5,827 Matching Annotations
  1. Oct 2024
    1. Author response:

      Thank you for your thoughtful and constructive feedback on our manuscript. We greatly appreciate your recognition of the strengths in our work, particularly regarding the genetic evidence demonstrating the role of beta-adrenergic receptors in cavernous malformation (CCM) development and the therapeutic potential of beta-blocker drugs.

      We acknowledge your concerns and have addressing them to improve the clarity and rigor of our study. Specifically:

      For Reviewer 1:

      (1) Figure Annotation: We will enhance the annotation of the figure panels to provide clearer and more detailed descriptions, ensuring that each panel is easily interpretable and contributes effectively to the overall narrative of the study.

      (2) Baseline Control for Klf2 Expression: We will include this control (klf2 expression in control Morpholino-injected embryos) in our revised figures and text to provide a more complete context for the changes in klf2 expression observed in response to genetic loss of adrb1 in ccm2 morphants and ccm2-CRISPR embryos.

      For Reviewer 2:

      (3) Sample Sizes in Figures 1, 2, and 3: We agree that reporting sample sizes is crucial for the transparency and reproducibility of our findings. For Figures 1B and D, as well as Figures 2G and 3B, we will update the figure legends to include the number of embryos and adult fish in which lesions were scored.

      (4) Figure 4 Concerns: Use of adrb1 Morphants: We will note that the adrb1 morphant shows similar hemodynamic changes to the adrb1 mutant and that the morphants did not prevent the mosaic klf2 expression in ccm2 CRISPR embryos. Thus supporting our conclusion that protection from CVP cavernomas in the adrb1 mutant are not due to altered hemodynamics blocking mosaic klf2 expression.

  2. Sep 2024
    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      In this manuscript, Day et al. present a high-throughput version of expansion microscopy to increase the throughput of this well-established super-resolution imaging technique. Through technical innovations in liquid handling with custom-fabricated tools and modifications to how the expandable hydrogels are polymerized, the authors show robust ~4-fold expansion of cultured cells in 96-well plates. They go on to show that HiExM can be used for applications such as drug screens by testing the effect of doxorubicin on human cardiomyocytes. Interestingly, the effects of this drug on changing DNA organization were only detectable by ExM, demonstrating the utility of HiExM for such studies. 

      Overall, this is a very well-written manuscript presenting an important technical advance that overcomes a major limitation of ExM - throughput. As a method, HiExM appears extremely useful, and the data generally support the conclusions. 

      Strengths: 

      Hi-ExM overcomes a major limitation of ExM by increasing the throughput and reducing the need for manual handling of gels. The authors do an excellent job of explaining each variation introduced to HiExM to make this work and thoroughly characterize the impressive expansion isotropy. The dox experiments are generally well-controlled and the comparison to an alternative stressor (H2O2) significantly strengthens the conclusions. 

      Weaknesses: 

      (1) Based on the exceedingly small volume of solution used to form the hydrogel in the well, there may be many unexpanded cells in the well and possibly underneath the expanded hydrogel at the end of this. How would this affect the image acquisition, analysis, and interpretation of HiExM data? 

      The hydrogel footprint covers approximately 5% of the surface within an individual well and only cells within this area are embedded in the polymerized hydrogel for subsequent processing steps. Cells that are outside of this footprint are not incorporated into the gel because these cells are digested by Proteinase K and washed away by the excess water exchange in the gel swelling step. Note that different cell types may require higher or lower concentrations of Proteinase K to adequately digest cells for expansion while maintaining fluorescence signal. Given the compatibility of HiExM with 96-well plates, this titration can be performed rapidly in a single experiment. Although cells outside of the hydrogel footprint are removed prior to imaging, we do occasionally observe Hoechst signal that appears to be underneath the gels. We believe this signal is likely from excess DNA from digested cells that was not fully washed out in the gel swelling step. This signal is both spatially and morphologically distinct from the nuclear signal of intact cells and it does not affect image acquisition, analysis, or data interpretation. 

      (2) It is unclear why the expansion factor is so variable between plates (e.g., Figure 2H). This should be discussed in more detail. 

      The variability in expansion factor across plates can likely be attributed to the small volume of gel solution (~250 nL) required for expansion within 96 well plates. Small variations in gel volume could impact gel polymerization compared to standard ExM gels. For example, gels in HiExM are more sensitive to evaporation because of the ~1000x reduced volume compared to standard expansion gel preparations, resulting in an increased air-liquid-interface. Evaporation in HiExM gels would increase monomer and cross linker concentrations, leading to variation in expansion factor across plates. We note that expansion factor is robust within well plates and that variance is slightly increased between plates. These considerations are discussed in the revised manuscript.

      (3) The authors claim that CF dyes are more resistant to bleaching than other dyes. However, in Figure. S3, it appears that half of the CF dyes tested still show bleaching, and no data is shown supporting the claim that Alexa dyes bleach. It would be helpful to include data supporting the claim that Alexa dyes bleach more than CF dyes and the claim that CF dyes in general are resistant to bleaching should be modified to more accurately reflect the data shown. 

      We did not show data using Alexa dyes because these fluorophores are highly sensitive to photobleaching using Irgacure and thus we could not obtain images. In contrast, some CF dyes are more robust to bleaching in HiExM including CF488A, CF568, and CF633 dyes.  We have recently adapted our protocol to PhotoExM chemistry which is compatible with a wider range of fluorophores as described by Günay et al. (2023) and as shown in Fig. S16.

      (4) Related to the above point, it appears that Figure S11 may be missing the figure legend. This makes it hard to understand how HiExM can use other photo-inducible polymerization methods and dyes other than CF dyes.

      We revised the legend for revised Fig. S11 (now Fig. S16) as follows: Example of a cell expanded in HiExM using Photo-ExM gel chemistry. Photo-ExM does not require an anoxic environment for gel deposition and polymerization, improving ease of use of HiExM. Mitochondria were stained with an Alexa 647 conjugated secondary antibody, demonstrating that HiExM is compatible with additional fluorophores when combined with Photo-ExM.

      (5) The use of automated high-content imaging is impressive. However, it is unclear to me how the increased search space across the extended planar area and focal depths in expanded samples is overcome. It would be helpful to explain this automated imaging strategy in more detail. 

      We imaged plates on the Opera Phenix using the PreciScan Acquisition Software in Harmony. In brief, each well is imaged at 5x magnification in the Hoechst channel to capture the full well at low resolution. Hoechst is used for this step given its signal brightness, ubiquity across established staining protocols, and spectral independence from most fluorophores commonly conjugated to secondary antibodies. Using this information, the microscope detects regions of interest (nuclei) based on criteria including size, brightness, circularity, etc. Finally, the positional information for each region is stored, and the microscope automatically images those regions at 63x magnification. The working distance for the objective used in this study is 600 µm which is sufficient to capture the entirety of expanded cells in the Z direction. This strategy minimizes offtarget imaging and allows robust image acquisition even in cultures with lower seeding density. A detailed description of the automated imaging strategy is included in the methods section of the revised manuscript.

      (6) The general method of imaging pre- and post-expansion is not entirely clear to me. For example, on page 5 the authors state that pre-expansion imaging was done at the center of each gel. Is pre-expansion imaging done after the initial gel polymerization? If so, this would assume that the gelation itself has no effect on cell size and shape if these gelled but not yet expanded cells are used as the reference for calculating expansion factor and isotropy. 

      Pre-expansion imaging is performed after staining is complete, but prior to the application of AcX, which is the first step of the HiExM protocol. Following staining and imaging, plates can be sealed with parafilm and stored at 4˚C for up to a week prior to starting the expansion protocol. We typically image 61 fields of view at the center of the well plate (where the gel will be deposited) to obtain sufficient pre-expansion images as shown in Figure 2b (left). After preexpansion imaging, we perform the HiExM protocol followed by image acquisition. We then tile all the images, as shown in Figure 2b, and compare tiled images from the same well pre- and post-expansion to manually identify the same cells. Comparisons of the pre- and postexpansion images of the same cell are used to calculate expansion factor and isotropy measurements as described. A detailed description of this process is included in the revised manuscript.

      (7) In the dox experiments, are only 4 expanded nuclei analyzed? It is unclear in the Figure 3 legend what the replicates are because for the unexpanded cells, it says the number of nuclei but for expanded it only says n=4. If only 4 nuclei are analyzed, this does not play to the strengths of HiExM by having high throughput.

      We performed the doxorubicin titration assay across four different well plates (n=4). For each condition, the total number of expanded nuclei measured was 118, 111, 110, 113, and 77 for DMSO, 1nM, 10nM, 100nM, and 1µM, respectively. For SEM calculations, we included the number of independent experiments to avoid underestimating error. We revised the Fig. 3 legend to include these experimental details.

      (8) I am not sure if the analysis of dox-treated cells is accurate for the overall phenotype because only a single slice at the midplane is analyzed. It would be helpful to show, at least in one or two example cases, that this trend of changing edge intensity occurs across the whole 3D nucleus.  

      For this analysis, the result is heavily dependent on the angle at which the edge of the nucleus intersects the image plane in the orthogonal view. For this reason, we opted to only use the optimal image plane for each nucleus. We repeated our analysis on an image using multiple optical sections to demonstrate this point. These new data are included as Fig. S11 of the revised manuscript.

      (9) It would be helpful to provide an actual benchmark of imaging speed or throughput to support the claims on page 8 that HiExM can be combined with autonomous imaging to capture thousands of cells a day. What is the highest throughput you have achieved so far?  

      The parameters that dictate imaging speed in HiExM include exposure time, z-stack height, and number of fluorophore channels. Depending on the signal intensity for a given channel, exposure times vary from 200ms to 1000ms. For z-stack height, we found that imaging 65 sections with 1µm spacing allowed for robust identification of each region of interest in the 5x pre-scan. As an example, collecting images for a full well plate (e.g., 20 images per well with 4 channels) requires approximately 24 hours of autonomous image acquisition using the Opera Phenix. Depending on cell size, this process yields imaging data for 1200 cells (1 cell per field of view) to 6000 cells (5 cells per field of view). Different autonomous imagers as well as improving staining techniques that increase signal:noise can be expected to significantly decrease the exposure time as it will reduce the number of z-stacks needed for each region.

      Reviewer #2 (Public Review): 

      Summary: 

      In the present work, the authors present an engineering solution to sample preparation in 96well plates for high-throughput super-resolution microscopy via Expansion Microscopy. This is not a trivial problem, as the well cannot be filled with the gel, which would prohibit the expansion of the gel. A device was engineered that can spot a small droplet of hydrogel solution and keep it in place as it polymerizes. It occupies only a small portion of space at the center of each well, the gel can expand into all directions, and imaging and staining can proceed by liquid handling robots and an automated microscope. 

      Strengths: 

      In contrast to Reference 8, the authors' system is compatible with standard 96 well imaging plates for high-throughput automated microscopy and automated liquid handling for most parts of the protocol. They thus provide a clear path towards high-throughput ExM and highthroughput super-resolution microscopy, which is a timely and important goal. 

      Weaknesses: 

      The assay they chose to demonstrate what high-throughput ExM could be useful for, is not very convincing. But for this reviewer that is not important. 

      We believe the data provide an example of the utility of HiExM that would benefit experiments that require many samples (e.g., conditions, replicates, timepoints, etc.) by enabling easier sample processing and autonomous acquisition of thousands of nanoscale images in parallel. The ability to generate large data sets also enables quantitative analysis of images with appropriate statistical power. The intention of this work is to provide a proof-of-concept example of the robustness, accessibility, and experimental design flexibility of HiExM.

      Reviewer #3 (Public Review):

      Summary: 

      Day et al. introduced high-throughput expansion microscopy (HiExM), a method facilitating the simultaneous adaptation of expansion microscopy for cells cultured in a 96-well plate format. The distinctive features of this method include 1) the use of a specialized device for delivering a minimal amount (~230 nL) of gel solution to each well of a conventional 96-well plate, and 2) the application of the photochemical initiator, Irgacure 2959, to successfully form and expand the toroidal gel within each well.  

      Strengths: 

      This configuration eliminates the need for transferring gels to other dishes or wells, thereby enhancing the throughput and reproducibility of parallel expansion microscopy. This methodological uniqueness indicates the applicability of HiExM in detecting subtle cellular changes on a large scale. 

      Weaknesses: 

      To demonstrate the potential utility of HiExM in cell phenotyping, drug studies, and toxicology investigations, the authors treated hiPS-derived cardiomyocytes with a low dose of doxycycline (dox) and quantitatively assessed changes in nuclear morphology. However, this reviewer is not fully convinced of the validity of this specific application. Furthermore, some data about the effect of expansion require reconsideration. 

      The application we chose was intended as a methods proof-of-concept that could enable future deep biological investigations using HiExM. We believe the data provide an example of the utility of HiExM for collecting thousands of nanoscale images that would benefit experiments that require many samples (e.g., conditions, replicates, timepoints, etc.). The ability to generate large data sets also enables quantitative analysis of images with appropriate statistical power. The intention of this experiment was to provide a proof-of-concept example of the robustness, accessibility, and experimental design flexibility of HiExM. 

      The variability in expansion factor across plates can likely be attributed to the small volume (~250 nL) deposited by the device posts. Small variations in gel volume could impact gel polymerization compared to standard ExM gels. For example, HiExM gels are more sensitive to evaporation due to an increased air-liquid-interface because they are ~1000x smaller than standard expansion gel preparations. Evaporation in HiExM gels likely increases monomer and cross linker concentrations, leading to variation in expansion factor across plates. We note that expansion factor is robust within well plates and that the expansion factor can be more variable between plates, likely due to differences in gel volumes and evaporation. Future iterations of the platform are expected to control for these environmental conditions. These differences are discussed in the revised manuscript.

      Recommendations for the authors:.

      Reviewer #1 (Recommendations For The Authors):

      (1) Please include a scale bar in Figure 3a.

      A scale bar has been added to Figure 3a.

      (2) Please show the data related to nuclear volume after dox treatment.

      We have added a supplementary figure (Fig. S10) showing nuclear volume and sphericity for post-expansion nuclei as well as nuclear area and circularity for pre-expansion nuclei.

      (3) I think it would be extremely helpful for the method as a whole if analysis code and files for device fabrication were made publicly available rather than upon request.

      The analysis code has been included in the supplementary files as CM_Hoechst_Analysis_for publication.ipynb. Device design files are also available at the supplementary files link as hiExM_device.SLDPRT (96-well plate device) and MultiExM_24_July28_2022.SLDPRT (24-well plate device).

      (4) Some details are missing from the methods, such as the concentration of AcX used for HiExM, the concentration of antibodies, etc. Related, how long does the photopolymerization take? Just the 60 seconds that the UVA light is on?

      Additional protocol details are included in the methods section of the revised manuscript. The photopolymerization does only take 60 seconds.

      Reviewer #2 (Recommendations For The Authors):

      (1) The first three references are chosen a little strangely here. I suggest citing STED, SIM, and PALM/STORM from the original manuscripts here. Also, EM is technically not a super-resolution technique as it is within the resolution of electron beams. This reviewer would stay with light microscopy methods when discussing "super-resolution".

      We removed the reference to EM and added citations to the original publications for SIM, STED, and STORM.

      (2) The sentence after citation 4 is a little off in its meaning.

      We have edited the sentence to improve clarity.

      (3) It is highly useful and great that the authors include the observations on the effect of photopolymerization with Irgacure 2959 on dyes.

      (4) In the discussion, the authors could mention new high NA silicone oil objectives that may further optimise the resolution in their scheme.

      We added a sentence in the discussion to reflect this important point.

      (5) The files for the manufacture of the HiExM devices must be in the supplementary data rather than available on request.

      The Solidworks designs for the 96 and 24 well plate devices are included in the supplementary files as hiExM_device.SLDPRT and MultiExM_24_July28_2022.SLDPRT, respectively.

      (6) It would be useful if the authors could discuss their thoughts on the high throughput processing of expansion factors in the data analysis routine.

      We added details to the methods section describing how images are processed and analyzed.

      Reviewer #3 (Recommendations For The Authors):

      Major:

      (1) In the experiments depicted in Figure 3, the authors attempted cellular phenotyping using hiPCS-derived cardiomyocytes treated with doxorubicin (dox). They addressed that the relative intensity of Hoechst at the nuclear periphery increased solely in post-expansion images, although this trend is not clearly evidenced in the provided data (e.g., DMSO control vs. 1 nM dox, Figure 3b). Moreover, this observed phenomenon lacks clear biological significance and may not be suitable as a demonstration for proof-of-concept (POC) acquisition. It is crucial to delineate the biological processes linked with the specific enhancement of DNA binding dye signals in the nuclear periphery and how to rule out the possibility of heterogeneous redistribution of nuclear components rather than enhancing resolution. For instance, if this change can be associated with a biological process such as DNA damage, quantitative detection of the accumulated proteins related to DNA repair, or the specific histone marks, may be more suitable and less susceptible to heterogeneous expansion factors. Additionally, the authors noted the absence of significant changes in nuclear volume, yet the corresponding data was not presented. Moreover, the application insufficiently demonstrated the HiExM's scalable feature employing various well plates. If only acquiring images of dozens of nuclei (Figure 3 legend, p15), a single well per condition would suffice. Therefore, it is necessary to elucidate why this application necessitates a 96-well format for demonstration purposes. The potential experimental design should also incorporate the requirement for well-to-well replication and the acquisition of features at the individual well level, rather than at the single-cell level. Also, related to Figure S10, whether outer gradient slope, but not inner gradient slope, is linked to apoptosis (Page 8, Line 2-4) remains unclear in the H2O2-treated cells.

      We believe the data provide an example of the utility of HiExM that would benefit experiments that require many samples (e.g., conditions, replicates, timepoints, etc.) by enabling easier sample processing and autonomous acquisition of thousands of nanoscale images in parallel. The ability to generate large data sets also enables quantitative analysis of images with appropriate statistical power. The intention of this work is to provide a proof-of-concept example of the robustness, accessibility, and experimental design flexibility of the HiExM method. As discussed in the manuscript, dox treatment is associated with DNA damage, cellular stress, and apoptosis, and commonly observed at high dox concentrations (>200 nM) in in vitro studies using conventional microscopy. Our data suggest that cardiomyocytes exhibit sensitivity to lower concentrations of dox than previously anticipated. Although direct evidence specifically linking dox to increased DNA condensation at the nuclear periphery is limited, the known proapoptotic effects of dox strongly suggest that our observations correlate with these changes. We have now included the data analysis on nuclear morphology in revised Fig. S10. We agree that deeper biological interpretation of the observed changes in Hoechst signal upon dox treatment (or other cellular stressors such as H2O2) using HiExM and whether these changes are correlated with DNA damage or other cellular alterations remains an exciting future direction to develop a more sensitive platform for assessing drug responses.

      For expanded samples, we performed the doxorubicin titration assay across four different well plates (n=4). For each condition, the total number of nuclei measured was 118, 111, 110, 113, and 77 for DMSO, 1nM, 10nM, 100nM, and 1µM, respectively. We apologize for the confusion with respect to the number of replicates and cells analyzed. For SEM calculations, we used the number of independent experiments to avoid underestimating error. 

      (2) In Figure 2b, do the orange arrows indicate the same cell with a unique shape in both the pre- and post-expansion images? Additionally, in Figure 3b, why do the pre- and post-expansion nuclei exhibit such different global shapes? Considering that the gel may freely rotate within the well during expansion, it raises doubts about whether one can identify cells with consistent shapes in both the pre- and post-expansion images. Furthermore, this reviewer observed a similar issue regarding reproducibility among different well plates, as shown in Figure 2h. The panel illustrates that different plates yielded distinct populations of gel sizes. The expansion factors provided in the figure legend (page 13) ranged from 3.5x to 5.1x across gels, indicating a relatively large variation in expansion size. What is the reason behind these variations, and how can they be minimized? These variations could become critical when considering large-scale screening across multiple plates.

      The orange arrow is intended to indicate the same cell with a unique shape in both the pre- and post-expansion images, albeit at a different orientation given that the gel is not fixed within the well. We agree that improved methods to identify the same cells pre- and post-expansion could facilitate error measurements. We have referenced recent methods that could be combined with HiExM to automate and improve error and distortion detection to the discussion of the revised manuscript. 

      Fig. 2 illustrates the ability of HiExM to achieve reproducible gel formation with minimal error within gels, wells, and across plates, measurements consistent with proExM. While uniform within gels, the expansion factor is somewhat variable between gels and plates. We attribute these differences primarily to the small size of the gels, making them vulnerable to the effects of evaporation between experiments. We note this variability should be taken into consideration for studies where absolute length measurements between plates are important for biological interpretation. Future iterations of the platform that allow precise delivery of gel volumes and that minimizes environmental exposure are expected to improve the expansion factor reproducibility across plates to further enable the use of HiExM as a tool for high-throughput nanoscale imaging.

      Minor:

      (1) Considering the signal loss due to photobleaching and fluorophore dilution during expansion, protein imaging may occasionally lack the sensitivity required to detect subtle morphological changes in cellular machinery. This potential limitation should be addressed or discussed in the text.

      A sentence reflecting this point has been added to the manuscript.

      (2) On page 15, the figure legend for panel d states, "Heatmaps of nuclei in b showing..." However, it appears that the panel referred to in this sentence corresponds to panel c.

      The typo has been fixed.

      (3) The type of glass 96-well plate utilized in this study should be specified, as the quality of the product could impact the expansion results.

      The supplier and product number of the well plate used in our study has been added to the methods section.

      (4) In Figure S3, the raw pixel values of CF305 dye are exceptionally low. Is there a specific reason for the very low signals observed when using this dye?

      CF® 350 (305 was a typo) does not excite well at 405 nm, which is the excitation wavelength for the channel we used.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In their manuscript, Gan and colleagues identified a functional critical residue, Tyr404, which when mutated to W or A results in GOF and LOF of TRPML1 activity, respectively. In addition, the authors provide a high-resolution structure of TRPML1 with PI(4,5)P2 inhibitor. This high-resolution structure also revealed a bound phospholipid likely sphingomyelin at the agonist/antagonist site, providing a plausible explanation for sphingomyelin inhibition of TRPML1.

      This is an interesting study, revealing valuable additional information on TRPML1 gating mechanisms including effects on endogenous phospholipids on channel activity. The provided data are convincing. Some major open questions remain. The work will be of interest to a wide audience including industry researchers occupied with TRPML1 exploration as a drug target.

      We appreciate reviewer #1’s positive comments and the specific points raised by this reviewer are addressed in our response to Recommendations For The Authors

      Reviewer #2 (Public Review):

      The transient receptor potential mucolipin 1 (TRPML1) functions as a lysosomal organelle ion channel whose variants are associated with lysosomal storage disorder mucolipidosis type IV. Understanding sites that allosterically control the TRPML1 channel function may provide new molecular moieties to target with prototypic drugs.

      Gan et al provide the first high-resolution cryo-EM structures of the TRPML1 channel (Y404W) in the open state without any activating ligands. This new structure demonstrates how a mutation at a site some distance away from the pore can influence the channel's conducting state. However, the authors do not provide a structural analysis of the Y404W pore which would validate their open-state claims. Nonetheless, Gan et al provide compelling electrophysiology evidence which supports the proposed Y404W gain of function effect. The authors propose an allosteric mechanism with the following molecular details- the Y404 to W sidechain substitution provides extra van der Waals contacts within the pocket surrounded by helices of the VSD-like domain and causes S4 bending which in turn opens to the pore through the S4-S5 linker. Conversely, the author functionally demonstrates that an alanine mutation at this site causes a loss of function. Although the authors do not provide a structure of the Y404A mutation, they propose that the alanine substitution disrupts the sidechain packing and likely destabilizes the open conformation. TRPM1 channels are regulated by PIP2 species, which is related to their cell function. In the membrane of lysosomes, PI(3,5)P2 activates the channel, whereas PI(4,5)P2 found in the plasma membrane has inhibitory effects. To understand its lipid regulation, the authors solved a cryo-EM structure of TRPM1 bound to PI(4,5)P2 in its presumed closed state. Again, while the provided functional evidence suggests that PI(4,5)P2 occupancy inhibits TRPML1 current, the authors do not provide analysis of the pore which would support their closed state assertion. Within this same structure, the authors observe a density that may be attributed to sphingomyelin (or possibly phosphocholine). Using electrophysiology of WT and the Y404W channels, the authors report sphingomyelins antagonist effect on TRPML1 currents under low luminal (external) pH. Taken together, the results described in Gan et al provide compelling evidence for a gating (open, closed) mechanism of the TRPML1 pore which can be allosterically regulated by altered packing and lipid interactions within the VSDL.

      We appreciate reviewer #2’s positive comments and constructive suggestions. We functionally demonstrated that the Y404A mutant is more stable in the closed state. We did not pursue the structure of this mutant as we expect its structure will be the same as the apo closed TRPML1. To verify the open conformation of the Y404W mutant and the closed conformation of PI(4,5)P2 –bound TRPML1, we analyzed the pore radii of our structures in the revision as suggested by the reviewer and compared them with open and closed pores from previously determined TRPML1. Some specific points raised by this reviewer are addressed in our response to Recommendations For The Authors

      Reviewer #1 (Recommendations For The Authors):

      (1) Mutations in TRPML1 cause Mucolipidosis type IV. One patient mutation reported earlier (Chen et al., 2014 https://pubmed.ncbi.nlm.nih.gov/25119295/) to be a LOF mutation is R403C. This mutation resides just next to the here-identified Y404 position which can be converted in either LOF or GOF. Another patient mutation, F408del (also reported previously: (Chen et al., 2014 https://pubmed.ncbi.nlm.nih.gov/25119295/)) results in a mild activity reduction, in particular of the PI(3,5)P2 effect. Can the authors please discuss their findings in the context of the reported literature on these patient mutations and provide explanations as to why this part of the TRPML1 protein seemingly is such a hotspot for mutations affecting channel activity and how they explain this based on their structural evidence? What characteristics would be required for a small molecule agonist of TRPML1 in order to elicit larger activation in these patient LOF mutations if possible?

      We thank the reviewer for highlighting these mutations identified in human patients. R403 appears to play two key roles. Firstly, its side chain participates in stabilizing Y404 in the open state. Secondly, as demonstrated in our previous study on TRPML1 (PMID: 35131932), the R403 side chain points towards the PI(3,5)P2 binding pocket, where it forms a critical salt bridge with the C3 phosphate group in the open state. Therefore, R403C mutation likely abolishes PI(3,5)P2 activation and also destabilizes the open state, resulting in the loss of function of the channel. We have expanded our discussion on this mutation in the revision. F408 is positioned at the junction between S4 and the S4-S5 linker. Its deletion mutation could change the stability or the folding of the protein. It is difficult to speculate the exact cause of the F408Δ LOF based on the TRPML1 structure. We don’t feel the effect of this mutation is relevant to the findings of this study.

      (2) The authors used ML-SA1 only as a basis for their claims. Could they possibly provide some key data also on alternative small molecule agonists such as SF-51 and/or MK6-83?

      We thank the reviewer for this suggestion. The TRPML1 agonists such as  ML-SA1 (derived from SF-51) and  MK6-83 have been well characterized in previous studies. In our study of sphingomyelin effect on TRPML1 activity, we used SF-51 to activate the channel (Figure 4b). The goal of our study is to demonstrate that agonist and antagonist can still allosterically regulate the LOF Y404A and GOF Y404W mutant channels, respectively, and their competition with sphingomyelin. We chose ML-SA1 in our experiment simply because it has been a commonly used TRPML1 agonist and its binding has been structurally defined, allowing us to compare various TRPML1 structures with different ligands. We don’t feel the use of other agonists would add extra information to our findings.  

      (3) Sphingomyelin effects on TRPML1 have been confirmed by other groups as well (see e.g. Prat Castro et al., 2022 https://pubmed.ncbi.nlm.nih.gov/36139381/ Fig.3. Interestingly TPC2 seems unaffected by sphingomyelin albeit it is also activated by PI(3,5)P2. Can the authors provide possibly some modeling and/or cryoEM data on TPC2 with sphingomyelin to potentially explain why TPC2 is seemingly unaffected by sphingomyelin?

      We appreciate the reviewer for providing additional evidence of sphingomyelin's effects on TRPML1 and have included the reference in revision. The binding site and activation mechanism of PI(3,5)P2 are different between TPC2 and TRPML1. It is beyond the scope of this study and also too speculative to model sphingomyelin binding (if any) in TPC2 to explain its lack of effect on TPC2 activity.

      Reviewer #2 (Recommendations For The Authors):

      The findings from Gan et al provide structural insights into the allosteric regulation of TRPML1 channel gating. The authors have provided compelling and hard-won cryo-EM structural evidence of the channel regulation by PI4,5P2 and at sites that pack the gating pore of the VSDL (S4). However, as noted in the public review, the analysis of the cryo-EM structures that would support claims of open and closed channel states is woefully lacking. Additional information related to the functional results is required to evaluate the activation and inhibition kinetic effect of lipids and pharmacological agents used to support their allosteric mechanism of TRPML1 gating.

      Major concerns:

      (a) At the very least, the pore domains of the new channels (PDB 9CBZ and 9CC2) should be analyzed using the HOLE (or other) programs to estimate the distances along the ion-conducting pathway - are the structures wide enough to support the passage of hydrated or partially hydrated cations? Additional figure panels should provide this comparative analysis.

      We thank the reviewer for this valuable suggestion. We have added a figure (Figure Supplement 3b) of pore domain radius analysis using the HOLE program in the revision and have also included the radius comparison with previous determined open and closed TRPML1 structures.  

      (b) At the very least, all current traces (Figures 1C, 1D, 1E, 4B, 4C) should be accompanied by time course plots of current amplitudes. It is impossible to evaluate the authors' claims of lipid and drug effects on TRPML1 channels without this information.

      The corresponding time course plots of current amplitudes have now been included in the revision as Figure Supplement 1 and 7.

      (c) Regarding the gain of function Y404W mutation structure, the authors' allosteric mechanistic hypothesis centers on side chain packing details within the VSD-like domain S4 (which in turn opens the pore through the S4-S5 linker). However, the local resolution within the structures at this site is not described. To assess the veracity of these claims, at the very least, authors should provide electron density maps of this region, either in Figure 2 or in Figure Supplement 4.

      We have included the electron density map and local resolution information surrounding the W404 residue from the Y404W GOF mutant structure in the revision as  Figure Supplement 3c.

      Minor concerns:

      (d) Additional evidence related to the identity of the pore domain-associated lipid density (PC or sphingomyelin), and its channel regulation would improve the manuscript. The authors examine sphingomyelin, but what is the functional impact of PC on TRPML1 currents? While this is suggested, it is at the authors' discretion whether or not to carry out this analysis.

      We thank the reviewer for raising this question. Adding extra PC has no effect on TRPML1 activity. This is expected since PC is the major lipid component of the membrane.

      (e) The manuscript is well written. However, a few errors were noted while reviewing this draft.

      i. Line 138, (Figure F&G).

      ii. Line 66, "signaling transduction".

      These errors have now been corrected.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      This manuscript by Meissner and colleagues described a novel take on a classic social cognition paradigm developed for marmosets. The classic pull task is a powerful paradigm that has been used for many years across numerous species, but its analog approach has several key limitations. As such, it has not been feasible to adopt the task for neuroscience experiments. Here the authors capture the spirit of the classic task but provide several fundamental innovations that modernize the paradigm - technically and conceptually. By developing the paradigm for marmosets, the authors leverage the many advantages of this primate model for studies of social brain functions and their particular amenability to freely-moving naturalistic approaches.

      Strengths:

      The current manuscript describes one of the most exciting paradigms in primate social cognition to be developed in many years. By allowing for freely-moving marmosets to engage in high numbers of trials, while precisely quantifying their visual behavior (e.g. gaze) and recording neural activity this paradigm has the potential to usher in a new wave of research on the cognitive and neural mechanisms underlying primate social cognition and decision-making. This paradigm is an elegant illustration of how naturalistic questions can be adapted to more rigorous experimental paradigms. Overall, I thought the manuscript was well written and provided sufficient details for others to adopt this paradigm. I did have a handful of questions and requests about topics and information that could help to further accelerate its adoption across the field.

      Weaknesses:

      LN 107 - Otters have also been successful at the classic pull task (https://link.springer.com/article/10.1007/s10071-017-1126-2)

      We have added this reference to the manuscript.

      LN 151 - Can you provide a more precise quantification of timing accuracy than the 'sub-second level'. This helps determine synchronization with other devices.

      We have included more precise timing details, noting that data is stored at the millisecond level.

      Using this paradigm, the marmosets achieved more trials than in the conventional task (146 vs 10). While this is impressive, given that only ~50 are successful Mutual Cooperation trials it does present some challenges for potential neurophysiology experiments and particular cognitive questions. The marmosets are only performing the task for 20 minutes, presumably because they become sated and are no longer motivated. This seems a limitation of the task and is something worth discussing in the manuscript. Did the authors try other food rewards, reduce the amount of reward, food/water restrict the animals for more than the stated 1-3 hours? How might this paradigm be incorporated into in-cage approaches that have been successful in marmosets? Any details on this would help guide others seeking to extend the number of trials performed each day.

      We have added a discussion addressing the use of liquid rewards, minimal food and water restriction, and the potential for further optimization to increase task engagement and trial numbers. This is now reflected in the revised manuscript.

      Can you provide more details on the DLC/Anipose procedure? How were the cameras synchronized? What percentage of trials needed to be annotated before the model could be generalized? Did each monkey require its own model, or was a single one applied to all animals?

      We have added more detailed information on the DLC and Anipose tracking which can be found in the Multi-animal 3D tracking section under Materials & Methods.

      Will the schematics and more instructions on building this system be made publicly available? A number of the components listed in Table 1 are custom-designed. Although it is stated that CAD files will be made available upon request, sharing a link to these files in an accessible folder would significantly add to the potential impact of this paradigm by making it easier for others to adopt.

      We have made the SolidWorks CAD files publicly available. They can now be found in the Github repository alongside the apparatus and task code.

      In the Discussion, it would be helpful to have some discussion of how this paradigm might be used more broadly. The classic pulling paradigm typically allows one to ask a specific question about social cognition, but this task has the potential to be more widely applied to other social decision-making questions. For example, how might this task be adopted to ask some of the game-theory-type approaches common in this literature? Given the authors' expertise in this area, this discussion could serve to provide a roadmap for the broader field to adopt.

      Although this paradigm was developed specifically for marmosets, it seems to me that it could readily be adopted in other species with some modifications. Could the authors speak to this and their thoughts on what may need to be changed to be used in other species? This is particularly important because one of the advantages of the classic paradigm is that it has been used in so many species, providing the opportunity to compare how different species approach the same challenge. For example, though both chimps and bonobos are successful, their differences are notably illuminating about the nuances of their respective social cognitive faculties.

      We have expanded the discussion for the broader applications of this apparatus both for other decision-making research questions as well as its adaptability for use in other species.

      Reviewer #2 (Public Review):

      Summary:

      This important work by Meisner et al., developed an automated apparatus (MarmoAPP) to collect a wide array of behavioral data (lever pulling, gaze direction, vocalizations) in marmoset monkeys, with the goal of modernizing collection of behavioral data to coincide with the investigation of neurological mechanisms governing behavioral decision making in an important primate neuroscience model. The authors show a variety of "proof-of-principle" concepts that this apparatus can collect a wide range of behavioral data, with higher behavioral resolution than traditional methods. For example, the authors highlight that typical behavioral experiments on primate cooperation provide around 10 trials per session, while using their approach the authors were able to collect over 100 trials per 20-minute session with the MarmoAAP.

      Overall the authors argue that this approach has a few notable advantages:<br /> (1) it enhances behavioral output which is important for measuring small or nuanced effects/changes in behavior;<br /> (2) allows for more advanced analyses given the higher number of trials per session;<br /> (3) significantly reduces the human labor of manually coding behavioral outcomes and experimenter interventions such as reloading apparatuses for food or position;<br /> (4) allows for more flexibility and experimental rigor in measuring behavior and neural activity simultaneously.

      Strengths:

      The paper is well-written and the MarmoAPP appears to be highly successful at integrating behavioral data across many important contexts (cooperation, gaze, vocalizations), with the ability to measure significantly many more behavioral contexts (many of which the authors make suggestions for).

      The authors provide substantive information about the design of the apparatus, how the apparatus can be obtained via a long list of information Apparatus parts and information, and provide data outcomes from a wide number of behavioral and neurological outcomes. The significance of the findings is important for the field of social neuroscience and the strength of evidence is solid in terms of the ability of the apparatus to perform as described, at least in marmoset monkeys. The advantage of collecting neural and freely-behaving behavioral data concurrently is a significant advantage.

      Weaknesses:

      While this paper has many significant strengths, there are a few notable weaknesses in that many of the advantages are not explicitly demonstrated within the evidence presented in the paper. There are data reported (as shown in Figures 2 and 3), but in many cases, it is unclear if the data is referenced in other published work, as the data analysis is not described and/or self-contained within the manuscript, which it should be for readers to understand the nature of the data shown in Figures 2 and 3.

      (1) There is no data in the paper or reference demonstrating training performance in the marmosets. For example, how many sessions are required to reach a pre-determined criterion of acceptable demonstration of task competence? The authors reference reliably performing the self-reward task, but this was not objectively stated in terms of what level of reliability was used. Moreover, in the Mutual Cooperation paradigm, while there is data reported on performance between self-reward vs mutual cooperation tasks, it is unclear how the authors measured individual understanding of mutual cooperation in this paradigm (cooperation performance in the mutual cooperation paradigm in the presence or absence of a partner; and how, if at all, this performance varied across social context). What positive or negative control is used to discern gained advantages between deliberate cooperation vs two individuals succeeding at self-reward simultaneously?

      Thank you for your comment. This Tools & Resources paper is focused solely on the development of the apparatus and methods. Future publications will provide more details on training performance, learning behaviors, and include appropriate controls to distinguish deliberate cooperation from simultaneous success in self-reward tasks.

      (2) One of the notable strengths of this approach argued by the authors is the improved ability to utilize trials for data analysis, but this is not presented or supported in the manuscript. For example, the paper would be improved by explicitly showing a significant improvement in the analytical outcome associated with a comparison of cooperation performance in the context of ~150 trials using MarmoAAP vs 10-12 trials using conventional behavioral approaches beyond the general principle of sample size. The authors highlight the dissection of intricacies of behavioral dynamics, but more could be demonstrated to specifically show these intricacies compared to conventional approaches. Given the cost and expertise required to build and operate the MarmoAAP, it is critical to provide an important advantage gained on this front. The addition of data analysis and explicit description(s) of other analytical advantages would likely strengthen this paper and the advantages of MarmoAAP over other behavioral techniques.

      Thank you for the suggestion. While this manuscript focuses on the apparatus and methods, the increase in trial numbers itself provides clear advantages, including greater statistical power and more robust analyses of behavioral dynamics. Future publications will offer more in-depth analyses comparing the performance and cooperation behavior observed with MarmoAAP, further demonstrating these analytical benefits.

      Reviewer #3 (Public Review):

      Summary:

      The authors set out to devise a system for the neural and behavioral study of socially cooperative behaviors in nonhuman primates (common marmosets). They describe instrumentation to allow for a "cooperative pulling" paradigm, the training process, and how both behavioral and neural data can be collected and analyzed. This is a valuable approach to an important topic, as the marmoset stands as a great platform to study primate social cognition. Given that the goals of such a methods paper are to (a) describe the approach and instrumentation, (b) show the feasibility of use, and (c) quantitatively compare to related approaches, the work is easily able to meet those criteria. My specific feedback on both strengths and weaknesses is therefore relatively limited in scope and depth.

      Strengths:

      The device is well-described, and the authors should be commended for their efforts in both designing this system but also in "writing it up" so that others can benefit from their R&D.

      The device appears to generate more repetitions of key behavior than other approaches used in prior work (with other species).

      The device allows for quantitative control and adjustment to control behavior.

      The approach also supports the integration of markerless behavioral analysis as well as neurophysiological data.

      Weaknesses:

      A few ambiguities in the descriptions are flagged below in the "Recommendations for authors".

      The system is well-suited to marmosets, but it is less clear whether it could be generalized for use in other species (in which similar behaviors have been studied with far less elegant approaches). If the system could impact work in other species, the scope of impact would be significantly increased, and would also allow for more direct cross-species comparisons. Regardless, the future work that this system will allow in the marmoset will itself be novel, unique, and likely to support major insights into primate social cognition.

      Thank you for this feedback. We have expanded the discussion to include how the apparatus could be adapted for use in other species, highlighting the potential modifications required, such as adjusting the size and strength of the servo motor and components. These changes would enable broader applications and facilitate cross-species comparisons.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      Understanding large-scale neural activity remains a formidable challenge in neuroscience. While several methods have been proposed to discover the assemblies from such large-scale recordings, most previous studies do not explicitly model the temporal dynamics. This study is an attempt to uncover the temporal dynamics of assemblies using a tool that has been established in other domains.

      The authors previously introduced the compositional Restricted Boltzmann Machine (cRBM) to identify neuron assemblies in zebrafish brain activity. Building upon this, they now employ the Recurrent Temporal Restricted Boltzmann Machine (RTRBM) to elucidate the temporal dynamics within these assemblies. By introducing recurrent connections between hidden units, RTRBM could retrieve neural assemblies and their temporal dynamics from simulated and zebrafish brain data.

      Strengths:

      The RTRBM has been previously used in other domains. Training in the model has been already established. This study is an application of such a model to neuroscience. Overall, the paper is well-structured and the methodology is robust, the analysis is solid to support the authors' claim.

      Weaknesses:

      The overall degree of advance is very limited. The performance improvement by RTRBM compared to their cRBM is marginal, and insights into assembly dynamics are limited.

      (1) The biological insights from this method are constrained. Though the aim is to unravel neural ensemble dynamics, the paper lacks in-depth discussion on how this method enhances our understanding of zebrafish neural dynamics. For example, the dynamics of assemblies can be analyzed using various tools such as dimensionality reduction methods once we have identified them using cRBM. What information can we gain by knowing the effective recurrent connection between them? It would be more convincing to show this in real data.

      See below in the recommendations section.

      (2) Despite the increased complexity of RTRBM over cRBM, performance improvement is minimal. Accuracy enhancements, less than 1% in synthetic and zebrafish data, are underwhelming (Figure 2G and Figure 4B). Predictive performance evaluation on real neural activity would enhance model assessment. Including predicted and measured neural activity traces could aid readers in evaluating model efficacy.

      See below in the recommendations section.

      Recommendations:

      (1) The biological insights from this method are constrained. Though the aim is to unravel neural ensemble dynamics, the paper lacks in-depth discussion on how this method enhances our understanding of zebrafish neural dynamics. For example, the dynamics of assemblies can be analyzed using various tools such as dimensionality reduction methods once we have identified them using cRBM. What information can we gain by knowing the effective recurrent connection between them? It would be more convincing to show this in real data.

      We agree with the reviewer that our analysis does not explore the data far enough to reach the level of new biological insights. For practical reasons unrelated to the science, we cannot further explore the data in this direction at this point, however, funding permitting, we will pick up this question at a later stage. The only change we have made to the corresponding figure at the current stage was to adapt the thresholds, which better emphasizes the locality of the resulting clusters.

      (2) Despite the increased complexity of RTRBM over cRBM, performance improvement is minimal. Accuracy enhancements, less than 1% in synthetic and zebrafish data, are underwhelming (Figure 2G and Figure 4B). Predictive performance evaluation on real neural activity would enhance model assessment. Including predicted and measured neural activity traces could aid readers in evaluating model efficacy.

      We thank the reviewer kindly for the comments on the performance comparison between the two models. We would like to highlight that the small range of accuracy values for the predictive performance is due to both the sparsity and stochasticity of the simulated data, and is not reflective of the actual percentage in performance improvement. To this end, we have opted to use a rescaled metric that we call the normalised Mean Squared Error (nMSE), where the MSE is equal to 1 minus the accuracy, as the visible units take on binary values. This metric is also more in line with the normalised Log-Likelihood (nLLH) metric used in the cRBM paper in terms of interpretability. The figure shows that the RTRBM can significantly predict the state of the visible units in subsequent time-steps, whereas the cRBM captures the correct time-independent statistics but has no predictive power over time.

      We also thank the reviewer for pointing out that there is no predictive performance evaluation on the neural data. This has been chosen to be omitted for two reasons. First, it is clear from Fig. 2 that the (c)RBM has no temporal dependencies, meaning that the predictive performance is determined mostly by the average activity of the visible units. If this corresponds well with the actual mean activity per neuron, the nMSE will be around 0. This correspondence is already evaluated in the first panel of 3F. Second, as this is real data, we can not make an estimate of a lower bound on the MSE that is due to neural noise. Because of this, the scale of the predictive performance score will be arbitrary, making it difficult to quantitatively assess the difference in performance between both models.

      (3) The interpretation of the hidden real variable $r_t$ lacks clarity. Initially interpreted as the expectation of $\mathbf{h}_t$, its interpretation in Eq (8) appears different. Clarification on this link is warranted.

      We thank the reviewer kindly for the suggested clarification. However, we think the link between both values should already be sufficiently clear from the text in lines 469-470:

      “Importantly, instead of using binary hidden unit states 𝐡[𝑡−1], sampled from the expected real valued hidden states 𝐫[𝑡−1], the RTRBM propagates these real-valued hidden unit states directly.”

      In other words, both indeed are the same, one could sample a binary-valued 𝐡[𝑡-1] from the real-valued 𝐫[𝑡-1] through e.g. a Bernoulli distribution, where 𝐫[𝑡-1] would thus indeed act as an expectation over 𝐡[𝑡−1]. However, the RTRBM formulation keeps the real-valued 𝐫[𝑡-1] to propagate the hidden-unit states to the next time-step. The motivation for this choice is further discussed in the original RTRBM paper (Sutskever et al. 2008).

      (4) In Figure 3 panel F, the discrepancy in x-axis scales between upper and lower panels requires clarification. Explanation regarding the difference and interpretation guidelines would enhance understanding.

      Thank you for pointing out the discrepancy in x-axis scales between the upper and lower panels of Figure 3F. The reason why these scales are different is that the activation functions in the two models differ in their range, and showing them on the same scale would not do justice to this difference. But we agree that this could be unclear for readers. Therefore we added an additional clarification for this discrepancy in line 215:

      “While a direct comparison of the hidden unit activations between the cRBM and the RTRBM is hindered by the inherent discrepancy in their activation functions (unbounded and bounded, respectively), the analysis of time-shifted moments reveals a stronger correlation for the RTRBM hidden units ($r_s = 0.92$, $p<\epsilon$) compared to the cRBM ($r_s = 0.88$, $p<\epsilon$)”

      (5) Assessing model performance at various down-sampling rates in zebrafish data analysis would provide insights into model robustness.

      We agree that we would have liked to assess this point in real data, to verify that this holds as well in the case of the zebrafish whole-brain data. The main reason why we did not choose to do this in this case is that we would only be able to further downsample the data. Current whole brain data sets are collected at a few Hz (here 4 Hz, only 2 Hz in other datasets), which we consider to be likely slower than the actual interaction speed in neural systems, which is on the order of milliseconds between neurons, and on the order of ~100 ms (~10 Hz) between assemblies. Therefore reducing the rate further, we expect to only see a reduction in quality, which we considered less interesting than finding an optimum. Higher rates of imaging in light-sheet imaging are only achievable currently by imaging only single planes (which defies the goal of whole brain recordings), but may be possible in the future when the limiting factors (focal plane stepping and imaging) are addressed. For completeness, we have now performed the downstepping for the experimental data, which showed the expected decrease in performance. The results have been integrated into Figure 4.

      Reviewer #2 (Public Review):

      Summary:

      In this work, the authors propose an extension to some of the last author's previous work, where a compositional restricted Boltzmann machine was considered as a generative model of neuron-assembly interaction. They augment this model by recurrent connections between the Boltzmann machine's hidden units, which allow them to explicitly account for temporal dynamics of the assembly activity. Since their model formulation does not allow the training towards a compositional phase (as in the previous model), they employ a transfer learning approach according to which they initialise their model with a weight matrix that was pre-trained using the earlier model so as to essentially start the actually training in a compositional phase. Finally, they test this model on synthetic and actual data of whole-brain light-sheet-microscopy recordings of spontaneous activity from the brain of larval zebrafish.

      Strengths:

      This work introduces a new model for neural assembly activity. Importantly, being able to capture temporal assembly dynamics is an interesting feature that goes beyond many existing models. While this work clearly focuses on the method (or the model) itself, it opens up an avenue for experimental research where it will be interesting to see if one can obtain any biologically meaningful insights considering these temporal dynamics when one is able to, for instance, relate them to development or behaviour.

      Weaknesses:

      For most of the work, the authors present their RTRBM model as an improvement over the earlier cRBM model. Yet, when considering synthetic data, they actually seem to compare with a "standard" RBM model. This seems odd considering the overall narrative, and it is not clear why they chose to do that. Also, in that case, was the RTRBM model initialised with the cRBM weight matrix?

      Thank you for raising the important point regarding the RTRBM comparison in the synthetic data section. Initially, we aimed to compare the performance of the cRBM with the cRTRBM. However, we encountered significant challenges in getting the RTRBM to reach the compositional phase. To ensure a fair and robust comparison, we opted to compare the RBM with the RTRBM.

      A few claims made throughout the work are slightly too enthusiastic and not really supported by the data shown. For instance, when the authors refer to the clusters shown in Figure 3D as "spatially localized", this seems like a stretch, specifically in view of clusters 1, 3, and 4.

      Thanks for pointing out this inaccuracy. When going back to the data/analyses to address the question about locality, we stumbled upon a minor bug in the implementation of the proportional thresholding, causing the threshold to be too low and therefore too many neurons to be considered.

      Fixing this bug reduces the number of neurons, thereby better showing the local structure of the clusters. Furthermore, if one would lower the threshold within the hierarchical clustering, smaller, and more localized, clusters would appear. We deliberately chose to keep this threshold high to not overwhelm the reader with the number of identified clusters. We hope the reviewer agrees with these changes and that the spatial structure in the clusters presented are indeed rather localized.

      Moreover, when they describe the predictive performance of their model as "close to optimal" when the down-sampling factor coincided with the interaction time scale, it seems a bit exaggerated given that it was more or less as close to the upper bound as it was to the lower bound.

      We thank the reviewer for catching this error. Indeed, the best performing model does not lay very close to the estimated performance of an optimal model. The text has been updated to reflect this.

      When discussing the data statistics, the authors quote correlation values in the main text. However, these do not match the correlation values in the figure to which they seem to belong. Now, it seems that in the main text, they consider the Pearson correlation, whereas in the corresponding figure, it is the Spearman correlation. This is very confusing, and it is not really clear as to why the authors chose to do so.

      Thank you for identifying the discrepancy between the correlation values mentioned in the text and those presented in the figure. We updated the manuscript to match the correlation coefficient values in the figure with the correct values denoted in the text.

      Finally, when discussing the fact that the RTRBM model outperforms the cRBM model, the authors state it does so for different moments and in different numbers of cases (fish). It would be very interesting to know whether these are the same fish or always different fish.

      Thank you for pointing this out. Keeping track of the same fish across the different metrics makes sense. We updated the figure to include a color code for each individual fish. As it turns out each time the same fish are significantly better performing.

      Recommendations:

      Figure 1: While the schematic in A and D only shows 11 visible units ("neurons"), the weight matrices and the activity rasters in B and C and E and F suggest that there should be, in fact, 12 visible units. While not essential, I think it would be nice if these numbers would match up.

      Thank you for pointing out the inconsistency in the number of visible units depicted in Figure 1. We agree that this could have been confusing for readers. The figure has been updated accordingly. As you suggested, the schematic representation now accurately reflects the presence of 12 visible units in both the RBM and RTRBM models.

      Figure 3: Panel G is not referenced in the main text. Yet, I believe it should be somewhere in lines 225ff.

      Thank you for mentioning this. We added in line 233 a reference to figure 3 panel G to refer to the performance of the cRBM and RTRBM on the different fish.

      Line 637ff: The authors consider moments <v\_i h\_μ> and <v\_i h\_j>, and from the context, it seems they are not the same. However, it is not clear as to why because, judging from the notation, they should be the same.

      The second-order statistic <v\_i h\_j> on line 639 was indeed already mentioned and denoted as <v\_i h\_μ> on line 638. It has now been removed accordingly in the updated manuscript.

      I found the usage of U^ and U throughout the manuscript a bit confusing. As far as I understand, U^ is a learned representation of U. However, maybe the authors could make the distinction clearer.

      We understand the usage of Û and U throughout the text may be confusing for the reader. However, we would like to notify the reviewer that the distinction between these two variables is explained in line 142: “in addition to providing a close estimate (̂Û) to the true assembly connectivity matrix U”. However, for added clarification to the reader, we added additional mentions of the estimated nature of Û throughout the text in the updated manuscript.

      Equation 3: It would be great if the authors could provide some more explanation of how they arrived at the identities.

      These identities have previously been widely described in literature. For this reason, we decided not to include their derivation in our manuscript. However, for completeness, we kindly refer to:

      Goodfellow, I., Bengio, Y., & Courville, A. (2016). Chapter 20: Deep generative models [In Deep Learning]. MIT Press. https://www.deeplearningbook.org/contents/generative_models.html

      Typos:

      -  L. 196: "connectiivty" -> "connectivity"

      -  L. 197: Does it mean to say "very strong stronger"?

      -  L. 339: The reference to Dunn et al. (2016) should appear in parentheses.

      -  L. 504f: The colon should probably be followed by a full sentence.

      -  Eq. 2: In the first line, the potential V still appears, which should probably be changed to show the concrete form (-b * h) as in the second line.

      -  L. 351: Is there maybe a comma missing after "cRBM"?

      -  L. 271: Instead of "correlation", shouldn't it rather be "similarity"? - L. 218: "Figure 3D" -> "Figure 3F"

      We thank the reviewer for pointing out these typos, which have all (except one) been fixed in the text. We do emphasize the potential V to show that there are alternative hidden unit potentials that can be chosen. For instance, the cRBM utilizes dReLu hidden unit potentials.

      Reviewer #3 (Public Review):

      With ever-growing datasets, it becomes more challenging to extract useful information from such a large amount of data. For that, developing better dimensionality reduction/clustering methods can be very important to make sense of analyzed data. This is especially true for neuroscience where new experimental advances allow the recording of an unprecedented number of neurons. Here the authors make a step to help with neuronal analyses by proposing a new method to identify groups of neurons with similar activity dynamics. I did not notice any obvious problems with data analyses here, however, the presented manuscript has a few weaknesses:

      (1) Because this manuscript is written as an extension of previous work by the same authors (van der Plas et al., eLife, 2023), thus to fully understand this paper it is required to read first the previous paper, as authors often refer to their previous work for details. Similarly, to understand the functional significance of identified here neuronal assemblies, it is needed to go to look at the previous paper.

      We agree that the present Research Advance has been written in a way that builds on our previous publication. It was our impression that this was the intention of the Research Advance format, as spelled out in its announcement "eLife has introduced an innovative new type of article – the Research Advance – that invites the authors of any eLife paper to present significant additions to their original research". In the previous formatting guidelines from eLife this was more evident with a strong limitation on the number of figures and words, however, also for the present, more liberal guidelines, place an emphasis on the relation to the previous article. We have nonetheless tried in several places to fill in details that might simplify the reading experience.

      (2) The problem of discovering clusters in data with temporal dynamics is not unique to neuroscience. Therefore, the authors should also discuss other previously proposed methods and how they compare to the presented here RTRBM method. Similarly, there are other methods using neural networks for discovering clusters (assemblies) (e.g. t-SNE: van der Maaten & Hinton 2008, Hippocluster: Chalmers et al. 2023, etc), which should be discussed to give better background information for the readers.

      The clustering methods suggested by the reviewer do not include modeling any time dependence, which is the crucial advance presented here by the introduction of the RTRBM, in extending the (c)RBM. In our previous publication on the cRBM (an der Plas et al., eLife, 2023), this comparison was part of the discussion, although it focussed on a different set of methods. While clustering methods like t-SNE, UMAP and others certainly have their value in scientific analysis, we think it might be misleading the reader to think that they achieve the same task as an RTRBM, which adds the crucial dimension of temporal dependence.

      (3) The above point to better describe other methods is especially important because the performance of the presented here method is not that much better than previous work. For example, RTRBM outperforms the cRBM only on ~4 out of 8 fish datasets. Moreover, as the authors nicely described in the Limitations section this method currently can only work on a single time scale and clusters have to be estimated first with the previous cRBM method. Thus, having an overview of other methods which could be used for similar analyses would be helpful.

      We think that the perception that the RTRBM performs only slightly better is based on a misinterpretation of the performance measure, which we have tried to address (see comments above) in this rebuttal and the manuscript. In addition we would like to emphasize that the structural estimation (which is still modified by the RTRBM, only seeded by the cRBMs output), as shown in the simulated data, makes improved structural estimates, which is important, even in cases where the performance is comparable (which can be the case if the RBM absorbs temporal dependencies of assemblies into modified structure of assemblies). We have clarified this now in the discussion.

      Recommendations:

      (1) Line 181: it is not explained how a reconstruction error is defined.

      Dear reviewer, thanks for pointing this out. A definition of the (mean square) reconstruction error is added in this line.

      (2) How was the number of hidden neurons chosen and how does it affect performance?

      Thank you for pointing this out. Due to the fact that we use transfer learning, the number of hidden units used for the RTRBM is given by the number of hidden units used for training the cRBM. In further research, when the RTRBM operates in the compositional phase, we can exploit a grid search over a set of hyper parameters to determine the optimal set of hidden units and other parameters.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewing Editor (Recommendations For The Authors):

      The revised manuscripts and rebuttal sufficiently answered all the questions raised by three Reviewers. Overall, the manuscript is well written and the results are clear based on a straightforward experiment in a pursuit of comparing dimeric PTH analog to 1-34 PTH analog, which has established clinical efficacy. The study's results are valuable as it utilized large animal models, specifically examined the local bone integration effects, and demonstrated the comparable therapeutic efficacy of the new PTH analog to 1-34 PTH. However, the data did not convincingly show how the dimeric PTH analog overcomes the limitations of 1-34 PTH. I suggest that the discussion should focus more on the differences between the two analogs.

      We sincerely appreciate your thorough review and valuable feedback. We have carefully considered your comments and would like to address them as follows:

      “Regarding the results on the effect of dimeric R25CPTH(1-34) in the OVX mouse model (Noh et al., 2024), bone formation markers were increased in the dimeric R25CPTH(1-34) group compared to the rhPTH (1-34) group. Additionally, bone resorption markers were decreased in the rhPTH (1-34) group compared to the control group. However, no significant differences were observed in the dimeric R25CPTH(1-34) group. This suggests that the mechanism of action of the dimeric peptide differs from that of the wildtype peptide. Furthermore, based on unpublished data comparing mRNA expression in bone and kidney tissues between the dimeric R25CPTH(1-34) and rhPTH (1-34) treated groups, we strongly believe that dimeric R25CPTH(1-34) exhibits distinct biological activity from rhPTH (1-34). These differences may arise from variations in PTH receptor binding, involvement of different G protein subtypes, or downstream intracellular signaling pathways.

      The distinct effects of dimeric R25CPTH(1-34) and rhPTH (1-34) on osteoblasts and osteoclasts could indicate that while remodeling-based osteogenesis has a limited clinical use period, the dimeric form might promote sustained bone formation and increased bone density over a longer duration. Given that patients with this mutation, who have been exposed to the mutant dimer throughout their lives, exhibit high bone density, this suggests significant potential for dimeric R25CPTH(1-34) as a novel therapeutic option alongside wildtype PTH.” (Discussion section 2nd paragraph)

      A few minor points I 'd like to point out. This line number is based on a Word file.

      Line 146-148 - However, both were insufficient compared to the control group and did not illustrate any bone filling. The measured bone-implant contact ratio was 18.32 {plus minus} 16.19% for the control group, 48.13 {plus minus} 29.81% for the group, and 39.53 {plus minus} 26.17% (P < 0.05).

      - Does it mean that bone generation of both treatment group is inferior to the control group? please specify which groups the values are belong to and between which groups P-value compare.

      Thank you very much for your suggestion to improve the manuscript. We have recognized the previous omission and have revised the sentence clearly as follows.

      "The measured bone–implant contact ratio was 18.32 ± 16.19% for the control group, 48.13 ± 29.81% for the rhPTH(1-34) group, and 39.53 ± 26.17% for the dimeric R25CPTH(1-34) group, illustrating the significant improvement in osseointegration. (P < 0.05 for the control group compared to both PTH groups; however, the difference between the PTH groups was not significant.)"

      Line 157 - incompleteness over the same period. The rhPTH(1-34) group exhibited a mature trabecularcfghnc

      - Please correct misspellings.

      As the reviewer mentioned, I have corrected "trabecularcfghnc" to "trabecular." Thank you.

      Line 165-168 and Figure 4 M-N - Both the rhPTH(1-34) and dimeric R25CPTH(1-34) groups showed a significantly higher number of TRAP+ cells at both bone defects, with and without a xenograft, compared to the control group (Figure 4M,N). (P < 0.05) In addition, the number of TRAP+ cells in the dimeric R25CPTH(1-34)group was significantly higher than in the vehicle, yet lower than in the rhPTH(1-34) group (Figure 4M,N).)

      - I believe the heading of figure 4M-N should be changed to with or without xenograft. And maybe you want to explain the significant difference of TRAP positive cells between two groups (with vs. without xenograft). Minor point: was - were

      We totally agree with reviewer’s comment. We changed figure 4. Also, based on the revised figure, the figure legends for figure 4 were also revised as follows. “The number of TRAP-positive cells in the mandible with and without xenograft in the rhPTH(1-34) and dimeric R25CPTH(1-34)-treated beagle groups.” Following the reviewer's comments, the be verb in the sentences in the results section was changed from ‘was’ to ‘were’. “The capability of rhPTH(1-34) and dimeric R25CPTH(1-34) in bone remodeling were evaluated by tartrate-resistant acid phosphatase (TRAP) immunohistochemical staining.”

      Line 182-186 - This study investigated the therapeutic effects of rhPTH(1-34) and dimeric R25CPTH(1-34) on bone regeneration and osseointegration in a large animal model with postmenopausal osteoporosis. rhPTH(1-34) and dimeric R25CPTH(1-34) have shown significant clinical efficacy, and although there have been a few studies investigating their effects on bone regeneration in rodents (Garcia et al., 2013), the authors in this study aimed to investigate the effects using a large animal model that more accurately mimics osteoporotic humans (Cortet, 2011).

      - Please split the sentences for better clarity. In last sentence, I'm unsure what Cortet 2011 citation here is for. The statement should be written in the first person not the third person.

      We appreciate your attention to detail, which has helped improve the clarity and accuracy of this manuscript. As per the reviewer's suggestion, I have reordered and changed the references to fit the content and revised the sentences to the first person.

      “rhPTH(1-34) and dimeric R25CPTH(1-34) have shown significant clinical efficacy. Although there have been a few studies investigating their effects on bone regeneration in rodents (Garcia et al., 2013), we aimed to investigate these effects using a large animal model. We chose this model because it more accurately mimics osteoporotic humans (Jee and Yao, 2001).”

      Line 196-197 - Furthermore, by demonstrating that dimeric R25CPTH(1-34) exhibits a distinct pharmacological profile different from rhPTH(1-34) but still provides a clear anabolic effect in the localized jaw region, the authors have shown that it may possess different potential therapeutic indications from rhPTH(1-34).

      - This study does not include any pharmacological data. (Please cite reference). Again, I would suggest writing it in the first person. It sounds like you are reviewing someone else's work

      Thank you for your insightful comments. We acknowledge that our study did not include pharmacological data. We have changed the sentence to clarify that the pharmacological profile information is derived from previous studies. A suitable citation was included to substantiate this assertion. As suggested, we have revised the statement in the first person to more accurately represent our own research and discoveries.

      “Furthermore, we have shown that dimeric R25CPTH(1-34) has a distinct anabolic effect in the localized mandible region, which is comparable to that of rhPTH(1-34). Our findings indicate that dimeric R25CPTH(1-34) may have distinct potential therapeutic indications, as demonstrated by prior pharmacological studies  (Bae et al., 2016), which demonstrated that it possesses a distinct pharmacological profile from rhPTH(1-34).”

      Line 201 - One of the potential clinical advantages of dimeric R25CPTH(1-34) is its partial agonistic effect in pharmacodynamics.

      - it needs reference

      Thank you for your insightful advice. As reviewer’s suggestion, we have included references as follows.

      “Additionally, the potency of cAMP production in cells was lower for dimeric R25CPTH compared to monomeric R25CPTH, consistent with its lower PTH1R-binding affinity (Noh et al., 2024).”

      Line 206-207 - Also, the effects of dimer were prominent, as we mentioned better bone formation than the control group

      - But not compared with monomeric 1-34 PTH

      We have revised the statement to more accurately reflect our findings.

      “Also, the impact of dimeric R25CPTH(1-34) was notable, as we observed a noticeable improvement in bone formation when compared to the control group. However, these effects were not as strong as those of rhPTH(1-34). Both PTH analogs demonstrated enhanced anabolic effects around the titanium implants, promoting bone regeneration and remodeling.”

      Line 224 - The authors have attributed this phenomenon to the unique anatomical characteristics observed in the jawbone.

      - I would suggest writing it in the first person

      We totally understood the reviewer’s comment. We have corrected the sentences as follows.

      “The anabolic effects of both PTH analogs in this specific region may have been enhanced by the unique anatomical characteristics of the mandible, which we attribute to these improvements.”

      Line 236 - The authors have attributed this phenomenon to the unique anatomical characteristics observed in the jawbone.

      - This is outdated as the label of two year limit of Forteo use was lifted by FDA in 2021

      Thank you for your valuable comments regarding the FDA’s decision to lift the two-year limit on Forteo (teriparatide) use in 2021. We have revised sentences to reflect this recent information in FDA guidelines as follows.

      “Despite the FDA's decision to remove the two-year treatment limit in 2021, which opens possibilities for broader clinical applications, there are still numerous challenges that need to be addressed. There are ongoing concerns about the potential long-term effects of extended use, including accelerated bone remodeling, possible hypercalcemic conditions, and heightened bone resorption”

      Line 380-382 - bone volume (TV; mm3), trabecular number (Tb.N; 1/mm), trabecular thickness (Tb. Th; um), trabecular separation (Tb.sp; µm).

      - minor points- please superscript mm3, and change u -> µ

      We appreciate reviewer’s detailed comments. We have corrected the part about unit display in figure legend.

      Line 405-406 - following treatment with dimeric dimeric R25CPTH(1-34)

      - please remove redundancy.

      We removed dimeric duplication in the figure legend for figure 5 as follows.

      “Figure 5. Measurement of biochemical Marker Dynamics in serum. The serum levels of calcium, phosphorus, P1NP, and CTX across three time points (T0, T1, T2) following treatment with dimeric R25CPTH(1-34), rhPTH(1-34) and control.”

      Line 409-410 - CTX levels, associated with bone resorption, show no significant differences between groups.

      - there is a missing figure identification. please specify relevant figure - I guess (E)

      We appreciate the reviewer's insightful comment regarding the missing figure identification in the sentence about CTX levels. After reviewing Figure 5, we have specified the relevant figure panel as follows:

      “Figure 5. (A) The study timeline. (B-C) Calcium and phosphorus levels show an upward trend in response to both PTH treatments compared to control, indicating enhanced bone mineralization. (D) P1NP levels, indicative of bone formation, remain relatively stable across time and treatments. (E) CTX levels, associated with bone resorption, show no significant differences between groups.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment 

      This study is a detailed investigation of how chromatin structure influences replication origin function in yeast ribosomal DNA, with focus on the role of the histone deacetylase Sir2 and the chromatin remodeler Fun30. Convincing evidence shows that Sir2 does not affect origin licensing but rather affects local transcription and nucleosome positioning which correlates with increased origin firing. However, the evidence remains incomplete as the methods employed do not rigorously establish a key aspect of the mechanism, fully address some alternative models, or sufficiently relate to prior results. Overall, this is a valuable advance for the field that could be improved to establish a more robust paradigm. 

      We have added extensive new results to the manuscript that, we believe, address all three criticisms above, namely that the methods employed do not (1) rigorously establish a key aspect of the mechanism; (2) fully address some alternative models; or (3) sufficiently relate to prior results.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      This paper presents a mechanistic study of rDNA origin regulation in yeast by SIR2. Each of the ~180 tandemly repeated rDNA gene copies contains a potential replication origin. Earlyefficient initiation of these origins is suppressed by Sir2, reducing competition with origins distributed throughout the genome for rate-limiting initiation factors. Previous studies by these authors showed that SIR2 deletion advances replication timing of rDNA origins by a complex mechanism of transcriptional de-repression of a local PolII promoter causing licensed origin proteins (MCMcomplexes) to re-localize (slide along the DNA) to a different (and altered) chromatin environment. In this study, they identify a chromatin remodeler, FUN30, that suppresses the sir2∆ effect, and remarkably, results in a contraction of the rDNA to about onequarter it's normal length/number of repeats, implicating replication defects of the rDNA. Through examination of replication timing, MCM occupancy and nucleosome occupancy on the chromatin in sir2, fun30, and double mutants, they propose a model where nucleosome position relative to the licensed origin (MCM complexes) intrinsically determines origin timing/efficiency. While their interpretations of the data are largely reasonable and can be interpreted to support their model, a key weakness is the connection between Mcm ChEC signal disappearance and origin firing.  

      Criticism: The reviewer expressed concern about the connection between Mcm ChEC signal disappearance and origin firing.

      To further support our claim that the disappearance of the MCM signal in our ChEC datasets reflects origin firing, we now present additional data using the well-established method of MCM Chromatin IP (ChIP).

      (1) New Supporting Evidence:  ChIP at genome-wide origins. In Figure 5 figure supplement 2, we demonstrate that the Mcm2 ChIP signal in cells released into hydroxyurea (HU) is significantly reduced at early origins compared to late origins, which mirrors the pattern observed with the MCM2 ChEC signal. This reduction in the ChIP signal at early origins supports the interpretation that the MCM signal disappearance is associated with origin firing.

      (2) New supporting based evidence:  ChIP at rDNA Origins. Our ChIP analysis also shows that the disappearance of the MCM signal at rDNA origins in sir2Δ cells released into HU is accompanied by signal accumulation at the replication fork barrier (RFB), indicative of stalled replication forks at this location (Figure 5 figure supplement 3). This pattern is consistent with the initiation of replication at these origins and fork stalling at the RFB.

      (3) New supporting evidence:  2D gels with quantification. Furthermore, additional 2D gel electrophoresis results provide ample independent evidence of rDNA origin firing in HU in sir2Δ mutants and suppression of origin firing in sir2 fun30 cells. These new data include 1) quantification of 2D gels in Figure 4D and 2) new 2D gels presented in Figure 4C as described below in greater detail. Collectively, these results demonstrate that rDNA origins fire prematurely in HU in sir2 cells and that firing is suppressed by FUN30 deletion. These additional data reinforce our model and support the association between MCM signal disappearance and replication initiation.

      While the cyclical chromatin association-dissociation of MCM proteins with potential origin sequences may be generally interpreted as licensing followed by firing, dissociation may also result from passive replication and as shown here, displacement by transcription and/or chromatin remodeling.

      The reviewer raised a concern that the cyclical chromatin association-dissociation of MCM proteins could be interpreted as licensing followed by firing, but might also result from passive replication or displacement by transcription and chromatin remodeling.

      Addressing Alternative Explanations:

      (1) Selective Disappearance of MCM Complexes: While transcription and passive replication can indeed cause the MCM-ChEC signal to disappear, these processes cannot selectively cause the disappearance of the displaced MCM complex without also affecting the non-displaced MCM complex. Specifically, RNA polymerase transcribing C-pro would first need to dislodge the normally positioned MCM complex before reaching the displaced complex, which is not observed in our data.

      (2) Role of FUN30 Deletion:  FUN30 deletion results in increased C-pro transcription and reduced disappearance of the displaced MCM complex. This observation supports our model, as transcription alone would not selectively affect the displaced MCM complex while leaving the normally positioned MCM complex unaffected.

      (3) Licensing Restrictions: It is crucial to note that continuous replenishment of displaced MCMs with newly loaded MCMs is not possible in our experimental conditions, as the cells are in S phase and licensing is restricted to G1. This temporal restriction further supports our interpretation that the disappearance of the MCM signal reflects origin firing rather than alternative processes.

      In summary, while alternative explanations such as transcription and passive replication could potentially account for MCM signal disappearance, our data indicate that these processes cannot selectively affect the displaced MCM complex without impacting the non-displaced complex. The selective disappearance observed in our experiments, along with the effects of FUN30 deletion and the temporal constraints on MCM loading, strongly support our interpretation that the disappearance of the MCM signal reflects origin firing.

      Moreover, linking its disappearance from chromatin in the ChEC method with such precise resolution needs to be validated against an independent method to determine the initiation site(s). Differences in rDNA copy number and relative transcription levels also are not directly accounted for, obscuring a clearer interpretation of the results. 

      The reviewer raised concerns about the need to validate the disappearance of MCM from chromatin observed using the ChEC method against an independent method to determine initiation sites. Additionally, they pointed out that differences in rDNA copy number and relative transcription levels are not directly accounted for, which may obscure the interpretation of the results.

      (1) Reduced rDNA Copy Number promotes Early Replication: Copy number reduction of the magnitude caused by deletion of both SIR2 and FUN30 is not expected to suppress early rDNA replication in sir2, but rather to exacerbate it. Specifically, deletion of SIR2 and FUN30 causes the rDNA to shrink to approximately 35 copies. Kwan et al., 2023 (PMID: 36842087) have shown that a reduction in rDNA copy number to 35 copies results in a dramatic acceleration of rDNA replication in a SIR2+ strain. Therefore, the effect of rDNA size on replication timing reinforces our conclusion that deletion of FUN30 suppresses rDNA replication.

      (2) New 2D Gels in sir2 and sir2 fun30 strains with equal number of rDNA repeats: To directly address the concern regarding differences in the number of rDNA repeats, we have included new 2D gel analyses in the revised manuscript. By using a fob1

      background, we were able to equalize the repeat number between the sir2 and sir2 fun30 strains (Figure 4E). The 2D gels conclusively show that the suppression of rDNA origin firing upon FUN30 deletion is independent of both rDNA size and FOB1.

      Nevertheless, this paper makes a valuable advance with the finding of Fun30 involvement, which substantially reduces rDNA repeat number in sir2∆ background. The model they develop is compelling and I am inclined to agree, but I think the evidence on this specific point is purely correlative and a better method is needed to address the initiation site question. The authors deserve credit for their efforts to elucidate our obscure understanding of the intricacies of chromatin regulation. At a minimum, I suggest their conclusions on these points of concern should be softened and caveats discussed. Statistical analysis is lacking for some claims. 

      Strengths are the identification of FUN30 as suppressor, examination of specific mutants of FUN30 to distinguish likely functional involvement. Use of multiple methods to analyze replication and protein occupancies on chromatin. Development of a coherent model. 

      Weaknesses are failure to address copy number as a variable; insufficient validation of ChEC method relationship to exact initiation locus; lack of statistical analysis in some cases. 

      With regard to "insufficient validation of ChEC method relationship to exact initiation locus":  The two potential initiation sites that one would monitor (non-displaced and displaced) are separated by less than 150 base pairs, and other techniques simply do not have the resolution necessary to distinguish such differences. Indeed, our new ChIP results presented in Figure 5 figure supplement 3 clearly demonstrate that while the resolution of ChIP is adequate to detect the reduction of MCM signal at the replication initiation site and its relocation to the RFB ( ~2 kb away), it lacks the resolution required to differentiate closely spaced MCM complexes.

      Furthermore, as we suggest in the manuscript, our results are consistent with a model in which it is only the displaced MCM complex that is activated, whether in sir2 or WT.  If no genotypedependent difference in initiation sites is even expected, it would be hard to interpret even the most precise replication-based assays.  

      We appreciate the reviewer pointing out that some statistical analyses were lacking: we have added statistical analysis for 2D gels (Figures 4D and 4E),  EdU incorporation experiments in Figure 4F and disappearance of MCM ChEC and ChIP signal upon release of cells into HU (Figure 5 supplement 1 and Supplement 2).  

      Additional background and discussion for public review: 

      This paper broadly addresses the mechanism(s) that regulate replication origin firing in different chromatin contexts. The rDNA origin is present in each of ~180 tandem repeats of the rDNA sequence, representing a high potential origin density per length of DNA (9.1kb repeat unit). However, the average origin efficiency of rDNA origins is relatively low (~20% in wild-type cells), which reduces the replication load on the overall genome by reducing competition with origins throughout the genome for limiting replication initiation factors. Deletion of histone deacetylase SIR2, which silences PolII transcription within the rDNA, results in increased early activation or the rDNA origins (and reduced rate of overall genome replication). Previous work by the authors showed that MCM complexes loaded onto the rDNA origins (origin licensing) were laterally displaced (sliding) along the rDNA, away from a well-positioned nucleosome on one side. The authors' major hypothesis throughout this work is that the new MCM location(s) are intrinsically more efficient configurations for origin firing. The authors identify a chromatin remodeling enzyme, FUN30, whose deletion appears to suppress the earlier activation of rDNA origins in sir2∆ cells. Indeed, it appears that the reduction of rDNA origin activity in sir2∆ fun30∆ cells is severe enough to results in a substantial reduction in the rDNA array repeat length (number of repeats); the reduced rDNA length presumably facilitates it's more stable replication and maintenance. 

      Analysis of replication by 2D gels is marginally convincing, using 2D gels for this purpose is very challenging and tricky to quantify. 

      We address this criticism by carefuly quantifying 2 D gel results using single rARS signal for normalizing bubble arc as discussed below.

      The more quantitative analysis by EdU incorporation is more convincing of the suppression of the earlier replication caused by SIR2 deletion. 

      We have also added quantification of EdU results to strengthen our arguments.  

      To address the mechanism of suppression, they analyze MCM positioning using ChEC, which in G1 cells shows partial displacement of MCM from normal position A to positions B and C in sir2∆ cells and similar but more complete displacement away from A to positions B and C in sir2fun30 cells. During S-phase in the presence of hydroxyurea, which slows replication progression considerably (and blocks later origin firing) MCM signals redistribute, which is interpreted to represent origin firing and bidirectional movement of MCMs (only one direction is shown), some of which accumulate near the replication fork barrier, consistent with their interpretation. They observe that MCMs displaced (in G1) to sites B or C in sir2∆ cells, disappear more rapidly during S-phase, whereas the similar dynamic is not observed in sir2∆fun30∆. This is the main basis for their conclusion that the B and C sites are more permissive than A. While this may be the simplest interpretation, there are limitations with this assay that undermine a rigorous conclusion (additional points below). The main problem is that we know the MCM complexes are mobile so disappearance may reflect displacement by other means including transcription which is high is the sir2∆ background. Indeed, the double mutant has greater level of transcription per repeat unit which might explain more displaced from A in G1. Thus, displacement might not always represent origin firing. Because the sir2 background profoundly changes transcription, and the double mutant has a much smaller array length associated with higher transcription, how can we rule out greater accessibility at site A, for example in sir2∆, leading to more firing, which is suppressed in sir2 fun30 due to greater MCM displacement away from A? 

      I think the critical missing data to solidly support their conclusions is a definitive determination of the site(s) of initiation using a more direct method, such as strand specific sequencing of EdU or nascent strand analysis. More direct comparisons of the strains with lower copy number to rule out this facet. As discussed in detail below, copy number reduction is known to suppress at least part of the sir2∆ effect so this looms over the interpretations. I think they are probably correct in their overall model based on the simplest interpretation of the data but I think it remains to be rigorously established. I think they should soften their conclusions in this respect. 

      Please see discussion below about these issues.

      Reviewer #2 (Public Review): 

      Summary: 

      In this manuscript, the authors follow up on their previous work showing that in the absence of the Sir2 deacetylase the MCM replicative helicase at the rDNA spacer region is repositioned to a region of low nucleosome occupancy. Here they show that the repositioned displaced MCMs have increased firing propensity relative to non-displaced MCMs. In addition, they show that activation of the repositioned MCMs and low nucleosome occupancy in the adjacent region depend on the chromatin remodeling activity of Fun30. 

      Strengths: 

      The paper provides new information on the role of a conserved chromatin remodeling protein in the regulation of origin firing and in addition provides evidence that not all loaded MCMs fire and that origin firing is regulated at a step downstream of MCM loading. 

      Weaknesses: 

      The relationship between the author's results and prior work on the role of Sir2 (and Fob1) in regulation of rDNA recombination and copy number maintenance is not explored, making it difficult to place the results in a broader context. Sir2 has previously been shown to be recruited by Fob1, which is also required for DSB formation and recombination-mediated changes in rDNA copy number. Are the changes that the authors observe specifically in fun30 sir2 cells related to this pathway? Is Fob1 required for the reduced rDNA copy number in fun30 sir2 double mutant cells? 

      We have conducted additional studies in the fob1 background to address how FOB1 and the replication fork barrier (RFB) influence the kinetics of rDNA size reduction upon FUN30 deletion (Figure 2 - figure supplement 2), rDNA replication timing (Figure 2 - figure supplement 3), and rDNA origin firing using 2D gels (Figure 4C).

      Strains lacking SIR2 exhibit unstable rDNA size, and FOB1 deletion stabilizes rDNA size in a sir2 background (and otherwise). Similarly, we found that FOB1 deletion influences the kinetics of rDNA size reduction in sir2 fun30 cells. Specifically, we were able to generate a fob1 sir2 fun30 strain with more than 150 copies. Nonetheless, and consistent with our model, this strain still exhibited delayed rDNA replication timing (Figure 2 - figure supplement 3), and its rDNA still shrank upon continuous culture (Figure 2 figure supplement 2). These results demonstrate that, although FOB1 affects the kinetics of rDNA size reduction in sir2 fun30 strains, the reduced rDNA array size or delayed replication timing upon FUN30 deletion size does not depend on FOB1.

      The use of the fob1 background allowed us to compare the activation of rDNA origins in sir2 and sir2 fun30 strains with equally short rDNA sizes. 2D gels demonstrate robust and reproducible suppression of rDNA origin activity upon deletion of FUN30 in sir2 fob1 strains with 35 rDNA copies (Figure 4C). These results indicate that the main effect we are interested in—FUN30-induced reduction in origin firing—is independent of both FOB1 and rDNA size.

      Our additional studies conclusively show that the FUN30-induced reduction in rDNA origin firing is independent of both FOB1 and rDNA size. These findings provide important insights into the mechanisms regulating rDNA copy number maintenance, placing our results within the broader context of existing knowledge on Sir2 and Fob1 functions.

      Reviewer #3 (Public Review): 

      Summary: 

      Heterochromatin is characterized by low transcription activity and late replication timing, both dependent on the NAD-dependent protein deacetylase Sir2, the founding member of the sirtuins. This manuscript addresses the mechanism by which Sir2 delays replication timing at the rDNA in budding yeast. Previous work from the same laboratory (Foss et al. PLoS Genetics 15, e1008138) showed that Sir2 represses transcription-dependent displacement of the Mcm helicase in the rDNA. In this manuscript, the authors show convincingly that the repositioned Mcms fire earlier and that this early firing partly depends on the ATPase activity of the nucleosome remodeler Fun30. Using read-depth analysis of sorted G1/S cells, fun30 was the only chromatin remodeler mutant that somewhat delayed replication timing in sir2 mutants, while nhp10, chd1, isw1, htl1, swr1, isw2, and irc3 had not effect. The conclusion was corroborated with orthogonal assays including two-dimensional gel electrophoresis and analysis of EdU incorporation at early origins. Using an insightful analysis with an Mcm-MNase fusion (Mcm-ChEC), the authors show that the repositioned Mcms in sir2 mutants fire earlier than the Mcm at the normal position in wild type. This early firing at the repositioned Mcms is partially suppressed by Fun30. In addition, the authors show Fun30 affects nucleosome occupancy at the sites of the repositioned Mcm, providing a plausible mechanism for the effect of Fun30 on Mcm firing at that position. However, the results from the MNAse-seq and ChEC-seq assays are not fully congruent for the fun30 single mutant. Overall, the results support the conclusions providing a much better mechanistic understanding how Sir2 affects replication timing at rDNA, 

      The observation that the MNase-seq plot in fun30 mutant shows a large signal at the +3 nucleosome and somewhat smaller at position +2, while the ChEC-seq plot exhibits negligible signals, is indeed an important point of consideration. This discrepancy arises because most of the MCM in fun30 mutant remains at its original site where it abuts +1 nucleosome. As a result, the MCM-MNase fusion protein fails to reach and “light up” the +3 nucleosome, which is, nonetheless, well-visualized with exogenous MNase.  The paucity of displaced MCMs, which is responsible for cutting +2 nucleosome, explains the discrepancy in the +2 nucleosome signal between exogenous MNase and CheC datasets in the fun30 mutant.  

      Despite this apparent discrepancy, the overall results support our conclusions and provide a much better mechanistic understanding of how Sir2 affects replication timing at rDNA. The MNaseseq data reflect nucleosome positioning and chromatin structure, while the ChEC-seq data specifically highlights the locations where MCM is bound and active.  

      Strengths 

      (1) The data clearly show that the repositioned Mcm helicase fires earlier than the Mcm in the wild type position. 

      (2) The study identifies a specific role for Fun30 in replication timing and an effect on nucleosome occupancy around the newly positioned Mcm helicase in sir2 cells. 

      Weaknesses 

      (1) It is unclear which strains were used in each experiment. 

      (2) The relevance of the fun30 phospho-site mutant (S20AS28A) is unclear. 

      We appreciate the reviewer pointing out places in which our manuscript omitted key pieces of information (items 1 and 3), we have included the strain numbers in our revision.  With regard to point 2, we had written:  

      Fun30 is also known to play a role in the DNA damage response; specifically, phosphorylation of Fun30 on S20 and S28 by CDK1 targets Fun30 to sites of DNA damage, where it promotes DNA resection (Chen et al. 2016; Bantele et al. 2017). To determine whether the replication phenotype that we observed might be a consequence of Fun30's role in the DNA damage response, we tested non-phosphorylatable mutants for the ability to suppress early replication of the rDNA in sir2; these mutations had no effect on the replication phenotype (Figure 2B), arguing against a primary role for Fun30 in DNA damage repair that somehow manifests itself in replication. 

      (3) For some experiments (Figs. 3, 4, 6) it is unclear whether the data are reproducible and the differences significant. Information about the number of independent experiments and quantitation is lacking. This affects the interpretation, as fun30 seems to affect the +3 nucleosome much more than let on in the description. 

      We have provided replicas and quantitation for the results in these figures.

      (Replica ChEC Southern blot with quantification (Figure 3 figure supplement 1), quantification and replicas for 2D gels in Figure 4 and replicas for nucleosome occupancy (Figure 6 supplement 1).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      Fig. 3-Examination of MCM occupancy at the rDNA ARS region using a variation of ChEC.

      Presumably these are these G1-arrested cells but does not seem to be stated. Please confirm. 

      The 2D gels results are not very convincing of their conclusions. We are asked to compare bubble to fork arcs at 30 minutes, but this is not feasible. It is the author's job to quantify the data from multiple replicates, but none is given. After much careful examination, comparing the relative intensities of ascending bubble and Y-arcs, I think I can accept that 4A shows highest early efficiency for sir2 over WT and fun30, which are similar to each other, and lowest for sir2 fun30, at 60 and 90 min. 

      In the revision we provide a careful quantification of the 2D gels in Figure 4. For assessing rDNA origin activity, we normalized the bubble arc during the HU time course to a single rARS signal, that appears as large 24.4kb Nhe1I fragment originating from the  rightmost rDNA repeat (see Figures 4A and 4B). The description of the quantification in the text is provided below. 

      “Prior to separation on 2D gels, DNA was digested with NheI, which releases a 4.7 kb rARScontaining linear DNA fragment at the internal rDNA repeats (1N) and a much larger, 24.5 kb single-rARS-containing fragment originating from the rightmost repeat. In 2D gels, active origins generate replication bubble arc signals, whereas passive replication of an origin appears as a y-arc. Having a signal emanating from a single ARS-containing fragment simplifies the comparison of rDNA origin activity in strains with different numbers of rDNA repeats, such as in sir2 vs sir2 fun30 mutants. Origin activity is expressed as a ratio of the bubble to the single-ARS signal, effectively measuring the number of active rDNA origins per cell at a given time point. 

      As seen previously (Foss et al. 2019), deletion of SIR2 increased the number of activated rDNA origins, while deletion of FUN30 suppressed this effect. When analyzed in aggregate at 20, 30, 60 and 90 minutes following release into HU, the average number of activated rDNA origin activity in sir2 mutant was increased 6.3-fold compared to those in WT (5.0±2.3 in sir2 vs 0.8±0.4 in wt, p<0.05 by 2 tailed t-test), and the increased number was reduced upon FUN30 deletion (1.3±0.7 in sir2 fun30, p<0.05 by 2 tailed t-test vs sir2, NS for comparison to WT).”

      However, for part 4B, they state (p. 11) that deletion of FUN30 in a SIR2 background had no perceptible effect (on ARS305) but I think the data appear otherwise: the FUN30 cells show more Y-arc than WT.

      We now provide the assessment of ARS305 activity in HU cells as a ratio of bubble-arc to 1N signal. The reviewer is right that FUN30 has a more robust bubble arc signal compared to WT.

      However, after normalization to 1N this difference did not appear significant (3.7 vs 5.1). Overall the analysis of activity or ARS305 origins demonstrates a reciprocity with the activity of rDNA origins in each of the four genotypes.  Furthermore, this observation is confirmed in our EdU-based analysis of 111 genomic origins, with statistical analysis showing a very high level of significance (see below).  

      Ultimately, analysis of unsynchronized cells would give unambiguous results about origin efficiency. In this regard I note that analysis of rDNA origin firing by 2D gels with HU versus asynchronous gives different results in WT versus sir2∆, with no difference in unsynchronized cells (He et al. 2022). It would be interesting to test the strains here unsynchronized, though copy number size would still be a variable to address.

      Origin activity in log cultures is typically assessed by comparing replication initiation within an origin, presenting as a bubble arc, to passively replicated DNA (Y-arc). However, such an analysis at tandemly arrayed origins, such as rDNA, is not feasible, as both active and passive replication are the result of activation of the same origins. This explains the lack of difference between WT and sir2 cells previously reported (He et al. 2022), which we have also observed. Differences in activation of rDNA origins in WT vs sir2 cells is clearly reflected in HU experiments, as was the case in the earlier report (He et al. 2022). 

      To address the issue of differences in copy number between sir2 and sir2 fun30 cells we have now done experiments in a fob1 background where we can equalize the copy number among the two genotypes. These 2D gels are presented in Figure 4C. We address this issue in the revised manuscript as follows:

      “The overall impact of FUN30 deletion on rDNA origin activity in a sir2 background is expected to be a composite of two opposing effects: a suppression of rDNA origin activation and increased rDNA origin activation due to reduced rDNA size (Kwan et al. 2023). To evaluate the effect FUN30 on rDNA origin activation independently of rDNA size, we generated an isogenic set of strains in a fob1 background, all of which contain 35 copies of the rDNA repeat.  (Deletion of FOB1 is necessary to stabilize rDNA copy number.)  Comparing rDNA origin activity in sir2 versus sir2 fun30 genotypes, we observed a robust and reproducible reduction in rDNA origin activity upon FUN30 deletion. This finding confirms that the FUN30 suppresses rDNA origin firing in sir2 background independently of both rDNA size and FOB1 status.”

      -EdU analysis is more convincing regarding relative effects on genome versus rDNA, however, again, the effect of reduced rDNA array size in the sir2 fun30 cells may also be the proximal cause of the reduced effect on genome (early origins) replication rather than a direct effect on origin efficiency. No statistic provided to support that fun30 suppresses sir2 for rDNA activity. 

      This comment raises three distinct, but related, issues: 

      First, the reviewer is asking whether the reduced rDNA size, of the magnitude we observed in sir2 fun30 cells, could by itself be responsible for increased origin activity elsewhere in the genome, just because there is less rDNA that needs to be replicated. As noted earlier (Kwan et al. 2023), Kwan et al. examined the effect of rDNA size reduction and observed: 1) marked increased in rDNA origin activity and 2) reciprocal reduction in origin activity elsewhere in the genome. This counterintuitive finding suggests that a smaller rDNA size exerts more competition for limited replication resources compared to a larger rDNA size. In light of this, our findings with FUN30 deletion become even more compelling. The suppression of rDNA firing upon FUN30 deletion is so significant that it overrides the expected effects of rDNA size reduction.

      Second, the reviewer points out our lack of statistical analysis to support our contention that fun30 suppresses sir2 with regard to rDNA origin activity. We have now addressed this issue as well, by quantifying 2D gel signals, as described above in the text that begins with "Prior to separation on 2D gels, DNA was digested with NheI ...". 

      Third, we have now provided a statistical analysis to support our conclusion that EdU-based analysis of activity of 111 early origins shows suppression upon deletion of SIR2 that is largely reversed by additional deletion of FUN30. 

      "Deletion of FUN30 in a sir2 background partially restored EdU incorporation at early origins, concomitant with reduced EdU incorporation at rDNA origins. In particular, the median value of log10 of read depths at 111 early origins, as the data are shown in Figure 4F, dropped from 6.5 for wild type to 6.2 for sir2 but then returned almost to wild type levels (6.4) in sir2 fun30.  The p value obtained by Student's t test, comparing the drop in 111 origins from wild type to sir2 with that from wild type to sir2 fun30 was highly significant (<< 10-16)  In contrast, FUN30 deletion in the WT background did not reduce EdU incorporation at genomic origins (median 6.6). These findings highlight that FUN30 deletion-induced suppression of rDNA origins in sir2 is accompanied by the activation of genomic origins."

      Use loss of Mcm-ChEC signal as proxy for origin firing. Reasonably convincing that decrease correlates with origin firing on a one-to-one basis (Fig. 5B), though no statistic given. 

      We provide the statistical analysis in Figure 5-figure supplement 1.

      However, there is no demonstration of ability to observe this correlation with fine resolution as needed for the claims here. It seems equally possible that sir2 deletion causes more firing by repositioning MCMs to a better location or that the prior location, which still contains substantial MCM, becomes more permissive. The MCM signal appears to be mobile, so perhaps the role of FUN30 is to prevent to mobility of MCM away from the original site in WT cells; note that significantly less Mcm signal is at the original position in sir2 fun30. No accumulation of MCM occurs near the RFB in WT (and fun30) cells. I understand that origin firing is lower in WT but raises concerns about sensitivity and dynamic range of this assay and that MCM positions may reflect transcription versus replication. 

      Please see the section above labeled "Addressing Alternative Explanations".  

      Is Fig 6A Y-axis correctly labeled? I understand this figure to represent MNase-seq reads; is there any Mcm2-ChEC-seq in part A? 

      We have corrected the labeling. 6A represent MNase-seq reads. Thank you for pointing this out.

      I understand part B to represent nucleosome-sized fragments released by Mcm2-ChEC interpreted to be nucleosomes. But could they be large fragments potentially containing adjacent MCM-double hexamers?  

      Our representation of ChEC-seq data in Figure 1 supplement 1, where we can see the entire spectrum of fragment sizes, demonstrates two distinct populations of fragments: nucleosome size and MCM-size fragments.

      Reviewer #2 (Recommendations For The Authors): 

      Suggestions for the authors to consider: 

      (1) The authors make a good case for the importance of replication balance between rDNA and euchromatin in ensuring that the genome is replicated in a timely fashion. This seems to be clearly regulated by Sir2. However, Sir2 also affects rDNA copy number and suppresses unequal cross over events, which are stimulates by Fob1. Does Fun30 suppress Fob1-dependent recombination events in sir2D cells? 

      It is unclear why FUN30 only affects rDNA repeat copy number in sir2 cells. Why doesn't Fun30 reduce copy number in wild-type cells? 

      Deletion of SIR2 causes rightward repositioning of MCMs to a position where they are more prone to fire, as shown by our HU ChEC datasets in which we show that the repositioned MCMs are more prone to activation than the non-repositioned ones. FUN30 deletion suppresses activation of these, activation-prone repositioned MCMs, as shown by HU ChEC. This suppression of rDNA origin activation in sir2 cells causes rDNA to shrink. In fun30 single mutants, due to the paucity of non-repositioned MCMs, we do not observe significant suppression of rDNA origin firing, and consequently, there is no reduction in rDNA size in fun30 cells.

      (2) The authors use Mcm-MNase to map the location of the MCM helicase. Can these results be confirmed using the more standard and direct ChIP assay to examine changes in MCM localization

      We carried out suggested MCM ChIP experiments and present these results in Figure 5 supplement 2 and supplement 3. These ChIP data demonstrate that: 

      (1) MCM signal disappears preferentially at early origins compared to late origins, as seen in our ChEC results.

      (2) The disappearance of ChEC signal at rDNA origins in sir2 mutant is accompanied by the signal accumulation at the RFB, consistent with fork stalling at the RFB mirroring the results we obtained by ChEC. While these results indicate that that ChIP has adequate resolution to detect MCM repositioning at 2 kb, scale, its resolution was insufficient for fine scale discrimination of repositioned and non-repositioned MCMs.

      In this regard, the specific role of Fun30 in regulation of MCM firing at rDNA is interesting. 

      Does Fun30 localize to the ARS region of rDNA? How is Fun30 specifically recruited to rDNA?  

      We carried out ChIP for Fun30 and observed, similarly to previous reports (Durand-Dubief et al. 2012), a wide distribution of Fun30 throughout the genome and at rDNA. We have elected not to include these results in the current manuscript.

      (3) The 2D gels in Figure 4 are difficult to interpret. The bubble to arc ratios in fun30D seem different from both wild-type and sir2D. It may be helpful to the reader to quantify the bubble to arc ratios. fun30D also seems to be affecting ARS305 by itself.

      We provide quantification of 2 D gels in Figure 4.

      (4) Figure 5. 

      (4.1) For examining origin firing based on the disappearance of the Mcm-MNase reads, is HU arrest necessary? HU may be causing indirect effects due to replication fork stalling. In principle, the authors should be able to perform this analysis without HU, since their cells are released from synchronized arrest in G1 (and at least for the first cell cycle should proceed synchronously on to S phase). In addition, validation of Mcm-ChEC results using ChIP for one of the subunits of the MCM complex would increase confidence in the results. 

      The HU arrest allows us to examine early events in DNA replication at much finer spatial and temporal resolution than it would be possible without it.

      We have now used Mcm2 ChIP to confirm that the signal disappears at the MCM loading site in HU in sir2 cells as discussed above (Figure 5 figure supplement 3). However, the resolution is inadequate to discriminate non-repositioned vs repositioned MCMs.

      (4.2) The non-displaced Mcm-ChEC signal in sir2D seems like it's decreasing more than in wildtype cells. Explain. It would be helpful to quantify these results by integrating the area under each peek (or based on read numbers). It looks like one of the displaced Mcm signals (the one more distal from the non-displaced) is changing at a similar rate to the non-displaced.  

      Integrating the area under each Mcm-ChEC peak or using read numbers is superfluous for the following reasons:  (1) The rectangular appearance of the peaks in Figure 5 clearly reflects signal intensity, making additional numerical integration redundant. (2) The visual differences between wild-type and sir2D cells are distinct and sufficient for drawing conclusions without further quantification.  (3) Keeping the analysis straightforward avoids unnecessary complexity and maintains clarity.

      (4.3) Can the authors explain why fun30D seems to be suppressing only one of the 2 displaced Mcms from firing? 

      We speculate that the local environment is more conductive for firing one of two displaced MCMs, but we do not understand why.

      (5) Figure 6. Why would the deletion of SIR2, a silencing factor, results in increased nucleosome occupancy at rDNA? 

      If we understand correctly, the reviewer is referring to a small increase in +2 and +3 signal in sir2 compared to the WT. In WT G1 cells, there is a single MCM between +1 and +3 nucleosome. This space cannot accommodate a +2 nucleosome in G1 cells because MCM is loaded at that position in most cells (in G2 cells however, this space is occupied by a nucleosome (Foss et al., 2019). MCM repositioning in sir2 mutant would displace MCM from this location making it possible for this space to be now occupied by a nucleosome.

      The changes in nuc density seem modest. Also, nucleosome density is similarly increased in sir2D and fun30D cells, but sir2 has a dramatic effect on origin firing but fun30D does not. Explain. 

      We believe that the FUN30 status makes most of the difference for firing of displaced MCMs.

      Since there are few displaced MCMs in SIR2 cells, there is not large impact on origin firing. Furthermore, the rDNA already fires late in WT cells, so our ability to detect further delay upon  FUN30 deletion could be more difficult.

      (6) Discussion. At rDNA Sir2 may simply act by deacetylating nucleosomes and decreasing their mobility. This is unrelated to compaction which is usually only invoked regarding the activities of the full SIR complex (Sir2/3/4) at telomeres and the mating type locus. The arguments regarding polymerase size, compaction etc may not be relevant to the main point since although the budding yeast Sir2 participates in heterochromatin formation at the mating type loci and telomeres, at rDNA it may act locally near its recruitment site at the RFB. 

      This is a valid point. We have added this sentence in the discussion to highlight the differences between silencing at rDNA and those at the silent mating loci and telomeres that SIR-complex dependent.

      “Steric arguments such as these are even less compelling when made for rDNA than for the silent mating type loci and telomeres, because chromatin compaction has been studied mostly in the context of the complete Sir complex (Sir1-4). In contrast, Sir1, 3, and 4 are not present at the rDNA.”

