft? Given the role of CDK12/13 in RNAP II, these data might suggest that the window of susceptibility in CDK12 tumors may not be that different from CDK12 intact tumors (or intact tissue) when using dual CDK12/13 inhibitors but rather represent more general canonical essential functions of CDK12 and CDK13 in transcription. From a therapeutic development strategy, the authors may want to comment in the discussion on the ability to target CDK13 specifically.

    1. Reviewer #2 (Public review):

      Summary:

      Sox9 is a transcription factor crucial for development and tissue homeostasis, and its expression continues in various adult eye cell types, including retinal pigmented epithelium cells, Müller glial cells, and limbal and corneal basal epithelia. To investigate its functional roles in the adult eye, this study employed inducible mouse mutagenesis. Adult-specific Sox9 depletion led to severe retinal degeneration, including the loss of Müller glial cells and photoreceptors. Further, lineage tracing revealed that Sox9 is expressed in a basal limbal stem cell population that supports stem cell maintenance and homeostasis. Mosaic analysis confirmed that Sox9 is essential for the differentiation of limbal stem cells. Overall, the study highlights that Sox9 is critical for both retinal integrity and the differentiation of limbal stem cells in the adult mouse eye.

      Strengths:

      In general, inducible genetic approaches in the adult mouse nervous system are rare and difficult to carry out. Here, the authors employ tamoxifen-inducible mouse mutagenesis to uncover the functional roles of Sox9 in the adult mouse eye.

      Careful analysis suggests that two degeneration phenotypes (mild and severe) are detected in the adult mouse eye upon tamoxifen-dependent Sox9 depletion. Phenotype severity nicely correlates with the efficiency of Cre-mediated Sox9 depletion.

      Molecular marker analysis provides strong evidence of Mueller cell loss and photoreceptor degeneration.

      A clever genetic tracing strategy uncovers a critical role for Sox9 in limbal stem cell differentiation.

      Comments on revised submission:

      The revised manuscript is very much improved and has addressed all my concerns.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript presents computational modelling of the behaviour of mice during encounters with novel and familiar objects, originally reported in Akiti et al. (Neuron 110, 2022). Mice typically perform short bouts of approach followed by retreat to a safe distance, presumably to balance exploration to discover possible reward with the potential risk of predation. However, there is considerable heterogeneity in this exploratory behaviour, both across time as an individual subject becomes more confident in approaching the object, and across subjects; with some mice rapidly becoming confident to closely explore the object, while other timid mice never become fully confident that the object is safe. The current work aims to explain both the dynamics of adaptation of individual animals over time, and the quantitative and qualitative differences in behaviour between subjects, by modelling their behaviour as arising from model-based planning in a Bayes adaptive Markov Decision Process (BAMDP) framework, in which the subjects maintain and update probabilistic estimates of the uncertain hazard presented by the object, and rationally balance the potential reward from exploring the object with the potential risk of predation it presents.

      In order to fit these complex models to the behaviour the authors necessarily make substantial simplifying assumptions, including coarse-graining the exploratory behaviour into phases quantified by a set of summary statistics related to the approach bouts of the animal. Inter-individual variation between subjects is modelled both by differences in their prior beliefs about the possible hazard presented by the object, and by differences in their risk preference, modelled using a conditional value at risk (CVaR) objective, which focuses the subject's evaluation on different quantiles of the expected distribution of outcomes. Interestingly, these two conceptually different possible sources of inter-subject variation in brave vs timid exploratory behaviour turn out not to be dissociable in the current dataset as they can largely compensate for each other in their effects on the measured behaviour. Nonetheless, the modelling captures a wide range of quantitative and qualitative differences between subjects in the dynamics of how they explore the object, essentially through differences in how subject's beliefs about the potential risk and reward presented by the object evolve over the course of exploration, and are combined to drive behaviour.

      Exploration in the face of risk is a ubiquitous feature of the decision-making problem faced by organisms, with strong clinical relevance, yet remains poorly understood and under-studied, making this work a timely and welcome addition to the literature.

      Strengths:

      - Individual differences in exploratory behaviour are an interesting, important, and under-studied topic.

      - Application of cutting-edge modelling methods to a rich behavioural dataset, successfully accounting for diverse qualitative and qualitative features of the data in a normative framework.

      - Thoughtful discussion of the results in the context of prior literature.

      Limitations:

      - The model-fitting approach used of coarse-graining the behaviour into phases and fitting to their summary statistics may not be applicable to exploratory behaviours in more complex environments where coarse-graining is less straightforward.

      Comments on revisions:

      All recommendations to authors from the first review were addressed in the revised manuscript.

    1. Reviewer #2 (Public review):

      Summary:

      DNA double-strand breaks (DSB) in repeated DNA pose a challenge for repair by homologous recombination (HR) due to the potential of generating chromosomal aberrations, especially involving repeats on different chromosomes. This conceptual caveat led to a long-held notion that HR is not active in repeated DNA, which was disproven in groundbreaking work by Chiolo showing in Drosophila that DSBs in pericentromeric repeats are mobilized to the nuclear periphery for repair by HR. A similar mechanism operates in mouse cells, as shown by the Gautier laboratory, but the mobilization goes to the nucleolar periphery, called nucleolar caps. In this manuscript, the authors reexamine the role of MDC1 in the mobilization of DSBs in rDNA in human cells. Previous work has shown that MDC1 is replaced by Treacle, the gene associated with Treacher Collins syndrome 1, in its role as the main adaptor of the DNA damage response, and these results are confirmed here. The novelty of this contribution lies in the discovery that MDC1 is required downstream in the recruitment of BRCA1 and RAD51 to nucleolar DSBs that were mobilized to the nucleolar cap. Using multiple MCD knockout models and DSBs induced by the nuclease PpoI, which cleaves at nuclear sites as well as in the 28S rDNA, convincingly documents this role of MDC1 and shows that it acts upstream of the RNF8-RNF168 ubiquitylation axis. Using a proxy assay of co-localization of EdU incorporation at DSBs (gammaH2AX), evidence is provided that MDC1 is required for HR in rDNA. MDC1 was not required for RAD51 recruitment to IR-induced foci, but it is unclear whether this is related to the different DSB chemistry (enzymatic versus IR) or to the localization of the DSB (rDNA versus unique sequence genome).

      Strengths:

      (1) The manuscript is well-written, and the experimental evidence is nicely presented.

      (2) Multiple MDC1 knockout models are used to validate the results.

      (3) Convincing back-complementation data clarify the relationship between MDC1 and RNF8.

      Weaknesses:

      (1) The recruitment of BRCA2 was not directly demonstrated. This caveat could be recognized, as IF for BRCA2 is challenging.

      (2) PpoI also induces DSBs in the non-rDNA genome. These DSBs would be an ideal control to establish nucleolar specificity of the events described and clarify whether the difference between IR and PpoI is the chemical structure of the DSB or the location of the DSB.

    1. Reviewer #2 (Public review):

      Summary:

      This paper presents a novel transformer-based neural network model, termed the epistatic transformer, designed to isolate and quantify higher-order epistasis in protein sequence-function relationships. By modifying the multi-head attention architecture, the authors claim they can precisely control the order of specific epistatic interactions captured by the model. The approach is applied to both simulated data and ten diverse experimental deep mutational scanning (DMS) datasets, including full-length proteins. The authors argue that higher-order epistasis, although often modest in global contribution, plays critical roles in extrapolation and capturing distant genotypic effects, especially in multi-peak fitness landscapes.

      Strengths:

      (1) The study tackles a long-standing question in molecular evolution and protein engineering: "how significant are epistatic interactions beyond pairwise effects?" The question is relevant given the growing availability of large-scale DMS datasets and increasing reliance on machine learning in protein design.

      (2) The manuscript includes both simulation and real-data experiments, as well as extrapolation tasks (e.g., predicting distant genotypes, cross-ortholog transfer). These well-rounded evaluations demonstrate robustness and applicability.

      (3) The code is made available for reproducibility.

      Weaknesses:

      (1) The paper mainly compares its transformer models to additive models and occasionally to linear pairwise interaction models. However, other strong baselines exist. For example, the authors should compare baseline methods such as "DANGO: Predicting higher-order genetic interactions". There are many works related to pairwise interaction detection, such as: "Detecting statistical interactions from neural network weights", "shapiq: Shapley interactions for machine learning", and "Error-controlled non-additive interaction discovery in machine learning models".

      (2) While the transformer architecture is cleverly adapted, the claim that it allows for "explicit control" and "interpretability" over interaction order may be overstated. Although the 2^M scaling with MHA layers is shown empirically, the actual biological interactions captured by the attention mechanism remain opaque. A deeper analysis of learned attention maps or embedding similarities (e.g., visualizations, site-specific interaction clusters) could substantiate claims about interpretability.

      (3) The distinction between nonspecific (global) and specific epistasis is central to the modeling framework, yet it remains conceptually underdeveloped. While a sigmoid function is used to model global effects, it's unclear to what extent this functional form suffices. The authors should justify this choice more rigorously or at least acknowledge its limitations and potential implications.

      (4) The manuscript refers to "pairwise", "3-4-way", and ">4-way" interactions without always clearly defining the boundaries of these groupings or how exactly the order is inferred from transformer layer depth. This can be confusing to readers unfamiliar with the architecture or with statistical definitions of interaction order. The authors should clarify terminology consistently. Including a visual mapping or table linking a number of layers to the maximum modeled interaction order could be helpful.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript uses adaptive sampling simulations to understand the impact of mutations on the specificity of the enzyme PDC-3 β-lactamase. The authors argue that mutations in the Ω-loop can expand the active site to accommodate larger substrates.

      Strengths:

      The authors simulate an array of variants and perform numerous analyses to support their conclusions.

      The use of constant pH simulations to connect structural differences with likely functional outcomes is a strength.

      Weaknesses:

      I would like to have seen more error bars on quantities reported (e.g., % populations reported in the text and Table 1).

    1. Reviewer #2 (Public review):

      The authors set out to resolve the high-resolution structure of a glutamine synthetase (GS) decamer using cryo-EM, investigate glutamine binding at the decamer interface, and validate structural observations through biochemical assays of ATP hydrolysis linked to enzyme activity. Their work sits at the intersection of structural and functional biology, aiming to bridge atomic-level details with biological mechanisms - a goal with clear relevance to researchers studying enzyme catalysis and metabolic regulation.

      Strengths and weaknesses of methods and results:

      A key strength of the study lies in its use of cryo-EM, a technique well-suited for resolving large, dynamic macromolecular complexes like the GS decamer. The reported resolutions (down to 2.15 Å) initially suggest the potential for detailed structural insights, such as side-chain interactions and ligand density. However, several methodological limitations significantly undermine the reliability of the results:

      (1) Cryo-EM data processing: The absence of critical details about B-factor sharpening - a standard step to enhance map interpretability - is a major concern. For high-resolution maps (<3 Å), sharpening is typically applied to resolve side-chain features, yet the submitted maps (e.g., those in Figures 1D, 2D, and supplementary figures) appear unprocessed, with density quality inconsistent with the claimed resolutions. This makes it difficult to evaluate whether observed features (e.g., glutamine binding) are genuine or artifacts of unsharpened data.

      (2) Modeling and density consistency: The structural models, particularly for glutamine binding at the decamer interface, do not align with the reported resolution. The maps shown in Figure 2D and Supplementary Figure S7 lack sufficient density to confidently place glutamine or even surrounding residues, conflicting with claims of 2.15 Å resolution. Additionally, fitting a non-symmetric ligand (glutamine) into a symmetry-refined map requires justification, as symmetry constraints may distort ligand placement.

      (3) Biochemical assay controls: While the enzyme activity assays aim to link structure to function, they lack essential controls (e.g., blank reactions without GS or substrates, substrate omission tests) to confirm that ATP hydrolysis is GS-dependent. The use of TCEP, a reducing agent, is also not paired with experiments to rule out unintended effects on the PK/LDH system, further limiting confidence in activity measurements.