      Minor 

      It would be interesting to see if deletion of any histone acetyltranferases acts in a similar way to Fun30 to reduce rDNA copy number in sir2D cells. 

      Thank you for this suggestion.

      Reviewer #3 (Recommendations For The Authors): 

      (1) The design of Figure 3 could be improved. A scheme could help understand the assay without flipping back to Figure 1. The numbers below the gel bands need definition. 

      We have included the scheme describing the restriction and MCM-MNase cut sites and the location of the probe for the Southern blot.

      (2) The design of Figure 4 could be improved by adding a scheme to help interpret the 2d gel picture. The figure also lacks quantitation. Are the results reproducible and the differences significant? 

      We have added the scheme, quantification and statistics in Figure 4.

      (3) Please list in each figure legend the exact strains from Table S1 which were used. 

      We have included the strain numbers in the Figure legend.

      Durand-Dubief M, Will WR, Petrini E, Theodorou D, Harris RR, Crawford MR, Paszkiewicz K, Krueger F, Correra RM, Vetter AT et al. 2012. SWI/SNF-like chromatin remodeling factor Fun30 supports point centromere function in S. cerevisiae. PLoS Genet 8: e1002974.

      Foss EJ, Gatbonton-Schwager T, Thiesen AH, Taylor E, Soriano R, Lao U, MacAlpine DM, Bedalov A. 2019. Sir2 suppresses transcription-mediated displacement of Mcm2-7 replicative helicases at the ribosomal DNA repeats. PLoS Genet 15: e1008138.

      He Y, Petrie MV, Zhang H, Peace JM, Aparicio OM. 2022. Rpd3 regulates single-copy origins independently of the rDNA array by opposing Fkh1-mediated origin stimulation. Proc Natl Acad Sci U S A 119: e2212134119.

      Kwan EX, Alvino GM, Lynch KL, Levan PF, Amemiya HM, Wang XS, Johnson SA, Sanchez JC, Miller MA, Croy M et al. 2023. Ribosomal DNA replication time coordinates completion of genome replication and anaphase in yeast. Cell Rep 42: 112161.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      This manuscript describes soluble Uric Acid (sUA) as an endogenous inhibitor of CD38, affecting CD38 activity and NAD+ levels both in vitro and in vivo. Importantly, the inhibition constants calculated support the claim that sUA inhibits CD38 under physiological conditions. These findings are of extreme importance to understanding the regulation of an enzyme that has been shown to be the main NAD+/NMN-degrading enzyme in mammals, which impacts several metabolic processes and has major implications for understanding aging diseases. The manuscript is well written, the figures are self-explanatory, and in the experiments presented, the data is very solid. The authors discuss the main limitations of the study, especially in regard to the in vivo results. As a whole, I believe that this is a very interesting manuscript that will be appreciated by the scientific community and that opens a lot of new questions in the field of metabolism and aging. I found some issues that I believe constitute a weakness in the manuscript, and although they do not require new experiments, they may be considered by the authors for discussion in the final version of the manuscript.

      We greatly appreciate the reviewer’s thoughtful comments and favorable review of our work.

      The authors acknowledge the existence of several previous papers involving pharmacological inhibition of CD38 and their impact on several models of metabolism and aging. However, they only cite reviews. Given the focus of the manuscript, I believe that the seminal original papers should be cited.

      Yes, we agreed with the reviewer. Two representative papers regarding the pioneering findings [Ref 1, 2] of pharmacological inhibition of CD38 were cited in the discussion of current manuscript.

      (1) Tarragó, M. G., et al. (2018). A Potent and Specific CD38 Inhibitor Ameliorates Age-Related Metabolic Dysfunction by Reversing Tissue NAD+ Decline. Cell Metab 27(5): 1081-1095.e1010.

      (2) Escande, C., et al. (2013). Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes 62(4): 1084-1093.

      Related to the previous comment, the authors show that they have identified the functional group on sUA that inhibits CD38, 1,3-dihydroimidazol-2-one. How does this group relate with previous structures that were shown to inhibit CD38 and do not have this chemical structure? Is sUA inhibiting CD38 in a different site? A crystallographic structure of CD38-78c is available in PDB that could be used to study or model these interactions.

      Currently, there are several kinds of CD38 inhibitors, including NAD+/NMN analogs, flavonoids, 4-quinolines, etc. [Ref 1], but they do not have 1,3-dihydroimidazol-2-one or similar groups. We also noticed that sUA and its analogs have no remarkable structural similarity with these inhibitors. We have ever tried to identify the binding sites of sUA on CD38 by NMR. Since our NMR method required a large sample size, we had to prepare recombinant human CD38 using a cell-free protein synthesis system. However, the obtained CD38 protein showed a lower Vmax than commercial recombinant CD38 expressed in HEK293 cells, raising a concern of spatial conformation deference in the synthesized CD38. Thus, we were unable to get convinced data to confirm if sUA has different binding sites. Given the difference in structural feature and inhibition type, we did not use the PDB data regarding 78c-CD38 interaction for analysis in this study.

      (1) Chini, E. N., et al. (2018). The Pharmacology of CD38/NADase: An Emerging Target in Cancer and Diseases of Aging. Trends Pharmacol Sci 39(4): 424-436.

      Although the mouse model used to manipulate sUA levels is not ideal, the authors discuss its limitations, and importantly, they have CD38 KO mice as control. However, all the experiments were performed in very young mice, where CD38 expression is low in most tissues (10.1016/j.cmet.2016.05.006). This point should be mentioned in the discussion and maybe put in the context of variations of sUA levels during aging.

      We appreciate the reviewer’s kind suggestions. Yes, CD38 expression in young mice is relatively low and we used young mice in this study; thus, aged mice would be promising to furthest evaluate the interaction between CD38 and sUA. Regarding the changes in sUA levels during aging, previous reports indicate that sUA levels seem to increase with age in mice and humans [Ref 1, 2]. We speculate that this increase is a physiologically compensatory response to aging in organisms. Accordingly, we added more details in the discussion (second paragraph).

      (1) Iwama, M., et al. (2012). Uric acid levels in tissues and plasma of mice during aging. Biol Pharm Bull 35(8): 1367-1370.

      (2) Kuzuya, M., et al. (2002). Effect of aging on serum uric acid levels: longitudinal changes in a large Japanese population group. J Gerontol A Biol Sci Med Sci 57(10): M660-664.

      Reviewer #2 (Public Review):

      Summary:

      This is an interesting work where Wen et al. aimed to shed light on the mechanisms driving the protective role of soluble uric acid (sUA) toward avoiding excessive inflammation. They present biochemical data to support that sUA inhibits the enzymatic activity of CD38 (Figures 1 and 2). In a mouse model of acute response to sUA and using mice deficient in CD38, they find evidence that sUA increases the plasma levels of nicotinamide nucleotides (NAD+ and NMN) (Figure 3) and that sUA reduces the plasma levels of inflammasome-driven cytokines IL-1b and IL-18 in response to endotoxin, both dependent on CD38 (Figure 4). Their work is an important advance in the understanding of the physiological role of sUA, with mechanistic insight that can have important clinical implications.

      Strengths:

      The authors present evidence from different approaches to support that sUA inhibits CD38, impacts NAD+ levels, and regulates inflammatory responses through CD38.

      We deeply thank the reviewer for the thoughtful comments and appreciation of our findings.

      Weaknesses:

      The authors investigate macrophages as the cells impacted by sUA to promote immunoregulation, proposing that inflammasome inhibition occurs through NAD+ accumulation and sirtuin activity due to sUA inhibition of CD38. Unfortunately, the study still lacks data to support this model, as they could not replicate their in vivo findings using murine bone marrow-derived macrophages, a standard model to assess inflammasome activation. Without an alternative approach, the study lacks data to establish in vitro that sUA inhibition of CD38 reduces inflammasome activation in macrophages - consequently, they cannot determine yet if both NAD+ accumulation and sirtuin activity in macrophages is a mechanism leading to sUA role in vivo.

      We deeply thank the reviewer for pointing out this weakness in our work. In fact, we tried to prepare stable CD38 KD/KO THP-1 cells in the middle of 2021; however, we faced some technical problems due to the limitations of instruments. Thus, we used CD38 KO mice to prepare CD38 KO BMDMs, as shown in the first version of manuscript, we failed to replicate the results in BMDMs because of the low uptake of sUA. To address the reviewer’s concern regarding the lack of an in vitro link between CD38 and sUA immunosuppression, we used 78c, a highly specific and potent inhibitor of CD38, to block CD38 in primed THP-1 cells. Then we evaluated the effect of sUA pre-incubation on MSU crystal-induced IL-1β release in primed THP-1 cells (vehicle and CD38 blockade). The added results in Figure 4-figure supplement 2B and 2C indicated that CD38 blockade largely impaired the immunosuppressive effect of sUA without reducing sUA uptake. In addition, we found that sUA at physiological levels boosted NAD+ levels in THP-1 cells (Figure 3-figure supplement 1B) without affecting the activities of other key enzymes involved in NAD+ synthesis and degradation, including NAMPT and PARP (Figure 3-figure supplement 2). All these results supported that CD38 is a key mediator for sUA at physiological levels to regulate inflammasome activation in vitro.

      Reviewer #3 (Public Review):

      Summary:

      In the present manuscript, the authors propose that soluble Uric acid (sUA) is an enzymatic inhibitor of the NADase CD38 and that it controls levels of NAD modulating inflammatory response. Although interesting the studies are at this stage preliminary and validation is needed.

      Strengths:

      The study characterizes the potential relevance of sUA in NAD metabolism.

      We greatly appreciate the reviewer for the thoughtful comments and valuable suggestions.

      Weaknesses:

      (1) A full characterization of the effect of sUA in other NAD-consuming and synthesizing enzymes is needed to validate the statement that the mechanism of regulation of NAD by sUA is mediated by CD38, The CD38 KO may not serve as the ideal control since it may saturate NAD levels already. Analysis of multiple tissues is needed.

      Yes, it is necessary to confirm if sUA affects other NAD+-consuming and synthesizing enzymes. To address the concern and to provide additional validation, we tested the direct effects of sUA and other purine derivates on the activities of another two key enzymes involved in the metabolic network of NAD+, including PARP (NAD+-consuming enzyme) and NAMPT (NAD+-synthesizing enzyme). The added results in Figure 3-figure supplement 2 showed that sUA has no effect on PARP and NAMPT activity, suggesting that CD38 is a main target for sUA in regulating NAD+ availability. In addition, we also confirmed both PARP and NAMPT were not affected by purine metabolism under physiological conditions. Although hypoxanthine and xanthine, at 500 μM (supraphysiological levels), slightly inhibited PARP activity, it has no physiological significance due to their low physiological concentrations (generally below 20 μM). Further evaluation of these inhibitory effects under pathological conditions would be of interest but were beyond the focus of this study.

      Given that tissue sUA uptake is saturated under physiological conditions (tissue sUA did not increase in our models, Figure 3-figure supplement 5A and 5B), CD38 and other potential targets in tissues may be not affected by sUA in our models. We used CD38 KO mice to confirm if sUA interacts with other targets to regulate NAD+ degradation and inflammatory responses. A previous study [Ref 1] revealed that inhibition of other enzymes involved in NAD+ metabolism, such as PARP, resulted in a significant increase of NAD+ availability in CD38 KO mice, which indicates that CD38 KO mice can be used to exclude the potential interaction between sUA and other targets. In fact, we did not observe significant effects of sUA in CD38 KO mice. More importantly, we added the additional validation regarding PARP and NAMPT activity according to the reviewer’s kind suggestion, which further confirmed that CD38 is the main target for sUA in our models.

      (1) Tarragó, M. G., et al. (2018). A Potent and Specific CD38 Inhibitor Ameliorates Age-Related Metabolic Dysfunction by Reversing Tissue NAD+ Decline. Cell Metab 27(5): 1081-1095.e1010.

      (2) The physiological role of sUA as an endogenous inhibitor of CD38 needs stronger validation (sUA deficient model?).

      We thank the reviewer’s insightful suggestions. Yes, sUA depletion model is ideal for further validation, as we discussed in the limitations of this study. Given that introduction of exogenous recombinant uricase (immunometabolism may be affected) to deplete sUA is not ideal for the evaluation under physiological conditions, uricase-transgenic mice would be a promising model. However, now we have no uricase-transgenic mice, and we are unable to prepare CD38 KO/uricase-transgenic mice for additional validation within a reasonable time. In the first version of manuscript, therefore, we used an sUA-release model in sUA-supplementation mice as a further validation in Figure 3E.

      (3) Flux studies would also be necessary to make the conclusion stronger.

      Answer: We highly appreciate the reviewer’s suggestion regarding metabolic flux analysis. Yes, flux analysis using specifically designed isotope-labeled NAD+ is an ideal validation in mice, as it can track any sUA-induced changes in NAD+ metabolism. However, we are unable to synthesize or obtain suitable isotope-labeled substrates for in vivo validation due to the technical limitations and financial burdens.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      The manuscript is very solid and very well-presented and discussed. In my opinion, the only weakness in the writing is that the message about finding an endogenous regulator of CD38 activity and NAD levels gets blurred by the temptation of jumping into the potential of developing new pharmacological CD38 inhibitors based on sUA structure. My recommendation would be to focus on delivering a clear message about sUA as a physiological inhibitor of CD38, and the possible implications for understanding the onset and evolution of metabolic diseases and aging. Maybe leave the potential of developing novel sUA-based CD38 inhibitors for a final comment. I understand this last point is very attractive, but there are very potent pharmacological CD38 inhibitors already available with promising results.

      We greatly appreciate the reviewer’s valuable suggestions. Yes, there are some promising CD38 inhibitors with nanomolar Ki such as 78c. To clearly focus on sUA as a physiological inhibitor of CD38, we simplified the description in the manuscript and just keep the discussion of functional group. Since the data regarding the development of CD38 inhibitors in our manuscript remain limited, we did not put it in a separate part. We believe the simplified information is still sufficient for medicinal chemists who are interested in the development of CD38 inhibitors.

      Reviewer #2 (Recommendations For The Authors):

      Major comments:

      (1) The authors present several pieces of data to explain why there is no impact of sUA in inflammasome-mediated cytokine secretion, which is convincing and supports that BMDM will not be a model of choice to establish macrophages as the target of sUA. However, their data with THP-1 cells is compelling and could be further explored using shRNA, or CRISPR approaches to deplete CD38, thus establishing a mechanistic link in vitro.

      We greatly appreciate the reviewer’s thoughtful comments. We added more results as mentioned before (please see our response to public review).

      (2) There is a severe lack of linearity in how the figures are presented in the main text, making it difficult to read through the manuscript. The figures should be presented in the order they appear in the panels.

      We thank the reviewer for pointing out this issue. We improved the figure assembly according to eLife guidelines.

      Minor comments:

      (1) The authors do not appropriately address the finding that CD38 impacts the secretion of IL-1b in BMDM (Figure S6B) and in vivo (Figure 4), possibly independently of sUA.

      Yes, the regulatory effect of CD38 on cytokine release seems independent of sUA. In fact, we used CD38 KO BMDMs to validate the role of CD38 in the inflammasome activation. We showed that sUA levels are comparable between WT and KO mice, suggesting that CD38 KO does not affect the baselines and boosted levels of sUA in our models. In this situation, we were able to evaluate the immunosuppressive effects of sUA at the same physiological levels in WT and CD38 KO mice, thus providing evidence to support that sUA at physiological levels limits excessive inflammation via CD38.

      (2) Figure 3F: the legend on the x-axis lacks the indication of which groups were treated with recombinant hCD38.

      We appreciate the reviewer’s comments. We improved Figure 3 by adding more information.

      (3) While the results on panels 3 and 4 provide robust evidence that sUA is anti-inflammatory through CD38, the title of the figures extrapolates their findings (i.e., no data shows CD38-sUA, either in vitro or in vivo).

      We appreciate the reviewer’s kind suggestion. We provided data to support the direct interaction between CD38 and sUA in Figure 3F; we admitted that we did not show the data regarding the direct interaction in mice in Figure 4. To help readers easily track the results, however, we used a conclusion-like title.

      (4) The introduction could briefly mention NMN and CD38 activity as an ecto-enzyme to facilitate the understanding of their findings by a general audience, especially the dosing of NMN and their data on BMDM.

      We added more description regarding CD38 and NMN in the introduction part. Once again, we deeply thank the reviewer for the valuable suggestions.

      Reviewer #3 (Recommendations For The Authors):

      (1) A full characterization of the effect of sUA in other NAD-consuming and synthesizing enzymes is needed to validate the statement that the mechanism of regulation of NAD by sUA is mediated by CD38, The CD38 KO may not serve as the ideal control since it may saturate NAD levels already. Analysis of multiple tissues is needed.

      We greatly appreciate the reviewer’s valuable suggestions. We added more results to validate CD38 as the main target of sUA in our models. Please see our response to public review.

      (2) The physiological role of sUA as an endogenous inhibitor of CD38 needs stronger validation (sUA deficient model?).

      We greatly appreciate the reviewer’s valuable suggestions. Please see our response to public review.

      (3) Flux studies would also be necessary to make the conclusion stronger.

      We greatly appreciate the reviewer’s valuable suggestions. Please see our response to public review.

    1. Author response:

      Reviewer #1 (Public Review):

      Summary:

      In previous work, the authors described necrosis-induced apoptosis (NiA) as a consequence of induced necrosis. Specifically, experimentally induced necrosis in the distal pouch of larval wing imaginal discs triggers NiA in the lateral pouch. In this manuscript, the authors confirmed this observation and found that while necrosis can kill all areas of the disc, NiA is limited to the pouch and to some extent to the notum, but is excluded from the hinge region. Interestingly and unexpectedly, signaling by the Jak/Stat and Wg pathways inhibits NiA. Further characterization of NiA by the authors reveals that NiA also triggers regenerative proliferation which can last up to 64 hours following necrosis induction. This regenerative response to necrosis is significantly stronger compared to discs ablated by apoptosis. Furthermore, the regenerative proliferation induced by necrosis is dependent on the apoptotic pathway because RNAi targeting the RHG genes is sufficient to block proliferation. However, NiA does not promote proliferation through the previously described apoptosis-induced proliferation (AiP) pathway, although cells at the wound edge undergo AiP. Further examination of the caspase levels in NiA cells allowed the authors to group these cells into two clusters: some cells (NiA) undergo apoptosis and are removed, while others referred to as Necrosis-induced Caspase Positive (NiCP) cells survive despite caspase activity. It is the NiCP cells that repair cellular damage including DNA damage and that promote regenerative proliferation. Caspase sensors demonstrate that both groups of cells have initiator caspase activity, while only the NiA cells contain effector caspase activity. Under certain conditions, the authors were also able to visualize effector caspase activity in NiCP cells, but the level was low, likely below the threshold for apoptosis. Finally, the authors found that loss of the initiator caspase Dronc blocks regenerative proliferation, while inhibiting effector caspases by expression of p35 does not, suggesting that Dronc can induce regenerative proliferation following necrosis in a non- apoptotic manner. This last finding is very interesting as it implies that Dronc can induce proliferation in at least two ways in addition to its requirement in AiP.

      Strengths:

      This is a very interesting manuscript. The authors demonstrate that epithelial tissue that contains a significant number of necrotic cells is able to regenerate. This regenerative response is dependent on the apoptotic pathway which is induced at a distance from the necrotic cells. Although regenerative proliferation following necrosis requires the initiator caspase Dronc, Dronc does not induce a classical AiP response for this type of regenerative response. In future work, it will be very interesting to dissect this regenerative response pathway genetically.

      Weaknesses:

      No weaknesses were identified.

      We thank the reviewer for their positive evaluation and kind words.

      Reviewer #2 (Public Review):

      Summary / Strengths:

      In this manuscript, Klemm et al., build on past published findings (Klemm et al., 2021) to characterize caspase activation in distal cells following necrotic tissue damage within the Drosophila wing imaginal disc. Previously in Klemm et al., 2021, the authors describe necrosis-induced-apoptosis (NiA) following the development of a genetic system to study necrosis that is caused by the expression of a constitutive active GluR1 (Glutamate/Ca2+ channel), and they discovered that the appearance of NiA cells were important for promoting regeneration.

      In this manuscript, the authors aim to investigate how tissues regenerate following necrotic cell death. They find that the cells of the wing pouch are more likely to have non-autonomous caspase activation than other regions within the wing imaginal disc (hinge and notum),two signaling pathways that are known to be upregulated during regeneration, Wnt (wingless) and JAK/Stat signaling, act to prevent additional NiA in pouch cells, and may explain the region specificity, the presence of NiA cells promotes regenerative proliferation in late stages of regeneration, not all caspase-positive cells are cleared from the epithelium (these cells are then referred to as Necrosis-induced Caspase Positive (NiCP) cells), these NiCP cells continue to live and promote proliferation in adjacent cells, the caspase Dronc is important for creating NiA/NiCP cells and for these cells to promote proliferation. Animals heterozygous for a Dronc null allele show a decrease in regeneration following necrotic tissue damage.

      The study has the potential to be broadly interesting due to the insights into how tissues differentially respond to necrosis as compared to apoptosis to promote regeneration.

      Weaknesses:

      However, here are some of my current concerns for the manuscript in its current version:

      The presence of cells with activated caspase that don't die (NiCP cells) is an interesting biological phenomenon but is not described until Figure 5. How does the existence of NiCP cells impact the earlier findings presented? Is late proliferation due to NiA, NiCP, or both? Does Wg and JAK/STAT signaling act to prevent the formation of both NiA and NiCP cells or only NiA cells? Moreover, the authors are able to specifically manipulate the wound edge (WE) and lateral pouch cells (LP), but don't show how these manipulations within these distinct populations impact regeneration. The authors provide evidence that driving UAS-mir(RHG) throughout the pouch, in the LP or the WE all decrease the amount of NiA/NiCP in Figure 3G-O, but no data on final regenerative outcomes for these manipulations is presented (such as those presented for Dronc-/+ in Fig 7M). The manuscript would be greatly enhanced by quantification of more of the findings, especially in describing if the specific manipulations that impacted NiA /NiCP cells disrupt end-point regeneration phenotypes.

      We thank the reviewer for their assessment and helpful suggestions to improve the manuscript. Regarding the presence of NiA and NiCP cells, and the proportion of each within a regenerating wing disc, unfortunately we are currently limited in our ability to distinguish each type of cell using available tools. This applies to both visualizing these cells via anti-cDcp-1 staining or the activity of GC3Ai, DBS-GFP and CasExpress, and detecting their function via their influence on proliferation. As such, although the identification of NiCP does not change any of the conclusions prior to Figure 5 in which NiCP are described, we are currently unable to comment on the contribution of NiA versus NiCP to late proliferation, or whether they are differently affected by Wg and JAK/STAT signaling. This issue is touched on in the discussion, but we will expand upon our commentary to better highlight these issues.

      With respect to the reviewer’s suggestion to include evidence on whether blocking NiA/NiCP influences final regenerative outcomes, these data were published in our first paper on this work (Klemm et al., 2021, PMID: 34740246), which we will gladly reiterate in this work.

      Finally, we agree that further quantification of our findings will strengthen the work, which is also suggested by Reviewer 3, and plan to add it where possible in a revised manuscript.

      How fast does apoptosis take within the wing disc epithelium? How many of the caspase(+) cells are present for the whole 48 hours of regeneration? Are new cells also induced to activate caspase during this time window? The author presented a number of interesting experiments characterizing the NiCP cells. For the caspase sensor GC3Ai experiments in Figure 5, is there a way to differentiate between cells that have maintained fluorescent CG3Ai from cells that have newly activated caspase? What is the timeline for when NiA and NiCP are specified? In addition, what fraction of NiCP cells contribute to the regenerated epithelium? Additional information about the temporal dynamics of NiA and NiCP specification/commitment would be greatly appreciated.

      Regarding the timing of apoptosis, Schott et al., 2017 (PMID:28870988) demonstrated that apoptotic GC3Ai-labeled cells in imaginal discs are extruded within 1 hr of labeling, the kinetics of which agree with previously published work on the temporal dynamics of apoptotic cell extrusion by Monier et al., 2015 (PMID:25607361). This is much faster than the continued labeling that we observe up to 64 hr post necrosis. We will include this information alongside a quantification of the percent of the wing pouch with GC3Ai-positive cells over time to better address whether the GC3Ai signal is maintained over time or if newly activated caspases account for the signal in late regenerating discs. We plan to include PH3 staining to distinguish between cells that have activated GC3Ai and are proliferating versus new caspase activity. Additionally, we plan to include new experimental evidence to evaluate the timing of GC3Ai-labelled apoptotic cell loss in our system.

      The question of when NiA/NiCP are specified is difficult to address due to the issue of not being able to easily distinguish between these cell types. We previously attempted to answer this particular question, and also to determine what fraction of these cells contribute to the regenerated epithelium, using caspase-based lineage tracing with CasExpress. However, as shown in the paper, we are unable to label NiA/NiCP with CasExpress, either due to the lack of caspase activity level or subcellular localization. We are currently attempting to combine other caspase reporters with lineage tracing tools and examine late-stage wing discs to address these questions.

      The notum also does not express developmental JAK/STAT, yet little NiA was observed within the notum. Do the authors have any additional insights into the differential response between the pouch and notum? What makes the pouch unique? Are NiA/NiCP cells created within other imaginal discs and other tissues? Are they similarly important for regenerative responses in other contexts?

      As noted by Martin et al., 2017 (PMID:28935711), Martin & Morata, 2018 (PMID:29938762), and our own observations in Harris et al., 2016 (PMID:26840050), the notum does not respond to damage in a way that leads to regeneration, while the pouch does. As NiA/NiCP are a pro-regenerative response, we speculate that this intrinsic difference in regenerative capacity that is potentially caused by a different proliferative and genetic response to injury may account for the disparity in NiA/NiCP occurrence in the pouch vs the notum. A difference in the presence of the (currently unidentified) DAMPs or PRRs in notum vs pouch cells may also be responsible. Alternatively, since the hinge tissue is also refractory to NiA/NiCP due to the presence of genetic factors such as Wg and JAK/STAT, there may be an analogous pathway present in notum cells that acts to protect against the induction of pro-apoptotic factors. Indeed, caspase 3 activation does not seem to occur upon ablation of the notum (Bergantinos et al. 2010, PMID:20215351). We plan to add these points to the discussion.

      Regarding the existence of NiA/NiCP in other contexts, we have additional data stemming from our clonal patch experiments (Figure S1) that demonstrates this phenomenon occurs in other imaginal discs, which we plan to include in the revised manuscript.

      Reviewer #3 (Public Review):

      The manuscript "Regeneration following tissue necrosis is mediated by non- apoptotic caspase activity" by Klemm et al. is an exploration of what happens to a group of cells that experience caspase activation after necrosis occurs some distance away from the cells of interest. These experiments have been conducted in the Drosophila wing imaginal disc, which has been used extensively to study the response of a developing epithelium to damage and stress. The authors revise and refine their earlier discovery of apoptosis initiated by necrosis, here showing that many of those presumed apoptotic cells do not complete apoptosis. Thus, the most interesting aspect of the paper is the characterization of a group of cells that experience mild caspase activation in response to an unknown signal, followed by some effector caspase activation and DNA damage, but that then recover from the DNA damage, avoid apoptosis, and proliferate instead. Many questions remain unanswered, including the signal that stimulates the mild caspase activation, and the mechanism through which this activation stimulates enhanced proliferation.

      The authors should consider answering additional questions, clarifying some points, and making some minor corrections:

      Major concerns affecting the interpretation of experimental results:

      Expression of STAT92E RNAi had no apparent effect on the ability of hinge cells to undergo NiA, leading the authors to conclude that other protective signals must exist. However, the authors have not shown that this STAT92E RNAi is capable of eliminating JAK/STAT signaling in the hinge under these experimental conditions. Using a reporter for JAK/STAT signaling, such as the STAT-GFP, as a readout would confirm the reduction or elimination of signaling. This confirmation would be necessary to support the negative result as presented.

      We thank the reviewer for their assessment and helpful suggestions to improve the manuscript. Although the knockdown of Stat92E using this RNAi line has been shown to produce phenotypes associated with loss of JAK/STAT signaling in previous papers (Monahan and Starz-Gaiano, 2014, 2016 PMID:26277564, 26993259), we agree it would be useful to demonstrate this in our hands and therefore plan to include these data.

      Similarly, the authors should confirm that the Zfh2 RNAi is reducing or eliminating Zfh2 levels in the hinge under these experimental conditions, before concluding that Zfh2 does not play a role in stopping hinge cells from undergoing NiA.

      We attempted to demonstrate the loss of Zfh2 using this RNAi line, but as noted by the reviewer the antibody staining appears mostly unchanged. A reduction in Zfh2 protein levels by this RNAi has previously been demonstrated in cells of the gut (Rojas Villa et al., 2019, PMID: 31841513), suggesting that the persistent Zfh2 staining we see could be due to perdurance of the Zfh2 protein, high levels of expression or high sensitivity of the Zfh2 antibody (or a combination of these factors). We plan to repeat the experiment using a longer knockdown duration prior to ablation to show a change in Zfh2, and/or test alternative RNAi lines. In the absence of these data, we will alter our conclusions to state that Zfh2 cannot be ruled out as playing a role in preventing NiA/NiCP formation in the hinge.

      EdU incorporation was quantified by measuring the fluorescence intensity of the pouch and normalizing it to the fluorescence intensity of the whole disc. However, the images show that EdU fluorescence intensity of other regions of the disc, especially the notum, varied substantially when comparing the different genetic backgrounds (for example, note the substantially reduced EdU in the notum of Figure 3 B' and B'). Indeed, it has been shown that tissue damage can lead to suppression of proliferation in the notum and elsewhere in the disc, unless the signaling that induces the suppression is altered. Therefore, the normalization may be skewing the results because the notum EdU is not consistent across samples, possibly because the damage-induced suppression of proliferation in the notum is different across the different genetic backgrounds.

      We agree with the reviewer that the use of EdU cannot distinguish between an increase in proliferation in the pouch versus a decrease in proliferation of the notum (or a combination of the two), since EdU incorporation by its nature is a relative rather than absolute measure of proliferation. However, we believe that the important finding is that a localized change in proliferation is observed late in necrosis, which is dependent on NiA/NiCP since blocking the formation of these cells prevents this change. While it is possible that this observed change is caused by a reduction in proliferation of the notum, with little or even no alteration in the pouch, this would imply that NiA/NiCP act to non-autonomously limit the proliferation of cells far from where they appear in the pouch, rather than causing localized proliferation in the immediately surrounding tissue that is representative of a blastema. Although we cannot rule this possibility out, our use of a different marker for proliferation in this work (fluorescent E2F) and a more objective proliferation marker, PH3, (Klemm et al., 2021, PMID: 34740246) agree with our observations made using EdU and suggest the formation of a localized blastema in the pouch. To attempt to address this issue, due to the variability of EdU staining between samples, we aim to quantify changes in EdU that are normalized to undamaged discs stained and mounted in the same sample, thus allowing a more objective background level of proliferation to be used for comparison.

      The authors expressed p35 to attempt to generate "undead cells". They take an absence of mitogen secretion or increased proliferation as evidence that undead cells were not generated. However, there could be undead cells that do not stimulate proliferation non-autonomously, which could be detected by the persistence of caspase activity in cells that do not complete apoptosis. Indeed, expressing p35 and observing sustained effector caspase activation could help answer the later question of what percentage of this cell population would otherwise complete apoptosis (NiA, rescued by p35) vs reverse course and proliferate (NiCP, unaffected by p35).

      While it is very possible that expression of P35 in NiA/NiCP could induce a previously uncharacterized type of undead cell that persists but does not secrete known AiP-related factors, the way in which P35 blocks activity of effector caspases (Drice and Dcp-1) precludes our ability to reliably detect and assay NiA/NiCP over time: P35 inactivates caspases by binding to their catalytic site, which causes cDcp-1 labeling to become weak and diffuse (Klemm et al 2021, PMID: 34740246), likely because the detectable epitope is in the catalytic site (Florentin & Arama, 2012. PMID: 22351928). Similarly, the GC3Ai reporter acts as a substrate for caspases and must be cleaved for fluorescence to occur (Zhang et al., 2013 PMID: 23857461). Thus, co-expressing P35 with GC3Ai actually reduces the number of NiA/NiCP cells labeled by GC3Ai and weakens cDcp-1 staining, preventing us from assaying their persistence or association with proliferative markers.

      It is unclear if the authors' model is that the NiCP cells lead to autonomous or non-autonomous cell proliferation, or both. Could the lineage-tracing experiments and/or the experiments marking mitosis relative to caspase activity answer this question?

      While we see GC3Ai-labeled NiA/NiCP in the same area of the pouch with high levels of proliferation (PH3), we observe a mixture of GC3Ai cells that overlapped the PH3 cells and GC3Ai cells that were adjacent to PH3(+) cells. Thus, we are unable to conclusively say whether proliferation is induced autonomously or non-autonomously. We have attempted to answer this question with lineage tracing, however NiA/NiCP are not labeled by the CasExpress tool, and we were unable to define a relationship between NiA/NiCP and proliferation through lineage tracing. However, we add further explanation of our findings to better clarify the proposed model of NiA/NiCP-induced proliferation.

      Many of the conclusions rely on single images. Quantification of many samples should be included wherever possible.

      As suggested by Reviewers 2 and 3 we plan to strengthen our findings by adding quantification of phenotypes where possible, in particular in Figure 2 as mentioned in the “Recommendations for the authors”.

      Why does the reduction of Dronc appear to affect regenerative growth in females but not males?

      We note that the effect on regenerative growth does appear to be present in males, but that the effect is not significant. We suspect that the lower n for this experiment is the cause, and are addressing this by repeating the experiment to increase the n.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer 1 (Public Review):

      Multiple sclerosis (MS) is a debilitating autoimmune disease that causes loss of myelin in neurons of the central nervous system. MS is characterized by the presence of inflammatory immune cells in several brain regions as well as the brain barriers (meninges). This study aims to understand the local immune hallmarks in regions of the brain parenchyma that are adjacent to the leptomeninges in a mouse model of MS. The leptomeninges are known to be a foci of inflammation in MS and perhaps "bleed" inflammatory cells and molecules to adjacent brain parenchyma regions. To do so, they use novel technology called spatial transcriptomics so that the spatial relationships between the two regions remain intact. The study identifies canonical inflammatory genes and gene sets such as complement and B cells enriched in the parenchyma in close proximity to the leptomeninges in the mouse model of MS but not control. The manuscript is very well written and easy to follow. The results will become a useful resource to others working in the field and can be followed by time series experiments where the same technology can be applied to the diAerent stages of the disease.

      Comments on revised version:

      I agree that the authors successfully addressed most of my comments/critiques. However, the fact that the control mice were not injected with CFA and pertussis toxin is somewhat concerning, because it will be hard to interpret the cause of the transcriptomic readouts described in this study. Some of the described eAects might be due to CFA or pertussis (which was used in the EAE but not the "naive" group), and not necessarily to the relapsing-remitting EAE immune features recapitulated in this mouse model. Moreover, this caveat associated with the "naive" control group is not being clearly stated throughout the manuscript and might go unnoticed to readers.

      The authors should clearly state, in the methods section (in the section "Induction of SJL EAE"), that the naive control group was not injected with CFA or pertussis toxin.

      Additionally, this potential confounder, of not using a control group injected with the same CFA and pertussis toxin regimen of the EAE group, should be mentioned in paragraph two of the discussion alongside the other limitations of the study already highlighted by the authors (or in another section of the discussion).

      We thank the reviewer for highlighting this point. Our choice of healthy/naïve, rather than CFA only, controls was intentional, given our desire to sensitively measure genes changing during neuroinflammation. Ultimately, however, we believe the choice of control group had little effect on our conclusions. We would like to note that SJL-EAE does not require pertussis toxin, so the only difference between naïve and CFA only groups is a single injection of CFA 11 weeks prior to experiment endpoint. We have performed additional IHC imaging of naïve and CFA only groups, finding no difference in glial reactivity by MFI measurement of GFAP, IBA1, or CD68 (updated Supplementary Figure 1C–E).

      We have also added sections to the Results and Discussion section to clearly address this point. In the Results: “Since naïve animals were used as controls, we confirmed that CFA alone does not produce lasting glial reactivity or LMI formation. Groups of animals were given CFA only or left naïve. Neither group developed neurologic signs, and after 11 weeks the brains were processed for IHC analysis. There was no evidence of LMI development, and no difference in glial reactivity as measured by GFAP, IBA1, or CD68 intensity (Supplemental Figure 1C–E).” In the Discussion: “Another important consideration in these experiments is our choice of naïve, rather than CFA only, controls. While often used as the control in EAE studies focused on mechanisms of autoimmunity, CFA only can independently induce systemic inflammation. Since this study seeks to describe transcriptomic changes in neuroinflammation more broadly, we chose to use a healthy comparison group to maximize our ability to find genes enriched in neuroinflammation. Ultimately, however, the choice of naïve or CFA only controls is unlikely to have affected our conclusions. SJL-EAE, unlike the more common C57Bl6-EAE, does not require pertussis toxin during the induction. The only difference between naïve and CFA only controls is the subcutaneous CFA delivered at time of immunization (11 weeks prior to experiment endpoint). Indeed, when we compared CFA only and healthy animals at 11 weeks there was no difference in glial reactivity by GFAP, IBA1, or CD68 MFI. There was also no evidence of neurologic symptoms or LMI development in CFA only controls.”

      Reviewer 2 (Public Review):

      Accumulating data suggests that the presence of immune cell infiltrates in the meninges of the multiple sclerosis brain contributes to the tissue damage in the underlying cortical grey matter by the release of inflammatory and cytotoxic factors that diAuse into the brain parenchyma. However, little is known about the identity and direct and indirect eAects of these mediators at a molecular level. This study addresses the vital link between an adaptive immune response in the CSF space and the molecular mechanisms of tissue damage that drive clinical progression. In this short report the authors use a spatial transcriptomics approach using Visium Gene Expression technology from 10x Genomics, to identify gene expression signatures in the meninges and the underlying brain parenchyma, and their interrelationship, in the PLP-induced EAE model of MS in the SJL mouse. MRI imaging using a high field strength (11.7T) scanner was used to identify areas of meningeal infiltration for further study. They report, as might be expected, the upregulation of genes associated with the complement cascade, immune cell infiltration, antigen presentation, and astrocyte activation. Pathway analysis revealed the presence of TNF, JAK-STAT and NFkB signaling, amongst others, close to sites of meningeal inflammation in the EAE animals, although the spatial resolution is insuAicient to indicate whether this is in the meninges, grey matter, or both.

      UMAP clustering illuminated a major distinct cluster of upregulated genes in the meninges and smaller clusters associated with the grey matter parenchyma underlying the infiltrates. The meningeal cluster contained genes associated with immune cell functions and interactions, cytokine production, and action. The parenchymal clusters included genes and pathways related to glial activation, but also adaptive/B-cell mediated immunity and antigen presentation. This again suggests a technical inability to resolve fully between the compartments as immune cells do not penetrate the pial surface in this model or in MS. Finally, a trajectory analysis based on distance from the meningeal gene cluster successfully demonstrated descending and ascending gradients of gene expression, in particular a decline in pathway enrichment for immune processes with distance from the meninges.

      Comments on revised version:

      The authors have addressed all of my comments regarding the lack of spatial resolution between the grey matter and the overlying meninges and also concerning the diAiculties in extrapolating from this mouse model to MS itself.

      I am however very concerned about the lack of the correct control group. Immunization of rodents with complete freunds adjuvant and pertussis alone gives rise to widespread microglial activation, some immune cell infiltration and also structural changes to axons, particularly at nodes of Ranvier (https://doi.org/10.1097/NEN.0b013e3181f3a5b1). This will inevitably make it diAicult to interpret the transcriptomics results, depending on whether these changes are reversible or not and the time frame of the reversal. In the C57Bl6 EAE models adjuvant induced microglial activation becomes chronic, whereas the axonal changes do reverse by 10 weeks. Whether this is the same in SJL EAE model is not clear.

      We thank the reviewer for bringing up this concern regarding control group, which we discussed above in point 1.1. To specifically address reviewer 2’s point regarding microglial activation, we performed IHC analysis comparing naïve and CFA only groups of SJL animals. We found no substantial diAerence in astrocyte or microglial activation in these animals after 11 weeks, as measured by GFAP, IBA1, and CD68. This new data appears in updated Supplementary Figure 1C–D.

      Recommendations for the authors:

      Both reviewers agree that the revised version has improved and some of their major concerns were adequately addressed. However, both reviewers also agree that critical experimental controls are missing, including the FCA and pertussis toxin injected mice which likely show some degree of inflammation in their brain and are needed to compare your experimental MS group and interpret the transcriptomics data.

      We appreciate both reviewers’ important comments on the control group used in this study. In this revised manuscript we have described our rationale for choosing naïve controls, rather than CFA only, and believe they are the most appropriate comparison group. Additionally, we believe that both CFA only and naïve will have similar degrees of baseline neuroinflammation at the 11- week time point. We apologize for not clarifying before, but pertussis toxin is not used in the SJL-EAE, and therefore the “CFA only” control is much milder in SJL-EAE compared to C57Bl6-EAE. Given that many signs of inflammation resolve by 10 weeks in CFA only with pertussis controls (https://academic.oup.com/jnen/article/69/10/1017/2917071; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902151/),) CFA only without pertussis controls are unlikely to have any substantial remaining neuroinflammation at 11 weeks. To test this, we performed an additional experiment directly comparing naïve and CFA only without pertussis.

      These groups showed similar degrees of glial reactivity.

      Given the costs of repeating a spatial transcriptomic experiment and inevitable batch effects should we add a group at this point, we have chosen to not as a CFA only control condition to our transcriptomics analysis. However, we believe our added text clarifying the rationale behind control choice and added immunofluorescence data gives readers the appropriate context to accurately interpret our results.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We would like to thank the reviewers for their positive and constructive comments on the manuscript.

      We committed in our original rebuttal letter to implement the following revisions to both DGRPool and the corresponding manuscript to address the reviewers’ comments:

      (1) We agree with reviewer #1 that normalizing the data could potentially improve the GWAS results. Thus, for computing the GWAS results, we are now using these two additional options in PLINK2: “--quantile-normalize --variance-standardize”. We assessed the impact of these options on the overall results, which revealed only minor improvements of the results, globally being a bit more stringent. In this direction, we also now filter the top results with a nominal p-value of 0.001 instead of 0.01, also because it provided better results for the new gene set enrichment step.

      (2) We added a KRUSKAL test next to the ANOVA test for assessing the links between the phenotypes and the 6 known covariates, as well as a Shapiro-Wilk test of normality.

      (3) We agree with both reviewers that gene expression information is of interest. As mentioned before, adding gene expression data to the portal would have required extensive work, beyond the current scope of this paper, which primarily focuses on phenotypes and genotype-phenotype associations. Nonetheless, we included more gene-level outlinks to Flybase. Additionally, we now link variants and genes to Flybase's online genome browser, JBrowse. By following the reviewers' suggestions, we aim to guide DGRPool users to potentially informative genes.

      (4) Consistent with the latter point, and in agreement with reviewer #2, we acknowledge that additional tools could enhance DGRPool's functionality and facilitate meta- analyses for users. Therefore, we developed a gene-centric tool that now allows users to query the database based on gene names. Moreover, we integrated ortholog databases into the GWAS results. This feature will enable users to extend Drosophila gene associations to other species if necessary.

      (5) We amended the manuscript to describe all the new tools and features that were developed and implemented. In short, the new features include a new gene-centric page with diverse links (Phenotypes, Genome Browser JBrowse, Orthologs …), a variant-centric page (variant details, and PheWAS), an API for programmatic access to the database, and other statistical outputs and filtering options.

      We will detail these advances in the point-by-point response below and in the revised manuscript.

      Reviewer #1 (Public Review):

      This is a technically sound paper focused on a useful resource around the DRGP phenotypes which the authors have curated, pooled, and provided a user-friendly website. This is aimed to be a crowd-sourced resource for this in the future.

      The authors should make sure they coordinate as well as possible with the NC datasets and community and broader fly community. It looks reasonable to me but I am not from that community.

      We thank the reviewer for the positive comments. We will leverage our connections to the fly and DGRP communities to make the resource as valuable as possible. DGRPool in fact already reflects the input of many potential users and was also inspired by key tools on the DGRP2 website. Furthermore, it also rationalizes why we are bridging our results with other resources, such as linking out to Flybase, which is the main resource for the Drosophila community at large.

      I have only one major concern which in a more traditional review setting I would be flagging to the editor to insist the authors did on resubmission. I also have some scene setting and coordination suggestions and some minor textual / analysis considerations.

      The major concern is that the authors do not comment on the distribution of the phenotypes; it is assumed it is a continuous metric and well-behaved - broad gaussian. This is likely to be more true of means and medians per line than individual measurements, but not guaranteed, and there could easily be categorical data in the future. The application of ANOVA tests (of the "covariates") is for example fragile for this.

      The simplest recommendation is in the interface to ensure there is an inverse normalisation (rank and then project on a gaussian) function, and also to comment on this for the existing phenotypes in the analysis (presumably the authors are happy). An alternative is to offer a kruskal test (almost the same thing) on covariates, but note PLINK will also work most robustly on a normalised dataset.

      We thank the reviewer for raising this interesting point. Indeed, we did not comment on the distribution of individual phenotypes due to the underlying variability from one phenotype to another, as suggested by the reviewer. Some distributions appear normal, while others are clearly not normally distributed. This information is 'visible' to users by clicking on any phenotype; DGRPool automatically displays its global distribution if the values are continuous/quantitative. Now, we also provide a Shapiro-Wilk test to assess the normality of the distribution.

      We acknowledge the reviewer's concerns regarding the use of ANOVA tests. However, we want to point out that the ANOVA test is solely conducted to assess whether any of the well- established inversions or symbiont infection status (that, for simplification, we call “covariates” or “known covariates”) are associated with the phenotype of interest. This is merely informational, to help the user understand if their phenotype of interest is associated with a known covariate. But all of these known covariates are put in the model in any case, so PLINK2 will automatically correct for them, whatever is the output of the ANOVA test.

      Still, we amended the manuscript to better explain this, and we added a Kruskal-Wallis test (in addition to the ANOVA test) in the results, so the users can have a better overview of potentially associated known covariates. We added this text on p. 10 of the revised manuscript:

      “The tool further runs a gene set enrichment analysis of the results filtered at p<0.001 to enrich the associated genes to gene ontology terms, and Flybase phenotypes. We also provide an ANOVA and a Kruskal-Wallis test between the phenotype and the six known covariates to uncover potential confounder effects (prior correction), which is displayed as a “warning” table to inform the user about potential associations of the phenotype and any of the six known covariates. It is important to note that these ANOVA and Kruskal tests are conducted for informational purposes only, to assess potential associations between well-established inversions or symbiont infection status and the phenotype of interest. However, all known covariates are included in the model regardless, and PLINK2 will automatically correct for them, irrespective of the results from the ANOVA or Kruskal tests. “

      We also acknowledge in the manuscript (Methods section) that the Kruskal-Wallis test is used for a single factor (independent variables) at a time. This is unlike the ANOVA test that we initially performed, which was handling multiple factors simultaneously (given that it was performed in a multifactorial design). For a more direct comparison with our ANOVA model, we ran separate Kruskal-Wallis tests for each factor, but then we acknowledged its potential limitations compared to our multifactorial ANOVA, since each of these tests treats the factor in question as the only source of variation, not considering other factors. But since the test is not intended for interactions or combined effects of these factors, we deem it to be sufficient.

      Nevertheless, we concur with the reviewer that normalizing the data could potentially enhance GWAS results. Consequently, we have rerun the GWAS analyses using the PLINK2 --quantile- normalize and --variance-standardize options. We have updated all results on the website and also updated the plots in the manuscript, accordingly.

      Minor points:

      On the introduction, I think the authors would find the extensive set of human GWAS/PheWAS resources useful; widespread examples include the GWAS Catalog, Open Targets PheWAS, MR-base, and the FinnGen portal. The GWAS Catalog also has summary statistics submission guidelines, and I think where possible meta-data harmonisation should be similar (not a big thing). Of course, DRGP has a very different structure (line and individuals) and of course, raw data can be freely shown, so this is not a one-to-one mapping.

      Thank you for the suggestion. We cited these resources in the Introduction.

      “This aligns with the harmonization effort undertaken by other human GWAS/PheWAS resources, such as the GWAS Catalog, Open Targets PheWAS, MR-base, and the FinnGen portal, which provide extensive examples of effective data use and accessibility. Although the structure of DGRPool differs from these human databases, we acknowledge the importance of similar meta-data harmonization guidelines. Inspired by the GWAS Catalog's summary statistics submission guidelines, we propose submission guidelines for DGRP phenotyping data in this paper. “

      For some authors coming from a human genetics background, they will be interpreting correlations of phenotypes more in the genetic variant space (eg LD score regression), rather than a more straightforward correlation between DRGP lines of different individuals. I would encourage explaining this difference somewhere.

      We understand that this is a potential issue and we made the distinction clearer in the manuscript to avoid any confusion. We added this text on p.7, at the beginning of the correlation results section:

      “Of note, by “phenotype correlations”, we mean direct phenotype-phenotype correlations, i.e. a straightforward Spearman’s correlation of two phenotypes between common DRGP lines, and we repeated this process for each pair of phenotypes. “

      This leads to an interesting point that the inbred nature of the DRGP allows for both traditional genetic approaches and leveraging the inbred replication; there is something about looking at phenotype correlations through both these lenses, but this is for another paper I suspect that this harmonised pool of data can help.

      We agree with the reviewer and hope that more meta-analyses will be made possible by leveraging the harmonized data that are made available through DGRPool.

      I was surprised the authors did not crunch the number of transcript/gene expression phenotypes and have them in. Is this because this was better done in other datasets? Or too big and annoying on normalisation? I'd explain the rationale to leave these out.

      This is a very good point and is in fact something that we initially wanted to do. However, to render the analysis fair and robust, it would require processing all datasets in the same way. This implies cataloging all existing datasets and processing them through the same pipeline. In addition, it would require adding a “cell type” or “tissue” layer, because gene expression data from whole flies is obviously not directly comparable to gene expression data from specific tissues or even specific conditions. This would be key information as phenotypes are often tissue-dependent. Consequently, and as implied by the reviewer, we deemed this too big of a challenge beyond the scope of the current paper. Nevertheless, we plan to continue investigating this avenue in a potential follow-up paper.

      We still added a gene-centric tool to be able to query the GWAS results by gene. We also added orthologs and Flybase gene-phenotype information, both in this new gene-centric tool and also in all GWAS results.

      I think 25% FDR is dangerously close to "random chance of being wrong". I'd just redo this section at a higher FDR, even if it makes the results less 'exciting'. This is not the point of the paper anyway.

      We agree with the reviewer that this threshold implies a higher risk of false positive results. However, this is not an uncommonly used threshold (Li et al., PLoS biology, 2008; Bevers et al., Nature Metabolism, 2019; Hwangbo et al, Elife, 2023), and one that seems robust enough in our analysis since similar phenotypes are significant in different studies at different FDR thresholds.

      Nevertheless, we revisited these results with a stronger threshold of 5% FDR in the main Figure 3C. Most of the conclusions were maintained, except for the relation between longevity and “food intake”, as well as “sleep duration”. We modified the manuscript accordingly, notably removing these points from the abstract, and tuning down the results section. We kept the 25% FDR results as supplemental information.

      I didn't buy the extreme line piece as being informative. Something has to be on the top and bottom of the ranks; the phenotypes are an opportunity for collection and probably have known (as you show) and cryptic correlations. I think you don't need this section at all for the paper and worry it gives an idea of "super normals" or "true wild types" which ... I just don't think is helpful.

      We appreciate the reviewer’s feedback on the section regarding extreme DGRP lines and understand the concern about potential implications of “super normals” or “true wild types.” This section aimed to explore whether specific DGRP lines consistently rank in the extremes of phenotypic measures, particularly those tied to viability-related traits. Our hypothesis was that if particular lines consistently appear at the top or bottom, this might suggest some inherent bias or inbreeding-related weakness that could influence genetic association studies.

      However, as per the analyses presented, we did not discover support for this phenomenon. Importantly, the observed mild correlation in extremeness across sexes, while not profound, further suggested that this phenomenon is not a consistent population-wide feature.

      Nevertheless, we consider that this message is still important to convey. In response to the reviewer's feedback, we have provided a clearer conclusion of this paper section by adding the following paragraph:

      “In conclusion, this analysis showed that while certain lines exhibit lower longevity or outlier behavior for specific traits, we found no evidence of a general pattern of extremeness across all traits. Therefore, the data do not support the idea of 'super normals' or any other inherently biased lines that could significantly affect genetic studies. “

      I'd say "well-established inversion genotypes and symbiot levels" rather than generic covariates. Covariates could mean anything. You have specific "covariates" which might actually be the causal thing.

      We thank the author for the suggestion. We agree and modified the manuscript accordingly.

      I wouldn't use the adjective tedious about curation. It's a bit of a value judgement and probably places the role of curation in the wrong way. Time-consuming due to lack of standards and best practice?

      We thank the author for the suggestion. We agree and modified the manuscript accordingly, replacing the occurrences by “thorough” and “rigorous” which correspond better to the initial intended meaning.

      Reviewer #2 (Public Review):

      Summary:

      In the present study, Gardeux et al provide a web-based tool for curated association mapping results from DRP studies. The tool lets users view association results for phenotypes and compare mean phenotype ~ phenotype correlations between studies. In the manuscript, the authors provide several example utilities associated with this new resource, including pan-study summary statistics for sex, traits, and loci. They highlight cross-trait correlations by comparing studies focused on longevity with phenotypes such as oxphos and activity.

      Strengths:

      -Considerable efforts were dedicated toward curating the many DRG studies provided.

      -Available tools to query large DRP studies are sparse and so new tools present appeal

      Weaknesses:

      The creation of a tool to query these studies for a more detailed understanding of physiologic outcomes seems underdeveloped. These could be improved by enabling usages such as more comprehensive queries of meta-analyses, molecular information to investigate given genes or pathways, and links to other information such as in mouse rat or human associations.

      We appreciate the reviewer's kind comments.

      Regarding the tools, we concur with the reviewer that incorporating additional tools could enhance DGRPool and facilitate users in conducting meta-analyses. Therefore, we developed two new tools: a gene-centric tool that enables users to query the database based on gene names, and a variant-centric tool mostly for studying the impact of specific genomic loci on phenotypes. Additionally, in all GWAS results, we added links to ortholog databases, thereby allowing users to extend fly gene associations to other species, if required.

      Furthermore, we added links to the Flybase database, for variants, phenotypes, and genes that are already present in Flybase. We also link out to a 'genome browser-like' view (Flybase’s JBrowse tool) of the GWAS results centered around the affected variants/genes.

      Finally, we now also perform a gene-set enrichment analysis for each GWAS result, both in the Flybase gene-phenotype database and the Gene Ontology (GO) database.

      Reviewer #2 (Recommendations For The Authors):

      (1) The authors discuss how current available DRG databases are basically data-dump sites and there is a need for integrative queries. Clearly, they spent (and are spending) considerable efforts into curating associations from available studies so the current resource seems to contain several areas of missed opportunities. The most clear addition would be to integrate gene-level queries. For example which genes underlie associations to given traits, what other traits map to a specific gene, or multiple genes which map to traits. This absence of integration is somewhat surprising given the lab's previous analyses of eQTL data in DRPs (https://doi.org/10.1371/journal.pgen.1003055 ) and readily available additional data (ex. 10.1101/gr.257592.119 ,flybase) simple intersections between these at the locus level would provide much deeper molecular support for searching this database.

      The point raised by the reviewer concerning eQTL / transcriptomic data is in fact similar to the one raised by reviewer #1. We strongly agree with both reviewers that incorporating eQTL results in the tool would be very valuable, and this is in fact something that we initially wanted to do. However, to render the analysis fair and robust, it would require re-processing multiple public datasets in the same way. This would imply cataloging all existing datasets and processing them through the same pipeline. In addition, it would require adding a “cell type” or “tissue” layer, because gene expression data from whole flies is obviously not directly comparable to gene expression data from specific tissues or even specific conditions. This would be key information as phenotypes are often tissue-dependent. Consequently, we deemed implementing all these layers too big of a challenge beyond the scope of the current paper, but we plan to continue investigating this avenue in a potential follow-up paper.

      As mentioned before, we still integrated gene-level queries in a new tool, querying genes in the context of GWAS results. We acknowledge that this is not directly related to gene expression, and thus not implicating eQTL datasets (at least for now), but we think that it is for now a good alternative, reinforcing the interpretation of the GWAS results.

      Since this point was raised by both reviewers, we added a discussion about this in the manuscript.

      “We recognize certain limitations of the current web tool, particularly the lack of eQTL or gene expression data integration. Properly integrating DGRP GWAS results with gene expression data in a fair and robust manner would require uniform processing of multiple public datasets, necessitating the cataloging and standardization of all available datasets through a consistent pipeline. Moreover, incorporating a “cell type” or “tissue” layer would be essential, as gene expression data from whole flies is not directly comparable to data from specific tissues or even specific conditions. Since phenotypes are often tissue-dependent, this information is vital. However, implementing these layers presented too big of a challenge and was beyond the scope of this paper. “

      (2) Another area that would help to improve is to provide either a subset or the ability to perform a meta-analysis of the studies proposed to see where phenotype intersections occur, as opposed to examining their correlation structure. For any given trait the PLINK data or association results seem already generated so running together and making them available seems fairly straightforward. This can be done in several ways to highlight the utility (for example w/wo specific covariates from Huang et al., 2014 and/or comparing associations that occur similarly or differently between sexes).

      We are not 100% sure what the reviewer refers to when mentioning “phenotype intersection”, but we interpreted it as a “PheWAS capability”. Currently, in DGRPool, for every variant, there is a PheWAS option, which scans all phenotypes across all studies to see if several phenotypes are impacted by this same variant.

      We tried to make this tool more visible, both in the GWAS section of the website, but also in the “Check your phenotype” tool, when users are uploading their own data to perform a GWAS. We have also created a “Variants” page, accessible from the top menu, where users can view particular variants and explore the list of phenotypes they are significantly associated with.

      From both result pages, users can download the data table as .tsv files.

      (3) As pointed out by the authors, an advantage of DRGs is the ease of testing on homozygous backgrounds. For each phenotype queried (or groups of related phenotypes would be of interest too), I imagine that subsetting strains by the response would help to prioritize lines used for follow-up studies. For example, resistant or sensitive lines to a given trait. This is already done in Fig 4C and 4E but should be an available analysis for all traits.

      For all quantitative phenotypes, we show the global distribution by sex, followed by the sorted distribution by DGRP line. Since the data can be directly downloaded from the corresponding plots, resistant and sensitive lines can then be readily identified for all phenotypes.

      (4) To researchers beyond the DRP community, one feature to consider would be seeing which other associations are conserved across species. While doing this at the phenotype level might be tricky to rename, assigning gene-level associations would make this streamlined. For example, a user could query longevity, subset by candidate gene associations then examine outputs  for  what  is  associated  with  orthologue  genes  in  humans (ex. https://www.ebi.ac.uk/gwas/docs/file-downloads) or other reference panels such as mice and rats.

      In all GWAS results, and in the gene-centric tool, we have added links to ortholog databases. In short, when clicking on a variant, users can see which gene is potentially impacted by this variant (gene-level variant annotation). When clicking on these genes, the user can then open the corresponding, detailed gene page.

      To address the reviewer’s comment, in the gene page, we have added two orthologous databases (Flybase and OrthoDB), which enables cross-species association analyses.

      (5) Related to enabling a meta-data analysis, it would be helpful to let users download all PLINK or DGRP tables in one query. This would help others to query all data simultaneously.

      We would like to kindly point out that all phenotyping data can already be downloaded from the front page, which includes the phenotypes, the DGRP lines and the studies’ data and metadata. However, we did not provide the global GWAS results through a single file, because the data is too large. Instead, we provide each GWAS dataset via a unique file, available per phenotype, on the corresponding GWAS result page of this phenotype. This file is filtered for p<0.001, and contains GWAS results (PLINK beta, p and FDR) as well as gene and regulatory annotations.

      (6) Following analysis of association data an interesting feature would be to enable users to subset strains for putative LOF variants at a given significant locus. This is commonly done for mouse strains (ex. via MGI).

      The GWAS result table available for each phenotype can be filtered for any variant of interest. We added the capability to filter by variant impact; LOF variants being usually referred to as HIGH impact variants.

      (7) Viewing the locus underlying annotation can also provide helpful information. For example, several nice fly track views are shown in 10.1534/g3.115.018929, which would help users to interpret molecular mechanisms.

      We now link the GWAS results out to Flybase’s JBrowse genome browser.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      We are grateful to all three reviewers and editors for their critical comments and suggestions.

      Reviewer #2 (Recommendations For The Authors):

      The authors responded satisfactorily to all my comments and suggestions.

      We thank the reviewer for his time and feedback.

      Reviewer #3 (Recommendations For The Authors):

      Comments for authors:

      The authors have addressed most of the reviewer's concerns. Although no additional data were included to strengthen the manuscript, they have clarified some relevant points, and the manuscript has been updated accordingly. In my view, the current manuscript is well-written and mostly straightforward.

      We thank the reviewer for his time and suggestions. Addressing them have improved the quality of our manuscript.

      After a second revision, I just have a few minor comments (mostly editorial) that should be easy to address.

      (1) Page 16: "The dominant presence of the GRIK1-1 gene was also reported in retinal Off bipolar cells..." Please include reference(s).

      We have now cited the following reference:

      Lindstrom, S.H., Ryan, D.G., Shi, J., DeVries, S.H., 2014. Kainate receptor subunit diversity underlying response diversity in retinal Off bipolar cells. J. Physiol. 592, 1457–1477. https://doi.org/10.1113/jphysiol.2013.265033

      (2) Page 18: "Based on our functional assays, the splice seems to affect the interaction between the receptor and auxiliary proteins". Please remove or tone down this statement; the current data do not support this claim.

      We have revised the sentence as following: “Based on our functional assays, the splice may possibly affect the interaction between the receptor and auxiliary proteins.”

      (3) Page 24: "cultures ... at 0.5 µg/mL were transfected". In the current context, it is not clear what you mean with 0.5 µg/mL. Please check and correct.

      Thanks for pointing out this error. We have corrected it.

      (4) Page 30. He et al. reference is repeated.

      Thanks. We have fixed it now.

      (5) Figure 3, Panel C: Please incorporate the EC50 value for the red trace into the figure; it appears to be a different data set and, consequently, a different fitting compared with Figure 2C.

      The GluK1-1a data set (red trace) is identical to that in Figure 2c, though it may appear different due to the scale of the X and Y axis. As suggested, we have now included the EC50 value for this data set in Figure 3, panel C.

      (6) Figure legend 4: Please check two minor issues here:

      (a) "Bar graphs... with or without Neto1 protein..." This statement is apparently wrong; Figure 4 does not show the effect of Neto1.

      (b) "The wild type GluK1 splice variant data is the same as from Figure 1.." I think the authors mean Figure 2A instead of Fig. 1. Please check.

      Thanks for pointing out the error. We have fixed the same in the revised manuscript.

      (7) Please check and correct spelling/wording issues in the text. Here are some examples:

      (a) Page 9 " Figure 3G - I, Table2.." (There is no Panel I). 

      Fixed.

      (b) Page 16 "... and is involved in various pathophysiology..." 

      We have revised the sentence as “… and is involved in various pathophysiological conditions”

      (c) Page 19 "The constructs used for this study were HEK293 WT mammalian cells were seeded on..." 

      Fixed. Thanks.

      (d) Page 23 "The immunoblots were probed..." Please check the whole paragraph and correct the issues.

      Fixed. Thanks.

      (e) Page 27 "initially, 1,97,908 particles were picked". Check the value; the same issue occurs in Fig.6 table supplement 1. 

      Thanks. We have now modified the sentence to clarify that for  GluK1-1aEM ND-SYM, initially, 1,97,908 particles were picked and subjected to multiple rounds of clean-up using 2D and 3D classification. Finally,  24,531 particles were used for the final 3D reconstruction and refinement.

      (f) Legend Figure 2: Remove "(F)" from the legend. 

      Thanks. Fixed.

      (g) Legend Figure 2-Sup.1: Check/correct spelling issues. 

      Thanks. Fixed.

      (h) Figure 5-figure supplement 1: There is a mistake in panel B: "GFP" label is shown for Gluk1 and Neto2, but the authors mention that the pull-down was done with Anti-His antibodies. Please correct.

      Thanks. The pull-down experiments were done with anti-His for both the blots presented in panels A and B as mentioned in both the figures (right side panels of both A and B). However, for the GluK1 and Neto2 pull downs (panel B), the blots were probed with anti-GFP antibody which would detect both the receptor (as the receptor has both GFP-His8) and Neto2-GFP at their respective sizes. This has been indicated in the figure panel B.

      (8) Related to the point-by-point document:

      Major concern 2: Interpreting the effect of mutants on the regulation by Neto proteins requires knowing how the mutant is affecting the channel properties without Neto. In my view, if the data showing the K368/375/379/382H376-E mutant without Neto is missing (in this case due to low current amplitude), then, the pink bars in Fig. 5 should be removed from the figure. 

      We thank the reviewer for raising this interesting point and agree that it would be valuable to characterize the channel properties of all the mutants individually. However, as mentioned earlier, the functions of some mutant receptors are only rescued, or reliable, measurable currents are detected, when they are co-expressed with Neto proteins. We still believe that comparing wild-type and mutant receptors co-expressed with Neto proteins provides important insights, and therefore, we would like to retain the K368/375/379/382H376-E mutant data in the figure.

      Major concern 4: Figure 6-figure Supplement 8 is not mentioned in the manuscript. It would help to include a proper description in the Results section similar to the answer included in the point-by-point document.

      Figure6-figure Supplement 8 has already been cited on page 15. We have also cited Figure6-figure Supplement 9 on the same page and have added following sentences in the text:

      “A superimposition of GluK1-1aEM (detergent-solubilized or reconstituted in nanodiscs) and GluK1-2a (PDB:7LVT) showed an overall conservation of the structures in the desensitized state. No significant movements were observed at both the ATD and LBD layers of GluK1-1a with respect to GluK1-2a (Figure 6; Figure 6-figure supplement 9).”

      Major concern 5: The ramp/recovery protocol was not included properly in the manuscript; please include the time of the ramp pulse and the time used for the recovery period.

      Elaborated ramp and recovery protocols are included in the methods section. The time used for the recovery period was variable and was tuned as per the recovery kinetics. All the figures were representative traces are shown include the scale bar showing the time period of agonist application.

      Minor concern 1: The proposed change was not included in the manuscript; check page 7.

      Thanks for highlighting this error. We have now changed it in the revised manuscript.

      Minor concern 10: The manuscript was not corrected as indicated. Please check.

      Thanks. We have now modified the sentence as following: “…..a reduction was observed for K375/379/382H376-E receptors (1.17 ± 0.28 P=0.3733) compared to wild-type although differences do not reach statistical significance

      Minor concern 14: The figure was not corrected as indicated. Please check.

      Thanks for highlighting this error. We have now changed it in the revised manuscript.

      Minor concern 19: I suggest including this briefly in the Discussion section.

      Thanks for the suggestion. We have included the following sentence in the discussion:

      “The differences in observations could be due to variations in experimental conditions, such as the constructs and recording conditions used.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Weaknesses:

      Given that all mutants tested showed the same degree of activation by PEG400, it seemed possible that PEG400 might be an allosteric activator of WNK1/3 through direct binding interactions. Perhaps PEG400 eliminates CWN1/2 waters by inducing conformational changes so that water loss is an effect not a cause of activation. To address this it would be helpful to comment on whether new electron densities appeared in the X-ray structure of WNK1/SA/PEG400 that might reflect PEG400 interactions with chains A or B.

      We re-evaluated the WNK1/SA/PEG400 electron density looking for non-protein densities larger than water. No new densities were found. However, we do observe a PEG400-destabilizing effect using differential scanning fluorimetry, and have included this data into Figure 2. We conclude that the effects on the water structure and destabilization are due to demands on solvent.

      We have included in the second paragraph of the introduction references to primary literature that advance similar arguments to explain osmolyte induced effects on activity.

      Specifically, Colombo MF, Rau DC, Parsegian VA (1992) Protein solvation in allosteric regulation: a water effect on hemoglobin. Science 256: 655-659 and LiCata VJ, Allewell NM (1997) Functionally linked hydration changes in Escherichia coli aspartate transcarbamylase and its catalytic subunit. Biochemistry 36: 10161—10167. 

      It would also be helpful to discuss any experiments that might have been done in previous work to examine the direct binding of glycerol and other osmolytes to WNKs.

      We did not observe PEG400 in WNK1/SA/PEG400 despite effects on the space group and subunit packing. On the other hand, glycerol was observed in WNK1/SA, which was cryoprotected in glycerol (PDB file 6CN9). We have highlighted these differences in the second section of the results. A thorough analysis on the effects of various osmolytes on WNK structure, stability, and activity is a potential future direction.

      The study would benefit from a deeper discussion about how to reconcile the different effects of mutations. For example, wouldn't most or all of the mutations be expected to disrupt the water network, and relieve the proposed autoinhibition? This seemed especially true for some of the residues, like Y420(Y346), D353(D279), and K310(K236), which based on Fig 3 appeared to interact with waters that were removed by PEG400.

      The manuscript has been updated with new data and better discussion of this point. Given the inconsistencies on the effects of mutation in static light scattering (SLS), we addressed the possibility that the reducing agent was not constant across experiments. In a repeated study, including reducing agent (1 mM TCEP), we obtained results on mutant mass more similar to wild-type than in the original experiment. An exception was that two of the mutants were much more monomeric than wild-type. It follows that the network CWN1 stabilizes the inactive dimer. The reduced activity of some of the mutants probably reflects the position of CWN1 and the AL-CL Cluster in the active site, such that mutants can affect substrate binding or catalysis. This is now better discussed both in the data and discussion sections.

      Mutants have a tendency to have complex effects on activity and structure. It was satisfying to find any activating mutants. We point out that we have been careful to present all of our data including mutants that are not easily explained by our models.

      Alternatively, perhaps the waters in CWN2 are more important for maintaining the autoinhibited structure. This possibility would be useful to discuss, and perhaps comment on what may be known about the energetic contributions of bound water towards stabilizing dimers.

      This research focused on the most salient unique feature of WNK1- CWN1. We also identified CWN2. Mutational analysis of CWN2 can’t be done without disrupting the dimer interface, greatly complicating data interpretation.

      It would also be useful to comment on why aggregation of E319Q/A (E314) shouldn't inhibit kinase activity instead of activating it.

      On recollection of the SLS data in the presence of reducing agent, we saw reduced aggregation. WNK3/D279N and WNK3/E314Q were more monomeric, especially at the higher protein concentration used. WNK3/E314Q is one of the more active mutants.

      The X-ray work was done entirely with WNK1 while the mutational work was done entirely with WNK3. Therefore, a simple explanation for the disconnect between structure and mutations might be that WNK1 and WNK3 differ enough that predictions from the structure of one are not applicable to mutations of the other. It would be helpful to describe past work comparing the structure and regulation of WNK1 and WNK3 that support the assumption of their interchangeability.

      We have responded directly to this concern. We introduced our most interesting amino acid replacement WNK3/E314A into WNK1, making WNK1/E388A. Similar trends in chloride inhibition and mutational activation were observed in WNK1 as in WNK3. This supports the assumption of interchangeability of WNK1 and WNK3 we invoked for practical reasons.  As expected, the overall activity of WNK1 is lower than WNK3. Overall, the lower activity limited data collection. However, the lower activity did allow us to fit the chloride inhibition data to a kinetic model for WNK1.  Panels on WNK1 activity, mutation, and chloride inhibition were added to Figure 5 and to Supplemental data (Table S6).

      Reviewer #2 (Public Review):

      Strengths:

      The most interesting result presented here is that P1 crystals of WNK1 convert to P21 in the presence of PEG400 and still diffract (rather than being destroyed as the crystal contacts change, as one would expect). All of the assays for activity and osmolyte sensing are carried out well.

      Thank you. We have emphasized this point in the Results section with the word “remarkably”

      Weaknesses:

      The rationale for using WNK3 for the mutagenesis study is that it is more sensitive to osmotic pressure than WNK1. I think that WNK1 would have been a better platform because of the direct correlation to the structural work leading to the hypothesis being tested. All of the crystallographic work is WNK1; it is not logical to jump to WNK3 without other practical considerations.

      This point is addressed in the last comment to Reviewer 1. We added autophosphorylation assay data on our most interesting mutant (WNK3/E314A) in WNK1 (WNK1/E388A). Conversely, we have crystallographic data on uWNK3 (on uWNK3/E314A collected to 3.3Å). These new data justify the assumption of interchangeability of results obtained for uWNK1 and uWNK3.

      Osmolyte sensing was tested by measuring ATP consumption as a function of PEG400 (Figure 6). Data for the subset of mutants analyzed by this assay showed increasing activity. It is not clear why the same collection of mutant proteins analyzed in the experiments of Figure 5 was not also measured for osmolyte sensing in Figure 6.

      These data are now more complete, having been now collected for all of the WNK3 mutants (now Figure 7).

      The last set of data presented uses light scattering to test whether the WNK3 mutant proteins exhibit quaternary structural changes consistent with the monomer/dimer hypothesis. If they did, one would expect a higher degree of monomer for those that are activated by mutation, and a lower amount of monomer (like wt) for those that are not. Instead, one of the mutant proteins that showed the most chloride inhibition (Y346F) had a quaternary structure similar to the wt protein, and others have similar monomer/dimer mixtures but distinct chloride inhibition profiles (K307A and M301A). I don't see how the light scattering data contribute to this story other than to refute the hypothesis by showing a lack of correlation between quaternary structure, water binding, and activity. This is another reason why the disconnect between WNK1 and WNK3 could be a problem. All of the detailed structural work with WNK1 must be assumed with WNK3; perhaps the light scattering data are contradicting this assumption?

      As noted above, on recollection of the SLS data in the presence of reducing agent, we saw reduced aggregation and more consistency with our model. Thus, we now feel it is a useful contribution to the manuscript. The table in Supplemental data has been updated.

      Reviewer #1 (Recommendations For The Authors):

      Fig 3D in the PDF manuscript seemed distorted - waters were cut off. Also Fig 2D would benefit from showing the whole molecule, instead of cutting off the top and bottom of the kinase domain.<br /> We suspect this is a data transfer problem, since we don’t see these truncations.

      Both Figure 2 and 3 have been changed, addressing these concerns and adding new differential scanning fluorimetry data as discussed in reply to Reviewer 1. Figure 2 was simplified by eliminating Figures 2A-2C, and replacing them with a new Figure 2B, the superposition of WNK1/SA/PEG400 (PDB 9D3F), WNK1/SA (PDB 6CN9).  

      In Figure 3, we added a panel highlighting the volume change around CWN1 in presence of PEG400 (Figure 3C). Hopefully, inappropriate cropping has been eliminated.

      Line 162: Y314F should be Y346F.

      This has been corrected. Thank you.

      Lines 211-213 - these two sentences do not seem to logically go together: "Two hyper-active mutants were discovered, WNK3/E314A, and WNK3/E314Q. These mutants are straightforward to interpret based on our model: the mutated residues support and stabilize inactive dimeric WNK."

      An extensive rewrite has been conducted to address the difference in activity between the higher activity mutants versus less active mutants, now discussed in two paragraphs, and two Figures, Figure 5 and 6. The SLS data, recollected with more reducing agent, has given more consistent results (Supplemental), making the discussion more straightforward (discussed above).

      Reviewer #2 (Recommendations For The Authors)

      I think WNK1 would be a better platform for mutagenesis than WNK3. Or minimally the authors should better justify the switch to WNK3 from WNK1. Analyze the same set of mutants in Figure 5 into Figure 6.

      Again, we have added assay data on uWNK1/E388A, and structural data on uWNK3/E314A.

      I would analyze the same set of mutants in Figures 5 and 6.

      We have analyzed all of the WNK3 mutants in the ADP-Glo assays (Figure 7).

      Will the P21 crystal form grow independently in PEG400?

      Attempts to crystallize WNK1/SA or WNK3/SA or other constructs in PEG400 have been unsuccessful.

      I would also add some context about the role of water in allosteric mechanisms. I know there is a long history in hemoglobin in which specific waters have been associated with the T and R states such as that by Marcio Colombo. There is a relatively recent article in J. Phys Chem. that would provide good context. Leitner et al., J. Chem. Phys. 152, 240901 (2020)

      Thank you. Good call.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This fundamental study uses a creative experimental system to directly test Ohno's hypothesis, which describes how and why new genes might evolve by duplication of existing ones. In agreement with existing criticism of Ohno's original idea, the authors present compelling evidence that having two gene copies does not speed up the evolution of a new function as posited by Ohno, but instead leads to the rapid inactivation of one of the copies through the accumulation of mostly deleterious mutations. These findings will be of broad interest to evolutionary biologists and geneticists.

      We thank the editors and the reviewers for their positive feedback concerning our experimental system and for the constructive feedback on how to further improve the manuscript. We have now addressed the reviewer’s comments in a revised version.

      Reviewer #1 (Public Review):

      Overview:

      The authors construct a pair of E. coli populations that differ by a single gene duplication in a selectable fluorescent protein. They then evolve the two populations under differing selective regimes to assess whether the end result of the selective process is a "better" phenotype when starting with duplicated copies. Importantly, their starting duplicated population is structured to avoid the duplication- amplification process often seen in bacterial artificial evolution experiments. They find that while duplication increases robustness and speed of adaptation, it does not result in more highly adapted final states, in contrast to Ohno's hypothesis.

      Major comments:

      This is an excellent study with a very elegant experimental setup that allows a precise examination of the role of duplication in functional evolution, exclusive of other potential mechanisms. My main concern  is  to  clarify  some  of  the  arguments  relating  to  Ohno's  hypothesis.

      I think my main confusion on first reading the manuscript was in the precise definition of Ohno's hypothesis. I think this confusion was mine and not the authors, but it is likely common and could be addressed.

      Most evolutionary biologists think of gene duplication as making neofunctionalization "easier" by providing functional redundancy and a larger mutational target, such that the evolutionary process of neofunctionalization is faster (as the authors observed). In this framework, the final evolved state might not differ when selection is applied to duplicated copies or a single-copy gene. Ohno's hypothesis, by contrast, argues that there generally exist adaptive conflicts between the ancestral function and the "desired" novel function, such that strong selection on a single-copy gene cannot produce the evolutionary optima that selection on two copies would. This idea is hinted at in the quotation from Ohno in paragraph 2 of the introduction. However, the sentences that follow I don't think reinforce this concept well enough and lead to some confusion.

      With that definition in mind, I agree with the authors' conclusion that these data do not support Ohno's hypothesis. My quibble would be that what is actually shown here is that adaptive conflict in function is not universal: there are cases where a single gene can be optimized for multiple functions just as well as duplicated copies. I do not think the authors have, however, refuted the possibility that such adaptive conflicts are nonetheless a significant barrier to evolutionary innovation in the absence of gene duplication generally. Perhaps just a sentence or two to this effect might be appropriate.

      We fully agree with the reviewer that trade-offs might play an important role in the evolution of single copy and of duplicated genes, depending on the gene and on the selection regime. And while trade-offs are not likely to play a big role in the selection regime we discuss in detail in the main text (evolution towards more green), they probably are important for at least one our selection regimes. In fact, we so state in the following passage of the discussion. In addition, we have now added a sentence that acknowledges the importance of trade-offs for evolution in the absence of gene duplication:

      “A single gene encoding such a protein suffers from an adaptive conflict between the two activities. Gene duplication may provide an escape from this adaptive conflict, because each duplicate may specialize on one activity14, 15. For coGFP, a trade-off likely exists for fluorescence in these two colors, because improvement of green fluorescence entails a loss of blue fluorescence during evolution (Figure S8 and Figure S16). We therefore expected that during selection for both green and blue fluorescence, one cogfp copy in double-copy populations would “specialize” on green fluorescence whereas the other copy would specialize on blue fluorescence. However, when we analyzed individual population members with two active gene copies we could not find any such specialization (Figure S21). Moreover, the identified key mutations at positions 147 and 162 have a very low frequency (<1%) in these populations (Figure S15). Future experiments with different selection strategies might reveal the reasons for this observation and the conditions under which such a specialization can occur.“

      I also think the authors need to clarify their approach to normalizing fluorescence between the two populations to control for the higher relative protein expression of the population with a duplicated gene. Since each population was independently selected with the highest fluorescing 60% (or less) of the cells selected, I think this normalization is appropriate. Of course, if the two populations were to compete against each other, this dosage advantage of the duplicates would itself be a selective benefit. Even as it is, the dosage advantage should be a source of purifying selection on the duplication, and perhaps this should be noted.

      The reviewer is correct. To be able to follow the evolutionary trajectories of the different constructs, the populations were treated separately. The gates were adjusted for each library separately to select for the top 60, 1 or 0.01% of cells and the gates for the double-copy populations were set to slightly higher fluorescence, reflected in the higher fluorescence of these populations in Figure 3A. Indeed, if individuals in these populations were to compete against each other, the double-copy populations would have a benefit due to the dosage advantage. However, as we already pointed out in the manuscript, we did not see any additional advantage beyond the increased gene dosage provided by the second copy (Figure 3B). To discuss this issue in more detail, we have now added the following text to the discussion:

      “It is worth noting that we evolved each of our single- and double-copy populations separately and in parallel to follow their individual evolutionary trajectories. In a natural population, individuals with one or two copies might occur in the same population and compete against each other. In this situation any dosage advantage of a duplicate gene would itself entail selective benefit. Our approach allowed us to find out if gene duplication facilitates phenotypic evolution beyond any such gene dosage effect. At least for the specific genes, selection pressures, and mutation rates we used, the data suggest that it does not.”

      Finally, I am slightly curious about the nature of the adaptations that are evolving. The authors primarily discuss a few amino-acid changing mutations that seem to fix early in the experiment. Looking at Figure 3, it however, appears that the populations are still evolving late in the experiment, and so presumably other changes are occurring later on. Do the authors believe that perhaps expression changes to increase protein levels are driving these later changes?

      Figure S15 shows that some mutations are indeed still increasing in frequency during late evolutionary rounds, in particular S2L, V141L and V205L. We have measured the emission spectra of these mutants (Figure S16), and these mutations increase fluorescence both in green and blue. It is therefore likely that these mutations, similar to L98M, increase protein expression, solubility, or thermal stability, as suggested by the reviewer. We now clarify this matter in a new passage of the results:

      “Like L98M, the additional mutations S2I, V141I and V25L also occurred in all selection regimes, but they reached lower frequencies than L98M during the 5 generations of the experiment. We hypothesized that mutations observed in all selection regimes do not derive their benefit from increasing the intensity of any one fluorescent color. Instead, they may increase protein expression, solubility, or thermal stability.”

      Reviewer #2 (Public Review):

      Summary:

      Drawing from tools of synthetic biology, Mihajlovic et al. use a cleverly designed experimental system to dissect Ohno's hypothesis, which describes the evolution of functional novelty on the gene-level through the process of duplication & divergence.

      Ohno's original idea posits that the redundancy gained from having two copies of the same gene allows one of them to freely evolve a new function. To directly test this, the authors make use of a fluorescent protein with two emission maxima, which allows them to apply different selection regimes (e.g. selection for green AND blue, or, for green NOT blue). To achieve this feat without being distracted by more complex evolutionary dynamics caused by the frequent recombination between duplicates, the authors employ a well-controlled synthetic system to prevent recombination: Duplicates are placed on a plasmid as indirect repeats in a recombination-deficient strain of E.coli. The authors implement their directed evolution approach through in vitro mutagenesis and selection using fluorescent-activated cell sorting. Their in-depth analysis of evolved mutants in single-copy versus double-copy genotypes provides clear evidence for Ohno's postulate that redundant copies experience relaxed purifying selection. In contrast to Ohno's original postulate, however, the authors go on to show that this does not in fact lead to more rapid phenotypic evolution, but rather, the rapid inactivation of one of the copies.

      Strengths:

      This paper contributes with great experimental detail to an area where the literature predominantly leans on genomics data. Through the use of a carefully designed, well-controlled synthetic system the authors are able to directly determine the phenotype & genotype of all individuals in their evolving populations and compare differences between genotypes with a single or double copy of coGFP. With it they find clear evidence for what critics of Ohno's original model have termed "Ohno's dilemma", the rapid non- functionalization by predominantly deleterious mutations.

      Including an expressed but non-functional coGFP in (phenotypically) single copy genotypes provides an especially thoughtful control that allows determining a baseline dN/dS ratio in the absence of selection. All in all the study is an exciting example of how the clever use of synthetic biology can lead to new insights.

      Weaknesses:

      The major weakness of the study is tied to its biggest strength (as often in experimental biology there is a trade-off between 'resolution' and 'realism').

      The paper ignores an important component of the evolutionary process in favour of an in-depth characterization of how two vs one copy evolve. Specifically, by employing a recombination-deficient strain and constructing their duplicates as inverted repeats their experimental design completely abolishes recombination between the two copies.

      This is problematic for two reasons:

      i)  In nature, new duplicates do not arise as inverted, but rather as direct (tandem) repeats and - as the authors correctly point out - these are very unstable, due to the fact that repeated DNA is prone to recA- dependent homologous recombination (which arise orders of magnitude more frequently than point mutations).

      ii)  This instability often leads to further amplification of the duplicates under dosage selection both in the lab and in the wild (e.g. Andersson & Hughes, Annu. Rev. Genet. 2009), and would presumably also be an outcome under the current experimental set-up if it was not prevented from happening?

      So in sum, recombination between duplicate genes is not merely a nuisance in experiments, but occurring at extremely high frequencies in nature (such that the authors needed to devise a clever engineering solution to abolish it), and is often observed in evolving populations, be it in the laboratory or the wild.

      The manuscript sells controlling of copy number as a strength. And clearly, without it, the same insights could not be gained. However, if the basis for the very process of what Ohno's model describes is prevented from happening for the process to be studied, then, for reasons of clarity and context this needs pointing out, especially, to readers less familiar with the principles of molecular evolution.

      Connected to this, there are several places in the introduction and the discussion where I feel that the existing literature, in particular models put forward since Ohno that invoke dosage selection (such as IAD) end up being slightly misrepresented.

      My point is best exemplified in line 1 of Discussion: "To test Ohno's hypothesis and to distinguish its predictions from those of competing hypotheses, it is necessary to maintain a constant and stable copy number of duplicated genes during experimental evolution."

      We understand the reviewer’s position and fully agree that we needed to clarify better what our experiments aimed to achieve. To this end, we rewrote the beginning of the discussion to read:

      “Our aim was to study whether gene duplication can affect mutational robustness and phenotypic evolution beyond any effect of increased gene dosage provided by multiple gene copies. To this end, we needed to maintain a constant and stable copy number of duplicated genes during experimental evolution.”

      I think this statement is simply not true and might be misleading. To take the exaggerated position of a devil's advocate, the goal of evolutionary biology should be to find out how evolution actually proceeds in nature most of the time, rather than creating laboratory systems that manage to recapitulate influential ideas.

      On this point, we respectfully disagree. To ask questions like ours, laboratory experiments that are highly controlled albeit possibly “unnatural” can be essential. And we would argue that our experiments do not merely aim to “recapitulate” an influential idea but to validate it and potentially refute it, as we did for our study system. Validating theory is an essential aspect of experimental science. Textbooks in biology and beyond are rife with examples.

      While fixing copy number may be a necessary step to understand how one copy evolves if a second one is present, it seems that if Ohno's hypothesis only works out in recA-deficient bacterial strains and on engineered inverted repeats, that Ohno might have missed one crucial aspect of how paralogs evolve. The mentioned competing hypotheses have been put forward to (a) address Ohno's dilemma (which the present study beautifully demonstrates exists under their experimental conditions) and (b) to reflect a commonly observed evolutionary process in bacteria (dosage gain in response to selection, e.g. a classic way of gaining antibiotic resistance). Fixing the copy number allowed the authors to show which predictions of Ohno's model hold up and which don't (under these specific conditions). But they do so without even preventing the processes described by alternative models from happening, so the experimental system is hardly appropriate to distinguish between Ohno & alternatives. Therefore, I think it could be made clearer that the experimental system is great to look at certain aspects Ohno's hypothesis in  detail, but  it  can  only inform  us about  a  universe  without  recombination.

      (1)  Citing the works by ref 8, 26, 27 to merely state that "in some copies were gained and some were lost (ref 6, ref 25)" makes it seem as if fixing at 2 copies is some sort of sensible average. Yet ref 6 (Dhar et al.) specifically states that dosage is the most important response. Moreover, in this study gene copies are lost, but plasmid copies are gained instead. In Holloway et al. 2007 (ref 25), the 2 copies resided on different plasmids, so entirely different underlying molecular genetics might be at work (high cost of plasmid maintenance, and competitive binding on both proteins onto the respective (off)-target, where either way selection favored a single copy, so a different situation altogether). In both cited studies, fixing the copy would have prohibited learning something about the process of duplication & divergence.

      Hence this statement seems to distract the readers from the main message, which seems that preventing recombination experimentally allows to follow the divergence of each copy and studying a response that does not involve dosage-increase.

      (2)   "These studies highlighted the importance of gene duplication in providing fast adaptation under changing environmental conditions but they focused on the importance of gene dosage." I think this constructs a false dichotomy. Instead, these studies pointed out that dosage (and with it, selection for dosage)  is  an  important  part  of  the  equation  that  might  have  been  missed  by  Ohno.

      Your points are well taken. To clarify the insights from previous experiments and the aims of our experiments we rewrote this passage in question as follows.

      “These studies underline the importance of gene duplication in providing fast adaptation under changing environmental conditions. In some studies one copy was lost6, 25, while in others, additional copies were gained8, 26, 27. Together these studies highlight that gene dosage and selection for dosage can play an important role during the evolution of duplicated genes6, 8, 25-28.

      These studies also raise the question whether gene duplication can provide an advantage beyond its effects on gene dosage. To find out it is necessary to study the evolution of gene duplicates while keeping the copy number of the duplicated gene exactly at two. This is challenging because gene duplication causes recombinational instability and high variability in copy number. No previous experimental studies were designed to control copy number. Here, we present an experimental system that allowed us to keep the copy number fixed at one or two genes, and to follow the evolution of each gene copy in the absence of any dosage increase.”

      (3)  "Such models are also easier to test experimentally, because they do not require precise control of gene copy number. The necessary tests can even benefit from massive gene amplifications8. Although Ohno's hypothesis is more difficult to test experimentally (...)" - again, I feel the wording is slightly misleading. The point is not that IAD is easier to test and Ohno's model is harder to test in laboratory experiments, rather, experiments (and some more limited observations of naturally evolving populations) seem to suggest that in reality evolution proceeds (more often?) according to IAD rather than Ohno's neofunctionalization hypothesis. However, as the authors point out, it will be exciting to see their clever experimental system used to test other genes and conditions to get a more comprehensive understanding of what gene- and selection- parameter values would overcome Ohno's dilemma.

      We agree and in response rewrote the paragraph in question to read:

      “The challenge that a duplicated gene copy must remain free of frequent deleterious mutations long enough to acquire beneficial mutations that provide a new selectable phenotype is known as Ohno’s dilemma13. Our experiments confirm that this challenge is highly relevant for post-duplication evolution. Other models such as the innovation-amplification-divergence (IAD) model8, 13 postulate that this dilemma can be resolved through an increase in gene dosage that allows latent pre-duplication phenotypes to come under the influence of selection. To distinguish between the effects of gene dosage and other benefits of gene duplication, we prevented recombination and gene amplification to prevent copy number increases beyond two copies. We are aware that our experimental design does not reflect how evolution may occur in the wild. However, this design allowed us to study evolutionary forces separately that are otherwise difficult to disentangle. “

      Finally, we also made two changes in the abstract (highlighted in red) to take your feedback into account.

      Reviewer #2 (Recommendations For The Authors):

      The paper is very well written, with a lot of emphasis put on explaining every step and every finding. It was a joy to read.

      Thanks!

      Full stop missing in line 5 of abstract.

      Corrected.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #2 (Recommendations for the authors):

      Comments to the authors:

      R1. The authors show a similar reduction in ECAR as a measure of glycolytic inhibition upon treating H37Rv-infected unprimed MDMs with 5 mM 2-DG at 1 h and 24 h. However, the data pertaining to the extent of glycolytic inhibition upon 2-DG treatment in IFN-γ or IL-4 primed AMs or MDMs is not included.

      We acknowledge that we have not checked the ECAR of every dataset herein treated with 2DG. However, we have provided evidence that 2DG reduced ECAR in the control datasets, and moreover, 2DG is functionally affecting the cells (e.g. the presence of 2DG altered cytokine production in both AM and MDM, even in the presence of IFN-γ or IL-4).

      R2. The authors have replotted the same data as percent change and fold difference with different normalizing samples. While they have corrected one of the highlighted discrepancies in the data plotting of Fig. 1A and 1C, similar discrepancies are still evident in many other instances. Based on my understanding of the data and normalization methodology stated by the authors in response to comment (#5) by reviewer 1, the authors are plotting fold changes across all samples with respect to unstimulated and unprimed macrophages, whereas percent changes are plotted for stimulated (LPS or dead H37Rv) samples with respect to baseline measurements for each unstimulated sample under differently primed macrophages. I believe the slope of lines connecting unstimulated and LPS stimulates/H37Rv infected upon percent increase or decrease (from the baseline of unstimulated samples) will still maintain their trend in fold changes (relative to unstimulated and unprimed macrophages) irrespective of changes in absolute values. For instance, in Fig. 1F, there are at least 3 samples that show an increase in fold change in OCR upon H37Rv infection in IFN-γ primed MDMs. However, Fig. 1H, plotted from the same data, shows a decrease in OCR across all IFN-γ primed MDMs upon H37Rv infection. The authors have also highlighted that this decrease in OCR upon H37Rv infection in IFN- γ primed MDMs is highly significant (P < 0.01). The same data is again plotted as a bar plot in Fig. 1J as fold change relative to unstimulated and unprimed macrophages (mislabeled as percent change to unstimulated), showing no difference upon H37Rv infection of IFN-γ primed MDMs.

      We have amended the axis in Figure 1 and Supplemental Figure 1 to more accurately describe the two different forms of analysis. We have fixed the errors outlined. We have also amended the methods in the text to clarify the two analyses carried out on the metabolic data. Lines 113-122 as follows:

      “Fold change in ECAR and OCR was calculated compared to unstimulated unprimed controls at 150 minutes, where unstimulated unprimed macrophages were set to 1. This allows for analysis of the effects of both priming and subsequent stimulation for and accounts for the variation in the raw ECAR and OCR reading between runs thereby making each donor its own control.

      Percent change in ECAR and OCR was also calculated to equalise groups to the same point prior to stimulation. Each condition was compared to its own respective primed or unprimed baseline at 30 minutes and this was set to 100%, prior to stimulation, this was carried to examine the capacity of cells to increase metabolic parameters in response to stimulation. Post stimulation percent change data was then extracted and analysed at 150 minutes. This controls for the priming effect and enables the analysis of metabolic capacity in each dataset.”

      For figure 1J, the data is replotted from fold change datasets (not percentage change where the decrease in OCR is significant). The axis label has been revised for accuracy.

    1. Author response:

      The following is the authors’ response to the original reviews.

      This study investigates the role of Caspar (Casp), an orthologue of human Fas- associated factor-1, in regulating the number of primordial germ cells that form during Drosophila embryogenesis. The findings are important in that they reveal an additional pathway involved in germ cell specification and maintenance. The evidence supporting the conclusions is solid, as the authors identify Casp and its binding partner Transitional endoplasmic reticulum 94 (TER94) as factors that influence germ cell numbers. Minor changes to the title, text, and experimental design are recommended.

      We thank the Editors and Reviewers for their overall positive and thoughtful feedback. Based on these comments, we have revised our manuscript. The changes in the manuscript have been highlighted in ‘blue’ font for easy visualisation.

      Reviewer #1 (Public Review):

      Summary:

      The authors were seeking to define the roles of the Drosophila caspar gene in embryonic development and primordial germ cell (PGC) formation. They demonstrate that PGC number, and the distribution of the germ cell determinant Oskar, change as a result of changes in caspar expression; reduction of caspar reduces PGC number and the domain of Oskar protein expression, while overexpression of caspar does the reverse. They also observe defects in syncytial nuclear divisions in embryos produced from caspar mutant mothers. Previous work from the same group demonstrated that Caspar protein interacts with two partners, TER94 and Vap33. In this paper, they show that maternal knockdown of TER94 results in embryonic lethality and some overlap of phenotypes with reduction of caspar, supporting the idea may work together in their developmental roles. The authors propose models for how Caspar might carry out its developmental functions. The most specific of these is that Caspar and its partners might regulate oskar mRNA stability by recruiting ubiquitin to the translational regulator Smaug.

      Strengths:

      The work identifies a new factor that is involved in PGC specification and points toward an additional pathway that may be involved in establishing and maintaining an appropriate distribution of Oskar at the posterior pole of the embryo. It also ties together earlier observations about the presence of TER94 in the pole plasm that have not heretofore been linked to a function.

      Weaknesses:

      (1)  A PiggyBac insertion allele casp[c04227] is used throughout the paper and referred to as a loss-of-function allele (casp[lof]). However, this allele does not appear to act strictly as a loss-of-function. Figure 1E shows that some residual Casp protein is present in early embryos produced by casp[lof]/Df females, and this protein is presumably functional as the PiggyBac insertion does not affect the coding region. Also, Figures 1B and 1C show that the phenotypes of casp[lof] homozygotes and casp[lof]/Df are not the same; surprisingly, the homozygous phenotypes are more severe. These observations are unexplained and inconsistent with the insertion being simply a loss-of-function allele. Might there be a second-site mutation in casp[c04227]?

      The term loss-of-function (lof) is used rather than null or amorph. casplof is a strong hypomorph, with residual (and functional) protein estimated in the range 5-10% when compared to the wild type. The caspc04227 was procured from BDSC, and based on the decrease in lethality of the casplof/casp(Df) compared to casplof, we assume that second site hits in the casplof line are the reason for the enhanced lethality. For this very reason, we have used casplof/ casp(Df) for all subsequent experiments. We also conducted rescue experiments wherever possible to confirm the specificity with caspWT and various deletion variants of casp.

      (2)  TER94 knockdown phenotypes have been previously published (Zhang et al 2018 PMID 30012668), and their effects on embryonic viability and syncytial mitotic divisions were described there. This paper is inappropriately not cited, and the data in Figure 4 should be presented in the context of what has been published before.

      We apologize for the oversight. Indeed, Zhang et al. (2018) highlighted TER94 as one of the loci uncovered in their screen and some of the relevant phenotypes are described there. We have referred to their findings at the appropriate junctures as suggested (pg 11, pg13, pg 15).

      (3)  The peptide counts in the mass spectrometry experiment aimed at finding protein partners for Casp are extremely low, except for Casp itself and TER94. Peptide counts of 1-2 seem to me to be of questionable significance.

      Peptide counts are indeed low, but the fact that they are enriched at all, in comparison to controls, considering that we are using whole embryo lysates rather than isolated PGC lysates, suggests interaction with Casp could be biologically/ functionally meaningful. The data is restricted to the supplementary material and is not analyzed in isolation; we have combined data from multiple mass spectrometry experiments by other researchers to link Casp to pole plasm components.

      (4)  The pole bud phenotypes from TER94 knockdown and casp mutant shown in Fig 5 appear to be quite different. These differences are unexplained and seem inconsistent with the model proposed that the two proteins work in a common pathway. Whole embryos should also be shown, as the TER94 KD phenotype could result from a more general dysmorphism.

      We agree that TER94 KD is a stronger phenotype, with TER94 having essential cell division and patterning roles. In fact, the TER94 RNAi embryos, unlike casplof, stall in terms of their developmental program before Stage 4. This has been noted in the earlier study (Zhang et al., 2018). As a result, we focused on pole bud stage embryos that were rare - but present in the collections. We report that PGC from very early TER94 RNAi embryos have fewer pole buds.

      The rationale behind the presumption that these two proteins may work in a common pathway is clear-cut. We have validated the physical interaction using protein lysates from two developmental time points. Satisfyingly, an affinity purification using antibodies against TER94 or Casp invariably enriches the other protein as the primary interacting partner. Our model integrates data from mammalian and fly systems to support the idea that there must be an overlap between TER94/Casp function, with these two proteins working together to engineer the degradation of ubiquitinated Smaug. Future experiments are necessary to confirm and extend this claim.

      (5)  Figure 6 is not quantitative, lacking even a second control staining to check for intensity variation artifacts. Therefore, it shows that the distribution of Oskar protein changes in the various genotypes, but not convincingly that the level of Oskar changes as the paper claims.

      We appreciate that oskar RNA localization is also somewhat altered due to change in casp levels. We have acknowledged the variability in the various phenotypes, and as such, it is unsurprising that it has also reflected in the Oskar levels. However, it is evident that a statistically significant number of mutant embryos show a decrease in Oskar levels.

      (6)  The error bars are huge in the graphs in Figure 7H, I, and J, leading me to question whether these changes are statistically significant. Calculations of statistical significance are missing from these graphs and need to be added.

      The data in the Western blots represents the whole embryo, as the lysates used are from embryos 0-1, 1-2, 2-3 hrs. We have averaged and plotted data from 5 Western blots. The changes are not statistically significant. Even without the statistical significance, the data for Fig. 7I led us to examine Smaug in the pole cells, rather than in the whole embryo. The pole cell data (Fig8-D3) is striking and led to the conclusion – that Smaug protein perdures in the pole cells during the stages of syncytial/cellular blastoderm.

      (7)  There are many instances of fuzzy and confusing language when describing casp phenotypes. For example, on lines 211-212, it is stated that 'casp[lof] adults are only partially homozygous viable as ~70% embryos laid by the homozygous mutant females failed to hatch into larvae'. Isn't this more accurately described as 'casp[c04227] is a maternal-effect lethal allele with incomplete penetrance'? Another example is on line 1165, what exactly is a 'semi-vital function'?

      We thank the reviewer for reading the manuscript in detail. We have tried to pay attention to reduce the ambiguity and fixed the text accordingly (pg 7, line 214; pg 33, line 1169, word semi-vital is deleted).

      Reviewer #2 (Public Review):

      Summary:

      This study investigated the role of the Caspar (Casp) gene, a Drosophila homolog of human Fas-associated factor-1. It revealed that maternal loss of Casp led to centrosomal and cytoskeletal abnormalities during nuclear cycles in Drosophila early embryogenesis, resulting in defective gastrulation. Moreover, Casp regulates PGC numbers, likely by regulating the levels of Smaug and then Oskar. They demonstrate that Casp protein levels are linearly correlated to the PGC number. The partner protein TER94, an ER protein, shows similar but slightly distinct phenotypes. Based on the deletion mutant analysis, TER94 seems functionally relevant for the observed Casp phenotype. Additionally, it is likely involved in regulating protein degradation during PGC specification.

      Strengths:

      The paper reveals an unexpected function of the maternally produced Casp gene, previously implicated in immune response regulation and NF-kB signaling inhibition, in nuclear division and PGC formation in early fly embryos. Experiments are properly conducted and strongly support the conclusion. The rescue experiment using deletion mutant form is particularly informative as it suggests the requirement of each domain function.

      Weaknesses:

      Functional relationships among molecules shown here (and other genes known to regulate these processes) are still unclear.

      We completely agree with this assessment. In our view this is an interesting albeit initial report. We also appreciate that understanding the mechanistic underpinnings of these results will be critical. We have ensured that our present claims are backed up by data, however, are fully sensitive to the fact that newer observations will refine or even alter these claims. We are continuing to work on the problem and will hopefully make further inroads in mechanism in the coming years.

      Reviewer #3 (Public Review):

      Summary:

      Das et al. discovered a maternal role for Caspar (Casp), the Drosophila orthologue of human Fas-associated factor-1 (FAF1), in embryonic development and germ cell formation. They find that Casp interacts with Transitional endoplasmic reticulum 94 (TER94). Loss of Casp or TER94 leads to partial embryonic lethality, correlated with aberrant centrosome behavior and cytoskeletal abnormalities. This suggests that Casp, along with TER94, promotes embryonic development through a still unidentified mechanism. They also find that Casp regulates germ cell number by controlling a key determinant of germ cell formation, Oskar, through its negative regulator, Smaug.

      Strengths:

      Overall, the experiments are well-conducted, and the conclusions of this paper are mostly well-supported by data.

      Weaknesses:

      Some additional controls could be included, and the language could be clarified for accuracy.

      Reviewer #1 (Recommendations For The Authors):

      (1)  The paper is inconsistent in using standard Drosophila nomenclature. Often the name of the mammalian counterpart is used instead. This needs to be cleaned up as it is very confusing to the reader.

      The names of the mammalian counterpart are explicitly used, when we intended, to underscore the parallels between mammalian vs Drosophila function, specifically in the context of the major players in this study, TER94 vs VCP; Caspar vs FAF1. Since we do not have direct biochemical data indicating that TER94/Casp degrades Smaug, we use published mammalian literature to draw parallels. At no point have we swapped terminology casually.

      (2)  The Discussion is far too long and in my view extends too far beyond the experimental data in the paper. As a start for editing, its first two paragraphs (lines 1138-1164) include mostly general statements and could be greatly reduced or eliminated.

      Our aim was to emphasize the repurposing of factors between early development and later/adult stages for different functional contexts. Our laboratory (Ratnaparkhi) works on Casp in terms of its roles in NF-kappa B signalling. We serendipitously stumbled on the embryonic lethality while characterizing the casplof allele, which, later, led us to examine the function of Casp during embryonic germ cell development.

      (3)  The Introduction is weak in its description of the developmental function of Toll and Dorsal. This could be summarized in a sentence or two.

      As suggested, a few sentences that highlight the developmental function of Toll/Dorsal signalling have been added to the text (pg 3, line 90-92).

      (4)  Even if correctly cited, it is not appropriate to simply reproduce an image from a public database, as was done in Figure S1C. This should be removed.

      Figure S1C has been deleted.

      (5)  The Materials and Methods section should be moved to after the Discussion so it does not interrupt the flow of the Results.

      The Section has been moved as suggested.

      Reviewer #2 (Recommendations For The Authors):

      For general readers, more detailed information about the PGC specification will be helpful in the Introduction or Results section.

      PGC specification is introduced in the text as the story transits from global embryonic effects of casp knockdown to specific effects on PGCs. A few additional sentences have been added to bolster the text (pg 11, first paragraph).

      The Methods section talks about live imaging, but I could not find the experiments in the figures. Are the data available for asynchronous nuclear divisions in the live imaging?

      The live imaging relates to DIC movies that are part of Suppl. Fig 2A. The movies are embedded in an MS PowerPoint slide, which has been uploaded as a PowerPoint (and not a PDF).

      To ensure that the mutant changes the Osk translation rate, showing the Osk RNA level may be helpful.

      oskar RNA localization is quite distinct as compared to Oskar and Vasa protein. It has been shown that oskar RNA is localized to the founder granules and is, in fact, excluded from the germ granules that contain Vasa, Oskar and nos RNA etc. Gavis lab recently reported (Eichler et al., 2020) that ectopic localization of osk RNA in the germ granules is toxic to pole cells. Thus, it will be of interest to analyze whether and how oskar RNA is localized in casp embryos.

      More discussion about the difference between Casp and ter94 phenotypes and potential reasons would be informative.

      TER94 appears to be an essential maternal gene. Hypomorphic knockdown of TER94 using RNAi is sufficient to induce early embryonic lethality. In fact, Zhang et. al., 2018 et al., using stronger/earlier maternal drivers highlighted the lethality and somatic cell division defects caused due to the severe loss of TER94. The UBX domain is present in multiple proteins, in addition to Casp. TER94 possible plays a vital role in protein degradation of critical cell cycle proteins, such as cyclins that need to be degraded for efficient genomic duplications in the 10’ nuclear division cycles that predominate the first few hours of embryogenesis.

      N=3 (Fig1 legend) and N =15 (Fig2). What are those numbers?

      N=3 indicated the number of repeats of the western blot. This reference has been deleted. N=15, represents the number of embryos imaged for data in panels G and H.

      Reviewer #3 (Recommendations For The Authors):

      Major Suggestion:

      (1)  Oskar (Osk) mRNA Localization: Does Osk mRNA localization change upon overexpression or LOF of Casp? Since TER94 has been implicated in Osk mRNA localization (Ruden et al., 2000), this would be a good control to include.

      As mentioned earlier, in the response to editors, data presented in our manuscript indicates that Caspar is unique in its ability to regulate both Oskar levels and centrosome dynamics. As the reviewer pointed out, we are in the process of analysing the possible localization defects in oskar mRNA in the embryos. Since the preliminary data are promising, we are pursuing this carefully to better understand the involvement of Caspar. We are focusing on the ability of Caspar to regulate early nuclear divisions prior to pole cell formation. It is possible that in casp mutant embryos the nuclei/centrosomes that enter the pole plasm are already defective and thus can influence release of the pole plasm components. This needs to be examined carefully, and we are conducting these experiments.

      (2)  Western Blot for Osk Protein: It would also be beneficial to perform a western blot for Osk protein to demonstrate that it is indeed increased upon Casp overexpression.

      This is a good suggestion. However, Oskar antibodies are not readily available, and we have a very limited supply which have been used for embryo staining experiments. We considered these more useful as in addition to the absolute levels, staining experiment can reveal localization pattern. It was thus possible to correlate Oskar function with the pole cell counts in respective genetic backgrounds.

      (3)  Title Clarification: The title states, "Caspar determines primordial germ cell identity in Drosophila melanogaster." The current experiments do not show that Casp determines germ cell identity. It would be more accurate to conclude that Casp regulates germ cell numbers.

      Please refer to the introductory paragraphs where we explain our views in this regard. We have modified our title to “Caspar specifies primordial germ cell count and identity in Drosophila melanogaster."

      Minor Suggestions:

      (1)  Line 69: Delete the use of "recent" for papers published in 2001 and 2007. These papers are around 20 years old.

      The word has been deleted.

      (2)  Paragraph from Line 110: Consider splitting this paragraph into two for better readability and clarity.

      Paragraph has been split into two; this has improved readability.

      (3)  Line 266: Check and correct the formatting issues in this line.

      Edited, based on suggestion. A line break was added after the title.

      (4)  Line 328: Adding references to earlier studies here will be useful for providing context and supporting information.

      References that introduce Centrosomes and their roles as organizing centres have been added in line 336.

      (5)  Line 564: It is best to avoid using the word "master." Please consider using other terms such as "key" or "principal."

      Edited, based on suggestion.

      (6)  Citations: The authors should also cite Cinalli et al., 2013 for the Gcl reference to ensure comprehensive citation of relevant literature.

      Thank you for the suggestion. The reference has been added on pages 16 and 29.

      (7)  Overall Length: The paper is quite long. If it can be shortened, it will be easier to read. Consider condensing sections where possible without losing essential information.

      The paper is indeed longer than average, but the choice of eLife as the home for this study was, in part, determined by the platform's flexibility regarding length/ word count. It seemed worthwhile to elaborate the text in places to accentuate the novelty of the findings.

      These additions and adjustments would help to further substantiate the claims and improve the clarity of the paper.

      We hope that the claims made in our manuscript are substantiated by the data that are presented. Wherever possible, we have tried to modify the text suitably to improve clarity.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer 1 (Public Review):

      Summary: Wilmes and colleagues present a computational model of a cortical circuit for predictive processing which tackles the issue of how to learn predictions when different levels of uncertainty are present for the predicted sensory stimulus. When a predicted sensory outcome is highly variable, deviations from the average expected stimulus should evoke prediction errors that have less impact on updating the prediction of the mean stimulus. In the presented model, layer 2/3 pyramidal neurons represent either positive or negative prediction errors, SST neurons mediate the subtractive comparison between prediction and sensory input, and PV neurons represent the expected variance of sensory outcomes. PVs therefore can control the learning rate by divisively inhibiting prediction error neurons such that they are activated less, and exert less influence on updating predictions, under conditions of high uncertainty.

      Strengths: The presented model is a very nice solution to altering the learning rate in a modality and context-specific way according to expected uncertainty and, importantly, the model makes clear, experimentally testable predictions for interneuron and pyramidal neuron activity. This is therefore an important piece of modelling work for those working on cortical and/or predictive processing and learning. The model is largely well-grounded in what we know of the cortical circuit.

      Weaknesses: Currently, the model has not been challenged with experimental data, presumably because data from an ad- equate paradigm is not yet available. I therefore only have minor comments regarding the biological plausibility of the model:

      Beyond the fact that some papers show SSTs mediate subtractive inhibition and PVs mediate divisive inhibition, the selection of interneuron types for the different roles could be argued further, given existing knowledge of their properties. For instance, is a high PV baseline firing rate, or broad sensory tuning that is often interpreted as a ’pooling’ of pyramidal inputs, compatible with or predicted by the model?

      Thank you for this nice suggestion. We added a section to the discussion expanding on this: “The model predicts that the divisive interneuron type, which we here suggest to be the PVs, receive a representation of the stimulus as an input. PVs could be pooling the inputs from stimulus-responsive layer 2/3 neurons to estimate uncertainty. The more the stimulus varies, the larger the variability of the pyramidal neuron responses and, hence, the variability of the PV activity. The broader sensory tuning of PVs (Cottam et al. 2013) is in line with the model insofar as uncertainty modulation could be more general than the specific feature, which is more likely for low-level features processed in primary sensory cortices. PVs were shown to connect more to pyramidal cells with similar feature-tuning (Znamenskyiy et al. 2024); this would be in line with the model, as uncertainty modulation should be feature-related. In our model, some SSTs deliver the prediction to the positive prediction error neurons. SSTs are already known to be involved in spatial prediction, as they underlie the effect of surround suppression (Adesnik et al. 2012), in which SSTs suppress the local activity dependent on a predictive surround.”

      On a related note, SSTs are thought to primarily target the apical dendrite, while PVs mediate perisomatic inhibition, so the different roles of the interneurons in the model make sense, particularly for negative PE neurons, where a top-down excitatory predicted mean is first subtractively compared with the sensory input, s, prior to division by the variance. However, sensory input is typically thought of as arising ’bottom-up’, via layer 4, so the model may match the circuit anatomy less in the case of positive PE neurons, where the diagram shows ’s’ arising in a top-down manner. Do the authors have a justification for this choice?

      We agree that ‘s’ is a bottom-up input and should have been more clear about that we do not consider ‘s’ to be a top-down input like the prediction. We hence adjusted the figure correspondingly and added a few clarifying sentences to the manuscript. The reviewer, however, raises an important point, which is not talked about enough. Namely, that if the bottom-up input ‘s’ comes from L4, how can it be compared in a subtractive manner with the top-down prediction arriving in the superficial layers? In Attinger et al. it was shown that the visual stimulus had subtractive effects on SST neurons. The axonal fibers delivering the stimulus information are hence likely to arrive in the vicinity of the apical dendrites, where SSTs target pyramidal cells. Hence, those axons delivering stimulus information could also target the apical dendrites of pyramidal cells. As the reviewer probably had in mind, L4 input tends to arrive in the somatic layer. However, there are also stimulus-responsive cells in layer 2/3, such that the stimulus information does not need to come directly from L4, it could be relayed via those stimulus-responsive layer 2/3 cells. It has been shown that L2/3→L3 axons are mostly located in the upper basal dendrites and the apical oblique dendrites, above the input from L4 (Petreanu et al. The subcellular organization of neocortical excitatory connections). Hence, stimulus information could arrive on the apical dendrites, and be subtractively modulated by SSTs. We would also like to note that the model does not take into account the precise dendritic location of the inputs. The model only assumes that the difference between stimulus and prediction is calculated before the divisive modulation by the variance.

      In cortical circuits, assuming a 2:8 ratio of inhibitory to excitatory neurons, there are at least 10 pyramidal neurons to each SST and PV neuron. Pyramidal neurons are also typically much more selective about the type of sensory stimuli they respond to compared to these interneuron classes (e.g., Kerlin et al., 2012, Neuron). A nice feature of the proposed model is that the same interneurons can provide predictions of the mean and variance of the stimulus in a predictor-dependent manner. However, in a scenario where you have two types of sensory stimulus to predict (e.g., two different whiskers stimulated), with pyramidal neurons selective for prediction errors in one or the other, what does the model predict? Would you need specific SST and PV circuits for each type of predicted stimulus?

      If we understand correctly, this would be a scenario in which the same context (e.g., sound) is predicting two types of sensory stimulus. In that case, one may need specific SST and PV circuits for the different error neurons selective for prediction errors in these stimuli, depending on how different the predictions are for the two stimuli as we elaborate in the following. The reviewer is raising an important point here and that is why we added a section to the discussion elaborating on it.

      We think that there is a reason why interneurons are less selective than pyramidal cells and that this is also a feature in prediction error circuits. Similarly-tuned cells are more connected to each other, because they tend to be activated together as the stimuli they encode tend to be present in the environment together. Also, error neurons selective to nearby whiskers are more likely to receive similar stimulus information, and hence similar predictions. Hence, because nearby whiskers are more likely to be deflected similarly, a circuit structure may have developed during development such that neurons selective for prediction errors of nearby whiskers, may receive inputs from the same inhibitory interneurons. In that case, the same SST and PV cells could innervate those different neurons. If, however, the sensory stimuli to be predicted are very different, such that their representations are likely to be located far away from each other, then it also makes sense that the predictions for those stimuli are more diverse, and hence the error neurons selective to these are unlikely to be innervated by the same interneurons.

      We added a shorter version of this to the discussion: “The lower selectivity of interneurons in comparison to pyramidal cells could be a feature in prediction error circuits. Error neurons selective to similar stimuli are more likely to receive similar stimulus information, and hence similar predictions. Therefore, a circuit structure may have developed such that prediction error neurons with similar selectivity may receive inputs from the same inhibitory interneurons.”

      Reviewer 2 (Public Review):

      Summary: This computational modeling study addresses the observation that variable observations are interpreted differently depending on how much uncertainty an agent expects from its environment. That is, the same mismatch between a stimulus and an expected stimulus would be less significant, and specifically would represent a smaller prediction error, in an environment with a high degree of variability than in one where observations have historically been similar to each other. The authors show that if two different classes of inhibitory interneurons, the PV and SST cells, (1) encode different aspects of a stimulus distribution and (2) act in different (divisive vs. subtractive) ways, and if (3) synaptic weights evolve in a way that causes the impact of certain inputs to balance the firing rates of the targets of those inputs, then pyramidal neurons in layer 2/3 of canonical cortical circuits can indeed encode uncertainty-modulated prediction errors. To achieve this result, SST neurons learn to represent the mean of a stimulus distribution and PV neurons its variance.

      The impact of uncertainty on prediction errors is an understudied topic, and this study provides an intriguing and elegant new framework for how this impact could be achieved and what effects it could produce. The ideas here differ from past proposals about how neuronal firing represents uncertainty. The developed theory is accompanied by several predictions for future experimental testing, including the existence of different forms of coding by different subclasses of PV interneurons, which target different sets of SST interneurons (as well as pyramidal cells). The authors are able to point to some experimental observations that are at least consistent with their computational results. The simulations shown demonstrate that if we accept its assumptions, then the authors’ theory works very well: SSTs learn to represent the mean of a stimulus distribution, PVs learn to estimate its variance, firing rates of other model neurons scale as they should, and the level of un- certainty automatically tunes the learning rate, so that variable observations are less impactful in a high uncertainty setting.

      Strengths: The ideas in this work are novel and elegant, and they are instantiated in a progression of simulations that demonstrate the behavior of the circuit. The framework used by the authors is biologically plausible and matches some known biological data. The results attained, as well as the assumptions that go into the theory, provide several predictions for future experimental testing.

      Weaknesses: Overall, I found this manuscript to be frustrating to read and to try to understand in detail, especially the Results section from the UPE/Figure 4 part to the end and parts of the Methods section. I don’t think the main ideas are so complicated, and it should be possible to provide a much clearer presentation.

      For me, one source of confusion is the comparison across Figure 1EF, Figure 2A, Figure 3A, Figure 4AB, and Figure 5A. All of these are meant to be schematics of the same circuit (although with an extra neuron in Figure 5), yet other than Figures 1EF and 4AB, no two are the same! There should be a clear, consistent schematic used, with identical labeling of input sources, neuron types, etc. across all of these panels.

      We changed all figures to make them more consistent and pointed out that we consider subparts of the circuit.

      The flow of the Results section overall is clear until the “Calculation of the UPE in Layer 2/3 error neurons” and Figure 4, where I find that things become significantly more confusing. The mention of NMDA and calcium spikes comes out of the blue, and it’s not clear to me how this fits into the authors’ theory. Moreover: Why would this property of pyramidal cells cause the PV firing rate to increase as stated? The authors refer to one set of weights (from SSTs to UPE) needing to match two targets (weights from s to UPE and weights from mean representation to UPE); how can one set of weights match two targets? Why do the authors mention “out-of-distribution detection’ here when that property is not explored later in the paper? (see also below for other comments on Figure 4)

      We agree that the introduction of NMDA and calcium spikes was too short and understand that it was confusing. We therefore modified and expanded the section. To answer the two specific questions: First, Why would this property of pyramidal cells cause the PV firing rate to increase as stated? This property of pyramidal cells does not cause the PV firing rate to increase. When for example in positive error neurons, the mean input increases, then the PVs receive higher stimulus input on average, which is not compensated by the inhibitory prediction (which is still at the old mean), such that the PV firing rate increases. Due to the nonlinear integration in PVs, the firing rate can increase a lot and inhibit the error neurons strongly. If the error neurons integrate the difference nonlinearly, they compensate for the increased inhibition by PVs. In Figure 5, we show that a circuit in which error neurons exhibit a dendritic nonlinearity matches an idealised circuit in which the PVs perfectly represent the variance. We modified the text to clarify this.

      Second, how can one set of weights match two targets? In our model, one set of weights does not need to match two targets. We apologise that this was written in such a confusing way. In positive error neurons, the inhibitory weights from the SSTs need to match the excitatory weights from the stimulus, and in negative error neurons, the inhibitory weights from the SSTs need to match the excitatory weights from the prediction. The weights in positive and negative circuits do not need to be the same. So, on a particular error neuron, the inhibition needs to match the excitation to maintain EI balance. Given experimental evidence for EI balance and heterosynaptic plasticity, we think that this constraint is biologically achievable. The inhibitory and excitatory synapses that need to match are targeting the same postsynaptic neuron and could hence have access to their postsynaptic effect. We modified the text to be more clear. Finally, we omitted the mentioning of out-of-distribution detection, see our reply below.

      Coming back to one of the points in the previous paragraph: How realistic is this exact matching of weights, as well as the weight matching that the theory requires in terms of the weights from the SSTs to the PVs and the weights from the stimuli to the PVs? This point should receive significant elaboration in the discussion, with biological evidence provided. I would not advocate for the authors’ uncertainty prediction theory, despite its elegant aspects, without some evidence that this weight matching occurs in the brain. Also, the authors point out on page 3 that unlike their theory, “...SSTs can also have divisive effects, and PVs can have subtractive effects, dependent on circuit and postsynaptic properties”. This should be revisited in the Discussion, and the authors should explain why these effects are not problematic for their theory. In a similar vein, this work assumes the existence of two different populations of SST neurons with distinct UPE (pyramidal) targets. The Discussion doesn’t say much about any evidence for this assumption, which should be more thoroughly discussed and justified.

      These are very important points, we agree that the biological plausibility of the model’s predictions should be discussed and hence expanded the discussion with three new paragraphs:

      To enable the comparison between predictions and sensory information via subtractive inhibition, we pointed out that the weights of those inputs on the postsynaptic neuron need to match. This essentially means that there needs to be a balance of excitatory and inhibitory inputs. Such an EI balance has been observed experimentally (Tan and Wehr, 2009). And it has previously been suggested that error responses are the result of breaking this EI balance (Hertäg und Sprekeler, 2020, Barry and Gerstner, 2024). Heterosynaptic plasticity is a possible mechanism to achieve EI balance (Field et al. 2020). For example, spike pairing in pre- and postsynaptic neurons induces long-term potentiation at co-activated excitatory and inhibitory synapses with the degree of inhibitory potentiation depending on the evoked excitation (D’amour and Froemke, 2015), which can normalise EI balance (Field et al. 2020).

      In the model we propose, SSTs should be subtractive and PVs divisive. However, SSTs can also be divisive, and PVs subtractive dependent on circuit and postsynaptic properties (Seybold et al. 2015, Lee et al. 2012, Dorsett et al. 2021). This does not necessarily contradict our model, as circuits in which SSTs are divisive and PVs subtractive could implement a different function, as not all pyramidal cells are error neurons. Hence, our model suggests that error neurons which can calculate UPEs should have similar physiological properties to the layer 2/3 cells observed in the study by Wilson et al. 2012.

      Our model further posits the existence of two distinct subtypes of SSTs in positive and negative error circuits. Indeed, there are many different subtypes of SSTs. SST is expressed by a large population of interneurons, which can be further subdivided. There is e.g. a type called SST44, which was shown to specifically respond when the animal corrects a movement (Green et al. 2023). Our proposal is hence aligned with the observation of functionally specialised subtypes of SSTs.

      Finally, I think this is a paper that would have been clearer if the equations had been interspersed within the results. Within the given format, I think the authors should include many more references to the Methods section, with specific equation numbers, where they are relevant throughout the Results section. The lack of clarity is certainly made worse by the current state of the Methods section, where there is far too much repetition and poor ordering of material throughout.

      We implemented the reviewer’s detailed and helpful suggestions on how to improve the ordering and other aspects of the methods section and now either intersperse the equations within the results or refer to the relevant equation number from the Methods section within the Results section.

      Reviewer 3 (Public Review):

      Summary: The authors proposed a normative principle for how the brain’s internal estimate of an observed sensory variable should be updated during each individual observation. In particular, they propose that the update size should be inversely proportional to the variance of the variable. They then proposed a microcircuit model of how such an update can be implemented, in particularly incorporating two types of interneurons and their subtractive and divisive inhibition onto pyramidal neurons. One type should represent the estimated mean while another represents the estimated variance. The authors used simulations to show that the model works as expected.

      Strengths: The paper addresses two important issues: how uncertainty is represented and used in the brain, and the role of inhibitory neurons in neural computation. The proposed circuit and learning rules are simple enough to be plausible. They also work well for the designated purposes. The paper is also well-written and easy to follow.

      Weaknesses: I have concerns with two aspects of this work.

      (1) The optimality analysis leading to Eq (1) appears simplistic. The learning setting the authors describe (estimating the mean of a stationary Gaussian variable from a stream of observations) is a very basic problem in online learning/streaming algorithm literature. In this setting, the real “optimal” estimate is simply the arithmetic average of all samples seen so far. This can be implemented in an online manner with µˆt = µˆt−1 +(st −µˆt−1)/t. This is optimal in the sense that the estimator is always the maximum likelihood estimator given the samples seen up to time t. On the other hand, doing gradient descent only converges towards the MLE estimator after a large number of updates. Another critique is that while Eq (1) assumes an estimator of the mean (mˆu), it assumes that the variance is already known. However, in the actual model, the variance also needs to be estimated, and a more sophisticated analysis thus needs to take into account the uncertainty of the variance estimate and so on. Finally, the idea that the update should be inverse to the variance is connected to the well-established idea in neuroscience that more evidence should be integrated over when uncertainty is high. For example, in models of two-alternative forced choices it is known to be optimal to have a longer reaction time when the evidence is noisier.

      We agree with the reviewer that the simple example we gave was not ideal, as it could have been solved much more elegantly without gradient descent. And the reviewer correctly pointed out that our solution was not even optimal. We now present a better example in Figure 7, where the mean of the Gaussian variable is not stationary. Indeed, we did not intend to assume that the Gaussian variable is stationary, as we had in mind that the environment can change and hence also the Gaussian variable. If the mean is constant over time, it is indeed optimal to use the arithmetic mean. However, if the mean changes after many samples, then the maximum likelihood estimator model would be very slow to adapt to the new mean, because t is large and each new stimulus only has a small impact on the estimate. If the mean changes, uncertainty modulation may be useful: if the variance was small before, and the mean changes, then the resulting big error will influence the change in the estimate much more, such that we can more quickly learn the new mean. A combination of the two mechanisms would probably be ideal. We use gradient descent here, because not all optimisation problems the brain needs to solve are that simple. The problem with converging only after a large number of updates is a general problem of the algorithm. Here, we propose how the brain could estimate uncertainty to achieve the uncertainty-modulation observed in inference and learning tasks observed in behavioural studies. To give a more complex example, we present in a new Figure 8 how a hierarchy of UPE circuits can be used for uncertainty-based integration of prior and sensory information, similar to Bayes-optimal integration.

      Yes, indeed, there is well-known behavioural evidence, we would like to thank the reviewer for pointing out this connection to two-alternative forced choice tasks. We now cite this work. Our contribution is not on the already established computational or algorithmic level, but the proposal of a neural implementation of how uncertainty could modulate learning. The variance indeed needs to be estimated for optimal mean updating. That means that in the beginning, there will be non-optimal updating until the variance is learned. However, once the variance is learned, mean-updating can use the learned variance. There may be few variance contexts but many means to be learned, such that variance contexts can be reused. In any case, this is a problem on the algorithmic level, and not so much on the implementational level we are concerned with.

      (2) While the incorporation of different inhibitory cell types into the model is appreciated, it appears to me that the computation performed by the circuit is not novel. Essentially the model implements a running average of the mean and a running average of the variance, and gates updates to the mean with the inverse variance estimate. I am not sure about how much new insight the proposed model adds to our understanding of cortical microcircuits.

      We here suggest an implementation for how uncertainty could modulate learning via influencing prediction error com- putation. Our model can explain how humans could estimate uncertainty and weight prior versus sensory information accordingly. The focus of our work was not to design a better algorithm for mean and variance estimation, but rather to investigate how specialised prediction error circuits in the brain can implement these operations to provide new experimental hypotheses and predictions.

      Reviewer 1 (Recommendations For The Authors):

      Clarity and conciseness are a strength of this manuscript, but a more comprehensive explanation could improve the reader’s understanding in some instances. This includes the NMDA-based nonlinearity of pyramidal neuron activation - I am a little unclear exactly what problem this solves and how (alongside the significance of 5D and E).

      We agree that the introduction of the NMDA-based nonlinearity was too short and understand that it was confusing. We therefore modified and expanded the section, where we introduce the dendritic nonlinearity of the error neurons.

      Page 5: I think there is a ’positive’ and ’negative’ missing from the following sentence: ’the weights from the SSTs to the UPE neurons need to match the weights from the stimulus s to the UPE neuron and from the mean representation to the UPE neuron, respectively.’

      Thanks for pointing that out! We changed the sentence to be more clear to the following: “To ensure a comparison between the stimulus and the prediction, the inhibition from the SSTs needs to match the excitation it is compared to in the UPE neurons: In the positive PE circuit, the weights from the SSTs representing the prediction to the UPE neurons need to match the weights from the stimulus s to the UPE neurons. In the negative PE circuit, the weights from SSTs representing the stimulus to the negative UPE neurons need to match the weights from the mean representation to the UPE neurons, respectively.”

      Reviewer 2 (Recommendations For The Authors):

      Related to the first point above: I don’t feel that the authors adequately explained what the “s” and “a” information (e.g., in Figures 2A, 3A) represent, where they are coming from, what neurons they impact and in what way (and I believe Fig. 3A is missing one “a” label). I think they should elaborate more fully on these key, foundational details for their theory. To me, the idea of starting from the PV, SST, and pyramidal circuit, and then suddenly introducing the extra R neuron in Figure 5, just adds confusion. If the R neuron is meant to be the source, in practice, of certain inputs to some of the other cell types, then I think that should be included in the circuit from the start. Perhaps a good idea would be to start with two schematics, one in the form of Figure 5A (but with additional labeling for PV, SST) and one like Figure 1EF (but with auditory inputs as well), with a clear indication that the latter is meant to represent a preliminary, reduced form of the former that will be used in some initial tests of the performance of the PV, SST, UPE part of the circuit. Related to the Methods, I also can give a list of some specific complaints (in latex):

      (1) φ, φP V are used in equations (10), (11), so they should be defined there, not many equations later.

      Thank you, we changed that.

      (2) β, 1 − β appear without justification or explanation in (11). That is finally defined and derived several pages later.

      Thank you, we now define it right at the beginning.

      (3) Equations (10)-(12) should be immediately followed by information about plasticity, rather than deferring that.

      That’s a great idea. We changed it. Now the synaptic dynamics are explained together with the firing rate dynamics.

      (4) After the rate equations (10)-(12) and weight change equations (23)-(25) are presented, the same equations are simply repeated in the “Explanation of the synaptic dynamics” subsection.

      We agree that this was suboptimal. We moved the explanation of the synaptic dynamics up and removed the repetition.

      (5) In the circuit model (13)-(19), it’s not clear why rR shows up in the SST+ and PV− equations vs. rs in PV+ and SST−. Moreover, rs is not even defined! Also, I don’t see why wP V +,R shows up in the equation for rP V − .

      We added more explanation to the Methods section as to why the neurons receive these inputs and renamed rs to s, which is defined. The “+” in wP V +,R was a typo. Thank you for spotting that.

      (6) The authors should only number those equations that they will reference by number. Even more importantly, there are many numbers such as (20), (26), (32), (39) that are just floating there without referring to an equation at all.

      Thank you for spotting that. We corrected this.

      (7) The authors fail to specify what is ra in Figure 8. Moreover, it seems strange to me that wP V,a approaches σ rather than wP V,ara approaching σ, since φP V is a function of wP V,ara.

      You are right, wP V,ara should approach σ, but since ra is either 1 or 0 to indicate the presence of absence of the cue, and only wP V,a is plastic and changing„ wP V,a approaches σ.

      (8) I don’t understand the rationale for the authors to introduce equation. (30) when they already had plasticity equations earlier. What is the relation of (30), (31) to (24)?

      It is the same equation. In 30 we introduce simpler symbols for a better overview of the equations. 31 is equal to 30, with rP V replaced by it’s steady state.

      (9) η is omitted from (33) - it won’t affect the final result but should be there.

      We fixed this.

      I have many additional specific comments and suggestions, some related to errors that really should have been caught before manuscript submission. I will present these based on the order in which they arise in the manuscript.

      (1) In the abstract, the mention of layer 2/3 comes out of nowhere. Why this layer specifically? Is this meant to be an abstract/general cortical circuit model or to relate to a specific brain area? (Also watch for several minor grammatical issues in the abstract and later.)

      Thank you for pointing this out. We now mention that the observed error neurons can be found in layer 2/3 of diverse brain areas. It is meant to be a general cortical circuit model independent of brain area.

      (2) In par. 2 of the introduction, I find sentences 3-4 to be confusing and vague. Please rewrite what is meant more directly and clearly.

      We tried to improve those sentences.

      (3) Results subtitle 1: “suggests” → “suggest”

      Thank you.

      (4) Be careful to use math font whenever variables, such as a and N, are referenced (e.g., use of a instead of a bottom pg. 2).

      We agree and checked the entire manuscript.

      (5) Ref. to Fig. 1B bottom pg. 2 should be Fig. 1CD. The panel order in the figure should then be changed to match how it is referenced.

      We fixed it and matched the ordering of the text with the ordering of the figure.

      (6) Fig. 2C and 3E captions mention std but this is not shown in the figures - should be added.

      It is there, it is just very small.

      (7) Please clarify the relation of Figure 2C to 2F, and Figure 3F to 3H.

      We colour-coded the points in 2F that correspond to the bars in 2C. We did the same for 3F and 3H.

      (8) Figures 3E,3F appear to be identical except for the y-axis label and inclusion of std in 3F. Either more explanation is needed of how these relate or one should be cut.

      The difference is that 3E shows the activity of PVs based on only the sound cue in the absence of a whisker stimulus. And 3F shows the activity of PVs based on both the sound cue and whisker stimuli. We state this more clearly now.

      (9) Bottom of pg. 4: clarify that a quadratic φP V is a model assumption, not derived from results in the figure.

      We added that we assume this.

      (10) When k is referenced in the caption of Figure 4, the reader has no idea what it is. More substantially, most panels of Figure 4 are not referenced in the paper. I don’t understand what point the authors are trying to make here with much of this figure. Indeed, since the claim is that the uncertainy prediction should be based on division by σ2, why aren’t the numerical values for UPE rates much larger, since σ gets so small? The authors also fail to give enough details about the simulations done to obtain these plots; presumably these are after some sort of (unspecified) convergence, and in response to some sort of (unspecified) stimulus? Coming back to k, I don’t understand why k > 2 is used in addition to k = 2. The text mentions – even italicizes – “out-of-distribution dectection’, but this is never mentioned elsewhere in the paper and seems to be outside the true scope of the work (and not demonstrated in Figure 4). Sticking with k = 2 would also allow authors to simply use (·)k below (10), rather than the awkward positive part function that they have used now.

      We now introduce the equation for the error neurons in Eq. 3 within the text, such that k is introduced before the caption. It also explains why the numerical values do not become much larger. Divisive inhibition, unlike mathematical division, cannot lead to multiplication in neurons. To ensure this, we add 1 to the denominator.

      We show the error neuron responses to stimuli deviating from the learned mean after learning the mean and variance. The deviation is indicated either on the x-axis or in the legend depending on the plot. We now more explicitly state that these plots are obtained after learning the mean and the variance.

      We removed the mentioning of the “out-of-distribution detection” as a detailed treatment would indeed be outside of the scope.

      (11) Page 5, please clarify what is meant by “weights from the sound...”. You have introduced mathematical notation - use it so that you can be precise.

      We added the mathematical notation, thank you!

      (12) Figure 5D: legend has 5 entries but the figure panel only plots 4 quantities.

      The SST firing rate was below the R firing rate. We hence omitted the SST firing rate and its legend.

      (13) Figure 5: I don’t understand what point is being made about NMDA spikes. The text for Figure 5 refers to NMDA spikes in Figure 4, but nothing was said about NMDA spikes in the text for Figure 4 nor shown in Figure 4 itself.

      We were referring to the nonlinearity in the activation function of UPEs in Figure 4. We changed the text to clarify this point.

      (14) Figure 6: It is too difficult to distinguish the black and purple curves even on a large monitor. Also, the authors fail to define what they mean by “MM” and also do not define the quantities Y+ and Y− that they show. Another confusing aspect is that the model has PV+ and PV− neurons, so why doesn’t the figure?

      Thank you for the comment. We changed the colour for better visibility, replaced the Upsilons with UPE (we changed the notation at some point and forgot to change it in the figure), and defined MM, which is the mismatch stimulus that causes error activity. We did not distinguish between PV+ and PV− in the plot as their activity is the same on average. We plotted the activity of the PV+. We now mention that we show the activity of PV+ as the representative.

      (15) Also Figure 6: The authors do not make it clear in the text whether these are simulation results or cartoons. If the latter, please replace this with actual simulation results.

      They are actual simulation results. We clarified this in the text.

      (16) This work assumes the existence of two different populations of SST neurons with distinct UPE (pyramidal) targets. The Discussion doesn’t say much about any evidence for this assumption, which should be more thoroughly discussed and justified.

      We now discuss this in more detail in the discussion as mentioned in our response to the public review.

      (17) Par. 2 of the discussion refers to “Bayesian” and “Bayes-optimal” several times. Nothing was said earlier in the paper about a Bayesian framework for these results and it’s not clear what the authors mean by referring to Bayes here. This paragraph needs editing so that it clearly relates to the material of the results section and its implications.

      We added an additional results section (the last section with Figure 8) on integrating prior and sensory information based on their uncertainties, which is also the case for Bayes-optimal integration, and show that our model can reproduce the central tendency effect, which is a hallmark of Bayes-optimal behaviour.

      Reviewer 3 (Recommendations For The Authors):

      See public review. I think the gradient-descent type of update the authors do in Equation (1) could be more useful in a more complicated learning scenario where the MLE has no closed form and has to be computed with gradient-based algorithms.

      We responded in detail to your points in our point-by-point response to the public review.

    1. Author response:

      Joint Public Review:

      Summary:

      This study presents a strategy to efficiently isolate PcrV-specific BCRs from human donors with cystic fibrosis who have/had Pseudomonas aeruginosa (PA) infection. Isolation of mAbs that provide protection against PA may be a key to developing a new strategy to treat PA infection as the PA has intrinsic and acquired resistance to most antibiotic drug classes. Hale et al. developed fluorescently labeled antigen-hook and isolated mAbs with anti-PA activity. Overall, the authors' conclusion is supported by solid data analysis presented in the paper. Four of five recombinantly expressed PcrV-specific mAbs exhibited anti-PA activity in a murine pneumonia challenge model as potent as the V2L2MD mAb (equivalent to gremubamab). However, therapeutic potency for these isolated mAbs is uncertain as the gremubamab has failed in Phase 2 trials. Clarification of this point would greatly benefit this paper.

      Strengths:

      (1) High efficiency of isolating antigen-specific BCRs using an antigenic hook.

      (2) The authors' conclusion is supported by data.

      Weaknesses:

      Although the authors state that the goal of this study was to generate novel protective mAbs for therapeutic use (P12; Para. 2), it is unclear whether PcrV-specific mAbs isolated in this study have therapeutic potential better than the gremubamab, which has failed in Phase 2 trials. Four of five PcrV-specific mAbs isolated in this study reduced bacterial burdens in mice as potent as, but not superior to, gremubamab-equivalent mAb. Clarification of this concern by revising the text or providing experimental results that show better potential than gremubamab would greatly benefit this paper.

      The authors thank the reviewer for their thoughtful positive assessment. As noted by the reviewer, the studies described here, which were performed in mice, show that our MBC-derived mAbs are as effective as V2L2MD, a mAb that is one component of the gremubamab bi-specific. However, key theoretical strengths of MBC-derived mAbs (reduced immunogenicity, full participation in effector functions) are not easily tested in mice. We have clarified and expanded our discussion of these points in our revised manuscript, particularly in the Discussion paragraph 4.

    1. Author response:

      The following is the authors’ response to the previous reviews

      We greatly appreciate all the reviewers’ constructive comments on our previously revised manuscript. In the current revision, we added several experimental data for answering the reviewers’ comments. Below we describe our point-by-point responses to their comments:

      Reviewer #1 (Public Review):

      Unaddressed and additional concerns (re-submission)

      In this revised version of the manuscript, the authors have made important modifications in the text, inserted new references, and incorporated additional quantifications of cFos immunolabeling in three brain regions, as recommended by the reviewers. While these modifications have significantly improved the quality of the manuscript, other critical concerns raised during the initial submission of the

      manuscript (Major concerns 1, 2, and 4; some of them also raised by the other reviewers) were not properly addressed by the authors. On several occasions, the authors recognize the importance of clarifying the points for the correct interpretation of the results but opt for leaving the open questions to be addressed during future studies. Therefore, the authors might consider adding a new section at the end of the manuscript to include all the caveats and future directions.

      In the current revision, in order to answer the reviewer #1’s original concerns 1, 2, and 4, we added several experimental data.

      Original major concerns 1) and 2): Regarding whether mice are detecting qualitative or quantitative differences between fresh and old cat saliva.

      To address these concerns, as shown in new Figure 1I and J, we measured volumes of saliva contained in in individual swabs and total protein concentrations at the time of behavior tests: Fresh (15 minutes after collection) and Old (4 hours after collection). The saliva volumes at the time of behavioral testing were indistinguishable between fresh and old samples (Figure 1I). In addition, the concentrations of total proteins in both fresh and old saliva were also indiscernible (Figure 1J). Furthermore, we also examined the difference of the amount of Fel d 4 protein, one of the most abundant proteins in cat saliva, between fresh and old saliva by conducting western blotting analyses. As shown in new Supplemental Figure 2, the amount of Fel d 4 was nearly equivalent between fresh and old saliva. Indeed, our analyses using recombinant Fel d 4 protein showed that Fel d 4 does not induce freezing behavior (Supplemental Figure 5). Based on these findings, we believe that the difference between fresh and old cat saliva lies in specific components rather than the total or major saliva content. One possible explanation for this difference is the time-dependent reduction of specific freezing-inducing components in old saliva.

      To investigate such a possibility, we also examined mouse behavior directed toward swabs containing diluted fresh cat saliva. Indeed, exposure to diluted fresh saliva resulted in a shorter duration of freezing behavior. Fresh saliva diluted to 70% induced freezing behavior for a duration equivalent to that of undiluted fresh saliva, while freezing behavior in response to 50% and 30% fresh saliva was significantly reduced to the same duration as that observed with old saliva (Figure 1K). The duration of direct interaction with swabs containing 70% and 50–30% fresh saliva also exhibited a similar trend to that observed with fresh and old saliva swabs, respectively (Figure 1L).

      These new results provide compelling evidence that the differential freezing response of mice to fresh versus old cat saliva is not attributed to quantitative differences, such as total volume, total protein concentration, or the amount of major proteins like Fel d 4. However, when fresh saliva was diluted, we observed a corresponding reduction in freezing behavior, suggesting that specific components within the saliva—those responsible for inducing freezing—may decrease over time.

      Our findings indicate that while the overall content of saliva remains consistent over time, specific freezing-inducing components seem to degrade or reduce at a different rate than other components, which alters the composition of saliva over time. The speed of reduction of these freezing-inducing components appears to be different from more stable proteins such as Fel d 4. As a result, the composition of saliva changes over time, leading to a qualitative difference between fresh and old saliva that mice can detect. This ability to discern such subtle chemical changes likely reflects an adaptive sensory mechanism, allowing mice to respond to predator cues to induce optimal defensive behavior in a certain context. Identifying the specific freezing-inducing components through traditional purification processes, such as high-performance liquid chromatography followed by behavioral examination (Haga-Yamanaka et al., 2014; Kimoto et al., 2005), is crucial for a deeper understanding of the mechanisms underlying the observed behavior. Our research team is actively working to isolate these molecules, and we hope to report our findings in future studies.

      (4) The interpretation that fresh and old saliva activates different subpopulations of neurons in the VMH based on the observation that cFos positively correlates with freezing responses only with the fresh saliva lacks empirical evidence. To address this question, the authors should use two neuronal activity markers to track the response of the same population of VHM cells within the same animals during exposure to fresh vs. old saliva.

      To address this issue, as shown in the new Figure 7, we performed a double exposure experiment using Fos2A-iCreERT2; Ai9 (TRAP2) mice (Allen et al., 2017; DeNardo et al., 2019). In this experiment, mice were exposed to the first stimulus under the treatment of 4-hydroxytamoxifen (4-OHT). One week after the initial exposure, the same mice were subjected to a second stimulus exposure for one hour. Through this paradigm, neurons activated by the first stimulus were visualized by tdTomato, while ones activated by the second stimulus were detected as cFos-IR (Figure 7A). Quantification of tdTomato and cFos-IR double-positive cells among tdTomato-labeled cells revealed that 43% (mean per animal: 61 / 143) of cells activated by fresh saliva during the first exposure were also activated by fresh saliva during the second exposure, whereas only 16% (17 / 106) of cells activated by old saliva during the first exposure were activated by fresh saliva during the second exposure (p = 7.5e-6, Chi-squared test). The difference in the fraction of overlapping cells between fresh and old saliva exposures was found significant when we compared the two groups of animals (Figure 7D, p = 0.0035, permutation test). Additionally, quantification of tdTomato and cFos-IR double-positive cells among cFos-IR cells indicated that over 27% (61 / 226) of cells activated by fresh saliva during the second exposure were previously activated by fresh saliva, whereas only 15% (17 / 112) of cells activated by fresh saliva during the second exposure were previously activated by old saliva (p = 0.015, Chi-squared test). The difference in the fraction of overlapping cells between fresh and old saliva exposures was also significant in this analysis (Figure 7E,p = 0.0060, permutation test). Together, these results demonstrate that fresh and old cat saliva activate largely different populations of neurons within the VMH. These new results were described on page 11 line 18 – page 12 line 8.

      In addition to these unaddressed concerns, some new issues have emerged in the new version of the manuscript. For example, the following paragraph introduced in the discussion section is not supported by the experimental findings.

      "We assume that such differential activations of the mitral cells between fresh and old saliva result in the differential activation of targeting neural substrates, possibly MeApv, which results in differential activation of VMH neurons (Figure 7)."

      Although the authors did not observe statistical differences in cFos expression in the pvMeA among groups, they claim that the differences in cFos expression in the VMH between fresh vs. old saliva are mediated by differential activation of upstream neurons in the MeApv. The lack of statistical differences may be caused by the reduced number of subjects in each group, as recognized in the text by the

      authors.

      We appreciate the reviewer's thoughtful comment. We agree that the paragraph in the comment, which presented a working hypothesis regarding differential activations of mitral cells and the MeApv between fresh and old saliva exposures, was speculative and not fully supported by our experimental findings. To address this, we have removed the assumptions related to the differential responses of mitral cells and the MeApv from the discussion and have updated the figure accordingly (now presented as new Figure 8).

      Moreover, the authors propose that in addition to fel d 4, multiple molecules present in the cat saliva can be inducing distinct defensive responses in the animals, but they do not provide any reference to support their claim.

      We thank the reviewer for highlighting this point. Our claim regarding the presence of other molecules in cat saliva inducing freezing defensive responses is based on our observation, as shown in the new Supplemental Figure 5, that recombinant Fel d 4 protein alone does not induce freezing behavior. This suggests the existence of other unidentified components in cat saliva that may contribute to freezing behavior. As we agree that identifying these specific freezing-inducing components is important for a more comprehensive understanding of the underlying mechanisms, our research team is actively working to isolate these molecules, and we hope to report our findings in future studies.

      Reviewer #2 (Public Review):

      The findings are relatively preliminary. The identities of the receptor and the ligand in the cat saliva that induces the behavior remain unclear. The identity of VMH cells that are activated by the cat saliva remains unclear. There is a lack of targeted functional manipulation to demonstrate the role of V2R-A4 or VMH cells in the behavioral response to the cat saliva.

      We thank the reviewer’s important insight on the need for further investigation into the molecular and neural mechanisms underlying the behavioral response to cat saliva. We recognize the importance of conducting studies involving V2R-A4 receptor knockouts and targeted functional manipulations within the VMH using neural circuit perturbation approaches.

      However, the V2R-A4 subfamily consists of 25 Vmn2r genes, most of which are closely grouped together, forming a V2R-A4 gene cluster within a 2.5-megabase chromosomal region. As we described in our recent review article (Rocha et al., 2024), the Vmn2r genes within the V2R-A4 subfamily display a high degree of homology, with nucleotide and amino acid identities among the several Vmn2rs surpassing 97-99%, suggesting possible redundancy among these receptor genes. This is in stark contrast to the diversity typically observed within other V2R subfamilies. Consequently, knockout strategies targeting a single receptor gene, which have been successful for other vomeronasal receptors, may not be effective for V2R-A4 receptor genes. The most appropriate strategy for examining the necessity of V2R-A4 receptors would be knocking out the entire V2R-A4 gene cluster, spanning a 2.5-megabase chromosomal region. Due to the technical challenges involved, addressing this issue is not feasible in the foreseeable future. Moreover, in our current study, we aimed to establish the foundational relationship between predator cues in cat saliva and defensive behaviors. We view our findings as an important first step that sets the stage for these more targeted and mechanistic studies involving the neural circuit perturbation experiments, such as optogenetics and Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), in the next step.

      Reviewer #3 (Public Review):

      Weaknesses:

      (1)  It is unclear if fresh and old saliva indeed alter the perceived imminence of predation, as claimed by the authors. Prior work indicates that lower imminence induces anxiety-related actions, such as re- organization of meal patterns and avoidance of open spaces, while slightly higher imminence produces freezing. Here, the authors show that fresh and old predator saliva only provoke different amounts of freezing, rather than changing the topography of defensive behaviors, as explained above. Another prediction of predatory imminence theory would be that lower imminence induced by old saliva should produce stronger cortical activation, while fresh saliva would activate amygdala, if these stimuli indeed correspond to significantly different levels of predation imminence.

      We appreciate the reviewer’s insightful comments regarding the perceived imminence of predation and the behavioral responses to fresh and old saliva. Our study specifically focused on comparing the defensive behaviors of mice in response to 15-minute-old and 4-hour-old cat saliva, particularly within the context of freezing behavior in their home cages. We chose these specific time points to capture the potential variation in behavioral intensity rather than the full spectrum of defensive behaviors. While a more comprehensive analysis—including varying time points, different types of defensive behaviors, and broader neural activation patterns (e.g., cortical versus amygdala activation)—might provide further insights into predation imminence theory, these aspects were beyond the scope of our current study. Future research could certainly address these points by examining behavioral and neural responses across additional saliva aging intervals and in varied behavioral contexts. Such studies would complement and extend the findings presented here, further elucidating the relationship between predator cue characteristics and defensive behaviors.

      (2)  It is known that predator odors activate and require AOB, VNO and VMH, thus replications of these findings are not novel, decreasing the impact of this work.

      As the reviewer mentioned, the activation of the AOB, VNO, and VMH by predator odors has been established in prior studies. However, our study provides new insights by demonstrating that defensive freezing behavior in response to predator odors is mediated through the vomeronasal organ (VNO) sensory circuit, which has not been previously shown. The novelty of our work lies in two key findings: 1) the introduction of a new behavioral paradigm that assesses freezing responses to predator cues based on the freshness of chemosensory signals in cat saliva, and 2) the demonstration that the vomeronasal sensory circuit mediates defensive freezing behavior in response to cat saliva.

      Additionally, our results show that cat saliva of different freshness levels differentially activates VNO sensory neurons that express the same subfamily of sensory receptors. This differential activation subsequently modulates the downstream neural circuits, leading to varied freezing behavioral outcomes. We believe these findings provide a novel conceptual advance over previous studies by elucidating a more detailed mechanism of how predator-derived cues influence defensive behaviors through the accessory olfactory system.

      (3)  There is a lack of standard circuit dissection methods, such as characterizing the behavioral effects of increasing and decreasing neural activity of relevant cell bodies and axonal projections, significantly decreasing the mechanistic insights generated by this work

      We thank the reviewer for this valuable comment. Investigating the behavioral effects of manipulating specific cell types and axonal projections, as well as characterizing circuit connectivity, is essential for a more comprehensive understanding of the underlying neural circuits. These approaches, such as modulating neural activity in defined cell populations and dissecting circuit pathways, using optogenetics, DREADD, etc., would provide deeper mechanistic insights. In our current study, however, we aimed to establish the foundational relationship between predator cues in cat saliva and defensive behaviors. We view our findings as an important first step that sets the stage for these more targeted and mechanistic studies in the future.

      (4)  The correlation shown in Figure 5c may be spurious. It appears that the correlation is primarily driven by a single point (the green square point near the bottom left corner). All correlations should be calculated using Spearman correlation, which is non-parametric and less likely to show a large correlation due to a small number of outliers. Regardless of the correlation method used, there are too few points in Figure 5c to establish a reliable correlation. Please add more points to 5c.

      We appreciate the reviewer’s suggestion regarding the correlation analysis in Figure 5E. We assessed the normality of our data using both the Shapiro-Wilk and Kolmogorov-Smirnov tests, which confirmed that the dataset is parametric, justifying the use of a parametric correlation method in this context. However, we acknowledge the concern about the limited number of data points and the influence of potential outliers on the observed correlation. Increasing the sample size might provide a more robust assessment of correlation patterns and reduce the potential impact of any single data point. While this would be an important direction for future research, such as with larger sample sizes, it is beyond the scope of the current study.

      (5)  Please cite recent relevant papers showing VMH activity induced by predators, such as https://pubmed.ncbi.nlm.nih.gov/33115925/ and https://pubmed.ncbi.nlm.nih.gov/36788059/

      We thank the reviewer’s suggestion to cite these important papers. https://pubmed.ncbi.nlm.nih.gov/33115925/ (Esteban Masferrer et al., 2020) and https://pubmed.ncbi.nlm.nih.gov/36788059/ (Tobias et al., 2023) are now cited at page 16 line 10 in Discussion under “Differential activation of VMH neurons potentially underlying distinct intensities of freezing behavior.”

      (6)  Add complete statistical information in the figure legends of all figures, which should include n, name of test used and exact p values.

      We included statistical analysis results in figure legends; for Figure 6B, we provided statistical analysis results in Supplemental Table 1.

      (7)  Some of the findings are disconnected from the story. For example, the authors show V2R-A4- expressing cells are activated by predator odors. Are these cells more likely to be connected to the rest of the predatory defense circuit than other VNO cells?

      Yes, our hypothesis posits that V2R-A4-expressing VNO sensory neurons serve as receptor neurons for predator cues present in cat saliva. Additionally, we assume that these specific sensory neurons have stronger anatomical connections with the defensive circuit compared to VNO sensory neurons expressing other receptor subfamilies. In our modified Discussion section, we discussed this point under “V2R-A4 subfamily as the receptor for predator cues in cat saliva.”

      (8)  Please paste all figure legends directly below their corresponding figure to make the manuscript easier to read

      We have added figure legends directly below their corresponding figures.

      (9)  Were there other behavioral differences induced by fresh compared to old saliva? Do they provoke differences in stretch-attend risk evaluation postures, number of approaches, average distance to odor stimulus, velocity of movements towards and away the odor stimulus, etc?

      We appreciate the reviewer's valuable comments. We have now incorporated an analysis of stretch-sniff risk assessment behavior, presented in new Figure 1F (graph) and Supplemental Figure 1B (raster plot). Mice exhibited stretch-sniff risk assessment behavior, which remained consistent across control, fresh saliva, and old saliva swabs. Additionally, we have also included a raster plot for direct investigation, previously noted as ‘interaction’ in the original manuscript (Supplemental Figure 1C). Mice exposed to a swab containing either fresh or old saliva significantly avoided directly investigating the swab. In contrast, mice exposed to a clean control swab spent a significant amount of time directly investigating the swab, engaging in behaviors such as sniffing and chewing (Figure 1G). A comparison of temporal behavioral patterns revealed a slightly higher frequency of direct investigation behavior toward old saliva compared to fresh saliva at the beginning of the exposure period (Supplemental Figure 1C).

      Reviewer #3 (Recommendations For The Authors):

      The authors have partially addressed several important points raised in the prior review, increasing the strength of the manuscript. However, 2 key questions already raised previously, were not addressed:

      (1)  Is old saliva qualitatively different from new saliva, or is it the same as a smaller amount of new saliva? As Reviewer 1 wrote: "An important point that the authors should clarify in this study is whether mice are detecting qualitative or quantitative differences between fresh and old cat saliva."

      Since one of the author's main points is that fresh and old saliva elicit different perceived threat imminences, it is crucial to show that these two stimuli are somehow qualitatively different.

      One way to investigate this could be to show that animals perform different behaviors when exposed to smaller among of new saliva vs old saliva, or that the cfos activation patterns are different in these two conditions.

      The answers to these concerns are provided in the Public review Comment from Reviewer #1.

      (2)  The other key question is if different VMH populations are activated by new vs old saliva.

      The answer to this concern is provided in the Public Review comment from Reviewer #1.

      Lastly, although the new analysis and text changes improved the manuscript, many issues raised were addressed with some variation of 'future studies will be done', or 'we concur with the Reviewer'. However, the extra experiments required to answer these questions were not done. For this reason, even though the authors have numerous exciting pieces of data, overall the work is still incomplete. I highlight below some examples in which the authors agree with the Reviewer, but do not answer the question with the new work that would be required, or propose to do the work in future studies.

      In this revised manuscript, we have conducted several additional experiments to address key concerns raised by the reviewers that are directly relevant to our claims. Specifically, we have examined: 1) whether qualitative or quantitative differences between fresh and old cat saliva are detected by mice to modulate behavior (NEW Figure 1I, J, K, and L, and NEW Supplemental Figure 2); 2) the involvement of Fel d 4 in freezing behavior (NEW Supplemental Figure 5); and 3) whether different VMH populations are activated by fresh versus old saliva (NEW Figure 7). However, some concerns raised by the reviewers fall outside the scope of the current manuscript. These include: 1) identifying the specific components that induce freezing, 2) examining the necessity of V2R-A4 receptors, 3) conducting neural circuit perturbations, and 4) performing a comprehensive analysis—including varying time points, different types of defensive behaviors, and broader neural activation patterns (e.g., cortical versus amygdala activation)—of the mouse’s defensive response to different levels of predator threat imminence. As these aspects are beyond the focus of our current manuscript, we have noted in the Public Review comments.

      References:

      Allen WE, DeNardo LA, Chen MZ, Liu CD, Loh KM, Fenno LE, Ramakrishnan C, Deisseroth K, Luo L. 2017. Thirst-associated preoptic neurons encode an aversive motivational drive. Science 357:1149– 1155.

      DeNardo LA, Liu CD, Allen WE, Adams EL, Friedmann D, Fu L, Guenthner CJ, Tessier-Lavigne M, Luo L. 2019. Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat Neurosci 22:460–469.

      Haga-Yamanaka S, Ma L, He J, Qiu Q, Lavis LD, Looger LL, Yu CR. 2014. Integrated action of pheromone signals in promoting courtship behavior in male mice. Elife 3:e03025.

      Kimoto H, Haga S, Sato K, Touhara K. 2005. Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature 437:898–901.

      Rocha A, Nguyen QAT, Haga-Yamanaka S. 2024. Type 2 vomeronasal receptor-A4 subfamily: Potential predator sensors in mice. Genesis 62:e23597.

    1. Author response:

      Reviewer #1 (Public review):

      This manuscript from Schwintek and coworkers describes a system in which gas flow across a small channel (10^-4-10^-3 m scale) enables the accumulation of reactants and convective flow. The authors go on to show that this can be used to perform PCR as a model of prebiotic replication.

      Strengths:

      The manuscript nicely extends the authors' prior work in thermophoresis and convection to gas flows. The demonstration of nucleic acid replication is an exciting one, and an enzyme-catalyzed proof-of-concept is a great first step towards a novel geochemical scenario for prebiotic replication reactions and other prebiotic chemistry.

      The manuscript nicely combines theory and experiment, which generally agree well with one another, and it convincingly shows that accumulation can be achieved with gas flows and that it can also be utilized in the same system for what one hopes is a precursor to a model prebiotic reaction. This continues efforts from Braun and Mast over the last 10-15 years extending a phenomenon that was appreciated by physicists and perhaps underappreciated in prebiotic chemistry to increasingly chemically relevant systems and, here, a pilot experiment with a simple biochemical system as a prebiotic model.

      I think this is exciting work and will be of broad interest to the prebiotic chemistry community.

      Weaknesses:

      The manuscript states: "The micro scale gas-water evaporation interface consisted of a 1.5 mm wide and 250 µm thick channel that carried an upward pure water flow of 4 nl/s ≈ 10 µm/s perpendicular to an air flow of about 250 ml/min ≈ 10 m/s." This was a bit confusing on first read because Figure 2 appears to show a larger channel - based on the scale bar, it appears to be about 2 mm across on the short axis and 5 mm across on the long axis. From reading the methods, one understands the thickness is associated with the Teflon, but the 1.5 mm dimension is still a bit confusing (and what is the dimension in the long axis?) It is a little hard to tell which portion (perhaps all?) of the image is the channel. This is because discontinuities are present on the left and right sides of the experimental panels (consistent with the image showing material beyond the channel), but not the simulated panels. Based on the authors' description of the apparatus (sapphire/CNC machined Teflon/sapphire) it sounds like the geometry is well-known to them. Clarifying what is going on here (and perhaps supplying the source images for the machined Teflon) would be helpful.

      We understand. We will update the figures to better show dimensions of the experimental chamber. We will also add a more complete Figure in the supplementary information. Part of the complexity of the chamber however stems from the fact that the same chamber design has also been used to create defined temperature gradients which are not necessary and thus the chamber is much more complex than necessary.

      The data shown in Figure 2d nicely shows nonrandom residuals (for experimental values vs. simulated) that are most pronounced at t~12 m and t~40-60m. It seems like this is (1) because some symmetry-breaking occurs that isn't accounted for by the model, and perhaps (2) because of the fact that these data are n=1. I think discussing what's going on with (1) would greatly improve the paper, and performing additional replicates to address (2) would be very informative and enhance the paper. Perhaps the negative and positive residuals would change sign in some, but not all, additional replicates?

      To address this, we will show two more replicates of the experiment and include them in Figure 2.

      We are seeing two effects when we compare fluorescence measurements of the experiments.

      Firstly, degassing of water causes the formation of air-bubbles, which are then transported upwards to the interface, disrupting fluorescence measurements. This, however, mostly occurs in experiments with elevated temperatures for PCR reactions, such as displayed in Figure 4.

      Secondly, due to the high surface tension of water, the interface is quite flexible. As the inflow and evaporation work to balance each other, the shape of the interface adjusts, leading to alterations in the circular flow fields below.

      Thus the conditions, while overall being in steady state, show some fluctuations. The strong dependence on interface shape is also seen in the simulation. However, modeling a dynamic interface shape is not so easy to accomplish, so we had to stick to one geometry setting. Again here, the added movies of two more experiments should clarify this issue.

      The authors will most likely be familiar with the work of Victor Ugaz and colleagues, in which they demonstrated Rayleigh-Bénard-driven PCR in convection cells (10.1126/science.298.5594.793, 10.1002/anie.200700306). Not including some discussion of this work is an unfortunate oversight, and addressing it would significantly improve the manuscript and provide some valuable context to readers. Something of particular interest would be their observation that wide circular cells gave chaotic temperature profiles relative to narrow ones and that these improved PCR amplification (10.1002/anie.201004217). I think contextualizing the results shown here in light of this paper would be helpful.

      Thanks for pointing this out and reminding us. We apologize. We agree that the chaotic trajectories within Rayleigh-Bénard convection cells lead to temperature oscillations similar to the salt variations in our gas-flux system. Although the convection-driven PCR in Rayleigh-Bénard is not isothermal like our system, it provides a useful point of comparison and context for understanding environments that can support full replication cycles. We will add a section comparing approaches and giving some comparison into the history of convective PCR and how these relate to the new isothermal implementation.

      Again, it appears n=1 is shown for Figure 4a-c - the source of the title claim of the paper - and showing some replicates and perhaps discussing them in the context of prior work would enhance the manuscript.

      We appreciate the reviewer for bringing this to our attention. We will now include the two additional repeats for the data shown in Figure 4c, while the repeats of the PAGE measurements are already displayed in Supplementary Fig. IX.2. Initially, we chose not to show the repeats in Figure 4c due to the dynamic and variable nature of the system. These variations are primarily caused by differences at the water-air interface, attributed to the high surface tension of water. Additionally, the stochastic formation of air bubbles in the inflow—despite our best efforts to avoid them—led to fluctuations in the fluorescence measurements across experiments. These bubbles cause a significant drop in fluorescence in a region of interest (ROI) until the area is refilled with the sample.

      Unlike our RNA-focused experiments, PCR requires high temperatures and degassing a PCR master mix effectively is challenging in this context. While we believe our chamber design is sufficiently gas-tight to prevent air from diffusing in, the high surface-to-volume ratio in microfluidics makes degassing highly effective, particularly at elevated temperatures. We anticipate that switching to RNA experiments at lower temperatures will mitigate this issue, which is also relevant in a prebiotic context.

      The reviewer’s comments are valid and prompt us to fully display these aspects of the system. We will now include these repeats in Figure 4c to give readers a deeper understanding of the experiment's dynamics. Additionally, we will provide videos of all three repeats, allowing readers to better grasp the nature of the fluctuations in SYBR Green fluorescence depicted in Figure 4c.

      I think some caution is warranted in interpreting the PCR results because a primer-dimer would be of essentially the same length as the product. It appears as though the experiment has worked as described, but it's very difficult to be certain of this given this limitation. Doing the PCR with a significantly longer amplicon would be ideal, or alternately discussing this possible limitation would be helpful to the readers in managing expectations.

      This is a good point and should be discussed more in the manuscript. Our gel electrophoresis is capable of distinguishing between replicate and primer dimers. We know this since we were optimizing the primers and template sequences to minimize primer dimers, making it distinguishable from the desired 61mer product. That said, all of the experiments performed without a template strand added did not show any band in the vicinity of the product band after 4h of reaction, in contrast to the experiments with template, presenting a strong argument against the presence of primer dimers.

      Reviewer #2 (Public review):

      Schwintek et al. investigated whether a geological setting of a rock pore with water inflow on one end and gas passing over the opening of the pore on the other end could create a non-equilibrium system that sustains nucleic acid reactions under mild conditions. The evaporation of water as the gas passes over it concentrates the solutes at the boundary of evaporation, while the gas flux induces momentum transfer that creates currents in the water that push the concentrated molecules back into the bulk solution. This leads to the creation of steady-state regions of differential salt and macromolecule concentrations that can be used to manipulate nucleic acids. First, the authors showed that fluorescent bead behavior in this system closely matched their fluid dynamic simulations. With that validation in hand, the authors next showed that fluorescently labeled DNA behaved according to their theory as well. Using these insights, the authors performed a FRET experiment that clearly demonstrated the hybridization of two DNA strands as they passed through the high Mg++ concentration zone, and, conversely, the dissociation of the strands as they passed through the low Mg++ concentration zone. This isothermal hybridization and dissociation of DNA strands allowed the authors to perform an isothermal DNA amplification using a DNA polymerase enzyme. Crucially, the isothermal DNA amplification required the presence of the gas flux and could not be recapitulated using a system that was at equilibrium. These experiments advance our understanding of the geological settings that could support nucleic acid reactions that were key to the origin of life.

      The presented data compellingly supports the conclusions made by the authors. To increase the relevance of the work for the origin of life field, the following experiments are suggested:

      (1) While the central premise of this work is that RNA degradation presents a risk for strand separation strategies relying on elevated temperatures, all of the work is performed using DNA as the nucleic acid model. I understand the convenience of using DNA, especially in the latter replication experiment, but I think that at least the FRET experiments could be performed using RNA instead of DNA.

      We understand the request only partially. The modification brought about by the two dye molecules in the FRET probe to be able to probe salt concentrations by melting is of course much larger than the change of the backbone from RNA to DNA. This was the reason why we rather used the much more stable DNA construct which is also manufactured at a lower cost and in much higher purity also with the modifications. But we think the melting temperature characteristics of RNA and DNA in this range is enough known that we can use DNA instead of RNA for probing the salt concentration in our flow cycling.

      Only at extreme conditions of pH and salt, RNA degradation through transesterification, especially under alkaline conditions is at least several orders of magnitude faster than spontaneous degradative mechanisms acting upon DNA [Li, Y., & Breaker, R. R. (1999). Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2 ‘-hydroxyl group. Journal of the American Chemical Society, 121(23), 5364-5372.]. The work presented in this article is however focussed on hybridization dynamics of nucleic acids. Here, RNA and DNA share similar properties regarding the formation of double strands and their respective melting temperatures. While RNA has been shown to form more stable duplex structures exhibiting higher melting temperatures compared to DNA [Dimitrov, R. A., & Zuker, M. (2004). Prediction of hybridization and melting for double-stranded nucleic acids. Biophysical Journal, 87(1), 215-226.], the general impact of changes in salt, temperature and pH [Mariani, A., Bonfio, C., Johnson, C. M., & Sutherland, J. D. (2018). pH-Driven RNA strand separation under prebiotically plausible conditions. Biochemistry, 57(45), 6382-6386.] on respective melting temperatures follows the same trend for both nucleic acid types. Also the diffusive properties of RNA and DNA are very similar [Baaske, P., Weinert, F. M., Duhr, S., Lemke, K. H., Russell, M. J., & Braun, D. (2007). Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proceedings of the National Academy of Sciences, 104(22), 9346-9351.].

      Since this work is a proof of principle for the discussed environment being able to host nucleic acid replication, we aimed to avoid second order effects such as degradation by hydrolysis by using DNA as a proxy polymer. This enabled us to focus on the physical effects of the environment on local salt and nucleic acid concentration. The experiments performed with FRET are used to visualize local salt concentration changes and their impact on the melting temperature of dissolved nucleic acids.  While performing these experiments with RNA would without doubt cover a broader application within the field of origin of life, we aimed at a step-by-step / proof of principle approach, especially since the environmental phenomena studied here have not been previously investigated in the OOL context. Incorporating RNA-related complexity into this system should however be addressed in future studies. This will likely require modifications to the experimental boundary conditions, such as adjusting pH, temperature, and salt concentration, to account for the greater duplex stability of RNA. For instance, lowering the pH would reduce the RNA melting temperature [Ianeselli, A., Atienza, M., Kudella, P. W., Gerland, U., Mast, C. B., & Braun, D. (2022). Water cycles in a Hadean CO2 atmosphere drive the evolution of long DNA. Nature Physics, 18(5), 579-585.].

      (2) Additionally, showing that RNA does not degrade under the conditions employed by the authors (I am particularly worried about the high Mg++ zones created by the flux) would further strengthen the already very strong and compelling work.

      Based on literature values for hydrolysis rates of RNA [Li, Y., & Breaker, R. R. (1999). Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2 ‘-hydroxyl group. Journal of the American Chemical Society, 121(23), 5364-5372.], we estimate RNA to have a halflife of multiple months under the deployed conditions in the FRET experiment (High concentration zones contain <1mM of Mg2+). Additionally, dsRNA is multiple orders of magnitude more stable than ssRNA with regards to degradation through hydrolysis [Zhang, K., Hodge, J., Chatterjee, A., Moon, T. S., & Parker, K. M. (2021). Duplex structure of double-stranded RNA provides stability against hydrolysis relative to single-stranded RNA. Environmental Science & Technology, 55(12), 8045-8053.], improving RNA stability especially in zones of high FRET signal. Furthermore, at the neutral pH deployed in this work, RNA does not readily degrade. In previous work from our lab [Salditt, A., Karr, L., Salibi, E., Le Vay, K., Braun, D., & Mutschler, H. (2023). Ribozyme-mediated RNA synthesis and replication in a model Hadean microenvironment. Nature Communications, 14(1), 1495.], we showed that the lifetime of RNA under conditions reaching 40mM Mg2+ at the air-water interface at 45°C was sufficient to support ribozymatically mediated ligation reactions in experiments lasting multiple hours.

      With that in mind, gaining insight into the median Mg2+ concentration across multiple averaged nucleic acid trajectories in our system (see Fig. 3c&d) and numerically convoluting this with hydrolysis dynamics from literature would be highly valuable. We anticipate that longer residence times in trajectories distant from the interface will improve RNA stability compared to a system with uniformly high Mg2+ concentrations.

      (3) Finally, I am curious whether the authors have considered designing a simulation or experiment that uses the imidazole- or 2′,3′-cyclic phosphate-activated ribonucleotides. For instance, a fully paired RNA duplex and a fluorescently-labeled primer could be incubated in the presence of activated ribonucleotides +/- flux and subsequently analyzed by gel electrophoresis to determine how much primer extension has occurred. The reason for this suggestion is that, due to the slow kinetics of chemical primer extension, the reannealing of the fully complementary strands as they pass through the high Mg++ zone, which is required for primer extension, may outcompete the primer extension reaction. In the case of the DNA polymerase, the enzymatic catalysis likely outcompetes the reannealing, but this may not recapitulate the uncatalyzed chemical reaction.

      This is certainly on our to-do list. Our current focus is on templated ligation rather than templated polymerization and we are working hard to implement RNA-only enzyme-free ligation chain reaction, based on more optimized parameters for the templated ligation from 2’3’-cyclic phosphate activation that was just published [High-Fidelity RNA Copying via 2′,3′-Cyclic Phosphate Ligation, Adriana C. Serrão, Sreekar Wunnava, Avinash V. Dass, Lennard Ufer, Philipp Schwintek, Christof B. Mast, and Dieter Braun, JACS doi.org/10.1021/jacs.3c10813 (2024)]. But we first would try this at an air-water interface which was shown to work with RNA in a temperature gradient [Ribozyme-mediated RNA synthesis and replication in a model Hadean microenvironment, Annalena Salditt, Leonie Karr, Elia Salibi, Kristian Le Vay, Dieter Braun & Hannes Mutschler, Nature Communications doi.org/10.1038/s41467-023-37206-4 (2023)] before making the jump to the isothermal setting we describe here. So we can understand the question, but it was good practice also in the past to first get to know the setting with PCR, then jump to RNA.

      Reviewer #2 (Recommendations for the authors):

      (1) Could the authors comment on the likelihood of the geological environments where the water inflow velocity equals the evaporation velocity?

      This is an important point to mention in the manuscript, thank you for pointing that out. To produce a defined experiment, we were pushing the water out with a syringe pump, but regulated in a way that the evaporation was matching our flow rate. We imagine that a real system will self-regulate the inflow of the water column on the one hand side by a more complex geometry of the gas flow, matching the evaporation with the reflow of water automatically. The interface would either recede or move closer to the gas flux, depending on whether the inflow exceeds or falls short of the evaporation rate. As the interface moves closer, evaporation speeds up, while moving away slows it down. This dynamic process stabilizes the system, with surface tension ultimately fixing the interface in place.

      We have seen a bit of this dynamic already in the experiments, could however so far not yet find a good geometry within our 2-dimensional constant thickness geometry to make it work for a longer time. Very likely having a 3-dimensional reservoir of water with less frictional forces would be able to do this, but this would require a full redesign of a multi-thickness microfluidics. The more we think about it, the more we envisage to make the next implementation of the experiment with a real porous volcanic rock inside a humidity chamber that simulates a full 6h prebiotic day. But then we would lose the whole reproducibility of the experiment, but likely gain a way that recondensation of water by dew in a cold morning is refilling the water reservoirs in the rocks again. Sorry that I am regressing towards experiments in the future.

      (2) Could the authors speculate on using gases other than ambient air to provide the flux and possibly even chemical energy? For example, using carbonyl sulfide or vaporized methyl isocyanide could drive amino acid and nucleotide activation, respectively, at the gas-water interface.

      This is an interesting prospect for future work with this system. We thought also about introducing ammonia for pH control and possible reactions. We were amazed in the past that having CO2 instead of air had a profound impact on the replication and the strand separation [Water cycles in a Hadean CO2 atmosphere drive the evolution of long DNA, Alan Ianeselli, Miguel Atienza, Patrick Kudella, Ulrich Gerland, Christof Mast & Dieter Braun, Nature Physics doi.org/10.1038/s41567-022-01516-z (2022)]. So going more in this direction absolutely makes sense and as it acts mostly on the length-selectively accumulated molecules at the interface, only the selected molecules will be affected, which adds to the selection pressure of early evolutionary scenarios.

      Of course, in the manuscript, we use ambient air as a proxy for any gas, focusing primarily on the energy introduced through momentum transfer and evaporation. We speculate that soluble gasses could establish chemical gradients, such as pH or redox potential, from the bulk solution to the interface, similar to the Mg2+ accumulation shown in Figure 3c. The nature of these gradients would depend on each gas's solubility and diffusivity. We have already observed such effects in thermal gradients [Keil, L. M., Möller, F. M., Kieß, M., Kudella, P. W., & Mast, C. B. (2017). Proton gradients and pH oscillations emerge from heat flow at the microscale. Nature communications, 8(1), 1897.] and finding similar behavior in an isothermal environment would be a significant discovery.

      (3) Line 162: Instead of "risk," I suggest using "rate".

      Oh well - thanks for pointing this out! Will be changed.

      (4) Using FRET of a DNA duplex as an indicator of salt concentration is a decent proxy, but a more direct measurement of salt concentration would provide further merit to the explicit statement that it is the salt concentration that is changing in the system and not another hidden parameter.

      Directly observing salt concentration using microscopy is a difficult task. While there are dyes that change their fluorescence depending on the local Na+ or Mg2+ concentration, they are not operating differentially, i.e. by making a ratio between two color channels. Only then we are not running into artifacts from the dye molecules being accumulated by the non-equilibrium settings. We were able to do this for pH in the past, but did not find comparable optical salt sensors. This is the reason we ended up with a FRET pair, with the advantage that we actually probe the strand separation that we are interested in anyhow. Using such a dye in future work would however without a doubt enhance the understanding of not only this system, but also our thermal gradient environments.

      (5) Figure 3a: Could the authors add information on "Dried DNA" to the caption? I am assuming this is the DNA that dried off on the sides of the vessel but cannot be sure.

      Thanks to the reviewer for pointing this out. This is correct and we will describe this better in the revised manuscript.

      (6) Figure 4b and c: How reproducible is this data? Have the authors performed this reaction multiple independent times? If so, this data should be added to the manuscript.

      The data from the gel electrophoresis was performed in triplicates and is shown in full in supplementary information. The data in c is hard to reproduce, as the interface is not static and thus ROI measurements are difficult to perform as an average of repeats. Including the data from the independent repeats will however give the reader insight into some of the experimental difficulties, such as air bubbles, which form from degassing as the liquid heats up, that travel upwards to the interface, disrupting the ongoing fluorescence measurements.

      (7) Line 256: "shielding from harmful UV" statement only applies to RNA oligomers as UV light may actually be beneficial for earlier steps during ribonucleoside synthesis. I suggest rephrasing to "shielding nucleic acid oligomers from UV damage.".

      Will be adjusted as mentioned.

      (8) The final paragraph in the Results and Discussion section would flow better if placed in the Conclusion section.

      This is a good point and we will merge results and discussion closer together.

      (9) Line 262, "...of early Life" is slightly overstating the conclusions of the study. I suggest rephrasing to "...of nucleic acids that could have supported early life."

      This is a fair comment. We thank the reviewer for his detailed analysis of the manuscript!

      (10) In references, some of the journal names are in sentence case while others are in title case (see references 23 and 26 for example).

      Thanks - this will be fixed.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      Lejeune et al. demonstrated sex-dependent differences in the susceptibility to MRSA infection. The authors demonstrated the role of the microbiota and sex hormones as potential determinants of susceptibility. Moreover, the authors showed that Th17 cells and neutrophils contribute to sex hormone-dependent protection in female mice.

      Strengths:

      The role of microbiota was examined in various models (gnotobiotic, co-housing, microbiota transplantation). The identification of responsible immune cells was achieved using several genetic knockouts and cell-specific depletion models. The involvement of sex hormones was clarified using ovariectomy and the FCG model.

      Weaknesses:

      The mechanisms by which specific microbiota confer female-specific protection remain unclear.

      We thank the reviewer for highlighting the strength of the manuscript including the models and techniques we employ. We agree that the relationship between the microbiota and sex-dependent protection is less developed compared with other aspects of the study. In preparation of a revised manuscript, we intend on performing a more thorough comparison of male vs. female microbiota, along with quantification of sex hormones and downstream Th17 function (neutrophil recruitment and activation).

      Reviewer #2 (Public review):

      Overall, the paper nicely adds to the growing body of literature investigating how biological sex impacts the immune system and the burden of infectious disease. The conclusions are mostly supported by the data although there are some aspects of the data that could be better addressed and clarified.

      We thank the reviewer for appreciating our contribution. We intend on performing experiments to fill-in gaps and text revisions to increase clarity and acknowledge limitations.

      (1) There is something of a disconnect between the initial microbiome data and the later data that analyzes sex hormones and chromosomes. While there are clearly differences in microbial species across the two sites (NYU and JAX) how these bacterial species might directly interact with immune cells to induce female-specific responses is left unexplored. At the very least it would help to try and link these two distinct pieces of data to try and inform the reader how the microbiome is regulating the sex-specific response. Indeed, the reader is left with no clear exploration of the microbiota's role in the persistence of the infection and thus is left wanting.

      We agree. This comment is similar to Reviewer #1’s feedback. As mentioned above, we anticipate clarifying the association between sex differences and the microbiota. We will attempt to investigate specific bacteria, although some aspects of microbiota characterization may be outside the timeframe of the revision.

      (2) While the authors make a reasonable case that Th17 T cells are important for controlling infection (using RORgt knockout mice that cannot produce Th17 cells), it is not clear how these cells even arise during infection since the authors make most of the observations 2 days post-infection which is longer before a normal adaptive immune response would be expected to arise. The authors acknowledge this, but their explanation is incomplete. The increase in Th17 cells they observe is predicated on mitogenic stimulation, so they are not specific (at least in this study) for MRSA. It would be helpful to see a specific restimulation of these cells with MRSA antigens to determine if there are pre-existing, cross-reactive Th17 cells specific for MRSA and microbiota species which could then link these two as mentioned above.

      We acknowledge that this is a major limitation of our study. Although an experiment demonstrating pre-existing, cross-reactive T cells would help support our conclusion, aspects of MRSA biology may make the results of this experiment difficult to interpret. We have consulted with an expert on MRSA virulence factors, co-lead author Dr. Victor Torres, about the feasibility of this experiment. MRSA possess superantigens, such as Staphylococcal enterotoxin B, which bind directly to specific Vβ regions of T-cell receptors (TCR) and major histocompatibility complex (MHC) class II on antigen-presenting cells, resulting in hyperactivation of T lymphocytes and monocytes/macrophages. Additionally, other MRSA virulence factors, such as α-hemolysin and LukED, can induce cell death of lymphocytes. MRSA’s enterotoxins are heat stable, so heat-inactivation of the bacterium may not help in this matter.  For these reasons, restimulation of lymphocytes with MRSA antigens may be difficult to interpret. We humbly suggest that addressing this aspect of the mechanism is outside the scope of this manuscript.

      A study by Shao et al. provides an example of a host commensal species inducing Th17 cells with cross-reactivity against MRSA. Upon intestinal colonization, the intestinal fungus Candida albicans influences T cell polarization towards a Th17 phenotype in the spleen and peripheral lymph nodes which provided protection to the host against systemic candidemia. Interestingly, this induction of protective Th17 cells, increased IL-17 and responsiveness in circulating Ly6G+ neutrophils also protected mice from intravenous infection with MRSA, indicating that T cell activation and polarization by intestinal C. albicans leads to non-specific protective responses against extracellular pathogens.

      Shao TY, Ang WXG, Jiang TT, Huang FS, Andersen H, Kinder JM, Pham G, Burg AR, Ruff B, Gonzalez T, Khurana Hershey GK, Haslam DB, Way SS. Commensal Candida albicans Positively Calibrates Systemic Th17 Immunological Responses. Cell Host & Microbe. 2019 Mar 13;25(3):404-417.e6. doi: 10.1016/j.chom.2019.02.004. PMID: 30870622; PMCID: PMC6419754.

      Reviewer #3 (Public review):

      Strengths:

      A strength of the work is the rigorous experimental design. Appropriate controls were executed and, in most cases, multiple approaches were conducted to strengthen the authors' conclusions. The conclusions are supported by the data.

      The following suggestions are offered to improve an already strong piece of scholarship.

      Weaknesses:

      The correlation between female sex hormones and the elimination of S. aureus from the gut could be further validated by quantifying sex hormones produced in the four core genotype mice in response to colonization. Additionally, and this may not be feasible, but according to the proposed model administering female sex hormones to male mice should decrease colonization. Finally, knowing whether the quantity of IL-17a CD4+ cells change in the OVX mice has the potential to discern whether abundance/migration of the cells or their activation is promoted by female sex hormones.

      In the Discussion, the authors highlight previous work establishing a link between immune cells and sex hormone receptors, but whether the estrogen (and progesterone) receptor is differentially expressed in response to S. aureus colonization could be assessed in the RNAseq dataset. Differential expression of known X and Y chromosome-linked genes were discussed but specific sex hormones or sex hormone receptors, like the estrogen receptor, were not. This potential result could be highlighted.

      We appreciate the comment on the scholarship and thank the Reviewer for the insightful suggestions to improve this manuscript. We intend on measuring hormone levels and performing the recommended (or similar) experiments based on availability of reagents and mice during the revision period. We also apologize for not including references that address some of the Reviewer’s questions. Other research groups have compared the levels of hormones between XX and XY males and females in the four core genotypes model and have found similar levels of circulating testosterone in adult XX and XY males. No difference was found in circulating estradiol levels in XX vs XY- females when tested at 4-6 or 7-9 months of age.

      Karen M. Palaszynski, Deborah L. Smith, Shana Kamrava, Paul S. Burgoyne, Arthur P. Arnold, Rhonda R. Voskuhl, A Yin-Yang Effect between Sex Chromosome Complement and Sex Hormones on the Immune Response. Endocrinology, Volume 146, Issue 8, 1 August 2005, Pages 3280–3285, https://doi.org/10.1210/en.2005-0284

      Sasidhar MV, Itoh N, Gold SM, Lawson GW, Voskuhl RR. The XX sex chromosome complement in mice is associated with increased spontaneous lupus compared with XY. Ann Rheum Dis. 2012 Aug;71(8):1418-22. doi: 10.1136/annrheumdis-2011-201246. Epub 2012 May 12. PMID: 22580585; PMCID: PMC4452281.

      Examination of the levels of estrogen, progesterone, and androgen receptors in our cecal-colonic lamina propria RNA-seq dataset is an excellent idea. We will add these analyses to the revised manuscript. We are planning additional experiments to better understand the contributions of hormones or their receptors and anticipate including such data in either a response letter or revised manuscript.

    1. Author response:

      Reviewer #1 (Public Review):

      Strengths:

      Overall there are some very interesting results that make an important contribution to the field. Notably, the results seem to point to differential recruitment of the PL-DMS pathway in goal-tracking vs sign-tracking behaviors.

      Thank you.

      Weaknesses:

      There is a lot of missing information and data that should be reported/presented to allow a complete understanding of the findings and what was done. The writing of the manuscript was mostly quite clear, however, there are some specific leaps in logic that require more elaboration, and the focus at the start and end on cholinergic neurons and Parkinson's disease are, at the moment, confusing and require more justification.

      In the revised paper, we provide additional information in support of results and clarify procedures and findings. Furthermore, we expand the discussion of the proposed interpretational framework that suggests that the contrasts between the cortical-striatal processing of movement cues in sign- versus goal trackers are related to previously established, parallel contrasts in the cortical cholinergic detection of attention-demanding cues.

      Reviewer #2 (Public review):

      Strengths:

      The power of the sign- and goal-tracking model to account for neurobiological and behavioral variability is critically important to the field's understanding of the heterogeneity of the brain in health and disease. The approach and methodology are sound in their contribution to this important effort.

      The authors establish behavioral differences, measure a neurobiological correlate of relevance, and then manipulate that correlate in a broader circuitry and show a causal role in behavior that is consistent with neurobiological measurements and phenotypic differences.

      Sophisticated analyses provide a compelling description of the authors' observations.

      Thank you.

      Weaknesses:

      It is challenging to assess what is considered the "n" in each analysis (trial, session, rat, trace (averaged across a session or single trial)). Representative glutamate traces (n = 5 traces (out of hundreds of recorded traces)) are used to illustrate a central finding, while more conventional trial-averaged population activity traces are not presented or analyzed. The latter would provide much-needed support for the reported findings and conclusions. Digging deeper into the methods, results, and figure legends, provides some answers to the reader, but much can be done to clarify what each data point represents and, in particular, how each rat contributes to a reported finding (ie. single trial-averaged trace per session for multiple sessions, or dozens of single traces across multiple sessions).

      Representative traces should in theory be consistent with population averages within phenotype, and if not, discussion of such inconsistencies would enrich the conclusions drawn from the study. In particular, population traces of the phasic cue response in GT may resemble the representative peak examples, while smaller irregular peaks of ST may be missed in a population average (averaged prolonged elevation) and could serve as a rationale for more sophisticated analyses of peak probability presented subsequently.

      Figures 5c-f depict individual data from all rats and trials. For all major analyses, the revised manuscript consolidates information about the number of rats per phenotype and sex, and the number of trials contributed by individual rats, in the result section.

      As detailed in the section on statistical methods, and as mentioned by the reviewer under Strengths, we used advanced statistical methods to assure that data from individual animals contribute equally to the overall result, and to minimize the possibility that an inordinate number of trials obtained from just one or a couple of rats biased the overall analysis.

      As the reviewer correctly pointed out, we have chosen not to show trial- or subject-averaged traces to illustrate glutamate release dynamics across trials. The present analyses focus on peak glutamate concentrations, the number of peaks, and the timing of peaks relative to a task cue or a behavioral event. Within a response bin, such as the 2-s period following turn cues, glutamate peaks – as defined in Methods - occur at variable times relative to cue onset.  Averaging traces over a population of rats or trials would “wash-out” the phenotype- and task event-dependent patterns of glutamate peaks, yielding, for example, a single, nearly 2-s long plateau for cue-locked glutamate recordings from STs (Figure 5b). Thus, subject- or trial-averaged traces would not illustrate the major findings described in this paper and would rather be uninformative. As already mentioned, individual data from all subjects and trials are shown in Figs 5c-f.

      Reviewer #3 (Public review):

      Strengths:

      Overall these studies are interesting and are of general relevance to a number of research questions in neurology and psychiatry. The assessment of the intersection of individual differences in cue-related learning strategies with movement-related questions - in this case, cued turning behavior - is an interesting and understudied question. The link between this work and growing notions of corticostriatal control of action selection makes it timely.

      Thank you.

      Weaknesses:

      The clarity of the manuscript could be improved in several places, including in the graphical visualization of data. It is sometimes difficult to interpret the glutamate results, as presented, in the context of specific behavior, for example.

      We appreciate the reviewer’s concerns about the complexity of some of the graphics, particularly the results from the arguably innovative analysis illustrated in Figure 6. Figure 6 illustrates that the likelihood of a cued turn can be predicted based on single and combined glutamate peak characteristics. The revised legend for this figure provides additional information and examples to ease the readers’ access to this figure.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The authors found that the loss of cell-ECM adhesion leads to the formation of giant monocular vacuoles in mammary epithelial cells. This process takes place in a macropinocytosis-like process and involves PI3 kinase. They further identified dynamin and septin as essential machinery for this process. Interestingly, this process is reversible and appears to protect cells from cell death.

      Strengths:

      The data are clean and convincing to support the conclusions. The analysis is comprehensive, using multiple approaches such as SIM and TEM. The discussion on lactation is plausible and interesting.

      We thank the reviewer for the summary of our study and the positive comment.

      Weaknesses:

      As the first paper describing this phenomenon, it is adequate. However, the elucidation of the molecular mechanisms is not as exciting as it does not describe anything new. It is hoped that novel mechanisms will be elucidated in the future. In particular, the molecules involved in the reversing process could be quite interesting.

      We agree with the reviewer’s comments and believe that investigating the molecular mechanisms involved in reversing GUVac formation, as illustrated in Figure 5J, would be valuable for future research.

      Additionally, the relationship to conventional endocytic compartments, such as early and late endosomes, is not analyzed.

      We thank the reviewer for the valuable comment. To determine whether GUVac displays markers of other endomembrane systems, we analyzed several markers, including EEA1, Rab5, LC3B, LAMP1, and Transferrin receptor (TfR). At early time points (1 h), we observed several large vesicles that had taken up 70kDa Dextran and exhibited EEA1 or Rab5, markers of early endosomes. By 6 hours, some of these large vesicles showed lysotracker positivity, indicating a transition from early to late endosomal fate, similar to the maturation process of conventional macropinocytic vesicles (see new Figure 1-figure supplement 2A). However, once the vesicles fused, grew, and became GUVac, these markers did not consistently correspond with the GUVac membrane but were instead unevenly distributed around it (new Figure 1-figure supplement 2B, C). This made it difficult to determine whether they were localized to separate organelles or part of the GUVac membrane. Interestingly, we found that the Transferrin receptor (TfR), which also marks a general membrane population involved in the endocytic pathway (such as PM invagination), was evenly distributed within the GUVac membrane (new Figure 1-figure supplement 2B, D). Therefore, GUVac appears to possess heterogeneous characteristics of the endocytic membrane, mainly with the TfR marker (likely due to PM invagination) and some partial endomembrane system markers. However, further analysis would be required to confirm this.

      Reviewer #2 (Public Review):

      Summary:

      The manuscript "Formation of a giant unilocular vacuole via macropinocytosis-like process confers anoikis resistance" describes an interesting observation and provides initial steps towards understanding the underlying molecular mechanism.

      The manuscript describes that the majority of non-tumorigenic mammary gland epithelial cells (MCF-10A) in suspension initiate entosis. A smaller fraction of cells forms a single giant unilocular vacuole (hereafter referred to as a GUVac). GUVac appeared to be empty and did not contain invading (entotic) cells. The formation of GUVac could be promoted by disrupting actin polymerisation with LatB and CytoD. The formation of GUVacs correlated with resistance to anoikis. GUVac formation was detected in several other epithelial cells from secretory tissues.

      The authors then use electron microscopy and super-resolution imaging to describe the biogenesis of GUVac. They find that GUVac formation is initiated by a micropinocytosis-like phenomenon (that is independent of actin polymerisation). This process leads to the formation of large plasma membrane invaginations, that pinch off from the PM to form larger vesicles that fuse with each other into GUVacs.

      Inhibition of actin polymerisation in suspended MCF-10a leads to the recruitment of Septin 6 to the PM via its amphipathic helix. Treatment with FCF (a septin polymerisation inhibitor) blocked GUVac biogenesis, as did pharmacological inhibition of dynamin-mediated membrane fission. The fusion of these vesicles in GUVacs required (perhaps not surprisingly) PI3P.

      Strengths:

      The authors have made an interesting and potentially important observation. They describe the formation of an endo-lysosomal organelle (a giant unilocular vacuole - GUVac) in suspended epithelial cells and correlate the formation of GUVacs with resistance to aniokis.

      We thank the reviewer for the summary of our study and the positive comment.

      Weaknesses:

      My major concern is the experimental strategy that is used throughout the paper to induce and study the formation GUVac. Almost every experiment is conducted in suspended cells that were treated with actin depolymerising drugs (e.g. LatB) and thus almost all key conclusions are based on the results of these experiments. I only have a few suggestions that would improve these experiments or change their outcome and interpretation. Yet, I believe it is essential to identify the endogenous pathway leading to the actin depolymerisation that drives the formation of GUVacs in detached epithelial cells (or alternatively to figure out how it is suppressed in most detached cells). A first step in that direction would be to investigate the polymerization status of actin in MCF-10a cells that 'spontaneously' form GUVacs and to test if these cells also become resistant to anoikis.

      We thank the reviewer for the valuable comments and fully acknowledge the limitations of our approach. Many detached cells likely tend to contact each other for cell aggregations to suppress GUVac formation. However, it is unclear whether cells that spontaneously form GUVac in suspension have a weakened F-actin structure, which would be valuable to investigate in future studies.

      Also, it would be great (and I believe reasonably easy) to better characterise molecular markers of GUVacs (LAMP's, Rab's, Cathepsins, etc....) to discriminate them from other endosomal organelles

      In response to a similar comment from Reviewer 1, we analyzed markers of other endocytic compartments, including EEA1, Rab5, Transferrin receptor (TfR), LC3B, and LAMP1. At early time points (1 h), we observed several large vesicles that had taken up 70kDa Dextran and exhibited EEA1 or Rab5, markers of early endosomes. By 6 hours, some of these large vesicles showed lysotracker positivity, indicating a transition from early to late endosomal fate, similar to the maturation process of conventional macropinocytic vesicles (see new Figure 1-figure supplement 2A). However, once the vesicles fused, grew, and became GUVac, these markers did not consistently correspond with the GUVac membrane but were instead unevenly distributed around it (new Figure 1-figure supplement 2B, C). This made it difficult to determine whether they were localized to separate organelles or part of the GUVac membrane. Interestingly, we found that the Transferrin receptor (TfR), which also marks a general membrane population involved in the endocytic pathway (such as PM invagination), was evenly distributed within the GUVac membrane (new Figure 1-figure supplement 2B, D). Therefore, GUVac appears to possess heterogeneous characteristics of the endocytic membrane, mainly with the TfR marker (likely due to PM invagination) and some partial endomembrane system markers. However, further analysis would be required to confirm this.

      Reviewer #3 (Public Review):

      Summary:

      Loss of cell attachment to extracellular matrix (ECM) triggers aniokis (a type of programmed cell death), and resistance to aniokis plays a role in cancer development. However, mechanisms underlying anoikis resistance, and the precise role of F-actin, are not fully known.

      Here the authors describe the formation of a new organelle, giant unilocular vacuole (GUVac), in cells whose F-actin is disrupted during loss of matrix attachment. GUVac formation (diameter >500 nm) resulted from a previously unrecognised macropinocytosis-like process, characterized by inwardly curved micron-sized plasma membrane invaginations, dependent on F-actin depolymerization, septin recruitment, and PI(3)P. Finally, the authors show GUVac formation after loss of matrix attachment promotes resistance to anoikis.

      From these results, the authors conclude that GUVac formation promotes cell survival in environments where F-actin is disrupted and conditions of cell stress.

      Strengths:

      The manuscript is clear and well-written, figures are all presented at a very high level.

      A variety of cutting-edge cell biology techniques (eg time-lapse imaging, EM, super-resolution microscopy) are used to study the role of the cytoskeleton in GUVac formation. It is discovered that: (i) a macropinocytosis-like process dependent on F-actin depolymerisation, SEPT6 recruitment, and PI(3)P contributes to GUVac formation, and (ii) GUVac formation is associated with resistance to cell death.

      We thank the reviewer for the concise summary of our study and positive comments.

      Weaknesses:

      The manuscript is highly reliant on the use of drugs, or combinations of drugs, for long periods of time (6hr, 18hr..). Wherever possible the authors should test conclusions drawn from experiments involving drugs also using other canonical cell biology approaches (eg siRNA, Crispr). Although suggestive as a first approach, it is not reliable to draw conclusions from experiments where only drug combinations are being advanced (eg LatB + FCF).

      We thank the reviewer for the comment and suggestion. As suggested, we employed siRNAs targeting Septin2 and Septin9 in cells treated with LatB as an alternative to the drug combination approach. This genetic approach, combined with chemical treatment, led to a consistent reduction in GUVac formation, similar to the results observed with LatB+FCF treatment (see new Figure 3D-WB and graph).

      F-actin is well known to play a wide variety of roles in cell death and other canonical cell death pathways (PMID: 26292640). The authors show using pharmacological inhibition that F-actin is key for GUVac formation. However, especially when testing for physiological relevance, how can these other roles for F-actin be ruled out?

      In Figure 5, we investigate the physiological relevance of GUVac, highlighting its role in suppressing apoptosis and enhancing anoikis resistance. As the reviewer correctly noted, F-actin inhibition is known to reduce apoptotic signaling (PMID: 16072039). However, we observed that anoikis resistance is lost when GUVac is suppressed through knockout of either PI3KC2alpha or VPS34 in cells with F-actin disrupted by LatB (Figure 5I). This suggests that GUVac plays a role in suppressing apoptosis independently of F-actin depolymerization-induced apoptosis resistance.

      To test the role of septins in GUVac formation only recruitment studies and no direct functional work is performed. A drug forchlofeneuron (FCF) is used, but this is well known to have off-target effects (PMID: 27473917).

      We thank the reviewer for the valuable comments. To eliminate potential off-target effects of FCF, as described above, we employed siRNA targeting Septin 2 and Septin 9 and observed similar results (see new Figure 3D).

      Cells that possess GUVac are resistant to aniokis, but how are these cells resistant? This report is focused on mechanisms underlying GUVac formation and does not directly test for mechanisms underlying aniokis resistance.