      Achievement of aims and support for conclusions:

      The study falls short of convincingly achieving its goals. The claimed high-resolution structural details (e.g., side-chain densities, ligand binding) are not supported by the provided maps, which lack sharpening and show inconsistencies in density quality. Similarly, the biochemical data do not robustly validate the structural claims due to missing controls. As a result, the evidence is insufficient to confirm glutamine binding at the decamer interface or the functional relevance of the observed structural features.

      Likely impact and utility:

      If these methodological gaps are addressed, the work could make a meaningful contribution to the field. A well-resolved GS decamer structure would advance understanding of enzyme assembly and ligand recognition, while validated biochemical assays would strengthen the link between structure and function. Improved data processing and clearer reporting of validation steps would also make the structural data more reliable for the community, providing a resource for future studies on GS or related enzymes.

      Additional context:

      Cryo-EM has transformed structural biology by enabling high-resolution analysis of large complexes, but its success hinges on rigorous data processing and validation steps that are critical to ensuring reproducibility. The challenges highlighted here are not unique to this study; they reflect broader issues in the field where incomplete reporting of methods can obscure the reliability of results. By addressing these points, the authors would not only strengthen their current work but also set a positive example for transparent and rigorous structural biology research.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Frelih et al, investigate the relationship between aperiodic neural activity, as measured by EEG, and working memory performance, and compares this to the more commonly analyzed periodic, and in particular theta, measures that are often associated with such tasks. To do so, they analyze a primary dataset of 57 participants engaging in an n-back task, as well as a replication dataset, and use spectral parameterization to measure periodic and aperiodic features of the data, across time. In the revision, the authors have clarified some key points, and added a series of additional analyses and controls, including the use of an additional method, that helps to complement the original analyses and further corroborates their claims. In doing so, they find both periodic and aperiodic features that relate to the task dynamics, but importantly, the aperiodic component appears to explain away what otherwise looks like theta activity in a more traditional analysis. This study therefore helps to establish that aperiodic activity is a task-relevant dynamic feature in working memory tasks and may be the underlying change in many other studies that reported 'theta' changes, but did not use methods that could differentiate periodic and aperiodic features.

      Strengths:

      Key strengths of this paper include that it addresses an important question - that of properly adjudicating which features of EEG recordings relate to working memory tasks - and in doing so provides a compelling answer, with important implications for considering prior work and contributing to understanding the neural underpinnings of working memory. The revision is improved by showing this using an additional analysis method. I do not find any significant faults or error with the design, analysis, and main interpretations as presented by this paper, and as such, find the approach taken to be a valid and well-enacted. The use of multiple variants of the working memory task, as well as a replication dataset significantly strengthens this manuscript, by demonstrating a degree of replicability and generalizability. This manuscript is also an important contribution to motivating best practices for analyzing neuro-electrophysiological data, including in relation to using baselining procedures. I think the updates in the revision have helped to clarify the findings and impact of this study.

      Weaknesses:

      Overall, I do not find any obvious weaknesses with this manuscript and it's analyses that challenge the key results and conclusions. Updates through the revision have addressed my previous points about adding some additional notes on the methods and conclusions.

    1. Reviewer #2 (Public review):

      Summary:

      The authors introduce a gene-level framework to detect shared genetic architecture between complex traits by integrating GWAS summary statistics with eQTL data via a new algorithm, Sherlock-II, which aggregates signals from multiple (cis/trans) eSNPs to produce gene-phenotype p-values. Shared pathways are identified with Partial-Pearson-Correlation Analysis (PPCA).

      Strengths:

      The authors show the gene-based approach is complementary and often more sensitive than SNP-level methods, and discuss limitations (in terms of no directionality, dependence on eQTL coverage).

      Weaknesses:

      (1) How do the authors explain data where missing tissues or sparse eQTL mapping are available? Would that bias as to which genes/traits can be linked and may produce false negatives or tissue-specific false positives?

      (2) Aggregating SNP-level signals into gene scores can be confounded by LD; for example, a nearby causal variant for a different gene or non-expression mechanism may drive a gene's score, producing spurious gene-trait links. How do the authors prevent this?

      (3) How the SNPs are assigned to genes would affect results, this is because different choices can change which genes appear shared between traits. The authors can expand on these.

      (4) Many reported novel trait links remain speculative without functional or orthogonal validation (e.g., colocalization, perturbation data). Thus, the manuscript's claims are inconclusive and speculative.

      (5) It would be best to run LD-aware colocalization and power-matched simulations to check for robustness.

    1. Reviewer #2 (Public review):

      Summary

      The manuscript by Puno and colleagues investigates the impact of hypoxia on cortical interneuron migration and downstream signaling pathways. They establish two models to test hypoxia, cortical forebrain assembloids, and primary human fetal brain tissue. Both of these models provide a robust assay for interneuron migration. In addition, they find that ADM signaling mediates the migration deficits and rescue using exogenous ADM. The findings are novel and very interesting to the neurodevelopmental field, revealing new insights into how cortical interneurons migrate and as well, establishing exciting models for future studies. The authors use sufficient iPSC line,s including both XX and XY, so the analysis is robust. In addition, the RNAseq data with re-oxygenation is a nice control to see what genes are changed specifically due to hypoxia. Further, the overall level of validation of the sequencing data and involvement of ADM signaling is convincing, including the validation of ADM at the protein level. Overall, this is a very nice manuscript. I have a few comments and suggestions for the authors.

      Strengths and Weaknesses:

      (1) Can the authors comment on the possibility of inflammatory response pathways being activated by hypoxia? Has this been shown before? While not the focus of the manuscript, it could be discussed in the Discussion as an interesting finding and potential involvement of other cells in the Hypoxic response.

      (2) Could the authors comment on the mechanism at play here with respect to ADM and binding to RAMP2 receptors - is this a potential autocrine loop, or is the source of ADM from other cell types besides inhibitory neurons? Given the scRNA-seq data, what cell-to-cell mechanisms can be at play? Since different cells express ADM, there could be different mechanisms in place in ventral vs dorsal areas.

      (3) For data from Figure 6 - while the ELISA assays are informative to determine which pathways (PKA, AKT, ERK) are active, there is no positive control to indicate these assays are "working" - therefore, if possible, western blot analysis from assembloid tissue could be used (perhaps using the same lysates from Figure 3) as an alternative to validate changes at the protein level (however, this might prove difficult); further to this, is P-CREB activated at the protein level using WB?

      (4) Could the authors comment further on the mechanism and what biological pathways and potential events are downstream of ADM binding to RAMP2 in inhibitory neurons? What functional impact would this have linked to the CREB pathway proposed? While the link to GABA receptors is proposed, CREB has many targets beyond this.

      (5) Does hypoxia cause any changes to inhibitory neurogenesis (earlier stages than migration?) - this might always be known, but was not discussed.

      (6) In the Discussion section, it might be worth detailing to the readers what the functional impact of delayed/reduced migration of inhibitory neurons into the cortex might result in, in terms of functional consequences for neural circuit development.

    1. Reviewer #2 (Public review):

      Summary:

      This paper reports histological, PET imaging, functional and behavioural data evaluating the longevity of AAV2 infection in multiple brain areas of macaques in the context of DREADD experiments. The central aim is to provide unprecedented information about how long the expression of HM4di or HM3dq receptors are expressed and efficient in modulating brain functions after vector injections. The data show peak expression after 40 to 60 days of vector injection, and stable expressions for up to 1.5 years for hM4di, and that hM3dq remained mostly at 75% of peak after a year, declining to 50% after 2 years. DREADDs effectively modulated neuronal activity and behaviour for approximately two years, evaluated with behavioural testings, neural recordings or FDG-PET. A statistical evaluation revealed that vector titers, DREADD type and tags contribute to the measured peak level of DREADD expression.

      The article present a thorough discussion of the limitations and specificities of chemogenetic approaches in monkeys.

      Strength:

      These are unique data, in non-human primate (NHP), an animal model that not only features physiological and immunological characteristics similar to humans, but also contributes to neurobiological functional studies over long timescales with experiments spanning months or years. This evaluation of long-term efficacy of DREADDs will be very important for all laboratories using chemogenetics in NHP but also for future use of such approach in experimental therapies. The longevity estimates are based on multiple approaches including behavioural and neurophysiological, thus providing information on functional efficacy of DREADD expression.

      Performing such evaluation requires specific tools like PET imaging that very few monkey labs have access to. This study was done by the laboratory that has developed the radiotracer c11-DCZ, used here, a radiotracer binding selectively to DREADDs and providing, using PET, quantitative in vivo measures of DREADD expression. This study and its data should thus be a reference in the field, providing estimates to plan future chemogenetic experiments.

      Publishing databases of experimental outcomes in NHP DREADD experiments is crucial for the community because such experiments are rare, expensive and long. It contributes to refining experiments and reducing the number of animals overall used in the domain.

      Weaknesses:

      This study is a meta-analysis of several experiments performed in one lab. The good side is that it combined a large amount of data that might not have been published individually; the down side is that all things where not planned and equated, creating a lot of unexplained variances in the data. However, this was judiciously used by the authors to provide very relevant information. One might think that organized multi-centric experiments planned using the knowledge acquired here, will provide help testing more parameters, including some related to inter-individual variability, and particular genetic constructs.

    1. Reviewer #2 (Public review):

      Summary:

      This study elucidated the impact of GATA4 on aging- and injury-induced cartilage degradation and osteoarthritis (OA) progression, based on the team's finding that GATA expression is positively correlated with aging in human chondrocytes. By integrating cell culture of human chondrocytes, gene manipulation tools (siRNA, lentivirus), biological/biochemical analyses and murine models of post-traumatic OA, the team found that increasing GATA4 levels reduced anabolism and increased catabolism of chondrocytes from young donors, likely through upregulation of the BMP pathway, and that this impact is not correlated with TGF-β stimulation. Conversely, silencing GATA4 by siRNA attenuated catabolism and elevated aggrecan/collagen II biosynthesis of chondrocytes from old donors. The physiological relevance of GATA4 was further validated by the accelerated OA progression observed in lentivirus-infected mice in the DMM model.

      Strengths:

      This is a highly significant and innovative study that provides new molecular insights into cartilage homeostasis and pathology in the context of aging and disease. The experiments were performed in a comprehensive and rigorous manner. The data were interpreted thoroughly in the context of the current literature.

      Weaknesses:

      The only aspect that would benefit from further clarification is a more detailed discussion of aging-associated ECM changes in the context of prior literature.

    1. Reviewer #2 (Public review):

      Summary:

      The authors produce a new tool, BEHAV3D to analyse tracking data and to integrate these analyses with large and small scale architectural features of the tissue. This is similar to several other published methods to analyse spatio-temporal data, however, the connection to tissue features is a nice addition, as is the lack of requirement for coding. The tool is then used to analyse tracking data of tumour cells in diffuse midline glioma. They suggest 7 clusters exist within these tracks and that they differ spatially. They ultimately suggest that these behaviours occur in distinct spatial areas as determined by CytoMAP.

      Strengths:

      The tool appears relatively user-friendly and is open source. The combination with CytoMAP represents a nice option for researchers.

      The identification of associations between cell track phenotype and spatial features is exciting and the diffuse midline glioma data nicely demonstrates how this could be used.

    1. Reviewer #2 (Public review):

      This study uses all atom MD simulation to explore the mechanics of channel opening for the NOMPC mechanosensitive channel. Previously the authors used MD to show that external forces directed along the long-axis of the protein (normal to the membrane) results in AR domain compression and channel opening. This force causes two changes to the key TRP domains adjacent to the channel gate: 1) a compressive force pushes the TRP domain along the membrane normal, while 2) a twisting torque induces a clock-wise rotation on the TRP domain helix when viewing the bottom of the channel from the cytoplasm. Here, the authors wanted to understand which of those two changes are responsible for increasing the inner pore radius, and they show that it is the torque. The simulations in Figure 2 probe this question with different forces, and we can see the pore open with parallel forces in the membrane, but not with the membrane-normal forces. I believe this result as it is reproducible, the timescales are reaching 1 microsecond, and the gate is clearly increasing diameter to about 4 Å. This seems to be the most important finding in the paper, but the impact is limited since the authors already shows how forces lead to channel opening, and this is further teasing apart the forces and motions that are actually the ones that cause the opening.