      We fully agree with the reviewer’s comments and recognize the importance of uncovering the mechanism behind GUVac-mediated anoikis resistance for future research. It will likely be essential to investigate how prosurvival signaling pathways are activated, like the PI3K-AKT signaling (as shown in Figure 5-Supplement 1) or the YAP/TAZ pathway.

      Reviewer #1 (Recommendations For The Authors):

      Figure 4 Supplemental 1. What are the faint bands in clones 23, 26, and 29? Are they cross-reacting bands? Or Vps34?

      We apologize if the data in our original manuscript were misleading. To clarify the specificity of the VPS34 antibody in the Western blot analysis of VPS34 KO clones, we compared these samples with those from siRNA-mediated VPS34-depleted cells (see new Figure 4-Supplement 1E, which replaces the original Figure). Consistent with the known size of VPS34 at approximately 100 kDa, we observed a clear disappearance of the VPS34 band at around 100 kDa in the sgVPS34 clones, which was comparable to the size observed in siRNA-treated cells.

      Reviewer #2 (Recommendations For The Authors):

      Figure 2B: Only 4 cells were counted. Please comment.

      At the outset of this study, we faced technical difficulties in preparing TEM samples, which limited the number of samples included in Figure 2B. However, subsequent experiments that combined TEM with super-resolution microscopy, as shown in Figure 4D-F, produced similar data on plasma membrane invagination, as depicted in Figure 2B, which is the initial step in the formation of GUVac.

      Figure 2C: do cells shrink after treatment with EIPA or LatB? Please comment.

      We apologize if the data presented in our original manuscript were misleading. Control cells treated with DMSO display multiple cell-in-cell structures (known as 'entosis'), which typically results in a larger overall cell size compared to EIPA or LatB-treated non-entotic single cells. This might have created the impression that cells shrink relative to the control under EIPA or LatB treatment. We hope this explanation has answered the reviewer’s question.

      Figure 3A: The changes in the localization of mCherry-Spetin6 appear to be very dramatic. Are these results properly reflected by the quantification in Figure 3B? Is indeed the entire mCherry-Spetin6 pool recruited to the plasma membrane? Wouldn't that imply that all other septin6-regulated processes are blocked?

      Again, we apologize if the data presented in our original manuscript caused any confusion. In Figure 3B, we quantified only the number of filament-like Septin6 structures predominantly observed in LatB-treated cells, rather than measuring changes in the relative fluorescence intensity of Septin6 between the plasma membrane and the cytosol. Although we could not estimate the proportion of total Septin6 recruited to the plasma membrane from the cytosol based solely on Figure 3A-B, conducting plasma membrane fractionation experiments with endogenous Septin6, followed by Western blot analysis, would be valuable for addressing this issue in future studies.

      Figure 3D: Please also provide data for the 6h time-point (as in all other experiments).

      We apologize for omitting the 6-hour time point, which may have caused confusion. The new Figure 3E (previously Figure 3D) shows that recruitment of wild-type Septin6, but not the amphipathic helix (AH) deletion mutant, occurs at a 6-hour time point.

      Figure 3E: Molecular weight for western blot is missing.

      We thank the reviewer for pointing this out and have revised the figure accordingly.

      Line 188 - Title of subchapter could include dynamin.

      We appreciate the reviewer’s helpful suggestion and have updated the revised manuscript to reflect this. The phrase "Recruitment of Septin to the Fluctuating Plasma Membrane Drives Macropinocytosis-like Process" has been revised to "Septin and Dynamin Drive Macropinocytosis-like Process".

      Line 450 - please describe how the genotyping of MCF10a gene-engineered cells was performed.

      We confirmed the knockout of MCF10A cell lines by Western blot analysis using specific antibodies against VPS34 and PI3KC2α, rather than through genotyping.

      Reviewer #3 (Recommendations For The Authors):

      (1) The manuscript is highly reliant on the use of drugs, or combinations of drugs, for long periods of time (6hr, 18hr..). Wherever possible authors should test conclusions drawn from experiments involving drugs also using other canonical cell biology approaches (eg siRNA, Crispr). Although suggestive as a first approach, it is not reliable to draw conclusions from experiments where only drug combinations are being advanced (eg LatB + FCF).

      We thank the reviewer for the comment. As suggested, we employed siRNAs targeting Septin2 and Septin9 in cells treated with LatB as an alternative to the drug combination approach. This genetic approach, combined with chemical treatment, led to a consistent reduction in GUVac formation, similar to the results observed with LatB+FCF treatment (see new Figure 3D-WB and graph).

      (2) SEPT6 is recruited at an inwardly curved plasma membrane. Can the authors better describe what type of structure is being recruited/quantified (filaments, collar-like structures, etc)?

      We apologize if the data presented was unclear. As outlined in the Methods section in the original manuscript, we detected puncta-like Septin6 structures using the Find Maxima tool in ImageJ, which could include both filamentous and collar-like structures that were less apparent in the DMSO control. We have added additional explanations in the revised manuscript in the legend of Figure 3B to clarify the recruitment of Septin6.

      Previous work has shown that octameric septin complexes are linking actin to the plasma membrane (PMID: 36562751). Tests for the recruitment/function of other key septins such as SEPT7 and SEPT9 to support conclusions.

      As previously mentioned, to further explore the role of other septin family members in GUVac formation, we tested the roles of Septin9 and Septin2 using siRNAs and found that they are essential for this process (see new Figure 3D). Unfortunately, we were unable to assess the localization of Septin2 and Septin9 due to the lack of suitable antibodies for detecting endogenous proteins by immunofluorescence.

      (3) SEPT6 recruitment is impaired when cells are treated with FCF. FCF is well known to have off-target effects (PMID: 25217460, PMID: 27473917). siRNA for SEPT2, SEPT7 and/or SEPT9 can be used to test phenotypes obtained using FCF.

      We thank the reviewer for the comment. As also mentioned above, to eliminate potential off-target effects of FCF, we used siRNA to target Septin2 and Septin9, and obtained similar results (see new Figure 3D).

      (4) SEPT6 is recruited to the fluctuating cell membrane via the amphipathic helix (AH) domain (Figure 3D). Are these only representative images? It is not clear what readers should be looking at - can the authors provide arrows to highlight what is the difference +/- AH? Can something be quantified?

      We thank the reviewer for the suggestion and have added arrows from the inset of the merge pannel Figure 3E, along with line profile analysis, to emphasize the failure of the AH deletion mutant of Septin6 to recruit to the plasma membrane.

      Throughout Figure 3, why use LatB treatment at different times?

      We apologize if this was not clearly addressed in our original manuscript. Throughout the study, we primarily used an 18-hour LatB treatment to evaluate GUVac formation, as this longer period allows for gradual vesicle fusion. In contrast, we utilized 6-hour treatments to demonstrate that Septin6 recruitment and subsequent plasma membrane invagination occur at earlier time points, as evidenced by the data in Figure 2G (super-resolution live imaging) and Figure 4D (electron microscopy analysis). This clarification has been incorporated into the revised manuscript.

      (5) F-actin is well known to play a wide variety of roles in cell death and other canonical cell death pathways (PMID: 26292640). The authors show using pharmacological inhibition that F-actin is key for GUVac formation. However, especially when testing for physiological relevance, how can these other roles for F-actin be ruled out?

      In Figure 5, we investigate the physiological relevance of GUVac, highlighting its role in suppressing apoptosis and enhancing anoikis resistance. As the reviewer correctly noted, F-actin inhibition is known to reduce apoptotic signaling (PMID: 16072039). However, when GUVac is suppressed through knockout of either PI3KC2alpha or VPS34 in cells with F-actin disrupted by LatB, anoikis resistance is lost (see Figure 5H, I). This suggests that GUVac plays a role in suppressing apoptosis independently of F-actin depolymerization-induced apoptosis resistance.

      (6) Cells that possess GUVac are resistant to aniokis, but how are these cells resistant? This report is focused on mechanisms underlying GUVac formation and does not directly test for mechanisms underlying aniokis resistance.

      We fully agree with the reviewer’s comments and recognize the importance of uncovering the mechanism behind GUVac-mediated anoikis resistance for future research. It will likely be essential to investigate how prosurvival signaling pathways are activated, like the PI3K-AKT signaling (as shown in Figure 5-Supplement 1) or the YAP/TAZ pathway.

      (7) In the Discussion, there is a lot of text on involution and speculative relevance of GUVac formation. I would focus the Discussion more on the clear results discovered here.

      We thank the reviewer’s feedback and have revised the discussion to reduce its length concerning involution.

      (8) Figure 5. GUVac formation promotes cell survival in altered actin and matrix environments. In Figure 5J, it will not be clear to readers outside the field what is being shown here.

      We appreciate the reviewer’s suggestion and have added two distinct dotted lines around the vacuole and cell area in the revised figure to emphasize the gradual reduction in its size over time.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      SUMO proteins are processed and then conjugated to other proteins via a C-terminal di-glycine motif. In contrast, the N-terminus of some SUMO proteins (SUMO2/3) contains lysine residues that are important for the formation of SUMO chains. Using NMR studies, the N-terminus of SUMO was previously reported to be flexible (Bayer et al., 1998). The authors are investigating the role of the flexible (referred to as intrinsically disordered) N-terminus of several SUMO proteins. They report their findings and modeling data that this intrinsically disordered N-terminus of SUMO1 (and the C. elegans Smo1) regulates the interaction of SUMO with SUMO interacting motifs (SIMs).

      Strengths:

      Among the strongest experimental data suggesting that the N-terminus plays an inhibitory function are their observations that

      (1) SUMO1∆N19 binds more efficiently to SIM-containing Usp25, Tdp2, and RanBp2,<br /> (2) SUMO1∆N19 shows improved sumoylation of Usp25,<br /> (3) changing negatively-charged residues, ED11,12KK in the SUMO1 N-terminus increased the interaction and sumoylation with/of USP25.

      The paper is very well-organized, clearly written, and the experimental data are of high quality. There is good evidence that the N-terminus of SUMO1 plays a role in regulating its binding and conjugation to SIM-containing proteins. Therefore, the authors are presenting a new twist in the ever-evolving saga of SUMO, SIMs, and sumoylation.

      Weaknesses:

      Much has been learned about SUMO through structure-function analyses and this study is another excellent example. I would like to suggest that the authors take some extra time to place their findings into the context of previous SUMO structure-function analyses. Furthermore, it would be fitting to place their finding of a potential role of N-terminally truncated Smo1 into the context of the many prior findings that have been made with regard to the C. elegans SUMO field. Finally, regarding their data modeling/simulation, there are questions regarding the data comparisons and whether manipulations of the N-terminus also have an effect on the 70/80 region of the core.

      We thank the reviewer for insightful and constructive comments to improve our manuscript. We have now placed our findings in the context of previous structure-function analyses at several occasions, details of which can be found in our replies to the detailed comments.

      We are also placing the C. elegans data into context of previously published findings on the various functions of SMO-1 in controlling development and maintaining genomic stability (lines 510ff). Finally, we addressed all questions and suggestions regarding comparison of MD simulation and NMR data, and addressed the question whether mutations in the N-terminus affected the 70/80 region. We have now clarified in the manuscript that the sum of MD and NMR data does not allow a clear-cut conclusion on the 70/80 interactions. 

      Reviewer #2 (Public Review):

      Summary:

      This very interesting study originated from a serendipitous observation that the deletion of the disordered N-terminal tail of human SUMO1 enhances its binding to its interaction partners. This suggested that the N terminus of SUMO1 might be an intrinsic competitive inhibitor of SUMO-interacting motif (SIM) binding to SUMO1. Subsequent experiments support this mechanism, showing that in humans it is specific to SUMO1 and does not extend to SUMO2 or SUMO3 (except, perhaps, when the N terminus of SUMO2 becomes phosphorylated, as the authors intriguingly suggest - and partially demonstrate). The auto-inhibition of SUMO1 via its N-terminal tail apparently explains the lower binding of SUMO1 compared to SUMO2 to some SIMs and lower SIM-dependent SUMOylation of some substrates with SUMO1 compared to SUMO2, thus adding an important element to the puzzle of SUMO paralogue preference. In line with this explanation, N-terminally truncated SUMO1 was equally efficient to SUMO2 in the studied cases. The inhibitory role of SUMO1's N terminus appears conserved in other species including S. cerevisiae and C. elegans, both of which contain only one SUMO. The study also elucidates the molecular mechanism by which the disordered N-terminal region of SUMO1 can exert this auto-inhibitory effect. This appears to depend on the transient, very highly dynamic physical interaction between the N terminus and the surroundings of the SIM-binding groove based mostly on electrostatic interactions between acidic residues in the N terminus and basic residues around the groove.

      Strengths:

      A key strength of this study is the interplay of different techniques, including biochemical experiments, NMR, molecular dynamics simulations, and, at the end, in vivo experiments. The experiments performed with these different techniques inform each other in a productive way and strengthen each others' conclusions. A further strength is the detailed and clear text, which patiently introduces, describes, and discusses the study. Finally, in terms of the message, the study has a clear, mechanistic message of fundamental importance for various aspects of the SUMO field, and also more generally for protein biochemists interested in the functional importance of intrinsically disordered regions.

      Weaknesses:

      Some of the authors' conclusions are similar to those from a recent study by Lussier-Price et al. (NAR, 2022), the two studies likely representing independent inquiries into a similar topic. I don't see it as a weakness by itself (on the contrary), but it seems like a lost opportunity not to discuss at more length the congruence between these two studies in the discussion (Lussier-Price is only very briefly cited). Another point that can be raised concerns the wording of conclusions from molecular dynamics. The use of molecular dynamics simulations in this study has been rigorous and fruitful - indeed, it can be a model for such studies. Nonetheless, parameters derived from molecular dynamics simulations, including kon and koff values, could be more clearly described as coming from simulations and not experiments. Lastly, some of the conclusions - such as enhanced binding to SIM-containing proteins upon N-terminal deletion - could be additionally addressed with a biophysical technique (e.g. ITC) that is more quantitative than gel-based pull-down assays - but I don't think it is a must.

      Thank you very much for pointing towards the study of Lussier-Price. We now point out congruent findings in more detail in the discussion.

      We also thank the reviewer for the advice to present and discuss the MD findings more clearly, and more explicitly specify which parameters were obtained from MD. We have made changes throughout the Results and Discussion sections.

      We agree that it would be a nice addition to use ITC measurements as a more quantitative method to assess differences in binding affinities upon deletion of the SUMO N-terminus. We had tried to measure affinities between SUMO and SIM-containing binding partners by ITC but in our hand, this failed. In the study of Lussier-Price et al., the authors were able to measure differences in SIM binding upon deleting the N-terminus but only when they used phosphorylated SIM peptides. Follow-up studies, e.g., on the effect of SUMO’s N-terminal modifications should certainly include more quantitative measurement such as ITCs, however these studies will have to be picked up by others. The main PI Frauke Melchior and most contributing authors moved on to new challenges.

      Reviewing Editor (Recommendations For The Authors):

      Both reviewers agreed that your manuscript presents novel results and the key findings including the self-inhibitory role of the N-terminal tail of SUMO proteins in their interaction with SIM are overall well supported by the data. The reviewers also provided constructive suggestions. They pointed out that some simulation results are not clear, which could be strengthened by control analysis and by toning down the related descriptions. In addition, Reviewer 2 suggested that the conclusions from the current biochemical and simulation studies could be further reinforced by more quantitative binding measurements. We hope that these points can be addressed in the revision.

      We thank both reviewers for their insightful and constructive comments and the appreciative tone. In our replies above and below we address most of the raised concerns.

      We strongly recommend the change of the current title. eLife advises that the authors avoid unfamiliar abbreviations or acronyms, or spell out in full or provide a brief explanation for any acronyms in the title.

      We changed the title to “The intrinsically disordered N-terminus of SUMO1 is an intramolecular inhibitor of SUMO1 interactions” to avoid acronyms in the title.

      Reviewer #1 (Recommendations For The Authors):

      Major:

      Lines 190-262: The authors use NMR experiments and all-atom molecular dynamics (MD) simulations. They state that this approach reveals a highly dynamic interaction of the SUMO1 N-terminus with the core and that the SIM binding groove and the 70/80 region are temporarily occupied by the SUMO1 N-terminus (Fig. 3C). After comparing SUMO1, Smt3, SUMO2, and Smo1 by this approach they state that the most striking differences exist for the interaction with the SIM-binding groove, while interactions with the 70/80 region are rather comparable.

      The authors then compare the average binding time data of Figure 3C, D, E, F in Figure 3G.

      It is not clear which data points are included in the bar graphs of Figure 3G and how the individual data points (there are maybe 8 shown in each bar) correspond to the data shown in 3C, D, E, and F or if they are iterations (n?) of the modeled data. This should be clarified. Also, for comparison, the authors should also graph the average data of the 70/80 region.

      We clarified the data shown in Figure 3G as well as 3C-F, and how It relates to each other. Indeed, Figure 3G shows 8 data points for 8 trajectories, and their average. Figure 3C-F are based on the same 8 trajectories, in this case broken down per residue of the protein. The average data of the 70/80 region does not show any significant differences across the proteins, as already pretty well visible from panels 3C-F.

      Line 322: More concerning, in Figure 5, the authors model how a ED11,12KK mutations disrupt the interaction between the N-terminus and the SIM-binding groove and state that this mutation leaves interactions with the 70/80 region largely untouched. Again, it is not clear which data points are included in the bar graph 5D and 5G and how many iterations. Furthermore, data of 5B, C (SUMO1) and 5 E, F (smo1) do show clear differences between the WT and mutants affecting both the SIM binding groove and the 70/80 region. The double mutation clearly seems to affect the 70/80 region when comparing 5B, C (SUMO1) and 5 E, F (smo1), but this result is not mentioned. Indeed, the authors state that the double mutants leave the interactions with the 70/80 region largely untouched, but this is not borne out by the data presented.

      We improved the clarity of the legend of Figure 5 as suggested. We also thank the reviewer for the comment on the changes in the 70/80 region, to which we point the reader explicitly now in the corresponding Results section. We, however, refrain from drawing conclusions from the MD in this case, as this change is not supported by the NMR measurements (Fig 5a). Charge-charge interactions in the charge-rich double mutants might be overstabilized in the MD simulations, a problem known for the canonical force fields used here, albeit tailoring it for IDPs. We now cite a corresponding reference. Another potential explanation for that the CMPs do not take this change up upon mutation could be a pronounced fuzziness in this region, which however, in turn, is not apparent from the simulations. We would therefore not overinterpret these differences in the 70/80 region. Our key conclusion is the loss of interactions with the SIM-binding groove – and thus of cis-inhibition – by mutations, which is supported by both, MD and NMR.  

      341: In their N-termini substitution experiments, the authors show that the SUMO1 core that carries the SUMO2 N-terminus (S2N-S1C) binds USP25 more efficiently than wt SUMO1. However, the SUMO1 core that carries the SUMO2 N-terminus is also reduced in its interaction with Usp25. This is concerning as the SUMO2 N-terminus was not predicted to interfere with SIM binding.

      We were excited to see that the inhibitory potential could be partially transplanted by swapping the N-termini of SUMO1 and SUMO2 demonstrating that some important determinants are contained within the N-terminal tail of SUMO proteins. However, the observed effects were partial indicating that also other determinants contribute and that we do not yet understand all aspects. Obviously, the SUMO1 and SUMO2 cores are similar (also in the area comprising the SIM binding groove) but not identical, and as the inhibition arises from dynamic interactions of the N-terminus with the SIM binding area, differences in the SUMO cores and in residues flanking SUMO’s N-terminus are likely to influence the inhibitory potential as well.

      Blue bars in 3G, 5D, and 6A look surprisingly similar down to the individual data points - does that mean that the same SUMO1 WT data was recycled for these different experiments? This is concerning to me.

      The data displayed in the figures listed above are derived from in silico simulations and indeed display the same data set for the case of SUMO1 WT repeatedly, as we also state in the figure legends (we had done so for 5D “(identical to Fig. 3C)”, and now added the same comment to 6A, thanks for pointing this out). We show the SUMO1 WT data again to facilitate comparing the different SUMO variants in MD simulations.

      Line 352 and 496: The authors used phosphomimetic mutants to assess the effect of SUMO2 N-term phosphorylation on interaction with Usp25. The data suggest a mild phenotype (6G) which is borne out by the quantization in 6H. In contrast, the effect of an array of modifications for SUMO1 (Figures 6A - C) was solely analyzed by MD simulation. If possible, this data should be confirmed, at least by using a phosphomimetic at the Ser9 position of SUMO1. Alternatively, a caveat explaining the need to confirm these predictions by actual experiments should be added to the text.

      Already now we state in “Limitations of the study” that “While our MD simulations and in vitro studies with selected mutants point in this direction, we have not been able to generate quantitatively acetylated and/or phosphorylated SUMO variants to test this hypothesis.”

      We agree that the hypothesis needs experimental validation. Phosphomimetic amino acids can be a useful tool in some cases but fail to mimic a phosphor group in other cases. In the past we had tested whether replacing Ser9 by a potentially phospho-mimicking amino acid (Glu) would further diminish binding of SIM-containing proteins compared to already strongly reduced binding to wt SUMO1 but the effect was too mild to yield a significant difference, at least in our assay. Whether this is due to a lack of Glu in mimicking phosphorylation of Ser9, due to limited sensitivity of our pulldown assay combined with the challenge to detect inhibition compared to an already inhibited state, or a failure in our hypothesis we were not able to clarify so far. We therefore now also added a sentence to the paragraph introducing phosphoSer9 MD simulations (now line 367) stating that this hypothesis needs to be tested experimentally.

      Minor:

      Line 110: the authors should include references for their summary statement that "A defining feature of SUMO proteins is the intrinsically disordered N-terminus, whose function is only partly understood." Also cite in line 119.

      Thank you, we now included some references.

      Line 75: Please indicate early on that the N-terminus of some SUMO proteins contains lysines for the formation of SUMO chains. Please list them.

      We now list, which of the SUMO proteins used in this study contain lysine residues in their N-termini.

      Line 113: Please cite studies that elucidated the sumoylation of lysines in the N-terminus of SUMO2/3 proteins.

      Thank you, we now included some references.

      Line 153: The authors should include additional references on Smt3 structure function analyses to provide better context. One important detail, for example, is the important finding that Yeast SUMO (Smt3) deletion can be complemented by hsSUMO1 but not hsSUMO2 and hsSUMO3. Additionally, in yeast the entire Smt3 N-terminus can be deleted without detectable effects on growth, underscoring the enigmatic role of the N-terminus (Newman et al., 2017). Caveat also applies to line 266.

      Thank you, we now included some additional information and references around line 153 and below.

      164: The hypothesis that the SUMO1 N-terminus interferes with SIM binding groove ignores the previous observation that deletion of the SUMO2 N-terminus does not have an effect on binding (in vitro). While this is addressed later, the authors should clarify this e.g. by stating "a unique feature of the SUMO1 N-terminus".
>

      We now explicitly mention that this feature appears to be unique to SUMO1.

      374 and 499: The authors should discuss the caveat that the deletion of the N-terminus of Smt3 does not have a phenotype in yeast in vivo (Newman et al., 2017).

      We now discuss that Smt3’s N-terminus can be deleted without detectable phenotype, both in the results as well as in “Limitations of the study”.

      Line 367: I feel this is overstated and I do not see any evidence that post translation modifications of the SUMO core plays a role. Therefore, I suggest: Our data and modeling are consistent with an interpretation that the N-termini of human and C. elegans SUMO1 proteins are inhibitory and that other SUMO N-termini may acquire such a function upon posttranslational modification of the N-terminus.

      We agree that this is pure speculation and therefore restrict our hypothesis to modifications of the N-terminus.

      Line 374 ff: Since Smo-∆N12 increases sumoylation (Fig. 2I), it is likely that the in vivo defect is due to over-sumoylation in C. elegans. The authors should discuss this possibility and quote appropriate literature e.g.: Rytinki et al., Overexpression of SUMO perturbs the growth and development of Caenorhabditis elegans. Cell Mol Life Sci. 2011 Oct;68(19):3219-32. PMID: 21253676.

      In our study, we employ in vitro SUMOylation as a means to assess the SIM binding capability in an in-solution assay. For this, we use USP25 as a specific substrate known to depend on a SIM for its SUMOylation. We cannot exclude that some specific substrates depending on this same mechanism for their modification may be upregulated in modification also in the Smo-1∆N12 worms. In vivo however, the majority of SUMO substrates is not subject to SIM-dependent SUMOylation. We now added a control experiment showing that we neither observe significantly increased SUMO levels nor upregulated steady state levels of SUMOylation in these worms (Supplemental figure 8).

      The phenotypes shown in the paper by Rytinki et al. do not resemble the smo-1∆N12 mutants. Rather, we observed a specific defect in the meiotic germ cells at the pachytene stage causing increased apoptosis Moreover, we show by western blot analysis that there is no global over-sumoylation occurring in smo-1∆N12 mutants (Fig. s8). Together, our data point to a germline-specific function of the SMO-1 N-terminus in maintaining genome stability (lines 510ff).

      Reviewer #2 (Recommendations For The Authors):

      Page2 - "Small Ubiquitin-related modifiers of the SUMO family regulate thousands of proteins in eukaryotic cells" - The authors could consider a more precise statement, e.g. that SUMO modifiers have been detected on thousands of proteins and their regulatory effect on many proteins have been demonstrated.

      To be a bit more precise, the sentence now reads: “Ubiquitin-related proteins of the SUMO family are reversibly attached to thousands of proteins”. The summary has a word limit, hence we did not expand further at this place.

      Page 4 - "Both events require SUMO-binding motifs (reviewed, e.g. in 7 ." - The end bracket is missing. Also, isn't it too strong a statement that paralogue specificity always requires a SIM? I don't know all the literature sufficiently well, but the authors could double-check if it is correct to say that paralogue-specific SUMOylation always depends on a SIM.

      Thank you, we added the missing bracket. We agree that it would not be correct to say that paralogue-specificity always depends on a SIM. One alternative example is Dpp9, which shows a clear preference for SUMO1 without owning a SIM. Instead, Dpp9 harbors an alternative SUMO-binding motif, the E67-interacting loop, with a strong paralogue-preference (Pilla et al., 2012). We never intended to imply that a SIM is required for paralogue preference and we also rather generically wrote “SUMO binding motif” instead of “SIM”. However, in the subsequent paragraph about SUMO binding motifs we only go into details of SIMs as one of three classes of SUMO binding motifs not even mentioning the alternative classes. To make this more obvious, we now list the two other known classes of SUMO binding motifs hoping that it will shed the correct light onto our previous statement about paralogue preference.

      Page 4 - In the nice discussion of different types of SIMs, the authors could consider mentioning also the special case of TDP2, which is used later by them as a model binding protein. This could provide an occasion to explain what the unusual "split SIM", mentioned on page 6, but not discussed, is, and what its relation to a normal SIM is. Also, it can perhaps be mentioned that TDP2 contacts SUMO2 not only through the two hydrophobic elements contiguous in space that mimic a SIM but also through a slightly larger interface around these regions on the surface of a folded domain.

      Thank you for pointing this out. In the introduction, we extended our section on SUMO binding and now also included TDP2’s “split SIM”.

      Page 11-12 - In the section "Interaction between SUMO's disordered N-termini and the SIM binding groove is highly dynamic" (and corresponding figures), it should be stated that the discussed kinetic parameters are derived from molecular dynamics simulations and not experimental measurements. It was not very clear to me. This also applies to this sentence on page 17: "First, we observed a very fast (ns) rate of the binding/unbinding process", which in its current form suggests direct observation rather than simulation.

      We thank the reviewer for pointing this out, and in fact, Rev #1 made the same comment. We specified now clearly that the rates were calculated from MD simulations, in the Results and Discussion sections (on page 11-12 and 18 (previously 17)).

      Page 16 - The authors could briefly mention that this relatively long disordered N-terminal tail is a specific feature of SUMO proteins that distinguishes them from ubiquitin. I guess it is obvious to people from the SUMO field, but I don't think it is explicitly stated anywhere in the text and it could be interesting for readers who are less familiar with SUMO/ubiquitin differences.

      Thank you, we added a short half-sentence pointing out this difference.

      Page 17 - "The N-terminal region remains fully disordered in the bound state and is thus a classic example of intrinsic disorder irrespective of the binding state." - it could be added to this sentence that this is suggested by molecular dynamics simulations and not directly observed.

      We added the information that this finding is based on the MD simulations.

      Page 18 - "(e.g., 41,53 or flanking the SIM binding groove24,42" - the end bracket is missing.

      Thanks, we added it.

      Page 19 - "Our analysis in C. elegans (Fig. 7) suggests that this N-terminal function is particularly important in DNA damage response, a pathway that is strongly dependent on the SUMO system." - this brief description of the in vivo data seems to overgeneralise them a little bit. Perhaps one can describe what was observed with slightly more nuance.

      See changes on p.19, lines 510ff.

    1. Author response

      The following is the authors’ response to the original reviews.

      We thank the editors and reviewers for their thoughtful comments on our manuscript. We greatly appreciated the suggestions and recommendations that helped us to improve the study. With adaptations, and inclusion of novel data and analyses, we have addressed all points raised, and hope that by these improvements the study further meets the standards for eLife. 

      Reviewer #1 (Recommendations For The Authors):

      Minor text edits should be made.

      (1.1) As a recent study from the Wong lab also showed sebaceous gland regeneration following complete ablation (Veniaminova et al., 2023), this finding should be mentioned in the text, and the abstract ("Most strikingly...") should be toned down.

      We thank the reviewer for the positive feedback, and for highlighting this part of the study from the Wong lab. Although we cited this study study in a different context, we had not discussed the sebaceous gland regeneration finding. We have now added this to the discussion section of the manuscript.

      (1.2) Introduction: In lines 31-33 discussing the connection of sebaceous glands with skin disorders, the 5 references cited seem to replicate the citations from a similar sentence in Veniaminova et al., 2019. The authors should vary their citations, as there are likely other publications that can be cited here.

      Additional references have been added.

      Reviewer #2 (Recommendations For The Authors):

      The manuscript is well written and the data are well presented in the figures.

      We thank the reviewer for the positive feedback.

      (2.1) Here are some points that could be taken into consideration to improve the manuscript:

      - Row 75 "the primary" regulator could be changed to "a crucial".

      We appreciate this suggestion and have made the text edit.

      - Row 86 could be added: ...is the dominant ligand of the Notch signalling.

      We have made the text edit as suggested.

      (2.2) Row 107-109 from the quantification of Figure 1G and Figure 2 it seems that only the aJ2 treatment has an SG phenotype. Why aJ1 doesn't have any effect? (same is true in other figures). If the data on aJ1 are maintained in the manuscript, this should be argued in the discussion section.

      The reviewer is correct in noting that the aJ1 treatment does not cause the phenotype, and this is indeed one of the key findings of the study. This is maintained throughout the manuscript. We have also cited references showing that embryonic and adult deletions of Jag1 do not cause any sebaceous gland defects. All these data argue that Jag1 is not the relevant Notch signaling ligand in sebocyte differentiation. We have further clarified this in the manuscript.

      (2.3) Related to Figure 3G. As the Lrig1 stem cells can go towards both the sebocyte differentiation, or the sebaceous duct differentiation, it would be interesting to evaluate if the differentiation impairment caused by the antibody treatment affects in a similar manner (or not) the sebaceous duct differentiation. This could be tested through immunofluorescence, selecting markers of sebaceous duct.

      We thank the reviewer for this thoughtful question. We are unable to find any unique markers of the sebaceous ducts (that are not expressed in other parts of the sebaceous gland, especially sebocytes) in the literature, thus, any analysis of markers would be confounded by its change of expression due to the loss of sebocytes.

      However, we have evaluated the histology using bursting sebocytes releasing sebum as a proxy of a functional sebaceous duct. We have not found any significant differences between treatments using this metric (Fig. S1).

      (2.4) As the word "therapeutic" is often underlined in the manuscript, maybe a few sentences on the transnational aspects of the results could be added to the discussion.

      We thank the reviewer for highlighting this point. We have added this to the discussion.

      (2.5) Figure 3 suggests that Jag2 is produced by basal sebocytes and used by these cells to induce sebocyte differentiation. I'm wondering if in an in vitro cell system (with a mixture of marked Jag2-expressing cells and marked Jag2-negative cells), it would be possible to understand if this mechanism of differentiation is a cell-autonomous mechanism or a mechanism based on cell competition (for instance, it would be possible that the progenitors compete for their niche on the basal layer by pushing neighbouring basal cells to differentiate presenting them Jag2).

      We thank the reviewer for the insightful suggestion. The mechanistic underpinning of how Notch signaling induces sebocyte differentiation is still unclear, and we find the reviewer’s suggestion very interesting. However, establishing an in vitro model that captures the aspects mentioned, would require a lot of optimization and validation. To help rapid dissemination of our findings we elected to keep this out of the manuscript, but we will certainly consider it for future studies.

      Reviewer #3 (Recommendations For The Authors):

      (3.1) The authors focussed on mouse back skin sebaceous glands to analyse the phenotype. Are the effects also reproducible in the sebaceous glands of the mouse ears and tail epidermis? If so, the data should be strengthened by quantifying the phenotype using tail epidermal whole mounts (Braun et al., 2003; Development, PMID: 12954714), ideally by co-staining sebaceous glands for differentiation markers (e.g. FASN, Adipophilin) or lipid deposits (e.g., Oil red O). Also, the authors need to clarify how many sebaceous glands were scored per mouse. If not, please provide a rationale explaining the location restriction.

      We thank the reviewer for pointing this out. Indeed, we have only incorporated data from the telogen dorsal skin of the animals. We have now more accurately reflected this in the revised manuscript. Additionally, we have added the number of sebaceous glands quantified in each figure per the reviewer’s suggestion.

      Since the stage of hair growth cycle can affect the sebaceous glands, we chose the resting (telogen) phase of the hair cycle to reliably study the sebaceous glands. At 8 weeks of age, hair follicles have uniformly entered the telogen phase. As subsequent re-entry into the anagen phase is asynchronous in the adult skin, the color of the dorsal skin of C57BL/6 mice can be used to determine whether the hair follicles are in the telogen phase or not. These reasons led us to choose this location, allowing us to study only telogen phase hair follicles.

      We also point out that previously reported data (Estrach et al., 2006) did not show differences between dorsal and tail skin, so we assume the mechanisms must largely be conserved. However, as the reviewer rightfully points out, we cannot be sure and have, therefore, indicated the dorsal location throughout the manuscript.

      (3.2) The micrographs in Figure 2 suggest that expression of both Jagged2 and Notch1 (intercellular domain) is not restricted to the sebaceous glands, as both molecules appear to be detected also in the isthmus and lower hair follicle. Of note, the online tool provided by the Kasper and Linnarsson labs (http://linnarssonlab.org/epidermis/) shows that both molecules are more widely expressed in mouse back skin. Please provide some analysis of the overall expression of these molecules in mouse skin. In line, is the observed effect of using the antagonising antibodies restricted to the sebaceous glands? Please provide additional data on proliferation and differentiation in the interfollicular epidermis, hair follicle cycling, and other skin compartments. For instance, the data published in the cited paper by Lafkas et al. (2005) suggest a thickening of the dermal adipocyte layer upon Jagged2 inhibition using monoclonal therapeutic antibodies.

      The reviewer is correct in noting that expression of both Jag2 and Notch1 is not restricted to the sebaceous gland. The Notch signaling pathway is a well-known regulator for epidermal differentiation, and members of the pathway are expressed in various locations of the skin, including the interfollicular epidermis and the hair follicle. The expression and function of Notch signaling in these locations has been reviewed in (Hsu et al., 2014; Nowell and Radtke, 2013; Watt et al., 2008). We have also added zoomed out images showing expression of Jag2 and Notch1 in the skin (Figure S2e,f).

      The effect of the antagonizing antibodies is not restricted to sebaceous glands, as we already noted in our discussion section: “While injections of the Notch blocking antibodies are systemic, we only observed a reduction in the number of Notch-active cells in the IFE, but not a complete loss.” The functional impact of the antibodies is likely beyond the sebaceous gland, as the reviewer points out, but understanding the full effect in other compartments, we consider beyond the scope of the current study.

      In our previous study (Lafkas et al., 2015), the skin was examined at different animal ages/gender and using different antibody dosing regimens, which is the likely explanation for the differences observed. We have now quantified the width of the adipocyte layer and the IFE and show that there are no significant differences between treatments (Figure S1g-j). This together with the histology suggest that there are no significant differences in the differentiation and proliferation of these compartments.

      (3.3) Since Jagged1 is a Wnt/beta-catenin target gene that is essential for (ectopic) hair follicle formation and differentiation (Estrach et al., 2006, Development, PMID: 17035290) and the sebaceous gland is widely considered as an epidermal compartment with absent/low Wnt/beta-catenin pathway activity during normal homeostasis (Lim & Nusse, 2013, Cold Spring Habor Perspectives in Biology, PMID: 23209129), how is the expression of Notch1 and Jagged2 regulated upstream in sebocyte progenitors? It would be important to bring some more mechanistic insights into the upstream regulation of Notch activity. In line with comment 2, how are the compartment-specific effects molecularly regulated if the effects are not restricted to the sebaceous glands?

      The reviewer is correct in noting that the Wnt pathway does not seem to be a likely candidate for driving sebocyte differentiation through Notch signaling. Indeed, Wnt inhibition is required for sebocyte differentiation (Merrill et al., 2001; Niemann et al., 2002), and the Jag2 promoter region also does not contain TCF binding sites (Katoh and Katoh, 2006).

      We speculate that Myc might regulate Notch signaling in the sebaceous gland. It is expressed in the sebaceous gland basal stem cells and has been reported to positively regulate sebocyte differentiation (Cottle et al., 2013). In addition, studies have shown that Jag2 is a Myc target gene (Fiaschetti et al., 2014; Yustein et al., 2010). However, evaluating which upstream pathway potentially regulates Notch signaling, and resolving the regulatory network of sebocyte differentiation beyond the direct Notch ligands and receptors would require extensive in vivo modeling using KO and transgenic animals, which we consider to be beyond the scope of the current manuscript.

      References

      Cottle DL, Kretzschmar K, Schweiger PJ, Quist SR, Gollnick HP, Natsuga K, Aoyagi S, Watt FM. 2013. c-MYC-Induced Sebaceous Gland Differentiation Is Controlled by an Androgen Receptor/p53 Axis. Cell Rep 3:427–441. doi:10.1016/j.celrep.2013.01.013

      Estrach S, Ambler CA, Celso CLL, Hozumi K, Watt FM. 2006. Jagged 1 is a β-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development 133:4427–4438. doi:10.1242/dev.02644

      Fiaschetti G, Schroeder C, Castelletti D, Arcaro A, Westermann F, Baumgartner M, Shalaby T, Grotzer MA. 2014. NOTCH ligands JAG1 and JAG2 as critical pro-survival factors in childhood medulloblastoma. Acta Neuropathol Commun 2:39. doi:10.1186/2051-5960-2-39

      Hsu Y-C, Li L, Fuchs E. 2014. Emerging interactions between skin stem cells and their niches. Nat Med 20:847–856. doi:10.1038/nm.3643

      Katoh Masuko, Katoh Masaru. 2006. Notch ligand, JAG1, is evolutionarily conserved target of canonical WNT signaling pathway in progenitor cells. Int J Mol Med. doi:10.3892/ijmm.17.4.681

      Lafkas D, Shelton A, Chiu C, Boenig G de L, Chen Y, Stawicki SS, Siltanen C, Reichelt M, Zhou M, Wu X, Eastham-Anderson J, Moore H, Roose-Girma M, Chinn Y, Hang JQ, Warming S, Egen J, Lee WP, Austin C, Wu Y, Payandeh J, Lowe JB, Siebel CW. 2015. Therapeutic antibodies reveal Notch control of transdifferentiation in the adult lung. Nature 528:127–131. doi:10.1038/nature15715

      Merrill BJ, Gat U, DasGupta R, Fuchs E. 2001. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev 15:1688–1705. doi:10.1101/gad.891401

      Niemann C, Owens DM, Hülsken J, Birchmeier W, Watt FM. 2002. Expression of ΔNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development 129:95–109. doi:10.1242/dev.129.1.95

      Nowell C, Radtke F. 2013. Cutaneous Notch Signaling in Health and Disease. Cold Spring Harb Perspect Med 3:a017772. doi:10.1101/cshperspect.a017772

      Watt FM, Estrach S, Ambler CA. 2008. Epidermal Notch signalling: differentiation, cancer and adhesion. Curr Opin Cell Biol 20:171–179. doi:10.1016/j.ceb.2008.01.010

      Yustein JT, Liu Y-C, Gao P, Jie C, Le A, Vuica-Ross M, Chng WJ, Eberhart CG, Bergsagel PL, Dang CV. 2010. Induction of ectopic Myc target gene JAG2 augments hypoxic growth and tumorigenesis in a human B-cell model. Proc Natl Acad Sci 107:3534–3539. doi:10.1073/pnas.0901230107

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important research uses an elegant combination of protein-protein biochemistry, genetics, and microscopy to demonstrate that the novel bacterial protein FipA is required for polar flagella synthesis and binds to FlhF in multiple bacterial species. This manuscript is convincing, providing evidence for the early stages of flagellar synthesis at a cell pole; however, the protein biochemistry is incomplete and would benefit from additional rigorous experiments. This paper could be of significant interest to microbiologists studying bacterial motility, appendages, and cellular biology.

      We are very grateful for the very positive and helpful evaluation.

      Joint Public Review:

      Bacteria exhibit species-specific numbers and localization patterns of flagella. How specificity in number and pattern is achieved in Gamma-proteobacteria needs to be better understood but often depends on a soluble GTPase called FlhF. Here, the authors take an unbiased protein-pulldown approach with FlhF, resulting in identifying the protein FipA in V. parahaemolyticus. They convincingly demonstrate that FipA interacts genetically and biochemically with previously known spatial regulators HubP and FlhF. FipA is a membrane protein with a cytoplasmic DUF2802; it co-localizes to the flagellated pole with HubP and FlhF. The DUF2802 mediates the interaction between FipA and FlhF, and this interaction is required for FipA function. Altogether, the authors show that FipA likely facilitates the recruitment of FlhF to the membrane at the cell pole together with the known recruitment factor HupB. This finding is crucial in understanding the mechanism of polar localization. The authors show that FipA co-occurs with FlhF in the genomes of bacteria with polarly-localized flagella and study the role of FipA in three of these organisms: V. parahaemolyticus, S. purtefaciens, and P. putida. In each case, they show that FipA contributes to FlhF polar localization, flagellar assembly, flagellar patterning, and motility, though the details differ among the species. By comparing the role of FipA in polar flagellum assembly in three different species, they discover that, while FipA is required in all three systems, evolution has brought different nuances that open avenues for further discoveries.

      Strengths:

      The discovery of a novel factor for polar flagellum development. The solid nature and flow of the experimental work.

      The authors perform a comprehensive analysis of FipA, including phenotyping of mutants, protein localization, localization dependence, and domains of FipA necessary for each. Moreover, they perform a time-series analysis indicating that FipA localizes to the cell pole likely before, or at least coincident with, flagellar assembly. They also show that the role of FipA appears to differ between organisms in detail, but the overarching idea that it is a flagellar assembly/localization factor remains convincing.

      The work is well-executed, relying on bacterial genetics, cell biology, and protein interaction studies. The analysis is deep, beginning with discovering a new and conserved factor, then the molecular dissection of the protein, and finally, probing localization and interaction determinants. Finally, the authors show that these determinants are important for function; they perform these studies in parallel in three model systems.

      Weaknesses:

      The comparative analysis in the different organisms was on balance, a weakness. Mixing the data for the organisms together made the text difficult to read and took away key points from the results. The individual details crowded out the model in its current form. Indeed, because some of the phenotypes and localization dependencies differ between model systems, the comparison is challenging to the reader. The authors could more clearly state what these differences mean, why they arise, and (in the discussion) how they might relate to the organism's lifestyle.

      More experiments would be needed to fully analyze the effects of interacting proteins on individual protein stability; this absence slightly detracted from the conclusions.

      We have tried our best to improve the manuscript according to the insightful suggestions of the reviewers. Please find our answers to the raised issues below.

      Reviewer #1 (Recommendations For The Authors):

      We are very grateful to this reviewer for the very positive evaluation and the great suggestions to improve the manuscript.

      I think there is value to the comparative analysis but how to present it in such a way that the key similarities and differences stand out is the challenge. Perhaps a table that compares the three datasets is sufficient. Or tell the story of V. parahaemolyticus first to establish the model, followed by comparative analysis of the other two organisms highlighting differences and relegating similarities to supplemental?

      We agree that the our previous presentation of our comparative analysis made it very hard to follow the major findings and the general role(s) of FipA, and we are very grateful for the suggestions on how to improve this. We have decided to change the presentation as the reviewer recommended. We used V. parahaemolyticus as a ‚lead model‘ to describe the role of FipA, and we then compared the major findings to the other two species. We hope that the story is now easier to follow.

      This is not something that needs to be addressed in the text but I wanted to bring the protein SwrB to the authors' attention which may further expand FipA relevance. Bacillus subtilis uses FlhFG to somehow pattern flagella in a peritrichous arrangement and there are a number of striking similarities, in my opinion, between FipA and SwrB. The two proteins have very similar domain architecture/topology, both proteins promote flagellar assembly, and the genetic neighborhood/operon organization is uncannily similar. There are other more minor similarities dependent on the organism in this paper.

      Phillips, Kearns. 2021. Molecular and cell biological analysis of SwrB in Bacillus subtilis. J Bacteriol 203:e0022721

      Phillips, Kearns. 2015. Functional activation of the flagellar type III secretion export apparatus. PLoS Genet 11:e1005443.

      We thank this reviewer for pointing out these intriguing similarities. For this study we have decided to exclusively concentrate on polarly flagellated bacteria. FlhF und FlhG are also present in B. subtilis where they play a role in organizing flagellation, but we feel that this would be out of scope for this manuscript.

      Reviewer #2 (Recommendations For The Authors):

      We would like to thank this reviewer for the very positive evaluation and for pointing out several issues to strengthen the story.

      Figure 3A data are problematic since everything is too small to visualize. Since these are functional GFP fusions (or mCherry for 2E data), why are they not presented in color?

      Again - why are color figures not used to help the reader in Fig 4A and 5F & 5G to confirm what is asserted?

      Again, it is difficult to see the images presented. It is asserted that FipA is recruited to the cell pole after cell division and before flagellum assembly, but one has to take their word for it.

      We fully agree that in some case the localization pattern is hard to see on the micrographs presented. We have, therefore, provided enlarged micrographs in the supplemental part which allow to better see the fluorescent foci within the cells. With respect to presentations in color – we found that this did not improve the visibility of localizations and therefore have decided to use the grayscale images.

      Here, what is missing are turnover assays. Do FipA, FlhF, and HubP all co-localize as complex or is the absence of one leading to the protein turnover of other partners? I think this needs to be sorted out before final conclusions can be made.

      Thanks for pointing out this important point. We have now provided western analysis which demonstrate that FipA and FlhF are produced and stable in the absence of the other partners (see Supplemental Figure 5). Stability of HubP as a general polar marker not only required for flagellation was not determined.

      Minor comments:

      Line 58: change "around" to "in timing with"

      Line 79: what "signal" is transferred from the C-ring to the MS-ring. Are they not fully connected such that rotation is the entire structure - C-ring-MS-ring-Rod-Hook-Filament. Is it not the change in the relationship to the stator complex where the signal is transferred?

      Line 85: change "counting" to "control of flagellar numbers per cell"

      Line 110: change "is (co-)responsible for recruiting" to "facilitates recruitment of"

      Thanks for pointing this out. We have adjusted the wording according to the reviewer’s suggestions.

      Given that motility phenotypes vary on individual plates (volumes and dryness vary), why in Figure 2C are the motility assays for fipA and flhF mutants of P. putida done on different plates?

      For better visualisation, we have rearranged the spreading halos for the figure. All strain spreading comparisons on soft agar were always conducted on the same plate due to the reasons this reviewer mentioned.

      Reviewer #3 (Recommendations For The Authors):

      We thank this reviewer for the very positive evalution and the great suggestions.

      One possibility is to describe first all the results relating to FipA in Vibrio and then add the result sections at the end to illustrate the differences between Vibrio and Shewanella, and then Vibrio and Pseudomonas. This may make it easier to follow for the reader.

      We agree that the our previous presentation of our comparative analysis made it very hard to follow the major findings and the general role(s) of FipA, and we are very grateful for the suggestions on how to improve this. We have decided to change the presentation as the reviewer recommended. We used V. parahaemolyticus as a ‚lead model‘ to describe the role of FipA, and we then compared the major findings to the other two species. We hope that the story is now easier to follow.

      I would have liked to see some TEM analysis of flagella in fipA/hubP double mutants strains and was also wondering if FipA/FlhF/HubP colocalization had been studied in E. coli when all proteins are expressed together, at least with two bearing fluorescent tags.

      Thanks for these great suggestions. In this study, we have concentrated on the localization of FlhF by FipA and HubP. HubP has multiple functions in the cell and may also affect flagellar synthesis to some extent in a species-specific fashion. Therefore, any findings would have to be discussed very carefully, so we have decided to leave that out for the time being.

      With respect to the FipA/HubP/FlhF production in a heterologous host such as E. coli, this has been partly done (without FipA) in a second parallel story (see reference to Dornes et al (2024) in this manuscript). Rebuilding larger parts of the system in a heterologous host is currently done in an independent study. Therefore, we have decided not to include this already here.

      From the Reviewing Editor:

      We are grateful for handling the fair reviewing process, for the positive evaluation and the helpful hints.

      The microscopy was inconsistent (DIC versus phase) for unclear reasons. Did using different microscopes impact the ability to acquire low-intensity fluorescence signals? Please add a sentence in the Methods section to clarify.

      We are sorry for this inconsistency. As the imaging was carried out by different labs (to some part before the projects were joined), the corresponding preferred microscopy settings were used. We have added an explaining sentence to the Methods section.

      Also, some subcellular fluorescence localizations were not visible in the selected images (e.g., Figures 3 and 5). The reader had to rely on the authors' statements and analyses. The conclusions could be more robust with fluorescence measurements across the cell body for a subset of cells. The authors could provide this data analysis in the Supplemental; this measurement would more clearly show an accumulation of fluorescence at the cell pole, particularly in low-intensity images.

      We fully agree that in some case the localization pattern is hard to see on the micrographs presented. Unfortunately, often the signal is not sufficiently strong to provied proper demographs. We have, therefore, provided enlarged micrographs in the supplemental part, which allow to better see the fluorescent foci within the cells.

    1. Author response:

      We sincerely thank the reviewers for their thoughtful, critical, and constructive comments, which will help us in further exploring the mechanisms by which LDH regulates glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation future studies. The following is our responses to the reviewers' comments.

      Reviewer #1 (Public Review):

      Summary:

      Zeng et al. have investigated the impact of inhibiting lactate dehydrogenase (LDH) on glycolysis and the tricarboxylic acid cycle. LDH is the terminal enzyme of aerobic glycolysis or fermentation that converts pyruvate and NADH to lactate and NAD+ and is essential for the fermentation pathway as it recycles NAD+ needed by upstream glyceraldehyde-3-phosphate dehydrogenase. As the authors point out in the introduction, multiple published reports have shown that inhibition of LDH in cancer cells typically leads to a switch from fermentative ATP production to respiratory ATP production (i.e., glucose uptake and lactate secretion are decreased, and oxygen consumption is increased). The presumed logic of this metabolic rearrangement is that when glycolytic ATP production is inhibited due to LDH inhibition, the cell switches to producing more ATP using respiration. This observation is similar to the well-established Crabtree and Pasteur effects, where cells switch between fermentation and respiration due to the availability of glucose and oxygen. Unexpectedly, the authors observed that inhibition of LDH led to inhibition of respiration and not activation as previously observed. The authors perform rigorous measurements of glycolysis and TCA cycle activity, demonstrating that under their experimental conditions, respiration is indeed inhibited. Given the large body of work reporting the opposite result, it is difficult to reconcile the reasons for the discrepancy. In this reviewer's opinion, a reason for the discrepancy may be that the authors performed their measurements 6 hours after inhibiting LDH. Six hours is a very long time for assessing the direct impact of a perturbation on metabolic pathway activity, which is regulated on a timescale of seconds to minutes. The observed effects are likely the result of a combination of many downstream responses that happen within 6 hours of inhibiting LDH that causes a large decrease in ATP production, inhibition of cell proliferation, and likely a range of stress responses, including gene expression changes.

      Strengths:

      The regulation of metabolic pathways is incompletely understood, and more research is needed, such as the one conducted here. The authors performed an impressive set of measurements of metabolite levels in response to inhibition of LDH using a combination of rigorous approaches.

      Weaknesses:

      Glycolysis, TCA cycle, and respiration are regulated on a timescale of seconds to minutes. The main weakness of this study is the long drug treatment time of 6 hours, which was chosen for all the experiments. In this reviewer's opinion, if the goal was to investigate the direct impact of LDH inhibition on glycolysis and the TCA cycle, most of the experiments should have been performed immediately after or within minutes of LDH inhibition. After 6 hours of inhibiting LDH and ATP production, cells undergo a whole range of responses, and most of the observed effects are likely indirect due to the many downstream effects of LDH and ATP production inhibition, such as decreased cell proliferation, decreased energy demand, activation of stress response pathways, etc.

      We appreciate the reviewer’s critical comments. The main argument is whether the inhibition of LDH induces a temporal perturbation in glycolysis, the TCA cycle, and OXPHOS, or if it leads to a shift to a new steady state. We argue that this shift represents a transition between two steady states; specifically, GNE-140 treatment drives metabolism from one steady state to another.

      Before conducting the experiment, we performed a time course experiment, measuring glucose consumption and lactate production in cells treated with GNE-140. The results demonstrated a very good linearity, indicating that the glycolytic rate remained constant—thus confirming that glycolysis was at steady state. Given the tight coupling between glycolysis, the TCA cycle, and OXPHOS, we infer that the TCA cycle and OXPHOS were also at steady state. However, this ‘infer’ requires further confirmation.

      Multiple published reports have shown that LDH inhibition in cancer cells causes a shift from fermentative ATP production to respiratory ATP production. This notion persists because it is often compared to the well-established Crabtree and Pasteur effects, where cells toggle between fermentation and respiration based on glucose and oxygen availability. However, in the Pasteur or Crabtree effects, the deprivation of oxygen—the terminal electron acceptor—drives the switch, which is fundamentally different from LDH inhibition.

      Reviewer #2 (Public Review):

      Summary:

      Zeng et al. investigated the role of LDH in determining the metabolic fate of pyruvate in HeLa and 4T1 cells. To do this, three broad perturbations were applied: knockout of two LDH isoforms (LDH-A and LDH-B), titration with a non-competitive LDH inhibitor (GNE-140), and exposure to either normoxic (21% O2) or hypoxic (1% O2) conditions. They show that knockout of either LDH isoform alone, though reducing both protein level and enzyme activity, has virtually no effect on either the incorporation of a stable 13C-label from a 13C6-glucose into any glycolytic or TCA cycle intermediate, nor on the measured intracellular concentrations of any glycolytic intermediate (Figure 2). The only apparent exception to this was the NADH/NAD+ ratio, measured as the ratio of F420/F480 emitted from a fluorescent tag (SoNar).

      The addition of a chemical inhibitor, on the other hand, did lead to changes in glycolytic flux, the concentrations of glycolytic intermediates, and in the NADH/NAD+ ratio (Figure 3). Notably, this was most evident in the LDH-B-knockout, in agreement with the increased sensitivity of LDH-A to GNE-140 (Figure 2). In the LDH-B-knockout, increasing concentrations of GNE-140 increased the NADH/NAD+ ratio, reduced glucose uptake, and lactate production, and led to an accumulation of glycolytic intermediates immediately upstream of GAPDH (GA3P, DHAP, and FBP) and a decrease in the product of GAPDH (3PG). They continue to show that this effect is even stronger in cells exposed to hypoxic conditions (Figure 4). They propose that a shift to thermodynamic unfavourability, initiated by an increased NADH/NAD+ ratio inhibiting GAPDH explains the cascade, calculating ΔG values that become progressively more endergonic at increasing inhibitor concentrations.

      Then - in two separate experiments - the authors track the incorporation of 13C into the intermediates of the TCA cycle from a 13C6-glucose and a 13C5-glutamine. They use the proportion of labelled intermediates as a proxy for how much pyruvate enters the TCA cycle (Figure 5). They conclude that the inhibition of LDH decreases fermentation, but also the TCA cycle and OXPHOS flux - and hence the flux of pyruvate to all of those pathways. Finally, they characterise the production of ATP from respiratory or fermentative routes, the concentration of a number of cofactors (ATP, ADP, AMP, NAD(P)H, NAD(P)+, and GSH/GSSG), the cell count, and cell viability under four conditions: with and without the highest inhibitor concentration, and at norm- and hypoxia. From this, they conclude that the inhibition of LDH inhibits the glycolysis, the TCA cycle, and OXPHOS simultaneously (Figure 7).

      Strengths:

      The authors present an impressively detailed set of measurements under a variety of conditions. It is clear that a huge effort was made to characterise the steady-state properties (metabolite concentrations, fluxes) as well as the partitioning of pyruvate between fermentation as opposed to the TCA cycle and OXPHOS.

      A couple of intermediary conclusions are well supported, with the hypothesis underlying the next measurement clearly following. For instance, the authors refer to literature reports that LDH activity is highly redundant in cancer cells (lines 108 - 144). They prove this point convincingly in Figure 1, showing that both the A- and B-isoforms of LDH can be knocked out without any noticeable changes in specific glucose consumption or lactate production flux, or, for that matter, in the rate at which any of the pathway intermediates are produced. Pyruvate incorporation into the TCA cycle and the oxygen consumption rate are also shown to be unaffected.

      They checked the specificity of the inhibitor and found good agreement between the inhibitory capacity of GNE-140 on the two isoforms of LDH and the glycolytic flux (lines 229 - 243). The authors also provide a logical interpretation of the first couple of consequences following LDH inhibition: an increased NADH/NAD+ ratio leading to the inhibition of GAPDH, causing upstream accumulations and downstream metabolite decreases (lines 348 - 355).

      Weaknesses:

      Despite the inarguable comprehensiveness of the data set, a number of conceptual shortcomings afflict the manuscript. First and foremost, reasoning is often not pursued to a logical conclusion. For instance, the accumulation of intermediates upstream of GAPDH is proffered as an explanation for the decreased flux through glycolysis. However, in Figure 3C it is clear that there is no accumulation of the intermediates upstream of PFK. It is unclear, therefore, how this traffic jam is propagated back to a decrease in glucose uptake. A possible explanation might lie with hexokinase and the decrease in ATP (and constant ADP) demonstrated in Figure 6B, but this link is not made.

      We appreciate the reviewer's critical comment. In Figure 3C, there is no accumulation of F6P or G6P, which are upstream of PFK1. This is because the PFK1-catalyzed reaction sets a significant thermodynamic barrier. Even with treatment using 30 μM GNE-140, the ∆GPFK1 (Gibbs free energy of the PFK1-catalyzed reaction) remains -9.455 kJ/mol (Figure 3D), indicating that the reaction is still far from thermodynamic equilibrium, thereby preventing the accumulation of F6P and G6P.

      We agree with the reviewer that hexokinase inhibition may play a role, this requires further investigation.

      The obvious link between the NADH/NAD+ ratio and pyruvate dehydrogenase (PDH) is also never addressed, a mechanism that might explain how the pyruvate incorporation into the TCA cycle is impaired by the inhibition of LDH (the observation with which they start their discussion, lines 511 - 514).

      We agree with the reviewer’s comment. In this study, we did not explore how the inhibition of LDH affects pyruvate incorporation into the TCA cycle. As this mechanism was not investigated, we have titled the study: "Elucidating the Kinetic and Thermodynamic Insights into the Regulation of Glycolysis by Lactate Dehydrogenase and Its Impact on the Tricarboxylic Acid Cycle and Oxidative Phosphorylation in Cancer Cells."

      It was furthermore puzzling how the ΔG, calculated with intracellular metabolite concentrations (Figures 3 and 4) could be endergonic (positive) for PGAM at all conditions (also normoxic and without inhibitor). This would mean that under the conditions assayed, glycolysis would never flow completely forward. How any lactate or pyruvate is produced from glucose, is then unexplained.

      This issue also concerned me during the study. However, given the high reproducibility of the data, we consider it is true, but requires explanation.

      The PGAM-catalyzed reaction is tightly linked to both upstream and downstream reactions in the glycolytic pathway. In glycolysis, three key reactions catalyzed by HK2, PFK1, and PK are highly exergonic, providing the driving force for the conversion of glucose to pyruvate. The other reactions, including the one catalyzed by PGAM, operate near thermodynamic equilibrium and primarily serve to equilibrate glycolytic intermediates rather than control the overall direction of glycolysis, as previously described by us (J Biol Chem. 2024 Aug 8;300(9):107648).

      The endergonic nature of the PGAM-catalyzed reaction does not prevent it from proceeding in the forward direction. Instead, the directionality of the pathway is dictated by the exergonic reaction of PFK1 upstream, which pushes the flux forward, and by PK downstream, which pulls the flux through the pathway. The combined effects of PFK1 and PK may account for the observed endergonic state of the PGAM reaction.

      However, if the PGAM-catalyzed reaction were isolated from the glycolytic pathway, it would tend toward equilibrium and never surpass it, as there would be no driving force to move the reaction forward.

      Finally, the interpretation of the label incorporation data is rather unconvincing. The authors observe an increasing labelled fraction of TCA cycle intermediates as a function of increasing inhibitor concentration. Strangely, they conclude that less labelled pyruvate enters the TCA cycle while simultaneously less labelled intermediates exit the TCA cycle pool, leading to increased labelling of this pool. The reasoning that they present for this (decreased m2 fraction as a function of DHE-140 concentration) is by no means a consistent or striking feature of their titration data and comes across as rather unconvincing. Yet they treat this anomaly as resolved in the discussion that follows.

      GNE-140 treatment increased the labeling of TCA cycle intermediates by [13C6]glucose but decreased the OXPHOS rate, we consider the conflicting results as an 'anomaly' that warrants further explanation. To address this, we analyzed the labeling pattern of TCA cycle intermediates using both [13C6]glucose and  [13C5]glutamine. Tracing the incorporation of glucose- and glutamine-derived carbons into the TCA cycle suggests that LDH inhibition leads to a reduced flux of glucose-derived acetyl-CoA into the TCA cycle, coupled with a decreased flux of glutamine-derived α-KG, and a reduction in the efflux of intermediates from the cycle. These results align with theoretical predictions. Under any condition, the reactions that distribute TCA cycle intermediates to other pathways must be balanced by those that replenish them. In the GNE-140 treatment group, the entry of glutamine-derived carbon into the TCA cycle was reduced, implying that glucose-derived carbon (as acetyl-CoA) entering the TCA cycle must also be reduced, or vice versa.

      This step-by-step investigation is detailed under the subheading "The Effect of LDHB KO and GNE-140 on the Contribution of Glucose Carbon to the TCA Cycle and OXPHOS" in the Results section in the manuscript.

      In the Discussion, we emphasize that caution should be exercised when interpreting isotope tracing data. In this study, treatment of cells with GNE-140 led to an increase labeling percentage of TCAC intermediates by [13C6]glucose (Figure 5A-E). However, this does not necessarily imply an increase in glucose carbon flux into TCAC; rather, it indicates a reduction in both the flux of glucose carbon into TCAC and the flux of intermediates leaving TCAC. When interpreting the data, multiple factors must be considered, including the carbon-13 labeling pattern of the intermediates (m1, m2, m3, ---) (Figure 5G-K), replenishment of intermediates by glutamine (Figure 5M-V), and mitochondrial oxygen consumption rate (Figure 5W). All these factors should be taken into account to derive a proper interpretation of the data. 

      Reviewer #3 (Public Review):

      Hu et al in their manuscript attempt to interrogate the interplay between glycolysis, TCA activity, and OXPHOS using LDHA/B knockouts as well as LDH-specific inhibitors. Before I discuss the specifics, I have a few issues with the overall manuscript. First of all, based on numerous previous studies it is well established that glycolysis inhibition or forcing pyruvate into the TCA cycle (studies with PDKs inhibitors) leads to upregulation of TCA cycle activity, and OXPHOS, activation of glutaminolysis, etc (in this work authors claim that lowered glycolysis leads to lower levels of TCA activity/OXPHOS). The authors in the current work completely ignore recent studies that suggest that lactate itself is an important signaling metabolite that can modulate metabolism (actual mechanistic insights were recently presented by at least two groups (Thompson, Chouchani labs). In addition, extensive effort was dedicated to understanding the crosstalk between glycolysis/TCA cycle/OXPHOS using metabolic models (Titov, Rabinowitz labs). I have several comments on how experiments were performed. In the Methods section, it is stated that both HeLa and 4T1 cells were grown in RPMI-1640 medium with regular serum - but under these conditions, pyruvate is certainly present in the medium - this can easily complicate/invalidate some findings presented in this manuscript. In LDH enzymatic assays as described with cell homogenates controls were not explained or presented (a lot of enzymes in the homogenate can react with NADH!). One of the major issues I have is that glycolytic intermediates were measured in multiple enzyme-coupled assays. Although one might think it is a good approach to have quantitative numbers for each metabolite, the way it was done is that cell homogenates (potentially with still traces of activity of multiple glycolytic enzymes) were incubated with various combinations of the SAME enzymes and substrates they were supposed to measure as a part of the enzyme-based cycling reaction. I would prefer to see a comparison between numbers obtained in enzyme-based assays with GC-MS/LC-MS experiments (using calibration curves for respective metabolites, of course). Correct measurements of these metabolites are crucial especially when thermodynamic parameters for respective reactions are calculated. Concentrations of multiple graphs (Figure 1g etc.) are in "mM", I do not think that this is correct.

      While the roles of lactate as a signaling metabolite and metabolic models are important areas of research, our work focuses on different aspects.

      It is true that cell homogenates contain many enzymes that use NAD as a hydride acceptor or NADH as a hydride donor. However, in our assay system, the substrates are pyruvate and NADH, meaning only enzymes that catalyze the conversion of pyruvate + NADH to NAD + lactate can utilize NADH. Other enzymes do not interfere with this reaction. Although some enzymes may also catalyze this reaction, their catalytic efficiency is markedly lower than that of LDH, ensuring the validity of this assay.

      Similarly, the assays for glycolytic intermediates are validated by the substrate specificity.

      We have developed an LC-MS methodology for some glycolytic intermediates, but the accuracy of quantification remains unsatisfactory due to inherent limitations of this methodology.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      Lodhiya et al. demonstrate that antibiotics with distinct mechanisms of action, norfloxacin, and streptomycin, cause similar metabolic dysfunction in the model organism Mycobacterium smegmatis. This includes enhanced flux through the TCA cycle and respiration as well as a build-up of reactive oxygen species (ROS) and ATP. Genetic and/or pharmacologic depression of ROS or ATP levels protect M. smegmatis from norfloxacin and streptomycin killing. Because ATP depression is protective, but in some cases does not depress ROS, the authors surmise that excessive ATP is the primary mechanism by which norfloxacin and streptomycin kill M. smegmatis. In general, the experiments are carefully executed; alternative hypotheses are discussed and considered; the data are contextualized within the existing literature. Clarification of the effect of 1) ROS depression on ATP levels and 2) ADP vs. ATP on divalent metal chelation would strengthen the paper, as would discussion of points of difference with the existing literature. The authors might also consider removing Figures 9 and 10A-B as they distract from the main point of the paper and appear to be the beginning of a new story rather than the end of the current one. Finally, statistics need some attention.

      Strengths:

      The authors tackle a problem that is both biologically interesting and medically impactful, namely, the mechanism of antibiotic-induced cell death.

      Experiments are carefully executed, for example, numerous dose- and time-dependency studies; multiple, orthogonal readouts for ROS; and several methods for pharmacological and genetic depletion of ATP.

      There has been a lot of excitement and controversy in the field, and the authors do a nice job of situating their work in this larger context.

      Inherent limitations to some of their approaches are acknowledged and discussed e.g., normalizing ATP levels to viable counts of bacteria.

      We sincerely thanks appreciate the reviewer’s encouraging feedback.

      Weaknesses:

      The authors have shown that treatments that depress ATP do not necessarily repress ROS, and therefore conclude that ATP is the primary cause of norfloxacin and streptomycin lethality for M. smegmatis. Indeed, this is the most impactful claim of the paper. However, GSH and dipyridyl beautifully rescue viability. Do these and other ROS-repressing treatments impact ATP levels? If not, the authors should consider a more nuanced model and revise the title, abstract, and text accordingly.

      We thank the reviewer for asking this question. In the revised version of the manuscript, we will include data on the impact of the antioxidant GSH on ATP levels.

      Does ADP chelate divalent metal ions to the same extent as ATP? If so, it is difficult to understand how conversion of ADP to ATP by ATP synthase would alter metal sequestration without concomitant burst in ADP levels.

      We sincerely thank the reviewer for raising this insightful question. Indeed, ADP and AMP can also form complexes with divalent metal ions; however, these complexes tend to be less stable. According to the existing literature, ATP-metal ion complexes exhibit a higher formation constant compared to ADP or AMP complexes. This has been attributed to the polyphosphate chain of ATP, which acts as an active site, forming a highly stable tridentate structure (Khan et al., 1962; Distefano et al., 1953). An antibiotic-induced increase in ATP levels, irrespective of any changes in ADP levels, could still result in the formation of more stable complexes with metal ions, potentially leading to metal ion depletion. Although recent studies indicate that antibiotic treatment stimulates purine biosynthesis (Lobritz MA et al., 2022; Yang JH et al., 2019), thereby imposing energy demands and enhancing ATP production, the possibility of a corresponding increase in total purine nucleotide levels (ADP+ATP) exist (is mentioned in discussion section). However, this hypothesis requires further investigation.

      Khan MMT, Martell AE. Metal Chelates of Adenosine Triphosphate. Journal of Physical Chemistry (US). 1962 Jan 1;Vol: 66(1):10–5

      Distefano v, Neuman wf. Calcium complexes of adenosinetriphosphate and adenosinediphosphate and their significance in calcification in vitro. Journal of Biological Chemistry. 1953 Feb 1;200(2):759–63

      Lobritz MA, Andrews IW, Braff D, Porter CBM, Gutierrez A, Furuta Y, et al. Increased energy demand from anabolic-catabolic processes drives β-lactam antibiotic lethality. Cell Chem Biol [Internet]. 2022 Feb 17.

      Yang JH, Wright SN, Hamblin M, McCloskey D, Alcantar MA, Schrübbers L, et al. A White-Box Machine Learning Approach for Revealing Antibiotic Mechanisms of Action. Cell [Internet]. 2019 May 30

      Some of the results in the paper diverge from what has been previously reported by some of the referenced literature. These discrepancies should be clarified.

      We apologize for any confusion, but we are uncertain about the specific discrepancies the reviewer is referring. In the discussion section, we have addressed and analysed our results within the broader context of the existing literature, regardless of whether our findings align with or differ from previous studies.

      Reviewer #2 (Public review):

      Summary:

      The authors are trying to test the hypothesis that ATP bursts are the predominant driver of antibiotic lethality of Mycobacteria.

      Strengths:

      This reviewer has not identified any significant strengths of the paper in its current form.

      Weaknesses:

      A major weakness is that M. smegmatis has a doubling time of three hours and the authors are trying to conclude that their data would reflect the physiology of M. tuberculosis which has a doubling time of 24 hours. Moreover, the authors try to compare OD measurements with CFU counts and thus observe great variabilities.

      If the authors had evidence to support the conclusion that ATP burst is the predominant driver of antibiotic lethality in mycobacteria then this paper would be highly significant. However, with the way the paper is written, it is impossible to make this conclusion.

      We have identified this new mechanism of antibiotic action in Mycobacterium smegmatis and have also mentioned that whether and how much of this mechanism is true in other organism needs to be tested as argued extensively in the discussion section of the manuscript.

      We have always drawn inferences from the CFU counts as the OD600nm is never a reliable method as reported in all of our experiments.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors use microscopy experiments to track the gliding motion of filaments of the cyanobacteria Fluctiforma draycotensis. They find that filament motion consists of back-and-forth trajectories along a "track", interspersed with reversals of movement direction, with no clear dependence between filament speed and length. It is also observed that longer filaments can buckle and form plectonemes. A computational model is used to rationalize these findings.

      We thank the reviewer for this accurate summary of the presented work.

      Strengths:

      Much work in this field focuses on molecular mechanisms of motility; by tracking filament dynamics this work helps to connect molecular mechanisms to environmentally and industrially relevant ecological behavior such as aggregate formation.

      The observation that filaments move on tracks is interesting and potentially ecologically significant.

      The observation of rotating membrane-bound protein complexes and tubular arrangement of slime around the filament provides important clues to the mechanism of motion.

      The observation that long filaments buckle has the potential to shed light on the nature of mechanical forces in the filaments, e.g. through the study of the length dependence of buckling.

      We thank the reviewer for listing these positive aspects of the presented work.

      Weaknesses:

      The manuscript makes the interesting statement that the distribution of speed vs filament length is uniform, which would constrain the possibilities for mechanical coupling between the filaments. However, Figure 1C does not show a uniform distribution but rather an apparent lack of correlation between speed and filament length, while Figure S3 shows a dependence that is clearly increasing with filament length. Also, although it is claimed that the computational model reproduces the key features of the experiments, no data is shown for the dependence of speed on filament length in the computational model. The statement that is made about the model "all or most cells contribute to propulsive force generation, as seen from a uniform distribution of mean speed across different filament lengths", seems to be contradictory, since if each cell contributes to the force one might expect that speed would increase with filament length.

      We agree that the data shows in general a lack of correlation, rather than strictly being uniform. In the revised manuscript, we intend to collect more data from observations on glass to better understand the relation between filament length and speed. 

      In considering longer filaments, one also needs to consider the increased drag created by each additional cell - in other words, overall friction will either increase or be constant as filament length increases. Therefore, if only one cell (or few cells) are generating motility forces, then adding more cells in longer filaments would decrease speed.

      Since the current data does not show any decrease in speed with increasing filament length, we stand by the argument that the data supports that all (or most) cells in a filament are involved in force generation for motility. We would revise the manuscript to make this point - and our arguments about assuming multiple / most cells in a filament contributing to motility - clear.

      The computational model misses perhaps the most interesting aspect of the experimental results which is the coupling between rotation, slime generation, and motion. While the dependence of synchronization and reversal efficiency on internal model parameters are explored (Figure 2D), these model parameters cannot be connected with biological reality. The model predictions seem somewhat simplistic: that less coupling leads to more erratic reversal and that the number of reversals matches the expected number (which appears to be simply consistent with a filament moving backwards and forwards on a track at constant speed).

      We agree that the coupling between rotation, slime generation and motion is interesting and important when studying the specific mechanism leading to filament motion. However, we believe it even more fundamental to consider the intercellular coordination that is needed to realise this motion. Individual filaments are a collection of independent cells. This raises the question of how they can coordinate their thrust generation in such a way that the whole filament can both move and reverse direction of motion as a single unit. With the presented model, we want to start addressing precisely this point.

      The model allows us to qualitatively understand the relation between coupling strength and reversals (erratic vs. coordinated motion of the filament). It also provides a hint about the possibility of de-coordination, which we then look for and identify in longer filaments.

      While the model results seem obvious in hindsight, the analysis of the model allows phrasing the question of cell-to-cell coordination, which has not been brought up previously when considering the inherently multi-cell process of filament motility.

      Filament buckling is not analysed in quantitative detail, which seems to be a missed opportunity to connect with the computational model, eg by predicting the length dependence of buckling.

      Please note that Figure S10 provides an analysis of filament length and number of buckling instances observed. This suggests that buckling happens only in filaments above a certain length.

      We do agree that further analyses of buckling - both experimentally and through modelling would be interesting.  This study, however,  focussed on cell-to-cell coupling / coordination during filament motility. We have identified the possibility of de-coordination through the use of a simple 1D model of motion, and found evidence of such de-coordination in experiments. Notice that the buckling we report does not depend on the filament hitting an external object. It is a direct result of a filament activity which, in this context, serves as evidence of cellular de-coordination.

      Now that we have observed buckling and plectoneme formation, these processes need to be analysed with additional experiments and modelling. The appropriate model for this process needs to be 3D, and should ideally include torques arising from filament rotation. Experimentally, we need to identify means of influencing filament length and motion and see if we can measure buckling frequency and position across different filament lengths. These works are ongoing and will have to be summarised in a separate, future publication.

      Reviewer #2 (Public review):

      Summary:

      The authors combined time-lapse microscopy with biophysical modeling to study the mechanisms and timescales of gliding and reversals in filamentous cyanobacterium Fluctiforma draycotensis. They observed the highly coordinated behavior of protein complexes moving in a helical fashion on cells' surfaces and along individual filaments as well as their de-coordination, which induces buckling in long filaments.

      We thank the reviewer for this accurate summary of the presented work.

      Strengths:

      The authors provided concrete experimental evidence of cellular coordination and de-coordination of motility between cells along individual filaments. The evidence is comprised of individual trajectories of filaments that glide and reverse on surfaces as well as the helical trajectories of membrane-bound protein complexes that move on individual filaments and are implicated in generating propulsive forces.

      We thank the reviewer for listing these positive aspects of the presented work.

      Limitations:

      The biophysical model is one-dimensional and thus does not capture the buckling observed in long filaments. I expect that the buckling contains useful information since it reflects the competition between bending rigidity, the speed at which cell synchronization occurs, and the strength of the propulsion forces.

      Cell-to-cell coordination is a more fundamental phenomenon than the buckling and twisting of longer filaments, in that the latter is a consequence of limits of the former. In this sense, we are focussing here on something that we think is the necessary first step to understand filament gliding. The 3D motion of filaments (bending, plectoneme formation) is fascinating and can have important consequences for collective behaviour and macroscopic structure formation. As a consequence of cellular coupling, however, it is beyond the scope of the present paper.

      Please also see our response above. We believe that the detailed analysis of buckling and plectoneme formation requires (and merits) dedicated experiments and modelling which go beyond the focus of the current study (on cellular coordination) and will constitute a separate analysis that stands on its own. We are currently working in that direction.

      Future directions:

      The study highlights the need to identify molecular and mechanical signaling pathways of cellular coordination. In analogy to the many works on the mechanisms and functions of multi-ciliary coordination, elucidating coordination in cyanobacteria may reveal a variety of dynamic strategies in different filamentous cyanobacteria.

      We thank the reviewer for highlighting this point again and seeing the value in combining molecular and dynamical approaches.

      Reviewer #3 (Public review):

      Summary:

      The authors present new observations related to the gliding motility of the multicellular filamentous cyanobacteria Fluctiforma draycotensis. The bacteria move forward by rotating their about their long axis, which causes points on the cell surface to move along helical paths. As filaments glide forward they form visible tracks. Filaments preferentially move within the tracks. The authors devise a simple model in which each cell in a filament exerts a force that either pushes forward or backwards. Mechanical interactions between cells cause neighboring cells to align the forces they exert. The model qualitatively reproduces the tendency of filaments to move in a concerted direction and reverse at the end of tracks.

      We thank the reviewer for this accurate summary of the presented work.

      Strengths:

      The observations of the helical motion of the filament are compelling.

      The biophysical model used to describe cell-cell coordination of locomotion is clear and reasonable. The qualitative consistency between theory and observation suggests that this model captures some essential qualities of the true system.

      The authors suggest that molecular studies should be directly coupled to the analysis and modeling of motion. I agree.

      We thank the reviewer for listing these positive aspects of the presented work and highlighting the need for combining molecular and biophysical approaches.

      Weaknesses:

      There is very little quantitative comparison between theory and experiment. It seems plausible that mechanisms other than mechano-sensing could lead to equations similar to those in the proposed model. As there is no comparison of model parameters to measurements or similar experiments, it is not certain that the mechanisms proposed here are an accurate description of reality. Rather the model appears to be a promising hypothesis.

      We agree with the referee that the model we put forward is one of several possible. We note, however, that the assumption of mechanosensing by each cell - as done in this model - results in capturing both the alignment of cells within a filament (with some flexibility) and reversal dynamics. We have explored an even more minimal 1D model, where the cell’s direction of force generation is treated as an Ising-like spin and coupled between nearest neighbours (without assuming any specific physico-chemical basis). We found that this model was not fully able to capture both phenomena. In that model, we found that alignment required high levels of coupling (which is hard to justify except for mechanical coupling) and reversals were not readily explainable (and required additional assumptions). These points led us to the current, mechanically motivated model.

      The parameterisation of the current model would require measuring cellular forces. To this end, a recent study has attempted to measure some of the physical parameters in a different filamentous cyanobacteria [1] and in our revision we will re-evaluate model parameters and dynamics in light of that study. We will also attempt to directly verify the presence of mechano-sensing by obstructing the movement of filaments.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      The authors present valuable findings on how to determine the genetic architecture of extreme phenotype values by using data on sibling pairs. While the authors' derivations of the method are correct, the scenarios considered are incomplete, making it difficult to have confidence in the interpretation of the results as demonstrating the influence of de-novo or Mendelian (rare, penetrant-variant) architectures. The method nevertheless shows promise and will be of interest to researchers studying complex trait genetics. 

      A.1: We have now expanded our consideration of the scenarios and we have ensured that we do not over-interpret our results as being due to de novo or Mendelian architectures. Instead, we make clear that our statistical tests are powered to identify these architectures but that there are other potential causes of significant results (e.g. measurement error or uncontrolled environmental factors from heavy-tailed distributions), making follow-up validation studies necessary before underlying architectures can be confirmed. We consider this to be typical of observational research, in which significant results may indicate causal effects unless uncontrolled confounding factors explain the observed associations, requiring experimental/trial follow-up for validation. We believe that our tests are useful for providing initial inference, and that in some settings – e.g. prioritising samples for sequencing to identify rare variants – could be useful as an initial screening step to increase the efficacy of a planned analysis or study.

      Additionally, we have now developed “SibArc”, an openly available software tool that takes input sibling trait data and estimates conditional sibling heritability across the trait distribution. Then - based on our theoretical framework developed and described in the paper - for each tail of the trait distribution, estimates effect sizes and generates P-values corresponding to our de novo and Mendelian tests, and performs a Kolmogorov-Smirnov test to identify general departures from our null model. Furthermore, SibArc also provides additional functionality for users under preliminary beta form, for example, running an iterative optimisation routine to infer approximate relative degrees of polygenic, de novo, and Mendelian architectures prevailing in each trait tail. We have made this software tool, Quick Start tutorial, and sample data available online at Github and are hosting these on a dedicated website: www.sibarc.net.

      Reviewer #1 (Public Review):

      This is a clever and well-done paper that should be published. The authors sought to craft a method, applicable to biobank-scale data but without necessarily using genotyping or sequencing, to detect the presence of de novo mutations and rare variants that stand out from the polygenic background of a given trait. Their method depends essentially on sibling pairs where one sibling is in an extreme tail of the phenotypic distribution and whether the other sibling's regression to the mean shows a systematic deviation from what is expected under a simple polygenic architecture. 

      Their method is successful in that it builds on a compelling intuition, rests on a rigorous derivation, and seems to show reasonable statistical power in the UK Biobank. (More biobanks of this size will probably become available in the near future.)  It is somewhat unsuccessful in that rejection of the null hypothesis does not necessarily point to the favored hypothesis of de novo or rare variants. The authors discuss the alternative possibility of rare environmental events of large effect. Maybe attention should be drawn to this in the abstract or the introduction of the paper. Nevertheless, since either of these possibilities is interesting, the method remains valuable. 

      A.2: We agree with the reviewer that we should have made it clearer that - while our statistical tests are powered to identify de novo and Mendelian architectures – significant findings from our tests could also be explained by rare environmental events of large effect (specifically by uncontrolled environmental factors with heavy-tailed distributions). We have now made this clear throughout the manuscript (see A.1).

      Moreover, we agree with the reviewer that whether the cause of deviations from expectations are due to de novo or rare variants, or environmental factors, either possibility is interesting. For example, in either scenario, our results can highlight inaccuracy in PRS prediction of extreme trait values for certain traits, and also provides a relative measure across different traits of large effects impacting on the trait tails, irrespective of whether genetic or environmental. We now place more emphasis on this point throughout the manuscript.

      Reviewer #2 (Public Review):

      Souaiaia et al. attempt to use sibling phenotype data to infer aspects of genetic architecture affecting the extremes of the trait distribution. They do this by considering deviations from the expected joint distribution of siblings' phenotypes under the standard additive genetic model, which forms their null model. They ascribe excess similarity compared to the null as due to rare variants shared between siblings (which they term 'Mendelian') and excess dissimilarity as due to de-novo variants. While this is a nice idea, there can be many explanations for rejection of their null model, which clouds interpretation of Souaiaia et al.'s empirical results.

      A.3: We agree with the reviewer that we should have made clearer that there are other explanations for significant results from our tests and we have now fully addressed this point – (see A.1, A.2, A.4, A.5 for more detail).  In addition, we now elaborate on exactly what our null hypothesis is: which is not only that the expected joint distribution of siblings’ phenotypes is governed by the standard additive genetic model, but that environmental effects are either controlled for or else their combined effect is approximately Gaussian. Furthermore, by selecting only those traits whose raw trait distribution most closely corresponds to a Gaussian distribution from the UK Biobank, we increase the probability that significant results from our tests are due to rare variants (shared or unshared among siblings).

      The authors present their method as detecting aspects of genetic architecture affecting the extremes of the trait distribution. However, I think it would be better to characterize the method as detecting whether siblings are more or less likely to be aggregated in the extremes of the phenotype distribution than would be predicted under a common variant, additive genetic model.

      A.4: As discussed above we should have stated more clearly that significant results could be due to non-genetic factors, we have now addressed this.

      However, we do not think that it would be appropriate to characterise our tests as merely corresponding to over and under aggregation of siblings in the tails. Firstly, environmental factors should be controlled for as part of our testing, increasing the probability that significant results are due to genetic, and not environmental factors. Secondly, tests for identifying broad over and under aggregation of siblings in the tails should be designed differently and, accordingly, the tests that we have developed here would not be optimal to detect over/under aggregation of siblings in trait tails. Our test for inference of de novo variants, for example, exploits the fact that de novo alleles of large effect result in one sibling being extreme and all others being drawn from the background distribution, so that the mean of other siblings is relatively low – not merely that other siblings are less likely to be found in the tail. For more discussion on this issue in relation to one of reviewer 1’s points, see A.9.

      Exactly how the rareness and penetrance of a genetic variant influence the conditional sibling phenotype distribution at the extremes is not made clear. The contrast between de-novo and 'Mendelian' architectures is somewhat odd since these are highly related phenomena: a 'Mendelian' architecture could be due to a de-novo variant of the previous generation. The fact that these two phenomena are surmised to give opposing signatures in the authors' statistical tests seems suboptimal to me: would it not be better to specify a parameter that characterizes the degree or sharing between siblings of rare factors of large effect? This could be related to the mixture components in the bimodal distribution displayed in Fig 1. In fact, won't the extremes of all phenotypes be influenced by all three types of variants (common, rare, de-novo) to greater or lesser degree? By framing the problem as a hypothesis testing problem, I think the authors are obscuring the fact that the extremes of real phenotypes likely reflect a mixture of causes: common, de-novo, and rare variants (and shared and non-shared environmental factors). 

      A.5: We absolutely recognise that there will typically be a complex and continuous mix of genetic architectures underlying complex traits in their tails, dictated by the 2-dimensional relationship between allele frequency and effect size. We did consider developing a fully Bayesian statistical framework to model this, but soon realised that doing this properly would require a substantial amount of model development, accounting for multiple factors in ways that would require a great deal of further investigation; for example, performing a range of complex simulations to investigate the effects of different selective pressures over time, different patterns of assortative mating, and effect size generating distributions. We are in the process of applying for funding for a multi-year project that will perform exactly these investigations as a step towards developing more sophisticated models of inference. In the meantime, we do believe that the simpler hypothesis-testing framework that we have developed here does have important value. Assuming that environmental factors are accounted for, or that any that are not accounted for have combined Gaussian effects, then our tests will indeed infer enrichments of de novo and ‘Mendelian’ rare alleles of large effect in the tails of complex traits. Results from these tests can also be compared within and across traits to compare the relative degree of such enrichments among traits. For some traits we observe significant results from both tests, and for other traits we observe highly significant results from one of our tests but not the other. Thus, while our tests do not provide a complete picture about the genetic architecture in the tails of complex traits, they do offer some intriguing initial insights into tail architecture, important given the enrichment of disease in trait tails.

      To better enable interpretation of the results of this method, a more comprehensive set of simulations is needed. Factors that may influence the conditional distribution of siblings' phenotypes beyond those considered include: non-normal distribution, assortative mating, shared environment, interactions between genetic and shared environmental factors, and genetic interactions. 

      A.6: As described above (see A.5) we do agree that a more comprehensive set of simulations is exactly what is needed to further extend this work. However, we believe that the tests that we have developed so far, which make some simplifying assumptions that we think would often hold in practice, is a useful start to what is an entirely novel approach to inferring genetic architecture from family trait-only (non-genetic) data. Our work could already be useful for method developers who may wish to extend our approach in ways that we may not think of. It could also be useful for applied scientists focusing on specific traits who will be able to gain initial, inference-level, insights by applying our tests to their data, while the results of applying our tests may even guide study design of rare variant mapping studies.

      In summary, I think this is a promising method that is revealing something interesting about extreme values of phenotypes. Determining exactly what is being revealed is going to take a lot more work, however. 

      A.7: We thank the reviewer for highlighting the promise in our approach and agree that it is revealing something interesting about complex traits. We also agree that it is going to take a lot more work to reveal exactly what that is for different traits, which we plan to work on ourselves and hope that this paper will help other interested scientists to follow-up on and extend as well.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      R.1.1: Why these particular traits (body fat, mean corpuscular haemoglobin, neuroticism, heel bone mineral density, monocyte count, sitting height)? 

      A.8: Traits were initially selected to cover a variety of traits (anthropometric, metabolic, personality..) and to illustrate different examples of tail architecture. However, in response to a point from reviewer 2 (see A.17), we have now overhauled our quality control of traits to ensure that only traits closely matching Gaussian distributions are included. In total, 18 traits were selected, with detailed results presented in Appendix 4 and results corresponding to 6 of the traits presented in the main text (Figure 6) to show examples of different types of tail architecture.

      R.1.2: Why are there separate tests for de novo and Mendelian architectures? It seems that one could use either of the derived tests for both purposes, simply by switching to a two-sided test for each tail. My guess is that the score test of whether alpha is zero would be the more statistically powerful test. 

      A.9: The score test of whether alpha is zero has limited power to detect Mendelian architectures. This is because under Mendelian effects, half the siblings in a family have trait values reflecting the background distribution, such that the mean of sibling trait values is not so different from the polygenic expectation (i.e. alpha close to 0). The Mendelian score test that we developed is substantially more powerful because it evaluates co-occurrence of siblings in the tails, which is far higher under Mendelian architecture in the tail than compared to polygenic architecture.

      However, in order test for general departures from our null model, including those of non-Gaussian environmental factors, we now include results from performing a Kolmogorov-Smirnoff test of difference from the expected distribution, and also provide this test as an option in our ‘SibArc’ software tool.

      R.1.3: This method assumes that assortative mating is absent. I worry that sitting height might not be a good trait to analyze, since there is some assortative mating (~0.3) for height (e.g., Yengo et al., 2018). Perhaps this trait should not be included among those that are analyzed in this paper. Then again, it is possible that there is less assortative mating for sitting height than total height (i.e., leg length) (Jensen & Sinha, 1993). 

      A.10:  It is true that our method assumes random mating. We note that while  assortative mating increases sibling similarity relative to expectation, if it is stable across the trait distribution it will also bias heritability estimation upward which is likely it’s potential impact in our framework.  However, if assortative mating is more prevalent in the tails of the distribution, it can result in excess kurtosis – an impact that can increase false positive Mendelian tests and false negative de novo tests.  Given that the trait distribution for Sitting Height has only moderate excess Kurtosis (~0.4, see Fig 9, Appendix 4) and we inferred de novo architecture only for this trait, we feel that including it in the paper is appropriate. 

      R.1.4: I wonder if it's possible to discuss the impact of non-additive genetic variance on the method. How does this affect the estimation of heritability, which calibrates the expectation for regression to the mean? Can non-additive genetic deviations explain a rejection of the null hypothesis of simple polygenicity? 

      A.11: Yes, the heritability estimation, which calibrates expectation for regression to the mean, assumes additivity of effects, as do the most popular estimators of heritability from GWAS data in the field: GCTA-GREML, LD Score regression and LDAK. Accordingly, non-additive genetic effects could result in rejection of the null hypothesis. We have highlighted this point in the Discussion. However, we also point out that current evidence suggests that the contribution of non-additive genetic effects to complex trait variation is relatively small (Hivert 2021) and that non-additive genetic effects that have a similar impact across the trait distribution should not be a problem for our approach (only those that have an increasing effect towards the tails would be).

      R.1.5: p.5: Maybe a more realistic way to simulate a genetic architecture is to draw the MAF from the distribution [MAF(1 - MAF)]^{-1} and then an effect of the minor allele from some mound-shaped distribution (e.g., mixture of normals). The absolute or squared effect of the minor allele should increases as the MAF decreases, and there have been some papers trying to estimate this relationship (e.g., Zeng et al., 2021). Maybe make the number of causal SNPs 10,000. I don't rate this as an urgent suggestion because my sense is that the method should be robust, making adequate even a fairly minimal simulation confirming its accuracy. 

      A.11: In separate work, we have performed a comprehensive simulation study using the forward-in-time population genetic simulator SLIM-3 (Haller and Messer, 2019), which generates genetic effects according to Gaussian and Gamma distributions and models different selective pressures on complex traits. We plan to publish this work shortly and also extend the simulations to family data, from which we will be able to test the performance of our methods here under a range of different scenarios of genetic variation generation, including a variety of relationships between allele frequency and effect sizes. We agree with the reviewer that at this point, however, our minimal simulation should be sufficient to confirm our tests’ general robustness and so we will perform further testing once we have extended our more sophisticated simulation study.

      R.1.6: p.6: Step D seems to leave out a normalization of G to have unit variance. Also, the last part should say "the square of the correlation between the genetic liability and the trait is equal to the heritability." 

      A.12: Corrected – we thank the reviewer for spotting this.

      R.1.7: Figure 5: The power being adequate if roughly 1 of a 1000 index siblings with an extreme trait value owes their values to de novo mutations makes me think that there should be a discussion of the prior probability. The average person carries about 80 de novo mutations. How many of these are likely to affect, e.g., height? Zeng et al. (2021) gave estimates of mutational targets. Given that a mutation affects height, will its likely effect size be large enough to be detected with the method? Kemper et al. (2012) discussed this point in a perhaps useful way. 

      A.13: We find the work investigating mutational target sizes and generating effect sizes of different mutations (de novo or rare) to be extremely interesting and critical for understanding the causes of observed genetic variation. However, we think that this work is insufficiently progressed at this point to build on directly here for making more nuanced interpretation of our results. We are, however, exploring the impact of mutational target sizes, effect size distributions and selection effects, on the genetic architecture of complex traits via population genetic simulations (see A.11), and so we hope to be able to provide more in-depth interpretation of our results in the future.

      R.1.8: Figure 6: The number in the tables for Mendelian architecture are presumably observed and expected counts. But what about the numbers for de novo architecture? Those don't look like counts. Maybe they are conditional expectations of standardized trait values. Whatever the case may be, the caption should provide an explanation. 

      A.14: The observed and expected values for the de novo statistical test represent the expected and observed mean standardized trait values for siblings of individuals in the bottom and top 1% of the distribution. We have now made this clear in our updated figure.

      R.1.9: p. 16: Element (2,1) in the precision matrix after Equation 15 is missing a negative sign. 

      A.15: Corrected – we thank the reviewer for spotting this.

      R.1.10: p. 20: Shouldn't Equation 20 place an exponent of n on the factor outside of the exponential? 

      A.16: Corrected – we thank the reviewer for spotting this.

      Reviewer #2 (Recommendations For The Authors):

      R.2.1: The first concern that I have is that their statistical tests rely heavily on an assumption of bivariate normal distribution for sibling pair's phenotypes. Real phenotypes do not have such a distribution in general. The authors rely upon an inverse-normal transform when applying their method to real data. While the inverse-normal transform will ensure that the siblings' phenotypes have a marginal normal distribution, such a transform does not ensure that the joint distribution is bivariate normal. The authors should examine their procedure for simulated phenotypes with a non-normal distribution to see if their statistical tests remain properly calibrated. Related to this, I am concerned about applying an inverse normal transform to the neuroticism phenotype that contains only 13 unique values in UKB. How does the transform deal with tied values? Can we sensibly talk about extreme trait values for such a set of observations? 

      A.17: The reviewer is correct that a bivariate normal distribution for sibling pairs’ trait values does not necessarily hold, and only does so if the assumptions of our null model are met (polygenic effects, Gaussian environmental effects, random mating..). We have now more clearly described the assumptions of our null model, and to increase the matching of our selected traits to those assumptions we have expanded our analyses and now present results on traits that are close to Gaussian. As part of this more strict quality control, only traits with more than 50 unique values are included, meaning that neuroticism is excluded in our final analysis. We also now note that performing an inverse normal transformation on the traits only increases the robustness of the tests to some of our modelling assumptions. In future work we plan to investigate how best to model the conditional sibling distribution under a variety of non-Gaussian environmental effects and different non-random patterns of mating.

      R.2.2: The joint sibling phenotype distribution (Equation 4) can be derived by applying the formula for the conditional distribution of a multivariate Gaussian to the standard additive genetic model. The authors' derivation is unnecessarily complex. Furthermore, many of the formulae have been used in Shai Carmi's work on embryo screening, but this work is not cited. 

      A.18: We now state in the text that the conditional sibling distribution can also be derived from the joint trait distribution of related individuals, which we use in our extension to the 3-sibling scenario, and cite Shai Carmi’s work where this is used. The joint distribution is a more straightforward way to derive the conditional sibling distribution, but our derivation based on considering mid-parents is generalisable to cases where assumptions of random mating, Gaussian population trait distribution and no selection do not hold. We also think that our mid-parent based derivation will be more intuitive to many readers, leading to greater understanding and potential for extension. Therefore, overall we believe that its presentation is worthwhile and we have now elaborated on this in the Methods.

      R.2.3: Equation 8: this probability should be conditional on s1 

      A.19: Corrected – we thank the reviewer for spotting this.

      R.2.4: The empirical application to UKB data is lacking methodological details. Also, the number of siblings used is low compared to the number of available sibling pairs. Around 19k sibling pairs are available in the UKB white British subsample, but only 10k were used for height. Why? Also, why are extreme values excluded? Isn't this removing the signal the authors are looking to explain?

      A.20: We have now provided more methodological details throughout the Methods section, in particular in relation to the samples used and quality control performed. The removal of individuals with extreme values, in particular, is because unusually low/high trait values are more likely to be due to measurement error (e.g. due to imperfect measuring device, or storage/assaying) than for typical values, and so while this may also result in some loss in power (albeit small due to few individuals having values +/- 8 s.d. trait means) we consider it worth it for the potential reduction in type I error. In performing our newly expanded analysis (described above), and accounting for the reviewer’s point here about sample size, we did find a bug in our pipeline that meant that we did not include as many sibling pairs as available. We thank the reviewer for spotting this, since this contributed to our new analysis being substantially more powerful than the original (including up to ~17k sibling pairs depending on completeness of trait data).

      Benjamin C Haller, Phillip W Messer. SLiM 3: Forward Genetic Simulations Beyond the Wright–Fisher Model. Molecular Biology and Evolution. 2019. 36(3): 632-637.

      SD Whiteman, SM McHale, A Soli. Theoretical Perspectives on Sibling Relationships. J Fam Theory Rev. 2011 Jun 1;3(2):124-139.

      Nicholas H Barton, Alison M Etheridge, and Amandine Véber. The infinitesimal model: Definition, derivation, and implications. Theoretical population biology, 118:50–73, 2017.

      Valentin Hivert et al. “Estimation of non-additive genetic variance in human complex traits from a large sample of unrelated individuals.” American journal of human genetics vol. 108,5 (2021)

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors demonstrate that it is possible to carry out eQTL experiments for the model eukaryote S. cerevisiae, in "one pot" preparations, by using single-cell sequencing technologies to simultaneously genotype and measure expression. This is a very appealing approach for investigators studying genetic variation in single-celled and other microbial systems, and will likely inspire similar approaches in non-microbial systems where comparable cell mixtures of genetically heterogeneous individuals could be achieved.

      Strengths:

      While eQTL experiments have been done for nearly two decades (the corresponding author's lab are pioneers in this field), this single-cell approach creates the possibility for new insights about cell biology that would be extremely challenging to infer using bulk sequencing approaches. The major motivating application shown here is to discover cell occupancy QTL, i.e. loci where genetic variation contributes to differences in the relative occupancy of different cell cycle stages. The authors dissect and validate one such cell cycle occupancy QTL, involving the gene GPA1, a G-protein subunit that plays a role in regulating the mating response MAPK pathway. They show that variation at GPA1 is associated with proportional differences in the fraction of cells in the G1 stage of the cell cycle. Furthermore, they show that this bias is associated with differences in mating efficiency.

      Weaknesses:

      While the experimental validation of the role of GPA1 variation is well done, the novel cell cycle occupancy QTL aspect of the study is somewhat underexploited. The cell occupancy QTLs that are mentioned all involve loci that the authors have identified in prior studies that involved the same yeast crosses used here. It would be interesting to know what new insights, besides the "usual suspects", the analysis reveals. For example, in Cross B there is another large effect cell occupancy QTL on Chr XI that affects the G1/S stage. What candidate genes and alleles are at this locus? And since cell cycle stages are not biologically independent (a delay in G1, could have a knock-on effect on the frequency of cells with that genotype in G1/S), it would seem important to consider the set of QTLs in concert.

      We thank the reviewer for this suggested clarification. We have modified the text to make it clear that cell cycle occupancy is a compositional phenotype. Like the reviewer, we also noticed the distal trans eQTL hotspot on Chr XI in Cross B, but we were not able to identify compelling candidate gene(s) or variant(s) despite extensive effort.

      Reviewer #2 (Public Review):

      Boocock and colleagues present an approach whereby eQTL analysis can be carried out by scRNA-Seq alone, in a one-pot-shot experiment, due to genotypes being able to be inferred from SNPs identified in RNA-Seq reads. This approach obviates the need to isolate individual spores, genotype them separately by low-coverage sequencing, and then perform RNA-Seq on each spore separately. This is a substantial advance and opens up the possibility to straightforwardly identify eQTLs over many conditions in a cost-efficient manner. Overall, I found the paper to be well-written and well-motivated, and have no issues with either the methodological/analytical approach (though eQTL analysis is not my expertise), or with the manuscript's conclusions.

      I do have several questions/comments.

      393 segregant experiment:

      For the experiment with the 393 previously genotyped segregants, did the authors examine whether averaging the expression by genotype for single cells gave expression profiles similar to the bulk RNA-Seq data generated from those genotypes? Also, is it possible (and maybe not, due to the asynchronous nature of the cell culture) to use the expression data to aid in genotyping for those cells whose genotypes are ambiguous? I presume it might be if one has a sufficient number of cells for each genotype, though, for the subsequent one-pot experiments, this is a moot point.

      As mentioned in our preliminary response, while it is possible to expand the analysis along these lines, this is not relevant for the subsequent one-pot experiments. We have made all the data available so that anyone interested can try these analyses.

      Figure 1B:

      Is UMAP necessary to observe an ellipse/circle - I wouldn't be surprised if a simple PCA would have sufficed, and given the current discussion about whether UMAP is ever appropriate for interpreting scRNA-Seq (or ancestry) data, it seems the PCA would be a preferable approach. I would expect that the periodic elements are contained in 2 of the first 3 principal components. Also, it would be nice if there were a supplementary figure similar to Figure 4 of Macosko et al (PMID 26000488) to indeed show the cell cycle dependent expression.

      We have added two new figures (S2 and S3) that represent alternative visualizations of the cell-cycle that are not dependent on UMAP. Figure S2 shows plots of different pairs of principal components, with each cell colored by its assigned cell-cycle stage. We do not observe a periodic pattern in the first 3 principal components as the reviewer expected, but when we explore the first 6 principal components, we see combinations of components that clearly separate the cell cycle clusters. We emphasize that the clusters were generated using the Louvain algorithm and assigned to cell-cycle stages using marker genes, and that UMAP was used only for visualization.

      We could not create a figure similar to Macosko et al. because of differences between the cell cycle categories we used and those of Spellman et al (PMID 9843569). We instead created Figure S3 to address the reviewer's comment. This figure uses a heatmap in a style similar to that of Macosko et al. to display cell-cycle-dependent expression of the 22 genes we used as cell cycle markers across each of the five cell cycle stages (M/G1, G1, G1/S, S, G2/M).

      We have renumbered the supplementary figures after incorporating these two additional supplementary figures into the manuscript.

      Aging, growth rate, and bet-hedging:

      The mention of bet-hedging reminded me of Levy et al (PMID 22589700), where they saw that Tsl1 expression changed as cells aged and that this impacted a cell's ability to survive heat stress. This bet-hedging strategy meant that the older, slower-growing cells were more likely to survive, so I wondered a couple of things. It is possible from single-cell data to identify either an aging, or a growth rate signature? A number of papers from David Botstein's group culminated in a paper that showed that they could use a gene expression signature to predict instantaneous growth rate (PMID 19119411) and I wondered if a) this is possible from single-cell data, and b) whether in the slower growing cells, they see markers of aging, whether these two signatures might impact the ability to detect eQTLs, and if they are detected, whether they could in some way be accounted for to improve detection.

      As mentioned in our preliminary response, we are not sure how to look for gene expression signatures of aging in yeast scRNA-seq data. We believe that the proposed analyses are beyond the scope of the current paper. As noted above, we have made all the data available so that anyone interested can explore these hypotheses.

      AIL vs. F2 segregants:

      I'm curious if the authors have given thought to the trade-offs of developing advanced intercross lines for scRNA-Seq eQTL analysis. My impression is that AIL provides better mapping resolution, but at the expense of having to generate the lines. It might be useful to see some discussion on that.

      We thank the reviewer for the comments. We believe that a discussion of trade-offs between different approaches for constructing mapping populations, such as AIL and F2 segregants, is beyond the scope of this paper.

      10x vs SPLit-Seq

      10x is a well established, but fairly expensive approach for scRNA-Seq - I wondered how the cost of the 10x approach compares to the previously used approach of genotyping segregants and performing bulk RNA-Seq, and how those costs would change if one used SPLiT-Seq (see PMID 38282330).

      We thank the reviewer for the comments. We believe that a discussion of cost trade-offs between 10x and other approaches is beyond the scope of this paper, especially given the rapidly evolving costs of different technologies.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Throughout the results section the authors point to File S1 for additional information. This file is a tarball with about 20 Excel documents in it, each with several sheets embedded. The authors should provide a detailed README describing how to understand the organizations of the files in File S1 and the many embedded sheets in each file. Statements made in the manuscript about File S1 should explicitly direct the reader to a specific spreadsheet and table to refer to.

      We have added an additional README file to the tarball that explains the organization of File S1 and describes the data contained in each sheet. Throughout the text, we now reference specific spreadsheets to assist the reader. In addition, these spreadsheets have been added to a github repository https://github.com/theboocock/finemapping_spreadsheets_single_cell

      Neither of the two GitHub repositories referenced under "Code availability" has adequate documentation that would allow a reader to try and reproduce the analyses presented here. The one entitled https://github.com/joshsbloom/single_cell_eQTL has no functional README, while https://github.com/theboocock/yeast_single_cell_post_analysis is somewhat better but still hard to navigate. Basic information on expected inputs, file formats, file organization, output types, and formats, etc. is required to get any of these pipelines to run and should be provided at a minimum.

      We thank the reviewer for the comment. In response, we have refactored both GitHub repositories and added extensive documentation to improve usability. We updated the versions of software and packages, this has been reflected in the methods section.

      S. cerevisiae strains are preferentially diploid in nature and many genes involved in the mating pathway are differentially regulated in diploids vs haploids. Have the authors explored the fitness effects of the GPA1 82R allele in diploids? What is the dominance relationship between 82W and 82R?

      We thank the reviewer for the comment. In diploid yeast, the mating pathway is repressed, and thus we would not expect there to be any fitness consequences due to the presence of different alleles of GPA1.

      The diploid expression profiling (page 5 and Table S9) doesn't implicate GPA1; can you the authors comment on this in light of their finding in haploids?

      The mating pathway, including GPA1, is repressed in diploids, and hence the expression of GPA1 cannot be studied in these strains (PMID: 3113739). In addition, allele-specific expression differences only identify cis-regulatory effects. We know that the GPA1 variant results in a protein-coding change, which may or may not influence the levels of mRNA in cis, so that even if GPA1 were expressed in diploids, there would be no expectation of an allele-specific difference in expression.

      With respect to the candidate CYR1 QTL -- note that strains with compromised Cyr1 function also generally show increased sporulation rates and/or sporulation in rich media conditions (cAMP-PKA signaling represses sporulation). Is this the case in diploids with the CBS2888 allele at CYR1? If the CBS2888 allele is a CYR1 defect one might expect reduced cAMP levels. It is possible to estimate adenylate cyclase levels using a fairly straightforward ELISA assay. This would provide more convincing evidence of the causal mechanism of the alleles identified.

      We thank the reviewer for the comment, and we agree that a functional study of the CYR1 alleles would provide more convincing evidence for the causal mechanism of the connection between cell cycle occupancy, cAMP levels, and growth. However, we believe that the proposed experiments are beyond the scope of our current study. The evidence we provide is sufficient to establish that CYR1 is a strong candidate gene for the eQTL hotspot.

      Re: CYR1 candidate QTL -- The authors should reference the work of [Patrick Van Dijck] (https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Van+Dijck+P&cauthor_id= 20924200) and [Johan M Thevelein] (https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Thevelein+JM&cauth or_id=20924200) on CYR1 allelic variation, and other papers besides the Matsumoto/ Ishikawa papers, as the effects of cAMP-PKA signaling on stress can be quite variable. cAMP pathway variants, including in CYR1, have popped up in quite a few other yeast QTL mapping and experimental evolution papers. These should be referenced as well.

      We thank the reviewer for these references; we have added a comment about the relationship between stress tolerance and CYR1 variation, and cited the relevant references accordingly.

      Figure S10 - the subfigure showing the frequency of the GPA 82R compared to 82W suggests a fairly large and deleterious fitness effect of this allele; on the order of 7-8% fewer cells per cell cycle stage than the 82W allele. Can the authors reconcile this with the more modest growth rate effect they report on page 8?

      Figure S12C displays the allele frequency of the 82R allele across the cell cycle in the single-cell data from allele-replacement strains. These strains were grown separately and processed using two individual 10x chromium runs. The resulting sequenced library had 11,695 cells with the 82R allele and 14,894 cells with the 82W allele. The 7-8% difference in the number of cells is due to slight differences in the number of captured cells per run, not due to growth differences, because we attempted to pool cells in equal numbers from separate mid-log cultures.

      The proportion of cells in G1 increases by ~3% in strains with the 82R allele relative to the baseline proportion of cells in the experiment, which, to the reviewers point, is still larger than the ~1% growth difference we observed. Cell cycle occupancy is a compositional phenotype. As shown in figure S12C, the 82R variant increases the fraction of cells in G1 and slightly decreases the fraction of cells in M/G1. There is no obvious expectation for quantitatively translating a change in cell cycle occupancy to a change in growth rate.

      The authors refer to the Lang et al. 2009 paper w/respect to GPA1 variant S469I but that paper seems to have explored a different GPA1 allele, GPA1-G1406T, with respect to growth rates.

      We thank the reviewer for their comment. The S469I variant is the same as the G1406T variant, one denoting the amino acid change at position 469 in the protein and the other denoting the corresponding nucleotide change at position 1406 in the DNA coding sequence. We have altered the text to make this clear to the reader.

      Reviewer #2 (Recommendations For The Authors):

      I make no recommendations as to additional work for the authors. The manuscript is complete. I suggested some things I would like to see in my review, but it's up to them to decide whether they think any of those would further enhance the manuscript.

      However, I do have I have some pedantic formatting notes:

      - Microliters are variously presented as uL, ul, and µl - it should be µL

      - Similarly, milliliters are presented as ml and ML - it should be mL

      - Also, there should be a space between the number and the unit, e.g. 10 µL

      - Some gene names in the manuscript are not italicized in all instances, e.g., GPA1

      We thank the reviewer for these formatting suggestions, we have made these changes throughout the text.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Response to Public Reviews:

      We thank the reviewers for their kind comments have implemented many of the suggestion their suggestions. Our paper has greatly benefited from their advice.  Like Reviewer 1, we acknowledge that while the exact involvement of Ih in allowing smooth transitions is likely not universal across all systems, our demonstration of the ways in which such currents can affect the dynamics of the response of complex rhythmic motor networks provides valuable insight. To address the concerns of Reviewer 2, we included a sentence in the discussion to highlight the fact that cesium neither increased the pyloric frequency nor caused consistent depolarization in intracellular recordings. We also highlighted that these observations suggest both that cesium is not indirectly raising [K+]outside and support the conclusion that the effects of cesium are primarily through blockade of Ih rather than other potassium channels.

      Reviewer 3 raised some important points about modeling. While the lab has models that explore the effects of temperature on artificial triphasic rhythms, these models do not account for all the biophysical nuances of the full biological system. We have limited data about the exact nature of temperature-induced parameter changes and the extent to which these changes are mediated by intrinsic effects of temperature on protein structure versus protein interactions/modification by processes such as phosphorylation. With respects to the A current, Tang et al., 2010 reported that the activation and inactivation rates are differentially temperature sensitive but we do not have the data to suggest whether or not the time courses of such sensitivities are different. As such, we focus our discussion on the properties we know are modulated by temperature, i.e. activation rates. Within the discussion we now include the suggestion that future, more comprehensive modeling may be appropriate to further elucidate the ways in which reducing Ih may produce the here reported experimentally observed effects.

      Reviewer #1 (Recommendations For The Authors):

      Suggested revisions:

      A figure showing examples of the voltage-clamp traces for the critical measurements of the extent of Ih block by 5 mM CsCl in PD and LP neurons at the temperature extremes in these preparations is not shown, and the authors should consider including such a figure, perhaps as a supplemental figure.

      We have added Supplemental Figure 1 containing voltage-clamp traces demonstrating the extent of Ih block by 5mM CsCl in PD and LP neurons at 11 and 21°C.  Due to technical concerns, different preparations were used in the measurements at 11°C and 21°C, but the point that the H-current is reduced is demonstrated in all cases.

      Reviewer #2 (Recommendations for The Authors):

      Specific (Minor) Comments:

      (1) Line 83: In Cs+ "at 11°C, the pyloric frequency was significantly decreased compared to control conditions (Saline: 1.2± 0.2 Hz; Cs+ 0.9± 0.2 Hz)".

      As above, the authors often report that cesium generally reduces pyloric frequency. Figure 5A demonstrates this action quite nicely. However, cesium's effect on pyloric frequency at 11°C seems less robust in Figure 1C. Why the discrepancy?

      There is variability in the effects of Cs+ on the pyloric frequency.  As noted, the standard deviation in frequency in both conditions is 0.2Hz.  As such, there are some cases in which the initial frequency drop in Cs+ compared to control was relatively small.  1C is one such case, but was selected as an example because of its clear reduction in temperature sensitivity. 

      (2) I don't understand what the arrows/dashed lines are trying to convey in Figure 3C.

      The arrows/dashed lines represent the criteria used to define a cycle as “decreasing in frequency” (Temperature Increasing) or “increasing in frequency” (Temperature Stable).  We have amended lines 130 and 137 in the text to hopefully clarify this point, as well as the figure legend.

      (3) Lines 118/168. The description of cesium's specific action on the depolarizing portion of PD activity is a bit confusing. In my mind, "depolarization phase" refers to the point at which PD is most depolarized. Perhaps restating the phrase to "elongation of the depolarizing trajectory" is less confusing. The authors may also want to consider labeling this trajectory in Figure 2C.

      We have changed “depolarization phase” to “depolarizing phase” to highlight that this is the period during which the cell is depolarizing, rather than at its most depolarized.  We consider the plateau of the slow wave and spiking (the point at which PD is most depolarized) to be the “bursting phase”.  We have labeled these phases in Figure 2C as suggested.

      (4) Figure 3C legend: a few words seem to be missing. I suggest "the change in mean frequency was more likely TO decrease IN Cs+ than in saline".

      Thank you for catching this typo, it has been corrected.

      (5) Line 165: Awkward phrasing. “In one experiment, the decrease in frequency while temperature increased and subsequent increase in frequency after temperature stabilized was particularly apparent in Cs+ PTX”.

      How about: “One Cs+ PTX experiment wherein elevating the temperature transiently decreased pyloric frequency is shown in Figure 4F.”

      We have amended this sentence to read, “One Cs++PTX experiment in which elevating the temperature produced a particularly pronounced transient decrease in frequency is shown in Figure 4F.”

      (6) Line 186: Awkward phrasing. "LP OFF was also significantly advanced in Cs+, although duty cycle (percent of the period a neuron is firing) was preserved".

      The use of the word "although" seems a bit strange. If both LP onset and LP offset phase advance by the same amount, then isn't an unchanged duty cycle expected?

      “Although” has been changed to “and subsequently”.

      Reviewer #3 (Recommendations For The Authors):

      Major comments:

      (1) I know the Marder lab has detailed models of the pyloric rhythm. I am not saying they have to add modeling to this already extensive and detailed paper, but it would be useful to know how much of these temperature effects have been modeled, for example in the following locations.

      (2) Line 259 - "Mathematically..." - Is there a computational model of H current that has shown this decrease in frequency in pyloric neurons? If you are working on one for the future, you could mention this.

      There is not currently a model in which the reduction of the H-current results in the non-minimum phase dynamics in the frequency response to temperature seen experimentally. It should be noted that our existing models of pyloric activity responses to temperature are not well suited to investigate such dynamics in their current iterations.  Further work is necessary to demonstrate the principles observed experimentally in computational modeling, and we have added a sentence to the paper to reflect this point (Line 268).

      (3) Line 318 - "therefore it remains unclear" - I thought they had models of the circuit rhythmicity. Do these models include temperature effects? Can they comment on whether their models of the circuit show an opposite effect to what they see in the experiment? I'm not saying they have to model these new effects as that is probably an entirely different paper, but it would be interesting to know whether current models show a different effect.

      We have some models of the pyloric response to temperature, but these models were specifically selected to maintain phase across the range of temperature.  When Ih was reduced in these models, a variety of effects on phase and duty cycle were seen.  These models were selected to have the same key features of behavior as the pyloric rhythm, but do not capture all the biophysical nuances of the complete system, and therefore should not necessarily be expected to reflect the experimental findings in their current iterations.  Furthermore, these models are meant to have temperature as a static, rather than dynamic input, and thus are ill-suited to examine the conditions of our experiments.  The models in their current state are not sufficiently relevant to these experimental findings that we they can illuminate the present paper `2.

      (4) "If deinactivation is more accelerated or altered by temperature than inactivation...While temperature continued to change, the difference in parameters would continue to grow" - This is described as a difference in temperature sensitivity, but it seems like it is also a function of the time course of the response to change in temperature (i.e. the different components could have the same final effect of temperature but show a different time course of the change).

      We know from Tang et al, 2010, that activation and inactivation rates of the A current are differentially temperature sensitive. We have no evidence to suggest that the time course of the response to temperature of various parameters differ.  The physical actions of temperature on proteins are likely to be extremely rapid, making a time course difference on the order of tens of seconds less unlikely, though not impossible. Modeling of the biophysics might illuminate the relative plausibility of these different mechanisms of action, but we feel that our current suggested explanation is reasonable based on existing information.

      (5) Is it known how temperature is altering these channel kinetics? Is it via an intrinsic rearrangement of the protein structure, or is it a process that involves phosphorylation (that could explain differences in time course?). Some mention of the mechanism of temperature changes would be useful to readers outside this field.

      It is not known exactly how temperature alters channel parameters.  Invariably some, if not all, of it is due to an intrinsic rearrangement of protein structure, and our current models treat all parameter changes as an instantaneous consequence.  However, it is possible that some effects of temperature are due to longer timescale processes such as phosphorylation or cAMP interactions.  Current work in the lab is actively exploring these questions, but there is no definitive answer. Given that this paper focuses on the phenomenon and plausible biomolecular explanations based on existing data, we have not altered the paper to include more exhaustive  coverage of all the possible avenues by which temperature may alter channel properties.

      Specific comments:

      Title: misspelling of "Cancer" ?

      We are unsure how that extra “w” got into the earliest version of the manuscript and have removed it.

      Line 66 "We used 5mM CsCl" - might mention right up front that this was a bath application of the substance.

      We have altered this line to read “used bath application of 5mM CsCl”.  

      Figure 4 - "The only feedback synapse to the pacemaker kernel neurons, LP to PD, and is blocked by picrotoxin" - I think the word "and" should be removed from this phrase in the figure legend.

      Fixed

      Figure 4 legend - "Reds denote temperature...yellows denote..." - I think it should be "Red dots denote temperature...yellow dots denote...".

      Done

      Figure 4B - Why does the change in frequency in cesium look so different in Figure 4B compared to Figure 1C or Figure 3B? In the earlier figures, the increase of frequency is smaller but still present in cesium, whereas, in Figure 4B, cesium seems to completely block the increase in frequency. I'm not sure why this is different, but I guess it's because 3B and 4B are just mean traces from single experiments. Presumably, 4B is showing an experiment in which the cesium was subsequently combined with picrotoxin?

      Figures 1C, 3B, and 4B are indeed all from different single experiments. As acknowledged in our concluding paragraph, there was substantial variability in the exact response of the pyloric rhythm to temperature while in cesium.  The most consistent effect was that the difference in frequency between cesium and saline at a particular temperature increased, as demonstrated across 21 preparations in Figure 1D. It may be noted in Figure 1E that the Q10 was not infrequently <1, meaning that there was a net decrease in frequency as temperature increased in some experiments such as seen in the example of Figure 4B.  The “fold over” (initial increase in steady-state frequency with temperature, then decrease at higher temperatures) has been observed at higher temperatures (typically around 23-30 degrees C) even under control conditions but has not been highlighted in previous publications.  The example in 4B was chosen because it demonstrated both the similarity in jags between Cs+ and Cs++PTX and an overall decrease in temperature sensitivity, even though in this instance the steady-state change in frequency with temperature was not monotonic. 

      Figure 6A - "Phase 0 to 1.0" - The y-axis should provide units of phase. Presumably, these are units of radians so 1.0=2*pi radians (or 360 degrees, but probably best to avoid using degrees of phase due to confusion with degrees of temperature).

      Phase, with respect to pyloric rhythm cycles, does not traditionally have units as it is a proportion rather than an angle. As such, we have not changed the figure.

      Line 275 - "the pacemaker neuron can increase" - Does this indicate that the main effects of H current are in the follower neurons (i.e. LP and PY versus the driver neuron PD)?

      Not necessarily.  We posit in the next paragraph that the effect of the H current on the temperature sensitivity could be due to its phase advance of LP, but that phase advance of LP is not particularly expected to increase frequency.  We favor the possibility that temperature increases Ih in the pacemaker, which in turn advances the PRC of the rhythm, allowing the frequency increase seen under normal conditions.  In Cs+, this advance does not occur, resulting in the lower temperature sensitivity.  In Cs++PTX, the lack of inhibition from LP means compensatory advance of the pacemaker PRC by Ih is unnecessary to allow increased frequency.

      Line 285 - "either increase frequency have no effect" - Is there a missing "or" in this phrase?

      Thank you, we have added the “or”.

    1. Author response:

      eLife assessment

      This potentially valuable study examines the role of IL17-producing Ly6G PMNs as a reservoir for Mycobacterium tuberculosis to evade host killing activated by BCG immunisation. The authors report that IL17-producing polymorphonuclear neutrophils harbour a significant bacterial load in both wild-type and IFNg-/- mice and that targeting IL17 and Cox2 improved disease outcomes whilst enhancing BCG efficacy. Although the authors suggest that targeting these pathways may improve disease outcomes in humans, the evidence as it stands is incomplete and requires additional experimentation for the study to realise its full impact.

      Thank you for evaluating our manuscript. We understand the concern related to the direct role of Ly6G+Gra-derived IL17 in TB pathogenesis. For the revised manuscript, we will provide additional experimental evidence through direct regulation of IL-17 production in Mtb-infected mice and its impact on improving BCG efficacy.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Recruitment of neutrophils to the lungs is known to drive susceptibility to infection with M. tuberculosis. In this study, the authors present data in support of the hypothesis that neutrophil production of the cytokine IL-17 underlies the detrimental effect of neutrophils on disease. They claim that neutrophils harbor a large fraction of Mtb during infection, and are a major source of IL-17. To explore the effects of blocking IL-17 signaling during primary infection, they use IL-17 blocking antibodies, SR221 (an inverse agonist of TH17 differentiation), and celecoxib, which they claim blocks Th17 differentiation, and observe modest improvements in bacterial burdens in both WT and IFN-γ deficient mice using the combination of IL-17 blockade with celecoxib during primary infection. Celecoxib enhances control of infection after BCG vaccination. 

      Thank you for the summary.

      Strengths:

      The most novel finding in the paper is that treatment with celecoxib significantly enhances control of infection in BCG-vaccinated mice that have been challenged with Mtb. It was already known that NSAID treatments can improve primary infection with Mtb.

      Thank you.

      Weaknesses:

      The major claim of the manuscript - that neutrophils produce IL-17 that is detrimental to the host - is not strongly supported by the data. Data demonstrating neutrophil production of IL17 lacks rigor. 

      Our response: Neutrophil production of IL-17 is supported by two independent methods/ techniques in the current version: 

      (1) Through Flow cytometry- a large fraction of Ly6G+CD11b+ cells from the lungs of Mtb-infected mice were also positive for IL-17 (Fig. 3C).

      (2) IFA co-staining of Ly6G + cells with IL-17 in the lung sections from Mtb-infected mice (Fig. 3 E_G and Fig. 4H, Fig. 5I).

      However, to further strengthen this observation, we plan to analyse sorted Ly6G+Gra from the lungs of infected mice using IL-17 ELISPOT assay. This will unequivocally prove the Ly6+Gra production of IL-17. Several publications support the production of IL-17 by neutrophils (Li et al. 2010; Katayama et al. 2013; Lin et al. 2011). For example, neutrophils have been identified as a source of IL-17 in human psoriatic lesions (Lin et al. 2011), in neuroinflammation induced by traumatic brain injury (Xu et al. 2023) and in several mouse models of infectious and autoimmune inflammation (Ferretti et al. 2003; Hoshino et al. 2008) (Li et al. 2010). However, ours is the first study reporting neutrophil IL-17 production during Mtb pathology.

      The experiments examining the effects of inhibitors of IL-17 on the outcome of infection are very difficult to interpret. First, treatment with IL-17 inhibitors alone has no impact on bacterial burdens in the lung, either in WT or IFN-γ KO mice. This suggests that IL-17 does not play a detrimental role during infection. Modest effects are observed using the combination of IL-17 blocking drugs and celecoxib, however, the interpretation of these results mechanistically is complicated. Celecoxib is not a specific inhibitor of Th17. Indeed, it affects levels of PGE2, which is known to have numerous impacts on Mtb infection separate from any effect on IL-17 production, as well as other eicosanoids. 

      The reviewer correctly says that Celecoxib is not a specific inhibitor of Th17. However, COX-2 inhibition does have an effect on IL-17 levels, and numerous reports support this observation (Paulissen et al. 2013; Napolitani et al. 2009; Lemos et al. 2009). We elaborate on the results below for better clarity.

      Firstly, in the WT mice, Celecoxib treatment led to a complete loss of IL-17 production in the lungs of Mtb-infected mice (Fig. 5D). Interestingly, IL-17 production independent of IL-23 is known to require PGE2 (Paulissen et al. 2013; Polese et al. 2021). In the WT or IFNγ KO mice, we rather noted a decline in IL-23 levels post-infection, suggesting a possible role of PGE2 in IL-17 production. However, in the lung homogenates of Mtb-infected IFNγ KO mice, Celecoxib had no effect on IL-17 levels in the lung homogenates. Thus, celecoxib controls IL-17 levels only in the Mtb-infected WT mice. Including celecoxib with anti-IL17 in the IFNγ KO mice controls pathology and extends its survival.

      Second, the reviewer’s observation is only partially correct that IL-17 inhibition has a modest effect on the outcome of infection. While IL-17 neutralization and inhibition alone in the IFNγ KO mice and WT mice, respectively, did not bring down the lung CFU burden significantly, in both these cases, there was an improvement in the lung pathology. The reduced pathology coincided with reduced neutrophil recruitment and a reduced Ly6G+Graresident Mtb population in the WT mice. IL-17 neutralization alone improved IFNγ KO mice survival by ~10 days (Fig. 4F-G). 

      Third, regarding the SR2211 and Celecoxib combination study, we agree with the reviewer that Celecoxib has roles independent of IL-17 regulation. However, in the results presented in this study, there are three key aspects- 1) neutrophil-derived IL-17-dependent neutrophil recruitment, 2) the presence of a large proportion of intracellular Mtb in the neutrophils and 3) dissemination of Mtb to the spleen. Celecoxib treatment alone helps reduce lung Mtb burden in the WT mice. However, SR2211 fails to do so. It is evident that celecoxib is doing more than just inhibiting IL-17 production. The result shows that celecoxib blocks neutrophil recruitment (which could be an IL-17-dependent mechanism) and also controls the intraneutrophil bacterial population. Finally, either SR2211 or celecoxib could block dissemination to the spleen. The role of neutrophils in TB dissemination is only beginning to emerge (Hult et al. 2021). We will revise the description in the results and discussion section for this data to make it easier to understand.

      Finally, we have also done experiments with SR2211 in BCG-vaccinated animals, which shows the direct impact of IL-17 inhibition on the BCG vaccine efficacy. We will add this result in the revised version.

      Finally, the human data simply demonstrates that neutrophils and IL-17 both are higher in patients who experience relapse after treatment for TB, which is expected and does not support their specific hypothesis. 

      We disagree with the above statement. Why a higher IL-17 is expected in patients who show relapse, death or failed treatment outcomes? Classically, IL-17 is believed to be protective against TB, and the reviewer also points to that in the comments below. A very limited set of studies support the non-protective/pathological role of IL-17 in tuberculosis (Cruz et al. 2010). High IL-17 and neutrophilia at the baseline in the human subjects (i.e. at the time of recruitment in the study) highlight severe pathology in those subjects, which could have contributed to the failed treatment outcome. This observation in the human cohort strongly supports the overall theme and central observation in this study.

      The use of genetic ablation of IL-17 production specifically in neutrophils and/or IL-17R in mice would greatly enhance the rigor of this study. 

      The reviewer’s point is well-taken. Having a genetic ablation of IL-17 production, specifically in the neutrophils, would be excellent. At present, however, we lack this resource, and therefore, it is not feasible to do this experiment within a defined timeline. Instead, for the revised manuscript, we will present the data with SR2211, a direct inhibitor of RORgt and, therefore, IL-17, in BCG-vaccinated mice.

      The authors do not address the fact that numerous studies have shown that IL-17 has a protective effect in the mouse model of TB in the context of vaccination.

      Yes, there are a few articles that talk about the protective effect of IL-17 in the mouse model of TB in the context of vaccination (Khader et al. 2007; Desel et al. 2011; Choi et al. 2020). This part was discussed in the original manuscript (in the Introduction section). For the revised manuscript, we will also provide results from the experiment where we blocked IL-17 production by inhibiting RORgt using SR2211 in BCG-vaccinated mice. The results clearly show IL-17 as a negative regulator of BCG-mediated protective immunity. We believe some of the reasons for the observed differences could be 1) in our study, we analysed IL-17 levels in the lung homogenates at late phases of infection, and 2) most published studies rely on ex vivo stimulation of immune cells to measure cytokine production, whereas we actually measured the cytokine levels in the lung homogenates. We will elaborate on these points in the revised version.

      Finally, whether and how many times each animal experiment was repeated is unclear.

      We will provide the details of the number of experiments in the revised version. Briefly, the BCG vaccination experiment (Figure 1) and BCG vaccination with Celecoxib treatment experiment (Figure 6) were performed twice and thrice, respectively. The IL-17 neutralization experiment (Figure 4) and the SR2211 treatment experiment (Figure 5) were done once. We will add another SR2211 experiment data in the revised version. 

      Reviewer #2 (Public review):

      Summary:

      In this study, Sharma et al. demonstrated that Ly6G+ granulocytes (Gra cells) serve as the primary reservoirs for intracellular Mtb in infected wild-type mice and that excessive infiltration of these cells is associated with severe bacteremia in genetically susceptible IFNγ/- mice. Notably, neutralizing IL-17 or inhibiting COX2 reversed the excessive infiltration of Ly6G+Gra cells, mitigated the associated pathology, and improved survival in these susceptible mice. Additionally, Ly6G+Gra cells were identified as a major source of IL-17 in both wild-type and IFNγ-/- mice. Inhibition of RORγt or COX2 further reduced the intracellular bacterial burden in Ly6G+Gra cells and improved lung pathology.

      Of particular interest, COX2 inhibition in wild-type mice also enhanced the efficacy of the BCG vaccine by targeting the Ly6G+Gra-resident Mtb population.

      Thank you for the summary.

      Strengths:

      The experimental results showing improved BCG-mediated protective immunity through targeting IL-17-producing Ly6G+ cells and COX2 are compelling and will likely generate significant interest in the field. Overall, this study presents important findings, suggesting that the IL-17-COX2 axis could be a critical target for designing innovative vaccination strategies for TB.

      Thank you for highlighting the overall strengths of the study.  Weaknesses:

      However, I have the following concerns regarding some of the conclusions drawn from the experiments, which require additional experimental evidence to support and strengthen the overall study.

      Major Concerns:

      (1) Ly6G+ Granulocytes as a Source of IL-17: The authors assert that Ly6G+ granulocytes are the major source of IL-17 in wild-type and IFN-γ KO mice based on colocalization studies of Ly6G and IL-17. In Figure 3D, they report approximately 500 Ly6G+ cells expressing IL-17 in the Mtb-infected WT lung. Are these low numbers sufficient to drive inflammatory pathology? Additionally, have the authors evaluated these numbers in IFN-γ KO mice? 

      Thank you for pointing out about the numbers in Fig. 3D. It was our oversight to label the axis as No. of IL17+Ly6G+Gra/lung. For this data, only a part of the lung was used. For the revised manuscript, we will provide the number of these cells at the whole lung level from Mtb-infected WT mice. Unfortunately, we did not evaluate these numbers in IFN-γ KO mice through FACS. 

      For the assertion that Ly6G+Gra are the major source of IL-17 in TB, we have used two separate strategies- a) IFA and b) FACS. 

      However, as described above in response to the first reviewer, for the revision, we propose to perform an IL-17 ELISpot assay on the sorted Ly6G+Gra from the lungs of Mtb-infected WT mice.

      (2) Role of IL-17-Producing Ly6G Granulocytes in Pathology: The authors suggest that IL17-producing Ly6G granulocytes drive pathology in WT and IFN-γ KO mice. However, the data presented only demonstrate an association between IL-17+ Ly6G cells and disease pathology. To strengthen their conclusion, the authors should deplete neutrophils in these mice to show that IL-17 expression, and consequently the pathology, is reduced.

      Thank you for this suggestion. Others have done neutrophil depletion studies in TB, and so far, the outcomes remain inconclusive. In some studies, neutrophil depletion helps the pathogen (Rankin et al. 2022; Pedrosa et al. 2000; Appelberg et al. 1995), and in others, it helps the host (Lovewell et al. 2021; Mishra et al. 2017) ). One reason for this variability is the stage of infection when neutrophil depletion was done. However, another crucial factor is the heterogeneity in the neutrophil population. There are reports that suggest neutrophil subtypes with protective versus pathological trajectories (Nwongbouwoh Muefong et al. 2022; Lyadova 2017; Hellebrekers, Vrisekoop, and Koenderman 2018; Leliefeld et al. 2018). Depleting the entire population using anti-Ly6G could impact this heterogeneity and may impact the inferences drawn. A better approach would be to characterise this heterogeneous population, efforts towards which could be part of a separate study.

      For the revised manuscript, we will provide results from the SR2211 experiment in BCG-vaccinated mice and other results to show the role of IL-17-producing Ly6G+Gra in TB pathology.   

      (3) IL-17 Secretion by Mtb-Infected Neutrophils: Do Mtb-infected neutrophils secrete IL-17 into the supernatants? This would serve as confirmation of neutrophil-derived IL-17. Additionally, are Ly6G+ cells producing IL-17 and serving as pathogenic agents exclusively in vivo? The authors should provide comments on this.

      We have not directly measured IL-17 secretion by neutrophils in our experiments. However, Hu et al have reported IL-17 secretion by Mtb-infected neutrophils in vitro (Hu et al. 2017). Whether there are a few neutrophil roles exclusively seen under in vivo condition is an interesting proposition. We do have some observations that suggest in vitro phenotype of Mtb-infected neutrophils is different from in vivo.

      (4) Characterization of IL-17-Producing Ly6G+ Granulocytes: Are the IL-17-producing Ly6G+ granulocytes a mixed population of neutrophils and eosinophils, or are they exclusively neutrophils? Sorting these cells followed by Giemsa or eosin staining could clarify this.

      This is a very important point. While usually eosinophils do not express Ly6G markers in laboratory mice, under specific contexts, including infections, eosinophils can express Ly6G. Since we have not characterized these potential Ly6G+ sub-populations, that is one of the reasons we refer to the cell types as Ly6G+ granulocytes, which do not exclude Ly6G+ eosinophils. A detailed characterization of these subsets could be taken up as a separate study.

      Reviewer #3 (Public review):

      Summary:

      The authors examine how distinct cellular environments differentially control Mtb following BCG vaccination. The key findings are that IL17-producing PMNs harbor a significant Mtb load in both wild-type and IFNg-/- mice. Targeting IL17 and Cox2 improved disease and enhanced BCG efficacy over 12 weeks and neutrophils/IL17 are associated with treatment failure in humans. The authors suggest that targeting these pathways, especially in MSMD patients may improve disease outcomes.

      Thank you.

      Strengths:

      The experimental approach is generally sound and consists of low-dose aerosol infections with distinct readouts including cell sorting followed by CFU, histopathology, and RNA sequencing analysis. By combining genetic approaches and chemical/antibody treatments, the authors can probe these pathways effectively.

      Understanding how distinct inflammatory pathways contribute to control or worsen Mtb disease is important and thus, the results will be of great interest to the Mtb field.

      Thank you.

      Weaknesses:

      A major limitation of the current study is overlooking the role of non-hematopoietic cells in the IFNg/IL17/neutrophil response. Chimera studies from Ernst and colleagues (PMCID: PMC2807991) previously described this IDO-dependent pathway following the loss of IFNg through an increased IL17 response. This study is not cited nor discussed even though it may alter the interpretation of several experiments.

      Thank you for pointing out this earlier study, which we concede we missed discussing. We disagree on the point that results from that study may alter the interpretation of several experiments in our study. On the contrary, the main observation that loss of IFNγ causes severe IL-17 levels is aligned in both studies.

      IDO1 is known to alter Th cell differentiation towards Tregs and away from Th17 (Baban et al. 2009). It is absolutely feasible for the non-hematopoietic cells to regulate these events. However, that does not rule out the neutrophil production of IL-17 and the downstream pathological effect shown in this study. We will discuss and cite this study in the revised manuscript.

      Several of the key findings in mice have previously been shown (albeit with less sophisticated experimentation) and human disease and neutrophils are well described - thus the real new finding is how intracellular Mtb in neutrophils are more refractory to BCGmediated control. However, given there are already high levels of Mtb in PMNs compared to other cell types, and there is a decrease in intracellular Mtb in PMNs following BCG immunization the strength of this finding is a bit limited.

      The reviewer’s interpretation of the BCG-refractory Mtb population in the neutrophil is interesting. The reviewer is right that neutrophils had a higher intracellular Mtb burden, which decreased in the BCG-vaccinated animals. Thus, on that account, the reviewer rightly mentions that BCG is able to control Mtb even in neutrophils. However, BCG almost clears intracellular burden from other cell types analysed, and therefore, the remnant pool of intracellular Mtb in the lungs of BCG-vaccinated animals could be mostly those present in the neutrophils. This is a substantial novel development in the field and attracts focus towards innate immune cells for vaccine efficacy. 

      References:

      Appelberg, R., A. G. Castro, S. Gomes, J. Pedrosa, and M. T. Silva. 1995. 'SuscepBbility of beige mice to Mycobacterium avium: role of neutrophils', Infect Immun, 63: 3381-7.

      Baban, B., P. R. Chandler, M. D. Sharma, J. Pihkala, P. A. Koni, D. H. Munn, and A. L. Mellor. 2009. 'IDO activates regulatory T cells and blocks their conversion into Th17-like T cells', J Immunol, 183: 2475-83.

      Choi, H. G., K. W. Kwon, S. Choi, Y. W. Back, H. S. Park, S. M. Kang, E. Choi, S. J. Shin, and H. J. Kim. 2020. 'AnBgen-Specific IFN-gamma/IL-17-Co-Producing CD4(+) T-Cells Are the Determinants for ProtecBve Efficacy of Tuberculosis Subunit Vaccine', Vaccines (Basel), 8.

      Cruz, A., A. G. Fraga, J. J. Fountain, J. Rangel-Moreno, E. Torrado, M. Saraiva, D. R. Pereira, T. D. Randall, J. Pedrosa, A. M. Cooper, and A. G. Castro. 2010. 'Pathological role of interleukin 17 in mice subjected to repeated BCG vaccination after infection with Mycobacterium tuberculosis', J Exp Med, 207: 1609-16.

      Desel, C., A. Dorhoi, S. Bandermann, L. Grode, B. Eisele, and S. H. Kaufmann. 2011. 'Recombinant BCG DeltaureC hly+ induces superior protection over parental BCG by simulating a balanced combination of type 1 and type 17 cytokine responses', J Infect Dis, 204: 1573-84.

      Ferreg, S., O. Bonneau, G. R. Dubois, C. E. Jones, and A. Trifilieff. 2003. 'IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger', J Immunol, 170: 2106-12.

      Hellebrekers, P., N. Vrisekoop, and L. Koenderman. 2018. 'Neutrophil phenotypes in health and disease', Eur J Clin Invest, 48 Suppl 2: e12943.

      Hoshino, A., T. Nagao, N. Nagi-Miura, N. Ohno, M. Yasuhara, K. Yamamoto, T. Nakayama, and K. Suzuki. 2008. 'MPO-ANCA induces IL-17 production by activated neutrophils in vitro via classical complement pathway-dependent manner', J Autoimmun, 31: 79-89.

      Hu, S., W. He, X. Du, J. Yang, Q. Wen, X. P. Zhong, and L. Ma. 2017. 'IL-17 ProducBon of Neutrophils Enhances AnBbacteria Ability but Promotes ArthriBs Development During Mycobacterium tuberculosis InfecBon', EBioMedicine, 23: 88-99.

      Hult, C., J. T. Magla, H. P. Gideon, J. J. Linderman, and D. E. Kirschner. 2021. 'Neutrophil Dynamics Affect Mycobacterium tuberculosis Granuloma Outcomes and DisseminaBon', Front Immunol, 12: 712457.

      Katayama, M., K. Ohmura, N. Yukawa, C. Terao, M. Hashimoto, H. Yoshifuji, D. Kawabata, T. Fujii, Y. Iwakura, and T. Mimori. 2013. 'Neutrophils are essential as a source of IL-17 in the effector phase of arthritis', PLoS One, 8: e62231.

      Khader, S. A., G. K. Bell, J. E. Pearl, J. J. Fountain, J. Rangel-Moreno, G. E. Cilley, F. Shen, S. M. Eaton, S. L. Gaffen, S. L. Swain, R. M. Locksley, L. Haynes, T. D. Randall, and A. M. Cooper. 2007. 'IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge', Nat Immunol, 8: 369-77.

      Leliefeld, P. H. C., J. Pillay, N. Vrisekoop, M. Heeres, T. Tak, M. Kox, S. H. M. Rooijakkers, T. W. Kuijpers, P. Pickkers, L. P. H. Leenen, and L. Koenderman. 2018. 'DifferenBal antibacterial control by neutrophil subsets', Blood Adv, 2: 1344-55.

      Lemos, H. P., R. Grespan, S. M. Vieira, T. M. Cunha, W. A. Verri, Jr., K. S. Fernandes, F. O. Souto, I. B. McInnes, S. H. Ferreira, F. Y. Liew, and F. Q. Cunha. 2009. 'Prostaglandin mediates IL-23/IL-17induced neutrophil migraBon in inflammation by inhibiting IL-12 and IFNgamma production', Proc Natl Acad Sci U S A, 106: 5954-9.

      Li, L., L. Huang, A. L. Vergis, H. Ye, A. Bajwa, V. Narayan, R. M. Strieter, D. L. Rosin, and M. D. Okusa. 2010. 'IL-17 produced by neutrophils regulates IFN-gamma-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury', J Clin Invest, 120: 331-42.

      Lin, A. M., C. J. Rubin, R. Khandpur, J. Y. Wang, M. Riblen, S. Yalavarthi, E. C. Villanueva, P. Shah, M. J. Kaplan, and A. T. Bruce. 2011. 'Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis', J Immunol, 187: 490-500.

      Lovewell, R. R., C. E. Baer, B. B. Mishra, C. M. Smith, and C. M. Sasseg. 2021. 'Granulocytes act as a niche for Mycobacterium tuberculosis growth', Mucosal Immunol, 14: 229-41.

      Lyadova, I. V. 2017. 'Neutrophils in Tuberculosis: Heterogeneity Shapes the Way?', Mediators Inflamm, 2017: 8619307.

      Mishra, B. B., R. R. Lovewell, A. J. Olive, G. Zhang, W. Wang, E. Eugenin, C. M. Smith, J. Y. Phuah, J. E. Long, M. L. Dubuke, S. G. Palace, J. D. Goguen, R. E. Baker, S. Nambi, R. Mishra, M. G. Booty, C. E. Baer, S. A. Shaffer, V. Dartois, B. A. McCormick, X. Chen, and C. M. Sasseg. 2017. 'Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis', Nat Microbiol, 2: 17072.

      Napolitani, G., E. V. Acosta-Rodriguez, A. Lanzavecchia, and F. Sallusto. 2009. 'Prostaglandin E2 enhances Th17 responses via modulation of IL-17 and IFN-gamma production by memory CD4+ T cells', Eur J Immunol, 39: 1301-12.

      Nwongbouwoh Muefong, C., O. Owolabi, S. Donkor, S. Charalambous, A. Bakuli, A. Rachow, C. Geldmacher, and J. S. Sutherland. 2022. 'Neutrophils Contribute to Severity of Tuberculosis Pathology and Recovery From Lung Damage Pre- and Posnreatment', Clin Infect Dis, 74: 1757-66.

      Paulissen, S. M., J. P. van Hamburg, N. Davelaar, P. S. Asmawidjaja, J. M. Hazes, and E. Lubberts. 2013. 'Synovial fibroblasts directly induce Th17 pathogenicity via the cyclooxygenase/prostaglandin E2 pathway, independent of IL-23', J Immunol, 191: 1364-72.

      Pedrosa, J., B. M. Saunders, R. Appelberg, I. M. Orme, M. T. Silva, and A. M. Cooper. 2000. 'Neutrophils play a protective nonphagocytic role in systemic Mycobacterium tuberculosis infection of mice', Infect Immun, 68: 577-83.

      Polese, B., B. Thurairajah, H. Zhang, C. L. Soo, C. A. McMahon, G. Fontes, S. N. A. Hussain, V. Abadie, and I. L. King. 2021. 'Prostaglandin E(2) amplifies IL-17 production by gamma-delta T cells during barrier inflammation', Cell Rep, 36: 109456.

      Rankin, A. N., S. V. Hendrix, S. K. Naik, and C. L. Stallings. 2022. 'Exploring the Role of Low-Density Neutrophils During Mycobacterium tuberculosis InfecBon', Front Cell Infect Microbiol, 12: 901590.

      Xu, X. J., Q. Q. Ge, M. S. Yang, Y. Zhuang, B. Zhang, J. Q. Dong, F. Niu, H. Li, and B. Y. Liu. 2023. 'Neutrophil-derived interleukin-17A participates in neuroinflammation induced by traumatic brain injury', Neural Regen Res, 18: 1046-51.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary: 

      In this paper Homan et al used mouse models of Metabolic Dysfunction-Associated Steatotic Liver Disease and different specific target deletions in cells to rule out the role of Complement 3a Receptor 1 in the pathogenesis of disease. They provided limited evidence and only descriptive results that despite C3aR being relevant in different contexts of inflammation, however, these tenets did not hold true. 

      Weaknesses: 

      (1) The results are based on readouts showing that C3aR is not involved in the pathogenesis of liver metabolic disease. 

      (2) The description of the mouse models they used to validate their findings is not clear. Lysm-cre mice - which are claimed to delete C3aR in (?) macrophages are not specific for these cells, and the genetic strategy to delete C3aR in Kupffer cells is not clear. 

      (3) Taking this into account, it is very challenging to determine the validity of these data, also considering that they are merely descriptive and correlative. 

      We generated 2 different cohorts of mice using LysM-Cre (Jackson Strain #004781) to drive deletion in all macrophages and Clec4f-Cre (Jackson Strain #033296) to specifically ablate C3ar1 in Kupffer cells. We will ensure that experimental models will be clearly defined in the revised manuscript. The reviewer’s point is well taken that LysM-Cre transgene can also be active in granulocytes and some dendritic cells. Even so, despite deletion of C3ar1 in macrophages and other granulocytes, we do not see a major effect on hepatic steatosis and fibrosis in this GAN diet induced model of MASLD/MASH. This was a somewhat surprising finding. We do not agree that our findings are correlative. We specifically ablated C3aR1 in macrophages or Kupffer cells and found no significant differences in the major readouts of steatosis and fibrosis for MASLD/MASH between control and knockout mice. It is possible that in other models of liver injury that we did not test (e.g., short-term treatment with a hepatotoxin such as carbon tetrachloride), there may be differences in liver injury in mice lacking C3ar1 in macrophages, but the GAN diet model has been shown to better parallel the gene expression changes in human MAFLD/MASH.

      Reviewer #2 (Public review):

      Summary:

      Homan et al. examined the effect of macrophage- or Kupffer cell-specific C3aR1 KO on MASLD/MASHrelated metabolic or liver phenotypes. 

      Strengths:

      Established macrophage- or Kupffer cell-specific C3aR1 KO mice. 

      Weaknesses:

      Lack of in-depth study; flaws in comparisons between KC-specific C3aR1KO and WT in the context of MASLD/MASH, because MASLD/MASH WT mice likely have a low abundance of C3aR1 on KCs. 

      Homan et al. reported a set of observation data from macrophage or Kupffer cell-specific C3aR1KO mice. Several questions and concerns as follows could challenge the conclusions of this study: 

      (1) As C3aR1 is robustly repressed in MASLD or MASH liver, GAN feeding likely reduced C3aR1 abundance in the liver of WT mice. Thus, it is not surprising that there were no significant differences in liver phenotypes between WT vs. C3aR1KO mice after prolonged GAN diet feeding. It would give more significance to the study if restoring C3aR1 abundance in KCs in the context of MASLD/MASH. 

      GAN diet feeding resulted in higher liver C3ar1 compared to regular diet (Figure 1H). This thus became an impetus for studying the effects of C3ar1 deletion in macrophages or Kupffer cells, which are responsible for the majority of liver C3ar1 expression, in MASLD/MASH (Figures 2B and 3H).  

      (2) Would C3aR1KO mice develop liver abnormalities after a short period of GAN diet feeding?  

      We did not assess if short term GAN diet feeding resulted in significant differences in liver abnormalities in the C3ar1 macrophage or Kupffer cell knockout mice. Perhaps the reviewer’s point is that perhaps with shorter periods of GAN diet feeding there may be a phenotype in the KO mice. We agree that this is entirely possible, though with shorter feeding timeframes what is typically seen is hepatic steatosis without fibrosis. Nevertheless, the most important element in our opinion for a disease preventing or modifying model lies with the longer-term GAN diet feeding. With long term GAN diet feeding that has been previously shown to model human MASLD/MASH, we did not observe significant differences in liver abnormalities with the KO mice.

      (3) What would be the liver macrophage phenotypes in WT vs C3aR1KO mice after GAN feeding? 

      Similar to the above point, given the lack of a major MASLD/MASH phenotype in hepatic steatosis and fibrosis, we did not further profile the liver macrophage profiles of the macrophage or Kupffer cell C3ar1 KO mice with GAN feeding.  

      (4) In Fig 1D, >25wks GAN feeding had minimal effects on female body weight gain. These GAN-fed female mice also develop NASLD/MASH liver abnormalities? 

      We thank the reviewer for this question. In general, female GAN-fed mice develop milder MASLD/MASH abnormalities. We will include additional data in the revised manuscript.

      (5) Would C3aR1KO result in differences in liver phenotypes, including macrophage population/activation, liver inflammation, lipogenesis, in lean mice? 

      Likewise, we will include data further characterizing liver inflammation, lipogenesis and macrophages in macrophage C3ar1 KO mice under lean/regular diet conditions.

      (6) The authors should provide more information regarding the generation of KC-specific C3aR1KO. Which Cre mice were used to breed with C3aR1 flox mice? 

      Clec4f-Cre transgenic mice were used to generate Kupffer cell specific KO of C3ar1. This will be clarified and explicitly stated in the revised manuscript.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This study puts forth the model that under IFN-B stimulation, liquid-phase WTAP coordinates with the transcription factor STAT1 to recruit MTC to the promoter region of interferon-stimulated genes (ISGs), mediating the installation of m6A on newly synthesized ISG mRNAs. This model is supported by strong evidence that the phosphorylation state of WTAP, regulated by PPP4, is regulated by IFN-B stimulation, and that this results in interactions between WTAP, the m6A methyltransferase complex, and STAT1, a transcription factor that mediates activation of ISGs. This was demonstrated via a combination of microscopy, immunoprecipitations, m6A sequencing, and ChIP. These experiments converge on a set of experiments that nicely demonstrate that IFN-B stimulation increases the interaction between WTAP, METTL3, and STAT1, that this interaction is lost with the knockdown of WTAP (even in the presence of IFN-B), and that this IFN-B stimulation also induces METTL3-ISG interactions.

      Strengths:

      The evidence for the IFN-B stimulated interaction between METTL3 and STAT1, mediated by WTAP, is quite strong. Removal of WTAP in this system seems to be sufficient to reduce these interactions and the concomitant m6A methylation of ISGs. The conclusion that the phosphorylation state of WTAP is important in this process is also quite well supported.

      Weaknesses:

      The evidence that the above mechanism is fundamentally driven by different phase-separated pools of WTAP (regulated by its phosphorylation state) is weaker. These experiments rely relatively heavily on the treatment of cells with 1,6-hexanediol, which has been shown to have some off-target effects on phosphatases and kinases (PMID 33814344).

      Given that the model invoked in this study depends on the phosphorylation (or lack thereof) of WTAP, this is a particularly relevant concern.

      Related to this point, it is also interesting (and potentially concerning for the proposed model) that the initial region of WTAP that was predicted to be disordered is in fact not the region that the authors demonstrate is important for the different phase-separated states. Taking all the data together, it is also not clear to me that one has to invoke phase separation in the proposed mechanism.

      We are grateful for the Reviewer’s positive comment and constructive feedback. In this article, we claim a novel and important mechanism that de-phosphorylation-driven solid to liquid phase transition of WTAP mediates its co-transcriptional m6A modification. We first observed that WTAP underwent phase transition during virus infection and IFN-β stimulation, and confirmed the phase transition driven force of WTAP through multiple experiments. Besides 1,6‐hexanediol (1,6-hex) treatment, we also introduced S/T to D/A mutations to mimic the phosphorylation and de-phosphorylation WTAP in vitro and in cells, identified 5ST-D mutant as SLPS mutant, and 5ST-A mutant as LLPS mutant. We then performed 1,6-hex experiment to confirm the importance of phase separation for WTAP function, and revealed that 5ST-D SLPS mutant and 5ST-A LLPS mutant had different influence on WTAP-promoter region interaction and co-transcriptional m6A modification. Following the reviewer’s suggestion, we need to further clarify the phosphorylation of WTAP phase separation. We plan to repeat the experiments by introducing potent PP4 inhibitor, fostriecin, and performed further experiments to explore the effect of WTAP IDR domain, which is reported to play a critical role for its phase separation.

      1,6-hex was initially considered as the inhibitor of hydrophobic interaction which involved in various kinds of protein-protein interaction, indicating that off-target effects of 1,6-hex was inevitable. It is reported that 1,6-hex impaired RNA pol II CTD specific phosphatase and kinase activity at 5% concentration3. However, 1,6-hex is still widely used in the LLPS-associated functional studies despite its off-target effect. Related to this article, 10% 1,6-hex was reported to dissolve WTAP phase separation droplets2. Beside WTAP, 1,6-hex (5%-10% w/v) was also used to explore the phase separation characteristic and function on phosphorylated protein or even kinase, including p‐tau441, TAZ, HSF1 and so on4-6. 10% 1,6-hex inhibited the crucial role of phosphorylation-driven HSF1 LLPS in chromatin binding and transcriptional process presented by RNA-seq dataset6, indicating the function on kinase or phosphatase of 1,6-hex might not a global effect. To avoid the 1,6-hex-mediated kinase/phosphatase impairment in this project, we introduced the WTAP SLPS mutation and LLPS mutation besides 1,6-hex treatment to explore the m6A modification function of WTAP phase transition. We plan to repeat the experiments by lower the 1,6-hex concentration, check the WTAP phosphorylation status after 1,6-hex treatment, and discuss them in the discussion part.

      A considerable number of proteins undergo phase separation via interactions between intrinsically disordered regions (IDRs). IDR contains more charged and polar amino acids to present multiple weakly interacting elements, while lacking hydrophobic amino acids to show flexible conformations7. In our article, we used PLAAC websites (http://plaac.wi.mit.edu/) to predict IDR domain of WTAP, and a fragment (234-249 amino acids) was predicted as prion-like domain. However, deletion of this fragment failed to abolish the phase separation properties of WTAP, which might be the main confusion to reviewers. To explain this issue, we checked the WTAP structure (within part of MTC complex) from protein data bank (https://www.rcsb.org/structure/7VF2) and found that prediction of IDR has been renewed due to the update of different algorithm. IDR of WTAP has expanded to 245-396 amino acids, containing the whole CTD region. According to our results, lack of CTD inhibited WTAP liquid-liquid phase separation both in vitro and in cells, while the phosphorylation status on CTD had dramatic impact on WTAP phase transition, which was consistent with the LLPS-regulating function of IDR. Therefore, we will revise our description on WTAP IDR, and performed further experiment to test its function.

      Taken together, given the highly association between WTAP phosphorylation with phase separation status and its function during IFN-β stimulation, it is necessary to involve WTAP phase separation in our mechanism. We will perform further experiments to propose more convincing evidence and perfect our project.

      Reviewer #2 (Public review):

      In this study, Cai and colleagues investigate how one component of the m6A methyltransferase complex, the WTAP protein, responds to IFNb stimulation. They find that viral infection or IFNb stimulation induces the transition of WTAP from aggregates to liquid droplets through dephosphorylation by PPP4. This process affects the m6A modification levels of ISG mRNAs and modulates their stability. In addition, the WTAP droplets interact with the transcription factor STAT1 to recruit the methyltransferase complex to ISG promoters and enhance m6A modification during transcription. The investigation dives into a previously unexplored area of how viral infection or IFNb stimulation affects m6A modification on ISGs. The observation that WTAP undergoes a phase transition is significant in our understanding of the mechanisms underlying m6A's function in immunity. However, there are still key gaps that should be addressed to fully accept the model presented.

      Major points:

      (1) More detailed analyses on the effects of WTAP sgRNA on the m6A modification of ISGs:

      a. A comprehensive summary of the ISGs, including the percentage of ISGs that are m6A-modified. merip-isg percentage

      b. The distribution of m6A modification across the ISGs. topology

      c. A comparison of the m6A modification distribution in ISGs with non-ISGs. topology

      In addition, since the authors propose a novel mechanism where the interaction between phosphorylated STAT1 and WTAP directs the MTC to the promoter regions of ISGs to facilitate co-transcriptional m6A modification, it is critical to analyze whether the m6A modification distribution holds true in the data.

      We appreciate the reviewer‘s summary of our manuscript and the constructive assessment. We plan to perform the related analysis accordingly to present the m6A modification in ISGs in our model. 

      (2) Since a key part of the model includes the cytosol-localized STAT1 protein undergoing phosphorylation to translocate to the nucleus to mediate gene expression, the authors should focus on the interaction between phosphorylated STAT1 and WTAP in Figure 4, rather than the unphosphorylated STAT1. Only phosphorylated STAT1 localizes to the nucleus, so the presence of pSTAT1 in the immunoprecipitate is critical for establishing a functional link between STAT1 activation and its interaction with WTAP.

      We plan to repeat the immunoprecipitation experiments to clarify the function of pSTAT1 in WTAP interaction and m6A modification as the reviewer suggested.

      (3) The authors should include pSTAT1 ChIP-seq and WTAP ChIP-seq on IFNb-treated samples in Figure 5 to allow for a comprehensive and unbiased genomic analysis for comparing the overlaps of peaks from both ChIP-seq datasets. These results should further support their hypothesis that WTAP interacts with pSTAT1 to enhance m6A modifications on ISGs.

      We first performed the MeRIP-seq and RNA-seq and explored the critical role of WTAP in ISGs m6A modification and expression. By immunoprecipitation and immunofluorescence experiments, we found phase transition of WTAP enhanced its interaction to pSTAT1. These results indicate that WTAP mediated ISGs m6A modification and expression by enhanced its interaction with pSTAT1 during virus infection and IFN-β stimulation. However, we were still not sure how WTAP-mediated m6A modification related to pSTAT1-mediated transcription. By analyzing METTL3 ChIP-seq data or caPAR-CLIP-seq data, several researches have revealed the recruitment of m6A methylation complex (MTC) to transcription start sites (TSS) of coding genes and R-loop structure by interacting with transcriptional factors STAT5B or DNA helicase DDX21, indicating the engagement of MTC mediated m6A modification on nascent transcripts at the very beginning of transcription 8-10. Thus, we proposed that phase transition of WTAP could be recruited to the ISGs promoter region by pSTAT1, and verified this hypothesis by pSTAT1/WTAP-ChIP-qPCR. We believe ChIP-seq experiment is a good idea to explore the mechanism in depth, but the results in this article for now are enough to explain our mechanism. We will continuously focus on the whole genome chromatin distribution of WTAP and explore more functional effect of transcriptional factor-dependent WTAP-promoter region interaction in t.

      Minor points:

      (1) Since IFNb is primarily known for modulating biological processes through gene transcription, it would be informative if the authors discussed the mechanism of how IFNb would induce the interaction between WTAP and PPP4.

      (2) The authors should include mCherry alone controls in Figure 1D to demonstrate that mCherry does not contribute to the phase separation of WTAP. Does mCherry have or lack a PLD?

      (3) The authors should clarify the immunoprecipitation assays in the methods. For example, the labeling in Figure 2A suggests that antibodies against WTAP and pan-p were used for two immunoprecipitations. Is that accurate?

      (4) The authors should include overall m6A modification levels quantified of GFPsgRNA and WTAPsgRNA cells, either by mass spectrometry (preferably) or dot blot.

      We thank reviewer for raising these useful suggestions. We will perform related experiments and revised the manuscript carefully the as reviewer suggested.

      Reviewer #3 (Public review):

      Summary:

      This study presents a valuable finding on the mechanism used by WTAP to modulate the IFN-β stimulation. It describes the phase transition of WTAP driven by IFN-β-induced dephosphorylation. The evidence supporting the claims of the authors is solid, although major analysis and controls would strengthen the impact of the findings. Additionally, more attention to the figure design and to the text would help the reader to understand the major findings.

      Strength:

      The key finding is the revelation that WTAP undergoes phase separation during virus infection or IFN-β treatment. The authors conducted a series of precise experiments to uncover the mechanism behind WTAP phase separation and identified the regulatory role of 5 phosphorylation sites. They also succeeded in pinpointing the phosphatase involved.

      Weaknesses:

      However, as the authors acknowledge, it is already widely known in the field that IFN and viral infection regulate m6A mRNAs and ISGs. Therefore, a more detailed discussion could help the reader interpret the obtained findings in light of previous research.

      It is well-known that protein concentration drives phase separation events. Similarly, previous studies and some of the figures presented by the authors show an increase in WTAP expression upon IFN treatment. The authors do not discuss the contribution of WTAP expression levels to the phase separation event observed upon IFN treatment. Similarly, METTL3 and METTL14, as well as other proteins of the MTC are upregulated upon IFN treatment. How does the MTC protein concentration contribute to the observed phase separation event?

      How is PP4 related to the IFN signaling cascade?

      In general, it is very confusing to talk about WTAP KO as WTAPgRNA.

      We are grateful for the positive comments and the unbiased advice by reviewer. To interpret the findings in previous research, we will revise the manuscript carefully and preform more detailed discussion on ISGs m6A modification during virus infection or IFN stimulation. As previous reported, WTAP protein level will be induced by long time IFN-β stimulation or LPS stimulation, while LPS-induced WTAP expression promoted its phase separation ability2,11. Although there was no significant upregulation of WTAP expression level in our short time treatment, we hypothesized that WTAP phase separation will be promoted due to higher protein concentration after long time IFN stimulation, enhancing m6A modification deposition on ISGs mRNA, revealing a feedback loop between WTAP phase separation and m6A modification during specific stimulation. To discuss the effect of MTC protein concentration in our proposed event, we will perform immunoblotting experiments of MTC proteins and check the phase separation effect in different WTAP concentration.

      Protein phosphatase 4 (PP4) is a multi-subunit Ser/Thr phosphatase complex that participate in diverse cellular pathways including DDR, cell cycle progression, and apoptosis12. Protein phosphatase 4 catalytic subunit 4C (PPP4C) is one of the components of PP4 complex. Previous research showed that knockout of PPP4C enhanced IFN-β downstream signaling and gene expression, which was consistent with our findings that knockdown of PPP4C impaired WTAP-mediated m6A modification, enhanced the ISGs expression. Since there was no significant enhancement in PPP4C expression level during IFN-β stimulation in our results, we will consider to explore the post-translation modification that may influence the protein-protein interaction, such as ubiquitination.

      In this project, all the WTAP-deficient THP-1 cells were bulk cells treated with WTAPsgRNA, but not monoclonal knockout cells. We confirmed that WTAP expression was efficiently knockdown in WTAPsgRNA THP-1 cells, and the m6A modification level has been impaired, avoiding the compensatory effect on m6A modification by other possible proteins. Thus, we prefer to call it WTAPsgRNA THP-1 cells rather than WTAP KO THP-1 cells.  

      References

      (1) Raja, R., Wu, C., Bassoy, E.Y., Rubino, T.E., Jr., Utagawa, E.C., Magtibay, P.M., Butler, K.A., and Curtis, M. (2022). PP4 inhibition sensitizes ovarian cancer to NK cell-mediated cytotoxicity via STAT1 activation and inflammatory signaling. J Immunother Cancer 10. 10.1136/jitc-2022-005026.

      (2) Ge, Y., Chen, R., Ling, T., Liu, B., Huang, J., Cheng, Y., Lin, Y., Chen, H., Xie, X., Xia, G., et al. (2024). Elevated WTAP promotes hyperinflammation by increasing m6A modification in inflammatory disease models. J Clin Invest 134. 10.1172/JCI177932.

      (3) Duster, R., Kaltheuner, I.H., Schmitz, M., and Geyer, M. (2021). 1,6-Hexanediol, commonly used to dissolve liquid-liquid phase separated condensates, directly impairs kinase and phosphatase activities. J Biol Chem 296, 100260. 10.1016/j.jbc.2021.100260.

      (4) Wegmann, S., Eftekharzadeh, B., Tepper, K., Zoltowska, K.M., Bennett, R.E., Dujardin, S., Laskowski, P.R., MacKenzie, D., Kamath, T., Commins, C., et al. (2018). Tau protein liquid-liquid phase separation can initiate tau aggregation. The EMBO journal 37. 10.15252/embj.201798049.

      (5) Lu, Y., Wu, T., Gutman, O., Lu, H., Zhou, Q., Henis, Y.I., and Luo, K. (2020). Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat Cell Biol 22, 453-464. 10.1038/s41556-020-0485-0.

      (6) Zhang, H., Shao, S., Zeng, Y., Wang, X., Qin, Y., Ren, Q., Xiang, S., Wang, Y., Xiao, J., and Sun, Y. (2022). Reversible phase separation of HSF1 is required for an acute transcriptional response during heat shock. Nat Cell Biol 24, 340-352. 10.1038/s41556-022-00846-7.

      (7) Hou, S., Hu, J., Yu, Z., Li, D., Liu, C., and Zhang, Y. (2024). Machine learning predictor PSPire screens for phase-separating proteins lacking intrinsically disordered regions. Nat Commun 15, 2147. 10.1038/s41467-024-46445-y.

      (8) Hao, J.D., Liu, Q.L., Liu, M.X., Yang, X., Wang, L.M., Su, S.Y., Xiao, W., Zhang, M.Q., Zhang, Y.C., Zhang, L., et al. (2024). DDX21 mediates co-transcriptional RNA m(6)A modification to promote transcription termination and genome stability. Mol Cell 84, 1711-1726 e1711. 10.1016/j.molcel.2024.03.006.

      (9) Barbieri, I., Tzelepis, K., Pandolfini, L., Shi, J., Millan-Zambrano, G., Robson, S.C., Aspris, D., Migliori, V., Bannister, A.J., Han, N., et al. (2017). Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control. Nature 552, 126-131. 10.1038/nature24678.

      (10) Bhattarai, P.Y., Kim, G., Lim, S.C., and Choi, H.S. (2024). METTL3-STAT5B interaction facilitates the co-transcriptional m(6)A modification of mRNA to promote breast tumorigenesis. Cancer Lett 603, 217215. 10.1016/j.canlet.2024.217215.

      (11) Ge, Y., Ling, T., Wang, Y., Jia, X., Xie, X., Chen, R., Chen, S., Yuan, S., and Xu, A. (2021). Degradation of WTAP blocks antiviral responses by reducing the m(6) A levels of IRF3 and IFNAR1 mRNA. EMBO Rep 22, e52101. 10.15252/embr.202052101.

      (12) Dong, M.Z., Ouyang, Y.C., Gao, S.C., Ma, X.S., Hou, Y., Schatten, H., Wang, Z.B., and Sun, Q.Y. (2022). PPP4C facilitates homologous recombination DNA repair by dephosphorylating PLK1 during early embryo development. Development 149. 10.1242/dev.200351.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Although this study provides a comprehensive outlook on the ETC function in various tissues, the main caveat is that it's too technical and descriptive. The authors didn't invest much effort in putting their findings in the context of the biological function of the tissue analyzed, i.e., some tissues might be more glycolytic than others and have low ETC activity.

      To better contextualize our results, we have added substantial amount of new information to the Discussion Section.

      Also, it is unclear what slight changes in the activity of one or the other ETC complex mean in terms of mitochondrial ATP production.

      Unfortunately, the method we used can only determine oxygen consumption rate through complex I (CI), CII, or CIV. It cannot tell us about ATP production. This method only measures maximal uncoupled respiration.

      Likely, these small changes reported do not affect the mitochondrial respiration.

      We are indeed looking at mitochondrial respiration. Some changes are more dramatic while others are much more modest. We are looking at the normal aging process across tissues (focusing on mitochondrial respiration) and not pathological states. As such, we expect many of the changes in mitochondrial respiration across tissues to be mild or relatively modest. After all, aging is slow and progressive. In fact, the variations we observed in mitochondrial respiration across tissues are consistent with the known heterogenous rate of aging across tissues.

      With such a detailed dataset, the study falls short of deriving more functionally relevant conclusions about the heterogeneity of mitochondrial function in various tissues. In the current format, the readers get lost in the large amount of data presented in a technical manner.

      We agree that the paper contains a large amount of information. In the revised manuscript, we did our best to contextualize our results by substantially expanding the Discussion Section.

      Also, it is highly recommended that all the raw data and the values be made available as an Excel sheet (or other user-friendly formats) as a resource to the community.

      We included all the data in two excel sheets (Figure 1 – data source 1; Figure 1 – data source 2). We presented them in such as way that it will be easy for other investigators to follow and re-use our dataset in their own studies for comparison.

      Major concerns

      (1) In this study, the authors used the method developed by Acin-Perez and colleagues (EMBO J, 2020) to analyze ETC complex activities in mitochondria derived from the snap-frozen tissue samples. However, the preservation of cellular/mitochondrial integrity in different types of tissues after being snap-frozen was not validated.

      All the samples are actually maximally preserved due to being snap frozen. Freezing the samples disrupts the mitochondria to produce membrane fragments. Subsequent thawing, mincing, and homogenization in a non-detergent based buffer (mannose-sucrose) ensures that all tissue samples are maximally disrupted into fragments which contain ETC units in various combinations. This allows the assay to give an accurate representation of maximal respiratory capacity given the ETC units present in a tissue sample.

      Since aging has been identified as the most important effector in this study, it is essential to validate how aging affects respiration in various fresh frozen tissues. Such analysis will ensure that the results presented are not due to the differential preservation of the mitochondrial respiration in the frozen tissue. In addition, such validations will further strengthen the conclusions and promote the broad usability of this "new" method.

      The reason we adopted this method is because it has been rigorously validated in the original publication (PMID: 32432379) and a subsequent methods paper (PMID: 33320426). The authors in the original paper benchmarked their frozen tissue method with freshly isolated mitochondria from the same set of tissues. Their work showed highly comparable mitochondrial respiration from frozen tissues and isolated mitochondria. For this reason, we did not repeat those validation studies.

      (2) In this study, the authors sampled the maximal activity of ETC complex I, II, and IV, but throughout the manuscript, they discussed the data in the context of mitochondrial function.

      We apologize that we did not make it clearer in our manuscript. We corrected this in our revised manuscript (the Discussion Section). Our method we measure respiration starting at Complex I (CI; via NADH), starting at CII (via succinate), or starting at CIV (using TMPD and ascorbate). Regardless of whether electrons (donated by the substrate) enter the respiratory chain through CI, CII or CIV, oxygen (as the final electron acceptor) is only consumed at CIV. Therefor, the method measures mitochondrial respiration and function through CI, CII, or CIV. This high-resolution respirometry analysis method is different from the classic enzymatic method of assessing CI, CII, or CIV activity individually; the enzymatic method does not actually measure oxygen consumption due to electrons flowing through the respiratory complexes.

      However, it is unclear how the changes in CI, CII, and CIV activity affect overall mitochondrial function (if at all) and how small changes seen in the maximal activity of one or more complexes affect the efficiency and efficacy of ATP production (OxPhos).

      Please see the preceding response to the previous question. The method is measuring mitochondrial respiration through CI, CII or CIV. The limitation of this method is that it is maximal uncoupled respiration; namely, mitochondrial respiration is not coupled to ATP synthesis since the measurements are not performed on intact mitochondria. As such, we cannot say anything about the efficiency and efficacy of ATP production. This will be an interesting future studies to further investigating tissue level variations of mitochondrial OXPHOS.

      The authors report huge variability between the activity of different complexes - in some tissues all three complexes (CI, CII, and CIV) and often in others, just one complex was affected. For example, as presented in Figure 4, there is no difference in CI activity in the hippocampus and cerebellum, but there is a slight change in CII and CIV activity. In contrast, in heart atria, there is a change in the activity of CI but not in CII and CIV. However, the authors still suggest that there is a significant difference in mitochondrial activity (e.g., "Old males showed a striking increase in mitochondrial activity via CI in the heart atria....reduced mitochondrial respiration in the brain cortex..." - Lines 5-7, Page 9). Until and unless a clear justification is provided, the authors should not make these broad claims on mitochondrial respiration based on small changes in the activity of one or more complexes (CI/CII/CIV). With such a data-heavy and descriptive study, it is confusing to track what is relevant and what is not for the functioning of mitochondria.

      We have attempted to address these issues in the revised Discussion section.

      (3) What do differences in the ETC complex CI, CII, and CIV activity in the same tissue mean? What role does the differential activity of these complexes (CI, CII, and CIV) play in mitochondrial function? What do changes in Oxphos mean for different tissues? Does that mean the tissue (cells involved) shift more towards glycolysis to derive their energy? In the best world, a few experiments related to the glycolytic state of the cells would have been ideal to solidify their finding further. The authors could have easily used ECAR measurements for some tissues to support their key conclusions.

      We have attempted to address these issues in the revised Discussion section. The frozen tissue method does not involve intact mitochondria. As such, the method cannot measure ECAR, which requires the presence of intact mitochondria.

      (4) The authors further analyzed parameters that significantly changed across their study (Figure 7, 98 data points analyzed). The main caveat of such analysis is that some tissue types would be represented three or even more times (due to changes in the activity of all three complexes - CI, CII, and CIV, and across different ages and sexes), and some just once. Such a method of analysis will skew the interpretation towards a few over-represented organ/tissue systems. Perhaps the authors should separately analyze tissue where all three complexes are affected from those with just one affected complex.

      Figure 7 summarizes the differences between male vs female, and between young vs old. All the tissue-by-tissue comparisons (data separated by CI-linked respiration, CII-linked respiration, and CIV-linked respiration) can be found in earlier figures (Figure 1-6).

      The focus of Figure 7 is to helps us better appreciate all the changes seen in the preceding Figure 1-6:

      Panel A and B indicate all changes that are considered significant

      Panel C indicates total tissues with at least one significantly affected respiration

      Panel D indicates total magnitude of change (i.e., which tissue has the highest OCR) offering a non-relative view

      Panel E indicates whole body separations

      Panel F indicates whole body separations and age vs sex clustering

      (5) The current protocol does not provide cell-type-specific resolution and will be unable to identify the cellular source of mitochondrial respiration. This becomes important, especially for those organ systems with tremendous cellular heterogeneity, such as the brain. The authors should discuss whether the observed changes result from an altered mitochondria respiratory capacity or if changes in proportions of cell types in the different conditions studied (young vs. aged) might also contribute to differential mitochondrial respiration.

      We agree with the reviewer that this is a limitation of the method. We have addressed this issue in the revised Discussion section.

      (6) Another critical concern of this study is that the same datasets were repeatedly analyzed and reanalyzed throughout the study with almost the same conclusion - namely, aging affects mitochondrial function, and sex-specific differences are limited to very few organs. Although this study has considerable potential, the authors missed the chance to add new insights into the distinct characteristics of mitochondrial activity in various tissue and organ systems. The author should invest significant efforts in putting their data in the context of mitochondrial function.

      We have attempted to address these issues in the revised Discussion section.

      Reviewer #2 (Public Review):

      Summary:

      The authors utilize a new technique to measure mitochondrial respiration from frozen tissue extracts, which goes around the historical problem of purifying mitochondria prior to analysis, a process that requires a fair amount of time and cannot be easily scaled up.

      Strengths:

      A comprehensive analysis of mitochondrial respiration across tissues, sexes, and two different ages provides foundational knowledge needed in the field.

      Weaknesses:

      While many of the findings are mostly descriptive, this paper provides a large amount of data for the community and can be used as a reference for further studies. As the authors suggest, this is a new atlas of mitochondrial function in mouse. The inclusion of a middle aged time point and a slightly older young point (3-6 months) would be beneficial to the study.

      We agreed with the reviewer that inclusion of additional time points (e.g., 3-6 months) would further strengthen the study. However, the cost, labor, and time associated with another set of samples (660 tissue samples from male and female mice and 1980 respirometry assays) are too high for our lab with limited budget and manpower. Regrettably, we will not be able to carry out the extra work as requested by the reviewer.  

      Reviewer #3 (Public Review):

      The aim of the study was to map, a) whether different tissues exhibit different metabolic profiles (this is known already), what differences are found between female and male mice and how the profiles changes with age. In particular, the study recorded the activity of respirasomes, i.e. the concerted activity of mitochondrial respiratory complex chains consisting of CI+CIII2+CIV, CII+CIII2+CIV or CIV alone.

      The strength is certainly the atlas of oxidative metabolism in the whole mouse body, the inclusion of the two different sexes and the comparison between young and old mice. The measurement was performed on frozen tissue, which is possible as already shown (Acin-Perez et al, EMBO J, 2020).

      Weakness:

      The assay reveals the maximum capacity of enzyme activity, which is an artificial situation and may differ from in vivo respiration, as the authors themselves discuss. The material used was a very crude preparation of cells containing mitochondria and other cytosolic compounds and organelles. Thus, the conditions are not well defined and the respiratory chain activity was certainly uncoupled from ATP synthesis. Preparation of more pure mitochondria and testing for coupling would allow evaluation of additional parameters: P/O ratios, feedback mechanism, basal respiration, and ATP-coupled respiration, which reflect in vivo conditions much better. The discussion is rather descriptive and cautious and could lead to some speculations about what could cause the differences in respiration and also what consequences these could have, or what certain changes imply.

      Nevertheless, this study is an important step towards this kind of analysis.

      We have attempted to address some of these issues in the revised Discussion Section. The frozen tissue method can only measure maximal uncoupled respiration. Because we are not measuring mitochondrial respiration using intact mitochondria, several of the functional parameters the reviewer alluded to (e.g., P/O ratios, feedback mechanism, basal respiration, and ATP-coupled respiration) simply cannot be obtained with the current set of samples. Nevertheless, we agree that all the additional data (if obtained) would be very informative.

      Reviewer #1 (Recommendations For The Authors):

      (1) For most of the comparative analysis, the authors normalized OCR/min to MitoTracker Deep RedFM (MTDR) fluorescence intensity. Why was the data normalized to the total protein content not used for comparative analysis? Is there a correlation between MTDR fluorescence and the protein content across different tissues?

      Given that we used the crude extract method, total protein content does not equal total mitochondrial protein content. This is why the MTDR method was used, as this represents a high throughput method of assessing mitochondrial mass in this volume of samples. In general, the total protein concentration is used to ensure the respiration intensity was approximately the same across all samples loaded into the Seahorse machine.

      (2) To test the mitochondrial isolation yield, the authors should run immunoblot against canonical mitochondrial proteins in both homogenates and mitochondrial-containing supernatants and show that the protocol followed effectively enriched mitochondria in the supernatant fraction. This would also strengthen the notion that the "µg protein" value used to normalize the total mitochondrial content comes from isolated mitochondria and not other extra-mitochondrial proteins.

      Because we are using crude tissue lysate (from frozen tissue), the total ug protein content does not come from isolated mitochondria; for this reason, it was not used and this is why MTDR was. Total mitochondrial protein content is subject to change depending on tissue for non-mitochondrial reasons. This method does not use isolated mitochondria; we only use tissue lysates enriched for mitochondrial proteins. This method has been rigorously validated in the original study (PMID: 32432379) and a subsequent methods paper (PMID: 33320426). In those studies, the authors had performed requisite quality checks the reviewer has asked for (e.g., immunoblot against canonical mitochondrial proteins in both homogenates and mitochondrial-containing supernatants to show effective enrichment of mitochondrial proteins). For this reason, we did not repeat this.

      (3) MitoTracker loads into mitochondria in a membrane potential-dependent manner. The authors should rule out the possibility that samples from different ages and sexes might have different mitochondrial membrane potentials and exhibit a differential MitoTracker loading capacity. This becomes relevant for data normalization based on MTDR (MTDR/µg protein) since it was assumed that loading capacity is the same for mitochondria across different tissue and age groups.

      MitoTracker Deep Red is not membrane potential dependent and can be effectively used to quantify mitochondrial mass even when mitochondrial membrane potential is lost. This is highlighted in the original study (PMID: 32432379).

      (4) Page 11, line 3 typo - across, not cross.

      Response: We have fixed the typo.

      Reviewer #2 (Recommendations For The Authors):

      If possible, I would include a middle aged time point between 12 and 14 months of age.

      We agreed with reviewer that inclusion of additional time points (e.g., 3-6 months) would further strengthen the study. However, the cost, labor, and time associated with another set of samples (660 tissue samples from male and female mice and 1980 respirometry assays) are too high for our lab with limited budget and manpower. Regrettably, we will not be able to carry out the extra work as requested by the reviewer. 

      Reviewer #3 (Recommendations For The Authors):

      Overall, the work is well done and the data are well processed making them easy to understand. Some minor adjustments would improve the manuscript further:

      - Significance OCR in Figure 2, maybe add error bars?

      We have added the error bars and statistical significance to revised Figure 2.

      - Tissue comparison A-C, right panel: graphs are cropped

      We are not sure what the reviewer meant here. We have double checked all our revised figures to make sure nothing is accidentally cropped.

      - Heart ventricle: Old males and females have higher CI- and CII-dependent respiration than young males and females? Only CIV respiration is lower?

      Comparing old to young male or female heart ventricle respiration via CI or CII shows an increase in maximal capacity with age. CIV-linked respiration is in the upward direction as well, although not significant, when comparing old to young. When comparing the respiration values among themselves within a mouse, i.e. old male CI- or CII-linked respiration compared to old male CIV- linked respiration, we can see that the old male CIV-linked respiration is very similar. When comparing the same in the old female mouse, there appears to be something special about electrons entering through CI as compared to CII or CIV, as CI-linked respiration appears to be elevated compared to both CII and CIV. Although we do not know if this is significantly different, the trend in the data is clear. We do not know the exact reason as to why this occurred in the heart ventricles. To differing degrees, the connected nature of CI-, CII-, and CIV-linked respirations seems to be in a generally similar style in most skeletal muscles as well, and the old male heart atria. Again, the root of this discrepancy is unknown and potentially indicates an interesting physiologic trait of certain types of muscle and merits further exploration.

      - What is plotted in Fig.3: The mean of all OCR of all tissues? A,B,C: Plot with break in x-axis to expand the violin, add mean/median values as numbers to the graph (same for Fig4)

      The left most side of Figure 3 A, B, and C shows the average OCR/MTDR value across all tissues in a group. Each tissue assayed is represented in the violin plot as an open circle.

      - Fig. 3D: add YM/YF to graph for better understanding, same in following figures

      This is in the scale bar next to all heat maps presented in the figures. We also added to the revised figure as well to improve clarity.

      - Additional figures: x-axis title (time) is missing in OCR graphs

      Time has been added to the x axis of all additional figures for clarity.

      - Also a more general question is: where the concentrations of substrates and inhibitors optimized before starting the series of experiments?

      All the details of assay optimization was carried out in the original study (PMID: 32432379) and the subsequent methods paper (PMID: 33320426). Because we had to survey 33 different tissues, we tested and optimized the “optimal” protein concentrations we need to use; the primary goal of this was to balance enough respiration signal without too much respiration signal across all tissue types as to keep all the diverse tissues analyzed under the Seahorse machine’s capabilities of detection. Through our optimization of mostly the very high respiring tissues like heart and kidney, we were also able to prove that all substrates and inhibitors were in saturating concentrations since we could get respiration to go higher if more sample was added and that all signal could be lost in these samples with the same amount of inhibitors.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer 2:

      In addition, it is still unacceptable for me that the number of ovulated oocytes in mice at 6 months of age is only one third of young mice (10 vs 30; Fig. S1E). The most of published literature show that mice at 12 months of age still have ~10 ovulated oocytes.

      We disagree with the reviewer’s comment, and the concerns raised were not shared by the other reviewers.  We have reported our data with full transparency (each data point is plotted). In the current study, we observed an intermediate phenotype in gamete number (assessed by both ovarian follicle counts and ovulated eggs) when comparing 6 month old mice to 6 week or 10 month old mice; this is as expected. It is well accepted that follicle counts are highly mouse strain dependent.  Although the reviewer mentions that mice at 12 months have ~10 ovulated oocytes, no actual references are provided nor are the mouse strain or other relevant experimental details mentioned.  Therefore, we do not know how these quoted metrics relate to the female FVB mice used in our current study.   As clearly explained and justified in our manuscript, we used mice at 6 months and 10 months to represent a physiologic aging continuum. 

      Moreover, based on the follicle counting method used in the present study (Fig. S1D), there are no antral follicles observed in mice at 6 months and 10 months of age, which is not reasonable.

      This statement is incorrect. Antral follicles were present at 6 and 10 months of age, but due to the scale of the y-axis and the normalization of follicle number/area in Fig. S1D, the values are small.  The absolute number of antral follicles per ovary (counted in every 5th section) was 31.3 ± 3.8 follicles for 6-week old mice, 9.3 ± 2.3 follicles for 6-month old mice, and 5.3 ± 1.8 follicles for 10-month old mice.  Moreover, it is important to note that these ovaries were not collected in a specific stage of the estrous cycle, so the number of antral follicles may not be maximal.  In addition, as described in the Materials and Methods, antral follicles were only counted when the oocyte nucleus was present in a section to avoid double counting.  Therefore, this approach (which was applied consistently across samples) could potentially underestimate the total number.


      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This manuscript by Bomba-Warczak describes a comprehensive evaluation of long-lived proteins in the ovary using transgenerational radioactive labelled 15N pulse-chase in mice. The transgenerational labeling of proteins (and nucleic acids) with 15N allowed the authors to identify regions enriched in long-lived macromolecules at the 6 and 10-month chase time points. The authors also identify the retained proteins in the ovary and oocyte using MS. Key findings include the relative enrichment in long-lived macromolecules in oocytes, pregranulosa cells, CL, stroma, and surprisingly OSE. Gene ontology analysis of these proteins revealed enrichment for nucleosome, myosin complex, mitochondria, and other matrix-type protein functions. Interestingly, compared to other post-mitotic tissues where such analyses have been previously performed such as the brain and heart, they find a higher fractional abundance of labeled proteins related to the mitochondria and myosin respectively.

      Response: We thank the reviewer for this thoughtful summary of our work.  We want to clarify that our pulse-chase strategy relied on a two-generation stable isotope-based metabolic labelling of mice using 15N from spirulina algae (for reference, please see (Fornasiero & Savas, 2023; Hark & Savas, 2021; Savas et al., 2012; Toyama et al., 2013)).  We did not utilize any radioactive isotopes.

      Strengths:

      A major strength of the study is the combined spatial analyses of LLPs using histological sections with MS analysis to identify retained proteins.

      Another major strength is the use of two chase time points allowing assessment of temporal changes in LLPs associated with aging.

      The major claims such as an enrichment of LLPs in pregranulosa cells, GCs of primary follicles, CL, stroma, and OSE are soundly supported by the analyses, and the caveat that nucleic acids might differentially contribute to this signal is well presented.

      The claims that nucleosomes, myosin complex, and mitochondrial proteins are enriched for LLPs are well supported by GO enrichment analysis and well described within the known body of evidence that these proteins are generally long-lived in other tissues.

      Weaknesses:

      Comment 1: One small potential weakness is the lack of a mechanistic explanation of if/why turnover may be accelerating at the 6-10 month interval compared to 1-6.

      Response 1: At the 6-month time point, we detected more long lived proteins than the 10 month time point in both the ovary and the oocyte.  We anticipated this because proteins are degraded over time, and substantially more time has elapsed at the later time point.  Moreover, at the 6–10-month time point, age-related tissue dysfunction is already evident in the ovary.  For example, in 6-9 month old mice, there is already a deterioration of chromosome cohesion in the egg which results in increased interkinetochore distances (Chiang et al., 2010), and by 10 months, there are multinucleated giant cells present in the ovarian stroma which is consistent with chronic inflammation (Briley et al., 2016).  Thus, the observed changes in protein dynamics may be another early feature of aging progression in the ovary.  

      Comment 2: A mild weakness is the open-ended explanation of OSE label retention. This is a very interesting finding, and the claims in the paper are nuanced and perfectly reflect the current understanding of OSE repair. However, if the sections are available and one could look at the spatial distribution of OSE signal across the ovarian surface it would interesting to note if label retention varied by regions such as the CLs or hilum where more/less OSE division may be expected. 

      Response 2: We agree that the enrichment of long-lived molecules in the OSE is interesting. To make interpretable conclusions about the dynamics of long-lived molecules in the OSE, we would need to generate a series of samples at precise stages of the estrous cycle or ideally across a timecourse of ovulation to capture follicular rupture and repair.  These samples do not currently exist and are beyond the scope of this study. However, this idea is an important future direction and it has been added to the discussion (lines 221-223). Furthermore, from a practical standpoint, MIMS imaging is resource and time intensive. Thus, we are not able to readily image entire ovarian sections.  Instead, we focused on structures within the ovary and took select images of follicles, stroma, and OSE.  We, therefore, do not have a comprehensive series of images of the OSE from the entire ovarian section for each mouse analyzed.

      Reviewer #2 (Public Review):

      Summary:

      The manuscript by Bomba-Warczak et al. applied multi-isotope imaging mass spectrometry (MIMS) analysis to identify the long-lived proteins in mouse ovaries during reproductive aging, and found some proteins related to cytoskeletal and mitochondrial dynamics persisting for 10 months.

      Response: We thank the reviewer for their summary and feedback.

      Strengths:

      The manuscript provides a useful dataset about protein turnover during ovarian aging in mice.

      Weaknesses:

      Comment 1: The study is pretty descriptive and short of further new findings based on the dataset. In addition, some results such as the numbers of follicles and ovulated oocytes in aged mice are not consistent with the published literature, and the method for follicle counting is not accurate. The conclusions are not fully supported by the presented evidence.

      Response 1: We agree with the reviewer that this study is descriptive. Our goal, as stated, was to use a discovery-based approach to define the long-lived proteome of the ovary and oocyte across a reproductive aging continuum.  As the prominent aging researcher, Dr. James Kirkland, stated: “although ‘descriptive’ is sometimes used as a pejorative term…descriptive or discovery research leading to hypothesis generation has become highly sophisticated and of great relevance to the aging field (Kirkland, 2013).”  We respectfully disagree with the reviewer that our study is short of new findings. In fact, this is the first time that a stable two-generation stable isotope-based metabolic labelling of mice in combination with two different state-of-the-art mass spectrometry methods has been used to identify and localize long lived molecules in the ovary and oocyte along this particular reproductive aging continuum in an unbiased manner.  We have identified proteins groups that were previously not known to be long lived in the ovary and oocyte.  Our hope is that this long-lived proteome will become an important hypothesis-generating resource for the field of reproductive aging.

      The age-dependent decline in number of follicles and eggs ovulated in mice has been well established by our group as well as others (Duncan et al., 2017; Mara et al., 2020).  Thus, we are unclear about the reviewer’s comments that our results are not consistent with the published literature.  The absolute numbers of follicles and eggs ovulated as well as the rate of decline with age are highly strain dependent.  Moreover, mice can have a very small ovarian reserve and still maintain fertility (Kerr et al., 2012).  In our study, we saw a consistent age-dependent decrease in the ovarian reserve (Figure 1 – figure supplement 1 D), the number of oocytes collected from large antral follicles following hyperstimulation with PMSG (used for LC-MS/MS), and the number of eggs collected from the oviduct following hyperstimulation and superovulation with PMSG and hCG (Figure 1 – figure supplement 1 E and F).  In all cases, the decline was greater in 10 month old compared to 6 month old mice demonstrating a relative reproductive aging continuum even at these time points.

      Our research team has significant expertise in follicle classification and counting as evidenced by our publication record (Duncan et al., 2017; Kimler et al., 2018; Perrone et al., 2023; Quan et al., 2020).  We used our established methods which we have further clarified in the manuscript text (lines 395-397).  Follicle counts were performed on every 5th tissue section of serial sectioned ovaries, and 1 ovary from 3 mice per timepoint were counted. Therefore, follicle counts were performed on an average of 48-62 total sections per ovary. The number of follicles was then normalized per total area (mm2) of the tissue section, and the counts were averaged. Figure 1 – figure supplement 1 C and D represents data averaged from all ovarian sections counted per mouse.   It is important to note that the same criteria were applied consistently to all ovaries across the study, and thus regardless of the technique used, the relative number of follicles or oocytes across ages can be compared.

      Reviewer #3 (Public Review):

      Summary:

      In this study, Bomba-Warczak et al focused on reproductive aging, and they presented a map for long-lived proteins that were stable during reproductive lifespan. The authors used MIMS to examine and show distinct molecules in different cell types in the ovary and tissue regions in a 6 month mice group, and they also used proteomic analysis to present different LLPs in ovaries between these two timepoints in 6-month and 10-month mice. The authors also examined the LLPs in oocytes in the 6-months mice group and indicated that these were nuclear, cytoskeleton, and mitochondria proteins.

      Response: We thank the reviewer for their summary and feedback.

      Strengths:

      Overall, this study provided basic information or a 'map' of the pattern of long-lived proteins during aging, which will contribute to the understanding of the defects caused by reproductive aging.

      Weaknesses:

      Comment 1: The 6-month mice were used as an aged model; no validation experiments were performed with proteomics analysis only.  

      Response 1:  We did not select the 6-month time point to be representative of the “aged model” but rather one of two timepoints on the reproductive aging continuum – 6 and 10 months.  In the manuscript (Figure 1 – figure supplement 1) we have demonstrated the relevance of the two timepoints by illustrating a decrease in follicle counts, number of fully grown oocytes collected, and number of eggs ovulated as well as a tendency towards increased stromal fibrosis (highlighted in the main text lines 78-85).  Inclusion of the 6-month timepoint ultimately turned out to be informative and essential as many long-lived proteins were absent by the 10 month timepoint. These results suggest that important shifts in the proteome occur during mid to advanced reproductive age.  The relevance of these timepoints is mentioned in the discussion (lines 247-270).

      Two independent mass spectrometry approaches (MIMS and LC-MS/MS) were used to validate the presence of long-lived macromolecules in the ovary and oocyte. Studies focused on the role of specific long-lived proteins in oocyte and ovarian biology as well as how they change with age in terms of function, turnover, and modification are beyond the scope of the current study but are ongoing.  We have acknowledged these important next steps in the manuscript text (lines 286-288, 311-312).

      It is important to note, that oocytes are biomass limited cells, and their numbers decrease with age.  Thus, we had to select ages where we could still collect enough from the mice available to perform LC-MS/MS. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Comment 1: The writing and figures are beautiful - it would be hard to improve this manuscript.

      Response 1: We greatly appreciate this enthusiastic evaluation of our work.

      Comment 2: In Fig S1E/F it would help to list the N number here. Why are there 2 groups at 6-12 wk?

      Response 2:  We did not have 6 month and 10-month-old mice available at the same time to be able to run the hyperstimulation and superovulation experiment in parallel.  Therefore, we performed independent experiments comparing the number of eggs collected from either 6-month-old or 10 month old mice relative to 6-12 week old controls.  In each trial, eggs were collected from pooled oviducts from between 3-4 mice per age group, and the average total number of eggs per mouse was reported.  Each point on the graph corresponds to the data from an individual trial, and two trials were performed.  This has been clarified in the figure legend (lines 395-397).  Of note, while addressing this reviewer’s comments, we noticed that we were missing Materials and Methods regarding the collection of eggs from the oviduct following hyperstimulation and superovulation with PMSG and hCG.  This information has now been added in Methods Section, lines 477-481.

      Comment 3: The manuscript would benefit from an explanation of why the pups were kept on a 1-month N15 diet after birth, since the oocytes are already labeled before birth, and granulosa at most by day 3-4. Would ZP3 have not been identified otherwise?

      Response 3:   The pups used in this study were obtained from fully labeled female dams that were maintained on an15N diet.  These pups had to be kept with their mothers through weaning.  To limit the pulse period only through birth, the pups would have had to be transferred to unlabeled foster mothers.  However, this would have risked pup loss which would have significantly impacted our ability to conduct the studies given that we only had 19 labeled female pups from three breeding pairs.  We have clarified this in the manuscript text in lines 78-80.  It is hard to know, without doing the experiment, whether we would have detected ZP3 if we only labeled through birth.  The expression of ZP3 in primordial follicles, albeit in human, would suggest that this protein is expressed quite early in development.

      Comment 4: What is happening to the mitochondria at 6-10 months? Does their number change in the oocyte? Is there a change in the rate of fission? Any chance to take a stab at it with these or other age-matched slides?

      Response 4:  The reviewer raises an excellent point.  As mentioned previously in the Discussion (lines 290-301), there are well documented changes in mitochondrial structure and function in the oocyte in mice of advanced reproductive age.  However, there is a paucity of data on the changes that may happen at earlier mid-reproductive age time points.  From the oocyte mitochondrial proteome perspective, our data demonstrate a prominent decline in the persistence of long-lived proteins between 6 and 10 months, and this occurs in the absence of a change in the total pool of mitochondrial proteins (both long and short lived populations) as assessed by spectral counts or protein IDs (figure below).  These data, which we have added into Figure 3 – figure supplement 1 and in the manuscript text (lines 164-170) are suggestive of similar numbers of mitochondria at these two timepoints. It would be informative to do a detailed characterization of oocyte mitochondrial structure and function within this window to see if there is a correlation with this shift in long lived mitochondrial proteins.  Although this analysis is beyond the scope of the current manuscript, it is an important next line of inquiry which we have highlighted in the manuscript text (lines 255-257 and 311-312).

      Reviewer #2 (Recommendations For The Authors):

      Several concerns are raised as shown below.

      Comment 1: In Fig. 2F, it is surprising that ZP3 disappeared in the ovary from mice at the age of 10 months by MIMS analysis, because quite a few oocytes with intact zona pellucida can still be obtained from mice at this age. Notably, ZP would not be renewed once formed.

      Response 1: To clarify, Figure 2F shows LC-MS/MS data and not MIMS data.  As mentioned in the Discussion, the detection of long-lived pools of ZP3 at 6 months cannot be derived from newly synthesized zona pellucidae in growing follicles because they would not have been present during the pulse period.  The only way we could detect ZP3 at 6 months is if it forms a primitive zona scaffold in the primordial follicle or if ZPs from atretic follicles of the first couple of waves of folliculogenesis incorporate into the extracellular matrix of the ovary.  The lack of persistence of ZP3 at 10 months could be due to protein degradation. Should ZP3 indeed form a primitive zona, its loss at 10 months would be predicted to result in poor formation of a bona fide zona pellucida upon follicle growth.  Interestingly, aging has been associated with alterations in zona pellucida structure and function.   These data open novel hypotheses regarding the zona pellucida (e.g. a primitive zona scaffold and part of the extracellular matrix) and will require significant further investigation to test. These points are highlighted in the Discussion lines 227-245.

      Comment 2: To determine whether those proteins that can not be identified by MIMS at the time point of 10 months are degraded or renewed, the authors should randomly select some of them to examine their protein expression levels in the ovary by immunoblotting analysis.