    1. Reviewer #2 (Public review):

      Summary:

      Breyton and colleagues analysed the emergent dynamics from a neural mass model, characterised the resultant complexity of the dynamics, and then related these signatures of complexity to datasets in which individuals had been anaesthetised with different pharmacological agents. The results provide a coherent explanation for observations associated with different time series metrics, and further help to reinforce the importance of modelling when integrating across scientific studies.

      Strengths:

      * The modelling approach was clear, well-reasoned and explicit, allowing for direct comparison to other work and potential elaboration in future studies through the augmentation with richer neurobiological detail.

      * The results serve to provide a potential mechanistic basis for the observation that Perturbational Complexity Index changes as a function of consciousness state.

      Weaknesses:

      * Coactivation cascades were visually identified, rather than observed through an algorithmic lens. Given that there are numerous tools for quantifying the presence/absence of cascades from neuroimaging data, the authors may benefit from formalising this notion.

      * It was difficult to tell, graphically, where the model's operating regime lay. Visual clarity here will greatly benefit the reader.

      Comments on revisions:

      The authors have addressed my concerns.

    1. Reviewer #2 (Public review):

      Summary:

      The study demonstrates that calcium-sensing trafficking proteins Synaptotagmin (Syt) 1 and Syt7 are involved in the efficient presentation of mycobacterial antigens by MR1 during M. tuberculosis infection.

      This is achieved by creating antigen-presenting cells in which the Syt1 and Syt7 genes are knocked out. These mutated cell lines show significantly reduced stimulation of MAIT cells, while their stimulation of HLA class I-restricted T cells remains unchanged. Syt1 and Syt7 co-localize in a late endo-lysosomal compartment where MR1 molecules are also located, near M. tuberculosis-containing vacuoles.

      Strengths:

      This work uncovers a new aspect of how mycobacterial antigens generated during infection are presented. The finding that Syt1 and Syt7 are relevant for final MR1 surface expression and presentation to MR1-restricted T cells is novel and adds valuable information to this process.

      The experiments include all necessary controls and convincingly validate the role of Syt1 and Syt7.

      Another key point is that these proteins are essential during infection, but they are not significant when an exogenous synthetic antigen is used in the experiments. This emphasizes the importance of studying infection as a physiological context for antigen presentation to MAIT cells.

      An additional relevant aspect is that the study reveals the existence of different MR1 antigen presentation pathways, which differ from the endoplasmic reticulum or endosomal pathways that are typical for MHC-presented peptides.

      Weaknesses:

      The reduced MAIT cell response observed with Syt1 and Syt7-deficient cell lines is statistically significant but not completely abolished. This may suggest that only some MR1-loaded molecules depend on these two Syt proteins. Further research is needed to determine whether, during persistent M. tuberculosis infection, enough MR1-loaded molecules are produced and transported to the plasma membrane to sufficiently stimulate MAIT cells.

      The study proposes that other Syt proteins might also play a role, as outlined by the authors. However, exploring potential redundant mechanisms that facilitate MR1 loading with antigens remains a challenging task.

    1. Reviewer #2 (Public review):

      In this work Thapliyal and Glauser tried to provide mechanistic understanding by which animals modulate their neural circuit responses to control nociceptive behavior on the basis of the dynamic internal feeding state. It is an important study that adds to growing body of evidences coming from multiple model systems. They have used elegant genetics, behavioral and Ca-imaging experiments to demonstrate how the auxiliary thermosensory neuron pair, AWC and one of the internal state sensing interneuron pair, ASI, respond to dynamic internal starvation-state to modulate behavioral response to noxious heat. Interestingly, these neuron pairs use distinct molecular mechanisms along with some other unidentified neurons to suppress heat-indued reversal response under short-term and prolonged starvations. The experiments are well performed that support most of the claims and provide important framework for future studies.

      I have some queries that if answered, will certainly enhance the study,

      (1) The results suggests that ASI is one of the primary drivers for the starvation-evoked behavioral plasticity, which regulates AWC activity under prolonged starvation. It raises many important questions including, a) how starvation modulates ASI response to heat? b) under prolonged starvation, whether ASI also promotes other, non-AWC, glutamatergic inhibitory neurons to suppress heat-induced reversal and how?

      (2) How does ASI regulate AWC activity? In the proposed model (figure 8) authors suggested an independent, unknown signal, other than INS-32 and NLP-18, from ASI to regulate AWC activity. However, from the results the existence of another signal is not very clear.

      (3) Previously, Takeishi et. al., showed that ins-1 dynamically modulates AWC-AIA mediated thermotaxis behavior based on the feeding state of the animal. It raises questions whether ins-1 also contributes to noxious heat-induced reversal behavior.

      (4) Experiments with AWC fate conversion mutants (nsy-1 and nsy-7) were very good ideas, however the results obtained were confusing. flp-6 mutant data suggests AWCoff would be essential for heat induced reversal, especially at the low intensity stimulus level. However, nsy-1 mutant forming two AWCon neurons showed complete rescue at the low heat level, which is quite opposite. Similarly, although less prominent, eat-4 rescue experiments suggested both nsy-1 and nsy-7 should behave normally at high heat condition, which was not the result observed.

    1. Reviewer #2 (Public review):

      Summary:

      In this work, Nieto et al. investigate how spatial gene expression patterns in the early Drosophila embryo are regulated at the level of transcriptional bursting. Using live-cell MS2 imaging data of four reporter constructs and the endogenous eve gene, the authors extract temporal dynamics of nascent transcription at single-cell resolution. They implement a novel, simplified algorithm to infer promoter ON/OFF states based on fluorescence slope dynamics and use this to quantify burst duration (Ton), inter-burst duration (Toff), and total activity time across space.

      The key finding is that while Ton and Toff remain relatively constant across space, the activity time-the window between first and last burst-is spatially modulated and best explains mean expression differences across the embryo. This uncovers a general strategy where early embryonic patterning genes modulate the duration of their transcriptionally permissive states, rather than the frequency or strength of bursting itself. The manuscript also shows that different enhancers of the same gene (e.g., sna proximal vs. shadow) can differentially modulate Toff and activity time, providing mechanistic insight into enhancer function.

      Strengths:

      The manuscript introduces activity time as a major, previously underappreciated determinant of spatial gene expression, distinct from Ton and Toff, providing an intuitive mechanistic link between temporal bursting and spatial patterning.

      The authors develop a tractable inference algorithm based on linear accumulation/decay rates of MS2 fluorescence, allowing efficient burst state segmentation across thousands of trajectories.

      Analysis across multiple biological replicates and different genes/enhancers lends confidence to the reproducibility and generalizability of the findings.

      By analyzing both synthetic reporter constructs and an endogenous gene (eve), the work provides a coherent view of how enhancer architecture and spatial regulation are intertwined with transcriptional kinetics.

      The supplementary information extends the biological findings with a gene expression noise model that accounts for non-exponential dwell times and illustrates how low-variability Ton buffers stochasticity in transcript levels.

      Weaknesses:

      The manuscript does not clearly delineate how this analysis extends beyond the prior landmark study (citation #40: Fukaya et al., 2016). While the current manuscript offers new modeling and statistics, more explicit clarification of what is novel in terms of biological conclusions and methodological advancement would help position the work.

      While the methods are explained in detail in the Supplementary Information, the manuscript would benefit from including a diagrammatic model and explicitly clarifying whether the model is descriptive or predictive in scope.

      The interpretation that fluorescence decay reflects RNA degradation could be confounded by polymerase runoff or transcript diffusion from the transcription site. These potential limitations are not thoroughly discussed.

      The so-called loading rate is used as an empirical parameter in fitting fluorescence traces, but is not convincingly linked to distinct biological processes. The manuscript would benefit from a more precise definition or reframing of this term.

      Impact and Utility:

      The study provides a general and scalable framework for dissecting transcriptional kinetics in developing embryos, with implications for understanding enhancer logic and developmental robustness. The algorithm is suitable for adaptation to other live-imaging datasets and could be useful across systems where temporal transcriptional variability is being quantified. By highlighting activity time as a key regulatory axis, the work shifts attention to transcriptionally permissive windows as a primary developmental control layer.

      This work will be of interest to: developmental biologists investigating spatial gene expression, researchers studying transcriptional regulation and noise, quantitative biologists developing models for transcriptional dynamics, and imaging and computational biologists working with live single-cell data.

    1. Reviewer #2 (Public review):

      Summary:

      The authors repeated measured the behavior of individual flies across several environmental situations in custom-made behavioral phenotyping rigs.

      Strengths:

      The study uses several different behavioral phenotyping devices to quantify individual behavior in a number of different situations and over time. It seems to be a very impressive amount of data. The authors also make all their behavioral phenotyping rig design and tracking software available, which I think is great and I'm sure other folks will be interested in using and adapting to their own needs.

      Weaknesses/Limitations:

      I think an important limitation is that while the authors measured the flies under different environmental scenarios (i.e. with different lighting, temperature) they didn't really alter the "context" of the environment. At least within behavioral ecology, context would refer to the potential functionality of the expressed behaviors so for example, an anti-predator context, or a mating context, or foraging. Here, the authors seem to really just be measuring aspects of locomotion under benign (relatively low risk perception) contexts. This is not a flaw of the study, but rather a limitation to how strongly the authors can really say that this demonstrates that individuality is generalized across many different contexts. It's quite possible that rank-order of locomotor (or other) behaviors may shift when the flies are in a mating or risky context.

      I think the authors are missing an opportunity to use much more robust statistical methods. It appears as though the authors used pearson correlations across time/situations to estimate individual variation; however far more sophisticated and elegant methods exist. The problem is that pearson correlation coefficients can be anti-conservative and additionally, the authors have thus had to perform many many tests to correlate behaviors across the different trials/scenarios. I don't see any evidence that the authors are controlling for multiple testing which I think would also help. Alternatively, though, the paper would be a lot stronger, and my guess is, much more streamlined if the authors employ hierarchical mixed models to analyse these data, which are the standard analytical tools in the study of individual behavioral variation. In this way, the authors could partition the behavioral variance into its among- and within-individual components and quantify repeatability of different behaviors across trials/scenarios simultaneously. This would remove the need to estimate 3 different correlations for day 1 & day 2, day 1 & 3, day 2 & 3 (or stripe 0 & stripe 1, etc) and instead just report a single repeatability for e.g. the time spent walking among the different strip patterns (eg. figure 3). Additionally, the authors could then use multivariate models where the response variables are all the behaviors combined and the authors could estimate the among-individual covariance in these behaviors. I see that the authors state they include generalized linear mixed models in their updated MS, but I struggled a bit to understand exactly how these models were fit? What exactly was the response? what exactly were the predictors (I just don't understand what Line404 means "a GLM was trained using the environmental parameters as predictors (0 when the parameter was not change, 1 if it was) and the resulting individual rank differences as the response"). So were different models run for each scenario? for different behaviors? Across scenarios? what exactly? I just harp on this because I'm actually really interested in these data and think that updating these methods can really help clarify the results and make the main messages much clearer!

      I appreciate that the authors now included their sample sizes in the main body of text (as opposed to the supplement) but I think that it would still help if the authors included a brief overview of their design at the start of the methods. It is still unclear to me how many rigs each individual fly was run through? Were the same individuals measured in multiple different rigs/scenarios? Or just one?

      I really think a variance partitioning modeling framework could certainly improve their statistical inference and likely highlight some other cool patterns as these methods could better estimate stability and covariance in individual intercepts (and potentially slopes) across time and situation. I also genuinely think that this will improve the impact and reach of this paper as they'll be using methods that are standard in the study of individual behavioral variation

    1. Reviewer #2 (Public review):

      The authors report that intra-chromosomal gene correlation length (spatial correlations in gene expressions along the chromosome) serves as a proxy of chromatin structure and hence gene expression. They further explore changes in these metrics with aging. These are interesting and important findings. However, there are fundamental problems at this time.