      Response 2: To clarify, proteins were identified by LC-MS/MS and not MIMS which was used to visualize long lived macromolecules.   Each protein will be comprised of old pools (15N containing) and newly synthesized pools (14N containing).  Degradation of the old pool of protein does not mean that there will be a loss of total protein.  Moreover, immunoblotting cannot distinguish old and newly synthesized pools of protein. Where overall peptide counts are listed for each protein identified at both time points.  As peptides derive from proteins, the table provided with the manuscript reflects what immunoblotting would, but on a larger and more precise scale.

      Comment 3: I think those proteins that can be identified by MIMS at the time point of 6 months but not 10 months deserve more analyses as they might be the key molecules that drive ovarian aging.

      Response 3:  This comment conflicts with comment 2 from Reviewer #3 (Recommendations For The Authors).  This underscores that different researchers will prioritize the value and follow up of such rich datasets differently.  We agree that the LLP identified at 6 months are of particular interest to reproductive aging, and we are planning to follow up on these in future studies.

      Comment 4:  Figure 1 – figure supplement 1 C-F, compared with the published literature, the numbers of follicles at different developmental stages and ovulated oocytes at both ages of 6 months and 10 months were dramatically low in this study. For 6-month-old female mice, the reproductive aging just begins, thus these numbers should not be expected to decrease too much. In addition, follicle counting was carried out only in an area of a single section, which is an inaccurate way, because the numbers and types of follicles in various sections differ greatly. Also, the data from a single section could not represent the changes in total follicle counts.

      Response 4: We have addressed these points in response to Comment 1 in the Reviewer #2 Public Review, and corresponding changes in the text have been noted.    

      Comment 5:  The study lacks follow-up verification experiments to validate their MIMS data.

      Response 5: Two independent mass spectrometry approaches (MIMS and LC-MS/MS) were used to validate the presence of long-lived macromolecules in the ovary and oocyte. Studies focused on the role of specific long-lived proteins in oocyte and ovarian biology as well as how they change with age in terms of function, turnover, and modification are beyond the scope of the current study but ongoing.  We have acknowledged these important next steps in the manuscript text (lines 286-288 and 311-312).

      Reviewer #3 (Recommendations For The Authors):

      Comment 1: The authors used the 6-month mice group to represent the aged model, and examined the LLPs from 1 month to 6 months. Indeed, 6-month-old mice start to show age-related changes; however, for the reproductive aging model, the most widely accepted model is that 10-month-old age mice start to show reproductive-related changes and 12-month-old mice (corresponding to 35-40 year-old women) exhibit the representative reproductive aging phenotypes. Therefore, the data may not present the typical situation of LLPs during reproductive aging.

      Response 1: As described in the response to Comment 1 in the Reviewer #3 Public Review, there were clear logistical and technical feasibility reasons why the 6 month and 10-month timepoints were selected for this study.  Importantly, however, these timepoints do represent a reproductive aging continuum as evidenced by age-related changes in multiple parameters.  Furthermore, there were ultimately very few LLPs that remained at 10 months in both the oocyte and ovary, so inclusion of the 6-month time point was an important intermediate.  Whether the LLPs at the 6-month timepoint serve as a protective mechanism in maintaining gamete quality or whether they contribute to decreased quality associated with reproductive aging is an intriguing dichotomy which will require further investigation.  This has been added to the discussion (lines 247-257).

      Comment 2:  Following the point above, the authors examined the ovaries in 6 months and 10 months mice by proteomics, and found that 6 months LLPs were not identical compared with 10 months, while there were Tubb5, Tubb4a/b, Tubb2a/b, Hist2h2 were both expressed at these two time points (Fig 2B), why the authors did not explore these proteins since they expressed from 1 month to 10 months, which are more interesting.

      Response 2:  The objective of this study was to profile the long-lived proteome in the ovary and oocyte as a resource for the field rather than delving into specific LLPs at a mechanistic level.  That being said, we wholeheartedly agree with the reviewer that the proteins that were identified at both 6 month and 10 months are the most robust and long lived and worthy of prioritizing for further study.  Interestingly, Tubb5 and Tubb4a have high homology to primate-specific Tubb8, and Tubb8 mutations in women are associated with meiosis I arrest in oocytes and infertility (Dong et al., 2023; Feng et al., 2016).  Thus, perturbation of these specific proteins by virtue of their long-lived nature may be associated with impaired function and poor reproductive outcomes.  We have highlighted the importance of these LLPs which are present at both timepoints and persist to at least 10 months in the manuscript text (lines 259-270).

      Comment 3:  The authors also need to provide a hypothesis or explanation as to why LLDs from 6 months LLPs were not identical compared with 10 months.

      Response 3:  We agree that LLDs identified at 10 months should be also identified as long-lived at 6 months. This is a common limitation of mass spectrometry-based proteomics where each sample is prepared and run individually, which introduces variability between biological replicates, especially when it comes to low abundant proteins. It is key to note that just because we do not identify a protein, it does not mean the protein is not there – it merely means that we were not able to detect it in this particular experiment, but low levels of the protein may still be there. To compensate for this known and inherent variability, we have applied stringent filtering criteria where we required long-lived peptides to be identified in an independent MS scan (alternative is to identify peptide in either heavy or light scan and use modeling to infer FA value based on m/z shift), which gave us peptides of highest confidence. Ideally, these experiments would be done using TMT (tandem mass tag) approach. However, TMT-based experiments typically require substantial amount of input (80-100ug per sample) which unfortunately is not feasible with oocytes obtained from a limited number of pulse-chased animals.  We have added this explanation to the discussion (lines 265-270).

      Comment 4:  The reviewer thinks that LLPs from 6 months to 10 months may more closely represent the long-lived proteins during reproductive aging.

      Response 4:  We fully agree that understanding the identity of LLPs between the 6 month and 10 month period will be quite informative given that this is a dynamic period when many of LLPs get degraded and thus might be key to the observed decline in reproductive aging. This is a very important point that we hope to explore in future follow-up studies.

      Comment 5: The authors used proteomics for the detection of ovaries and oocytes, however, there are no validation experiments at all. Since proteomics is mainly for screening and prediction, the authors should examine at least some typical proteins to confirm the validity of proteomics. For example, the authors specifically emphasized the finding of ZP3, a protein that is critical for fertilization.

      Response 5:  Thank you, we agree that closer examination of proteins relevant and critical for fertilization is of importance.  However, a detailed analysis of specific proteins fell outside of the scope of this study which aimed at unbiased identification of long-lived macromolecules in ovaries and oocytes. We hope to continue this important work in near future.

      Comment 6: For the oocytes, the authors indicated that cytoskeleton, mitochondria-related proteins were the main LLPs, however, previous studies reported the changes of the expression of many cytoskeleton and mitochondria-related proteins during oocyte aging. How do the authors explain this contrary finding?   

      Response 6:  Our findings are not contrary to the studies reporting changes in protein expression levels during oocyte aging – the two concepts are not mutually exclusive. The average FA value at 6-month chase for oocyte proteins is 41.3 %, which means that while 41.3% of long-lived proteins pool persisted for 6 months, the other 58.7% has in fact been renewed. With the exception of few mitochondrial proteins (Cmkt2 and Apt5l), and myosins (Myl2 and Myh7), which had FA values close to 100% (no turnover), most of the LLPs had a portion of protein pools that were indeed turned over. Moreover, we included new data analysis illustrating that we identify comparable number of mitochondrial proteins between the two time points, indicating that while the long-lived pools are changing over time, the total content remains stable (Figure 3 – figure supplement 1E-G).

      Comment 7:  The authors also should provide in-depth discussion about the findings of the current study for long-lived proteins. In this study, the authors reported the relationship between these "long-lived" proteins with aging, a process with multiple "changes". Do long-lived proteins (which are related to the cytoskeleton and mitochondria) contribute to the aging defects of reproduction? or protect against aging?

      Response 7: This is a very important comment and one that needs further exploration. The fact is – we do not know at this moment whether these proteins are protective or deleterious, and such a statement would be speculative at this stage of research into LLPs in ovaries and oocytes. Future work is needed to address this question in detail.

      Briley, S. M., Jasti, S., McCracken, J. M., Hornick, J. E., Fegley, B., Pritchard, M. T., & Duncan, F. E. (2016). Reproductive age-associated fibrosis in the stroma of the mammalian ovary. Reproduction, 152(3), 245-260. https://doi.org/10.1530/REP-16-0129

      Chiang, T., Duncan, F. E., Schindler, K., Schultz, R. M., & Lampson, M. A. (2010). Evidence that Weakened Centromere Cohesion Is a Leading Cause of Age-Related Aneuploidy in Oocytes. Current Biology, 20(17), 1522-1528. https://doi.org/10.1016/j.cub.2010.06.069

      Dong, J., Jin, L., Bao, S., Chen, B., Zeng, Y., Luo, Y., Du, X., Sang, Q., Wu, T., & Wang, L. (2023). Ectopic expression of human TUBB8 leads to increased aneuploidy in mouse oocytes. Cell Discov, 9(1), 105. https://doi.org/10.1038/s41421-023-00599-z

      Duncan, F. E., Jasti, S., Paulson, A., Kelsh, J. M., Fegley, B., & Gerton, J. L. (2017). Age-associated dysregulation of protein metabolism in the mammalian oocyte. Aging Cell, 16(6), 1381-1393. https://doi.org/10.1111/acel.12676

      Feng, R., Sang, Q., Kuang, Y., Sun, X., Yan, Z., Zhang, S., Shi, J., Tian, G., Luchniak, A., Fukuda, Y., Li, B., Yu, M., Chen, J., Xu, Y., Guo, L., Qu, R., Wang, X., Sun, Z., Liu, M., . . . Wang, L. (2016). Mutations in TUBB8 and Human Oocyte Meiotic Arrest. N Engl J Med, 374(3), 223-232. https://doi.org/10.1056/NEJMoa1510791

      Fornasiero, E. F., & Savas, J. N. (2023). Determining and interpreting protein lifetimes in mammalian tissues. Trends Biochem Sci, 48(2), 106-118. https://doi.org/10.1016/j.tibs.2022.08.011

      Hark, T. J., & Savas, J. N. (2021). Using stable isotope labeling to advance our understanding of Alzheimer's disease etiology and pathology. J Neurochem, 159(2), 318-329. https://doi.org/10.1111/jnc.15298

      Kerr, J. B., Hutt, K. J., Michalak, E. M., Cook, M., Vandenberg, C. J., Liew, S. H., Bouillet, P., Mills, A., Scott, C. L., Findlay, J. K., & Strasser, A. (2012). DNA damage-induced primordial follicle oocyte apoptosis and loss of fertility require TAp63-mediated induction of Puma and Noxa. Mol Cell, 48(3), 343-352. https://doi.org/10.1016/j.molcel.2012.08.017

      Kimler, B. F., Briley, S. M., Johnson, B. W., Armstrong, A. G., Jasti, S., & Duncan, F. E. (2018). Radiation-induced ovarian follicle loss occurs without overt stromal changes. Reproduction, 155(6), 553-562. https://doi.org/10.1530/REP-18-0089

      Kirkland, J. L. (2013). Translating advances from the basic biology of aging into clinical application. Exp Gerontol, 48(1), 1-5. https://doi.org/10.1016/j.exger.2012.11.014

      Mara, J. N., Zhou, L. T., Larmore, M., Johnson, B., Ayiku, R., Amargant, F., Pritchard, M. T., & Duncan, F. E. (2020). Ovulation and ovarian wound healing are impaired with advanced reproductive age. Aging (Albany NY), 12(10), 9686-9713. https://doi.org/10.18632/aging.103237

      Perrone, R., Ashok Kumaar, P. V., Haky, L., Hahn, C., Riley, R., Balough, J., Zaza, G., Soygur, B., Hung, K., Prado, L., Kasler, H. G., Tiwari, R., Matsui, H., Hormazabal, G. V., Heckenbach, I., Scheibye-Knudsen, M., Duncan, F. E., & Verdin, E. (2023). CD38 regulates ovarian function and fecundity via NAD(+) metabolism. iScience, 26(10), 107949. https://doi.org/10.1016/j.isci.2023.107949

      Quan, N., Harris, L. R., Halder, R., Trinidad, C. V., Johnson, B. W., Horton, S., Kimler, B. F., Pritchard, M. T., & Duncan, F. E. (2020). Differential sensitivity of inbred mouse strains to ovarian damage in response to low-dose total body irradiationdagger. Biol Reprod, 102(1), 133-144. https://doi.org/10.1093/biolre/ioz164

      Savas, J. N., Toyama, B. H., Xu, T., Yates, J. R., 3rd, & Hetzer, M. W. (2012). Extremely long-lived nuclear pore proteins in the rat brain. Science, 335(6071), 942. https://doi.org/10.1126/science.1217421

      Toyama, B. H., Savas, J. N., Park, S. K., Harris, M. S., Ingolia, N. T., Yates, J. R., 3rd, & Hetzer, M. W. (2013). Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell, 154(5), 971-982. https://doi.org/10.1016/j.cell.2013.07.037

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      This is a fine paper that serves the purpose to show that the use of light sheet imaging may be used to provide whole brain imaging of axonal projections. The data provided suggest that at this point the technique provides lower resolution than with other techniques. Nonetheless, the technique does provide useful, if not novel, information about particular brain systems. 

      Strengths: 

      The manuscript is well written. In the introduction a clear description of the functional organization of the barrel cortex is provided provides the context for applying the use of specific Cre-driver lines to map the projections of the main cortical projection types using whole brain neuroanatomical tracing techniques. The results provided are also well written, with sufficient detail describing the specifics of how techniques were used to obtain relevant data. Appropriate controls were done, including the identification of whisker fields for viral injections and determination of the laminar pattern of Cre expression. The mapping of the data provides a good way to visualize low resolution patterns of projections. 

      Weaknesses: 

      (1) The results provided are, as stated in the discussion, "largely in agreement with previously reported studies of the major projection targets". However it must be stated that the study does not "extend current knowledge through the high sensitivity for detecting sparse axons, the high specificity of labeling of genetically defined classes of neurons and the brain wide analysis for assigning axons to detailed brain regions" which have all been published in numerous other studies. ( the allen connectivity project and related papers, along with others). If anything the labeling of axons obtained with light sheet imaging in this study does not provide as detailed mapping obtained with other techniques. Some detail is provided of how the raw images are processed to resolve labeled axons, but the images shown in the figures do not demonstrate how well individual axons may be resolved, of particular interest would be to see labeling in terminal areas such as other cortical areas, striatum and thalamus. As presented the light sheet imaging appears to be rather low resolution compared to the many studies that have used viral tracing to look at cortical projections from genetically identified cortical neurons. 

      We agree with the reviewer that the resolution of imaging should be further improved in future studies, as also mentioned in the original manuscript. On P. 17 of the revised manuscript we write “Probably most important for future studies is the need to increase the light-sheet imaging resolution perhaps combined with the use of expansion microscopy to provide brain-wide micron-resolution data (Glaser et al., 2023; Wassie et al., 2019).” However, even at somewhat lower resolution, through bright sparse labelling, individual axonal segments can nonetheless be traced through machine learning to define axonal skeletons, whose length can be quantified as we do in this study. This methodology highlights sparse wS1 and wS2 innervation of a large number of brain areas, some of which are not typically considered, and our anatomical results might therefore help the neuronal circuit analysis underlying various aspects of whisker sensorimotor processing. Despite impressive large-scale projection mapping projects such as the Allen connectivity atlas, there remains relatively sparse cell typespecific projection map data for the representations of the large posterior whiskers in wS1 and wS2, and our data in this study thus adds to a growing body of cell-type specific projection mapping with the specific focus on the output connectivity of these whisker-related neocortical regions of sensory cortex.

      In the revised manuscript, we now provide an additional supplementary figure (Figure 1 – figure supplement 2) showing examples of the axonal segmentation from further additional image planes including branching axons in the key innervation regions mentioned by the reviewer, namely “other cortical areas, striatum and thalamus”.

      (2) Amongst the limitations of this study is the inability to resolve axons of passage and terminal fields. This has been done in other studies with viral constructs labeling synaptophysin. This should be mentioned. 

      The reviewer brings up another important point for future methodological improvements to enhance connectivity mapping. Indeed, we already mentioned this in our original submission near the end of the first paragraph under the Limitations and future perspectives section. In the revised manuscript on P. 17, we write “Future studies should also aim to identify neurotransmitter release sites along the axon, which could be achieved by fluorescent labeling of prominent synaptic components, such as synaptophysin-GFP (Li et al., 2010).”

      (3) There is no quantitative analysis of differences between the genetically defined neurons projecting to the striatum, what is the relative area innervated by, density of terminals, other measures. 

      The reviewer raises an interesting question, and in the revised manuscript, we now present a more detailed analysis of cell class-specific axonal projections focusing specifically on the striatum. Following the reviewer’s suggestion, in a new supplementary figure (Figure 7 – figure supplement 1), we now report spatial axonal density maps in the striatum from SSp-bfd and SSs, finding potentially interesting differences comparing the projections of Rasgrf2-L2/3, Scnn1a-L4 and Tlx3-L5IT neurons. On P. 12 of the revised manuscript, we now write “We also investigated the spatial innervation pattern of Rasgrf2-L2/3, Scnn1a-L4 and Tlx3-L5IT neurons in the striatum (Figure 7 – figure supplement 1), where we found that axonal density from Rasgrf2-L2/3 neurons in both SSp-bfd and SSs was concentrated in a posterior dorsolateral part of the ipsilateral striatum, whereas Tlx3-L5IT neurons had extensive axonal density across a much larger region of the striatum, including bilateral innervation by SSp-bfd neurons. Striatal innervation by Scnn1a-L4 neurons was intermediate between Rasgrf2-L2/3 and Tlx3-L5IT neurons.” We think the reviewer’s comment has helped reveal further interesting aspects of our data set, and we thank the reviewer.

      (4) Figure 5 is an example of the type of large sets of data that can be generated with whole brain mapping and registration to the Allen CCF that provides information of questionable value. Ordering the 50 plus structures by the density of labeling does not provide much in terms of relative input to different types of areas. There are multiple subregions for different functional types ( ie, different visual areas and different motor subregions are scattered not grouped together. Makes it difficult to understand any organizing principles.

      We agree with the reviewer, and fully support the importance of considering subregions within the relatively coarse compartmentalization of the current Allen CCF. In order to provide some further information about connectivity that may help give the reader further insights into the data, we have now added further quantification of cortex-specific axonal density ranked according to functional subregions in a new supplementary figure (Figure 5 – figure supplement 2). 

      (5) The GENSAT Cre driver lines used must have the specific line name used, not just the gene name as the GENSAT BAC-Cre lines had multiple lines for each gene and often with very different expression patterns. Rbp4_KL100, Tlx3_PL56, Sim1_KJ18, Ntsr1_ GN220. 

      In the revised manuscript, we now write out a fuller description of the mouse lines the first time they are mentioned in the Results section on P. 7. The full mouse line names, accession numbers and references were of course already described in the methods section, which remains the case in the revised manuscript.

      Reviewer #2 (Public Review): 

      Summary: 

      This study takes advantage of multiple methodological advances to perform layer-specific staining of cortical neurons and tracking of their axons to identify the pattern of their projections. This publication offers a mesoscale view of the projection patterns of neurons in the whisker primary and secondary somatosensory cortex. The authors report that, consistent with the literature, the pattern of projection is highly different across cortical layers and subtype, with targets being located around the whole brain. This was tested across 6 different mouse types that expressed a marker in layer 2/3, layer 4, layer 5 (3 sub-types) and layer 6.  Looking more closely at the projections from primary somatosensory cortex into the primary motor cortex, they found that there was a significant spatial clustering of projections from topographically separated neurons across the primary somatosensory cortex. This was true for neurons with cell bodies located across all tested layers/types. 

      Strengths: 

      This study successfully looks at the relevant scale to study projection patterns, which is the whole brain. This is achieved thanks to an ambitious combination of mouse lines, immunohistochemistry, imaging and image processing, which results in a standardized histological pipeline that processes the whole-brain projection patterns of layer-selected neurons of the primary and secondary somatosensory cortex. 

      This standardization means that comparisons between cell-types projection patterns are possible and that both the large-scale structure of the pattern and the minute details of the intra-areas pattern are available. 

      This reference dataset and the corresponding analysis code are made available to the research community. 

      Weaknesses: 

      One major question raised by this dataset is the risk of missing axons during the postprocessing step. Indeed, it appears that the control and training efforts have focused on the risk of false positives (see Figure 1 supplementary panels). And indeed, the risk of overlooking existing axons in the raw fluorescence data id discussed in the article. 

      Based on the data reported in the article, this is more than a risk. In particular, Figure 2 shows an example Rbp4-L5 mouse where axonal spread seems massive in Hippocampus, while there is no mention of this area in the processed projection data for this mouse line. 

      In Figure 2, we show the expression of tdTomato in double-transgenic mice in which the Cre-driver lines were crossed with a Cre-dependent reporter mouse expressing cytosolic tdTomato. In addition to the specific labelling of L5PT neurons in the somatosensory cortex, Rbp4-Cre mice also express Cre-recombinase in other brain regions including the hippocampus. In the reporter mice crossed with Rbp4-Cre mice, tdTomato is expressed in neurons with cell bodies in the hippocampus which is clearly visualized in Figure 2. Because our axonal labelling is based on localized viral vector expression of tdTomato in SSp-bfd and SSs, the expression of Cre in hippocampus does not affect our analysis. In order to clarify to the reader, in the legend to Figure 2D, we now specifically write “As for panel A, but for Rbp4-L5 neurons. Note strong expression of Cre in neurons with cell bodies located in the hippocampus, which does not affect our analysis of axonal density based on virus injected locally into the neocortex.” Consistent with this observation, the Allen Institute’s ISH data support

      expression of Rbp4 in neurons of the hippocampus e.g. https://mouse.brainmap.org/gene/show/19425 and https://mouse.brainmap.org/experiment/show/68632655.

      Similarily, the Ntsr1-L6CT example shows a striking level of fluorescence in Striatum, that does not reflect in the amount of axons that are detected by the algorithms in the next figures.  These apparent discrepancies may be due to non axonal-specific fluorescence in the samples. In any case, further analysis of such anatomical areas would be useful to consolidate the valuable dataset provided by the article. 

      As pointed out above, Figure 2 shows cytosolic tdTomato fluorescence in transgenic crosses of the Cre-driver mice with Cre-dependent tdTomato reporter mice. For the Ntsr1-Cre x LSL-tdTomato mice, all corticothalamic L6CT neurons from across the entire cortex drive tdTomato expression. The axon of each neuron must traverse the striatum giving rise to fluorescence in the striatum. As discussed above, labelling of synaptic specialisations will be important in future studies to separate travelling axon from innervating axon. However, the overall impact of the axons traversing the striatum is again mitigated in our study by considering the axonal projections from local sparse infections in SSp-bfd and SSs rather than from cortex-wide tdTomato expression.

      Reviewer #3 (Public Review): 

      Summary: 

      The paper offers a systematic and rigorous description of the layer-and sublayer specific outputs of the somatosensory cortex using a modern toolbox for the analysis of brain connectivity which combines: 1) Layer-specific genetic drivers for conditional viral tracing; 2) whole brain analyses of axon tracts using tissue clearing and imaging; 3) Segmentation and quantification of axons with normalization to the number of transduced neurons; 4) registration of connectivity to a widely used anatomical reference atlas; 5) functional validation of the connectivity using optogenetic approaches in vivo. 

      Strengths: 

      Although the connectivity of the somatosensory cortex is already known, precise data are dispersed in different accounts (papers, online resources,) using different methods. So the present account has the merit of condensing this information in one very precisely documented report. It also brings new insights on the connectivity, such as the precise comparison of layer specific outputs, and of the primary and secondary somatosensory areas. It also shows a topographic organization of the circuits linking the somatosensory and motor cortices. The paper also offers a clear description of the methodology and of a rigorous approach to quantitative anatomy. 

      Weaknesses: 

      The weakness relates to the intrinsic limitations of the in toto approaches, that currently lack the precision and resolution allowing to identify single axons, axon branching or synaptic connectivity. These limitations are identified and discussed by the authors. 

      We agree with the reviewer.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      No additional comment 

      OK

      Reviewer #2 (Recommendations For The Authors): 

      In Figure 8, we don't get to see much raw data, while the diversity of functional responses pattern to the primary and supplementary S1 activations is highly intriguing (and this diversity exists as suggested by the results in Figure 8E, LRPT). 

      Can Figure 8C be less blurred? Maybe give more space to individual examples, such as an overlay of the delineations of the activated area across the tested mice? 

      Also, can we have a view on the time dynamics of the functional activation and integration window? 

      Raw data - We have now added a new supplementary figure (Figure 8 – figure supplement 1) to show data from individual mice, as well as plotting the time-course of the evoked jRGECO fluorescence signals in the frontal cortex hotspot. 

      Image blur - Each pixel represents 62.5 x 62.5 um on the cortical surface. The images in Figure 8B&C were averaged across mice, which causes some additional spatial blurring. However, the most likely explanation for the ‘blurred’ impression, is the overall large horizontal extent of the axonal innervation as well as likely rapid lateral spread of excitation both at the stimulation area and in the target region, as for example also indicated in rapid voltage-sensitive imaging experiments (Ferezou et al., 2007).  

      Reviewer #3 (Recommendations For The Authors): 

      At the time being, the abstract is really centred on the methodology which is no longer very novel as it has actually been already been described previously by other groups. In my view the paper would gain visibility, and be a useful tool for the community if amended to better point out the significant results of the study, for instance, i) the layer and sub-layer specificity of the outputs, using the listed genetic drivers; ii) the comparison of primary and secondary somatosensory areas, iii) the functional validation. The layer specificity of each cre- line should be indicated in the abstract. 

      We have tried to improve the writing of the abstract along the lines suggested by the reviewer. Specifically, we have now added layer and projection class of the various Cre-lines, and we now also highlight the most obvious differences in the innervation patterns.

      There is some degree of redundancy in the description in the result section. One suggestion, for an easier flow of reading, would be to join the paragraphs " Laminar characterization of the Cre-lines.." and: "Axonal projections...". Start for each Cre-line with a description of the laminar localisation of recombination in the somatosensory cortices, followed therefrom by the description of outputs from SSp-bfd and SSs; Then the general description/overview of the outputs can be summarized as a legend to Figure 5-supplementary 2, which could appear as a main figure. 

      Although we agree with the reviewer that there is some level of redundancy in the text, the results of the characterization of the Cre-line (Figure 2) is quite a different experiment compared to the viral injections described in other figures, and we therefore prefer to keep these sections separate.

      Other minor points: 

      In the text; Indicate the genetic background of the transgenic mouse lines. 

      On P. 18, we now indicate that all mice were “back-crossed with C57BL/6 mice”.

      Keep consistency in the designation of the areas, S1 appears sometimes as SSp-bfd or as SSp 

      We thank the reviewer for pointing out the inconsistent nomenclature, which we have now corrected in the revised manuscript. ‘SSp’ remains used on P. 9 and P. 16 of the revised manuscript to indicate a region including SSp-bfd but also extending beyond.

      Figure 1 supplement 2 is not really necessary to show (as the viral tools have previously been validated) can just be stated in the text. Conversely one would like to see a higher resolution image of the injection sites that allowed to do the cell counts used for normalization, as this can be pretty tricky. 

      In response to the reviewer’s suggestion, we have now added a new supplemental figure to show an example of how cells in the injection site were counted (Figure 1 – figure supplement 3).

      Figure 2: the most important here is the higher magnification to show the precise laminar localisation of the recombination, rather than the atlas landmarks that is already shown in Figure 1. This would allow more space for clearer higher magnification panels comparing SSs and SSp. The present image hints to some real differences, but difficult to appreciate with the current resolution. The legend should also comment on the labelling seen in layer 1, in the Tlx2 and Rbp4 lines. Could be dendritic labelling, but this needs a word of clarification.

      We think both the overview images as well as the high-resolution images are of value to the reader. Following the reviewer’s comment, in the legends to Figure 2C&D, we have now added text suggesting that the layer 1 fluorescence is likely axonal or dendritic in origin : “Labelling in layer 1 is likely of axonal or dendritic origin, and no cell bodies were labelled in this layer.” In addition, we have added a new supplemental figure which shows the cortical labelling in SSp and SSS in a more magnified view (Figure 2 – figure supplement 1).

      Figure 3: the comparison of the 3 transgenic lines labelling layer 5 and showing sublaminar identities is really interesting in showing the heterogeneity of this layer and possible regional differences. However, the cases shown for illustration for Rbp4 and Tlx3 seem pretty massive in comparison with the other drivers. Maybe cases with smaller injections could be chosen for illustration. 

      Figure 3 shows grand average axonal density maps across different mice normalized to the number of neurons in the injection site. The large amount of axon per neuron observed in Rbp4 and Tlx3 mice therefore shows their long, wide-ranging axons compared to other neuronal classes.

      Figure 6A could be a supplementary figure in my view; 6B is clearer. 

      We think both representations are useful, and we think different readers might better appreciate either of the two analyses.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This work is potentially useful because it has generated a mineable yield of new candidate immune inhibitory receptors, which can serve both as drug targets and as subjects for further biological investigation. It is noted however that the argument of the work is rather incomplete, in that it does very little to validate the putative new receptors, and merely makes a study of their putative distribution across cell types. Experimental follow-up to demonstrate the claimed properties for the proteins identified, or mining existing experimental data sources on gene expression across tissues to at least show that the pipeline correctly identified genes likely to be specific to immune cells (or something along these lines), would make this work more complete and compelling. 

      We thank the editors for their critical reading and assessment of our manuscript. We acknowledge that the present study is limited by a lack of experimental follow-up. However, we purposely chose to make this pipeline of putative novel inhibitory receptors public at this early stage for our work to be a starting point for further functional investigation of these targets by the scientific community.   

      Public Reviews:

      Reviewer #1 (Public Review):

      This manuscript proposes a new bioinformatics approach identifying several hundreds of previously unknown inhibitory immunoreceptors. When expressed in immune cells (such as neutrophils, monocytes, CD8+, CD4+, and T-cells), such receptors inhibit the functional activity of these cells. Blocking inhibitory receptors represents a promising therapeutic strategy for cancer treatment.

      As such, this is a high-quality and important bioinformatics study. One general concern is the absence of direct experimental validation of the results. In addition to the fact that the authors bioinformatically identified 51 known receptors, providing such experimental evaluation (of at least one, or better few identified receptors) would, in my opinion, significantly strengthen the presented evidence.

      I will now briefly summarize the results and give my comments.

      First, using sequence comparison analysis, the authors identify a large set of putative receptors based on the presence of immunoreceptor tyrosine-based inhibitory motifs (ITIMs), or immunoreceptor tyrosinebased switch motifs (ITSMs). They further filter the identified set of receptors for the presence of the ITIMs or ITSMs in an intracellular domain of the protein. Second, using AlphaFold structure modeling, the authors select only receptors containing ITIMs/ITSMs in structurally disordered regions. Third, the evaluation of gene expression profiles of known and putative receptors in several immune cell types was performed. Fourth, the authors classified putative receptors into functional categories, such as negative feedback receptors, threshold receptors, threshold disinhibition, and threshold-negative feedback. The latter classification was based on the available data from Nat Rev Immunol 2020. Fifth, using publicly available single-cell RNA sequencing data of tumor-infiltrating CD4+ and CD8+ cells from nearly twenty types of cancer, the authors demonstrate that a significant fraction of putative receptors are indeed expressed in these datasets.

      In summary, in my opinion, this is an interesting, important, high-quality bioinformatics work. The manuscript is clearly written and all technical details are carefully explained.

      One comment/suggestion regarding the methodology of evaluating gene expression profiles of putative receptors: perhaps it might be important to look at clusters of genes that are co-expressed with putative inhibitory receptors. 

      We thank the reviewer for their comments and suggestions.  We acknowledge that looking at co-expressed genes and subsequently at gene ontology enrichment could be an interesting approach to prioritize the inhibitory receptors. However, since there are many ways to approach the results of the gene coexpression networks, which also depend on the cell type and activation status of interest, we have chosen to discuss the implications of these networks in the discussion with the following paragraph, rather than reporting all these different approaches in the paper:

      “To further prioritize inhibitory receptors in immune cell subsets or diseases of interest, gene coexpression networks of putative inhibitory receptors could be assessed. On the one hand, the cooccurrence of putative inhibitory receptors with known inhibitory receptors within a module could be one approach, while on the other hand the presence of putative inhibitory receptors in a different module could suggest novel regulation of different biological functions than the known receptors. The location of the putative inhibitory receptors in the network could also change depending on the cell type and the activation status of the cell. Additionally, one could look at the co-expression of candidates with other genes within a gene module to look at potential biological function, and at co-expression with signalling molecules known to interact with inhibitory receptors, such as Csk, SHP-1, SHP-2 and SHIP1, although their regulation might be more post-translationally regulated rather than at mRNA level.”

      Reviewer #2 (Public Review):

      Summary:

      The authors developed a bioinformatic pipeline to aid the screening and identification of inhibitory receptors suitable as drug targets. The challenge lies in the large search space and lack of tools for assessing the likelihood of their inhibitory function. To make progress, the authors used a consensus protein membrane topology and sequence motif prediction tool (TOPCOS) combined with both a statistical measure assessing their likelihood function and a machine learning protein structural prediction model (AlphaFold) to greatly cut down the search space. After obtaining a manageable set of 398 high-confidence known and putative inhibitory receptors through this pipeline, the authors then mapped these receptors to different functional categories across different cell types based on their expression both in the resting and activated state. Additionally, by using publicly available pan-cancer scRNA-seq for tumor-infiltrating T-cell data, they showed that these receptors are expressed across various cellular subsets.

      Strengths:

      The authors presented sound arguments motivating the need to efficiently screen inhibitory receptors and to identify those that are functional. Key components of the algorithm were presented along with solid justification for why they addressed challenges faced by existing approaches. To name a few:

      • TOPCON algorithm was elected to optimize the prediction of membrane topology.

      • A statistical measure was used to remove potential false positives.

      • AlphaFold is used to filter out putative receptors that are low confidence (and likely intrinsically disordered).

      To examine receptors screened through this pipeline through a functional lens, the authors proposed to look at their expression of various immune cell subsets to assign functional categories. This is a reasonable and appropriate first step for interpreting and understanding how potential drug targets are differentially expressed in some disease contexts.

      Weaknesses:

      The paper has strength in the pipeline they presented, but the weakness, in my opinion, lies in the lack of concrete demonstration on how this pipeline can be used to at least "rediscover" known targets in a

      disease-specific manner. For example, the result that both known and putative immune inhibitory receptors are expressed across a wide variety of tumor-infiltrating T-cell subsets is reassuring, but this would have been more informative and illustrative if the authors could demonstrate using a disease with known targets, as opposed to a pan-cancer context. Additionally, a discussion that contrasts the known and putative receptors in the context above would help readers better identify use cases suitable for their research using this pipeline. Particularly,

      • For known receptors, does the pipeline and the expression analysis above rediscover the known target in the disease of interest?

      • For putative receptors, what do the functional category mapping and the differential expression across various tumor-infiltrating T-cell subsets imply on a potential therapeutic target?

      We thank the reviewer for their assessment and comments. The primary purpose of the bioinformatics pipeline was to identify putative inhibitory receptors in a disease-agnostic manner and allow the scientific community to further explore targets in their specific diseases of interest. We performed our pan-cancer expression analysis as a preliminary proof of concept and agree that exploring targets in specific diseases, cancer or otherwise, could be more informative. To validate that we rediscovered known immunotherapeutic targets, we analyzed the expression of known inhibitory receptors on tumorinfiltrating T cells of melanoma patients using the same dataset as figure 3. We find high expression of known therapeutic targets, such as PD-1, in addition to other known inhibitory receptors that are being targeted in clinical trials, one of which being TIGIT. We have added this information to the results section and added the corresponding graph as supplementary figure 5. 

      For the putative inhibitory receptors, we believe the functional categorization can assist in selecting targets that are more likely to be successful in a therapeutic context. As we previously proposed in our perspective on functional categorization of inhibitory receptors (Rumpret et al., Nat Imm, 2020), it might be beneficial to target inhibitory receptors of different functional categories in cancer immunotherapy. Targeting a threshold receptor to lower the threshold for activation and a negative feedback receptor to lengthen and strengthen the cellular response might therefore be more effective than targeting two receptors of a single functional category. Even though we realize RNA sequencing data of in vitro stimulated immune cells is not identical to data from TILs, we have tried to characterize the functional categories expressed by TILs by extrapolating the defined functional categorization per gene from figure 2, and added the corresponding graphs as supplementary figure 4. This shows that mainly threshold receptors and some (threshold-)negative feedback receptors are expressed by the different T cell subsets, which would open the possibility of using the proposed therapeutic strategy of targeting different functional categories. However, we acknowledge that this will require further validation of expression patterns in vivo in different cancers and immune cell subsets. 

      Reviewer #1 (Recommendations For The Authors):

      One comment/suggestion regarding the methodology of evaluating gene expression profiles of putative receptors: perhaps it might be important to look at clusters of genes that are co-expressed with putative inhibitory receptors.

      See our reply to the suggestion above.

      Reviewer #2 (Recommendations For The Authors):

      Results section

      (a) "Putative ITIM/ITSM-bearing immune inhibitory receptors can be found in the human genome"

      i. Figure 1 could benefit from additional labeling. For example, in B, the grey line indicates 5%, etc. Additionally, in panel B&C, I assume by "predicted" the author meant using TOPCONS?

      ii. Figure 1B doesn't seem to be consistent with this sentence "However, for 10 out of 51, we observed ITIM/ITSM sequences in the permutated sequence up to ~25% of the time" [page 2, line 1-3], as all 51 data points in Figure 1B (under "Known" panel) are below the 0.25 horizontal line?

      i. We have adjusted the figure legend to better indicate the information provided in the figures. The predicted genes are all unknown transmembrane candidates that contain an ITIM or ITSM in their intracellular domain, as determined using TOPCONS.

      ii. Due to the nature of permutation testing, there is some variation in the individual likelihood values for each protein sequence. However, as they were generally below 0.25 in any given iteration, we decided to define this value as a threshold for inclusion. 

      (b) "AlphaFold structure predictions can assist in identifying likely functional ITIM/ITSMs"

      i. Readability would increase if the author indicate how pLDDT score is computed and in what range is it (between 0 and 100.)

      ii. Third paragraph. Can the author comment on why 80 pLDDT is chosen as the cutoff? The first sentence of this paragraph states "We found that 99 out of 101 ITIM/ITSMs of the 51 known receptors had low confidence score, i.e., less than 80 pLDDT, with an average confidence score of 49.3 pLDDT..." However, it was later stated in the Discussion, page 10, starting Line 11 "We determined a threshold of 80 pLDDT based on the average prediction scores of the ITIM/ITSMs in known inhibitory receptors....". If 99 out of 101 ITIM/ITSMs had pLDDT<80, then it seems strange that the average of the 101 is at 80pLDDT, even in the extreme where the remaining 101-99=2 ITIM/ITSMs attain the maximum pLDDT score at 100, unless the distribution of those 99 is narrowly centered around 80? A distribution of the pLDDT would help clarify.

      i. The pLDDT scores are computed by AlphaFold as a way to determine how well a specific residue and/or region is expected to be modelled in three-dimensional space. We now refer to the corresponding AlphaFold publications and references therein to clarify this (10.1093/nar/gkab1061, 10.1038/s41586021-03819-2, 10.1093/bioinformatics/btt473). We also have now included the range (i.e., 0-100) in the text.

      ii. The threshold of 80 pLDDT was chosen as this still encompasses all known inhibitory receptors and was not calculated based on an average of the prediction scores. In this way, we still included ITIM/ITSMs with a relatively high pLDDT, such as those observed in PD-1 and LAIR-1. The previous text ‘average prediction scores of the ITIM/ITSMs in known inhibitory receptors’ referred to the averaging of the confidence score for each of the six amino acids encompassing the ITIM/ITSM into one overall score per ITIM/ITSM. We have adjusted the text to better reflect this.

      (c) "Putative inhibitory receptors are expressed across immune cell subsets"

      Figure S2, the last sentence in the caption (relevant for panel C) states "Cell subsets without uniquely expressed putative inhibitory receptors i.e., B cells and T cell, are excluded from the panel for clarity", but B cells and T cells are present in panel C?

      Indeed, but they are only included for the cases where the cell subsets share receptor expression with other immune cell subsets. The B and T cells do not express any unique putative multi-spanning receptors, all receptors are shared with at least one other immune cell subset. 

      (d) "Known and putative inhibitory receptors are expressed on tumour infiltrating T cells"

      i. Missing panel C label in Figure 3 and S3.

      ii. By comparing Figure 3 and S3, it looks to me that there's not a big difference between single-spanning and multi-spanning inhibitory receptors. I wonder if the authors can comment or speculate on this similarity in addition to differences of expression among T-cell subsets. Would the similarities and differences above be explained by cancer type?

      i. Figure 3 and S3 do not contain a panel C, but panel B consists of a lower (CD8+) and an upper (CD4+) subpanel, we have more clearly indicated this in the figure legend in the revised manuscript. 

      ii. While some T cell subsets, such as exhausted CD8+ T cells and CD4+ regulatory T cells, appear to not differ much in their expression of either single- or multi-spanning receptors, we do observe that, for example, effector memory CD4+ T cells or EMRA CD8+ T cells express single-spanning inhibitory receptors to a higher extent than multi-spanning inhibitory receptors. It is possible that these differences and similarities reflect some of the roles multi-spanning inhibitory receptors could play in regulating immune cells, for example in response to chemokines, as many chemokine receptors are multi-spanning proteins. 

      Data and Code availability

      Although the Methods section provides some context for the computational analysis and citations for relevant data, software availability and a data availability statement are lacking.

      We have included a data availability statement to the data files and code in the revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Jang et al. describes the application of new methods to measure the localization of GTP-binding signaling proteins (G proteins) on different membrane structures in a model mammalian cell line (HEK293). G proteins mediate signaling by receptors found at the cell surface (GPCRs), with evidence from the last 15 years suggesting that GPCRs can induce G-protein mediated signaling from different membrane structures within the cell, with variation in signal localization leading to different cellular outcomes. While it has been clearly shown that different GPCRs efficiently traffic to various intracellular compartments, it is less clear whether G proteins traffic in the same manner, and whether GPCR trafficking facilitates "passenger" G protein trafficking. This question was a blind spot in the burgeoning field of GPCR localized signaling in need of careful study, and the results obtained will serve as an important guidepost for further work in this field. The extent to which G proteins localize to different membranes within the cell is the main experimental question tested in this manuscript. This question is pursued through two distinct methods, both relying on genetic modification of the G-beta subunit with a tag. In one method, G-beta is modified with a small fragment of the fluorescent protein mNG, which combines with the larger mNG fragment to form a fully functional fluorescent protein to facilitate protein trafficking by fluorescent microscopy. This approach was combined with the expression of fluorescent proteins directed to various intracellular compartments (different types of endosomes, lysosome, endoplasmic reticulum, Golgi, mitochondria) to look for colocalization of G-beta with these markers. These experiments showed compelling evidence that G-beta co-localizes with markers at the plasma membrane and the lysosome, with weak or absent co-localization for other markers. A second method for measuring localization relied on fusing G-beta with a small fragment from a miniature luciferase (HiBit) that combines with a larger luciferase fragment (LgBit) to form an active luciferase enzyme. Localization of Gbeta (and luciferase signal) was measured using a method known as bystander BRET, which relies on the expression of a fluorescent protein BRET acceptor in different cellular compartments. Results using bystander BRET supported findings from fluorescence microscopy experiments. These methods for tracking G protein localization were also used to probe other questions. The activation of GPCRs from different classes had virtually no impact on the localization of G-beta, suggesting that GPCR activation does not result in the shuttling of G proteins through the endosomal pathway with activated receptors.

      Strengths:

      The question probed in this study is quite important and, in my opinion, understudied by the pharmacology community. The results presented here are an important call to be cognizant of the localization of GPCR coupling partners in different cellular compartments. Abundant reports of endosomal GPCR signaling need to consider how the impact of lower G protein abundance on endosomal membranes will affect the signaling responses under study.

      The work presented is carefully executed, with seemingly high levels of technical rigor. These studies benefit from probing the experimental questions at hand using two different methods of measurement (fluorescent microscopy and bystander BRET). The observation that both methods arrive at the same (or a very similar) answer inspires confidence about the validity of these findings.

      Weaknesses:

      The rationale for fusing G-beta with either mNG2(11) or SmBit could benefit from some expansion. I understand the speculation that using the smallest tag possible may have the smallest impact on protein performance and localization, but plenty of researchers have fused proteins with whole fluorescent proteins to provide conclusions that have been confirmed by other methods. Many studies even use G proteins fused with fluorescent proteins or luciferases. Is there an important advantage to tagging G-beta with small tags? Is there evidence that G proteins with full-size protein tags behave aberrantly? If the studies presented here would not have been possible without these CRISPR-based tagging approaches, it would be helpful to provide more context to make this clearer. Perhaps one factor would be interference from newly synthesized G proteins-fluorescent protein fusions en route to the plasma membrane (in the ER and Golgi).

      There are several advantages to using small peptide tags that we did not fully explain. From a practical standpoint the most important advantage of using the HiBit tag instead of full-length Nanoluc is that it allows us to restrict luminescence output to cells transiently transfected with LgBit. In this way untransfected cells contribute no background signal. Although we did not take advantage of it here, this also applies to fluorescent protein complementation, and will be useful for visualizing proteins in individual cells within tissues. The HiBit tag also allows PAGE analysis by probing membranes with LgBit (as in Fig. 1). We are not aware of evidence that tagging Gb or Gg subunits on the N terminus results in aberrant behavior, while there is some evidence that Ga subunits tagged with full-size protein tags (in some positions) have altered functional properties (PMID: 16371464). We do think that editing endogenous genes is critical, as studies using transient overexpression (usually driven by strong promoters) have sometimes reported accumulation of tagged G proteins in the biosynthetic pathway (e.g., PMID: 17576765), as the reviewer suggests. Ga and Gbg appear to be mutually dependent on each other for appropriate trafficking to the plasma membrane (reviewed in PMID: 23161140), therefore the native (presumably matched) stoichiometry is likely to be critical.

      To clarify this context the revised manuscript includes the following:

      “For bioluminescence experiments we added the HiBit tag (Schwinn et al., 2018) and isolated clonal “HiBit-b1“ cell lines. An advantage of this approach over adding a full-length Nanoluc luciferase is that it requires coexpression of LgBit to produce a complemented luciferase. This limits luminescence to cotransfected cells and thus eliminates background from untransfected cells.”

      “Some studies using overexpressed G protein subunits have suggested that a large pool of G proteins is located on intracellular membranes, including the Golgi apparatus (Chisari et al., 2007; Saini et al., 2007; Tsutsumi et al., 2009), whereas others have indicated a distribution that is dominated by the plasma membrane (Crouthamel et al., 2008; Evanko, Thiyagarajan, & Wedegaertner, 2000; Marrari et al., 2007; Takida & Wedegaertner, 2003). A likely factor contributing to these discrepant results is the stoichiometry of overexpressed subunits, as neither Ga nor Gbg traffic appropriately to the plasma membrane as free subunits (Wedegaertner, 2012). Our gene-editing approach presumably maintains the native subunit stoichiometry, providing a more accurate representation of native G protein distribution.”

      As noted by the authors, they do not demonstrate that the tagged G-beta is predominantly found within heterotrimeric G protein complexes. If there is substantial free G-beta, then many of the conclusions need to be reconsidered. Perhaps a comparison of immunoprecipitated tagged G beta vs immunoprecipitated supernatant, with blotting for other G protein subunits would be informative.

      We do think that HiBit-b1 exists predominantly within heterotrimeric complexes, for several reasons. First, overexpression studies have shown that Gbg requires association with Ga to traffic to the plasma membrane, and that by itself Gbg is retained on the endoplasmic reticulum

      (PMID: 12609996; PMID: 12221133). We find almost no endogenous Gb1 on the endoplasmic reticulum, and a high density on the plasma membrane. Second, we are able to detect large increases in free HiBit-Gbg after G protein activation using free Gbg sensors (e.g. Fig. 1). Third, many proteins that bind to free Gbg are found entirely in the cytosol of HEK 293 cells (e.g. PMID: 10066824), suggesting there is not a large population of free Gbg. We have added discussion of these points to the revised manuscript as follows:

      “Endogenous Ga and Gb subunits are expressed at approximately a 1:1 ratio, and Gb subunits are tightly associated with Gg and inactive Ga subunits (Cho et al., 2022; Gilman, 1987; Krumins & Gilman, 2006). Moreover, proteins that bind to free Gbg dimers are found in the cytosol of unstimulated HEK 293 cells, suggesting at most only a small population of free Gbg in these cells. Therefore, we assume that the large majority of mNG-b1 and HiBit-b1 subunits in unstimulated cells are part of heterotrimers.”

      “Notably, when Gbg dimers are expressed alone they accumulate on the endoplasmic reticulum

      (Michaelson et al., 2002; Takida & Wedegaertner, 2003). That we detect almost no endogenous Gbg on the endoplasmic reticulum supports our conclusion that the large majority of Gbg in unstimulated HEK 293 cells is associated with Ga, although we cannot rule out a small population of free Gbg.”

      We do not entirely understand the suggested experiment, as free Gbg will still be largely associated with the membrane fraction. Notably, we find almost no HiBit-b1 in the supernatant after lysis in hypotonic buffer and preparation of membrane fractions, and the small amount that we do find does not change if Ga is overexpressed.

      Additional context and questions:

      (1) There exists some evidence that certain GPCRs can form enduring complexes with G-betagamma (PubMed: 23297229, 27499021). That would seem to offer a mechanism that would enable receptor-mediated transport of G protein subunits. It would be helpful for the authors to place the findings of this manuscript in the context of these previous findings since they seem somewhat contradictory.

      We agree. In our original submission we noted “It is possible that other receptors will influence G protein distribution using mechanisms not shared by the receptors we studied.” In the revised manuscript we have added:

      “For example, a few receptors are thought to form relatively stable complexes with Gbg, which could provide a mechanism of trafficking to endosomes (Thomsen et al., 2016; Wehbi et al., 2013).”

      (2) There is some evidence that GaS undergoes measurable dissociation from the plasma membrane upon activation (see the mechanism of the assay in PubMed: 35302493). It seems possible that G-alpha (and in particular GaS) might behave differently than the G-beta subunit studied here. This is not entirely clear from the discussion as it now stands.

      Indeed, there is abundant evidence that some Gas translocates away from the plasma membrane upon activation. We referred to translocation of “some Ga subunits” in the introduction, although we did not specify that Gas is by far the most studied example. In a previous study (PMID: 27528603) we found that overexpressed Gas samples many intracellular membranes upon activation and returns to the plasma membrane when activation ceases. This is similar to activation-dependent translocation of free Gbg dimers. Because these translocation mechanisms depend on activation and are reversible they are unlikely to be a major source of inactive heterotrimers for intracellular membranes.

      We did a poor job of making it clear that we intentionally avoided translocation mechanisms that operate only during receptor and G protein stimulation. In the revised manuscript we have added new data showing reversible activation-dependent translocation of endogenous HiBitGb1.

      (3) The authors say "The presence of mNG-b1 on late endosomes suggested that some G proteins may be degraded by lysosomes". The mechanism of lysosomal degradation by proteins on the outside of the lysosome is not clear. It would be helpful for the authors to clarify.

      We agree we didn’t connect the dots here. Our initial idea was that G proteins on the surface of late endosomes might reach the interior of late endosomes and then lysosomes by involution into multivesicular bodies. However, the reviewer correctly points out that much of the G protein associated with lysosomes still appears to be on the cytosolic surface, where it would not be subject to degradation. In fact, since lysosomes can fuse with the plasma membrane under certain circumstances, this could even represent a pathway for recycling G proteins to the plasma membrane.

      We have revised the text to avoid giving the impression that lysosomes degrade G proteins, since we have scant evidence that this occurs. In the revised discussion we point out that we do not know the fate of G proteins located on the surface of lysosomes and speculate that these could be returned to the plasma membrane:

      “We do not know the fate of G proteins located on the surface of lysosomes. Since lysosomes may fuse with the plasma membrane under certain circumstances (Xu & Ren, 2015), it is possible that this represents a route of G protein recycling to the plasma membrane.”

      (4) Although the authors do a good job of assessing G protein dilution in endosomal membranes, it is unclear how this behavior compares to the measurement of other lipidanchored proteins using the same approach. Is the dilution of G proteins what we would expect for any lipid-anchored protein at the inner leaflet of the plasma membrane?

      This is a great question. To begin to address it we have studied a model lipid-anchored protein consisting of mNeongreen2 anchored to the plasma membrane by the C terminus of HRas, which is palmitoylated and prenylated. We find that this protein is also diluted on endocytic vesicles, although to a lesser degree than heterotrimeric G proteins. We have added a section to the results and a new figure supplement describing these results:

      “To test if other peripheral membrane proteins are similarly depleted from endocytic vesicles, we performed analogous experiments by overexpressing mNG bearing the C-terminal membrane anchor of HRas (mNG-HRas ct). We found that mNG-HRas ct was also less abundant on FM464-positive endocytic vesicles than expected based on plasma membrane abundance, although not to the same extent as mNG-b1 (Figure 4 - figure supplement 2); mNG-HRas ct density on FM4-64-positive vesicles was 64 ± 17% (mean ± 95% CI; n=78) of the nearby plasma membrane.”

      Reviewer #2 (Public Review):

      This is an interesting method that addresses the important problem of assessing G protein localization at endogenous levels. The data are generally convincing.

      Specific comments

      Methods:

      The description of the gene editing method is unclear. There are two different CRISPR cell lines made in two different cell backgrounds. The methods should clearly state which CRISPR guides were used on which cell line. It is also not clear why HiBit is included in the mNG-β1 construct. Presumably, this is not critical but it would be helpful to explicitly note. In general, the Methods could be more complete.

      We have added the following to the methods to clarify that the same gRNA was used to produce both cell lines:

      “The human GNB1 gene was targeted at a site corresponding to the N-terminus of the Gb1 protein; the sequence 5’-TGAGTGAGCTTGACCAGTTA-3’ was incorporated into the crRNA, and the same gRNA was used to produce both HiBit-b1 and mNG-b1 cell lines.”

      We have added the following to the methods to clarify why HiBit is included in the mNG-b1 construct:

      “HiBit was included in the repair template for producing mNG-b1 cells to enable screening for edited clones using luminescence.”

      Results:

      The explanation of validation experiments in Figures 1 C and D is incomplete and difficult to follow. The rationale and explanation of the experiments could be expanded. In addition, because this is an interesting method, it would be helpful to know if the endogenous editing affects normal GPCR signaling. For example, the authors could include data showing an Isoinduced cAMP response. This is not critical to the present interpretation but is relevant as a general point regarding the method. Also, it may be relevant to the interpretation of receptor effects on G protein localization.

      We have expanded the rationale and explanation of experiments in Figures 1C and D by adding:

      “For example, we observed agonist-induced BRET between the D2 dopamine receptor and mNG-b1, an interaction that requires association with endogenous Ga subunits (Figure 1C). Similarly, we observed BRET between HiBit-b1 and the free Gbg sensor memGRKct-Venus after activation of receptors that couple Gi/o, Gs, and Gq heterotrimers, indicating that HiBit-b1 associated with endogenous Ga subunits from these three families (Figure 1D).”

      We have done the suggested cAMP experiment and provide the data in a new figure supplement:

      “We also found that cyclic AMP accumulation in response to stimulation of endogenous b adrenergic receptors was similar in edited cell lines and their unedited parent lines (Figure 1 - figure supplement 1).”

      Discussion:

      The conclusion that beta-gamma subunits do not redistribute after GPCR activation seems new and different from previous reports. Is this correct? Can the authors elaborate on how the results compare to previous literature?

      Many previous studies have indeed shown that free Gbg dimers can redistribute after GPCR activation and sample intracellular membranes. Our initial focus was on possible changes in heterotrimer distribution after GPCR activation, but in retrospect we should have directly addressed free Gbg translocation and made the distinction clear. 

      In the revised manuscript we show that during stimulation we observe changes consistent with modest translocation of endogenous Gbg from the plasma membrane and sampling of intracellular compartments. To our knowledge this is the first demonstration of endogenous Gbg translocation.

      We have added:

      “With overexpressed G proteins free Gbg dimers translocate from the plasma membrane and sample intracellular membrane compartments after activation-induced dissociation from Ga subunits. Consistent with this, we observed small decreases in bystander BRET at the plasma membrane and small increases in bystander BRET at intracellular compartments during activation of GPCRs, suggesting that endogenous Gbg subunits undergo similar translocation (Figure 5- figure supplement 1). Notably, these changes occurred at room temperature, suggesting that endocytosis was not involved, and developed over the course of minutes. The latter observation and the small magnitude of agonist-induced changes are both consistent with expression of primarily slowly-translocating endogenous Gg subtypes in HEK 293 cells. Moreover, as shown previously for overexpressed Gbg, the changes we observed with endogenous Gbg were readily reversible (Figure 5- figure supplement 1), suggesting that most heterotrimers reassemble at the plasma membrane after activation ceases.”

      Can the authors note that OpenCell has endogenously tagged Gβ1 and reports more obvious internal localization? Can the authors comment on this point?

      OpenCell has tagged GNB1 and the Leonetti group kindly provided a parent cell line we used to add a slightly different tag. Although their study did not identify any specific intracellular compartments, our impression is that most of the internal structures visible in their images are likely to be lysosomes, as they are large, round and often have a clear lumen. Overall their images and ours are comfortingly similar. We have added:

      “Unsurprisingly, our images are quite similar to those made as part of previous study that labeled Gb1 subunits with mNG2 (Cho et al., 2022).”

      Notably, the Leonetti group has recently reported the subcellular distribution of many untagged proteins using a proteomic approach. They find that Gb1 is enriched on the plasma membrane and lysosomes but is not enriched on endosomes, the Golgi apparatus, endoplasmic reticulum or mitochondria (https://www.biorxiv.org/content/10.1101/2023.12.18.572249v1). We have cited this work in the revised manuscript.

      Is this the first use of CRISPR / HiBit for BRET assay? It would be helpful to know this or cite previous work if not. Also, as this is submitted as a tools piece, the authors might say a little more about the potential application to other questions.

      The only previous study we are aware of utilizing a similar combination of methods is a 2020 report from the group of Dr. Stephen Hill, in which the authors studied binding of fluorescent ligands to HiBit-tagged GPCRs. This work is now cited.

      We have also added the following to our previous brief statement about potential applications:

      “In addition, it may also be possible to use these cells in combination with targeted sensors to study endogenous G protein activation in different subcellular compartments. More broadly, our results show that subcellular localization of endogenous membrane proteins can be studied in living cells by adding a HiBit tag and performing bystander BRET mapping. Applied at large scale this approach would have some advantages over fluorescent protein complementation, most notably the ability to localize endogenous membrane proteins that are expressed at levels that are too low to permit fluorescence microscopy.”

      Reviewer #3 (Public Review):

      Summary:

      This article addresses an important and interesting question concerning intracellular localization and dynamics of endogenous G proteins. The fate and trafficking of G protein-coupled receptors (GPCRs) have been extensively studied but so far little is known about the trafficking routes of their partner G proteins that are known to dissociate from their respective receptors upon activation of the signaling pathway. The authors utilize modern cell biology tools including genome editing and bystander bioluminescence resonance energy transfer (BRET) to probe intracellular localization of G proteins in various membrane compartments in steady state and also upon receptor activation. Data presented in this manuscript shows that while G proteins are mostly present on the plasma membrane, they can be also detected in endosomal compartments, especially in late endosomes and lysosomes. This distribution, according to data presented in this study, seems not to be affected by receptor activation. These findings will have implications in further studies addressing GPCR signaling mechanisms from intracellular compartments.

      Strengths:

      The methods used in this study are adequate for the question asked. Especially, the use of genome-edited cells (for the addition of the tag on one of the G proteins) is a great choice to prevent the effects of overexpression. Moreover, the use of bystander BRET allowed authors to probe the intracellular localization of G proteins in a very high-throughput fashion. By combining imaging and BRET authors convincingly show that G proteins are very low abundant on early endosomes (also ER, mitochondria, and medial Golgi), however seem to accumulate on membranes of late endosomal compartments.

      Weaknesses:

      While the authors provide a novel dataset, many questions regarding G protein trafficking remain open. For example, it is not entirely clear which pathway is utilized to traffic G proteins from the plasma membrane to intracellular compartments. Additionally, future studies should also address the dynamics of G protein trafficking, for example by tracking them over multiple time points.

      We agree, there is much more to do.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      On page 7 the text says "the difference did reach significance (Figure 5D)". It looks like the difference did not reach significance. Please check on this.

      Thank you, this was an unfortunately significant typo.

      Reviewer #3 (Recommendations For The Authors):

      This article addresses an important and interesting question concerning intracellular localization and dynamics of endogenous G proteins. While the posed question is indeed a grand one and the methods used by the authors are novel, I believe that the data presented in this manuscript are still insufficient to support all claims posed by the authors. Below I list my major concerns:

      (1) The authors claim that they provide a "detailed subcellular map of endogenous G protein distribution", however, the map is in my opinion not sufficiently detailed (e.g. trans-Golgi network is not included) and not quantitative enough (e.g. % of proteins present on one compartment vs. the other as authors claim that BRET signals "cannot be directly compared between different compartments"). To strengthen this statement, except for providing more extensive and quantitative data, it would be beneficial to provide such a "map" as an illustration based on the findings presented in this article.

      “Detailed” is certainly a subjective term. While we maintain that our description of endogenous G protein distribution is far more detailed than any previous study, we now simply claim to provide a “subcellular map”. We have added images of TGNP (TGN46; TGOLN2), showing that endogenous G proteins are readily detectable on the structures labeled by this marker. These data are now provided in Figure 3 – figure supplement 7.

      We did not claim that our study was quantitative- we did not try to count G proteins. However, if we use published estimates of total G proteins and surface area for HEK 293 cells we estimate that there are roughly 2,500 G proteins µm-2 on the plasma membrane and 500 G proteins µm-2 on endocytic vesicles. For other intracellular compartments relative density can be approximated by inspecting images, but a truly quantitative estimate would require a surface area standard analogous to FM4-64 for each compartment. The percentage of the total G protein pool on a given compartment is, in our opinion, less important than the density of G proteins on that compartment, as the latter is more likely to affect the efficiency of local signal transduction. Since we do not claim to have accurate G protein density estimates for many intracellular compartments, we prefer to provide several raw images for each compartment rather than a schematized map.

      Bystander BRET values cannot be compared directly across compartments due to differences in expression and energy transfer efficiency of different markers and compartment surface area. This method is well suited for following changes in distribution as a function of time or after perturbations and for sensitive detection of weak colocalization but can only provide approximate “maps” of absolute distribution.

      (2) Probing of the intracellular distribution of these proteins, especially after GPCR activation, includes a single chosen timepoint. I believe that the manuscript would greatly benefit from including some dynamic data on internalization and intracellular trafficking kinetics. What is the turnover of tested G proteins? What is the fraction that is going to recycling compartments and/or lysosomes? Authors could perhaps turn to other methods to be able to dynamically track proteins over time e.g. via photoconversion techniques.

      Because G protein trafficking appears to be largely constitutive there is no easy way for us to assess how long it takes G proteins to transit various intracellular compartments, although we agree this would be interesting. As the reviewer suggests, dynamic data on constitutive trafficking would require methods (such as photoconversion) not currently available to us for endogenous G proteins. Accordingly, we have made no claims regarding the kinetics of G protein trafficking. As for possible redistribution after GPCR activation, in the revised manuscript we have added 5- and 15-minute timepoints after agonist stimulation for our bystander BRET mapping (Figure 5- figure supplement 2). These timepoints were chosen to correspond to persistent signaling mediated by internalized receptors. 

      (3) Exemplary images with cells showing significant colocalization with lysosomal compartments seem to contain more intracellular vesicles visible in the mNG channel than in the case of the other compartment. Is it an effect of the treatment to stain lysosomes? It would be beneficial to compare it with some endogenous marker e.g. LAMP1 without additional treatments.

      The visibility of intracellular vesicles in our lysosome images likely reflects our selection of cells and regions with visible and abundant lysosomes, specifically peripheral regions directly adhered to the coverslip, rather than treatment with lysosomal stains (LV 633 and dextran). As suggested, we now include images of cells expressing LAMP1 as an alternative lysosome marker (Figure 3 - figure supplement 6).

      (4) The authors probe an abundance of G proteins along the constitutive endocytic pathway. However, to prove that G proteins are not de-palmitoylated rather than endocytosed authors should perform control experiments where endocytosis is blocked e.g. pharmacologically or via a knockdown approach. Additionally, various endocytic pathways can be probed.

      We did not claim that depalmitoylation plays no role in delivery of G proteins to internal compartments. In fact, we pointed out that we cannot at present rule out other pathways and delivery mechanisms. Importantly, if some of the G proteins that we detect along the endocytic pathway do arrive there by trafficking through the cytosol this would only strengthen our major conclusion that endocytosis is inefficient.

      Having said this, we have now conducted extensive experiments investigating the role of palmitate cycling in the trafficking of heterotrimeric G proteins and the small G protein H-Ras. Our results suggest that a depalmitoylation-repalmitoylation cycle is not important for the distribution of heterotrimers, but these findings will be the subject of a separate publication focused on this specific question for both large and small G proteins.

      We agree that it will be interesting to probe different endocytic pathways, as suggested using a genetic approach. Our main interest here was in endocytic membranes that were defined functionally (with FM4-64 or internalized receptors) rather than biochemically.

      Minor comments:

      (5) "Imaging" paragraph in the Methods section refers to a non-existent figure called "SI Appendix S9".

      Thank you.

      (6) It is not clear what was used as a "control" in Figure 5E.

      “Control” refers to DPBS vehicle alone. This information is now added to the legend for Figure 5E.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer 1:

      Comment 1 and 2: “The pipeline relies on a large number of hard-coded conditions: size of Gaussian blur (Gaussian should be written in uppercase), values of contrast, size of filters, levels of intensity, etc. Presumably, the authors followed a heuristic approach and tried values of these and concluded that the ones proposed were optimal. A proper sensitivity analysis should be performed. That is, select a range of values of the variables and measure the effect on the output.”

      “Linked to the previous comments. Other researchers that want to follow the pipeline would have either to have exactly the same acquisition conditions as the manuscript or start playing with values and try to compensate for any difference in their data (cell diameter, fluorescent intensity, etc.) to see if they can match the results of the manuscript.”

      We thank the Reviewer for his insightful comments. We have modified the “Usage” section of the GitHub page (https://github.com/ieoresearch/cellcycle-image-analysis) to include, for each step of the image processing, a paragraph explaining the significance of the operation and a paragraph named “Suggested Values Range” where tips for optimal parameter settings are given and examples with different parameter settings are shown. We believe that these new paragraphs help researchers easily customize the pipeline to their own data.

      Reviewer 2:

      Comment 1: “It would be useful to include frames from the movie showing a G1/S cell in Figures 1 and S1 with some indication of how long that cell is present. From Figure S4 it looks like it is substantially less than an hour.

      It would definitely be nice to validate this observation. A brief pulse of EdU together with the FUCCI colors could allow you to do that in a culture of cycling cells. It appears that the green color as cells enter S-phase develops slowly (and maybe gets brighter continuously) as does the red color as cells progress through G1. It would be nice to validate what the color the cells are when they actually initiate DNA replication.”  

      We thank the Reviewer for the opportunity to further investigate our results and clarify points that were unclear in the first version of the manuscript. As suggested, we have included all acquired frames depicting the G1 to S transition/early S phase of three cells: the Kasumi-1 untreated cell and the PF-06873600 treated NB4 cell shown in Fig. 1A, and the MDA-MB-231 cell shown in Fig. S1; they are shown in panels D of Fig. 4 and S5, respectively.

      For the Kasumi-1 and NB4 cells, the G1 to S transition/early S phase, defined in the pipeline refinement step as a yellow phase appearing before the S phase, is visible at the 12-hour frame. Conversely, the MDA-MB-231 cell shown in Fig. S5D does not exhibit the G1 to S or early S phase, yellow; it transitions abruptly from red to green within our acquisition timeframe (30 min in this case), producing a green early S phase. This observation supports the Reviewer's suggestion that the G1 to S yellow transition is often shorter than one hour and it is not identifiable in all cells.

      To further investigate this point, we also conducted the EdU experiments kindly suggested by the Reviewer. Kasumi-1 and MDA-MB-231 cells expressing the FUCCI(CA)2 probes were exposed to a pulse of EdU, and subsequently analyzed using flow cytometry and confocal microscopy. A new paragraph titled “The workflow allows the identification of the G1 to S phase transition” has been added to the Results section, with the corresponding data presented in Fig. 4 and Fig. S5 for Kasumi-1 and MDA-MB-231 cells, respectively. The Methods section has also been updated describing the new experiments.

      Additionally, in BOX1 under the 'Cell phase assignment' paragraph, point (III), we have removed point 'a. Re-assign the G2/M frames to G1'. Although theoretically possible according to the pipeline, this reassignment is incorrect in practice because mVenus fluorescence indicates that the cells are starting or have already initiated DNA replication.

      All the modifications we made in the text and Figure captions are highlighted in red. We would be thankful if the co-first authorship of Kourosh Hayatigolkhatmi, Chiara Soriani and Emanuel Soda is acknowledged in the final published version of the article.

      We believe that the revisions have strengthened our manuscript, and we hope that it now meets the reviewers' suggestions for greater clarity.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      In the present study, Rincon-Torroella et al. developed ME3BP-7, a microencapsulated formulation of 3BP, as an agent to target MCT1 overexpressing PDACs. They provided evidence showing the specific killing of PDAC cells with MCT1 overexpressing in vitro, along with demonstrating the safety and anti-tumor efficacy of ME3BP-7 in PDAC orthotopic mouse models.

      Strengths:

      * Developed a novel agent.

      * Well-designed experiments and an organized presentation of data that support the conclusions drawn.

      Weaknesses:

      There are some minor issues that could enhance the clarity and completeness of the study:

      (1) Statistical results should be visually presented in Figure 4 and Figure S1.

      (2) Given the tumor heterogeneity and the identification of focal high expression of MCT1 in Figure 7 and Figure S5B, it is suggested that the authors include the results of immunohistochemical (IHC) analysis of MCT1 expression in both control and ME3BP-7 treated tumor tissues. This addition may offer insight into whether the remaining tumors are composed of PDAC cells with negative MCT1 expression, while the cells with relatively high levels of MCT1 expression were eliminated by ME3BP-7 treatment.

      (3) The authors are encouraged to discuss the future directions for improving the efficacy of this study. For example, exploring the combination of ME3BP-7 with a glutaminase-1 inhibitor (PMID 37891897) could be a valuable avenue for further research.

      We thank the reviewer for pointing these out. We have addressed these individually in detail in the next section

      Reviewer #2 (Public Review):

      Summary:

      In the manuscript by Rincon-Torroella et al, the authors evaluated the therapeutic potential of ME3BP-7, a microencapsulated formulation of 3BP which specifically targets MCT-1 high tumor cells, in pancreatic cancer models. The authors showed that, compared to 3BP, ME3BP-7 exhibited much-enhanced stability in serum. In addition, the authors confirmed the specificity of ME3BP-7 toward MCT-1 high tumor cells and demonstrated the in vivo anti-tumor effect of ME3BP-7 in orthotopic xenograft of human PDAC cell line and PDAC PDX model.

      Strengths:

      (1) The study convincingly demonstrated the superior stability of ME3BP-7 in serum.

      (2) The specificity of ME3BP-7 and 3BP toward MCT-1 high PDAC cells was clearly demonstrated with CRISPR-mediated knockout experiments.

      Weaknesses:

      The advantage of ME3BP-7 over 3BP under an in vivo situation was not fully established.

      This is a helpful observation indeed and we have attempted to address this in the revised manuscript as well as clarified the details in the following section in detail.

      Reviewer #1 (Recommendations For The Authors):

      There are some minor issues that could enhance the clarity and completeness of the study:

      We appreciate these comments and have addressed them to the best of our abilities in the revised manuscript.

      (1) Statistical results should be visually presented in Figure 4 and Figure S1.

      Figure 4 and S1 have been updated to include visual representation of statistical results.

      (2) Given the tumor heterogeneity and the identification of focal high expression of MCT1 in Figure 7 and Figure S5B, it is suggested that the authors include the results of immunohistochemical (IHC) analysis of MCT1 expression in both control and ME3BP-7 treated tumor tissues. This addition may offer insight into whether the remaining tumors are composed of PDAC cells with negative MCT1 expression, while the cells with relatively high levels of MCT1 expression were eliminated by ME3BP-7 treatment.

      This is an excellent suggestion, but unfortunately, we were unable to implement it.   We identified a single antibody that showed specificity in our MCT1 knockout isogenic panel after testing 6 different commercial anti-MCT1 antibodies. While the chosen antibody (sc-365501) worked well on fixed human pancreatic cancer samples, it exhibited significant cross-reactivity against background mouse tissue, rendering it difficult to effectively visualize the orthotopically implanted PDx samples.  

      (3) The authors are encouraged to discuss the future directions for improving the efficacy of this study. For example, exploring the combination of ME3BP-7 with a glutaminase-1 inhibitor (PMID 37891897) could be a valuable avenue for further research.

      We have included potentially useful combinations of ME3BP-7 in the discussion section.

      Reviewer #2 (Recommendations For The Authors):

      The overall study is straightforward with translational significance. However, additional clarification is needed to determine the novelty of the study. As cited by the authors, the same group previously published a paper in Clinical Cancer Research, demonstrating the anti-tumor effect of beta-CD-3BP which is also a microencapsulated form of 3BP prepared with succinyl-beta-cyclodextrin. Please clarify what is the major difference between the ME3BP-7 and beta-CD-3BP.

      We designed the first generation of beta-CD-3BP and presented the preliminary results in the Clinical Cancer Research paper.  Over the last several years, we sought to optimize the formulation so that it would be a a robust clinical candidate. The current manuscript describes our in-depth exploration.

      We used a combination of SEC HPLC analyses (representative chromatogram in Fig. 3A) along with a newly developed assay to assess serum stability (representative data in Fig 3B) of a panel of ME-3BP complexes. The panel was created by varying the molar ratios of three different beta-CDs (succinyl beta-CD, native beta-CD and hydroxypropyl beta CD) to 3BP.   We discovered that an excess of succinyl-beta-CD (1.2 :1) resulted in the most stable agent with no noticeable batch effects, and this formulation was dubbed ME3BP-7).

      The study clearly demonstrated the superior stability of ME3BP-7 in serum compared to 3BP. To further support the advantage of ME3BP-7, it will be important to include the same dose of 3BP as a control in the in vivo treatment experiment to evaluate the difference in both toxicity and anti-tumor effect.

      We wanted to include a control arm in our study wherein the same dose of 3BP was used. However, in toxicity studies on three different species of mice, we found that infusion of 3BP at the identical dose was highly toxic, killing the animals within a few days.  We have highlighted this toxicity of the non-microencapsulated 3BP in the revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Kim et al. describes a role for axonal transport of Wnd (a dual leucine zipper kinase) for its normal degradation by the Hiw ubiquitin ligase pathway. In Hiw mutants, the Wnd protein accumulates dramatically in nerve terminals compared to the cell body of neurons. In the absence of axonal transport, Wnd levels rise and lead to excessive JNK signaling that makes neurons unhappy.

      Strengths:

      Using GFP-tagged Wnd transgenes and structure-function approaches, the authors show that palmitoylation of the protein at C130 plays a role in this process by promoting golgi trafficking and axonal localization of the protein. In the absence of this transport, Wnd is not degraded by Hiw. The authors also identify a role for Rab11 in the transport of Wnd, and provide some evidence that Rab11 loss-of-function neuronal degenerative phenotypes are due to excessive Wnd signaling. Overall, the paper provides convincing evidence for a preferential site of action for Wnd degradation by the Hiw pathway within axonal and/or synaptic compartments of the neuron. In the absence of Wnd transport and degradation, the JNK pathway becomes hyperactivated. As such, the manuscript provides important new insights into compartmental roles for Hiw-mediated Wnd degradation and JNK signaling control.

      Weaknesses:

      It is unclear if the requirement for Wnd degradation at axonal terminals is due to restricted localization of HIW there, but it seems other data in the field argues against that model. The mechanistic link between Hiw degradation and compartmentalization is unknown. 

      We thank the Reviewer for valuable comments. In our revised manuscript, we have addressed reviewer ‘s comments and clarified confusions. We did not intent to imply that Rab11 directly mediates anterograde Wnd protein transport towards axon terminals. We re-worded related text throughout our manuscript to avoid confusion. Additionally, to strengthen the link between Rab11 and Wnd, we have added additional data that heterozygous mutation of wnd could rescue the eye degeneration phenotypes caused by Rab11 loss-of-function (new Figure 7C).

      It is unclear if the requirement for Wnd degradation at axonal terminals is due to restricted localization of HIW there, but it seems other data in the field argues against that model. The mechanistic link between Hiw degradation and compartmentalization is unknown.

      We believe that the mechanistic understanding on how Wnd protein turnover is restricted to axon/axon terminals is beyond the scope of current manuscript. We are actively investigating this interesting research question – please see our point-by-point response for details.

      Reviewer #2 (Public Review):

      Summary:

      Utilizing transgene expression of Wnd in sensory neurons in Drosophila, the authors found that Wnd is enriched in axonal terminals. This enrichment could be blocked by preventing palmitoylation or inhibiting Rab1 or Rab11 activity. Indeed, subsequent experiments showed that inhibiting Wnd can prevent toxicity by Rab11 loss of function.

      Strengths:

      This paper evaluates in detail Wnd location in sensory neurons, and identifies a novel genetic interaction between Rab11 and Wnd that affects Wnd cellular distribution.

      Weaknesses:

      The authors report low endogenous expression of wnd, and expressing mutant hiw or overexpressing wnd is necessary to see axonal terminal enrichment. It is unclear if this overexpression model (which is known to promote synaptic overgrowth) would be relevant to normal physiology.

      We agree that most of our subcellular localization studies were conducted using transgenes, which may not accurately reflect endogenous protein localization. Albeit with this technical limitation, our work addresses an important mechanistic link between DLK’s axonal localization and protein turnover, in neuronal stress signaling and neurodegeneration. 

      Additionally, most of our experiments were done using a kinase-dead form of Wnd or with DLKi treatment (DLK kinase inhibitor). Neurons do not display synaptic overgrowth phenotypes under these experimental conditions. Thus, the changes in Wnd axonal localization are likely independent of synaptic overgrowth phenotypes.

      Palmitoylation of the Wnd orthologue DLK in sensory neurons has previously been identified as important for DLK trafficking in a cell culture model.

      Palmitoylation of DLK has been studied in previous works including Holland et al. 2015. These are important works. However, there are significant differences from our findings. First, inhibiting DLK palmitoylation caused cytoplasmic localization of DLK. It has been reported that expression levels of wild-type and the palmitoylation-defective DLK (DLK-CS) in axons are not different in cultured sensory neurons (Holland 2015, Figure 2A and 2B). This could be simply because DLK-CS is entirely cytoplasmic and can readily diffuse into axons – which led to the conclusion that DLK palmitoylation is essential for DLK localization on motile axonal puncta. Second, because of this cytoplasmic localization, DLK-CS failed to induce downstream signaling (Holland 2015).

      However, the behavior of Wnd-CS from our study is entirely different. Wnd-CS does not show diffuse cytoplasmic localization, rather shows discrete localizations in neuronal cell bodies (Figure 2E, Figure 2-supplement 1). Furthermore, Wnd-CS is able to induce downstream signaling (Figure 4 – supplement 1 and 2). Thus, our manuscript is not an extension of previously published work. Rather, our manuscript took advantage of this unique behavior of Wnd-CS and elucidated biological function of the axonal localization of Wnd.

      The authors find genetic interaction between Wnd and Rab11, but these studies are incomplete and they do not support the authors' mechanistic interpretation.

      Our model describes that Wnd is constantly transported to axon terminals for protein degradation (protein turnover), and that this process is essential to keep Wnd activity at low levels to prevent unwanted neuronal stress signal. Based on this model, a failure in Wnd transport to axon terminals – as seen in Wnd-C130S or by Rab11 loss-of-function – would compromises protein degradation of Wnd, hence, results in excessive abundance of Wnd proteins. This was clearly demonstrated for Wnd-C130S (Figure 3) and for Rab11 mutants (Figure 6E), which support our model.

      To strengthen the link between Rab11 and Wnd, we have added additional data in our revised manuscript, which showed that heterozygous mutation of wnd significantly rescued the eye degeneration phenotypes caused by Rab11 loss-of-function (new Figure 7C).

      We did not intent to imply that Rab11 directly mediates anterograde Wnd protein transport towards axon terminals. We re-worded related text throughout our manuscript to avoid confusion.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) It would be interesting to overexpress Hiw in C4da neurons to see if this can degrade the C130S Wnd protein and reduce ERK signaling, or overexpress Hiw in the Rab11 mutant background to see if this can reduce the accumulation of Wnd or total Wnd levels. This could address the question of whether the reduction in Wnd turnover is due to Hiw's inaccessibility to Wnd.

      Thank you for your comment. We believe this question warrants an independent line of study. Although this is beyond the scope of current work, we would like to share our findings here. We have found that overexpressing Hiw did not suppress the transgenic expression of Wnd-KD in C4da neurons regardless of cellular locations. However interestingly, the same Hiw overexpression suppressed increased Wnd-KD expression by hiw mutations in C4da neuron axon terminals. Thus, it seems that endogenous levels of Hiw in wild-type was sufficient to suppress transgenic expression of Wnd-KD, and that excessive Hiw expression does not further enhance this effect. Currently, we do not know the mechanisms underlying these observations. One possibility is that Hiw functions exclusively in the context of E3 ubiquitin ligase complex. Wu et al. (2007) found that DFsn is synaptically enriched and acts as an F-box protein of Hiw E3 ligase complex. It is possible that DFsn or some other components of Hiw E3 ligase complex determine the subcellular specificity of Hiw function. We are actively pursuing this research question currently.

      (2) The authors claim that Rab11 transports Wnd to the axon terminals. However, they do not see reliable colocalization of Rab11 and Wnd at axon terminals. Can the authors see Rab11-enriched vesicles with Wnd in nerve bundles, or is the role only to sort Wnd onto a post-recycling endosome compartment that moves to axonal terminals without Rab11?

      We apologize for the confusion. We did not intend to claim that Rab11 directly transports Wnd along axons. We suggested that Rab11 is necessary for axonal localization of Wnd by acting at the somatic recycling endosomes since Rab11 and Wnd extensively colocalize in the cell body but not in the axon terminals (Figure 6 and Figure 6 supplement 1). In our new “Figure 6 supplement 1”, we have now added Rab11 and Wnd colocalization in axons (segmental nerves). We also revised the text (line 294-298) “On the other hand, we did not detect any meaningful colocalization between YFP::Rab11 and Wnd-KD::mRFP in C4da axon terminals or in axons (Manders’ coefficient 0.34 ± 0.14 and 0.41 ± 0.10 respectively) (Figure 6 – supplement 1). These suggest that Rab11 is involved in Wnd protein sorting at the somatic REs rather than transporting Wnd directly.” And in Discussion (line 396-398) “These further suggest that Rab11 is not directly involved in the anterograde long-distance transport of Wnd proteins, rather is responsible for sorting Wnd into the axonal anterograde transporting vesicles.”.

      (3) The authors mis-cite the Tortosa et al 2022 study which shows the exact opposite of what the authors state. Tortosa et al show DLK recruitment to vesicles through phosphorylation and palmitoylation is essential for its signaling, not the opposite, so the authors should reword that or remove the citation.

      We believe the citation is correct. Tortosa et al (2022) “Stress‐induced vesicular assemblies of dual leucine zipper kinase are signaling hubs involved in kinase activation and neurodegeneration” describes that membrane association of DLK rather than palmitoylation itself is sufficient for DLK signaling activation. This is achieved by DLK palmitoylation for mammalian DLK. However, when artificially targeted to cellular membranes, palmitoylation defective DLK (mammalian DLK-CS in their study) was able to induce DLK signaling. Specifically, in their Figure 2 (K-N), when targeted to the intracellular membranes of ER and mitochondria, DLK-CS (palmitoylation defective DLK) elicited DLK signaling as shown by c-Jun phosphorylation.

      Reviewer #2 (Recommendations For The Authors):

      Major Concerns:

      (1) A concern is the overinterpretation of results. The authors find the accumulation of Wnd in axon terminals when they express hiw null or when they overexpress Wnd, but extrapolate that this occurs in "normal conditions" without evidence. Could the increase of Wnd in the axonal terminal be in the setting of known synaptic overgrowth associated with transgene expression?

      Most of our work was conducted using a kinase-dead version of Wnd (Wnd-KD) in a wild-type background (Figure 1C and Figure 1 supplement 1). Moreover, Wnd kinase activity does not affect Wnd axonal localization in our experimental settings (Figure 1 supplement 1).

      When using hiw mutant background, the larvae were treated with Wnd kinase inhibitor thus, prevented excessive axonal growth (Figure 1E, bottom right image – note that there is no axonal overgrowth in this condition). Additionally, Wnd-C130S is expressed lower levels in axon terminals than Wnd (Figure 3B) while exhibiting similar axon overgrowth (Figure 4 supplement 1B). Taken together, axonal overgrowth is unlikely affect axonal protein localization of Wnd.

      (2) The interpretation of these results is based on a supposition that Rab11 anterogradely transports Wnd along axons without evidence for this. Indeed, it has been shown that Rab11 is excluded from axons in mature neurons, but can be mislocalized when overexpressed. This should be addressed in their discussion.

      We apologize for the confusion. We did not intend to suggest that Rab11 directly transports Wnd along axons. We suggested that Rab11 is necessary for axonal localization of Wnd by acting at the somatic recycling endosomes since Rab11 and Wnd extensively colocalize in the cell body but not in the axon terminals (Figure 6 and Figure 6 supplement 1). In our new “Figure 6 supplement 1”, we have now added Rab11 and Wnd colocalization in axons (segmental nerves). We also revised the text (line 296-298) “On the other hand, we did not detect any meaningful colocalization between YFP::Rab11 and Wnd-KD::mRFP in C4da axon terminals or in axons (Manders’ coefficient 0.34 ± 0.14 and 0.41 ± 0.10 respectively) (Figure 6 – supplement 1). These suggest that Rab11 is involved in Wnd protein sorting at the somatic REs rather than transporting Wnd directly.” And in Discussion (line 396-398) “These further suggest that Rab11 is not directly involved in the anterograde long-distance transport of Wnd proteins, rather is responsible for sorting Wnd into the axonal anterograde transporting vesicles.”.

      (3) In Figure 1, the authors should also show images of Wnd-GFSTF in wild-type (non-hiw mutations) to show endogenous Wnd levels in the axon terminal.

      We have now added the figures of Wnd-GFSTF in wild-type (new Figure 1A). To show the comparable fluorescent intensities, we also re-performed hiw mutant experiment and replaced the old images.

      (4) For Figure 1- Supplement, the authors state that the kinase-dead version of Wnd exhibited similar axonal enrichment in comparison to Wnd::GFP in the presence and absence of DLKi. This statement would be better supported with images specifically showing this (for example Wnd-KD::GFP compared to Wnd:GFP with DLKi and Wnd:GFP without DLKi).

      We did not show the images from Wnd::GFP (DLKi) in this supplement figure because it would be redundant with Figure 1C. Rather, we presented the axonal enrichment index for Wnd::GFP (DLKi), Wnd-KD::GFP, Wnd-KD::GFP (DLKi), and Wnd-KD::GFP (DMSO) in Figure 1 supplement 1B.

      Overexpressing catalytically active Wnd dramatically lowers ppk-GAL4 activity in C4da neurons thus prevents us from performing an experiment for Wnd::GFP without DLKi. In this condition, Wnd::GFP expression is barely detectable in C4da neurons.

      (5) In Figure 2 - Supplement 3 the authors state that their data suggests that Wnd protein palmitoylation is catalyzed by HIP14 due to colocalization in the somatic Golgi and mutating HIP14 leads to less Wnd in the axon terminal. This statement would be better supported by evaluating Wnd's palmitoylation via immunoprecipitation in response to dHIP14 enzyme activity.

      We appreciate reviewer’s comment. Although the exact identity of Wnd palmitoyltransferase might be of high interest, our study rather concerns about the biological role of Wnd axonal localization. Moreover, the identity of DLK palmitoyltransferase has been identified in mammalian cell culture and worm studies (Niu et al. 2020 “Coupled Control of Distal Axon Integrity and Somal Responses to Axonal Damage by the Palmitoyl Acyltransferase ZDHHC17”). ZDHHC17 is another name for HIP14. Our data together with these published works strongly suggest that Wnd, the Drosophila DLK might also be targeted by Drosophila HIP14 or dHIP14.

      (6) The authors argue that palmitoylation of Wnd is essential for axonal localization of Wnd. If dHIP14 indeed palmitoylates Wnd as the authors claim, shouldn't there be a decrease in Wnd's palmitoylation within dHIP14 mutants, consequently resulting in its accumulation in the cell body rather than localization in the axonal terminal? However, Wnd is reduced at the axon terminal in dHip14 mutants, but it does not appear to increase in the cell body (Figure 2S3.C). This observation contradicts the results showing increased Wnd in the cell body presented in Figure 2. B and E. This discrepancy should be addressed.

      Thank you for your comment. Our study concerns about the biological role of Wnd axonal localization. Although in an ideal model, dHIP14 mutations should prevent Wnd palmitoylation and causes subsequent cell body accumulation. However, it is highly likely that dHIP14 mutations affect a large number of protein palmitoylations – not just Wnd, which likely changes many aspect of cell functions. We envision that Wnd protein expression might be indirectly affected by these changes. In this context, mutating C130 in Wnd can be considered as more targeted approach – and our data clearly shows that such Wnd mutations render Wnd accumulation in cell bodies.

      (7) Figure 3 - the authors show increased Wnd protein by Western blot in WndC130S:GFP compared to Wnd::GFP. qPCR experiments to show similar mRNA expression of these two transgenes would be an important control, if it's thought that the increase of protein is due to reduction of protein degradation.

      Thank you for your comment. Expressing WndC130S::GFP vs Wnd::GFP was done by GAL4-UAS system – not through endogenous wnd promoter. Thus, we do not expect different mRNA abundance of WndC130S::GFP and Wnd::GFP. However, your concern is valid for Rab11 mutants. We measured wnd mRNA abundance by RT-qPCR and found that Rab11 mutations did not increase wnd mRNA levels (Figure 6 - Supplement 2). Rather, we observed consistent reduction in wnd mRNA levels by Rab11 mutant. Please note that total Wnd protein levels were significantly increased by Rab11 mutations. We currently do not have a clear explanation. We envision that the dramatic increase in Wnd signaling (ie, JNK signal, Figure 7A) induces a negative-feedback to reduce wnd mRNA levels (line 313-317).

      (8) Figure 4 Supplement - the authors report that Wnd::GFP causes robust induction of Puc-LacZ. A control without Wnd::GFP expression would be necessary to support that there was an induction.

      We have added control data of UAS-Wnd-KD::GFP (new Figure 4 supplement 1A). Since this required a new side-by-side comparison of fluorescent intensities, we re-performed the full set of experiments and replaced our old data sets.  The results confirmed that both Wnd::GFP and Wnd-C130S::GFP induces puc-lacZ expression. 

      (9) Previously it was shown that inhibiting palmitoylation of DLK prevented activation of JNK signaling (Holland et al 2015), but the authors show in Figure 4A instead an increase of JNK signaling. This discrepancy should be addressed.

      The use of Wnd palmitoylation-defective mutant in our study was only possible because of different behavior of Wnd-C130S from those of palmitoylation-defective DLK. Unlike diffuse cytoplasmic localization of the palmitoylation-defective DLK in mammalian cells or in C elegans neurons, Wnd-C130S exhibited clear puncta localization in neuronal cell bodies – which extensively co-localizes with somatic Golgi complex (Figure 2E and Figure 2 supplement 1). Tortosa et al (2022) showed that palmitoylation-defective DLK (DLK-CS) can trigger DLK signaling when artificially targeted to intracellular membranous organelles (Tortosa 2022, Figure 2 (K-N)). Thus, we reasoned that unlike the palmitoylation-defective DLK from mammalian and worms, Drosophila DLK, Wnd might be catalytically active when mutated on Cysteine 130 because of its puncta localization.

      (10) Figure 6 Supplement - the Rab11 staining is not in a pattern that would be expected with endosomes. A control of just YFP would be useful to determine if this fluorescence signal is specific to Rab11. Can endogenous Rab11 be detected in axons or in the axonal terminal?

      In our model system, endogenously tagged Rab11 (TI-Rab11) does not show clear puncta patterns in segmental nerves (axons) and neuropils (axon terminals), neither colocalize with Wnd-KD. This is indeed related to the reviewer’s comment #2, which suggests that Rab11 does not form endosomes in distal axons or axon terminals in mature neurons. Expressing Rab11 transgenes exhibited some puncta structures in axons (segmental nerves) (new Figure 6 supplement 1). However, they did not show meaningful colocalize with Wnd-KD. These are consistent with our model that Rab11 acts in neuronal cell bodies for Wnd axonal transport – likely via a sorting process.

      (11) There is growing evidence that palmitoylation is important for cargo sorting in the Golgi, and Rab11 is also located at the Golgi and important for trafficking from the Golgi. A mechanism that could be considered from your data is that blocking palmitoylation impairs sorting at the Golgi and trafficking from the Golgi, as opposed to impairing fast axonal transport. Indeed, Rab11 has been shown to be blocked from axons in mature neurons, making Rab11 unlikely to be responsible for the fast axonal transport of Wnd. Direct evidence of Rab11 transporting Wnd in axons would be necessary for the claim that Rab11 constantly transports DLK to terminals.

      We apologize for the confusion. We did not intend to suggest that Rab11 directly transports Wnd along the axons. We suggested that Rab11 is necessary for axonal localization of Wnd by acting at the somatic recycling endosomes since Rab11 and Wnd extensively colocalize in the cell body but not in the axon terminals (Figure 6 and Figure 6 supplement 1). In our new “Figure 6 supplement 1”, we have now added Rab11 and Wnd colocalization in axons (segmental nerves). We also revised the text (line 296-298) “On the other hand, we did not detect any meaningful colocalization between YFP::Rab11 and Wnd-KD::mRFP in C4da axon terminals or in axons (Manders’ coefficient 0.34 ± 0.14 and 0.41 ± 0.10 respectively) (Figure 6 – supplement 1). These suggest that Rab11 is involved in Wnd protein sorting at the somatic REs rather than transporting Wnd directly.” And in Discussion (line 394-398) “These further suggest that Rab11 is not directly involved in the anterograde long-distance transport of Wnd proteins, rather is responsible for sorting Wnd into the axonal anterograde transporting vesicles.”.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This work used a comprehensive dataset to compare the effects of species diversity and genetic diversity within each trophic level and across three trophic levels. The results showed that species diversity had negative effects on ecosystem functions, while genetic diversity had positive effects. These effects were observed only within each trophic level and not across the three trophic levels studied. Although the effects of biodiversity, especially genetic diversity across multi-trophic levels, have been shown to be important, there are still very few empirical studies on this topic due to the complex relationships and difficulty in obtaining data. This study collected an excellent dataset to address this question, enhancing our understanding of genetic diversity effects in aquatic ecosystems.

      Strengths:

      The study collected an extensive dataset that includes species diversity of primary producers (riparian trees), primary consumers (macroinvertebrate shredders), and secondary consumers (fish). It also includes the genetic diversity of the dominant species at each trophic level, biomass production, decomposition rates, and environmental data.

      The conclusions of this paper are mostly well supported by the data and the writing is logical and easy to follow.

      Weaknesses:

      While the dataset is impressive, the authors conducted analyses more akin to a "meta-analysis," leaving out important basic information about the raw data in the manuscript. Given the complexity of the relationships between different trophic levels and ecosystem functions, it would be beneficial for the authors to show the results of each SEM (structural equation model).

      We understand the point raised by the reviewer. Our objective was to focus the Results section on the main hypotheses, and for this we let away the raw statistics. We can definitively show the seven individual SEM, highlighting the major links, which may help understand some processes. This will be done in the next version of the manuscript.

      The main results presented in the manuscript are derived from a "metadata" analysis of effect sizes. However, the methods used to obtain these effect sizes are not sufficiently clarified. By analyzing the effect sizes of species diversity and genetic diversity on these ecosystem functions, the results showed that species diversity had negative effects, while genetic diversity had positive effects on ecosystem functions. The negative effects of species diversity contradict many studies conducted in biodiversity experiments. The authors argue that their study is more relevant because it is based on a natural system, which is closer to reality, but they also acknowledge that natural systems make it harder to detect underlying mechanisms. Providing more results based on the raw data and offering more explanations of the possible mechanisms in the introduction and discussion might help readers understand why and in what context species diversity could have negative effects.

      We hope you will be right. As said above, we will explore this possibility.

      Environmental variation was included in the analyses to test if the environment would modulate the effects of biodiversity on ecosystem functions. However, the main results and conclusions did not sufficiently address this aspect.

      This will be addressed by the more in-depth analysis of individual SEM, and we will discuss this further.

      Reviewer #2 (Public review):

      Summary:

      Fargeot et al. investigated the relative importance of genetic and species diversity on ecosystem function and examined whether this relationship varies within or between trophic-level responses. To do so, they conducted a well-designed field survey measuring species diversity at 3 trophic levels (primary producers [trees], primary consumers [macroinvertebrate shredders], and secondary consumers [fishes]), genetic diversity in a dominant species within each of these 3 trophic levels and 7 ecosystem functions across 52 riverine sites in southern France. They show that the effect of genetic and species diversity on ecosystem functions are similar in magnitude, but when examining within-trophic level responses, operate in different directions: genetic diversity having a positive effect and species diversity a negative one. This data adds to growing evidence from manipulated experiments that both species and genetic diversity can impact ecosystem function and builds upon this by showing these effects can be observed in nature.

      Strengths:

      The study design has resulted in a robust dataset to ask questions about the relative importance of genetic and species diversity of ecosystem function across and within trophic levels.

      Overall, their data supports their conclusions - at least within the system that they are studying - but as mentioned below, it is unclear from this study how general these conclusions would be.

      Weaknesses:

      (1) While a robust dataset, the authors only show the data output from the SEM (i.e., effect size for each individual diversity type per trophic level (6) on each ecosystem function (7)), instead of showing much of the individual data. Although the summary SEM results are interesting and informative, I find that a weakness of this approach is that it is unclear how environmental factors (which were included but not discussed in the results) nor levels of diversity were correlated across sites. As species and genetic diversity are often correlated but also can have reciprocal feedbacks on each other (e.g., Vellend 2005), there may be constraints that underpin why the authors observed positive effects of one type of diversity (genetic) when negative effects of the other (species). It may have also been informative to run SEM with links between levels of diversity. By focusing only on the summary of SEM data, the authors may be reducing the strength of their field dataset and ability to draw inferences from multiple questions and understand specific study-system responses.

      We will address this issue by performing a more in-depth analysis of each individual SEMs, and provide directly these raw data. Regarding the comment on species-genomic diversity correlations (SGDCs), we would like to point out that this has already been addressed in a previous paper (Fargeot et al. Oikos, 2023). There is actually no correlations between genomic and species diversity in these dataset, which is merely explain by the selection of the sampling sites. The relationships between species diversity, genomic diversity and environmental factors are also detailed in Fargeot et al. (2023). We precisely published this paper first to focus here “only” on BEFs. But we realize we need to provide further information and discuss further these issues. This will be done in the next version of the manuscript.

      (2) My understanding of SEM is it gives outputs of the strength/significance of each pathway/relationship and if so, it isn't clear why this wasn't used and instead, confidence intervals of Z scores to determine which individual BEFs were significant. In addition, an inclusion of the 7 SEM pathway outputs would have been useful to include in an appendix.

      Yes, we can provide p-values. Results from p-values will provide the same information than 95%Cis, both yield very similar (if not exactly the same) results/conclusions. We wil provide the 7 SEMs in Appendices.

      (3) I don't fully agree with the authors calling this a meta-analysis as it is this a single study of multiple sites within a single region and a specific time point, and not a collection of multiple studies or ecosystems conducted by multiple authors. Moreso, the authors are using meta-analysis summary metrics to evaluate their data. The authors tend to focus on these patterns as general trends, but as the data is all from this riverine system this study could have benefited from focusing on what was going on in this system to underpin these patterns. I'd argue more data is needed to know whether across sites and ecosystems, species diversity and genetic diversity have opposite effects on ecosystem function within trophic levels.

      We agree. “Meta-regression” would perhaps be more adequate than “meta-analyses”. As said above, more details will be provided on the next version of the manuscript.

      Reviewer #3 (Public review):

      The manuscript by Fargeot and colleagues assesses the relative effects of species and genetic diversity on ecosystem functioning. This study is very well written and examines the interesting question of whether within-species or among-species diversity correlates with ecosystem functioning, and whether these effects are consistent across trophic levels. The main findings are that genetic diversity appears to have a stronger positive effect on function than species diversity (which appears negative). These results are interesting and have value.

      However, I do have some concerns that could influence the interpretation.

      (1) Scale: the different measures of diversity and function for the different trophic levels are measured over very different spatial scales, for example, trees along 200 m transects and 15 cm traps. It is not clear whether trees 200 m away are having an effect on small-scale function.