      (1) The basic method lacks validation. There is no validation of the method by approaches that directly measure chromatin structure, for example ATAC-seq, ChIP-seq, or CUT n RUN.

      (2) There is no validation by interventions that directly probe chromatin structure, such as HDAC inhibitors. The authors employ datasets with knockdown of LINE-1 for validation. However, this is not a specific chromatin intervention.

      (3) There is no statistical analysis, e.g., in Figures 4 and 5.

      (4) The authors state, "in Figure 4a changes in the heterochromatin are not identical for all chromosomes shown...." I do not see the data for individual chromosomes.

      (5) In comparisons of WT vs HGPS NT or HGPS SCR (Figure S6), is this a fair comparison? The WT and HGPS are presumably from different human donors, so they have genetic and epigenetic differences unrelated to HGPS.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript, "A Python Toolbox for Representational Similarity Analysis", presents an overview of the RSAToolbox, including a review of the methods it implements (some of which are more recently developed) and recommendations for constructing RSA analysis pipelines. It is encouraging to see that this toolbox, which has existed in both Python and other forms, continues to be actively developed and maintained.

      Strengths:

      The authors do a nice job reviewing the history of RSA analysis while introducing the methods within the toolbox. It is helpful that the authors discuss when and how to apply specific measures to different data types (e.g., why Euclidean or Mahalanobis distances are suboptimal for spike data). The manuscript strikes a valuable balance between theoretical background and hands-on instruction. The inclusion of decision-making aids, such as the Euler diagram for selecting similarity measures, and well-maintained demo scripts (available on GitHub), enhance the manuscript's utility as a practical guide.

      Overall, this paper will be particularly useful to researchers new to RSA and those interested in performing a rigorous analysis using this framework. The manuscript and accompanying toolbox provide everything a researcher needs to get started, provided they take the time to engage with the methodological details and references offered

      Weaknesses:

      While the links to the demos in the figure legend did not work for me, it was easy to locate the current demos online, and it's encouraging to see that they are actively maintained. One small issue is that a placeholder ("XXX") remains in the description of Figure 3b and should be corrected.

    1. Reviewer #2 (Public review):

      Summary:

      In this preprint, De Sancho and López use alchemical molecular dynamics simulations and quantum mechanical calculations to elucidate the origin of the observed preference of Tyr over Phe in phase separation. The paper is well written, and the simulations conducted are rigorous and provide good insight into the origin of the differences between the two aromatic amino acids considered.

      Strengths:

      The study addresses a fundamental discrepancy in the field of phase separation where the predicted ranking of aromatic amino acids observed experimentally is different from their anticipated rankings when considering contact statistics of folded proteins. While the hypothesis that the difference in the microenvironment of the condensed phase and hydrophobic core of folded proteins underlies the different observations, this study provides a quantification of this effect. Further, the demonstration of the crossover between Phe and Tyr as a function of the dielectric is interesting and provides further support for the hypothesis that the differing microenvironments within the condensed phase and the core of folded proteins is the origin of the difference between contact statistics and experimental observations in phase separation literature. The simulations performed in this work systematically investigate several possible explanations and therefore provide depth to the paper.

    1. Reviewer #2 (Public review):

      Summary:

      Gao et al. investigated the change of aggression strategies by the social experience and its possible biological significance by using Drosophila. Two modes of inter-male aggression in Drosophila are known: lunging, high-frequency but weak mode, and tussling, low-frequency but more vigorous mode. Previous studies have mainly focused on the lunging. In this paper, the authors developed a new behavioral experiment system for observing tussling behavior and found that tussling is enhanced by group rearing, while lunging is suppressed. They then searched for neurons involved in the generation of tussling. Although olfactory receptors named Or67d and Or65a have previously been reported to function in the control of lunging, the authors found that these neurons do not function in the execution of tussling and another olfactory receptor, Or47b, is required for tussling, as shown by the inhibition of neuronal activity and the gene knockdown experiments. Further optogenetic experiments identified a small number of central neurons pC1[SS2] that induce the tussling specifically. These neurons express doublesex (dsx), a sex-determination factor, and knockdown of dsx strongly suppresses the induction of tussling. In order to further explore the ecological significance of the aggression mode change in group-rearing, a new behavioral experiment was performed to examine the territorial control and the mating competition. And finally, the authors found that differences in the social experience (group vs. solitary rearing) are important in these biologically significant competitions. These results add a new perspective to the study of aggression behavior in Drosophila. Furthermore, this study discusses an interesting general model in which the social experience modified behavioral changes play a role in reproductive success.

      Strengths:

      A behavioral experiment system that allows stable observation of tussling, which could not be easily analyzed due to its low-frequency, would be very useful. The experimental setup itself is relatively simple, just addition of a female to the platform, so it should be applicable to future research. The finding about the relationship between the social experience and the aggression mode change is quite novel. Although the intensity of aggression changes with the social experience was already reported in several papers (Liu et al., 2011 etc), the fact that the behavioral mode itself changes significantly has rarely been addressed, and is extremely interesting. The identification of sensory and central neurons required for the tussling makes appropriate use of the genetic tools and the results are clear. A major strength of this study in the neurobiology is the finding that another group of neurons (Or47b-expressing olfactory neurons and pC1[SS2] neurons), distinct from the group of neurons previously thought to be involved in low-intensity aggression (i.e. lunging), function in the tussling behavior. Furthermore, the results showing that the regulation of aggression by pC1[SS2] neurons is based the function of the dsx gene will bring a new perspective to the field. Further investigation of the detailed circuit analysis is expected to elucidate the neural substrate of the conflicting between the two aggression modes. The experimental systems examining the territory control and the reproductive competition in Fig. 6 are novel and have advantages in exploring their biological significance. It is important to note that, in addition to showing the effects of age and social experience on territorial and mating behaviors, the authors suggested that an altered fighting strategy has effects with respect to these behaviors.

      Weaknesses:

      New experimental paradigm in Fig. 6 is quite useful, but as the authors mentioned, still the future investigations are needed to reveal a direct relationship between aggression strategies and reproductive success.

    1. Reviewer #2 (Public review):

      The data show that BDNF regulates the PD-associated kinase LRRK2, they place LRRK2 within well-described BDNF pathways biochemically, and they show that LRRK2 can play a role mediating BDNF-driven synaptic outcomes at excitatory synapses. The chief strength is that the data provide a potential focal point for multiple observations that have been made across many labs. The findings will be of broad interest because LRRK2 has emerged as a protein that is likely to be part of Parkinson's pathology and its normal and pathological actions remain poorly understood.

      A major strength of the study is the multiple approaches that were used (biochemistry, bioinformatics, light and electron microscopy and electrophysiology) across different experimental models (cells, primary neurons, human neurons, mice) to identify and examine the impact of BDNF on LRRK2 signaling and functions. Noteworthy is also the employment of LRRK2KO preparations to validate outcomes and to place LRRK2 actions up or downstream.

      The demonstration that LRRK2 and drebrin interact directly is important and suggests that other interacting proteins identified biochemically and bioinformatically in the paper will be important to pursue.

      Some data from different models do not fit well with one another (like mouse and human neurons). This is likely due to inherent differences in the preparations. Since different experiments were carried out on the different preps, however, it is not possible to cross compare. The lack of this information is viewed more as an open question than a cause for concern.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript "Canonical and phosphoribosyl ubiquitination coordinate to stabilize a proteinaceous structure surrounding the Legionella-containing vacuole" by Steinbach et al. is well written and presents strong evidence that satisfactorily supports the main hypothesis and research objectives. The authors have clearly demonstrated the presence of cloud-like, detergent-resistant GTPase Rab5 surrounding the LCV, and formation of the structure is dependent on the SidE family of effectors. The study provides insights into the relevant (associated with described phenotype) ubiquitination pathways. The findings advance our understanding of Legionella pneumophila vacuole remodeling during intracellular infection and open directions for future research to establish broader implications of this structure on Legionella pathogenesis.

      Strengths:

      The manuscript convincingly demonstrates the presence of a cloud-like, detergent-resistant GTPase Rab5 surrounding the LCV through elegant microscopy. The experimental evidence about the dependence of the observed phenotype on the SidE family of effectors is compelling and presented with strong scientific rigor. The introduction is well-written, and the discussion is thorough and satisfactory. The article is thought-provoking and shows preliminary evidence for ubiquitin-mediated protection and spatial organization of the LCV.

      Weaknesses:

      The manuscript is well-organized and detailed, and it is hard to find weaknesses under the set goals of the research. A few weaknesses are that the molecular determinants or the regulatory mechanisms that drive selective versus non-selective incorporation of host proteins into this structure are unclear, and, as the authors mentioned, further work is required to establish the precise biophysical basis of the detergent resistance and expansive morphology of the ubiquitinated GTPase "cloud". Currently, the function or purpose of the structure is completely speculative. The effects or importance of the structure on bacterial replication is also not established in the current study. Figure 2D, right panel, Western blot results, the authors suggested the signal present in all four lanes between 37 and 25 kDa is 'nonspecific', which is probably a 'too intense' signal to be called so. Mass spec analysis would be interesting in order to identify sources of such intense signals. With these few limitations, the research presented in this manuscript is experimentally rigorous and opens avenues for future research.

    1. Reviewer #2 (Public review):

      Summary:

      In this article, Assimopoulos et al. expand the FSL-XTRACT software to include new protocols for identifying cortical-subcortical tracts with diffusion MRI, with a focus on tracts connecting to the amygdala and striatum. They show that the amygdalofugal pathway and divisions of the striatal bundle/external capsule can be successfully reconstructed in both macaques and humans while preserving large-scale topographic features previously defined in tract tracing studies. The authors set out to create an automated subcortical tractography protocol, and they accomplish this for a subset of specific subcortical connections.

      Strengths:

      The main strength of the current study is the translation of established anatomical knowledge to a tractography protocol for delineating cortical-subcortical tracts that are difficult to reconstruct. Diffusion MRI-based tractography is highly prone to false positives; thus, constraining tractography outputs by known anatomical priors is important. The authors used existing tracing literature to create anatomical constraints for tracking specific cortical-subcortical connections and refined their protocol through an iterative process and in collaboration with multiple neuroanatomists. Key additional strengths include 1) the creation of a protocol that can be applied to both macaque and human data; 2) demonstration that the protocol can be applied to be high quality data (3 shells, > 250 directions, 1.25 mm isotropic, 55 minutes) and lower quality data (2 shells, 100 directions, 2 mm isotropic, 6.5 minutes); and 3) validation that the anatomy of cortical-subcortical tracts derived from the new method are more similar in monozygotic twins than in siblings and unrelated individuals.

      Overall Appraisal:

      This new method will accelerate research on anatomically validated cortical-subcortical white matter pathways. The work has utility for diffusion MRI researchers across fields.

      Editors' note:

      Both reviewers were satisfied with the responses to their feedback.

    1. Reviewer #2 (Public review):

      This manuscript uses the ESM2 language model to map the evolutionary fitness landscape of intrinsically disordered regions (IDRs). The central idea is that mutational preferences predicted by these models could be useful in understanding eventual IDR-related behavior, such as disruption of otherwise stable phases. While ESM2-type models have been applied to analyze such mutational effects in folded proteins, they have not been used or verified for studying IDRs. Here, the authors use ESM2 to study membraneless organelle formation and the related fitness landscape of IDRs.

      Through this, their key finding in this work is the identification of a subset of amino acids that exhibit mutation resistance. Their findings reveal a strong correlation between ESM2 scores and conservation scores, which if true, could be useful for understanding IDRs in general. Through their ESM2-based calculations, the authors conclude that IDRs crucial for phase separation frequently contain conserved sequence motifs composed of both so-called sticker and spacer residues. The authors note that many such motifs have been experimentally validated as essential for phase separation.

      Unfortunately, I do not believe that the results can be trusted. ESM2 has not been validated for IDRs through experiments. The authors themselves point out its little use in that context. In this study, they do not provide any further rationale for why this situation might have changed. Furthermore, they mention that experimental perturbations of the predicted motifs in in vivo studies may further elucidate their functional importance, but none of that is done here. That some of the motifs have been previously validated does not give any credibility to the use of ESM2 here, given that such systems were probably seen during the training of the model.

      I believe that the authors should revamp their whole study and come up with a rigorous, scientific protocol where they make predictions and test them using ESM2 (or any other scientific framework).

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript is a timely and comprehensive review of how the extracellular matrix (ECM), particularly the vascular basement membrane, regulates leukocyte extravasation, migration, and downstream immune function. It integrates molecular, mechanical, and spatial aspects of ECM biology in the context of inflammation, drawing from recent advances. The framing of ECM as an active instructor of immune cell fate is a conceptual strength.

      Strengths:

      (1) Comprehensive synthesis of ECM functions across leukocyte extravasation and post-transmigration activity.

      (2) Incorporation of recent high-impact findings alongside classical literature.

      (3) Conceptually novel framing of ECM as an active regulator of immune function.

      (4) Effective integration of molecular, mechanical, and spatial perspectives.

      Weaknesses:

      (1) Insufficient narrative linkage between the vascular phase (Sections 2-6) and the in-tissue phase (Sections 7-10).

      (2) Underrepresentation of lymphocyte biology despite mention in early sections.

      (3) The MIKA macrophage identity framework is only loosely tied to ECM mechanisms.

      (4) Limited discussion of translational implications and therapeutic strategies.

      (5) Overly dense figure insets and underdeveloped links between ECM carryover and downstream immune phenotypes.

      (6) Acronyms and some mechanistic details may limit accessibility for a broader readership.

    1. Reviewer #2 (Public Review):

      Summary:

      This article examines reviewer coercion in the form of requesting citations to the reviewer's own work as a possible trade for acceptance and shows that, under certain conditions, this happens.

      Strengths:

      The methods are well done and the results support the conclusions that some reviewers "request" self-citations and may be making acceptance decisions based on whether an author fulfills that request.

      Weaknesses:

      The author needs to be more clear on the fact that, in some instances, requests for self-citations by reviewers is important and valuable.

    1. Reviewer #2 (Public review):

      Summary:

      A study that furthers the molecular definition of PPGL (where prognosis is variable) and provides a wide range of sub-experiments to back up the findings. One of the key premises of the study is that identification of driver mutations in PPGL is incomplete and that compromises characterisation for prognostic purposes. This is a reasonable starting point on which to base some characterisation based on different methods.

      Strengths:

      The cohort is a reasonable size, and a useful validation cohort in the form of TCGA is used. Whilst it would be resource-intensive (though plausible given the rarity of the tumour type) to perform RNAseq on all PPGL samples in clinical practice, some potential proxies are proposed.

      Weaknesses:

      The performance of some of the proxy markers for transcriptional subtype is not presented.

      There is limited prognostic information available.

    1. Reviewer #2 (Public review):

      This manuscript uses the ESM2 language model to map the evolutionary fitness landscape of intrinsically disordered regions (IDRs). The central idea is that mutational preferences predicted by these models could be useful in understanding eventual IDR-related behavior, such as disruption of otherwise stable phases. While ESM2-type models have been applied to analyze such mutational effects in folded proteins, they have not been used or verified for studying IDRs. Here, the authors use ESM2 to study membraneless organelle formation and the related fitness landscape of IDRs.

      Through this, their key finding in this work is the identification of a subset of amino acids that exhibit mutation resistance. Their findings reveal a strong correlation between ESM2 scores and conservation scores, which if true, could be useful for understanding IDRs in general. Through their ESM2-based calculations, the authors conclude that IDRs crucial for phase separation frequently contain conserved sequence motifs composed of both so-called sticker and spacer residues. The authors note that many such motifs have been experimentally validated as essential for phase separation.

      Comments on revisions:

      Unfortunately my concerns about lack of theoretical grounding and validation (especially critical in lack of theoretical grounding) persist. The argument about correlation between ESM2 scores and MSA conservation is circular. Protein language models already encode residue‑level conservation, so agreement with conservation does not establish new predictive power. For IDRs, conservation is a poor surrogate for function because many functions are mediated by short, degenerate SLiMs that are frequently gained and lost. Sequence‑only predictions therefore need orthogonal (preferably experimental or at the least in silico) tests. Finally, without a family‑level holdout (e.g., cluster de‑duplication at low identity) and prospective tests, overlap with known motifs cannot rule out training‑data memorization/near‑duplicates.

    1. Reviewer #4 (Public review):

      Summary:

      In this study Tateishi et al. used TnSeq to identify 131 shared essential or growth defect-associated genes in eight clinical MAC-PD isolates and the type strain ATCC13950 of Mycobacterium intracellulare which are proposed as potential drug targets. Genes involved in gluconeogenesis and the type VII secretion system which are required for hypoxic pellicle-type biofilm formation in ATCC13950 also showed increased requirement in clinical strains under standard growth conditions. These findings were further confirmed in a mouse lung infection model.

      Strengths:

      This study has conducted TnSeq experiments in reference and 8 different clinical isolates of M. intracellulare thus producing large number of datasets which itself is a rare accomplishment and will greatly benefit the research community.

      Weaknesses:

      (1) A comparative growth study of pure and mixed cultures of clinical and reference strains under hypoxia will be helpful in supporting the claim that clinical strains adapt better to such conditions. This should be mentioned as future directions in the discussion section along with testing the phenotype of individual knockout strains.<br /> (2) Authors should provide the quantitative value of read counts for classifying a gene as "essential" or "non-essential" or "growth-defect" or "growth-advantage". Merely mentioning "no insertions in all or most of their TA sites" or "unusually low read counts" or "unusually high low read counts" is not clear.<br /> (3) One of the major limitations of this study is the lack of validation of TnSeq results with individual gene knockouts. Authors should mention this in the discussion section.

    1. Reviewer #2 (Public review):

      Summary:

      Tian et al. explore the developmental origins of cortical reorganization in blindness. Previous work has found that a set of regions in the occipital cortex show different functional responses and patterns of functional correlations in blind vs. sighted adults. Here, Tian et al. explore how this organization arises over development. Is the "starting state" more like the blind pattern, or more like the adult pattern? Their analyses reveal that the answer depends on the particular networks investigated. Some functional connections in infants look more like blind than sighted adults; other functional connections look more like sighted than blind adults; and others fall somewhere in the middle, or show an altogether different pattern in infants compared with both sighted and blind adults.

      Strengths:

      The paper addresses very important questions about the starting state in the developing visual cortex, and how cortical networks are shaped by experience. Another clear strength lies in the unequivocal nature of many results. Many results have very large effect sizes, critical interactions between regions and groups are tested and found, and infant analyses are replicated in split halves of the data.

      Weaknesses:

      While potential roles of experience (e.g., visual, cross-modal) are discussed in detail, little consideration is given to the role of experience-independent maturation. The infants scanned are extremely young, only 2 weeks old. It is possible then that the sighted adult pattern may still emerge later in infancy or childhood, regardless of infant visual experience. If so, the blind adult pattern may depend on blindness-related experience only (which may or may not reflect "visual" experience per se). In short, it is not clear that birth, or the first couple weeks of life, are a clear cut "starting point" for development, after which all change can be attributed to experience.

    1. Reviewer #2 (Public review):

      Summary:

      The study by Fisher et al investigates therpauetic role for SZN-043, a hepatocyte-targeted R-spondin mimetic, for its potential role in restoring Wnt signaling and promoting liver-regeneration in alcohol-associated liver disease (ALD). Using multiple preclinical models, the compound was shown to promote hepatocyte proliferation and reduce fibrosis. This study highlights the efficacy in promoting liver regeneration while maintaining controlled signaling. Limitations include a need for further exploration of off-target effects and fibrosis mechanisms. The findings support SZN-043 as a promising candidate for ALD therapy, warranting further clinical evaluation. This is a well deigned study with thorough investigation using multiple disease models.

      Strengths:

      (1) Well-written manuscript with clear design, robust methods, and discussion.

      (2) Using multiple models strengthens the findings and expands beyond ALD.

      (3) Identification of SZN-043 as a novel potent drug for liver regeneration.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript by Liakopoulou et al. presents a comprehensive investigation into the role of ATAD2 in regulating chromatin dynamics during spermatogenesis. The authors elegantly demonstrate that ATAD2, via its control of histone chaperone HIRA turnover, ensures proper H3.3 localization, chromatin accessibility, and histone-to-protamine transition in post-meiotic male germ cells. Using a new well-characterized Atad2 KO mouse model, they show that ATAD2 deficiency disrupts HIRA dynamics, leading to aberrant H3.3 deposition, impaired transcriptional regulation, delayed protamine assembly, and defective sperm genome compaction. The study bridges ATAD2's conserved functions in embryonic stem cells and cancer to spermatogenesis, revealing a novel layer of epigenetic regulation critical for male fertility.

      Strengths:

      The MS first demonstration of ATAD2's essential role in spermatogenesis, linking its expression in haploid spermatids to histone chaperone regulation by connecting ATAD2-dependent chromatin dynamics to gene accessibility (ATAC-seq), H3.3-mediated transcription, and histone eviction. Interestingly and surprisingly, sperm chromatin defects in Atad2 KO mice impair only in vitro fertilization but not natural fertility, suggesting unknown compensatory mechanisms in vivo.

      Weaknesses: The MS is robust and there are not big weaknesses

    1. Reviewer #2 (Public review):

      Summary:

      Desveaux et al. performed Elisa and translocation assays to identify among 34 cystic fibrosis patients which ones produced antibodies against P. aeruginosa type three secretion system (T3SS). Authors were especially interested in antibodies against PcrV and PcsF, two key components of the T3SS. The authors leveraged their binding assays and flow cytometry to isolate individual B cells from the two most promising sera, and then obtained monoclonal antibodies for the proteins of interest. Among the tested monoclonal antibodies, P3D6 and P5B3 emerged as the best candidates due to their inhibitory effect on the ExoS-Bla translocation marker (with 24% and 94% inhibition, respectively). The authors then showed that P5B3 binds to the five most common variants of PcrV, while P3D6 seems to recognize only one variant. Furthermore, the authors showed that P3D6 inhibits translocon formation, measured as cell death of J774 macrophages. To get insights into the P3D6-PcrV interaction, the authors defined the crystal structure of the P3D6-PcrV complex. Finally, the authors compared their new antibodies with two previous ones (i.e., MEDI3902 and 30-B8).

      Strengths:

      • Article is well written.

      • Authors used complementary assays to evaluate protective effect of candidate monoclonal antibodies.

      • Authors offered crystal structure with insights into the P3D6 antibody-T3SS interaction (e.g., interactions with monomer vs pentamers).

      • Authors put their results in context by comparing their antibodies with respect to previous ones.

      Weaknesses:

      • Results shown in Fig. 6 should be initially described in the Results section and not in the Discussion section.

      • The authors should describe, in the Discussion (and also in L146-147), in more detail the gained insights into how anti-PcrV antibodies work. This is especially important given previous reports of more potent antibodies (e.g., Simonis et al.) that significantly reduces the novelty of their work. Hence, authors could explicitly highlight how their study differentiate from previous work, and what unique insights were gained (in the current version is not completely obvious).

    1. Reviewer #2 (Public review):

      Summary:

      In this paper, the authors test whether controllability beliefs and associated actions/resource allocation are modulated by things like time, effort, and monetary costs (what they call "elastic" as opposed to "inelastic" controllability). Using a novel behavioral task and computational modeling, they find that participants do indeed modulate their resources depending on whether they are in an "elastic," "inelastic," or "low controllability" environment. The authors also find evidence that psychopathology is related to specific biases in controllability.

      Strengths:

      This research investigates how people might value different factors that contribute to controllability in a creative and thorough way. The authors use computational modeling to try to dissociate "elasticity" from "overall controllability," and find some differential associations with psychopathology. This was a convincing justification for using modeling above and beyond behavioral output, and yielded interesting results. Notably, the authors conclude that these findings suggest that biased elasticity could distort agency beliefs via maladaptive resource allocation. Overall, this paper reveals important findings about how people consider components of controllability.