      Trees identification and invertebrate (and fish) sampling are done on the same scale. Trees are spread along the river so that their leaves fall directly in the river. Traps have been installed all along the same transect in various micro-habitats. Diversity have been measured at the exact same scale for all organisms. We will try to be more precise.

      (2) Size of diversity gradients: More information is needed on the actual diversity gradients. One of the issues with surveys of natural systems is that they are of species that have already gone through selection filters from a regional pool, and theoretically, if the environments are similar, you should get similar sets of species, without monocultures. So, if the species diversity gradients range from say, 6 to 8 species, but genetic diversity gradients span an order of magnitude more, you can explain much more variance with genetic diversity. Related to this, species diversity effects on function are often asymptotic at high diversity and so if you are only sampling at the high diversity range, we should expect a strong effect.

      We will provide more information. The range of diversity also vary according to the trophic level; there are more invertebrate species than fish species. But overall the rage of species number is large.

      (3) Ecosystem functions: The functions are largely biomass estimates (expect decomposition), and I fail to see how the biomass of a single species can be construed as an ecosystem function. Aren't you just estimating a selection effect in this case?

      The biomass estimated for a certain area represent an estimate of productivity, whatever the number of species being considered. Obviously, productivity of a species can be due to environmental constraints; the biomass is expected to be lower at the niche margin (selection effect). But is these environmental effects are taken into account (which is the case in the SEMs), then the residual variation can be explained by biodiversity effects. We will try to make it more clear.

      Note that the article claims to be one of the only studies to look at function across trophic levels, but there are several others out there, for example:

      Thanks, we will cite some of these studies (and make our claim less strong)

      Li, F., Altermatt, F., Yang, J., An, S., Li, A., & Zhang, X. (2020). Human activities' fingerprint on multitrophic biodiversity and ecosystem functions across a major river catchment in China. Global change biology, 26(12), 6867-6879.

      Luo, Y. H., Cadotte, M. W., Liu, J., Burgess, K. S., Tan, S. L., Ye, L. J., ... & Gao, L. M. (2022). Multitrophic diversity and biotic associations influence subalpine forest ecosystem multifunctionality. Ecology, 103(9), e3745.

      Moi, D. A., Romero, G. Q., Antiqueira, P. A., Mormul, R. P., Teixeira de Mello, F., & Bonecker, C. C. (2021). Multitrophic richness enhances ecosystem multifunctionality of tropical shallow lakes. Functional Ecology, 35(4), 942-954.

      Wan, B., Liu, T., Gong, X., Zhang, Y., Li, C., Chen, X., ... & Liu, M. (2022). Energy flux across multitrophic levels drives ecosystem multifunctionality: Evidence from nematode food webs. Soil Biology and Biochemistry, 169, 108656.

      And the case was made strongly by:

      Seibold, S., Cadotte, M. W., MacIvor, J. S., Thorn, S., & Müller, J. (2018). The necessity of multitrophic approaches in community ecology. Trends in ecology & evolution, 33(10), 754-764.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      Line 127. Provide a few more words describing the voltage protocol. To the uninitiated, panels A and B will be difficult to understand. "The large negative step is used to first close all channels, then probe the activation function with a series of depolarizing steps to re-open them and obtain the max conductance from the peak tail current at -36 mV. "

      We have revised the text as suggested (revision lines 127 to Line 131): “From a holding potential within the gK,L activation range (here –74 mV), the cell is hyperpolarized to –124 mV, negative to EK and the activation range, producing a large inward current through open gK,L channels that rapidly decays as the channels deactivate. We use the large transient inward current as a hallmark of gK,L. The hyperpolarization closes all channels, and then the activation function is probed with a series of depolarizing steps, obtaining the max conductance from the peak tail current at –44 mV (Fig. 1A).”

      Incidentally, why does the peak tail current decay? 

      We added this text to the figure legend to explain this: “For steps positive to the midpoint voltage, tail currents are very large. As a result, K+ accumulation in the calyceal cleft reduces driving force on K+, causing currents to decay rapidly, as seen in A (Lim et al., 2011).”

      The decay of the peak tail current is a feature of gK,L (large K+ conductance) and the large enclosed synaptic cleft (which concentrates K+ that effluxes from the HC). See Govindaraju et al. (2023) and Lim et al. (2011) for modeling and experiments around this phenomenon.

      Line 217-218. For some reason, I stumbled over this wording. Perhaps rearrange as "In type II HCs absence of Kv1.8 significantly increased Rin and tauRC. There was no effect on Vrest because the conductances to which Kv1.8 contributes, gA and gDR activate positive to the resting potential. (so which K conductances establish Vrest???). 

      We kept our original wording because we wanted to discuss the baseline (Vrest) before describing responses to current injection.

      ->Vrest is presumably maintained by ATP-dependent Na/K exchangers (ATP1a1), HCN, Kir, and mechanotransduction currents. Repolarization is achieved by delayed rectifier and A-type K+ conductances in type II HCs.

      Figure 4, panel C - provides absolute membrane potential for voltage responses. Presumably, these were the most 'ringy' responses. Were they obtained at similar Vm in all cells (i.e., comparisons of Q values in lines 229-230). 

      We added the absolute membrane potential scale. Type II HC protocols all started with 0 pA current injection at baseline, so they were at their natural Vrest, which did not differ by genotype or zone. Consistent with Q depending on expression of conductances that activate positive to Vrest, Q did not co-vary with Vrest (Pearson’s correlation coefficient = 0.08, p = 0.47, n= 85).

      Lines 254. Staining is non-specific? Rather than non-selective? 

      Yes, thanks - Corrected (Line 264).

      Figure 6. Do you have a negative control image for Kv1.4 immuno? Is it surprising that this label is all over the cell, but Kv1.8 is restricted to the synaptic pole? 

      We don’t have a null-animal control because this immunoreactivity was done in rat. While the cuticular plate staining was most likely nonspecific because we see that with many different antibodies, it’s harder to judge the background staining in the hair cell body layer. After feedback from the reviewers, we decided to pull the KV1.4 immunostaining from the paper because of the lack of null control, high background, and inability to reproduce these results in mouse tissue. In our hands, in mouse tissue, both mouse and rabbit anti-KV1.4 antibodies failed to localize to the hair cell membrane. Further optimization or another method could improve that, but for now the single-cell expression data (McInturff et al., 2018) remain the strongest evidence for KV1.4 expression in murine type II hair cells.

      Lines 400-404. Whew, this is pretty cryptic. Expand a bit? 

      We simplified this paragraph (revision lines 411-413): “We speculate that gA and gDR(KV1.8) have different subunit composition: gA may include heteromers of KV1.8 with other subunits that confer rapid inactivation, while gDR(KV1.8) may comprise homomeric KV1.8 channels, given that they do not have N-type inactivation .”

      Line 428. 'importantly different ion channels'. I think I understand what is meant but perhaps say a bit more. 

      Revised (Line 438): “biophysically distinct and functionally different ion channels”.

      Random thought. In addition to impacting Rin and TauRC, do you think the more negative Vrest might also provide a selective advantage by increasing the driving force on K entry from endolymph? 

      When the calyx is perfectly intact, gK,L is predicted to make Vrest less negative than the values we report in our paper, where we have disturbed the calyx to access the hair cell (–80, Govindaraju et al., 2023, vs. –87 mV, here). By enhancing K+ accumulation in the calyceal cleft, the intact calyx shifts EK—and Vrest—positively (Lim et al., 2011), so the effect on driving force may not be as drastic as what you are thinking.

      Reviewer #2 (Recommendations For The Authors): 

      (1) Introduction: wouldn't the small initial paragraph stating the main conclusion of the study fit better at the end of the background section, instead of at the beginning? 

      Thank you for this idea, we have tried that and settled on this direct approach to let people know in advance what the goals of the paper are.

      (2) Pg.4: The following sentence is rather confusing "Between P5 and P10, we detected no evidence of a non-gK,L KV1.8-dependent.....". Also, Suppl. Fig 1A seems to show that between P5 and P10 hair cells can display a potassium current having either a hyperpolarised or depolarised Vhalf. Thus, I am not sure I understand the above statement. 

      Thank you for pointing out unclear wording. We used the more common “delayed rectifier” term in our revision (Lines 144-147): “Between P5 and P10, some type I HCs have not yet acquired the physiologically defined conductance, gK,L.. N effects of KV1.8 deletion were seen in the delayed rectifier currents of immature type I HCs (Suppl. Fig. 1B), showing that they are not immature forms of the Kv1.8-dependent gK,L channels. ”

      (3) For the reduced Cm of hair cells from Kv1.8 knockout mice, could another reason be simply the immature state of the hair cells (i.e. lack of normal growth), rather than less channels in the membrane? 

      There were no other signs to suggest immaturity or abnormal growth in KV1.8–/– hair cells or mice. Importantly, type II HCs did not show the same Cm effect.

      We further discussed the capacitance effect in lines 160-167: “Cm scales with surface area, but soma sizes were unchanged by deletion of KV1.8 (Suppl. Table 2). Instead, Cm may be higher in KV1.8+/+ cells because of gK,L for two reasons. First, highly expressed trans-membrane proteins (see discussion of gK,L channel density in Chen and Eatock, 2000) can affect membrane thickness (Mitra et al., 2004), which is inversely proportional to specific Cm. Second, gK,L could contaminate estimations of capacitive current, which is calculated from the decay time constant of transient current evoked by small voltage steps outside the operating range of any ion channels. gK,L has such a negative operating range that, even for Vm negative to –90 mV, some gK,L channels are voltage-sensitive and could add to capacitive current.”

      (4) Methods: The electrophysiological part states that "For most recordings, we used .....". However, it is not clear what has been used for the other recordings.

      Thanks for catching this error, a holdover from an earlier ms. version.  We have deleted “For most recordings” (revision line 466).

      Also, please provide the sign for the calculated 4 mV liquid junction potential. 

      Done (revision line 476).

      Reviewer #3 (Recommendations For The Authors): 

      (1) Some of the data in panels in Fig. 1 are hard to match up. The voltage protocols shown in A and B show steps from hyperpolarized values to -71mV (A) and -32 mV (B). However, the value from A doesn't seem to correspond with the activation curve in C.

      Thank you for catching this.  We accidentally showed the control I-X curve from a different cell than that in A. We now show the G-V relation for the cell in A.

      Also the Vhalf in D for -/- animals is ~-38 mV, which is similar to the most positive step shown in the protocol.

      The most positive step in Figure 1B is actually –25 mV. The uneven tick labels might have been confusing, so we re-labeled them to be more conventional.

      Were type I cells stepped to more positive potentials to test for the presence of voltage-activated currents at greater depolarizations? This is needed to support the statement on lines 147-148. 

      We added “no additional K+ conductance activated up to +40 mV” (revision line 149-150).  Our standard voltage-clamp protocol iterates up to ~+40 mV in KV1.8–/– hair cells, but in Figure 1 we only showed steps up to –25 mV because K+ accumulation in the synaptic cleft with the calyx distorts the current waveform even for the small residual conductances of the knockouts. KV1.8–/– hair cells have a main KV conductance with a Vhalf of ~–38 mV, as shown in Figure 1, and we did not see an additional KV conductance that activated with a more positive Vhalf up to +40 mV.

      (2) Line 151 states "While the cells of Kv1.8-/- appeared healthy..." how were epithelia assessed for health? Hair cells arise from support cells and it would be interesting to know if Kv1.8 absence influences supporting cells or neurons. 

      We added our criteria for cell health to lines 477-479: “KV1.8–/– hair cells appeared healthy in that cells had resting potentials negative to –50 mV, cells lasted a long time (20-30 minutes) in ruptured patch recordings, membranes were not fragile, and extensive blebbing was not seen.”

      Supporting cells were not routinely investigated. We characterized calyx electrical activity (passive membrane properties, voltage-gated currents, firing pattern) and didn’t detect differences between +/+, +/–, and –/– recordings (data not shown). KV1.8 was not detected in neural tissue (Lee et al., 2013). 

      (3) Several different K+ channel subtypes were found to contribute to inner hair cell K+ conductances (Dierich et al. 2020) but few additional K+ channel subtypes are considered here in vestibular hair cells. Further comments on calcium-activated conductances (lines 310-317) would be helpful since apamin-sensitive SK conductances are reported in type II hair cells (Poppi et al. 2018) and large iberiotoxin-sensitive BK conductances in type I hair cells (Contini et al. 2020). Were iberiotoxin effects studied at a range of voltages and might calcium-dependent conductances contribute to the enhanced resonance responses shown in Fig. 4? 

      We refer you to lines 310-317 in the original ms (lines 322-329 in the revised ms), where we explain possible reasons for not observing IK(Ca) in this study.

      (4) Similar to GK,L erg (Kv11) channels show significant Cs+-permeability. Were experiments using Cs+ and/or Kv11 antagonists performed to test for Kv11? 

      No. Hurley et al. (2006) used Kv11 antagonists to reveal Kv11 currents in rat utricular type I hair cells with perforated patch, which were also detected in rats with single-cell RT-PCR (Hurley et al. 2006) and in mice with single-cell RNAseq (McInturff et al., 2018).  They likely contribute to hair cell currents, alongside Kv7, Kv1.8, HCN1, and Kir. 

      (5) Mechanosensitive ("MET") channels in hair cells are mentioned on lines 234 and 472 (towards the end of the Discussion), but a sentence or two describing the sensory function of hair cells in terms of MET channels and K+ fluxes would help in the Introduction too. 

      Following this suggestion we have expanded the introduction with the following lines  (78-87): “Hair cells are known for their large outwardly rectifying K+ conductances, which repolarize membrane voltage following a mechanically evoked perturbation and in some cases contribute to sharp electrical tuning of the hair cell membrane.  Because gK,L is unusually large and unusually negatively activated, it strongly attenuates and speeds up the receptor potentials of type I HCs (Correia et al., 1996; Rüsch and Eatock, 1996b). In addition, gK,L augments a novel non-quantal transmission from type I hair cell to afferent calyx by providing open channels for K+ flow into the synaptic cleft (Contini et al., 2012, 2017, 2020; Govindaraju et al., 2023), increasing the speed and linearity of the transmitted signal (Songer and Eatock, 2013).”

      (6) Lines 258-260 state that GKL does not inactivate, but previous literature has documented a slow type of inactivation in mouse crista and utricle type I hair cells (Lim et al. 2011, Rusch and Eatock 1996) which should be considered. 

      Lim et al. (2011) concluded that K+ accumulation in the synaptic cleft can explain much of the apparent inactivation of gK,L. In our paper, we were referring to fast, N-type inactivation. We changed that line to be more specific; new revision lines 269-271: “KV1.8, like most KV1 subunits, does not show fast inactivation as a heterologously expressed homomer (Lang et al., 2000; Ranjan et al., 2019; Dierich et al., 2020), nor do the KV1.8-dependent channels in type I HCs, as we show, and in cochlear inner hair cells (Dierich et al., 2020).”

      (7) Lines 320-321 Zonal differences in inward rectifier conductances were reported previously in bird hair cells (Masetto and Correia 1997) and should be referenced here.

      Zonal differences were reported by Masetto and Correia for type II but not type I avian hair cells, which is why we emphasize that we found a zonal difference in I-H in type I hair cells. We added two citations to direct readers to type II hair cell results (lines 333-334): “The gK,L knockout allowed identification of zonal differences in IH and IKir in type I HCs, previously examined in type II HCs (Masetto and Correia, 1997; Levin and Holt, 2012).”

      Also, Horwitz et al. (2011) showed HCN channels in utricles are needed for normal balance function, so please include this reference (see line 171). 

      Done (line 184).

      (8) Fig 6A. Shows Kv1.4 staining in rat utricle but procedures for rat experiments are not described. These should be added. Also, indicate striola or extrastriola regions (if known). 

      We removed KV1.4 immunostaining from the paper, see above.

      (9) Table 6, ZD7288 is listed -was this reagent used in experiments to block Gh? If not please omit. 

      ZD7288 was used to block gH to produce a clean h-infinity curve in Figure 6, which is described in the legend.

      (10) In supplementary Fig. 5A make clear if the currents are from XE991 subtraction. Also, is the G-V data for single cell or multiple cells in B? It appears to be from 1 cell but ages P11-505 are given in legend. 

      The G-V curve in B is from XE991 subtraction, and average parameters in the figure caption are for all the KV1.8–/–  striolar type I hair cells where we observed this double Boltzmann tail G-V curve. I added detail to the figure caption to explain this better.

      (11) Supplementary Fig. 6A claims a fast activation of inward rectifier K+ channels in type II but not type I cells-not clear what exactly is measured here.

      We use “fast inward rectifier” to indicate the inward current that increases within the first 20 ms after hyperpolarization from rest (IKir, characterized in Levin & Holt, 2012) in contrast to HCN channels, which open over ~100 ms. We added panel C to show that the activation of IKir is visible in type II hair cells but not in the knockout type I hair cells that lack gK,L. IKir was a reliable cue to distinguish type I and type II hair cells in the knockout.

      For our actual measurements in Fig 6B, we quantified the current flowing after 250 ms at –124 mV because we did not pharmacologically separate IKir and IH.

      Could the XE991-sensitive current be activated and contributing?

      The XE991-sensitive current could decay (rapidly) at the onset of the hyperpolarizing step, but was not contributing to our measurement of IKir­ and IH, made after 250 ms at –124 mV, at which point any low-voltage-activated (LVA) outward rectifiers have deactivated. Additionally, the LVA XE991-sensitive currents were rare (only detected in some striolar type I hair cells) and when present did not compete with fast IKir, which is only found in type II hair cells.

      Also, did the inward rectifier conductances sustain any outward conductance at more depolarized voltage steps? 

      For the KV1.8-null mice specifically, we cannot answer the question because we did not use specific blocking agents for inward rectifiers.  However, we expect that there would only be sustained outward IR currents at voltages between EK and ~-60 mV: the foot of IKir’s I-V relation according to published data from mouse utricular hair cells – e.g., Holt and Eatock 1995, Rusch and Eatock 1996, Rusch et al. 1998, Horwitz et al., 2011, etc.  Thus, any such current would be unlikely to contaminate the residual outward rectifiers in Kv1.8-null animals, which activate positive to ~-60 mV. 

      (I-HCN is also not a problem, because it could only be outward positive to its reversal potential at ~-40 mV, which is significantly positive to its voltage activation range.)

    1. Author response:

      The following is the authors’ response to the original reviews.

      We edited the manuscript for clarity, added information described in new figure panels (below) and corrected typos.

      In figure 1 we corrected a typo.

      In figure 2, panel 2H, and Figure S2E, we included a new statistical analysis (mixed effect linear regression) to compare mutational burden in controls and AD patients.

      In figure 3, and Figure S4B, we revised the western blots panels in Panel 3E,F, to improve presentation of controls and quantification.

      we corrected typos.

      In figure 5 we removed a panel (former 5D) which did not add useful information.

      In Figure S1A we included information about sex and age from the control and patients analyzed. In Figure S2B, we added an analysis of the mutational burden in controls, distinguishing controls with and without cancer.

      We modified Table S1 for completeness of information for all samples analyzed.

      Reviewer #1:

      Weaknesses: 

      Even though the study is overall very convincing, several points could help to connect the seen somatic variants in microglia more with a potential role in disease progression. The connection of P-SNVs in the genes chosen from neurological disorders was not further highlighted by the authors. 

      All P-SNVs are reported in Table S3.

      We observed only two P-SNVs within genes associated to neurological disorders (brain panel in Table S2). - SQSTM1 (p.P392L) was identified in blood but not in brain from the patient AD48A.

      - OPTN was identified (p.Q467P) in PU.1 from control 25.   

      To highlight this point, we modified the first paragraph of the discussion as follow:

      “We report here that microglia from a cohort of 45 AD patients with intermediate-onset sporadic AD (mean age 65 y.o) is enriched for clones carrying pathogenic/oncogenic variants in genes associated with clonal proliferative disorders (Supplementary Table 2) in comparison to 44 controls. Of note we did not observe microglia P-SNVs within genes reported to be associated with neurological disorders (Supplementary Table 2) in patients, and one such variant was identified in a control (Supplementary Table 3) “.

      The authors show in snRNA-seq data that a disease-associated microglia state seems to be enriched in patients with somatic variants in the CBL ring domain, however, this analysis could be deepened. For example, how this knowledge may translate to patient benefits when the relevant cell populations appear concentrated in a single patient sample (Figure 5; AD52) is unclear; increasing the analyzed patient pool for Figure 5 and showcasing the presence of this microglia state of interest in a few more patients with driving mutations for CBL or other MAPK pathway associated mutations would lend their hypotheses further credibility. 

      We acknowledge this limitation, but we respectfully submit that the analysis was performed in 2 patients. AD 53 also show a MAPK-associated inflammatory signature in the microglia clusters associated with mutations.

      We performed the analysis on all FACS-purified PU.1+ nuclei samples that passed QC for single nuclei RNAseq. It should be noted that this analysis is extremely difficult with current technologies because microglia nuclei need to be fixed for PU.1 staining and FACS purification and the clones are small (~1% of microglia).

      A potential connection between P-SNVs in microglia and disease pathology and symptoms was not further explored by the authors. 

      At the population level, Braak/CERAD scores, the presence of Lewy bodies, amyloid angiopathy, tauopathy, or alpha synucleinopathy were not different between AD patients with or without pathogenic microglial clones (Figure S3 and Table S1). Of note, we studied here a homogenous population of AD patients.

      At the tissue level, the roles of mutant microglia in plaques for example is being investigated, but we do not have results to present at this time.

      A recent preprint (Huang et al., 2024) connected the occurrence of somatic variants in genes associated with clonal hematopoiesis in microglia in a large cohort of AD patients, this study is not further discussed or compared to the data in this manuscript. 

      This pre-print supports the high frequency of detection of oncogenic variants associated with clonal proliferative disorders, they hypothesize that the mutations may be associated with microglia, but they only check a few mutations in purified microglia. Most of the study is performed in whole brain tissue. It does not really bring new information as compared to other study we cite in the introduction (and to our manuscript).

      Reviewer #2 (Recommendations For The Authors): 

      Suggestions for improved or additional experiments, data, or analyses: 

      The authors can demonstrate that identified pathological SNVs from their AD cohort also lead to the activation of human microglia-like cells in vitro, but do not provide any data from histological examination of the patient cohort (e.g. accumulation at the plaque site, microglia distribution, and cell number). The study could be further supported by providing a histological examination of patients with and without P-SNVs to identify if microglia response to pathology, microglia accumulation, or phagocytic capacity are altered in these patients. 

      We performed IBA1 staining in brain samples from control and from AD patients, with or without microglial clones and microglia density was not different between patient with and without mutations. In addition, histological reports from the brain bank (Braak/CERAD scores, Lewis bodies, amyloid angiopathy, tauopathy, or alpha synucleinopathy did not suggest differences between patient with and without mutations (Figure S3). These results are preliminary and further investigations are ongoing.

      It would have been interesting to see if for example, transgenic AD mice with an introduced somatic mutation in microglia show an altered disease progression with alterations in amyloid pathology or cognition. 

      We agree with the reviewer. We performed an in vivo study with mice expressing a  5xFAD transgene, an inducible microglia Cx3cr1CreERt2 BrafLSL-V600E transgene, or both, and performed survival, behavioral (Y-Maze and Novel Object Recognition), and histological analyses for β-Amyloid, p-Tau and Iba1 staining.

      Microgliosis was increased in the group with the 2 transgenes, however the phenotype associated with the expression of a BrafV600E allele in microglia (Mass et al Nature 2017) was strongly dominant over the phenotype of 5xFAD mice, which did not allow us to conclude on survival and behavioral analyses.

      Other studies with different transgenes are in progress but we have no results yet to include in this revised manuscript.

      To connect the somatic mutations in microglia better to a potential contribution in neurodegeneration or neurotoxicity, the authors could provide further details on how to demonstrate if human microglia-like cells respond differentially to amyloid or induce neurotoxicity in a co-culture or slice culture model. 

      These studies are undertaken in the laboratory, but unfortunately, we have no results as yet to include in this revised manuscript.

      The number of samples analyzed for hippocampi, especially in the age-matched controls might be underpowered. 

      Unfortunately, despite our best efforts, we were not able to analyze more hippocampus from control individuals. To control for bias in sampling as well as to other potential bias in our analysis, we investigated the statistical analysis of the cohorts for inclusion of age as a criterion (age matched controls), inclusion of a random effect structure, and possible confounding factor such as sex, brain bank site, and samples’ anatomical location (see revised Methods and revised Fig. 2C, F, and H, and S2B).

      We first tested whether the inclusion of age is appropriate in a fixed-effects linear regression using a generalized linear model (GLM) with gaussian distribution. Compared to the baseline model, the model with age had significantly low AIC (from -66.6 to -71.9, P = 0.0067 by chi-square test). Therefore, the inclusion of age as a fixed effect is appropriate. We next tested multiple structures of mixed-effects linear modeling. We used donors as random effects, while utilizing age, disease status (neurotypical control vs. AD), or both as fixed effects. Fitting was performed using the lme function implemented in the nlme package with the maximum likelihood (ML) method. The incorporation of age and disease status significantly improved overall model fitting. Both age and AD are associated with a significant increase in SNV burden in this model (P<1x10^-4 and P=1x10^-4, respectively, by likelihood ratio test). The model's total explanatory power is substantial (conditional R^2=0.48). We also asked if the addition of potential confounding factors to the model is justified. Three factors were tested via the two above-mentioned methods: sex, brain bank site, and the anatomical location of the samples. In all cases, the AIC increased, and the P values by likelihood ratio tests were higher than 0.99. Therefore, from a statistical standpoint, the inclusion of these potential confounding factors does not seem to improve overall model fitting.

      Minor corrections to the text and figures: 

      The authors made a great effort to analyze various samples from one individual donor. One can get a bit confused by the sentence that "an average of 2.5 brains samples were analyzed for each donor". Maybe the authors could highlight more in the first paragraph of the results section and in Figure 1A, that there are multiple samples ("technical replicates") from one individual patient across different brain regions used. 

      We removed the ‘2.5’ sentence and rewrote the paragraph for clarity. Samples information’s are now displayed in Table S1.

      In the method section is a part included "Expression of target genes in microglia", it was very hard to allocate where these data from public data sets were actually used and for which analysis. Maybe the authors could clarify this again. 

      AU response: we apologize and corrected the paragraph in the methods (page 6) as follow: “ Expression of target genes in microglia. To evaluate the expression levels of the genes identified in this study as target of somatic variants, we consulted a publicly available database (https://www.proteinatlas.org/), and also plotted their expression as determined by RNAseq in 2 studies (Galatro et al. GSE99074 33, and Gosselin et al. 34) (Table S3 and Figure S2). For data from Galatro et al. (GSE99074) 33, normalized gene expression data and associated clinical information of isolated human microglia (N = 39) and whole brain (N = 16) from healthy controls were downloaded from GEO. For data from Gosselin et al. 34, raw gene expression ­data and associated clinical information of isolated microglia (N = 3) and whole brain (N = 1) from healthy controls were extracted from the original dataset. Raw counts were normalized using the DESeq2 package in R 35.”

      Table S3 is very informative, but also very complex. The reader could maybe benefit a lot from this table if it can be structured a bit easier especially when it comes to identifying P-SNVs and in which tissue sample they were found and if this was the same patient. The sorting function on top of the columns helps, but the color coding is a bit unclear. 

      Despite our best efforts we agree that the table, which contain all sequencing data for all samples, is complex. The color coding (red) only highlights the presence of pathogenic mutation.

      Reviewer #3 (Recommendations For The Authors): 

      This is a well-done study of an important problem. I present the following minor critiques: 

      At the bottom of Page 4 and into the top of Page 5, the authors state that 66 of the 826 variants identified in their panel sequencing experiment were found in multiple donors. Then the authors proceed to analyze the remaining 760 variants. It seems that the authors concluded that these multi-donor mosaics were artifacts, which is why they were excluded from further analysis. I think this is a reasonable assumption, but it should be stated explicitly so it is clear to the reader. Complicating this assumption, however, the authors later state that one of their CBL variants was found in two donors, and it is treated as a true mosaic. The authors should make it clear whether recurrent variants were filtered out of any given analysis. It remains possible that all recurrent variants are true mosaics that occurred in multiple donors. The authors should do a bit more to characterize these recurrent variants. Are they observed in the human population using a database like gnomAD, which, together with their recurrence, would strongly suggest they are germline variants? Are they in MAPK genes, or otherwise relevant to the study?

      We apologize for the confusion. Our original intent for the ddPCR validation of variants (Figure 1E) was to count only 1 ‘unique’ variant for variants found for example in 1 brain sample and in the blood from the same patient, or in 2 brain regions from one patient, in order to avoid the criticism of overinflating our validation rate. This was notably the case for TET2 and DNMT3 variants. For example, validation of a TET2 variant found in 2 different brain areas and blood of the same donor is counted as 1 and not 3. We did not eliminate these variants from the analysis as they passed the criteria for somatic variants as presented in Methods.

      In contrast, when a specific variant was found and validated in two different donors, we counted it as 2.

      The characterization of variants included multiple parameters and databases, including for example AF and gnomAD, as indicated in Methods and reported in Table S3.

      All ddPCR results can be found at the end of Table S3.

      Figure 2B labels age-matched controls as "C", but Figure 2C labels age-matched controls as AM-C. Labels should be consistent throughout the manuscript. 

      We corrected this in the revised version.

      It is not clear if the "p:0.02" label in Figure 2F is referring to AM-C Cx vs. AD-Cx or AM-C vs. AD. Please clarify. 

      We apologize for the confusion, and we corrected the legend. The calculated p value is for the comparison between Cortex from Controls (age-matched) and the Cortex from AD.

      On Page 7, the authors state, "The allelic frequencies at which MAPK activating variants are detected in brain samples from AD patients range from ~1-6% of microglia (Fig. 3G), which correspond to clones representing 2 to 12% of mutant microglia in these samples, assuming heterozygosity." I understand what the authors mean here but I think it's a bit confusingly stated. I suggest something like "The allelic frequencies at which MAPK activating variants are detected in brain samples from AD patients range from ~1-6% in microglia (Figure 3G), which correspond to mutant clones representing 2 to 12% of all microglia in these samples, assuming heterozygosity." 

      We thank the reviewer for this suggestion and re-wrote that sentence.

      Is there any evidence that the transcriptional regulators mutated in AD microglia (MED12, SETD2, MLL3, DNMT3A, ASXL1, etc.) are involved in regulating MAPK genes? This would tie these mutations into the broader conclusions of the paper. 

      This is a very interesting question, and indeed published studies indicate that some of the transcriptional /epigenetic regulators regulate expression of MAPK genes. However, in the absence of experimental evidence in microglia and patients, the argument may be too speculative to be included.

      Do the authors have any thoughts as to whether germline variants in CBL are linked to AD? If not, why do they think germline mutations in CBL are not relevant to AD? 

      This is also a very interesting question. As indicated in our manuscript, germline mutations in CBL (and other member of the classical MAPK genes, see Figure 3C) cause early onset (pediatric) and severe developmental diseases known as RASopathies, characterized by multiple developmental defects, and associated with frequent neurological and cognitive deficits.

      It is possible that some other (and more frequent?) germline variants may be associated with a late-onset brain restricted phenotype, but we did not find germline pSNV in our patients. GWAS studies may be more appropriate to test this hypothesis.

      Do any donors show multiple variants? I don't think this is addressed in the text. 

      We do find donors with multiple variants (see Figure 3D and Figure S3), however at this stage, we did not perform single nuclei genotyping to investigate whether they are part of the same clone.

      Figure S3 appears to be upside down. 

      This was corrected

      Figure 5C should have some kind of label telling the reader what gene set is being depicted. 

      We added this information above the panel (it was in the corresponding legend).

      At the top of Page 12, Lewy bodies are written as Lewis bodies. 

      This was corrected

      Many control donors died of cancer (Table S1). Is there any information on which, if any, chemotherapeutics or radiation these patients received? Might this impact the somatic mutation burden? The authors should compare controls with and without cancer or with and without cancer treatments to rule this out. 

      As suggested by the reviewer, we analyzed the mutational load of age-matched controls with and without cancer (revised Figure S2B). As expected, we saw an increase in the mutational load in controls with cancer, particularly in their blood. This information was added in the result section.

      This is most likely associated with the treatments received as well as possible cancer clones.

      The formatting for Table S3 is odd. Multiple different fonts are used (this is also seen in Table S5). Column Q has no column ID. The word "panel" is spelled "pannel." The word "expressed" is spelled "expressd" in one of the worksheet labels. Columns BG-BN in the ALL-SNV worksheet are blank but seemingly part of the table. 

      We fixed this error in Table S3.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their constructive reviews.  Taken together, the comments and suggestions from reviewers made it clear that we needed to focus on improving the clarity of the methods and results.  We have revised the manuscript with that in mind.  In particular, we have restructured the results to make the logic of the manuscript clearer and we have added details to the methods section.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      The work of Muller and colleagues concerns the question of where we place our feet when passing uneven terrain, in particular how we trade-off path length against the steepness of each single step. The authors find that paths are chosen that are consistently less steep and deviate from the straight line more than an average random path, suggesting that participants indeed trade-off steepness for path length. They show that this might be related to biomechanical properties, specifically the leg length of the walkers. In addition, they show using a neural network model that participants could choose the footholds based on their sensory (visual) information about depth. 

      Strengths: 

      The work is a natural continuation of some of the researchers' earlier work that related the immediately following steps to gaze [17]. Methodologically, the work is very impressive and presents a further step forward towards understanding real-world locomotion and its interaction with sampling visual information. While some of the results may seem somewhat trivial in hindsight (as always in this kind of study), I still think this is a very important approach to understanding locomotion in the wild better. 

      Weaknesses: 

      The manuscript as it stands has several issues with the reporting of the results and the statistics. In particular, it is hard to assess the inter-individual variability, as some of the data are aggregated across individuals, while in other cases only central tendencies (means or medians) are reported without providing measures of variability; this is critical, in particular as N=9 is a rather small sample size. It would also be helpful to see the actual data for some of the information merely described in the text (e.g., the dependence of \Delta H on path length). When reporting statistical analyses, test statistics and degrees of freedom should be given (or other variants that unambiguously describe the analysis).

      There is only one figure (Figure 6) that shows data pooled over subjects and this is simply to illustrate how the random paths were calculated. The actual paths generated used individual subject data. We don’t draw our conclusions from these histograms – they are instead used to generate bounds for the simulated paths.  We have made clear both in the text and in the figure legends when we have plotted an example subject. Other plots show the individual subject data. We have given the range of subject medians as well as the standard deviation for data illustrated in Figure (random vs chosen), we have also given the details of the statistical test comparing the flatness of the chosen paths versus the randomly generated paths.  We have added two supplemental figures to show individual walker data more directly: (Fig. 14) the per subject histograms of step parameters, (Fig. 18) the individual subject distributions for straight path slopes and tortuosity.

      The CNN analysis chosen to link the step data to visual sampling (gaze and depth features) should be motivated more clearly, and it should describe how training and test sets were generated and separated for this analysis.

      We have motivated the CNN analysis and moved it earlier in the manuscript to help clarify the logic the manuscript. Details of the training and test are now provided, and the data have been replotted. The values are a little different from the original plot after making a correction in the code, but the conclusions drawn from this analysis are unchanged. This analysis simply shows that there is information in the depth images from the subject’s perspective that a network can use to learn likely footholds. This motivates the subsequent analysis of path flatness.

      There are also some parts of figures, where it is unclear what is shown or where units are missing. The details are listed in the private review section, as I believe that all of these issues can be fixed in principle without additional experiments. 

      Several of the Figures have been replotted to fix these issues.

      Reviewer #2 (Public Review): 

      Summary: 

      This manuscript examines how humans walk over uneven terrain using vision to decide where to step. There is a huge lack of evidence about this because the vast majority of locomotion studies have focused on steady, well-controlled conditions, and not on decisions made in the real world. The author team has already made great advances in this topic, but there has been no practical way to map 3D terrain features in naturalistic environments. They have now developed a way to integrate such measurements along with gaze and step tracking, which allows quantitative evaluation of the proposed trade-offs between stepping vertically onto vs. stepping around obstacles, along with how far people look to decide where to step. 

      Strengths: 

      (1) I am impressed by the overarching outlook of the researchers. They seek to understand human decision-making in real-world locomotion tasks, a topic of obvious relevance to the human condition but not often examined in research. The field has been biased toward well-controlled studies, which have scientific advantages but also serious limitations. A well-controlled study may eliminate human decisions and favor steady or periodic motions in laboratory conditions that facilitate reliable and repeatable data collection. The present study discards all of these usually-favorable factors for rather uncontrolled conditions, yet still finds a way to explore real-world behaviors in a quantitative manner. It is an ambitious and forward-thinking approach, used to tackle an ecologically relevant question. 

      (2) There are serious technical challenges to a study of this kind. It is true that there are existing solutions for motion tracking, eye tracking, and most recently, 3D terrain mapping. However most of the solutions do not have turn-key simplicity and require significant technical expertise. To integrate multiple such solutions together is even more challenging. The authors are to be commended on the technical integration here.

      (3) In the absence of prior studies on this issue, it was necessary to invent new analysis methods to go with the new experimental measures. This is non-trivial and places an added burden on the authors to communicate the new methods. It's harder to be at the forefront in the choice of topic, technical experimental techniques, and analysis methods all at once. 

      Weaknesses: 

      (1) I am predisposed to agree with all of the major conclusions, which seem reasonable and likely to be correct. Ignoring that bias, I was confused by much of the analysis. There is an argument that the chosen paths were not random, based on a comparison of probability distributions that I could not understand. There are plots described as "turn probability vs. X" where the axes are unlabeled and the data range above 1. I hope the authors can provide a clearer description to support the findings. This manuscript stands to be cited well as THE evidence for looking ahead to plan steps, but that is only meaningful if others can understand (and ultimately replicate) the evidence. 

      We have rewritten the manuscript with the goal of clarifying the analyses, and we have re-labelled the offending figure.

      (2) I wish a bit more and simpler data could be provided. It is great that step parameter distributions are shown, but I am left wondering how this compares to level walking.  The distributions also seem to use absolute values for slope and direction, for understandable reasons, but that also probably skews the actual distribution. Presumably, there should be (and is) a peak at zero slope and zero direction, but absolute values mean that non-zero steps may appear approximately doubled in frequency, compared to separate positive and negative. I would hope to see actual distributions, which moreover are likely not independent and probably have a covariance structure. The covariance might help with the argument that steps are not random, and might even be an easy way to suggest the trade-off between turning and stepping vertically. This is not to disregard the present use of absolute values but to suggest some basic summary of the data before taking that step. 

      We have replotted the step parameter distributions without absolute values. Unfortunately, the covariation of step parameters (step direction and step slope) is unlikely to help establish this tradeoff.  Note that the primary conclusion of the manuscript is that works make turns to keep step slope low (when possible). Thus, any correlation that might exist between goal direction and step slope would be difficult to interpret without a direct comparison to possible alternative paths (as we have done in this paper). As such we do not draw our conclusions from them.  We use them primarily to generate plausible random paths for comparison with the chosen paths.  We have added two supplementary figures including distributions (Fig 15) and covariation of all the step parameters discussed in the methods (Fig 16).

      (3) Along these same lines, the manuscript could do more to enable others to digest and go further with the approach, and to facilitate interpretability of results. I like the use of a neural network to demonstrate the predictiveness of stepping, but aside from above-chance probability, what else can inform us about what visual data drives that?

      The CNN analysis simply shows that the information is there in the image from the subject’s viewpoint and is used to motivate the subsequent analysis.  As noted above, we have generally tried to improve the clarity of the methods.

      Similarly, the step distributions and height-turn trade-off curves are somewhat opaque and do not make it easy to envision further efforts by others, for example, people who want to model locomotion. For that, clearer (and perhaps) simpler measures would be helpful. 

      We have clarified the description of these plots in the main text and in the methods.  We have also tried to clarify why we made the choices that we did in measuring the height-turn trade-off and why it is necessary in order to make a fair comparison.

      I am absolutely in support of this manuscript and expect it to have a high impact. I do feel that it could benefit from clarification of the analysis and how it supports the conclusions. 

      Reviewer #3 (Public Review): 

      Summary: 

      The systematic way in which path selection is parametrically investigated is the main contribution. 

      Strengths: 

      The authors have developed an impressive workflow to study gait and gaze in natural terrain. 

      Weaknesses: 

      (1) The training and validation data of the CNN are not explained fully making it unclear if the data tells us anything about the visual features used to guide steering. It is not clear how or on what data the network was trained (training vs. validation vs. un-peeked test data), and justification of the choices made. There is no discussion of possible overfitting. The network could be learning just e.g. specific rock arrangements. If the network is overfitting the "features" it uses could be very artefactual, pixel-level patterns and not the kinds of "features" the human reader immediately has in mind. 

      The CNN analysis has now been moved earlier in the manuscript to help clarify its significance and we have expanded the description of the methods. Briefly, it simply indicates that there is information in the depth structure of the terrain that can be learned by a network. This helps justify the subsequent analyses.  Importantly, the network training and testing sets were separated by terrain to ensure that the model was being tested on “unseen” terrain and avoid the model learning specific arrangements.  This is now clarified in the text.

      (2) The use of descriptive terminology should be made systematic. 

      Specifically, the following terms are used without giving a single, clear definition for them: path, step, step location, foot plant, foothold, future foothold, foot location, future foot location, foot position. I think some terms are being used interchangeably. I would really highly recommend a diagrammatic cartoon sketch, showing the definitions of all these terms in a single figure, and then sticking to them in the main text. 

      We have made the language more systematic and clarified the definition of each term (see Methods). Path refers to the sequence of 5 steps. Foothold is where the foot was placed in the environment. A step is the transition from one foothold to the next.

      (3) More coverage of different interpretations / less interpretation in the abstract/introduction would be prudent.  The authors discuss the path selection very much on the basis of energetic costs and gait stability. At least mention should be given to other plausible parameters the participants might be optimizing (or that indeed they may be just satisficing). That is, it is taken as "given" that energetic cost is the major driver of path selection in your task, and that the relevant perception relies on internal models. Neither of these is a priori obvious nor is it as far as I can tell shown by the data (optimizing other variables, satisficing behavior, or online "direct perception" cannot be ruled out). 

      The abstract has been substantially rewritten.  We have adjusted our language in the introduction/discussion to try to address this concern.

      Recommendations for the authors:

      Reviewing Editor comments 

      You will find a full summary of all 3 reviews below. In addition to these reviews, I'd like to highlight a few points from the discussion among reviewers. 

      All reviewers are in agreement that this study has the potential to be a fundamental study with far-reaching empirical and practical implications. The reviewers also appreciate the technical achievements of this study. 

      At the same time, all reviewers are concerned with the overall lack of clarity in how the results are presented. There are a considerable number of figures that need better labeling, text parts that require clearer definitions, and the description of data collection and analysis (esp. with regard to the CNN) requires more care. Please pay close attention to all comments related to this, as this was the main concern that all reviewers shared. 

      At a more specific level, the reviewers discussed the finding around leg length, and admittedly, found it hard to believe, in short: "extraordinary claims need strong evidence". It would be important to strengthen this analysis by considering possible confounds, and by including a discussion of the degree of conviction. 

      We have weakened the discussion of this finding and provided some an additional analyses in a supplemental figure (Figure 17) to help clarify the finding.

      Reviewer #1 (Recommendations For The Authors): 

      First, let me apologize for the long delay with this review. Despite my generally positive evaluation (see public review), I have some concerns about the way the data are presented and questions about methodological details. 

      (1) Representation of results: I find it hard to decipher how much variability arises within an individual and how much across individuals. For example, Figure 7b seems to aggregate across all individuals, while the analysis is (correctly) based on the subject medians.

      Figure 7b That figure was just one subject. This is now clarified.

      It would be good to see the distribution of all individuals (maybe use violin plots for each observer with the true data on one side and the baseline data on the other, or simple histograms for each). To get a feeling for inter-individual and intra-individual variability is crucial, as obviously (see the leg-length analysis) there are larger inter-individual differences and representations like these would be important to appreciate whether there is just a scaling of more or less the same effect or whether there are qualitative differences (especially in the light of N=9 being not a terribly huge sample size). 

      The medians for the individual subjects are now provided with the standard deviations between subjects to indicate the extent of individual differences. Note that the random paths were chosen from the distribution of actual step slopes for that subject as one of the constraints. This makes the random paths statistically similar to the chosen paths with the differences only being generated by the particular visual context. Thus the test for a difference between chosen and random is quite conservative

      Similarly, seeing \DeltaH plotted as a function of steps in the path as a figure rather than just having the verbal description would also help. 

      To simplify the discussion of our methods/results we have removed the analyses that examine mean slope as a function of steps.  Because of the central limit theorem the slopes of the chosen paths remain largely unchanged regardless of the choice path length.  The slopes of the simulated paths are always larger irrespective of the choice of path length.

      (2) Reporting the statistical analyses: This is related to my previous issue: I would appreciate it if the test statistics and degrees-of-freedom of the statistical tests were given along with the p-values, instead of only the p-values. This at some points would also clarify how the statistics were computed exactly (e.g., "All subjects showed comparable difference and the difference in medians evaluated across subjects was highly significant (p<<0.0001).", p.10, is ambiguous to me). 

      Details have been added as requested.

      (3) Why is the lower half ("tortuosity less than the median tortuosity") of paths used as "straight" rather than simply the minimum of all viable paths)?

      The benchmark for a straight path is somewhat arbitrary. Using the lower half rather than the minimum length path is more conservative.

      (4) For the CNN analysis, I failed to understand what was training and what was test set. I understand that the goal is to predict for all pixels whether they are a potential foothold or not, and the AUC is a measure of how well they can be discriminated based on depth information and then this is done for each image and the median over all images taken. But on which data is the CNN trained, and on which is it tested? Is this leave-n-out within the same participant? If so, how do you deal with dependencies between subsequent images? Or is it leave-1-out across participants? If so, this would be more convincing, but again, the same image might appear in training and test. If the authors just want to ask how well depth features can discriminate footholds from non-footholds, I do not see the benefit of a supervised method, which leaves the details of the feature combinations inside a black box. Rather than defining the "negative set" (i.e., the non-foothold pixels) randomly, the simulated paths could also be used, instead. If performance (AUC) gets lower than for random pixels, this would confirm that the choice of parameters to define a "viable path" is well-chosen. 

      This has been clarified as described above.

      Minor issues: 

      (5) A higher tortuosity would also lead a participant to require more steps in total than a lower tortuosity. Could this partly explain the correlation between the leg length and the slope/tortuosity correlation? (Longer legs need fewer steps in total, thus there might be less tradeoff between \Delta H and keeping the path straight (i.e., saving steps)). To assess this, you could give the total number of steps per (straight) distance covered for leg length and compare this to a flat surface.

      The calculations are done on an individual subject basis and the first and last step locations are chosen from the actual foot placements, then the random paths are generated between those endpoints. The consequence of this is that the number of steps is held constant for the analysis.  We have clarified the methods for this analysis to try to make this more clear.

      (6) As far as I understand, steps happen alternatingly with the two feet. That is, even on a flat surface, one would not reach 0 tortuosity. In other words, does the lateral displacement of the feet play a role (in particular, if paths with even and paths with odd number of steps were to be compared), and if so, is it negligible for the leg-length correlation? 

      All the comparisons here are done for 5 step sequences so this potential issue should not affect the slope of the regression lines or the leg length correlation.

      (7) Is there any way to quantify the quality of the depth estimates? Maybe by taking an actual depth image (e.g., by LIDAR or similar) for a small portion of the terrain and comparing the results to the estimate? If this has been done for similar terrain, can a quantification be given? If errors would be similar to human errors, this would also be interesting for the interpretation of the visual sampling data.

      Unfortunately, we do not have the ground truth depth image from LIDAR.  When these data were originally collected, we had not imagined being able to reconstruct the terrain.  However, we agree with the reviewers that this would be a good analysis to do. We plan to collect LIDAR in future experiments. 

      To provide an assessment of quality for these data in the absence of a ground truth depth image, we have performed an evaluation of the reliability of the terrain reconstruction across repeats of the same terrain both between and within participants.  We have expanded the discussion of these reliability analyses in the results section entitled “Evaluating Terrain Reconstruction”, as well as in the corresponding methods section (see Figure 10).

      (8) The figures are sometimes confusing and a bit sloppy. For example, in Figure 7a, the red, cyan, and green paths are not mentioned in the caption, in Figure 8 units on the axes would be helpful, in Figure 9 it should probably be "tortuosity" where it now states "curviness". 

      These details have been fixed.

      (9) I think the statement "The maximum median AUC of 0.79 indicates that the 0.79 is the median proportion of pixels in the circular..." is not an appropriate characterization of the AUC, as the number of correctly classified pixels will not only depend on the ROC (and thus the AUC), but also on the operating point chosen on the ROC (which is not specified by the AUC alone). I would avoid any complications at this point and just characterize the AUC as a measure of discriminability between footholds and non-footholds based on depth features. 

      This has been fixed.

      (10) Ref. [16]is probably the wrong Hart paper (I assume their 2012 Exp. Brain Res. [https://doi.org/10.1007/s00221-012-3254-x] paper is meant at this point) 

      Fixed

      Typos (not checked systematically, just incidental discoveries): 

      (11) "While there substantial overlap" (p.10) 

      (12) "field.." (p.25) 

      (13) "Introduction", "General Discussion" and "Methods" as well as some subheadings are numbered, while the other headings (e.g., Results) are not. 

      Fixed

      Reviewer #2 (Recommendations For The Authors): 

      The major suggestions have been made in the Public Review. The following are either minor comments or go into more detail about the major suggestions. All of these comments are meant to be constructive, not obstructive. 

      Abstract. This is well written, but the main conclusions "Walkers avoid...This trade off is related...5 steps ahead" sound quite qualitative. They could be strengthened by more specificity (NOT p-values), e.g. "positive correlation between the unevenness of the path straight ahead and the probability that people turned off that path." 

      The abstract has been substantially rewritten.

      P. 5 "pinning the head position estimated from the IMU to the Meshroom estimates" sounds like there are two estimates. But it does not sound like both were used. Clarify, e.g. the Meshroom estimate of head position was used in place of IMU? 

      Yes that’s correct.  We have clarified this in the text.

      Figure 5. I was confused by this. First, is a person walking left to right? When the gaze position is shown, where was the eye at the time of that gaze? There are straight lines attached to the blue dots, what do they represent? The caption says gaze is directed further along the path, which made me guess the person is walking right to left, and the line originates at the eye. Except the origins do not lie on or close to the head locations. There's also no scale shown, so maybe I am completely misinterpreting. If the eye locations were connected to gaze locations, it would help to support the finding that people look five steps ahead of where they step. 

      We have updated the figure and clarified the caption to remove these confusions.  There was a mistake in the original figure (where the yellow indicated head locations, we had plotted the center of mass and the choice of projection gave the incorrect impression that the fixations off the path, in blue, were separated from the head).

      The view of the data is now presented so the person is walking left to right and with a projection of the head location (orange), gaze locations (blue or green) and feet (pink).

      Figure 6. As stated in the major comments, the step distributions would be expected to have a covariance structure (in terms of raw data before taking absolute values). It would be helpful to report the covariances (6 numbers). As an example of a simple statistical analysis, a PCA (also based on a data covariance) would show how certain combinations of slope/distance/direction are favored over others. Such information would be a simple way to argue that the data are not completely random, and may even show a height-turn trade-off immediately. (By the way, I am assuming absolute values are used because the slopes and directions are only positive, but it wasn't clear if this was the definition.) A reason why covariances and PCA are helpful is that such data would be helpful to compute a better random walk, generated from dynamics. I believe the argument that steps are not random is not served by showing the different histograms in Figure 7, because I feel the random paths are not fairly produced. A better argument might draw randomly from the same distribution as the data (or drive a dynamical random walk), and compare with actual data. There may be correlations present in the actual data that differ from random. I could be mistaken, because it is difficult or impossible to draw conclusions from distributions of absolute values, or maybe I am only confused. In any case, I suspect other readers will also have difficulty with this section. 

      This has been addressed above in the major comments.

      p. 9, "average step slope" I think I understand the definition, but I suggest a diagram might be helpful to illustrate this.

      There is a diagram of a single step slope in Figure 6 and a diagram of the average step slope for a path segment in Figure 12.

      Incidentally, the "straight path slope" is not clearly defined. I suspect "straight" is the view from above, i.e. ignoring height changes. 

      Clarified

      p. 11 The tortuosity metric could use a clearer definition. Should I interpret "length of the chosen path relative to a straight path" as the numerator and denominator? Here does "length" also refer to the view from above? Why is tortuosity defined differently from step slope? Couldn't there be an analogue to step slope, except summing absolute values of direction changes? Or an analogue to tortuosity, meaning the length as viewed from the side, divided by the length of the straight path? 

      We followed the literature in the definition of tortuosity.  We have clarified the definition of tortuosity in the methods, but yes, you can interpret the length of the chosen path relative to a straight path, as the numerator and denominator, and length refers to 3D length.  We agree that there are many interesting ways to look at the data but for clarity we have limited the discussion to a single definition of tortuosity in this paper.

      Figure 8 could use better labeling. On the left, there is a straight path and a more tortuous path, why not report the metrics for these? On the right, there are nine unlabeled plots. The caption says "turn probability vs. straight path slope" but the vertical axis is clearly not a probability. Perhaps the axis is tortuosity? I presume the horizontal axis is a straight path slope in degrees, but this is not explained. Why are there nine plots, is each one a subject? I would prefer to be informed directly instead of guessing. (As a side note, I like the correlations as a function of leg length, it is interesting, even if slightly unbelievable. I go hiking with people quite a bit shorter and quite a lot taller than me, and anecdotally I don't think they differ so much from each other.) 

      We have fixed Figure 8 which shows the average “mean slope” as a function of tortuosity.  We have added a supplemental figure which shows a scatter plot of the raw data (mean slope vs. tortuosity for each path segment).  

      Note that when walking with friends other factors (e.g. social) will contribute to the cost function. As a very short person my experience is that it is a problem. In any case, the data are the data, whatever the underlying reasons. It does not seem so surprising that people of different heights make different tradeoffs. We know that the preferred gait depends on individual’s passive dynamics as described in the paper, and the terrain will change what is energetically optimal as described in the Darici and Kuo paper.

      Figure 9 presumably shows one data point per subject, but this isn't clear. 

      The correlations are reported per subject, and this has been clarified. 

      p. 13 CNN. I like this analysis, but only sort of. It is convincing that there is SOME sort of systematic decision-making about footholds, better than chance. What it lacks is insight. I wonder what drives peoples' decisions. As an idle suggestion, the AlexNet (arXiv: Krizhevsky et al.; see also A. Karpathy's ConvNETJS demo with CIFAR-10) showed some convolutional kernels to give an idea of what the layers learned. 

      Further exploration of CNN’s would definitely be interesting, but it is outside the scope of the paper. We use it simply to make a modest point, as described above.

      p. 15 What is the definition of stability cost? I understand energy cost, but it is unclear how circuitous paths have a higher stability cost. One possible definition is an energetic cost having to do with going around and turning. But if not an energy cost, what is it? 

      We meant to say that the longer and flatter paths are presumably more stable because of the smaller height changes. You are correct that we can’t say what the stability cost is and we have clarified this in the discussion.

      p. 16 "in other data" is not explained or referenced.

      Deleted 

      p. 10 5 step paths and p. 17 "over the next 5 steps". I feel there is very little information to really support the 5 steps. A p-value only states the significance, not the amount of difference. This could be strengthened by plotting some measures vs. the number of steps ahead. For example, does a CNN looking 1-5 steps ahead predict better than one looking N<5 steps ahead? I am of course inclined to believe the 5 steps, but I do not see/understand strong quantitative evidence here. 

      We have weakened the statements about evidence for planning 5 steps ahead.

      p. 25 CNN. I did not understand the CNN. The list of layers seems incomplete, it only shows four layers. The convolutional-deconvolutional architecture is mentioned as if that is a common term, which I am unfamiliar with but choose to interpret as akin to encoder-decoder. However, the architecture does not seem to have much of a bottleneck (25x25x8 is not greatly smaller than 100x100x4), so what is the driving principle? It's also unclear how the decoder culminates, does it produce some m x m array of probabilities of stepping, where m is some lower dimension than the images? It might be helpful also to illustrate the predictions, for example, show a photo of the terrain view, along with a probability map for that view. I would expect that the reader can immediately say yes, I would likely step THERE but not there. 

      We have clarified the description of the CNN. An illustration is shown in Figure 11.

      Reviewer #3 (Recommendations For The Authors): 

      (This section expands on the points already contained in the Public Review). 

      Major issues 

      (1) The training and validation data of the CNN are not explained fully making it unclear if the data tells us anything about the visual features used to guide steering. A CNN was used on the depth scenes to identify foothold locations in the images. This is the bit of the methods and the results that remains ambiguous, and the authors may need to revisit the methods/results. It is not clear how or on what data the network was trained (training vs. validation vs. un-peeked test data), and justification of the choices made. There is no discussion of possible overfitting. The network could be learning just for example specific rock arrangements in the particular place you experimented. Training the network on data from one location and then making it generalize to another location would of course be ideal. Your network probably cannot do this (as far as I can tell this was not tried), and so the meaning of the CNN results cannot really be interpreted. 

      I really like the idea, of getting actual retinotopic depth field approximations. But then the question would be: what features in this information are relevant and useful for visual guidance (of foot placement)? But this question is not answered by your method. 

      "If a CNN can predict these locations above chance using depth information, this would indicate that depth features can be used to explain some variation in foothold selection." But there is no analysis of what features they are. If the network is overfitting they could be very artefactual, pixel-level patterns and not the kinds of "features" the human reader immediately has in mind. As you say "CNN analysis shows that subject perspective depth features are predictive of foothold locations", well, yes, with 50,000 odd parameters the foothold coordinates can be associated with the 3D pixel maps, but what does this tell us? 

      See previous discussion of these issues.

      It is true that we do not know the precise depth features used. We established that information about height changes was being used, but further work is needed to specify how the visual system does this. This is mentioned in the Discussion.

      You open the introduction with a motivation to understand the visual features guiding path selection, but what features the CNN finds/uses or indeed what features are there is not much discussed. You would need to bolster this, or down-emphasize this aspect in the Introduction if you cannot address it. 

      "These depth image features may or may not overlap with the step slope features shown to be predictive in the previous analysis, although this analysis better approximates how subjects might use such information." I do not think you can say this. It may be better to approximate the kind of (egocentric) environment the subjects have available, but as it is I do not see how you can say anything about how the subject uses it. (The results on the path selection with respect to the terrain features, viewpoint viewpoint-independent allocentric properties of the previous analyses, are enough in themselves!) 

      We have rewritten the section on the CNN to make clearer what it can and cannot do and its role in the manuscript. See previous discussion.

      (2) The use of descriptive terminology should be made systematic. Overall the rest of the methodology is well explained, and the workflow is impressive. However, to interpret the results the introduction and discussion seem to use terminology somewhat inconsistently. You need to dig into the methods to figure out the exact operationalizations, and even then you cannot be quite sure what a particular term refers to. Specifically, you use the following terms without giving a single, clear definition for them (my interpretation in parentheses): 

      foothold (a possible foot plant location where there is an "affordance"? or a foot plant location you actually observe for this individual? or in the sample?) 

      step (foot trajectory between successive step locations) 

      step location (the location where the feet are placed) 

      path (are they lines projected on the ground, or are they sequences of foot plants? The figure suggests lines but you define a path in terms of five steps. 

      foot plant (occurs when the foot comes in contact with step location?) 

      future foothold (?) 

      foot location (?) 

      future foot location (?) 

      foot position (?) 

      I think some terms are being used interchangeably here? I would really highly recommend a diagrammatic cartoon sketch, showing the definitions of all these terms in a single figure, and then sticking to them in the main text. Also, are "gaze location" and "fixation" the same? I.e. is every gaze-ground intersection a "gaze location" (I take it it is not a "fixation", which you define by event identification by speed and acceleration thresholds in the methods)? 

      We have cleaned up the language. A foothold is the location in the terrain representation (mesh) where the foot was placed. A step is the transition from one foothold to the next. A path is the sequences of 5 steps. The lines simply illustrate the path in the Figures. A gaze location is the location in the terrain representation where the walker is holding gaze still (the act of fixating). See Muller et al (2023) for further explanation.

      (3) More coverage of different interpretations / less interpretation in the abstract/introduction would be prudent. You discuss the path selection very much on the basis of energetic costs and gait stability. At least mention should be given to other plausible parameters the participants might be optimizing (or that indeed they may be just satisficing). Temporal cost (more circuitous route takes longer) and uncertainty (the more step locations you sample the more chance that some of them will not be stable) seem equally reasonable, given the task ecology / the type of environment you are considering. I do not know if there is literature on these in the gait-scene, but even if not then saying you are focusing on just one explanation because that's where there is literature to fall back on would be the thing to do. 

      Also in the abstract and introduction you seem to take some of this "for granted". E.g. you end the abstract saying "are planning routes as well as particular footplants. Such planning ahead allows the minimization of energetic costs. Thus locomotor behavior in natural environments is controlled by decision mechanisms that optimize for multiple factors in the context of well-calibrated sensory and motor internal models". This is too speculative to be in the abstract, in my opinion. That is, you take as "given" that energetic cost is the major driver of path selection in your task, and that the relevant perception relies on internal models. Neither of these is a priori obvious nor is it as far as I can tell shown by your data (optimizing other variables, satisficing behavior, or online "direct perception" cannot be ruled out). 

      We have rewritten the abstract and Discussion with these concerns in mind.

      You should probably also reference: 

      Warren, W. H. (1984). Perceiving affordances: Visual guidance of stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 683-703. https://doi.org/10.1037/0096-1523.10.5.683 

      Warren WH Jr, Young DS, Lee DN. Visual control of step length during running over irregular terrain. J Exp Psychol Hum Percept Perform. 1986 Aug;12(3):259-66. doi: 10.1037//0096-1523.12.3.259. PMID: 2943854. 

      We have added these references to the introduction.

      Minor point 

      Related to (2) above, the path selection results are sometimes expressed a bit convolutedly, and the gist can get lost in the technical vocabulary. The generation of alternative "paths" and comparison of their slope and tortuousness parameters show that the participants preferred smaller slope/shorter paths. So, as far as I can tell, what this says is that in rugged terrain people like paths that are as "flat" as possible. This is common sense so hardly surprising. Do not be afraid to say so, and to express the result in plain non-technical terms. That an apple falls from a tree is common sense and hardly surprising. Yet quantifying the phenomenon, and carefully assessing the parameters of the path that the apple takes, turned out to be scientifically valuable - even if the observation itself lacked "novelty". 

      Thanks.  We have tried to clarify the methods/results with this in mind.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We are grateful for the many positive comments. Moreover, we appreciate the recommendations to improve the manuscript; particularly, the important discussion points raised by reviewer 1 and the comments made by reviewer 2 concerning an extended quantification of how near-spike input conductances vary across individual spikes. We have performed several new detailed analyses to address reviewer 2’s comments. In particular, we now provide for all relevant postsynaptic cells the complete distributions of the excitatory and inhibitory input conductance changes that occur right before and after postsynaptic spiking, and we provide corresponding distributions of non-spiking regions as a reference. We performed these analyses separately for different baseline activity levels. Our new results largely support our previous conclusions but provide a much more nuanced picture of the synaptic basis of spiking. To the best of our knowledge, this is the first time that parallel information on input excitation, inhibition and postsynaptic spiking is provided for individual neurons in a biological network. We would argue that our new results further support the fundamental notion that even a reductionist neuronal culture model can give rise to sophisticated network dynamics with spiking – at least partially – triggered by rapid input fluctuations, as predicted by theory. Moreover, it appears that changes in input inhibition are a key mechanism to regulate spiking during spontaneous recurrent network activity. It will be exciting to test whether this holds true for neural circuits in vivo.

      In the following section, we address the reviewers’ comments individually.

      Reviewer 1:

      In this study the authors develop methods to interrogate cultured neuronal networks to learn about the contributions of multiple simultaneously active input neurons to postsynaptic activity. They then use these methods to ask how excitatory and inhibitory inputs combine to result in postsynaptic neuronal firing in a network context.

      The study uses a compelling combination of high-density multi-electrode array recordings with patch recordings. They make ingenious use of physiology tricks such as shifting the reversal potential of inhibitory inputs, and identifying inhibitory vs. excitatory neurons through their influence on other neurons, to tease apart the key parameters of synaptic connections.

      We thank the reviewer for acknowledging our efforts to develop an approach to investigate the synaptic basis of spiking in biological neurons and for appreciating the technical challenges that needed to be overcome.

      The method doesn't have complete coverage of all neurons in the culture, and it appears to work on rather low-density cultures so the size of the networks in the current study is in the low tens.

      (1) It would be valuable to see the caveats associated with the small size of the networks examined here.

      (2) It would be also helpful if there were a section to discuss how this approach might scale up, and how better network coverage might be achieved.

      These are indeed very important points that we should have discussed in more detail. Maximizing the coverage of neurons is critical to our approach, as it determines the number of potential synaptic connections that can be tested. The number of cells that we seeded onto our HD-MEA chip was chosen to achieve monolayer neuronal cultures. As detailed in ‘Materials and Methods -> Electrode selection and long-term extracellular recording of network spiking’, the entire HD-MEA chip (all 26'400 electrodes) was scanned for activity at the beginning of each experiment, and electrodes that recorded spiking activity were subsequently selected. While it is possible that some individual neurons escape detection, since they were not directly adjacent to an electrode, we estimate that a large majority of the active neurons in the culture was covered by our electrode selection method. New generations of CMOS HD-MEAs developed in our laboratory and other groups feature higher electrode densities, larger recording areas, and larger sets of electrodes that can be simultaneously recorded from (e.g., DOI:

      10.1109/JSSC.2017.2686580 & 10.1038/s41467-020-18620-4). These features will substantially improve the coverage of the network and also allow for using larger neuronal networks. As suggested by reviewer 1, we added these points to the Discussion section of the revised manuscript.

      The authors obtain a number of findings on the conditions in which the dynamics of excitatory and inhibitory inputs permit spiking, and the statistics of connectivity that result in this. This is of considerable interest, and clearly one would like to see how these findings map to larger networks, to non-cortical networks, and ideally to networks in-vivo. The suite of approaches discussed here could potentially serve as a basis for such further development.

      (3) It would be useful for the authors to suggest such approaches.

      We are confident that our suite of approaches will open important avenues to study the E & I input basis of postsynaptic spiking in other circuits beyond the in vitro cortical networks studied here. In fact, CMOS HD-MEA probes have been successfully combined with patch clamping in vivo (DIO: 10.1101/370080) and, in principle, the strategies and software tools introduced in our study would be equally applicable in an in vivo context. However, currently available in vitro CMOS HD-MEAs still surpass their in vivo counterparts (e.g., Neuropixels probes) in terms of electrode count. Moreover, using in vitro neural networks enables easy access and better network coverage compared to in vivo conditions. These are the main reasons why we chose an in vitro network for our investigation. We added these points to the Discussion section of the revised manuscript.

      (4) The authors report a range of synaptic conductance waveforms in time. Not surprisingly, E and I look broadly different. Could the authors comment on the implications of differences in time-course of conductance profiles even within E (or I) synapses? Is this functional or is it an outcome of analysis uncertainty?

      We are grateful to the reviewer for raising this interesting point. On the one hand, the onsets of the synaptic conductance waveform estimates were strikingly different between E and I synapses (see Fig. 8D). Furthermore, the rise and decay phases of synaptic currents were distinct for E vs. I inputs (Fig. 4C). We think that these differences are not just due to analysis uncertainty because both these observations are consistent with previously described properties of E and I inputs: Synaptic GABAergic I currents are typically slower compared to Glutamatergic E currents with respect to both rising and decay phase (DOI: 10.1126/science.abj586). Moreover, the relatively small onset latencies for I inputs that we observed are consistent with the well-known local action of inhibition. This finding was also consistent with smaller PRE-POST distances and general differences in neurite characteristics of E compared to I cells (Fig. S2).

      One of the challenges in doing such studies in a dish is that the network is simply ticking away without any neural or sensory context to work on, nor any clear idea of what its outputs might mean. Nevertheless, at a single-neuron level one expects that this system might provide a reasonable subset of the kinds of activity an individual cell might have to work on.

      (5) Could the authors comment on what subsets of network activity is, and is not, likely to be seen in the culture?

      (6) Could they indicate what this would mean for the conclusions about E-I summation, if the in-vivo activity follows different dynamics?

      We agree that there are natural limitations to a reductionist model, such as a dissociated cell culture. One may argue that neuronal cultures bear some similarities with neural networks formed during early brain development, where network formation is primarily driven by intrinsic, self-organizational capabilities. While such a self-organization is likely constrained in a 2D culture, it has been shown that several important circuit mechanisms that are observed in vivo are preserved in 2D dissociated cultures. For example, dissociated neuronal cultures can maintain E-I balance and achieve active decorrelation (DOI: 10.1038/nn.4415). In addition, in terms of activity levels, the sequences of heightened and more quiescent network spiking bear similarities with cortical Up-Down state oscillations observed during slow-wave sleep. To what extent individual circuit connectivity motifs and more nuanced network dynamics, found in vivo, can be recapitulated in vitro, is still not clear. However, combining our and previous work (especially DOI: 10.1038/nn.4415), we believe that there is sufficient evidence to justify work such as ours. On the one hand, identifying in simple cell culture models features of network dynamics and microcircuits known (or predicted) to exist in vivo is a testimony of neuronal self-organizing capabilities. On the other hand, our in vitro results will allow for more directed testing of equivalent mechanisms in vivo.

      Reviewer 2:

      The authors had two aims in this study. First, to develop a tool that lets them quantify the synaptic strength and sign of upstream neurons in a large network of cultured neurons. Second, they aimed at disentangling the contributions of excitatory and inhibitory inputs to spike generation.

      For the quantification of synaptic currents, their methods allows them to quantify excitatory and inhibitory currents simultaneously, as the sign of the current is determined by the neuron identity in the high-density extracellular recording. They further made sure that their method works for nonstationary firing rates, and they did a simulation to characterize what kind of connections their analysis does not capture. They did not include the possibility of (dendritic) nonlinearities or gap junctions or any kind of homeostatic processes.

      Thank you for the concise summary of our aims and of the features of our method. Indeed, we did not model nonlinear synaptic interactions, short-term plasticity etc., as there is likely a spectrum of possible interaction rules. Importantly, non-linear synaptic interactions were reduced by performing synaptic measurements in voltage-clamp mode.

      We do not anticipate that this would impact our connectivity inference per se. However, the presence of a significant number of nonlinear events would imply that some deviations between reconstructed and measured patch current traces were to be expected even if all incoming monosynaptic connections were identified. In the future, it will be exciting to add to our current experimental protocol a simultaneous HD-MEA & patch-clamp recording, in which the membrane potential is measured in current-clamp mode. Following application of our synaptic input-mapping procedure, one could, in this way, directly assess input-sequence dependent non-linear synaptic integration during spontaneous network activity.

      I see a clear weakness in the way that they quantify their goodness of fit, as they only report the explained variance, while their data are quite nonstationary. It could help to partition the explained variance into frequency bands, to at least separate the effects of a bias in baseline, the (around 100 Hz) band of synaptic frequencies and whatever high-frequency observation noise there may be. Another weak point is their explanation of unexplained variance by potential activation of extrasynaptic receptors without providing evidence. Given that these cultures are not a tissue and diffusion should be really high, this idea could easily be tested by adding a tiny amount of glutamate to the culture media.

      As suggested by the reviewer, we have now partitioned the current traces into frequency bands and separately assessed the goodness-of-fit. We have updated Fig. 3C accordingly:

      The following sentence was added to the main text:

      “We separately compared slow baseline changes (< 3 Hz), fast synaptic activity (3 - 200 Hz) and putative high-frequency noise (> 200 Hz), yielding a median variance explained of approximately 60% in the 3 - 200 Hz range (Fig. 3C).”

      Importantly, the variance explained in the frequency range of synaptic activity remains high. We would also like to point out that, even if all synaptic input connections were identified, one would expect some deviations between measured and reconstructed current trace. This is because the reconstructed trace is based on average input current waveforms and in the measured trace there may be synaptic transmission failures.

      We agree that the offered explanation for unexplained variance by activation of extrasynaptic receptors is fairly speculative. As it was not a crucial discussion point, we have therefore removed the statement.

      For the contributions of excitation and inhibition to neuronal spiking, the authors found a clear reduction of inhibitory inputs and increase of excitation associated with spiking when averaging across many spikes. And interestingly, the inhibition shows a reversal right after a spike and the timescale is faster during higher network activity. While these findings are great and provide further support that their method is working, they stop at this exciting point where I would really have liked to see more detail.

      Thank you for acknowledging our main results concerning the synaptic basis of spiking. We attempted to integrate in one manuscript a suite of new approaches, in addition to the respective applications. We, therefore, tried to strike the appropriate level of detail in presenting our findings. With regard to our analyses of which synaptic input events regulate postsynaptic spiking, we agree with reviewer 2’s assessment that more detail concerning the variability across individual spikes would be helpful. In the following parts, we detail multiple new analyses that we have included in the revised manuscript to address reviewer 2’s comments.

      A concern, of course, is that the network bursts in cultures are quite stereotypical, and that might cause averages across many bursts to show strange behaviour. So what I am missing here is a reference or baseline or null hypothesis. How does it look when using inputs from neurons that are not connected? And then, it looks like the E/(E+I) curve has lots of peaks of similar amplitude (that could be quantified...), so why does the neuron spike where it does? If I would compare to the peak (of similar amplitude) right before or right after (as a reference) are there some systematic changes? Is maybe the inhibition merely defining some general scaffold where spikes can happen and the excitation causes the spike as spiking is more irregular?

      The averaged trace reveals a different timescale for high and low activity states. But does that reflect a superposition of EPSCs in a single trial or rather a different jittering of a single EPSC across trials? For answering this question, it would be good to know the variance (and whether/ how much it changes over time). Maybe not all spikes are preceded by a decrease in inhibition. Could you quantitify (correlate, scatterplot?) how exactly excitation and inhibition contributions relate for single postsynaptic spikes (or single postsynaptic non-spikes)? After all, this would be the kind of detail that requires the large amount of data that this study provides.

      First of all, we are very grateful for the reviewer’s thorough assessment of our work and for the many valuable suggestions to improve it. We are convinced that we have addressed with our new analyses and the updated manuscript all issues raised here. One of the main findings from our original manuscript was that a rapid and brief change in input conductance (and particularly a reduction in inhibition) is an important spike trigger/regulator. We followed the reviewer’s suggestion and now provide scatter plots and distributions of the pre- (and post-spike) changes in input excitation and inhibition for individual postsynaptic spikes. A quantification of the peaks in the noisy E/(E+I) traces was not always trivial, which is why we reasoned that an assessment of the respective E and I changes is better suited. Moreover, as an unbiased reference, we generated separately for each postsynaptic cell a corresponding distribution of changes in input conductance in non-spiking periods (using random time points). We included our new results and updated figures in our responses to the specific reviewer comments below.

      For the first part, the authors achieved their goal in developing a tool to study synaptic inputs driving subthreshold activity at the soma, and characterizing such connections. For the second part, they found an effect of EPSCs on firing, but they barely did any quantification of its relevance due to the lack of a reference.

      With the availability of Neuropixels probes, there is certainly use for their tool in in vivo applications, and their statistical analysis provides a reference for future studies.

      The relevance of excitatory and inhibitory currents on spiking remains to be seen in an updated version of the manuscript.

      Thank you. Please see our new analyses below. Our new findings are in agreement with the main conclusions of the original manuscript. We provide evidence that rapid pre-spike changes in input conductance are observed across most individual spikes and that these rapid changes occur significantly more often before measured spikes than in non-spiking periods.

      I feel that specifically Figures 6 and 7 lack relevant detail and a consistent representation that would allow the reader to establish links between the different panels. The analysis shows very detailed examples, but then jumps into analyses that show population averages over averaged responses, losing or ignoring the variability across trials. In addition, while their results themselves pass a statistical test, it is crucial to establish some measure of how relevant these results are. For that, I would really want to know how much spiking would actually be restricted by the constraints that would be posed by these results, i.e. would this be reflected in tiny changes in spiking probabilities, or are there times when spiking probabilities are necessarily high, or do we see times when we would almost certainly get a spike, but neurons can fire during other times as well.

      I would agree that a detailed, quantitative analysis of this question is beyond the scope of this paper, but a qualitative analysis is feasible and should be done.

      Please see our revised Figure 6. We have rearranged some of the original panels and removed one example of mean conductance profiles. Moreover, we removed a panel with analysis results based on mean conductances that is now obsolete, as more detailed analyses are provided (which are in agreement with the original findings). Analyses from panels (A-F) are mostly unchanged. Panels (G-J) show the new results.

      The following paragraphs, which were added to the main text of the revised manuscript, describe our new findings:

      “For a more nuanced picture of which synaptic events are associated with postsynaptic spiking, we next quantified the changes in input excitation and inhibition that preceded individual postsynaptic spikes. In our analysis, we first focused on periods with high synaptic input activity. As previously discussed, cortical neurons in vivo typically receive and integrate barrages of input activation, similar to the high-activity events that we observed here (e.g., the event depicted in Fig. 6A, right). In Fig. 6G/H, individual pre-spike changes in input conductance are shown for two example postsynaptic neurons (plots labeled ‘spiking’, right). To assess how specific these conductance changes were to spiking periods, we also quantified the changes in input conductance that occurred during non-spiking periods as a reference (we used random time points from high-activity events excluding time points adjacent to measured spike times; we upscaled the number of measured spikes by 10x; the respective plots were labeled ‘non-spiking’). Spikes of both example neurons exhibited – compared to non-spiking regions – significantly more often a pre-spike decrease in inhibition, consistent with the mean conductance profiles. Precisely how an increase (top-right quadrants in Fig. 6G/H) or decrease (bottom-left quadrants) in both I and E conductance influenced the neuronal membrane potential is difficult to predict. However, if rapid changes in input conductance had a significant role in triggering spikes, one would expect that fewer spikes would exhibit a hyperpolarizing pre-spike increase in I and decrease in E (top-left quadrant) compared to the non-spiking period. Conversely, a decrease in I and an increase E (bottom-right quadrants) would likely result in a membrane potential depolarization so that more spikes should feature the corresponding pre-spike conductance changes compared to non-spiking periods. These relative shifts are precisely what can be observed in the plots of the two example neurons (Fig. 6G/H) and, in fact, across recordings (Fig. 6I). Finally, we compared the distributions of pre-spike changes in input inhibition and excitation of each postsynaptic neuron (Fig. 6J). Further indicating a pivotal role of inhibition in triggering spikes, 6 out of 7 neurons exhibited a clear decrease in the mean values (and medians) of pre-spike changes in inhibition compared to non-spiking periods. Interestingly, the 3 out of 7 neurons with an increase in excitation showed the smallest decrease in inhibition (or even an increase in inhibition in case of neuron #7). This latter observation suggests a matching of E and I inputs and cell-specific relative contributions of E and I conductance changes in triggering spikes.

      Theoretically, neuronal spiking could be driven by a prolonged suprathreshold depolarization (Petersen and Berg 2016; Renart et al. 2007) or, in more favorable subthreshold regimes, by fast synaptic input fluctuations (Ahmadian and Miller 2021; Amit and Brunel 1997; Brunel 2000; Van Vreeswijk and Sompolinsky 1996). In this section, we demonstrated that the majority of investigated neurons featured – during high-activity periods – a significant number of spikes that were associated with rapid pre-spike changes in input conductances. These findings suggest that even simple neuronal cultures can self-organize to form circuits exhibiting sophisticated spiking dynamics.”

      Our new analyses detailed in Fig. 6 show that there are also presumably depolarizing events (e.g., decrease in I and increase in E) in non-spiking regions. In future studies, it will be interesting to examine what distinguishes these events from spike-inducing events of similar magnitude – one possibility is a dependency on specific input-activation sequences.

      During the first days and weeks of developing neuronal cultures, spiking activity rapidly shifts from synapse-independent activity patterns to spiking dynamics that do depend on synaptic inputs and are progressively organized in network-wide high-activity events (DOI: 10.1016/j.brainres.2008.06.022). In our study, cultures at days-in-vitro 15-18 were used, and approximately 15% of the spikes occurred during high-activity events with relatively strong E and I input activity. In addition, spikes that occurred during low-activity events were at least partially regulated by synaptic input (see answers below related to Fig. 7).

      In the following, I am detailing what I would consider necessary to be done about these two Figures:

      Figure 6C is indeed great, though I don't see why the authors would characterize synchrony as low. When comparing with Figure 4B, I'd think that some of these values are quite high. And it wouldn't help me to imagine error bars in panel 6D.

      We have removed our characterization as ‘low’ from the text. One important difference between our synchrony measure (STTC) and the quantification of spike-transmission probability (STP) is the ‘lag’ of a few milliseconds for the STP quantification window to account for synaptic delay.

      Figure 6B is useful, but could be done better: The autocovariance of a shotnoise process is a convolution of the autocovariance of underlying point process and the autocovariance of the EPSC kernel. So one would want to separate those to obtain a better temporal resolution. But a shotnoise process has well defined peaks, and the time of these local maxima can be estimated quite precisely. Now if I would do a peak triggered average instead of the full convolution, I would do half of the deconvolution and obtain a temporally asymmetric curve of what is expected to happen around an EPSC. Importantly, one could directly see expected excitation after inhibition or expected inhibition after excitation, and this visualization could be much better and more intuitively compared to panel 6E.

      We appreciate the reviewer’s suggestion to present these results in a more sophisticated way. We would like to propose to stick with the original analysis to have it comparable with related analyses from the literature (e.g., DOI: 10.1038/nn.2105). Therefore, we hope the reviewer finds it acceptable that we leave the presentation of the data in its original form and potentially follow up in future work with the analysis strategy proposed by the reviewer.

      Panel D needs some variability estimate (i.e. standard deviation or interquartile range or even a probability density) for those traces.

      Figure 6E: Please use more visible colors. A sensitivity analysis to see traces for 2E/(2E+I) and E/(E+2I) would be great.

      Figure 6F: with an updated panel B, we should be able to have a slope for average inhibition after excitation for each of these cells. A second panel / third column showing those slopes would be of interest. It would serve as a reference for what could be expected from E-I interactions alone.

      With regard to the variability estimate in D, we now provide multiple panels characterizing the variability. For one, Fig. 6H contains a scatter plot of the pre-spike changes in input conductance across all individual postsynaptic spikes from the example cell shown in D. Moreover, in Fig. 7A, we show from the same example cell the standard deviations associated with the mean conductance traces separately for spikes that occurred during low- and high-activity states. For better visibility and because the separation according to activity states is more informative, we kept the original presentation of panel D (however, removing one example cell). In addition, we show the same mean traces from panel D with the respective standard deviations (across all spikes) in Supplementary Figure S3.

      Colors in Fig. 6E are adjusted, as requested.

      We have removed panel Fig. 6F as we now provide more detailed analyses at single-spike level (see Fig. 6G-J).

      Figure 6G: Could the authors provide an interquartile range here?

      With regard to the aligned input-output data from original panel Fig. 6G, now in panel Fig. 6F in the updated figure version, we show all individual traces that were averaged: the E/I traces from panel Fig. 6E and the three action potential waveforms from Supplementary Figure S5. Therefore, we chose to present the means only for better visibility.

      Figure 7A: it may be hard to squeeze in variability estimates here, but the information on whether and how much variance might be explained is essential. Maybe add another panel to provide a variability estimate? The variability estimate in panel 7B and 7D only reflect variability across connections, and it would be useful to add panels for the time courses of the variability of g (or E/(E+I) respectively).

      We now include the standard deviations across the input conductance traces in the updated Fig. 7A, as requested. We have also simplified Fig. 7 and performed the analysis using the 6 out of 7 neurons that, based on our new analysis (Fig. 6J) displayed a clear reduction in pre-spike inhibition, relative to the reference distribution. For a complete overview of the state-dependent changes in input conductance that are associated with individual postsynaptic spikes, we have included a new supplementary figure (Fig. S6). Fig. S6 also includes a characterization of the changes in input inhibition that occur right after postsynaptic spiking. In addition, Fig. S6D shows the standard deviations corresponding to the mean input conductance traces of all cells – separately for high- and low-activity periods.

      We added the following paragraph to the main text of the revised manuscript:

      “How can these deviations in the mean conductance profiles be explained? To answer this question, we further quantified – separately for low and high g states – the changes in input inhibition that occurred right before and after individual postsynaptic spikes (Fig. S6). This single-spike analysis suggested that, during high g states, most spikes experienced a post-spike increase and pre-spike decrease in inhibition (see also Fig. 6J). On the other hand, low g states were characterized by sparse synaptic input (e.g., see reconstruction in Fig. 6A). Therefore, many of the spikes that occurred during low g states were associated with little change in input conductance (note medians of approximately zero in Fig. S6A/C). Nevertheless, a considerable fraction of spikes (often > 25%) from low g states were also associated with a post-spike increase and pre-spike drop in inhibition. It, therefore, appears that even the sparse inhibitory inputs of low g states could influence spike timing. Moreover, the post-spike increases in input inhibition during low g states suggest that there were strong regulatory inhibitory circuits in place. However, limited activity levels during low g states presumably introduced an increased jitter of these spike-associated changes in input inhibition.

      In summary, the input inhibition of high-conductance states provides reliable and narrow windows-of-spiking opportunity. In addition, even during periods of sparse activity, there are rudimentary synaptic mechanisms in place to regulate spike timing.”

      As a suggestion for further analysis, though I am well aware that this is likely beyond the scope of this manuscript, I'd suggest the following analysis:

      I would split the data into the high and low activity states. Then I would compute the average of E/(E+I) values for spikes. Assuming that spikes tend to happen for local maxima of E/(E+I) I would find local maxima for periods without spike such that their average is equal to the value for actual spikes. Finally, I would test for a systematic difference in either excitation or inhibition.

      If there is no difference, you can make the claim that synaptic input does not guarantee a spike, and compare to a global average of E/(E+I).

      We are grateful for the fantastic suggestions for future analysis. We look forward to conducting these analyses in a more detailed follow-up characterization.

      In addition to the major alterations detailed above, we performed smaller corrections (e.g., spelling mistakes, inaccuracies) in some parts of the manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this manuscript, the authors use a large dataset of neuroscience publications to elucidate the nature of self-citation within the neuroscience literature. The authors initially present descriptive measures of self-citation across time and author characteristics; they then produce an inclusive model to tease apart the potential role of various article and author features in shaping self-citation behavior. This is a valuable area of study, and the authors approach it with an appropriate and well-structured dataset.

      The study's descriptive analyses and figures are useful and will be of interest to the neuroscience community. However, with regard to the statistical comparisons and regression models, I believe that there are methodological flaws that may limit the validity of the presented results. These issues primarily affect the uncertainty of estimates and the statistical inference made on comparisons and model estimates - the fundamental direction and magnitude of the results are unlikely to change in most cases. I have included detailed statistical comments below for reference.

      Conceptually, I think this study will be very effective at providing context and empirical evidence for a broader conversation around self-citation. And while I believe that there is room for a deeper quantitative dive into some finer-grained questions, this paper will be a valuable catalyst for new areas of inquiry around citation behavior - e.g., do authors change self-citation behavior when they move to more or less prestigious institutions? do self-citations in neuroscience benefit downstream citation accumulation? do journals' reference list policies increase or decrease self-citation? - that I hope that the authors (or others) consider exploring in future work.

      Thank you for your suggestions and your generally positive view of our work. As described below, we have made the statistical improvements that you suggested.

      Statistical comments:

      (1) Throughout the paper, the nested nature of the data does not seem to be appropriately handled in the bootstrapping, permutation inference, and regression models. This is likely to lead to inappropriately narrow confidence bands and overly generous statistical inference.

      We apologize for this error. We have now included nested bootstrapping and permutation tests. We defined an “exchangeability block” as a co-authorship group of authors. In this dataset, that meant any authors who published together (among the articles in this dataset) as a First Author / Last Author pairing were assigned to the same exchangeability block. It is not realistic to check for overlapping middle authors in all papers because of the collaborative nature of the field. In addition, we believe that self-citations are primarily controlled by first and last authors, so we can assume that middle authors do not control self-citation habits. We then performed bootstrapping and permutation tests in the constraints of the exchangeability blocks.

      We first describe this in the results (page 3, line 110):

      “Importantly, we accounted for the nested structure of the data in bootstrapping and permutation tests by forming co-authorship exchangeability blocks.”

      We also describe this in 4.8 Confidence Intervals (page 21, line 725):

      “Confidence intervals were computed with 1000 iterations of bootstrap resampling at the article level. For example, of the 100,347 articles in the dataset, we resampled articles with replacement and recomputed all results. The 95% confidence interval was reported as the 2.5 and 97.5 percentiles of the bootstrapped values.

      We grouped data into exchangeability blocks to avoid overly narrow confidence intervals or overly optimistic statistical inference. Each exchangeability block comprised any authors who published together as a First Author / Last Author pairing in our dataset. We only considered shared First/Last Author publications because we believe that these authors primarily control self-citations, and otherwise exchangeability blocks would grow too large due to the highly collaborative nature of the field. Furthermore, the exchangeability blocks do not account for co-authorship in other journals or prior to 2000. A distribution of the sizes of exchangeability blocks is presented in Figure S15.”

      In describing permutation tests, we also write (page 21, line 739):

      “4.9 P values

      P values were computed with permutation testing using 10,000 permutations, with the exception of regression P values and P values from model coefficients. For comparing different fields (e.g., Neuroscience and Psychiatry) and comparing self-citation rates of men and women, the labels were randomly permuted by exchangeability block to obtain null distributions. For comparing self-citation rates between First and Last Authors, the first and last authorship was swapped in 50% of exchangeability blocks.”

      For modeling, we considered doing a mixed effects model but found difficulties due to computational power. For example, with our previous model, there were hundreds of thousands of levels for the paper random effect, and tens of thousands of levels for the author random effect. Even when subsampling or using packages designed for large datasets (e.g., mgcv’s bam function: https://www.rdocumentation.org/packages/mgcv/versions/1.9-1/topics/bam), we found computational difficulties.

      As a result, we switched to modeling results at the paper level (e.g., self-citation count or rate). We found that results could be unstable when including author-level random effects because in many cases there was only one author per group. Instead, to avoid inappropriately narrow confidence bands, we resampled the dataset such that each author was only represented once. For example, if Author A had five papers in this dataset, then one of their five papers was randomly selected. We updated our description of our models in the Methods section (page 21, line 754):

      “4.10 Exploring effects of covariates with generalized additive models

      For these analyses, we used the full dataset size separately for First and Last Authors (Table S2). This included 115,205 articles and 5,794,926 citations for First Authors, and 114,622 articles and 5,801,367 citations for Last Authors. We modeled self-citation counts, self-citation rates, and number of previous papers for First Authors and Last Authors separately, resulting in six total models.

      We found that models could be computationally intensive and unstable when including author-level random effects because in many cases there was only one author per group. Instead, to avoid inappropriately narrow confidence bands, we resampled the dataset such that each author was only represented once. For example, if Author A had five papers in this dataset, then one of their five papers was randomly selected. The random resampling was repeated 100 times as a sensitivity analysis (Figure S12).

      For our models, we used generalized additive models from mgcv’s “gam” function in R 49. The smooth terms included all the continuous variables: number of previous papers, academic age, year, time lag, number of authors, number of references, and journal impact factor. The linear terms included all the categorical variables: field, gender affiliation country LMIC status, and document type. We empirically selected a Tweedie distribution 50 with a log link function and p=1.2. The p parameter indicates that the variance is proportional to the mean to the p power 49. The p parameter ranges from 1-2, with p=1 equivalent to the Poisson distribution and p=2 equivalent to the gamma distribution. For all fitted models, we simulated the residuals with the DHARMa package, as standard residual plots may not be appropriate for GAMs 51. DHARMa scales the residuals between 0 and 1 with a simulation-based approach 51. We also tested for deviation from uniformity, dispersion, outliers, and zero inflation with DHARMa. Non-uniformity, dispersion, outliers, and zero inflation were significant due to the large sample size, but small in effect size in most cases. The simulated quantile-quantile plots from DHARMa suggested that the observed and simulated distributions were generally aligned, with the exception of slight misalignment in the models for the number of previous papers. These analyses are presented in Figure S11 and Table S7.

      In addition, we tested for inadequate basis functions using mgcv’s “gam.check()” function 49. Across all smooth predictors and models, we ultimately selected between 10-20 basis functions depending on the variable and outcome measure (counts, rates, papers). We further checked the concurvity of the models and ensured that the worst-case concurvity for all smooth predictors was about 0.8 or less.”

      The direction of our results primarily stayed the same, with the exception of gender results. Men tended to self-cite slightly less (or equal self-citation rates) after accounting for numerous covariates. As such, we also modeled the number of previous papers to explain the discrepancy between our raw data and the modeled gender results. Please find the updated results text below (page 11, line 316):

      “2.9 Exploring effects of covariates with generalized additive models

      Investigating the raw trends and group differences in self-citation rates is important, but several confounding factors may explain some of the differences reported in previous sections. For instance, gender differences in self-citation were previously attributed to men having a greater number of prior papers available to self-cite 7,20,21. As such, covarying for various author- and article-level characteristics can improve the interpretability of self-citation rate trends. To allow for inclusion of author-level characteristics, we only consider First Author and Last Author self-citation in these models.

      We used generalized additive models (GAMs) to model the number and rate of self-citations for First Authors and Last Authors separately. The data were randomly subsampled so that each author only appeared in one paper. The terms of the model included several article characteristics (article year, average time lag between article and all cited articles, document type, number of references, field, journal impact factor, and number of authors), as well as author characteristics (academic age, number of previous papers, gender, and whether their affiliated institution is in a low- and middle-income country). Model performance (adjusted R2) and coefficients for parametric predictors are shown in Table 2. Plots of smooth predictors are presented in Figure 6.

      First, we considered several career and temporal variables. Consistent with prior works 20,21, self-citation rates and counts were higher for authors with a greater number of previous papers. Self-citation counts and rates increased rapidly among the first 25 published papers but then more gradually increased. Early in the career, increasing academic age was related to greater self-citation. There was a small peak at about five years, followed by a small decrease and a plateau. We found an inverted U-shaped trend for average time lag and self-citations, with self-citations peaking approximately three years after initial publication. In addition, self-citations have generally been decreasing since 2000. The smooth predictors showed larger decreases in the First Author model relative to the Last Author model (Figure 6).

      Then, we considered whether authors were affiliated with an institution in a low- and middle-income country (LMIC). LMIC status was determined by the Organisation for Economic Co-operation and Development. We opted to use LMIC instead of affiliation country or continent to reduce the number of model terms. We found that papers from LMIC institutions had significantly lower self-citation counts (-0.138 for First Authors, -0.184 for Last Authors) and rates (-12.7% for First Authors, -23.7% for Last Authors) compared to non-LMIC institutions. Additional results with affiliation continent are presented in Table S5. Relative to the reference level of Asia, higher self-citations were associated with Africa (only three of four models), the Americas, Europe, and Oceania.

      Among paper characteristics, a greater number of references was associated with higher self-citation counts and lower self-citation rates (Figure 6). Interestingly, self-citations were greater for a small number of authors, though the effect diminished after about five authors. Review articles were associated with lower self-citation counts and rates. No clear trend emerged between self-citations and journal impact factor. In an analysis by field, despite the raw results suggesting that self-citation rates were lower in Neuroscience, GAM-derived self-citations were greater in Neuroscience than in Psychiatry or Neurology.

      Finally, our results aligned with previous findings of nearly equivalent self-citation rates for men and women after including covariates, even showing slightly higher self-citation rates in women. Since raw data showed evidence of a gender difference in self-citation that emerges early in the career but dissipates with seniority, we incorporated two interaction terms: one between gender and academic age and a second between gender and the number of previous papers. Results remained largely unchanged with the interaction terms (Table S6).

      2.10 Reconciling differences between raw data and models

      The raw and GAM-derived data exhibited some conflicting results, such as for gender and field of research. To further study covariates associated with this discrepancy, we modeled the publication history for each author (at the time of publication) in our dataset (Table 2). The model terms included academic age, article year, journal impact factor, field, LMIC status, gender, and document type. Notably, Neuroscience was associated with the fewest number of papers per author. This explains how authors in Neuroscience could have the lowest raw self-citation rates but the highest self-citation rates after including covariates in a model. In addition, being a man was associated with about 0.25 more papers. Thus, gender differences in self-citation likely emerged from differences in the number of papers, not in any self-citation practices.”

      (2) The discussion of the data structure used in the regression models is somewhat opaque, both in the main text and the supplement. From what I gather, these models likely have each citation included in the model at least once (perhaps twice, once for first-author status and one for last-author status), with citations nested within citing papers, cited papers, and authors. Without inclusion of random effects, the interpretation and inference of the estimates may be misleading.

      Please see our response to point (1) to address random effects. We have also switched to GAMs (see point #3 below) and provided more detail in the methods. Notably, we decided against using author-level effects due to poor model stability, as there can be as few as one author per group. Instead, we subsampled the dataset such that only one paper appeared from each author.

      (3) I am concerned that the use of the inverse hyperbolic sine transform is a bit too prescriptive, and may be producing poor fits to the true predictor-outcome relationships. For example, in a figure like Fig S8, it is hard to know to what extent the sharp drop and sign reversal are true reflections of the data, and to what extent they are artifacts of the transformed fit.

      Thank you for raising this point. We have now switched to using generalized additive models (GAMs). GAMs provide a flexible approach to modeling that does not require transformations. We described this in detail in point (1) above and in Methods 4.10 Exploring effects of covariates with generalized additive models (page 21, line 754).

      “4.10 Exploring effects of covariates with generalized additive models

      For these analyses, we used the full dataset size separately for First and Last Authors (Table S2). This included 115,205 articles and 5,794,926 citations for First Authors, and 114,622 articles and 5,801,367 citations for Last Authors. We modeled self-citation counts, self-citation rates, and number of previous papers for First Authors and Last Authors separately, resulting in six total models.

      We found that models could be computationally intensive and unstable when including author-level random effects because in many cases there was only one author per group. Instead, to avoid inappropriately narrow confidence bands, we resampled the dataset such that each author was only represented once. For example, if Author A had five papers in this dataset, then one of their five papers was randomly selected. The random resampling was repeated 100 times as a sensitivity analysis (Figure S12).

      For our models, we used generalized additive models from mgcv’s “gam” function in R 48. The smooth terms included all the continuous variables: number of previous papers, academic age, year, time lag, number of authors, number of references, and journal impact factor. The linear terms included all the categorical variables: field, gender affiliation country LMIC status, and document type. We empirically selected a Tweedie distribution 49 with a log link function and p=1.2. The p parameter indicates that the variance is proportional to the mean to the p power 48. The p parameter ranges from 1-2, with p=1 equivalent to the Poisson distribution and p=2 equivalent to the gamma distribution. For all fitted models, we simulated the residuals with the DHARMa package, as standard residual plots may not be appropriate for GAMs 50. DHARMa scales the residuals between 0 and 1 with a simulation-based approach 50. We also tested for deviation from uniformity, dispersion, outliers, and zero inflation with DHARMa. Non-uniformity, dispersion, outliers, and zero inflation were significant due to the large sample size, but small in effect size in most cases. The simulated quantile-quantile plots from DHARMa suggested that the observed and simulated distributions were generally aligned, with the exception of slight misalignment in the models for the number of previous papers. These analyses are presented in Figure S11 and Table S7.

      In addition, we tested for inadequate basis functions using mgcv’s “gam.check()” function 48. Across all smooth predictors and models, we ultimately selected between 10-20 basis functions depending on the variable and outcome measure (counts, rates, papers). We further checked the concurvity of the models and ensured that the worst-case concurvity for all smooth predictors was about 0.8 or less.”

      (4) It seems there are several points in the analysis where papers may have been dropped for missing data (e.g., missing author IDs and/or initials, missing affiliations, low-confidence gender assessment). It would be beneficial for the reader to know what % of the data was dropped for each analysis, and for comparisons across countries it would be important for the authors to make sure that there is not differential missing data that could affect the interpretation of the results (e.g., differences in self-citation being due to differences in Scopus ID coverage).

      Thank you for raising this important point. In the methods section, we describe how the data are missing (page 18, line 623):

      “4.3 Data exclusions and missingness

      Data were excluded across several criteria: missing covariates, missing citation data, out-of-range values at the citation pair level, and out-of-range values at the article level (Table 3). After downloading the data, our dataset included 157,287 articles and 8,438,733 citations. We excluded any articles with missing covariates (document type, field, year, number of authors, number of references, academic age, number of previous papers, affiliation country, gender, and journal). Of the remaining articles, we dropped any for missing citation data (e.g., cannot identify whether a self-citation is present due to lack of data). Then, we removed citations with unrealistic or extreme values. These included an academic age of less than zero or above 38/44 for First/Last Authors (99th percentile); greater than 266/522 papers for First/Last Authors (99th percentile); and a cited year before 1500 or after 2023. Subsequently, we dropped articles with extreme values that could contribute to poor model stability. These included greater than 30 authors; fewer than 10 references or greater than 250 references; and a time lag of greater than 17 years. These values were selected to ensure that GAMs were stable and not influenced by a small number of extreme values.

      In addition, we evaluated whether the data were not missing at random (Table S8). Data were more likely to be missing for reviews relative to articles, for Neurology relative to Neuroscience or Psychiatry, in works from Africa relative to the other continents, and for men relative to women. Scopus ID coverage contributed in part to differential missingness. However, our exclusion criteria also contribute. For example, Last Authors with more than 522 papers were excluded to help stabilize our GAMs. More men fit this exclusion criteria than women.”