      Weaknesses:

      The authors have gone to great lengths to revise the manuscript to clarify their definitions of "elastic" and "inelastic" and bolster evidence for their computational model, resulting in an overall strong manuscript that is valuable for elucidating controllability dynamics and preferences. One minor weakness is that the justification for the analysis technique for the relationships between the model parameters and the psychopathology measures remains lacking given the fact that simple correlational analyses did not reveal any significant associations nor were there results of any regression analyses. That said, the authors did preregister the CCA analysis, so while perhaps not the best method, it was justified to complete it. Regardless of method, the psychopathology results are not particularly convincing, but provide an interesting jumping-off point for further exploration in future work.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript presents a tactile categorization task in head-fixed mice to test whether Fmr1 knockout mice display differences in vibrotactile discrimination using the forepaw. Tactile discrimination differences have been previously observed in humans with Fragile X Syndrome, autistic individuals, as well as mice with loss of Fmr1 across multiple studies. The authors show that during training, Fmr1 mutant mice display subtle deficits in perceptual learning of "low salience" stimuli, but not "high salience" stimuli, during the task. Following training, Fmr1 mutant mice displayed an enhanced tactile sensitivity under low-salience conditions but not high-salience stimulus conditions. The authors suggest that, under 'high cognitive load' conditions, Fmr1 mutant mouse performance during the lowest indentation stimuli presentations was affected, proposing an interplay of sensory and cognitive system disruptions that dynamically affect behavioral performance during the task.

      Strengths:

      The study employs a well-controlled vibrotactile discrimination task for head-fixed mice, which could serve as a platform for future mechanistic investigations. By examining performance across both training stages and stimulus "salience/difficulty" levels, the study provides a more nuanced view of how tactile processing deficits may emerge under different cognitive and sensory demands.

      Weaknesses:

      The study is primarily descriptive. The authors collect behavioral data and fit simple psychometric functions, but provide no neural recordings, causal manipulations, or computational modeling. Without mechanistic evidence, the conclusions remain speculative. Second, the authors repeatedly make strong claims about "categorical priors," "attention deficits," and "choice biases," but these constructs are inferred indirectly from secondary behavioral measures. Many of the effects are based on non-significant trends, and alternative explanations (such as differences in motivation, fatigue, satiety, stereotyped licking, and/or reward valuation) are not considered. Third, the mapping of the behavioral results onto high-level cognitive constructs is tenuous and overstated. The authors' interpretations suggest that they directly tested cognitive theories such as Load Theory, Adaptive Resonance Theory, or Weak Central Coherence. However, the experiments do not manipulate or measure variables that would allow such theories to be tested. More specific comments are included below.

      (1) The authors employ a two-choice behavioral task to assess forepaw tactile sensitivity in Fmr1 knockout mice. The data provide an interesting behavioral observation, but it is a descriptive study. Without mechanistic experiments, it is difficult to draw any conclusions, especially regarding top-down or bottom-up pathway dysfunctions. While the task design is elegant, the data remain correlational and do not advance our mechanistic understanding of Fmr1-related sensory and/or cognitive alterations.

      (2) The conclusions hinge on speculative inferences about "reduced top-down categorization influence" or "choice consistency bias," but no neural, circuit-level, or causal manipulations (e.g., optogenetics, pharmacology, targeted lesions, modeling) are used to support these claims. Without mechanistic data, the translational impact is limited.

      (3) Statistical analysis:

      (a) Several central claims are based on "trends" rather than statistically significant effects (e.g., reduced task sensitivity, reduced across-category facilitation). Building major interpretive arguments on non-significant findings undermines confidence in the conclusions.

      (b) The n number for both genotypes should be increased. In several experiments (e.g., Figure 1D, 2E), one animal appears to be an outlier. Considering the subtle differences between genotypes, such an outlier could affect the statistical results and subsequent interpretations.

      (c) The large number of comparisons across salience levels, categories, and trial histories raises concern for false positives. The manuscript does not clearly state how multiple comparisons were controlled.

      (d) The data in Figure 5, shown as separate panels per indentation value, are analyzed separately as t-tests or Mann-Whitney tests. However, individual comparisons are inappropriate for this type of data, as these are repeated stimulus applications across a given session. The data should be analyzed together and post-hoc comparisons reported. Given the very subtle difference in miss rates across control and mutant mice for 'low-salience' stimulus trials, this is unlikely to be a statistically meaningful difference when analyzed using a more appropriate test.

      (4) Emphasis on theoretical models:

      The paper leans heavily on theories such as Adaptive Resonance Theory, Load Theory of Attention, and Weak Central Coherence, but the data do not actually test these frameworks in a rigorous way. The discussion should be reframed to highlight the potential relevance of these frameworks while acknowledging that the current data do not allow them to be assessed.

    1. Reviewer #2 (Public review):

      Zhang et al. have developed an advanced three-dimensional culture system of human endometrial cells, termed a receptive endometrial assembloid, that models the uterine lining during the crucial window of implantation (WOI). During this mid-secretory phase of the menstrual cycle, the endometrium becomes receptive to an embryo, undergoing distinctive changes. In this work, endometrial cells (epithelial glands, stromal cells, and immune cells from patient samples) were grown into spheroid assembloids and treated with a sequence of hormones to mimic the natural cycle. Notably, the authors added pregnancy-related factors (such as hCG and placental lactogen) on top of estrogen and progesterone, pushing the tissue construct into a highly differentiated, receptive state. The resulting WOI assembloid closely resembles a natural receptive endometrium in both structure and function. The cultures form characteristic surface structures like pinopodes and exhibit abundant motile cilia on the epithelial cells, both known hallmarks of the mid-secretory phase. The assembloids also show signs of stromal cell decidualization and an epithelial mesenchymal transition, like process at the implantation interface, reflecting how real endometrial cells prepare for possible embryo invasion.

      Although the WOI assembloid represents an important step forward, it still has limitations: the supportive stromal and immune cell populations decrease over time in culture, so only early-passage assembloids retain full complexity. Additionally, the differences between the WOI assembloid and a conventional secretory-phase organoid are more quantitative than absolute; both respond to hormones and develop secretory features, but the WOI assembloid achieves a higher degree of differentiation due to the addition of "pregnancy" signals. Overall, while it's a reinforced model (not an exact replica of the natural endometrium), it provides a valuable in vitro system for implantation studies and testing potential interventions, with opportunities to improve its long-term stability and biological fidelity in the future.

    1. Reviewer #2 (Public review):

      Summary:

      This paper considers the effects of cognitive load (using an n-back task related to font color), predictability, and age on reading times in two experiments. There were main effects of all predictors, but more interesting effects of load and age on predictability. The effect of load is very interesting, but the manipulation of age is problematic, because we don't know what is predictable for different participants (in relation to their age). There are some theoretical concerns about prediction and predictability, and a need to address literature (reading time, visual world, ERP studies).

      Strengths/weaknesses

      It is important to be clear that predictability is not the same as prediction. A predictable word is processed faster than an unpredictable word (something that has been known since the 1970/80s), e.g., Rayner, Schwanenfluegel, etc. But this could be due to ease of integration. I think this issue can probably be dealt with by careful writing (see point on line 18 below). To be clear, I do not believe that the effects reported here are due to integration alone (i.e., that nothing happens before the target word), but the evidence for this claim must come from actual demonstrations of prediction.

      The effect of load on the effects of predictability is very interesting (and also, I note that the fairly novel way of assessing load is itself valuable). Assuming that the experiments do measure prediction, it suggests that they are not cost-free, as is sometimes assumed. I think the researchers need to look closely at the visual world literature, most particularly the work of Huettig. (There is an isolated reference to Ito et al., but this is one of a large and highly relevant set of papers.)

      There is a major concern about the effects of age. See the Results (161-5): this depends on what is meant by word predictability. It's correct if it means the predictability in the corpus. But it may or may not be correct if it refers to how predictable a word is to an individual participant. The texts are unlikely to be equally predictable to different participants, and in particular to younger vs. older participants, because of their different experiences. To put it informally, the newspaper articles may be more geared to the expectations of younger people. But there is also another problem: the LLM may have learned on the basis of language that has largely been produced by young people, and so its predictions are based on what young people are likely to say. Both of these possibilities strike me as extremely likely. So it may be that older adults are affected more by words that they find surprising, but it is also possible that the texts are not what they expect, or the LLM predictions from the text are not the ones that they would make. In sum, I am not convinced that the authors can say anything about the effects of age unless they can determine what is predictable for different ages of participants. I suspect that this failure to control is an endemic problem in the literature on aging and language processing and needs to be systematically addressed.

      Overall, I think the paper makes enough of a contribution with respect to load to be useful to the literature. But for discussion of age, we would need something like evidence of how younger and older adults would complete these texts (on a word-by-word basis) and that they were equally predictable for different ages. I assume there are ways to get LLMs to emulate different participant groups, but I doubt that we could be confident about their accuracy without a lot of testing. But without something like this, I think making claims about age would be quite misleading.

    1. Reviewer #2 (Public review):

      Summary:

      Ptbp1 has been proposed as a key regulator of neuronal fate through its role in repressing neurogenesis. In this study, the authors conditionally inactivated Ptbp1 in mouse retinal progenitor cells using the Chx10-Cre line. While RNA-seq analysis at E16 revealed some changes in gene expression, there were no significant alterations in retinal cell type composition, and only modest transcriptional changes in the mature retina, as assessed by immunofluorescence and scRNAseq. Based on these findings, the authors conclude that Ptbp1 is not essential for cell fate determination during retinal development.

      Strengths:

      Despite some effects of Ptbp1 inactivation (initiated around E11.5 with the onset of Chx10-Cre activity) on gene expression and splicing, the data convincingly demonstrate that retinal cell type composition remains largely unaffected. This study is highly significant since it challenges the prevailing view of Ptbp1 as a central repressor of neurogenesis and highlights the need to further investigate, or re-evaluate, its role in other model systems and regions of the CNS.

      Weaknesses:

      A limitation of the study is the use of the Chx10-Cre driver, which initiates recombination around E11. This timing does not permit assessment of Ptbp1 function during the earliest phases of retinal development, if expressed at that time.

    1. Reviewer #2 (Public review):

      Summary:

      This study proposes that predictive spatial representations in medial entorhinal cortex (MEC) grid cells arise through two distinct biophysical mechanisms: (1) HCN conductance-dependent temporal dynamics, which generate modest forward shifts (~5% of grid field diameter) in Layer II cells, and (2) network asymmetry, enabling larger predictive shifts (~25% of grid field diameter) in Layer III cells. The model further predicts a dorsoventral gradient in predictive coding magnitude, correlating with observed HCN conductance variations. These results provide a mechanistic framework for understanding how intrinsic cellular properties and circuit architecture collectively enable prospective spatial coding in the MEC. This is an important study.

      Strengths:

      These findings reveal how cellular properties and circuit design enable prospective spatial coding. This novel, impactful study will be of interest to the field.

      Weaknesses:

      Some of the models are too mathematical and do not fit with the biological observation.

    1. Reviewer #2 (Public review):

      Summary:

      This study investigates the influence of prior stimuli over multiple time scales in a position discrimination task, using pupillometry data and a reanalysis of EEG data from an existing dataset. The authors report consistent history-dependent effects across task-related, task-unrelated, and stimulus-related dimensions, observed across different time scales. These effects are interpreted as reflecting a unified mechanism operating at multiple temporal levels, framed within predictive coding theory.

      Strengths:

      The authors have done a good job in their revision, clarifying important points and stating the limitations of the study clearly.

      I also think they made a valid effort to address and correct issues arising from the temporal dependency confound, although I still wonder whether the best approach would have been to design an experiment in a way that avoided this confound in the first place.<br /> Overall, this is a substantially improved version, and I particularly appreciate the clarification and correction regarding the direction of the bias in the EEG data (repulsive rather than attractive).

      Weaknesses:

      These are now relatively minor points.

      I believe this latter aspect, the repulsive bias, may deserve further discussion, especially in relation to their behavioral findings and, in particular, to earlier work proposing multi-stage frameworks of serial dependence, where low-level repulsion interacts with attractive biases at higher-level stages (Fritsche et al., 2020; Pascucci et al., 2019; Sheehan & Serences, 2022). The authors may also consider to cite some key reviews on serial dependence that discuss both repulsion and attraction in forced-choice and reproduction tasks (Manassi et al., 2023; Pascucci et al., 2023).

      Related to this, after finding the opposite pattern, is the sentence in line 472-473 ("Further, we found an attractive...") and the related argument still valid?

      Regarding my earlier point about former line 197 and Figure 3b,c: what I noticed-similar to the patterns reported in the studies I referenced-is that the data cannot be simply described as showing faster and more accurate responses for small deltas. Responses also appear faster and more accurate for very large deltas, with performance being worse in between. Indeed, as the authors state: "The peak in precision for large Deltas locations is consistent with alternate events being encoded more precisely, while the peak for small offsets may be explained by the attractive bias towards the previous target." I wonder whether it is necessary, or unequivocally supported by the data, to hypothesize two separate mechanisms here. An alternative could be interference effects between consecutive stimuli that are neither identical nor completely different-making the previous one more likely to interfere with the current stimulus representation.

      Finally, this is definitely a minor point, but I still find the reply to my comment about the prediction of stable retinal input rather speculative. Such a prediction would seem more plausible in world-centered coordinates.

    1. Reviewer #2 (Public review):

      Summary:

      Descending neurons (DNs) are critical nodes in the neural computation underlying sensorimotor transformation. Building on their earlier work, the authors have substantially expanded the genetic resources for labeling these cell types in D. melanogaster, offering a valuable public resource.

      Strengths:

      The authors identified 146 additional DN types and generated 500 new DN driver lines, expanding the genetic reagents from labeling 98 cell types to 244, representing approximately 50% of all DN types estimated by EM connectomes. While the EM connectomes offer unprecedented resolution of neuronal cell types and their connectivity, genetic access to these cell types remains essential for studying their functions and testing hypotheses. Given the broad interest in DNs, the reagents generated in this study will be of important value for addressing a wide range of questions in sensorimotor transformation.

      The organization of the dataset is overall intuitive and comprehensive. The authors also provided clear information and guidance on accessing the relevant resources, such as stack images and fly lines. In addition, the authors have thoughtfully handled the information updated from the earlier collection they generated (Namiki et al. 2018) and incorporated previously published DN lines, providing a consolidated and up-to-date resource for the DN community.

      Weaknesses:

      No weaknesses were identified by this reviewer.

    1. Reviewer #2 (Public review):

      Summary:

      The authors describe the development of a novel inhibitor (AVI-4206) for the first macrodomains of the nsp3 protein of SARS-CoV-2 (Mac1). This involves both medical chemical synthesis, structural work as well as biochemical characterisation. Subsequently the authors present their finding of the efficacy of the inhibitor both on cell culture as well as animal models of SARS-CoV-2 infection. They find that despite high affinity for Mac1 and the known replicatory defects of catalytically inactive Mac1 only moderate beneficial effects can be observed in their chosen models.

      Strengths:

      The authors employ a variety of different assay to study the affinity, selectivity and potency of the novel inhibitor and thus the in vitro data are very compelling.<br /> Similarly, the authors use several cell culture and in vivo models to strengthen their findings. In addition, the authors address several aspects of the health impact of coronaviral infections from animal survival, over viral load to histological assessment of lung damage.

      Weaknesses:

      The selection of Targ1 and MacroD2 as off-target human macrodomains is sub-optimal as several studies have shown that the first macrodomains of PARP9 and PARP14 are much closer related to coronaviral macrodomains and both macrodomains are implicated in antiviral defence and immunity. However, the authors address this issue by providing modeling data that show clashes with AVI-4206 similarly to their models with MacroD2 and TARG1.

      Comments on revisions:

      While the authors have not addressed all my suggestions experimentally, I would like to nevertheless congratulate them on a significantly strengthened manuscript that will provide a valuable contribution to the field.

    1. Reviewer #3 (Public review):

      Summary:

      This study addressed the TCR pairing types and CDR3 characteristics of Treg cells. By analyzing scRNA and TCR-seq data, it claims that 10-20% of dual TCR Treg cells exist in mouse lymphoid and non-lymphoid tissues and suggests that dual TCR Treg cells in different tissues may play complex biological functions.

      Strengths:

      The study addresses an interesting question of how dual-TCR-expressing Treg cells play roles in tissues.

      Weaknesses:

      This study is inadequate, particularly regarding data interpretation, statistical rigor, and the discussion of the functional significance of Dual TCR Tregs.

      Comments on revisions:

      Although the authors have provided brief explanations in response to the reviewers' comments, they do not present any additional analyses that would address the fundamental concerns in a convincing manner.

      Moreover, the in silico analyses presented in the manuscript alone are insufficient to support the conclusions, and the functional experiments requested by the reviewers have not been conducted.

      In the current rebuttal, while some textual additions have been made to the manuscript, the only substantial revision to the figures appears to be the inclusion of statistical significance annotations (e.g., Fig. 1G, Fig. 3G). These changes do not adequately strengthen the overall data or address the core issues raised.

    1. Reviewer #2 (Public review):

      Summary:

      In this study, the authors compared the transcriptomes of the various types of hair cells contained in the sensory epithelia of the cochlea and vestibular organs of the mouse inner ear. The analysis of their transcriptomic data led to novel insights into the potential function of the kinocilium.

      Strengths:

      The novel findings for the kinocilium gene expression, along with the demonstration that some kinocilia demonstrate rhythmic beating as would be seen for known motile cilia, are fascinating. It is possible that perhaps the kinocilium, known to play a very important role in the orientation of the stereocilia, may have a gene expression pattern that is more like a primary cilium early in development and later in mature hair cells, more like a motile cilium. Since the kinocilium is retained in vestibular hair cells, it makes sense that it is playing a different role in these mature cells than its role in the cochlea.

      Another major strength of this study, which cannot be overstated, is that for the transcriptome analysis, they are using mature mice. To date, there is a lot of data from many labs for embryonic and neonatal hair cells, but very little transcriptomic data on the mature hair cells. They do a nice job in presenting the differences in marker gene expression between the 4 hair cell types. This information is very useful to those labs studying regeneration or generation of hair cells from ES cell cultures. One of the biggest questions these labs confront is what type of hair cells develop in these systems. The more markers available, the better. These data will also allow researchers in the field to compare developing hair cells with mature hair cells to see what genes are only required during development and not in later functioning hair cells.

    1. Reviewer #2 (Public review):

      Summary:

      The paper by Weerdmeester, Schleimer, and Schreiber uses computational models to present the biological constraints under which electrocytes - specialized, highly active cells that facilitate electro-sensing in weakly electric fish-may operate. The authors suggest potential solutions that these cells could employ to circumvent these constraints.

      Electrocytes are highly active or spiking (greater than 300Hz) for sustained periods (for minutes to hours), and such activity is possible due to an influx of sodium and efflux of potassium ions into these cells after each spike. The resulting ion imbalance must be restored, which in electrocytes, as with many other biological cells, is facilitated by the Na-K pumps at the expense of biological energy, i.e., ATP molecules. For each ATP molecule the pump uses, three positively charged sodium ions from the intracellular space are exchanged for two positively charged potassium ions from the extracellular space. This creates a net efflux of positive ions into the extracellular space, resulting in hyperpolarized potentials for the cell over time. For most cells, this does not pose an issue, as their firing rate is much slower, and other compensatory mechanisms and pumps can effectively restore the ion imbalances. However, in the electrocytes of weakly electric fish, which spike at exceptionally high rates, the net efflux of positive ions presents a challenge. Additionally, these cells are involved in critical communication and survival behaviors, underscoring their essential role in reliable functioning.

      In a computational model, the authors test four increasingly complex solutions to the problem of counteracting the hyperpolarized states that occur due to continuous NaK pump action to sustain baseline activity. First, they propose a solution for a well-matched Na leak channel that operates in conjunction with the NaK pump, counteracting the hyperpolarizing states naturally. Their model shows that when such an orchestrated Na leak current is not included, quick changes in the firing rates could have unexpected side effects. Secondly, they study the implications of this cell in the context of chirps-a means of communication between individual fish. Here, an upstream pacemaking neuron entrains the electrocyte to spike, which ceases to produce a so-called chirp - a brief pause in the sustained activity of the electrocytes. In their model, the authors demonstrate that including the extracellular potassium buffer is necessary to obtain a reliable chirp signal. Thirdly, they tested another means of communication in which there was a sudden increase in the firing rate of the electrocyte, followed by a decay to the baseline. For this to occur reliably, the authors emphasize that a strong synaptic connection between the pacemaker neuron and the electrocyte is necessary. Finally, since these cells are energy-intensive, they hypothesize that electrocytes may have energy-efficient action potentials, for which their NaK pumps may be sensitive to the membrane voltages and perform course correction rapidly.

      Strengths:

      The authors extend an existing electrocyte model (Joos et al., 2018) based on the classical Hodgkin and Huxley conductance-based models of sodium and potassium currents to include the dynamics of the sodium-potassium (NaK) pump. The authors estimate the pump's properties based on reasonable assumptions related to the leak potential. Their proposed solutions are valid and may be employed by weakly electric fish. The authors explore theoretical solutions to electrosensing behavior that compound and suggest that all these solutions must be simultaneously active for the survival and behavior of the fish. This work provides a good starting point for conducting in vivo experiments to determine which of these proposed solutions the fish employ and their relative importance. The authors include testable hypotheses for their computational models.

    1. Reviewer #2 (Public review):

      Summary:

      In this work, the authors introduce DIRseq, a fast, sequence-based method that predicts drug-interacting residues (DIRs) in IDPs without requiring structural or drug information. DIRseq builds on the authors' prior work looking at NMR relaxation rates, and presumes that those residues that show enhanced R2 values are the residues that will interact with drugs, allowing these residues to be nominated from the sequence directly. By making small modifications to their prior tool, DIRseq enables the prediction of residues seen to interact with small molecules in vivo.

      Strengths:

      The preprint is well written and easy to follow.

    1. Reviewer #2 (Public review):

      Summary:

      The authors make the interesting discovery of increased chromosome non-dysjunction in aging yeast mother cells. The phenotype is quite striking and well supported with solid experimental evidence. This is quite significant to a haploid cell (as used here) - loss of an essential chromosome leads to death soon thereafter. The authors then work to tie this phenotype to other age-associated phenotypes that have been previously characterized: accumulation of extrachromosomal rDNA circles that then correlate with compromised nuclear pore export functions, which correlates with "leaky" pores that permit unspliced mRNA messages to be inappropriately exported to the cytoplasm. They then infer that three intron containing mRNAs that encode portions in resolving sister chromatid separation during mitosis, are unspliced in this age-associated defect and thus lead to the non-dysjunction problem.

      Strengths:

      The discovery of age-associated chromosome non-dysjunction is an interesting discovery, and it is demonstrated in a convincing fashion with "classic" microscopy-based single cell fluorescent chromosome assays that are appropriate and seem robust. The correlation of this phenotype with other age-associated phenotypes - specifically extrachromosomal rDNA circles and nuclear pore dysfunction - is supported by in vivo genetic manipulations that have been well-characterized in the past.

      In addition, the application of the single cell mRNA splicing defect reporter showed very convincingly that general mRNA splicing is compromised in aged cells. Such a pleiotropic event certainly has big implications.

      Weaknesses:

      The authors have addressed my major concerns with experimentation or clarification.

    1. Reviewer #3 (Public review):

      The authors address the process of community evolution under collective-level selection for a prescribed community composition. They mostly consider communities composed of two types that reproduce at different rates, and that can mutate one into the other. Due to such difference in 'fitness' and to the absence of density dependence, within-collective selection is expected to always favour the fastest grower, but collective-level selection can oppose this tendency, to a certain extent at least. By approximating the stochastic within-generation dynamics and solving it analytically, the authors show that not only high frequencies of fast growers can be reproducibly achieved, aligned with their fitness advantage. Small target frequencies can also be maintained, provided that the initial proportion of fast growers is sufficiently small. In this regime, similar to the 'stochastic corrector' model, variation upon which selection acts is maintained by a combination of demographic stochasticity and of sampling at reproduction. These two regions of achievable target compositions are separated by a gap, encompassing intermediate frequencies that are only achievable when the bottleneck size is small enough or the number of communities is (disproportionately) large.

      A similar conclusion, that stochastic fluctuations can maintain the system over evolutionary time far from the prevalence of the faster-growing type, is then confirmed by analyzing a three-species community, suggesting that the qualitative conclusions of this study are generalizable to more complex communities.

      I expect that these results will be of broad interest to the community of researchers who strive to improve community-level selection but are often limited to numerical explorations, with prohibitive costs for a full characterization of the parameter space of such embedded populations. The realization that not all target collective functions can be as easily achieved and that they should be adapted to the initial conditions and the selection protocol is also a sobering message for designing concrete applications.

      A major strength of this work is that the qualitative behaviour of the system is captured by an analytically solvable approximation so that the extent of the 'forbidden region' can be directly and generically related to the parameters of the selection protocol.

      The phenomenon the authors characterize is ecological in nature, though it is maintained even when switching between types is possible. Calling this dynamics community evolution reflects a widespread ambiguity in the field, not ascribable just to this work.

      Although different types compete for being represented in the next generation's propagules, within-generation ecology is here representative of exponential growth. As species interactions are commonly manifest in lab serial dilution experiments, it would be interesting if future work explores the extent of the robustness of these results to density-dependent demography.

    1. Reviewer #2 (Public review):

      This paper combines a biological topic of interest with the demonstration of important theoretical/methodological advances. Fitness inference is the foundation of the quantitative analysis of adapting systems. It is a hard and important problem and this paper highlights a compelling approach (MPL) first presented in (1) and refined in (2), roughly summarized in equation 3.

      The authors find that positive selection shapes the variable regions of env in shared patterns across two patient donors. The patterns of positive selection are interesting in and of themselves, they confirm the intuition that hyper-variation in env is the result of immune evasion rather than a broadly neutral landscape (flatness). They show that the immune evasion patterns due to CD8 T and naive B-cell selection are shared across patients. Furthermore, they suggest that a particular evolutionary history (larger flux to high fitness states) is associated with bNAb emergence. Mimicking this evolutionary pattern in vaccine design may help us elicit bNAbs in patients in the future.

      The fitness landscape of env in multiple hosts is immensely valuable especially because of how often SHIV has used as proxy for HIV. The strength of reversion-to-consensus selection is a known pattern of HIV post-infection populations but they are nicely quantified here. Agreement between SHIV and HIV evolution is shown. They find selection is larger for autologous antibodies than the bNAbs themselves (perhaps bNAbs are just too small a component of the host response to drive the bulk of selection?), and that big fitness increases precede antibody breadth in rhesus-macaques, suggesting that this fitness increase is the immune challenge required to draw forth a bNAb. All of high interest to HIV researchers.

      (1) Sohail, M. S., Louie, R. H., McKay, M. R. & Barton, J. P. Mpl resolves genetic linkage in fitness inference from complex evolutionary histories. Nature biotechnology 39, 472-479 (2021).

      (2) Shimagaki, K. & Barton, J. P. Bézier interpolation improves the inference of dynamical models from data. Physical Review E 107, 024116 (2023).

      Strength of evidence:

      Equation 3 is a beautiful and intuitive tool that accounts for linkage and can be solved precisely even in the presence of detailed mutational and selection models. They have addressed my earlier concerns the effects of incomplete observations of the frequency bias fitness inference on rare sites.

      Whether the fact that fitness increases occured before or after the presence of the bnab remains incompletely known. bNAb detection is different from bNAb presence and the possibility that fitness increases occurred after the bNAbs appeared remains. Still, their conclusion is plausible and fits in with the other observations which form a coherent and compelling picture.

      Overall this is a convincing paper. It is a valuable introduction to a practical method of fitness inference at the scale of the entire env gene and how this information can be leveraged to learn some interesting biology.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Gazal et al. describe the presence of unique gaps and patches of BetaII-spectrin in medial sections of long human motor neuron axons. BII-spectrin, along with Alpha-spectrin, forms horizontal linkers between 180nm spaced F-actin rings in axons. These F-actin rings, along with the spectrin linkers, form membrane periodic structures (MPS) which are critical for the maintenance of the integrity, size, and function of axons. The primary goal of the authors was to address whether long motor axons, particularly those carrying familial mutations associated with the neurodegenerative disorder ALS, show defects in gaps and patches of BetaII-spectrin, ultimately leading to degradation of these neurons.

      Strengths:

      The experiments are well-designed, and the authors have used the right methods and cutting-edge techniques to address the questions in this manuscript. The use of human motor neurons and the use of motor neurons with different familial ALS mutations is a strength. The use of isogenic controls is a positive. The induction of gaps and patches by the kinase inhibitor staurosporine and their rescue by Latrunculin A is novel and well-executed. The use of biochemical assays to explore the role of calpains is appropriate and well-designed. The use of STED imaging to define the periodicity of MPS in the gaps and patches of spectrin is a strength.

      Weaknesses:

      The primary weakness is the lack of rigorous evaluation to validate the proposed model of spectrin capture from the gaps into adjacent patches by the use of photobleaching and live imaging. Another point is the lack of investigation into how gaps and patches change in axons carrying the familial ALS mutations as they age, since 2 weeks is not a time point when neurodegeneration is expected to start.

    1. Reviewer #2 (Public review):

      Summary:

      In the manuscript, Xiang Mou and Daoyun JI investigate how ACC neurons activated by observational learning communicate with the hippocampus. They assess this line of communication through a complex behavioral technique, in vivo electrophysiology, pharmacological approaches, and data analytical techniques. Firstly, authors find that observational performance is dependent on the ACC, and that the ACC possess neurons that show side selectivity (trajectory related) in both the observation box, when shuttling to reward, and during subsequent maze running, shuttling to the corresponding same side for reward. The side-selective activation appears stronger for correct trials compared to error trials specifically during observation of Demo rats. They compare how the CA1 of the hippocampus encodes these two environments and find that ACC side-selective neurons show correlation with side-selective CA1 ensembles during maze behavior, water consumption, and sharp-wave ripples.

      Strengths:

      Overall, the paper provides strong evidence that ACC neurons are activated by observational learning and that this activation seems to be correlated with CA1 activity.

      Weaknesses:

      Concerns, however, surround the strength of evidence that links ACC and CA1 activity during observational learning. Only weak correlations between the two regions are shown, and it is unclear if the ACC may lead CA1 activity or vice versa. It is possible that these processes reflect two parallel pathways. Without manipulation of ACC, it is difficult to assess whether ACC activity influences hippocampal replay.

      Comments on revisions:

      Lines 361-362: R and P values do not match that of Figure 5C.

    1. Reviewer #2 (Public review):

      Summary:

      This paper presents a thoughtful and well-motivated strategy to address a major challenge in TCR-epitope binding prediction: data imbalance, particularly the scarcity of positive (binding) TCR, peptide pairs. The authors introduce a two-step pipeline combining data balancing, via undersampling and generative augmentation, and a supervised CNN-based classifier. Notably, the use of Restricted Boltzmann Machines (RBMs) and BERT-style transformer models to generate synthetic CDR3β sequences is shown to improve model performance. The proposed method is applied to both peptide-specific and pan-specific settings, yielding notable performance improvements, especially for in-distribution peptides. Generative augmentation also leads to measurable gains for out-of-distribution epitopes, particularly those with high sequence similarity to the training set.

      Strengths:

      (1) The authors tackle the well-known but under-addressed issue of class imbalance in TCR-epitope binding data, where negatives vastly outnumber positive (binding) pairs. This imbalance undermines classifier reliability and generalization.

      (2) The model is tested on both in-distribution (seen epitopes) and out-of-distribution (unseen epitopes) scenarios. Including a synthetic lattice protein benchmark allows the authors to dissect generalization behavior in a controlled environment.

      (3) The paper shows a measurable benefit of generative. For example, AUC improvements of up to +0.11 are observed for peptides closely related to those seen during training, demonstrating the method's practical impact.

      (4) A direct comparison between RBM- and Transformer-based sequence generators adds value, offering the community guidance on trade-offs between different generative architectures in TCR modeling applications.

      Weaknesses:

      (1) Generalization degrades with epitope dissimilarity

      The performance drops substantially as the test epitope becomes more dissimilar to the training set. This is expected, but it highlights an essential limitation of the generative models: they help only when the test epitope is similar to one already seen. Table 1 shows that the performance gain from generative augmentation decreases as the test epitope becomes more dissimilar to the training epitopes. For epitopes with a Levenshtein distance of 1 from the training set, the average AUC improvement is approximately +0.11. This gain drops to around +0.06 for epitopes at distance 2. It becomes minimal for those at distance 4, indicating an explicit limitation in the model's ability to generalize to more distant epitopes. The authors should quantify more explicitly how far the model can generalize effectively. What is the performance degradation threshold as a function of Levenshtein distance?

      (2) What is the minimal number of positive samples needed for data augmentation to help?

      The approach has an intrinsic catch-22: generative models require data to learn the underlying distribution and cannot be applied to epitopes with insufficient data. As a result, the method is unlikely to be effective for completely new epitopes. Could the authors quantify the minimum number of real binders needed for effective generative augmentation? This would be particularly relevant for zero-shot or few-shot prediction scenarios, where only 0-10 positive samples are available. Such experiments would help clarify the practical limits of the proposed strategy.

      (3) Lack of end-to-end evaluation on unseen epitopes as inputs

      The authors frame peptide-specific models as classification over a few known epitopes, a closed-set formulation. While this is useful for evaluating generation effects, it's not representative of the more practical open-set task of predicting binding to truly novel epitopes. A stronger test would include models that take peptides as input (e.g., pan-specific, peptide-conditioned classifiers), including unseen epitopes at test time. Could the authors attempt an evaluation on benchmarks like IMMREP25 or other datasets where test epitopes are excluded from training?

      (4) Focus on β-chain limits generalizability

      The current pipeline is trained exclusively on CDR3β sequences. However, the field is increasingly moving toward single-cell sequencing, which provides paired α/β TCR chain data. Understanding how the proposed approach performs when both chains are available would be valuable. Could the authors evaluate the performance gains on paired α/β information, even in a small subset of single-cell data?

      (5) Synthetic lattice proteins (LPs) have limited biological fidelity

      While the LP-based benchmark presented in Figure 5 is a clever and controlled tool for probing model generalization, it remains conceptually and biophysically distant from real TCR-peptide interactions. Its utility as a toy model is valid, but its limitations should be more explicitly acknowledged:

      a) Over-simplified binding landscape: The LP system is designed for tractability, with a simplified sequence-structure mapping and fixed lattice constraints. As shown in Figure 5c, the LP binding landscape is linearly separable, in stark contrast to the complex and often degenerate nature of real TCR-epitope interactions, where multiple structurally distinct TCRs can bind the same peptide and vice versa.

      b) Absence of immunological context: The LP model abstracts away key biological factors such as MHC restriction, α/β chain pairing, peptide presentation, and structural constraints of the TCR-pMHC complex. These are essential for understanding binding specificity in actual immune repertoires.

      c) Overestimation of generalization: While performance drops on more distant LP structures, even these are structurally and statistically more similar to the training data than truly novel biological epitopes. Thus, the LP benchmark likely underestimates the true difficulty of out-of-distribution generalization in real-world TCR prediction tasks.

      d) Simplified biophysics: The LP simulations rely on coarse-grained energy models and empirical potentials that do not capture conformational dynamics, side-chain flexibility, or realistic binding energetics of TCR-peptide interfaces.

      In summary, while the LP benchmark helps isolate specific generalization behaviors and for sanity-checking model performance under controlled perturbations, its biological relevance is limited. The authors should explicitly frame these assumptions and limitations to prevent overinterpreting results from this synthetic system.