      Due to differential missingness, we wrote in the limitations (page 16, line 529):

      “Ninth, data were differentially missing (Table S8) due to Scopus coverage and gender estimation. Differential missingness could bias certain results in the paper, but we hope that the dataset is large enough to reduce any potential biases.”

      Reviewer #2 (Public Review):

      The authors provide a comprehensive investigation of self-citation rates in the field of Neuroscience, filling a significant gap in existing research. They analyze a large dataset of over 150,000 articles and eight million citations from 63 journals published between 2000 and 2020. The study reveals several findings. First, they state that there is an increasing trend of self-citation rates among first authors compared to last authors, indicating potential strategic manipulation of citation metrics. Second, they find that the Americas show higher odds of self-citation rates compared to other continents, suggesting regional variations in citation practices. Third, they show that there are gender differences in early-career self-citation rates, with men exhibiting higher rates than women. Lastly, they find that self-citation rates vary across different subfields of Neuroscience, highlighting the influence of research specialization. They believe that these findings have implications for the perception of author influence, research focus, and career trajectories in Neuroscience.

      Overall, this paper is well written, and the breadth of analysis conducted by authors, with various interactions between variables (eg. gender vs. seniority), shows that the authors have spent a lot of time thinking about different angles. The discussion section is also quite thorough. The authors should also be commended for their efforts in the provision of code for the public to evaluate their own self-citations. That said, here are some concerns and comments that, if addressed, could potentially enhance the paper:

      Thank you for your review and your generally positive view of our work.

      (1) There are concerns regarding the data used in this study, specifically its bias towards top journals in Neuroscience, which limits the generalizability of the findings to the broader field. More specifically, the top 63 journals in neuroscience are based on impact factor (IF), which raises a potential issue of selection bias. While the paper acknowledges this as a limitation, it lacks a clear justification for why authors made this choice. It is also unclear how the "top" journals were identified as whether it was based on the top 5% in terms of impact factor? Or 10%? Or some other metric? The authors also do not provide the (computed) impact factors of the journals in the supplementary.

      We apologize for the lack of clarity about our selection of journals. We agree that there are limitations to selecting higher impact journals. However, we needed to apply some form of selection in order to make the analysis manageable. For instance, even these 63 journals include over five million citations. We better describe our rationale behind the approach as follows (page 17, line 578):

      “We collected data from the 25 journals with the highest impact factors, based on Web of Science impact factors, in each of Neurology, Neuroscience, and Psychiatry. Some journals appeared in the top 25 list of multiple fields (e.g., both Neurology and Neuroscience), so 63 journals were ultimately included in our analysis. We recognize that limiting the journals to the top 25 in each field also limits the generalizability of the results. However, there are tradeoffs between breadth of journals and depth of information. For example, by limiting the journals to these 63, we were able to look at 21 years of data (2000-2020). In addition, the definition of fields is somewhat arbitrary. By restricting the journals to a set of 63 well-known journals, we ensured that the journals belonged to Neurology, Neuroscience, or Psychiatry research. It is also important to note that the impact factor of these journals has not necessarily always been high. For example, Acta Neuropathologica had an impact factor of 17.09 in 2020 but 2.45 in 2000. To further recognize the effects of impact factor, we decided to include an impact factor term in our models.”

      In addition, we have now provided the 2020 impact factors in Table S1.

      By exclusively focusing on high impact journals, your analysis may not be representative of the broader landscape of self-citation patterns across the neuroscience literature, which is what the title of the article claims to do.

      We agree that this article is not indicative of all neuroscience literature, but rather the top journals. Thus, we have changed the title to: “Trends in Self-citation Rates in High-impact Neurology, Neuroscience, and Psychiatry Journals”. We would also like to note that compared to previous bibliometrics works in neuroscience (Bertolero et al. 2020; Dworkin et al. 2020; Fulvio et al. 2021), this article includes a wider range of data.

      (2) One other concern pertains to the possibility that a significant number of authors involved in the paper may not be neuroscientists. It is plausible that the paper is a product of interdisciplinary collaboration involving scientists from diverse disciplines. Neuroscientists amongst the authors should be identified.

      In our opinion, neuroscience is a broad, interdisciplinary field. Individuals performing neuroscience research may have a neuroscience background. Yet, they may come from many backgrounds, such as physics, mathematics, biology, chemistry, or engineering. As such, we do not believe that it is feasible to characterize whether each author considers themselves a neuroscientist or not. We have added the following to the limitations section (page 16, line 528):

      “Eighth, authors included in this work may not be neurologists, neuroscientists, or psychiatrists. However, they still publish in journals from these fields.”

      (3) When calculating self-citation rate, it is important to consider the number of papers the authors have published to date. One plausible explanation for the lower self-citation rates among first authors could be attributed to their relatively junior status and short publication record. As such, it would also be beneficial to assess self-citation rate as a percentage relative to the author's publication history. This number would be more accurate if we look at it as a percentage of their publication history. My suspicion is that first authors (who are more junior) might be more likely to self-cite than their senior counterparts. My suspicion was further raised by looking at Figures 2a and 3. Considering the nature of the self-citation metric employed in the study, it is expected that authors with a higher level of seniority would have a greater number of publications. Consequently, these senior authors' papers are more likely to be included in the pool of references cited within the paper, hence the higher rate.

      While the authors acknowledge the importance of the number of past publications in their gender analysis, it is just as important to include the interplay of seniority in (1) their first and last author self-citation rates and (2) their geographic analysis.

      Thank you for this thoughtful comment. We agree that seniority and prior publication history play an important role in self-citation rates.

      For comparing First/Last Author self-citation rates, we have now included a plot similar to Figure 2a, where self-citation as a percentage of prior publication history is plotted.

      (page 4, line 161): “Analyzing self-citations as a fraction of publication history exhibited a similar trend (Figure S3). Notably, First Authors were more likely than Last Authors to self-cite when normalized by prior publication history.

      For the geographic analysis, we made two new maps: 1) that of the number of previous papers, and 2) that of the journal impact factor (see response to point #4 below).

      (page 5, line 185): “We also investigated the distribution of the number of previous papers and journal impact factor across countries (Figure S4). Self-citation maps by country were highly correlated with maps of the number of previous papers (Spearman’s r\=0.576, P=4.1e-4; 0.654, P=1.8e-5 for First and Last Authors). They were significantly correlated with maps of average impact factor for Last Authors (0.428, P=0.014) but not Last Authors (Spearman’s r\=0.157, P=0.424). Thus, further investigation is necessary with these covariates in a comprehensive model.”

      Finally, we included a model term for the number of previous papers (Table 2). We analyzed this both for self-citation counts and self-citation rates and found a strong relationship between publication history and self-citations. We also included the following section where we modeled the number of previous papers for each author (page 13, line 384):

      “2.10 Reconciling differences between raw data and models

      The raw and GAM-derived data exhibited some conflicting results, such as for gender and field of research. To further study covariates associated with this discrepancy, we modeled the publication history for each author (at the time of publication) in our dataset (Table 2). The model terms included academic age, article year, journal impact factor, field, LMIC status, gender, and document type. Notably, Neuroscience was associated with the fewest number of papers per author. This explains how authors in Neuroscience could have the lowest raw self-citation rates but the highest self-citation rates after including covariates in a model. In addition, being a man was associated with about 0.25 more papers. Thus, gender differences in self-citation likely emerged from differences in the number of papers, not in any self-citation practices.”

      (4) Because your analysis is limited to high impact journals, it would be beneficial to see the distribution of the impact factors across the different countries. Otherwise, your analysis on geographic differences in self-citation rates is hard to interpret. Are these differences really differences in self-citation rates, or differences in journal impact factor? It would be useful to look at the representation of authors from different countries for different impact factors.

      We made a map of this in Figure S4 (see our response to point #3 above).

      (page 5, line 185): “We also investigated the distribution of the number of previous papers and journal impact factor across countries (Figure S4). Self-citation maps by country were highly correlated with maps of the number of previous papers (Spearman’s r=0.576, P=4.1e-4; 0.654, P=1.8e-5 for First and Last Authors). They were significantly correlated with maps of average impact factor for Last Authors (0.428, P=0.014) but not Last Authors (Spearman’s r=0.157, P=0.424). Thus, further investigation is necessary with these covariates in a comprehensive model.”

      We also included impact factor as a term in our model. The results suggest that there are still geographic differences (Table 2, Table S5).

      (5) The presence of self-citations is not inherently problematic, and I appreciate the fact that authors omit any explicit judgment on this matter. That said, without appropriate context, self-citations are also not the best scholarly practice. In the analysis on gender differences in self-citations, it appears that authors imply an expectation of women's self-citation rates to align with those of men. While this is not explicitly stated, use of the word "disparity", and also presentation of self-citation as an example of self-promotion in discussion suggest such a perspective. Without knowing the context in which the self-citation was made, it is hard to ascertain whether women are less inclined to self-promote or that men are more inclined to engage in strategic self-citation practices.

      We agree that on the level of an individual self-citation, our study is not useful for determining how related the papers are. Yet, understanding overall trends in self-citation may help to identify differences. Context is important, but large datasets allow us to investigate broad trends. We added the following text to the limitations section (page 16, line 524):

      “In addition, these models do not account for whether a specific citation is appropriate, as some situations may necessitate higher self-citation rates.”

      Reviewer #3 (Public Review):

      This paper analyses self-citation rates in the field of Neuroscience, comprising in this case, Neurology, Neuroscience and Psychiatry. Based on data from Scopus, the authors identify self-citations, that is, whether references from a paper by some authors cite work that is written by one of the same authors. They separately analyse this in terms of first-author self-citations and last-author self-citations. The analysis is well-executed and the analysis and results are written down clearly. There are some minor methodological clarifications needed, but more importantly, the interpretation of some of the results might prove more challenging. That is, it is not always clear what is being estimated, and more importantly, the extent to which self-citations are "problematic" remains unclear.

      Thank you for your review. We attempted to improve the interpretation of results, as described in the following responses.

      When are self-citations problematic? As the authors themselves also clarify, "self-citations may often be appropriate". Researchers cite their own previous work for perfectly good reasons, similar to reasons of why they would cite work by others. The "problem", in a sense, is that researchers cite their own work, just to increase the citation count, or to promote their own work and make it more visible. This self-promotional behaviour might be incentivised by certain research evaluation procedures (e.g. hiring, promoting) that overly emphasise citation performance. However, the true problem then might not be (self-)citation practices, but instead, the flawed research evaluation procedures that emphasis citation performance too much. So instead of problematising self-citation behaviour, and trying to address it, we might do better to address flawed research evaluation procedures. Of course, we should expect references to be relevant, and we should avoid self-promotional references, but addressing self-citations may just have minimal effects, and would not solve the more fundamental issue.

      We agree that this dataset is not designed to investigate the downstream effects of self-citations. However, self-citation practices are more likely to be problematic when they differ across specific groups. This work can potentially spark more interest in future longitudinal designs to investigate whether differences in self-citation practices leads to differences in career outcomes, for example. We added the following text to clarify (page 17, line 565):

      “Yet, self-citation practices become problematic when they are different across groups or are used to “game the system.” Future work should investigate the downstream effects of self-citation differences to see whether they impact the career trajectories of certain groups. We hope that this work will help to raise awareness about factors influencing self-citation practices to better inform authors, editors, funding agencies, and institutions in Neurology, Neuroscience, and Psychiatry.”

      Some other challenges arise when taking a statistical perspective. For any given paper, we could browse through the references, and determine whether a particular reference would be warranted or not. For instance, we could note that there might be a reference included that is not at all relevant to the paper. Taking a broader perspective, the irrelevant reference might point to work by others, included just for reasons of prestige, so-called perfunctory citations. But it could of course also include self-citations. When we simply start counting all self-citations, we do not see what fraction of those self-citations would be warranted as references. The question then emerges, what level of self-citations should be counted as "high"? How should we determine that? If we observe differences in self-citation rates, what does it tell us?

      Our focus is when the self-citation practices differ across groups. We agree that, on a case-by-case basis, there is no exact number for a self-citation rate that is “high.” With a dataset of the current size, evaluating whether each individual self-citation is appropriate is not feasible. If we observe differences in self-citation rate, this may tell us about broad (not individual-level) trends and differences in self-citing practice. If one group is self-citing much more highly compared to another group–even after covarying relevant variables such as prior publication history–then the self-citation differences can likely be attributed to differences in self-citation practices/behaviors.

      For example, the authors find that the (any author) self-citation rate in Neuroscience is 10.7% versus 15.9% in Psychiatry. What does this difference mean? Are psychiatrists citing themselves more often than neuroscientists? First author men showed a self-citation rate of 5.12% versus a self-citation rate of 3.34% of women first authors. Do men engage in more problematic citation behaviour? Junior researchers (10-year career) show a self-citation rate of about 5% compared to a self-citation rate of about 10% for senior researchers (30-year career). Are senior researchers therefore engaging in more problematic citation behaviour? The answer is (most likely) "no", because senior authors have simply published more, and will therefore have more opportunities to refer to their own work. To be clear: the authors are aware of this, and also take this into account. In fact, these "raw" various self-citation rates may, as the authors themselves say, "give the illusion" of self-citation rates, but these are somehow "hidden" by, for instance, career seniority.

      We included numerous covariates in our model. In addition, to address the difference between “raw” and “modeled” self-citation rates, we added the following section (page 13, line 384):

      “2.10 Reconciling differences between raw data and models

      The raw and GAM-derived data exhibited some conflicting results, such as for gender and field of research. To further study covariates associated with this discrepancy, we modeled the publication history for each author (at the time of publication) in our dataset (Table 2). The model terms included academic age, article year, journal impact factor, field, LMIC status, gender, and document type. Notably, Neuroscience was associated with the fewest number of papers per author. This explains how authors in Neuroscience could have the lowest raw self-citation rates but the highest self-citation rates after including covariates in a model. In addition, being a man was associated with about 0.25 more papers. Thus, gender differences in self-citation likely emerged from differences in the number of papers, not in any self-citation practices.”

      Again, the authors do consider this, and "control" for career length and number of publications, et cetera, in their regression model. Some of the previous observations then change in the regression model. Neuroscience doesn't seem to be self-citing more, there just seem to be junior researchers in that field compared to Psychiatry. Similarly, men and women don't seem to show an overall different self-citation behaviour (although the authors find an early-career difference), the men included in the study simply have longer careers and more publications.

      But here's the key issue: what does it then mean to "control" for some variables? This doesn't make any sense, except in the light of causality. That is, we should control for some variable, such as seniority, because we are interested in some causal effect. The field may not "cause" the observed differences in self-citation behaviour, this is mediated by seniority. Or is it confounded by seniority? Are the overall gender differences also mediated by seniority? How would the selection of high-impact journals "bias" estimates of causal effects on self-citation? Can we interpret the coefficients as causal effects of that variable on self-citations? If so, would we try to interpret this as total causal effects, or direct causal effects? If they do not represent causal effects, how should they be interpreted then? In particular, how should it "inform author, editors, funding agencies and institutions", as the authors say? What should they be informed about?

      We apologize for our misuse of language. We will be more clear, as in most previous self-citation papers, that our analysis is NOT causal. Causal datasets do have some benefits in citation research, but a limitation is that they may not cover as wide of a range of authors. Furthermore, non-causal correlational studies can still be useful in informing authors, editors, funding agencies, and institutions. Association studies are widely used across various fields to draw non-causal conclusions. We made numerous changes to reduce our causal language.

      Before: “We then developed a probability model of self-citation that controls for numerous covariates, which allowed us to obtain significance estimates for each variable of interest.”

      After (page 3, line 113): “We then developed a probability model of self-citation that includes numerous covariates, which allowed us to obtain significance estimates for each variable of interest.”

      Before: “As such, controlling for various author- and article-level characteristics can improve the interpretability of self-citation rate trends.”

      After (page 11, line 321): “As such, covarying various author- and article-level characteristics can improve the interpretability of self-citation rate trends.”

      Before: “Initially, it appeared that self-citation rates in Neuroscience are lower than Neurology and Psychiatry, but after controlling for various confounds, the self-citation rates are higher in Neuroscience.”

      After (page 15, line 468): “Initially, it appeared that self-citation rates in Neuroscience are lower than Neurology and Psychiatry, but after considering several covariates, the self-citation rates are higher in Neuroscience.”

      We also added the following text to the limitations section (page 16, line 526):

      “Seventh, the analysis presented in this work is not causal. Association studies are advantageous for increasing sample size, but future work could investigate causality in curated datasets.”

      The authors also "encourage authors to explore their trends in self-citation rates". It is laudable to be self-critical and review ones own practices. But how should authors interpret their self-citation rate? How useful is it to know whether it is 5%, 10% or 15%? What would be the "reasonable" self-citation rate? How should we go about constructing such a benchmark rate? Again, this would necessitate some causal answer. Instead of looking at the self-citation rate, it would presumably be much more informative to simply ask authors to check whether references are appropriate and relevant to the topic at hand.

      We believe that our tool is valuable for authors to contextualize their own self-citation rates. For instance, if an author has published hundreds of articles, it is not practical to count the number of self-citations in each. We have added two portions of text to the limitations section:

      (page 16, line 524): “In addition, these models do not account for whether a specific citation is appropriate, though some situations may necessitate higher self-citation rates.”

      (page 16, line 535): “Despite these limitations, we found significant differences in self-citation rates for various groups, and thus we encourage authors to explore their trends in self-citation rates. Self-citation rates that are higher than average are not necessarily wrong, but suggest that authors should further reflect on their current self-citation practices.”

      In conclusion, the study shows some interesting and relevant differences in self-citation rates. As such, it is a welcome contribution to ongoing discussions of (self) citations. However, without a clear causal framework, it is challenging to interpret the observed differences.

      We agree that causal studies provide many benefits. Yet, association studies also provide many benefits. For example, an association study allowed us to analyze a wider range of articles than a causal study would have.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Statistical suggestions:

      (1) To improve statistical inference, nesting should be accounted for in all of the analyses. For example, the logistic regression model using citing/cited pairs should include random effects for article, author, and perhaps subfield, in order for independence of observations to be plausible. Similarly, bootstrapping and permutation would ideally occur at the author level rather than (or in addition to) the paper level.

      Detailed updates addressing these points are in the public review. In short, we found computational challenges with many levels of the random effects (>100,000) and millions of observations at the citation pairs level. As such, we decided to model citations rates and counts by paper. In this case, we found that results could be unstable when including author-level random effects because in many cases there was only one author per group. Instead, to avoid inappropriately narrow confidence bands, we resampled the dataset such that each author was only represented once. For example, if Author A had five papers in this dataset, then one of their five papers was randomly selected. We repeated the random resampling 100 times (Figure S12). We updated our description of our models in the Methods section (page 21, line 754).

      For permutation tests and bootstrapping, we now define an “exchangeability block” as a co-authorship group of authors. In this dataset, that meant any authors who published together (among the articles in this dataset) as a First Author / Last Author pairing were assigned to the same exchangeability block. It is not realistic to check for overlapping middle authors in all papers because of the collaborative nature of the field. In addition, we believe that self-citations are primarily controlled by first and last authors, so we can assume that middle authors do not control self-citation habits. We then performed bootstrapping and permutation tests in the constraints of the exchangeability blocks.

      (2) In general, I am having trouble understanding the structure of the regression models. My current belief is that rows are composed of individual citations from papers' reference lists, with the outcome representing their status as a self-citation or not, and with various citing article and citing author characteristics as predictors. However, the fact that author type is included in the model as a predictor (rather than having a model for FA self-citations and another for LA self-citations) suggests to me that each citation is entered as two separate rows - once noting whether it was a FA self-citation and once noting whether it was an LA self-citation - and then it is run as a single model.

      (2a) If I am correct, the model is unlikely to be producing valid inference. I would recommend breaking this analysis up into two separate models, and including article-, author-, and subfield-level random effects. You could theoretically include a citation-level random effect and keep it as one model, but each 'group' would only have two observations and the model would be fairly unstable as a result.

      (2b) If I am misunderstanding (and even if not), I would encourage you to provide a more detailed description of the dataset structure and the model - perhaps with a table or diagram

      We split the data into two models and decided to model on the level of a paper (self-citation rate and self-citation count). In addition, we subsampled the dataset such that each author only appears once to avoid misestimation of confidence intervals (see point (1) above). As described in the public review, we included much more detail in our methods section now to improve the clarity of our models.

      (3) I would suggest removing the inverse hyperbolic sine transform and replacing it with a more flexible approach to estimating the relationships' shape, like generalized additive models or other spline-based methods to ensure that the chosen method is appropriate - or at the very least checking that it is producing a realistic fit that reflects the underlying shape of the relationships.

      More details are available in the public review, but we now use GAMs throughout the manuscript.

      (4) For the "highly self-citing" analysis, it is unclear why papers in the 15-25% range were dropped rather than including them as their own category in an ordinal model. I might suggest doing the latter, or explaining the decision more fully

      We previously included this analysis as a paper-level model because our main model was at the level of citation pairs. Now, we removed this analysis because we model self-citation rates and counts by paper.

      (5) It would be beneficial for the reader to know what % of the data was dropped for each analysis, and for your team to make sure that there is not differential missing data that could affect the interpretation of the results (e.g., differences in self-citation being due to differences in Scopus ID coverage).

      Thank you for this suggestion. We added more detailed missingness data to 4.3 Data exclusions and missingness. We did find differential missingness and added it to the limitations section. However, certain aspects of this cannot be corrected because the data are just not available (e.g., Scopus coverage issues). Further details are available in the public review.

      Conceptual thoughts:

      (1) I agree with your decision to focus on the second definition of self-citation (self-cites relative to my citations to others' work) rather than the first (self-cites relative to others' citations to my work). But it does seem that the first definition is relevant in the context of gaming citation metrics. For example, someone who writes one paper per year with a reference list of 30% self-citations will have much less of an impact on their H-index than someone who writes 10 papers per year with 10% self-citations. It could be interesting to see how these definitions interact, and whether people who are high on one measure tend to be high on the other.

      We agree this would be interesting to investigate in the future. Unfortunately, our dataset is organized at the level of the paper and thus does not contain information regarding how many times the authors cite a particular work. We hope that we can explore this interaction in the future.

      (2) This is entirely speculative, but I wonder whether the increasing rate of LA self-citation relative to FA self-citation is partly due to PIs over-citing their own lab to build up their trainees' citation records and help them succeed in an increasingly competitive job market. This sounds more innocuous than doing it to benefit their own reputation, but it would provide another mechanism through which students from large and well-funded labs get a leg-up in the job market. Might be interesting to explore, though I'm not exactly sure how :)

      This is a very interesting point. We do not have any means to investigate this with the current dataset, but we added it to the discussion (page 14, line 421):

      “A third, more optimistic explanation is that principal investigators (typically Last Authors) are increasingly self-citing their lab’s papers to build up their trainee’s citation records for an increasingly competitive job market.”

      Reviewer #2 (Recommendations For The Authors):

      (1) In regards to point 1 in the public review: In the spirit of transparency, the authors would benefit from providing a rationale for their choice of top journals, and the methodology used to identify them. It would also be valuable to include the impact factor of each journal in the S1 table alongside their names.

      Given the availability and executability of code, it would be useful to see how and if the self-citation trends vary amongst the "low impact" journals (as measured by the IF). This could go in any of the three directions:

      a. If it is found that self-citations are not as prevalent in low impact journals, this could be a great starting point for a conversation around the evaluation of journals based on impact factor, and the role of self-citations in it.

      b. If it is found that self-citations are as prevalent in low impact journals as high impact journals, that just strengthens your results further.

      c. If it is found that self-citations are more prevalent in low impact journals, this would mean your current statistics are a lower bound to the actual problem. This is also intuitive in the sense that high impact journals get more external citations (and more exposure) than low impact journals, as such authors (and journals) may be less likely to self-cite.

      Expanding the dataset to include many more journals was not feasible. Instead, we included an impact factor term in our models, as detailed in the public review. We found no strong trends in the association between impact factor and self-citation rate/count. Another important note is that these journals were considered “high impact” in 2020, but many had lower impact factors in earlier years. Thus, our modeling allows us to estimate how impact factor is related to self-citations across a wide range of impact factors.

      It is crucial to consider utilizing such a comprehensive database as Scopus, which provides a more thorough list of all journals in Neuroscience, to obtain a more representative sample. Alternatively, other datasets like Microsoft Academic Graph, and OpenAlex offer information on the field of science associated with each paper, enabling a more comprehensive analysis.

      We agree that certain datasets may offer a wider view of the entire field. However, we included a large number of papers and journals relative to previous studies. In addition, Scopus provides a lot of detailed and valuable author-level information. We had to limit our calls to the Scopus API so restricted journals by 2020 impact factor.

      (2) In regards to point 2 in the public review: To enhance the accuracy and specificity of the analysis, it would be beneficial to distinguish neuroscientists among the co-authors. This could be accomplished by examining their publication history leading up to the time of publication of the paper, and identify each author's level of engagement and specialization within the field of neuroscience.

      Since the field of neuroscience is largely based on collaborations, we find that it might be impossible to determine who is a neuroscientist. For example, a researcher with a publication history in physics may now be focusing on computational neuroscience research. As such, we feel that our current work, which ensures that the papers belong to neuroscience, is representative of what one may expect in terms of neuroscience research and collaboration.

      (3) In regards to point 3 in the public review: I highly recommend plotting self-citation rate as the number of papers in the reference list over the number of total publications to date of paper publication.

      As described in the public review, we have now done this (Figure S3).

      (4) In regards to point 5 in the public review: It would be useful to consider the "quality" of citations to further the discussion on self-citations. For instance, differentiating between self-citations that are perfunctory and superficial from those that are essential for showing developmental work, would be a valuable contribution.

      Other databases may have access to this information, but ours unfortunately does not. We agree that this is an interesting area of work.

      (5) The authors are to be commended for their logistic regression models, as they control for many confounders that were lacking in their earlier descriptive statistics. However, it would be beneficial to rerun the same analysis but on a linear model whereby the outcome variable would be the number of self-citations per author. This would possibly resolve many of the comments mentioned above.

      Thank you for your suggestion. As detailed in the public review, we now model the number of self-citations. This is modeled on the paper level, not the author level, because our dataset was downloaded by paper, not by author.

      Minor suggestions:

      (1) Abstract says one of your findings is: "increasing self-citation rates of First Authors relative to Last Authors". Your results actually show the opposite (see Figure 1b).

      Thank you for catching this error. We corrected it to match the results and discussion in the paper:

      “…increasing self-citation rates of Last Authors relative to First Authors.”

      (2) It might be interesting to compute an average academic age for each paper, and look at self-citation vs average academic age plot.

      We agree that this would be an interesting analysis. However, to limit calls to the API, we collected academic age data only on First and Last Authors.

      (3) It may be interesting to look at the distribution of women in different subfields within neuroscience, and the interaction of those in the context of self-citations.

      Thank you for this interesting suggestion. We added the following analysis (page 9, line 305):

      “Furthermore, we explored topic-by-gender interactions (Figure S10). In short, men and women were relatively equally represented as First Authors, but more men were Last Authors across all topics. Self-citation rates were higher for men across all topics.”

      Reviewer #3 (Recommendations For The Authors):

      - In the abstract, "flaws in citation practices" seems worded rather strongly.

      We respectfully disagree, as previous works have shown significant bias in citation practices. For example, Dworkin et al. (Dworkin et al. 2020) found that neuroscience reference lists tended to under-cite women, even after including various covariates.

      - Links of the references to point to (non-accessible) paperpile references, you would probably want to update this.

      We apologize for the inconvenience and have now removed these links.

      - p 2, l 24: The explanation of ref. (5) seems to be a bit strangely formulated. The point of that article is that citations to work that reinforce a particular belief are more likely to be cited, which *creates* unfounded authority. The unfounded authority itself is hence no part of the citation practices

      Thank you for catching our misinterpretation. We have now removed this part of the sentence.

      - p 3, l 16: "h indices" or "citations" instead of "h-index".

      We now say “h-indices”.

      - p 5, l 5: how was the manual scoring done?

      We added the following to the caption of Figure S1.

      “Figure S1. Comparison between manual scoring of self-citation rates and self-citation rates estimated from Python scripts in 5 Psychiatry journals: American Journal of Psychiatry, Biological Psychiatry, JAMA Psychiatry, Lancet Psychiatry, and Molecular Psychiatry. 906 articles in total were manually evaluated (10 articles per journal per year from 2000-2020, four articles excluded for very large author list lengths and thus high difficulty of manual scoring). For manual scoring, we downloaded information about all references for a given article and searched for matching author names.”

      - p 5, l 23: Why this specific p-value upper bound of 4e-3? From later in the article, I understand that this stems from the 10000 bootstrap sample, with then taking a Bonferroni correction? Perhaps good to clarify this briefly somewhere.

      Thank you for this suggestion. We now perform Benjamini/Hochberg false discovery rate (FDR) correction, but we added a description of the minimum P value from permutations (page 21, line 748):

      “All P values described in the main text were corrected with the Benjamini/Hochberg 16 false discovery rate (FDR) correction. With 10,000 permutations, the lowest P value after applying FDR correction is P=2.9e-4, which indicates that the true point would be the most extreme in the simulated null distribution.”

      - Fig. 1, caption: The (a) and (b) labelling here is a bit confusing, because the first sentence suggests both figures portray the same, but do so for different time periods. Perhaps rewrite, so that (a) and (b) are both described in a single sentence, instead of having two different references to (a) and (b).

      Thank you for pointing this out. We fixed the labeling of this caption:

      “Figure 1. Visualizing recent self-citation rates and temporal trends. a) Kernel density estimate of the distribution of First Author, Last Author, and Any Author self-citation rates in the last five years. b) Average self-citation rates over every year since 2000, with 95% confidence intervals calculated by bootstrap resampling.”

      - p7, l 9: Regarding "academic age", note that there might be a difference between "age" effects and "cohort" effects. That is, there might be difference between people with a certain career age who started in 1990 and people with the same career age, but who started in 2000, which would be a "cohort" effect.

      We agree that this is a possible effect and have added it to the limitations (page 16, line 532):

      “Tenth, while we considered academic age, we did not consider cohort effects. Cohort effects would depend on the year in which the individual started their career.”

      - p 7, l 15: "jumps" suggests some sort of sudden or discontinuous transition, I would just say "increases".

      We now say “increases.”

      - Fig. 2: Perhaps it should be made more explicit that this includes only academics with at least 50 papers. Could the authors please clarify whether the same limitation of at least 50 papers also features in other parts of the analysis where academic age is used? This selection could affect the outcomes of the analysis, so its consequences should be carefully considered. One possibility for instance is that it selects people with a short career length who have been exceptionally productive, namely those that have had 50 papers, but only started publishing in 2015 or so. Such exceptionally productive people will feature more highly in the early career part, because they need to be so productive in order to make the cut. For people with a longer career, the 50 papers would be less of a hurdle, and so would select more and less productive people more equally.

      We apologize for the lack of clarity. We did not use this requirement where academic age was used. We mainly applied this requirement when aggregating by country, as we did not want to calculate self-citation rate in a country based on only several papers. We have clarified various data exclusions in our new section 4.3 Data exclusions and missingness.

      - p 8, l 11: The affiliated institution of an author is not static, but rather changes throughout time. Did the authors consider this? If not, please clarify that this refers to only the most recent affiliation (presumably). Authors also often have multiple affiliations. How did the authors deal with this?

      The institution information is at the time of publication for each paper. We added more detail to our description of this on page 19, line 656:

      “For both First and Last Authors, we found the country of their institutional affiliation listed on the publication. In the case of multiple affiliations, the first one listed in Scopus was used.”

      - p 10, l 6: How were these self-citation rates calculated? This is averaged per author (i.e. only considering papers assigned to a particular topic) and then averaged across authors? (Note that in this way, the average of an author with many papers will weigh equally with the average of an author with few papers, which might skew some of the results).

      We calculate it across the entire topic (i.e., do NOT calculate by author first). We updated the description as follows (page 7, line 211):

      “We then computed self-citation rates for each of these topics (Figure 4) as the total number of self-citations in each topic divided by the total number of references in each topic…”

      - p 13, l 18: Is the academic age analysis here again limited to authors having at least 50 papers?

      This is not limited to at least 50 papers. To clarify, the previous analysis was not limited to authors with 50 papers. It was instead limited to ages in our dataset that had at least 50 data points. e.g., If an academic age of 70 only had 20 data points in our dataset, it would have been excluded.

      - Fig. 5: Here, comparing Fig. 5(d) and 5(f) suggests that partly, the self-citation rate differences between men and women, might be the result of the differences in number of papers. That is, the somewhat higher self-citation rate at a given academic age, might be the result of the higher number of papers at that academic age. It seems that this is not directly described in this part of the analysis (although this seems to be the case from the later regression analysis).

      We agree with this idea and have added a new section as follows (page 13, line 384):

      “2.10 Reconciling differences between raw data and models

      The raw and GAM-derived data exhibited some conflicting results, such as for gender and field of research. To further study covariates associated with this discrepancy, we modeled the publication history for each author (at the time of publication) in our dataset (Table 2). The model terms included academic age, article year, journal impact factor, field, LMIC status, gender, and document type. Notably, Neuroscience was associated with the fewest number of papers per author. This explains how authors in Neuroscience could have the lowest raw self-citation rates by highest self-citation rates after including covariates in a model. In addition, being a man was associated with about 0.25 more papers. Thus, gender differences in self-citation likely emerged from differences in the number of papers, not in any self-citation practices.”

      - Section 2.10. Perhaps the authors could clarify that this analysis takes individual articles as the unit of analysis, not citations.

      We updated all our models to take individual articles and have clarified this with more detailed tables.

      - p 18, l 10: "Articles with between 15-25% self-citation rates were 10 discarded" Why?

      We agree that these should not be discarded. However, we previously included this analysis as a paper-level model because our main model was at the level of citation pairs. Now, we removed this analysis because we model self-citation rates and counts by paper.

      - p 20, l 5: "Thus, early-career researchers may be less incentivized to 5 self-promote (e.g., self-cite) for academic gains compared to 20 years ago." How about the possibility that there was less collaboration, so that first authors would be more likely to cite their own paper, whereas with more collaboration, they will more often not feature as first author?

      This is an interesting point. We feel that more collaboration would generally lead to even more self-citations, if anything. If an author collaborates more, they are more likely to be on some of the references as a middle author (which by our definition counts toward self-citation rates).

      - p 20, l 15: Here the authors call authors to avoid excessive self-citations. Of course, there's nothing wrong with calling for that, but earlier the authors were more careful to not label something directly as excessive self-citations. Here, by stating it like this, the authors suggest that they have looked at excessive self-citations.

      We rephrased this as follows:

      Before: “For example, an author with 30 years of experience cites themselves approximately twice as much as one with 10 years of experience on average. Both authors have plenty of works that they can cite, and likely only a few are necessary. As such, we encourage authors to be cognizant of their citations and to avoid excessive self-citations.”

      After: “For example, an author with 30 years of experience cites themselves approximately twice as much as one with 10 years of experience on average. Both authors have plenty of works that they can cite, and likely only a few are necessary. As such, we encourage authors to be cognizant of their citations and to avoid unnecessary self-citations.”

      - p 22, l 11: Here again, the same critique as p 20, l15 applies.

      We switched “excessively” to “unnecessarily.”

      - p 23, l 12: The authors here critique ref. (21) of ascertainment bias, namely that they are "including only highly-achieving researchers in the life 12 sciences". But do the authors not do exactly the same thing? That is, they also only focus on the top high-impact journals.

      We included 63 high-impact journals with tens of thousands of authors. In addition, some of these journals were not high-impact at the time of publication. For example, Acta Neuropathologica had an impact factor of 17.09 in 2020 but 2.45 in 2000. This still is a limitation of our work, but we do cover a much broader range of works than the listed reference (though their analysis also has many benefits since it included more detailed information).

      - p 26, l 22-26: It seems that the matching is done quite broadly (matching last names + initials at worst) for self-citations, while later (in section 4.9, p 31, l 9), the authors switch to only matching exact Scopus Author IDs. Why not use the same approach throughout? Or compare the two definitions (narrow / broad).

      Thank you for catching this mistake. We now use the approach of matching Scopus Author IDs throughout.

      - S8: it might be nice to explore open alternatives, such as OpenAlex or OpenAIRE, instead of the closed Scopus database, which requires paid access (which not all institutions have, perhaps that could also be corrected in the description in GitHub).

      Thank you for this suggestion. Unfortunately, switching databases would require starting our analysis from the beginning. On our GitHub page, we state: “Please email matthew.rosenblatt@yale.edu if you have trouble running this or do not have institutional access. We can help you run the code and/or run it for you and share your self-citation trends.” We feel that this will allow us to help researchers who may not have institutional access. In addition, we released our aggregated, de-identified (title and paper information removed) data on GitHub for other researchers to use.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      [...] Based on these results, the authors support a model whereby kinetic regimes are encoded in the cis-regulatory sequences of a gene instead of imposed by an evolving trans-regulatory environment.

      The question asked in this manuscript is important and the eve locus represents an ideal paradigm to address it in a quantitative manner. Most of the results are correctly interpreted and well-presented. However, the main conclusion pointing towards a potential "unified theory" of burst regulation during Drosophila embryogenesis should be nuanced or cross-validated.

      Our results and those of others suggest that different developmental genes follow unified—yet different—transcriptional control strategies whereby different combinations of bursting parameters are regulated to modulate gene expression: burst frequency and amplitude for eve (Berrocal et al., 2020), and burst frequency and duration for gap genes (Zoller et al., 2018). In light of the aforementioned works, we can only claim that our results suggest a unified strategy for eve, our case of study, as we observe that eve regulatory strategies are robust to disruption of enhancers and binding sites. In the Discussion section of our revised manuscript, we will emphasize that the bursting control strategy we uncovered for eve does not necessarily apply to other genes, and speculate in more detail that genes that employ the same strategy of transcriptional bursting may be grouped in families that share a common molecular mechanism of transcription.

      Manuscript updates:

      We have emphasized in the Discussion section that our claim of unified strategies pertains exclusively to the bursting behavior of the gene even-skipped, and do not necessarily extend to other genes. To clarify this point, we referenced the findings of (Zoller, Little, and Gregor 2018) and (Chen et al. 2023), who observed that the bursting control strategy of Drosophila gap genes relies on the modulation of burst frequency and duration. Additionally, we cited the findings of (Syed, Duan, and Lim 2023), who reported a decrease in bursting amplitude and duration upon disruption of Dorsal binding sites on the snail minimal distal enhancer. Both examples describe bursting control strategies that differ from the modulation of burst frequency and amplitude observed for even-skipped.

      In addition to the lack of novelty (some results concerning the fact that koff does not change along the A/P axis/the idea of a 'unified regime' were already obtained in Berrocal et al 2020),...

      Unfortunately, we believe there is a misunderstanding in terms of what we construe as novelty in our work. In our previous work (Berrocal et al., 2020), we observed that the seven stripes of even-skipped (eve) expression modulate transcriptional bursting through the same strategy—bursting frequency and amplitude are controlled to yield various levels of mRNA synthesis, while burst duration remains constant. We reproduce that result in our paper, and do not claim any novelty. However, what was unclear is whether the observed eve bursting control strategy would only exist in the wild-type stripes, whose expression—we reasoned—is under strong selection due to the dramatic phenotypic consequences of eve transcription, or if eve transcriptional bursting would follow the same strategy under trans-regulatory environments that are not under selection to deliver specific spatiotemporal dynamics of eve expression. Our results—and here lies the novelty of our work—support the second scenario, and point to a model where eve bursting strategies do not result from adaptation of eve activity to specific trans-regulatory environments. Instead, we speculate that a molecular mechanism constrains eve bursting strategy whenever and wherever the gene is active. This is something that we could not have known from our first study in (Berrocal et al., 2020) and constitutes the main novelty of our paper. To put this in other words, the novelty of our work does not rest on the fact that both burst frequency and amplitude are modulated in the endogenous eve pattern, but that this modulation remains quantitatively indistinguishable when we focus on ectopic areas of expression. We will make this point clearer in the Introduction and Discussion section of our revised manuscript.

      Manuscript updates:

      We have clarified this point in both the Introduction and Discussion sections. In the updated Introduction, we state that while our previous work (Berrocal et al. 2020) examined bursting strategies in endogenous expression regions that are, in principle, subject to selection, the present study induced the formation of ectopic expression patterns to probe bursting strategies in regions presumably devoid of evolutionary pressures. In the Discussion section, we highlight that the novelty of our work lies in the insights derived from the comparative analysis between ectopic and endogenous regions of even-skipped expression, an aspect not addressed in our previous work.

      … note i) the limited manipulation of TF environment;...

      We acknowledge that additional genetic manipulations would make it possible to further test the model. However, we hope that the reviewer will agree with us that the manipulations that we did perform are sufficient to provide evidence for common bursting strategies under the diverse trans-regulatory environments present in wild-type and ectopic regions of gene expression. In the Discussion section of our revised manuscript, we will elaborate further on the kind of genetic manipulations (e.g., probing transcriptional strategies that result from swapping promoters in the context of eve-MS2 BAC; or quantifying the impact on eve transcriptional control after performing optogenetic perturbations of transcription factors and/or chromatin remodelers) that could shed further light on the currently undefined molecular mechanism that constrains eve bursting strategies, as a mean to motivate future work.

      Manuscript updates:

      In our Discussion section, we elaborated on proposed manipulations of the transcription factor environment to elucidate the molecular mechanisms behind even-skipped bursting control strategies. We began by listing studies linking transcription factor concentration to bursting control strategies, such as (Hoppe et al. 2020), who observed that the natural BMP (Bone Morphogenetic Protein) gradient shapes bursting frequency of target genes in Drosophila embryos. And (Zhao et al. 2023), who used the LEXY optogenetic system to modulate Knirps nuclear concentration and observed that this repressor acts on eve stripe 4+6 enhancer by gradually decreasing bursting frequency until the locus adopts a reversible quiescent state. Then, we proposed performing systematic LEXY-mediated modulation of critical transcription factors (Bicoid, Hunchback, Giant, Kruppel, Zelda) to understand the extent of their contribution to the unified even-skipped bursting strategies.

      To better frame the hypothesis that the even-skipped promoter defines strategies of bursting control, we added a reference to the work of (Tunnacliffe, Corrigan, and Chubb 2018). This study surveyed 17 actin genes with identical sequences but distinct promoters in the amoeba Dictyostelium discoideum, and found that all genes display different bursting strategies. Their findings, together with the previously cited work by (Pimmett et al. 2021) and (Yokoshi et al. 2022), suggest a critical role of gene promoters in constraining the bursting strategies of eukaryotic genes.

      … ii) the simplicity with which bursting is analyzed (only a two-state model is considered, and not cross-validated with an alternative approach than cpHMM) and…

      Based on our previous work (Lammers et al., 2020), and as described in the SI Section of the current manuscript: Inference of Bursting Parameters, we selected a three-state model (OFF, ON1, ON2) under the following rationale: transcription of even-skipped in pre-gastrulating embryos occurs after DNA replication, and promoters on both sister chromatids remain paired. Most of the time these paired loci cannot be resolved independently using conventional microscopy. As a result, when we image an MS2 spot, we are actually measuring the transcriptional dynamics of two promoters. Thus, each MS2-fluorescent spot may result from none (OFF), one (ON1) or two (ON2) sister promoters being in the active state. Following our previous work, we analyzed our data assuming the three-state model (OFF, ON1, ON2), and then, for ease of presentation, aggregated ON1 and ON2 into an effective single ON state. As for the lack of an alternative model, we chose the simplest model compatible with our data and our current understanding of transcription at the eve locus. With this in mind, we do not rule out the possibility that more complex processes—that are not captured by our model—shape MS2 fluorescence signals. For example, promoters may display more than two states of activity. However, as shown in (Lammers et al., 2020 - SI Section: G. cpHMM inference sensitivities), model selection schemes and cross-validation do not give consistent results on which model is more favorable; and for the time being, there is not a readily available alternative to HMM for inference of promoter states from MS2 signal. For example, orthogonal approaches to quantify transcriptional bursting, such as smFISH, are largely blind to temporal dynamics. As a result, we choose to entertain the simplest two-state model for each sister promoter. We appreciate these observations, as they point out the need of devoting a section in the supplemental material of our revised manuscript to clarify the motivations behind model selection.

      Manuscript updates:

      We have devoted the new Supplemental Material section “Selection of a three-state model of promoter activity and a compound Hidden Markov Model for inference of promoter states from MS2 fluorescent signal” to clarify the rationale behind our selection of a three-state promoter activity model. Since transcription in pre-gastrulating Drosophila embryos occurs after DNA replication, each MS2-active locus contains two unresolvable sister promoters that can either be inactive (OFF), one active (ON1), or both active (ON2).

      Next, we elaborated on the conversion of a three-state model into an effective two-state model for ease of presentation and described how the effective two-state model parameters—kon (burst frequency), koff-1 (burst duration), and r (burst amplitude)—were calculated.

      Additionally, we acknowledged that while the three-state model of promoter activity is the simplest model compatible with our current understanding of transcription in the even-skipped locus, we do not rule out the possibility that even-skipped transcription may be described by more complex models that include multiple states beyond ON and OFF. Finally, we referenced (Lammers et al. 2020) who asserted that while all inferences of promoter states computed from confocal microscopy of MS2/PP7 fluorescence data rely on Hidden Markov models, cross-comparisons between one, two, or multiple-state Hidden Markov models do not yield consistent results regarding which is more accurate. We close the new section by proposing that state-of-the-art microscopy and deconvolution algorithms to improve signal-to-noise-ratio may offer alternatives to the inference of promoter states.

      … iii) the lack of comparisons with published work.

      We thank the reviewer for pointing this out. In the current discussion of our manuscript, we compare our findings to recent articles that have addressed the question of the origin of bursting control strategies in Drosophila embryos (Pimmett et al., 2021; Yokoshi et al., 2022; Zoller et al., 2018). Nevertheless, we acknowledge that we failed to include references that are relevant to our study. Thus, our revised Discussion section must include recent results by (Syed et al., 2023), which showed that the disruption of Dorsal binding sites on the snail minimal distal enhancer results in decreased amplitude and duration of transcription bursts in fruit fly embryos. Additionally, we have to incorporate the study by (Hoppe et al., 2020), which reported that the Drosophila bone morphogenetic protein (BMP) gradient modulates the bursting frequency of BMP target genes. References to thorough studies of bursting control in other organisms, like Dictyostelium discoideum (Tunnacliffe et al., 2018), are due as well.

      Manuscript updates:

      As mentioned in the updates above, our revised manuscript now includes long due references to studies by (Syed, Duan, and Lim 2023), (Hoppe et al. 2020), (Tunnacliffe, Corrigan, and Chubb 2018), and (Chen et al. 2023). All of which are relevant for our current workk.

      Reviewer #2 (Public Review):

      The manuscript by Berrocal et al. asks if shared bursting kinetics, as observed for various developmental genes in animals, hint towards a shared molecular mechanism or result from natural selection favoring such a strategy. Transcription happens in bursts. While transcriptional output can be modulated by altering various properties of bursting, certain strategies are observed more widely. As the authors noted, recent experimental studies have found that even-skipped enhancers control transcriptional output by changing burst frequency and amplitude while burst duration remains largely constant. The authors compared the kinetics of transcriptional bursting between endogenous and ectopic gene expression patterns. It is argued that since enhancers act under different regulatory inputs in ectopically expressed genes, adaptation would lead to diverse bursting strategies as compared to endogenous gene expression patterns. To achieve this goal, the authors generated ectopic even-skipped transcription patterns in fruit fly embryos. The key finding is that bursting strategies are similar in endogenous and ectopic even-skipped expression. According to the authors, the findings favor the presence of a unified molecular mechanism shaping even-skipped bursting strategies. This is an important piece of work. Everything has been carried out in a systematic fashion. However, the key argument of the paper is not entirely convincing.

      We thank the reviewer, as these comments will enable us to improve the Discussion section and overall logic of our revised manuscript. We agree that the evidence provided in this work, while systematic and carefully analyzed, cannot conclusively rule out either of the two proposed models, but just provide evidence supporting the hypothesis for a specific molecular mechanism constraining eve bursting strategies. Our experimental evidence points to valuable insights about the mechanism of eve bursting control. For instance, had we observed quantitative differences in bursting strategies between ectopic and endogenous eve domains, we would have rejected the hypothesis that a common molecular mechanism constrains eve transcriptional bursting to the observed bursting control strategy of frequency and amplitude modulation. Thus, we consider that our proposition of a common molecular mechanism underlying unified eve bursting strategies despite changing trans-regulatory environments is more solid. On the other hand, while our model suggests that this undefined bursting control strategy is not subject to selection acting on specific trans-regulatory environments, it is not trivial to completely discard selection for specific bursting control strategies given our current lack of understanding of the molecular mechanisms that shape the aforesaid strategies. Indeed, we cannot rule out the hypothesis that the observed strategies are most optimal for the expression of eve endogenous stripes according to natural selection, and that these control strategies persist in ectopic regions as an evolutionary neutral “passenger phenotype” that does not impact fitness. We recognize the need to acknowledge this last hypothesis in the updated Introduction and Discussion sections of our manuscript. Further studies will be needed to determine the mechanistic and molecular basis of eve bursting strategies.

      Manuscript updates:

      In this work, we compared strategies of bursting control between endogenous and ectopic regions of even-skipped expression. Different strategies between both regions would suggest that selective pressure maintains defined bursting strategies in endogenous regions. Conversely, similar strategies in both ectopic and endogenous regions would imply that a shared molecular mechanism constrains bursting parameters despite changing trans-regulatory environments.

      In our updated Discussion section, we acknowledge that while our work provides evidence supporting the second hypothesis, we cannot conclusively rule out the possibility that the observed strategies were selected as the most optimal for endogenous even-skipped expression regions and that ectopic regions retain such optimal bursting strategies as an evolutionary neutral “passenger phenotype”.

      Reviewer #3 (Public Review):

      In this manuscript by Berrocal and coworkers, the authors do a deep dive into the transcriptional regulation of the eve gene in both an endogenous and ectopic background. The idea is that by looking at eve expression under non-native conditions, one might infer how enhancers control transcriptional bursting. The main conclusion is that eve enhancers have not evolved to have specific behaviors in the eve stripes, but rather the same rates in the telegraph model are utilized as control rates even under ectopic or 'de novo' conditions. For example, they achieve ectopic expression (outside of the canonical eve stripes) through a BAC construct where the binding sites for the TF Giant are disrupted along with one of the eve enhancers. Perhaps the most general conclusion is that burst duration is largely constant throughout at ~ 1 - 2 min. This conclusion is consistent with work in human cell lines that enhancers mostly control frequency and that burst duration is largely conserved across genes, pointing to an underlying mechanistic basis that has yet to be determined.

      We thank the reviewer for the assessment of our work. Indeed, evidence from different groups (Berrocal et al., 2020; Fukaya et al., 2016; Hoppe et al., 2020; Pimmett et al., 2021; Senecal et al., 2014; Syed et al., 2023; Tunnacliffe et al., 2018; Yokoshi et al., 2022; Zoller et al., 2018) is coming together to uncover commonalities, discrepancies, and rules that constrain transcriptional bursting in Drosophila and other organisms.

      Additional updates to the manuscript

      (1) In our current study, we observed the appearance of a mutant stripe of even-skipped expression beyond the anterior edge of eve stripe 1, which we refer to as eve stripe 0. This stripe appeared in embryos with a disrupted eve stripe 1 enhancer. In a previous study, (Small, Blair, and Levine 1992) reported a “head patch” of even-skipped expression while assaying the regulation of reporter constructs carrying the minimal regulatory element of eve stripe 2 enhancer alone. In our updated manuscript, we state that it is tempting to identify our eve stripe 0 with the previously reported head patch. (Small, Blair, and Levine 1992) speculated that this head patch of even-skipped expression appeared as a result of regulatory sequences present in the P-transposon system they used for genomic insertions. However, P-transposon sequences are not present in our experimental design. Thus, the appearance of eve stripe 0 indicates a repressive role of the eve stripe 1 enhancer at the anterior end of the embryo and may imply that the minimal regulatory element of the eve stripe 2 enhancer, as probed by (Small, Blair, and Levine 1992), can drive the expression of the head patch/eve stripe 0 when the eve stripe 1 enhancer is not present.

      (2)  In our current analysis, we observed that the disruption of Gt-binding sites on the eve stripe 2 enhancer synergizes with the deletion of the eve stripe 1 enhancer, as double mutant embryos display more ectopic expression in their anterior regions than embryos with only disrupted Gt-binding sites. While this may indicate that the repressive activity of eve stripe 1 enhancer synergizes with the repression exerted by Giant, other unidentified transcription factors may be involved in this repressive synergy. In the updated manuscript we clarified that unidentified transcription factors may bind in the vicinity of Gt-binding sites. The hypothesis that Gt-binding sites recognize other transcription factors was proposed by (Small, Blair, and Levine 1992), as they observed that the anterior expansion of eve stripe 2 resulting from Gt-binding site deletions was “somewhat more severe” than expansion observed in embryos carrying null-Giant alleles.

    1. Author response:

      We will address all the textual suggestions, including rectifying any typos and incorporating the most recent literature.

      We will conduct longitudinal studies to determine whether the phenotype worsens or improves over time in liver-specific SMN-depleted mice. In this regard, we will present data from P60 animals, such as histological analyses for the characterization of the liver and pancreas.

    1. Author response:

      We thank the reviewers for their productive comments on our work. While we have chosen to not revise the manuscript further, we reply to the public reviewer comments here so as to provide clarification on certain points.

      Reviewer #1 (Public Review):

      Summary:

      The aim of the study described in this paper was to test whether visual stimuli that pulse synchronously with the systole phase of the cardiac cycle are suppressed compared with stimuli that pulse in the diastole phase. To this end, the authors employed a binocular rivalry task and used the duration of the perceived image as the metric of interest. The authors predicted that if there was global suppression of the visual stimulus during systole then the durations of the stimulus that were pulsing synchronously with systole should be of shorter duration than those pulsing in diastole. However, the results observed were the opposite of those predicted. The authors speculate on what this facilitation effect might mean for the baroreceptor suppression hypothesis.

      Strengths:

      This is an interesting and timely study that uses a clever paradigm to test the baroreceptor suppression hypothesis in vision. This is a refreshingly focussed paper with interesting and seemingly counterintuitive results.

      Weaknesses:

      The paper could benefit from a clearer explanation of the predicted results. For those not experts in binocular rivalry, it would be useful to explain the predicted results. Does pulsing stimuli in this way change durations in such a task? If there is global suppression of visual stimuli why would this lead to shorter/longer durations in the systole compared to the diastole conditions? In addition, the duration lengths in both conditions seem to be longer than one cardiac cycle. If the cardiac cycle modulates duration it would be interesting to discuss why this occurs on some cycles but not on others. If there is a facilitation effect why does it only occur on some cycles?

      In general, pulsing stimuli (i.e. moving gratings) show longer dominance durations when in competition with non-pulsing stimuli; in other words, pulses increase the “stimulus strength” of a visual grating (Wade, De Weert & Swanston, 1984). The Baroreceptor Hypothesis predicts global suppression of visual cortex during systole (and not during diastole), so the stimulus strength boost yielded by a pulse should be attenuated during systole. Thus, the stimulus that only pulses during systole would have lower stimulus strength (and thus shorter dominance durations) than that which pulses during diastole; however, we observe the opposite pattern in our data, seemingly contradicting the Baroreceptor Hypothesis.

      In typical binocular rivalry paradigms, dominance durations are biased by stimulus strength, but perception remains bistable such that the stronger stimulus is not necessarily dominant at a given time. We see no reason, then, why switching would have to occur every cycle. The dominance durations we see are quite typical of binocular rivalry paradigms, whereas durations shorter than a cardiac cycle would be rather unusual (Carmel et al., 2010).

      Reviewer #2 (Public Review):

      Summary:

      This is a binocular rivalry study that uses electrocardiogram events to modulate visual stimuli in real-time, relative to participants' heartbeats. The main finding is that modulations during the period around when the heart has contracted (systole) increase rivalry dominance durations. This is a really neat result, that demonstrates the link between interoception and vision. I thought the Bayesian mixture modelling was a really smart way to identify cardiac non-perceivers, and the finding that the main result is preserved in this group is compelling. Overall, the study has been conducted to a high standard, is appropriately powered, and reported clearly. I have one suggestion about interpretation, which concerns the explanation of increased dominance durations with reference to contemporary models of binocular rivalry, and a few minor queries. However, I think this paper is a worthwhile addition to the literature.

      The point Reviewer 2 makes with respect to contemporary models of binocular rivalry is important – perhaps more so than its brief statement in this public review suggests. As we already expand upon in our Discussion, the effects of global (neural) inhibition depend on the preexisting role that inhibition plays in a given neural circuit. The original framing of the Baroreceptor Hypothesis describes baroreceptor activity of uniformly impeding sensory processing (Lacey, 1967; Lacey & Lacey, 1978, American Psychologist), which is contradicted by our present results. This account is often interpreted as implying the effects of baroreceptor activation is inhibitory in terms of neural mechanism (e.g. Rau et al., 1993, Psychophysiology; Edwards et al., 2009, Psychophysiology). Some researchers argue this serves a parallel function to the inhibitory projections from motor to sensory areas during volitional movement, “cancelling” the sensory effects of heartbeats (Van Elk, et al., 2014, Biological Psychology).

      However, baroreceptor activity has also been described as introducing noise into sensory processing rather than inhibiting it directly (e.g. Allen et al., 2022, PLoS Computational Biology). Lacey and Lacey’s own account actually seemed to point toward attention as a mediating mechanism (Hahn, 1973, Psychological Bulletin), with the disproportionate focus on cortical inhibition emerging in the literature over time. All this is to say that, while our results seem to falsify the behavioral predictions of the original Baroreceptor Hypothesis, subsequent versions of that hypothesis that describe an inhibitory neural mechanism, rather than an inhibition of perception per se, could potentially still be compatible with our results. This is a topic we plan to explore in future work.

      Reviewer #3 (Public Review):

      Summary:

      The manuscript addresses a question inspired by the Baroceptor Hypothesis and its links to visual awareness and interoception. Specifically, the reported study aimed to determine if the effects of cardiac contraction (systole) on binocular rivalry (BR) are facilitatory or suppressive. The main experiment - relying on a technically challenging procedure of presenting stimuli synchronised with the heartbeats of participants - has been conducted with great care, and numerous manipulation checks the authors report convincingly show that the methods they used work as intended. Moreover, the control experiment allows for excluding alternative explanations related to participants being aware of their heartbeats. Therefore, the study convincingly shows the effect of cardiac activity on BR - and this is an important finding. The results, however, do not allow for unambiguously determining if this effect is facilitatory or suppressive (see details below), which renders the study not as informative as it could be.

      While the authors strongly focus on interoception and awareness, this study will be of interest to researchers studying BR as such. Moreover, the code and the data the authors share can facilitate the adoption of their methods in other labs.

      Strengths:

      (1) The study required a complex technical setup and the manuscript both describes it well and demonstrates that it was free from potential technical issues (e.g. in section 3.3. Manipulation check).

      (2) The sophisticated statistical methods the authors used, at least for a non-statistician like me, appear to be well-suited for their purpose. For example, they take into account the characteristics of BR (gamma distributions of dominance durations). Moreover, the authors demonstrate that at least in one case their approach is more conservative than a more basic one (Binomial test) would be.

      (3) Finally, the control experiment, and the analysis it enabled, allow for excluding a multitude of alternative explanations of the main results.

      (4) The authors share all their data and materials, even the code for the experiment.

      (5) The manuscript is well-written. In particular, it introduces the problem and methods in a way that should be easy to understand for readers coming from different research fields.

      Weaknesses:

      (1) The interpretation of the main result in the context of the Baroceptor hypothesis is not clear. The manuscript states: The Baroreceptor Hypothesis would predict that the stimulus entrained to systole would spend more time suppressed and, conversely, less time dominant, as cortical activity would be suppressed each time that stimulus pulses. The manuscript does not specify why this should be the case, and the term 'entrained' is not too helpful here (does it refer to neural entrainment? or to 'being in phase with'?). The answer to this question is provided by the manuscript only implicitly, and, to explain my concern, I try to spell it out here in a slightly simplified form.

      During systole (cardiac contraction), the visual system is less sensitive to external information, so it 'ignores' periods when the systole-synchronised stimulus is at the peak of its pulse. Conversely, the system is more sensitive during diastole, so the stimulus that is at the peak of its pulse then should dominate for longer, because its peaks are synchronised with the periods of the highest sensitivity of the visual system when the information used to resolve the rivalry is sampled from the environment. This idea, while indeed being a clever test of the hypothesis in question, rests on one critical assumption: that the peak of the stimulus pulse (as defined in the manuscript) is the time when the stimulus is the strongest for the visual system. The notion of 'stimulus strength' is widely used in the BR literature (see Brascamp et al., 2015 for a review). It refers to the stimulus property that, simply speaking, determines its tendency to dominate in the BR. The strength of a stimulus is underpinned by its low-level visual properties, such as contrast and spatial frequency content. Coming back to the manuscript, the pulsing of the stimuli affected at least spatial frequency (and likely other low-level properties), and it is unknown if it was in phase with the pulsing of the stimulus strength, or not. If my understanding of the premise of the study is correct, the conclusions drawn by the authors stand only if it was.

      In other words, most likely the strength of one of the stimuli was pulsating in sync with the systole, but is it not clear which stimulus it was. It is possible that, for the visual system, the stimulus meant to pulse in sync with the systole was pulsing strength-wise in phase with the diastole (and the one intended to pulse with in sync with the diastole strength-wise pulsed with the systole). If this is the case, the predictions of the Baroceptor Hypothesis hold, which would change the conclusion of the manuscript.

      We agree with Reviewer 3’s argumentation here. If the pulses decreased, rather than increased, effective stimulus strength, then the present results would indeed be consistent with the Baroreceptor Hypothesis. However, Wade et al. (1984) demonstrated that grating stimuli which pulse in the same manner (i.e. by dynamically varying the spatial frequency of the grating) as in our experiment indeed show increased stimulus strength relative to static stimuli, even if the dynamic stimuli have lower spatial frequency on average (https://doi.org/10.3758/BF03203891).

      We admit our results would be stronger had we included a replication of Wade at al. (1984) in our study, but in light of this previous work, our interpretation is indeed supported.

      (2) Using anaglyph goggles necessitates presenting stimuli of a different colour to each eye. The way in which different colours are presented can impact stimulus strength (e.g. consider that different anaglyph foils can attenuate the light they let through to different degrees). To deal with such effects, at least some studies on BR employed procedures of adjusting the colours for each participant individually (see Papathomas et al., 2004; Patel et al., 2015 and works cited there). While I think that counterbalancing applied in the study excludes the possibility that colour-related effects influenced the results, the effects of interest still could be stronger for one of the coloured foils.

      It is the case that, when we split the data up by eye (and thus by color), we only see statistically significant results for one eye – though the nominal direction of the effect is consistent across both eyes. So it is indeed possible that the effect could be stronger for one of the colored foils, but the present experiment was not designed to be powered to test that cardiac phase-by-color interaction.

      We concur with the Reviewer, however, that our use of counterbalancing excludes color-related effects as an explanation for our main findings.

      (3) Several aspects of the methods (e.g. the stimuli), are not described at the level of detail some readers might be accustomed to. The most important issue here is the task the participants performed. The manuscript says that they pressed a button whenever they experienced a switch in perception, but it is only implied that there were different buttons for each stimulus.

      There were indeed different buttons for each stimulus (i.e. a button to indicate their perception had switched to the red stimulus and another to indicate it had switched to blue). Our full, unmodified experiment code has been made available and is permanently archived (https://doi.org/10.5281/zenodo.10367327), so the full procedure is well documented and can be replicated exactly.

      Brascamp, J. W., Klink, P. C., & Levelt, W. J. M. (2015). The 'laws' of binocular rivalry: 50 years of Levelt's propositions. Vision Research, 109, 20-37. https://doi.org/10.1016/j.visres.2015.02.019

      Papathomas, T. V., Kovács, I., & Conway, T. (2004). Interocular grouping in binocular rivalry: Basic attributes and combinations. In D. Alais & R. Blake (Eds.), Binocular Rivalry (pp. 155-168). MIT Press

      Patel, V., Stuit, S., & Blake, R. (2015). Individual differences in the temporal dynamics of binocular rivalry and stimulus rivalry. Psychonomic Bulletin and Review, 22(2), 476-482. https://doi.org/10.3758/s13423-014-0695-1

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Zheng and colleagues assessed the real-world efficacy of SARS-CoV-2 vaccination against re-infection following the large omicron wave in Shanghai in April 2022. The study was performed among previously vaccinated individuals. The study successfully documents a small but real added protective benefit of re-vaccination, though this diminishes in previously boosted individuals. Unsurprisingly, vaccine preventative efficacy was higher if the vaccine was given in the month before the 2nd large wave in Shanghai. The re-infection rate of 24% suggests that long-term anti-COVID immunity is very difficult to achieve. The conclusions are largely supported by the analyses. These results may be useful for planning the timing of subsequent vaccine rollouts.

      Strengths:

      The strengths of the study are a very large and unique cohort based on synchronously timed single infection among individuals with well-documented vaccine histories. Statistical analyses seem appropriate. As with any cohort study, there are potential confounders and the possibility of misclassification and the authors outline limitations nicely in the discussion.

      Weaknesses:

      (1) Partially and fully vaccinated are never defined and it is difficult to understand how this differs from single, and double, booster vaccines. The figures including all of these groups are a bit confusing for this reason.

      We agree with the reviewer that the distinction between these groups could have been made clearer. To address this comment, we modified the legend of the figure that presents hazard ratios based on these two categorisations (here, and throughout this document, changes in the text are underlined):

      “Figure 3. Effect of post-infection vaccination on SARS-CoV-2 reinfection stratified by pre-infection vaccination. Error bars (95% CIs) and circles represent aHR for SARS-CoV-2 reinfection estimated using Cox proportional hazards models. V-I-V, 1V-I-V, 2V-I-V, 3V-I-V corresponds to any pre-infection vaccination, 1, 2 and 3 vaccine doses before infection, then vaccination, respectively; they were compared to  V-I, 1V-I, 2V-I, 3V-I, respectively. Partial V-I-V, Full V-I-V and Booster V-I-V represent partial vaccination, full vaccination and booster vaccination before infection, followed by post-infection vaccination, respectively. The number of doses received by individuals with partial versus full (and full with booster) vaccination depends on the type of SARS-CoV-2 vaccine received; in Table S3 we present a cross-classification of participants in the analytic population by these vaccination-related categorical variables.”

      Further, to facilitate visualisation of Figure 3, and emphasize that estimates are presented based on two different ways of categorising vaccination history, we have now included a horizontal line between estimates based on each category.

      Table S3 has been included in the Supplementary Appendix:

      (2) Figure 3 is a bit challenging to interpret because it is a bit atypical to compare each group to a different baseline (ie 2V-I-V vs 2V-I). I would label the y-axis 2V-I-V vs 2V-I (change all of the labels) to make this easier to understand.

      We agree that having the y-axis tick labels describing both groups being compared, rather than only describing the post-infection vaccination group, will help readers to understand this figure. In our response to the previous comment, we presented an updated version of this figure, where this change was also incorporated (see above).

      (3) A 15% reduction in infection is quite low. It would be helpful to discuss if any quantitative or qualitative signals suggest at least a reduction in severe outcomes such as death, hospitalization, ER visits, or long COVID. I am not sure that a 15% reduction in cases supports extra vaccination without some other evidence of added benefit.

      Unfortunately, data on the clinical severity of diagnosed SARS-CoV-2 infections were not available. Some previous studies on COVID-19 vaccines observed that effectiveness against severe outcomes was similar or higher than that for outcomes that do not imply severe disease (e.g. infection). For example, in a study in Israel comparing four versus three vaccine doses, Magen and colleagues observed that the effectiveness of a fourth dose, relative to three doses, was 52% against infection, 61% against symptomatic COVID-19, and 76% against COVID-19 related death (Magen et al. Fourth Dose of BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting. NEJM 2022; see also, for example, Nasreen et al. Effectiveness of COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario. Nature Microbiology 2022, or Sacco et al. Effectiveness of BNT162b2 vaccine against SARS-CoV-2 infection and severe COVID-19 in children aged 5–11 years in Italy: a retrospective analysis of January–April, 2022. Lancet 2022). However, this pattern of increasing effectiveness with increasing outcome severity was not consistently reported in all studies or settings. We agree that public health officials who will use our results to guide future vaccination policy in China and abroad need to interpret the results in the context of these other outcomes that were not assessed and of those previous studies, that, although performed in different epidemiological settings, suggest that our analysis does not capture all benefits of post-infection vaccine doses.

      We have now included the following statements in the Discussion section:

      “Finally, data on the severity of infections during the second wave were not available, which prevented analyses of clinical outcomes other than infections (e.g. COVID-19-related hospitalization or death). Although some previous studies (Magen et al. Fourth Dose of BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting. NEJM 2022; Nasreen et al. Effectiveness of COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario. Nature Microbiology 2022) estimated similar or higher vaccine effectiveness against severe outcomes compared to outcomes that presumably include both milder and severe presentations, this pattern was not observed in all studies. Epidemiologists and public health officials who will use our results to define vaccination policy should thus take into account the fact that our analysis does not capture all benefits of post-infection vaccinations.”

      (4) Why exclude the 74962 unvaccinated from the analysis. it would be interesting to see if getting vaccinated post-infection provides benefits to this group

      The reasons why we focused on individuals who had been vaccinated before their first infection were two: (i) in most settings, including those with SARS-CoV-2 epidemiologic history similar to that of Shanghai, a high percentage of the population has received vaccine doses; (ii) in settings with high vaccination coverage, the group of individuals who remain unvaccinated despite widespread availability of vaccines likely differs from those who have been vaccinated – for example, with regard to behavioural factors and comorbidity profile. Having said that, we agree that reporting analyses for the group of individuals who had not been vaccinated before first infection might be informative. We have thus included in the Supplementary Appendix a short section that reports results for this group of patients; Table S4 also presents these estimates.

      “Effect of post-infection vaccination in individuals with no history of vaccination before infection

      In this supplementary section, we present findings for individuals who were unvaccinated before infection during the first Omicron variant wave in Shanghai. For this group of individuals, post-infection vaccination did not confer significant protection against reinfection (adjusted hazard ratio [aHR] 1.06, 95% CI 0.97, 1.16). The analysis indicates that the effect of post-infection vaccine doses was not significant in both female (aHR 0.97 [0.84, 1.11]) and male individuals (aHR 1.12 [0.99, 1.26]), as well as for participants aged 60 years or older (aHR 0.92 [0.82, 1.04]) and younger adults (20-60 years) (aHR 1.12 [0.92, 1.37]). These results suggest that, in the context of the two Omicron variant waves in Shanghai, a first vaccine dose administered after infection did not provide a clear benefit in terms of reducing risk of subsequent infections for those not previously vaccinated.”

      We refer to this new analysis in the Results section:

      “For individuals who had received at least one vaccine dose before infection during the first Omicron variant wave, post-infection vaccination was protective against reinfection (adjusted hazard ratio [aHR] 0.82, 95% CI 0.79, 0.85). As shown in Figure 3, this protective effect was observed in subgroups defined by the number of pre-infection vaccine doses: aHR of 0.84 (95% CI, 0.76, 0.93) and 0.87 (95% CI, 0.83, 0.90) for one and two pre-infection doses respectively; and for patients with three vaccine doses prior to infection, the association was not statistically significant (aHR: 0.96 [0.74, 1.23]). When analyses are stratified by partial and full vaccination status before the first infection, an additional vaccine dose was protective (aHR 0.76 [0.68, 0.84], and 0.93 [0.89, 0.97], respectively); and among individuals who had received booster vaccination before the spread of the first Omicron variant wave in Shanghai, the hazard ratio estimate was consistent with a more limited effect (aHR: 0.95 [0.75, 1.22]). For comparison, results for individuals who had not been vaccinated before their first infection are shown in the Supplementary Appendix (supplementary section “Effect of post-infection vaccination in individuals with no history of vaccination before infection” and Table S4)”

      (5) Pudong should be defined for those who do not live in China.

      We have now included a sentence defining Pudong in the Methods section:

      “This study included individuals diagnosed with their first SARS-CoV-2 infection between April 1 and May 31, 2022 in the Pudong District, which is a large and densely populated district of Shanghai spanning an area of 1,210 square kilometers with a permanent resident population of 5.57 million, served by more than 30 hospitals and 60 community health centers;… ”

      (6) The discussion about healthcare utilization bias is welcomed and well done. It would be great to speculate on whether this bias might favor the null or alternative hypothesis.

      We believe the reviewer is referring to the following statement:

      “Differences in healthcare-seeking behavior could also bias case ascertainment between post-infection vaccinated and unvaccinated individuals, although, as we restricted the study population to individuals who had received at least one pre-infection dose, this potential bias might be more limited than in other vaccine studies.”

      Bias linked to healthcare seeking behaviour could affect the association between vaccination and infection in two different ways: individuals who are more health conscious are more likely to get vaccinated and also to seek medical care when infected, and this would bias results toward null; however, if the same individuals are also more likely to avoid exposure to potentially infectious individuals, their behaviour could also bias results in the opposite direction – that is, it would appear to increase vaccine effectiveness. As mentioned in the Discussion section, we expected this bias to be limited. We have now modified the paragraph:

      “Differences in healthcare-seeking behavior could also bias case ascertainment between post-infection vaccinated and unvaccinated individuals. Although we restricted the study population to individuals who had received at least one pre-infection vaccination, which suggests a higher degree of homogeneity in healthcare-seeking behaviour compared to that in the total population, it is possible that this bias might have affected our estimates. For example: individuals who were more health conscious might have been more likely to receive post-infection vaccination and also more likely to seek medical care or testing when reinfected, and this would have biased results toward the null; it is, however, also conceivable that these individuals were more likely to avoid contact with potentially infectious persons, which could have biased results in the opposite direction.”

      Reviewer #2 (Public Review):

      Summary:

      This paper evaluates the effect of COVID-19 booster vaccination on reinfection in Shanghai, China among individuals who received primary COVID-19 vaccination followed by initial infection, during an Omicron wave.

      Strengths:

      A large database is collated from electronic vaccination and infection records. Nearly 200,000 individuals are included in the analysis and 24% became reinfected.

      Weaknesses:

      The article is difficult to follow in terms of the objectives and individuals included in various analyses. There appear to be important gaps in the analysis. The electronic data are limited in their ability to draw causal conclusions.

      More detailed comments:

      In multiple places (abstract, introduction), the authors frame the work in terms of understanding the benefit of booster vaccination among individuals with hybrid immunity (vaccination + infection). However, their analysis population does not completely align with this framing. As best as I can tell, only individuals who first received COVID-19 vaccination, and subsequently experienced infection, were included. Why the analysis does not also consider individuals who were infected and then vaccinated is not clear.

      The focus of our analysis is on the most frequent scenario in many countries: settings where a high proportion of the population has been vaccinated. As mentioned in our response to a comment from Reviewer #1, those individuals who remain unvaccinated after the first years of this pandemic are likely to be different, with respect to many factors, from individuals with history of SARS-CoV-2 vaccination. Further, differences between unvaccinated and vaccinated individuals are likely setting-specific, linked to local availability of and access to vaccination, cultural differences in healthcare seeking behaviour, and possible differences in the frequencies of medical conditions that might influence (promote or prevent) vaccine uptake. We prefer to keep the focus of this work on individuals who had been vaccinated before their first infection; however, we have now included in the Supplementary Appendix a section, presented in a response to Reviewer #1, that reports results for this group of individuals.

      In vaccine effectiveness analyses, why was time since initial infection not examined as a modifier of the booster effect? Time since the onset of the Omicron wave is only loosely tied to the immune status of the individual.

      We agree with the reviewer that assessing effect modification by the time since initial infection would be important. However, in Shanghai, most initial infections occurred during a narrow time window relative to the time window between the first and second Omicron variant waves. Indeed, as mentioned in the Results section, most first infections (243,906, 88.8%) occurred in April; for 306 (0.1%) individuals, information on the date of first infection was not available. Given this narrow time window and in order to limit the number of comparisons in our study, we preferred not to investigate this aspect of the hybrid immunity. In settings where multiple SARS-CoV-2 waves occurred, over a longer period of time, which would imply sufficient variation in this variable “time since initial infection”, we believe that it would be essential to account for this.

      The effect of booster vaccination on preventing symptomatic vs. asymptomatic reinfection does not appear to have been evaluated; this is a key gap in the analysis and it would seem the data would support it.

      Not having clinical presentation data is a limitation in our study. That is a weakness of many real-world vaccine effectiveness analyses based large medical and administrative datasets. We have now explicitly mentioned this in the Discussion section.

      “Finally, data on the severity of infections during the second wave were not available, which prevented analyses of clinical outcomes other than infections (e.g. COVID-19-related hospitalization or death). Although some previous studies (Magen et al. Fourth Dose of BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting. NEJM 2022; Nasreen et al. Effectiveness of COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario. Nature Microbiology 2022) estimated similar or higher vaccine effectiveness against severe outcomes compared to outcomes that presumably include both milder and severe presentations, this pattern was not observed in all studies. Epidemiologists and public health officials who will use our results to define vaccination policy should thus take into account the fact that our analysis does not capture all benefits of post-infection vaccinations.”

      In lines 105-108, the demographic description of the analysis population is incomplete. Is sex or gender identity being described? Are any individuals non-binary? What is the age distribution? (Only the proportions 20-39 and under 6 are stated.)

      We have now clarified in the manuscript that only information on sex at birth was provided by the Center for Disease Control and Prevention in Shanghai. We made the following change in the Methods section:

      “Information on infection history as well as data on demographic variables (sex at birth, and age) were provided by Center for Disease Control and Prevention in Shanghai, China”

      We have also modified the legend of Table 1:

      “Table 1. Characteristics of the study population and reinfection rate by post-infection vaccination status. Here, reinfection rate refers to the percentage of the relevant study subpopulation with evidence of reinfection between December 1, 2022 and January 3, 2023. Note that for the variables on region, occupation, and clinical severity, data are missing for large fractions of the study population. Note also that information was only available on sex at birth, but not on gender.”

      Regarding the reviewer’s comment on the age distribution, this information is presented for the following categories in Table 1: 0-6 years, 7-19 years, 20-39 years, 40-59 years, and 60+ years. However, we had not referred to Table 1 in the section 3.1 of the manuscript. We have now corrected that:

      “To assess the effect of an additional vaccine dose given after infection, the analytic sample consisted of 199,312 individuals (Figure 1). 85,804 were women (43.1%); 836 (0.4%) had gender information missing. 38.1% of the study participants were aged 20 to 39 years and only 0.9% were aged 0 to 6 years (see Table 1 for additional information).”

      Figure 1 consort diagram is confusing. In the last row, are the two boxes independent or overlapping sets of individuals? Are all included in secondary analyses?

      We agree that additional information should have been provided in the legend. The boxes represent overlapping sets of individuals – that is, some individuals were included in both secondary analyses in the box on the left and in the box on the right. These analyses involved different ways of categorizing individuals. Below is the updated figure legend:

      “Figure 1. Flow chart describing the selection of participants for the analysis. The number of individuals in this figure is not the same as some of the numbers in Table 1 because of missing data in key variables. Note that in the bottom part of the chart, related to secondary analyses, the boxes represent overlapping sets of study participants; in other words, some individuals included in the secondary analyses that correspond to the left box were also included in analyses corresponding to the box on the right.”

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      Minor comment: the terms "vaccination"/"vaccinated" are used both to refer to the primary vaccination (pre-initial infection) and to the booster vaccination (post-initial vaccination), and this causes confusion.

      Thank you. We have now revised the manuscript (Methods, Results and Discussion sections) to use the terms “post-infection vaccination” and “post-infection vaccinated” to reduce ambiguity. We also included the following statement in the Background section:

      “In December 2022, an important change in the COVID-19 policy in China, namely the end of most social distancing measures and of mass screening activities, was associated with a second surge in SARS-CoV-2 infections in Shanghai. The current circulation of the virus in the Shanghainese population and reports of vaccine fatigue mean that it is important to estimate the protective effect of vaccination against reinfection in this population. In this study, we aimed to quantify the effect of vaccine doses given after a first infection on the risk of subsequent infection. For that, we used data collected during the first Omicron variant wave, when hundreds of thousands of individuals tested real-time polymerase chain reaction (RT-PCR)-positive for SARS-CoV-2 infection8 in Shanghai, of which 275,896 individuals in Pudong. The fact that the population in Shanghai was mostly SARS-CoV-2 infection naïve before the spread of the Omicron variant provides a unique opportunity to estimate the real-world benefit of post-infection vaccine doses in a population that was first exposed to infection during a relatively short and well-defined time window. We further investigated whether the number of pre-infection vaccination doses modified the protective effect of the post-infection dose against Omicron BA.5 sublineage. To avoid ambiguity in the text, in the following sections, we often refer to vaccine doses given after the initial infection as “post-infection vaccination” or “post-infection vaccine doses”.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents valuable findings on the potential of short-movie viewing fMRI protocol to explore the functional and topographical organization of the visual system in awake infants and toddlers. Although the data are compelling given the difficulty of studying this population, the evidence presented is incomplete and would be strengthened by additional analyses to support the authors' claims. This study will be of interest to cognitive neuroscientists and developmental psychologists, especially those interested in using fMRI to investigate brain organisation in pediatric and clinical populations with limited fMRI tolerance.

      We are grateful for the thorough and thoughtful reviews. We have provided point-bypoint responses to the reviewers’ comments, but first, we summarize the major revisions here. We believe these revisions have substantially improved the clarity of the writing and impact of the results.

      Regarding the framing of the paper, we have made the following major changes in response to the reviews:

      (1) We have clarified that our goal in this paper was to show that movie data contains topographic, fine-grained details of the infant visual cortex. In the revision, we now state clearly that our results should not be taken as evidence that movies could replace retinotopy and have reworded parts of the manuscript that could mislead the reader in this regard.

      (2) We have added extensive details to the (admittedly) complex methods to make them more approachable. An example of this change is that we have reorganized the figure explaining the Shared Response Modelling methods to divide the analytic steps more clearly.

      (3) We have clarified the intermediate products contributing to the results by adding 6 supplementary figures that show the gradients for each IC or SRM movie and each infant participant.

      In response to the reviews, we have conducted several major analyses to support our findings further:

      (1) To verify that our analyses can identify fine-grained organization, we have manually traced and labeled adult data, and then performed the same analyses on them. The results from this additional dataset validate that these analyses can recover fine-grained organization of the visual cortex from movie data.

      (2) To further explore how visual maps derived from movies compare to alternative methods, we performed an anatomical alignment control analysis. We show that high-quality maps can be predicted from other participants using anatomical alignment.

      (3) To test the contribution of motion to the homotopy analyses, we regressed out the motion effects in these analyses. We found qualitatively similar results to our main analyses, suggesting motion did not play a substantial role.

      (4) To test the contribution of data quantity to the homotopy analyses, we correlated the amount of movie data collected from each participant with the homotopy results. We did not find a relationship between data quantity and the homotopy results. 

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Ellis et al. investigated the functional and topographical organization of the visual cortex in infants and toddlers, as evidenced by movie-viewing data. They build directly on prior research that revealed topographic maps in infants who completed a retinotopy task, claiming that even a limited amount of rich, naturalistic movie-viewing data is sufficient to reveal this organization, within and across participants. Generating this evidence required methodological innovations to acquire high-quality fMRI data from awake infants (which have been described by this group, and elsewhere) and analytical creativity. The authors provide evidence for structured functional responses in infant visual cortex at multiple levels of analyses; homotopic brain regions (defined based on a retinotopy task) responded more similarly to one another than to other brain regions in visual cortex during movie-viewing; ICA applied to movie-viewing data revealed components that were identifiable as spatial frequency, and to a lesser degree, meridian maps, and shared response modeling analyses suggested that visual cortex responses were similar across infants/toddlers, as well as across infants/toddlers and adults. These results are suggestive of fairly mature functional response profiles in the visual cortex in infants/toddlers and highlight the potential of movie-viewing data for studying finer-grained aspects of functional brain responses, but further evidence is necessary to support their claims and the study motivation needs refining, in light of prior research.

      Strengths:

      - This study links the authors' prior evidence for retinotopic organization of visual cortex in human infants (Ellis et al., 2021) and research by others using movie-viewing fMRI experiments with adults to reveal retinotopic organization (Knapen, 2021).

      - Awake infant fMRI data are rare, time-consuming, and expensive to collect; they are therefore of high value to the community. The raw and preprocessed fMRI and anatomical data analyzed will be made publicly available.

      We are grateful to the reviewer for their clear and thoughtful description of the strengths of the paper, as well as their helpful outlining of areas we could improve.

      Weaknesses:

      - The Methods are at times difficult to understand and in some cases seem inappropriate for the conclusions drawn. For example, I believe that the movie-defined ICA components were validated using independent data from the retinotopy task, but this was a point of confusion among reviewers. 

      We acknowledge the complexity of the methods and wish to clarify them as best as possible for the reviewers and the readers. We have extensively revised the methods and results sections to help avoid potential misunderstandings. For instance, we have revamped the figure and caption describing the SRM pipeline (Figure 5).

      To answer the stated confusion directly, the ICA components were derived from the movie data and validated on the (completely independent) retinotopy data. There were no additional tasks. The following text in the paper explains this point:

      “To assess the selected component maps, we correlated the gradients (described above) of the task-evoked and component maps. This test uses independent data: the components were defined based on movie data and validated against task-evoked retinotopic maps.” Pg. 11

      In either case: more analyses should be done to support the conclusion that the components identified from the movie reproduce retinotopic maps (for example, by comparing the performance of movie-viewing maps to available alternatives (anatomical ROIs, group-defined ROIs). 

      Before addressing this suggestion, we want to restate our conclusions: features of the retinotopic organization of infant visual cortex could be predicted from movie data. We did not conclude that movie data could ‘reproduce’ retinotopic maps in the sense that they would be a replacement. We recognize that this was not clear in our original manuscript and have clarified this point throughout, including in this section of the discussion:

      “To be clear, we are not suggesting that movies work well enough to replace a retinotopy task when accurate maps are needed. For instance, even though ICA found components that were highly correlated with the spatial frequency map, we also selected some components that turned out to have lower correlations. Without knowing the ground truth from a retinotopy task, there would be no way to weed these out. Additionally, anatomical alignment (i.e., averaging the maps from other participants and anatomically aligning them to a held-out participant) resulted in maps that were highly similar to the ground truth. Indeed, we previously23 found that adult-defined visual areas were moderately similar to infants. While functional alignment with adults can outperform anatomical alignment methods in similar analyses27, here we find that functional alignment is inferior to anatomical alignment. Thus, if the goal is to define visual areas in an infant that lacks task-based retinotopy, anatomical alignment of other participants’ retinotopic maps is superior to using movie-based analyses, at least as we tested it.” Pg. 21

      As per the reviewer’s suggestion and alluded to in the paragraph above, we have created anatomically aligned visual maps, providing an analogous test to the betweenparticipant analyses like SRM. We find that these maps are highly similar to the ground truth. We describe this result in a new section of the results:

      “We performed an anatomical alignment analog of the functional alignment (SRM) approach. This analysis serves as a benchmark for predicting visual maps using taskbased data, rather than movie data, from other participants. For each infant participant, we aggregated all other infant or adult participants as a reference. The retinotopic maps from these reference participants were anatomically aligned to the standard surface template, and then averaged. These averages served as predictions of the maps in the test participant, akin to SRM, and were analyzed equivalently (i.e., correlating the gradients in the predicted map with the gradients in the task-based map). These correlations (Table S4) are significantly higher than for functional alignment (using infants to predict spatial frequency, anatomical alignment > functional alignment: ∆Fisher Z M=0.44, CI=[0.32–0.58], p<.001; using infants to predict meridians, anatomical alignment > functional alignment: ∆Fisher Z M=0.61, CI=[0.47–0.74], p<.001; using adults to predict spatial frequency, anatomical alignment > functional alignment: ∆Fisher Z

      M=0.31, CI=[0.21–0.42], p<.001; using adults to predict meridians, anatomical alignment > functional alignment: ∆Fisher Z M=0.49, CI=[0.39–0.60], p<.001). This suggests that even if SRM shows that movies can be used to produce retinotopic maps that are significantly similar to a participant, these maps are not as good as those that can be produced by anatomical alignment of the maps from other participants without any movie data.” Pg. 16–17

      Also, the ROIs used for the homotopy analyses were defined based on the retinotopic task rather than based on movie-viewing data alone - leaving it unclear whether movie-viewing data alone can be used to recover functionally distinct regions within the visual cortex.

      We agree with the reviewer that our approach does not test whether movie-viewing data alone can be used to recover functionally distinct regions. The goal of the homotopy analyses was to identify whether there was functional differentiation of visual areas in the infant brain while they watch movies. This was a novel question that provides positive evidence that these regions are functionally distinct. In subsequent analyses, we show that when these areas are defined anatomically, rather than functionally, they also show differentiated function (e.g., Figure 2). Nonetheless, our intention was not to use the homotopy analyses to define the regions. We have added text to clarify the goal and novelty of this analysis.

      “Although these analyses cannot define visual maps, they test whether visual areas have different functional signatures.” Pg. 6

      Additionally, even if the goal were to define areas based on homotopy, we believe the power of that analysis would be questionable. We would need to use a large amount of the movie data to define the areas, leaving a low-powered dataset to test whether their function is differentiated by these movie-based areas.

      - The authors previously reported on retinotopic organization of the visual cortex in human infants (Ellis et al., 2021) and suggest that the feasibility of using movie-viewing experiments to recover these topographic maps is still in question. They point out that movies may not fully sample the stimulus parameters necessary for revealing topographic maps/areas in the visual cortex, or the time-resolution constraints of fMRI might limit the use of movie stimuli, or the rich, uncontrolled nature of movies might make them inferior to stimuli that are designed for retinotopic mapping, or might lead to variable attention between participants that makes measuring the structure of visual responses across individuals challenging. This motivation doesn't sufficiently highlight the importance or value of testing this question in infants. Further, it's unclear if/how this motivation takes into account prior research using movie-viewing fMRI experiments to reveal retinotopic organization in adults (e.g., Knapen, 2021). Given the evidence for retinotopic organization in infants and evidence for the use of movie-viewing experiments in adults, an alternative framing of the novel contribution of this study is that it tests whether retinotopic organization is measurable using a limited amount of movie-viewing data (i.e., a methodological stress test). The study motivation and discussion could be strengthened by more attention to relevant work with adults and/or more explanation of the importance of testing this question in infants (is the reason to test this question in infants purely methodological - i.e., as a way to negate the need for retinotopic tasks in subsequent research, given the time constraints of scanning human infants?).

      We are grateful to the reviewer for giving us the opportunity to clarify the innovations of this research. We believe that this research contributes to our understanding of how infants process dynamic stimuli, demonstrates the viability and utility of movie experiments in infants, and highlights the potential for new movie-based analyses (e.g., SRM). We have now consolidated these motivations in the introduction to more clearly motivate this work:

      “The primary goal of the current study is to investigate whether movie-watching data recapitulates the organization of visual cortex. Movies drive strong and naturalistic responses in sensory regions while minimizing task demands12, 13, 24 and thus are a proxy for typical experience. In adults, movies and resting-state data have been used to characterize the visual cortex in a data-driven fashion25–27. Movies have been useful in awake infant fMRI for studying event segmentation28, functional alignment29, and brain networks30. However, this past work did not address the granularity and specificity of cortical organization that movies evoke. For example, movies evoke similar activity in infants in anatomically aligned visual areas28, but it remains unclear whether responses to movie content differ between visual areas (e.g., is there more similarity of function within visual areas than between31). Moreover, it is unknown whether structure within visual areas, namely visual maps, contributes substantially to visual evoked activity. Additionally, we wish to test whether methods for functional alignment can be used with infants. Functional alignment finds a mapping between participants using functional activity – rather than anatomy – and in adults can improve signal-to-noise, enhance across participant prediction, and enable unique analyses27, 32–34.” Pg. 3-4

      Furthermore, the introduction culminates in the following statement on what the analyses will tell us about the nature of movie-driven activity in infants:

      “These three analyses assess key indicators of the mature visual system: functional specialization between areas, organization within areas, and consistency between individuals.” Pg. 5

      Furthermore, in the discussion we revisit these motivations and elaborate on them further:

      [Regarding homotopy:] “This suggests that visual areas are functionally differentiated in infancy and that this function is shared across hemispheres31.” Pg. 19

      [Regarding ICA:] “This means that the retinotopic organization of the infant brain accounts for a detectable amount of variance in visual activity, otherwise components resembling these maps would not be discoverable.” Pg. 19–20

      [Regarding SRM:] “This is initial evidence that functional alignment may be useful for enhancing signal quality, like it has in adults27,32,33, or revealing changing function over development45.” Pg. 21

      Additionally, we have expanded our discussion of relevant work that uses similar methods such as the excellent research from Knapen (2021) and others:

      “In adults, movies and resting-state data have been used to characterize the visual cortex in a data-driven fashion25-27.” Pg. 4

      “We next explored whether movies can reveal fine-grained organization within visual areas by using independent components analysis (ICA) to propose visual maps in individual infant brains25,26,35,42,43.” Pg. 9

      Reviewer #2 (Public Review):

      Summary:

      This manuscript shows evidence from a dataset with awake movie-watching in infants, that the infant brain contains areas with distinct functions, consistent with previous studies using resting state and awake task-based infant fMRI. However, substantial new analyses would be required to support the novel claim that movie-watching data in infants can be used to identify retinotopic areas or to capture within-area functional organization.

      Strengths:

      The authors have collected a unique dataset: the same individual infants both watched naturalistic animations and a specific retinotopy task. These data position the authors to test their novel claim, that movie-watching data in infants can be used to identify retinotopic areas.

      Weaknesses:

      To claim that movie-watching data can identify retinotopic regions, the authors should provide evidence for two claims:

      - Retinotopic areas defined based only on movie-watching data, predict retinotopic responses in independent retinotopy-task-driven data.

      - Defining retinotopic areas based on the infant's own movie-watching response is more accurate than alternative approaches that don't require any movie-watching data, like anatomical parcellations or shared response activation from independent groups of participants.

      We thank the reviewer for their comments. Before addressing their suggestions, we wish to clarify that we do not claim that movie data can be used to identify retinotopic areas, but instead that movie data captures components of the within and between visual area organization as defined by retinotopic mapping. We recognize that this was not clear in our original manuscript and have clarified this point throughout, including in this section of the discussion:

      “To be clear, we are not suggesting that movies work well enough to replace a retinotopy task when accurate maps are needed. For instance, even though ICA found components that were highly correlated with the spatial frequency map, we also selected some components that turned out to have lower correlations. Without knowing the ground truth from a retinotopy task, there would be no way to weed these out. Additionally, anatomical alignment (i.e., averaging the maps from other participants and anatomically aligning them to a held-out participant) resulted in maps that were highly similar to the ground truth. Indeed, we previously23 found that adult-defined visual areas were moderately similar to infants. While functional alignment with adults can outperform anatomical alignment methods in similar analyses27, here we find that functional alignment with infants is inferior to anatomical alignment. Thus, if the goal is to define visual areas in an infant that lacks task-based retinotopy, anatomical alignment of other participants’ retinotopic maps is superior to using movie-based analyses, at least as we tested it.” Pg. 21

      In response to the reviewer’s suggestion, we compare the maps identified by SRM to the averaged, anatomically aligned maps from infants. We find that these maps are highly similar to the task-based ground truth and we describe this result in a new section:

      “We performed an anatomical alignment analog of the functional alignment (SRM) approach. This analysis serves as a benchmark for predicting visual maps using taskbased data, rather than movie data, from other participants. For each infant participant, we aggregated all other infant or adult participants as a reference. The retinotopic maps from these reference participants were anatomically aligned to the standard surface template, and then averaged. These averages served as predictions of the maps in the test participant, akin to SRM, and were analyzed equivalently (i.e., correlating the gradients in the predicted map with the gradients in the task-based map). These correlations (Table S4) are significantly higher than for functional alignment (using infants to predict spatial frequency, anatomical alignment < functional alignment: ∆Fisher Z M=0.44, CI=[0.32–0.58], p<.001; using infants to predict meridians, anatomical alignment < functional alignment: ∆Fisher Z M=0.61, CI=[0.47–0.74], p<.001; using adults to predict spatial frequency, anatomical alignment < functional alignment: ∆Fisher Z

      M=0.31, CI=[0.21–0.42], p<.001; using adults to predict meridians, anatomical alignment < functional alignment: ∆Fisher Z M=0.49, CI=[0.39–0.60], p<.001). This suggests that even if SRM shows that movies can be used to produce retinotopic maps that are significantly similar to a participant, these maps are not as good as those that can be produced by anatomical alignment of the maps from other participants without any movie data.” Pg. 16–17

      Note that we do not compare the anatomically aligned maps with the ICA maps statistically. This is because these analyses are not comparable: ICA is run within-participant whereas anatomical alignment is necessarily between-participant — either infant or adults. Nonetheless, an interested reader can refer to the Table where we report the results of anatomical alignment and see that anatomical alignment outperforms ICA in terms of the correlation between the predicted and task-based maps.

      Both of these analyses are possible, using the (valuable!) data that these authors have collected, but these are not the analyses that the authors have done so far. Instead, the authors report the inverse of (1): regions identified by the retinotopy task can be used to predict responses in the movies. The authors report one part of (2), shared responses from other participants can be used to predict individual infants' responses in the movies, but they do not test whether movie data from the same individual infant can be used to make better predictions of the retinotopy task data, than the shared response maps.

      So to be clear, to support the claims of this paper, I recommend that the authors use the retinotopic task responses in each individual infant as the independent "Test" data, and compare the accuracy in predicting those responses, based on:

      -  The same infant's movie-watching data, analysed with MELODIC, when blind experimenters select components for the SF and meridian boundaries with no access to the ground-truth retinotopy data.

      -  Anatomical parcellations in the same infant.

      -  Shared response maps from groups of other infants or adults.

      -  (If possible, ICA of resting state data, in the same infant, or from independent groups of infants).

      Or, possibly, combinations of these techniques.

      If the infant's own movie-watching data leads to improved predictions of the infant's retinotopic task-driven response, relative to these existing alternatives that don't require movie-watching data from the same infant, then the authors' main claim will be supported.

      These are excellent suggestions for additional analyses to test the suitability for moviebased maps to replace task-based maps. We hope it is now clear that it was never our intention to claim that movie-based data could replace task-based methods. We want to emphasize that the discoveries made in this paper — that movies evoke fine-grained organization in infant visual cortex — do not rely on movie-based maps being better than alternative methods for producing maps, such as the newly added anatomical alignment.

      The proposed analysis above solves a critical problem with the analyses presented in the current manuscript: the data used to generate maps is identical to the data used to validate those maps. For the task-evoked maps, the same data are used to draw the lines along gradients and then test for gradient organization. For the component maps, the maps are manually selected to show the clearest gradients among many noisy options, and then the same data are tested for gradient organization. This is a double-dipping error. To fix this problem, the data must be split into independent train and test subsets.

      We appreciate the reviewer’s concern; however, we believe it is a result of a miscommunication in our analytic strategy. We have now provided more details on the analyses to clarify how double-dipping was avoided. 

      To summarize, a retinotopy task produced visual maps that were used to trace both area boundaries and gradients across the areas. These data were then fixed and unchanged, and we make no claims about the nature of these maps in this paper, other than to treat them as the ground truth to be used as a benchmark in our analyses. The movie data, which are collected independently from the same infant in the session, used the boundaries from the retinotopy task (in the case of homotopy) or were compared with the maps from the retinotopy task (in the case of ICA and SRM). In other words, the statement that “the data used to generate maps is identical to the data used to validate those maps” is incorrect because we generated the maps with a retinotopy task and validated the maps with the movie data. This means no double dipping occurred.

      Perhaps a cause of the reviewer’s interpretation is that the gradients used in the analysis are not clearly described. We now provide this additional description:  “Using the same manually traced lines from the retinotopy task, we measured the intensity gradients in each component from the movie-watching data. We can then use the gradients of intensity in the retinotopy task-defined maps as a benchmark for comparison with the ICA-derived maps.” Pg. 10

      Regarding the SRM analyses, we take great pains to avoid the possibility of data contamination. To emphasize how independent the SRM analysis is, the prediction of the retinotopic map from the test participant does not use their retinotopy data at all; in fact, the predicted maps could be made before that participant’s retinotopy data were ever collected. To make this prediction for a test participant, we need to learn the inversion of the SRM, but this only uses the movie data of the test participant. Hence, there is no double-dipping in the SRM analyses. We have elaborated on this point in the revision, and we remade the figure and its caption to clarify this point:

      We also have updated the description of these results to emphasize how double-dipping was avoided:

      “We then mapped the held-out participant's movie data into the learned shared space without changing the shared space (Figure 5c). In other words, the shared response model was learned and frozen before the held-out participant’s data was considered.

      This approach has been used and validated in prior SRM studies45.” Pg. 14

      The reviewer suggests that manually choosing components from ICA is double-dipping. Although the reviewer is correct that the manual selection of components in ICA means that the components chosen ought to be good candidates, we are testing whether those choices were good by evaluating those components against the task-based maps that were not used for the ICA. Our statistical analyses evaluate whether the components chosen were better than the components that would have been chosen by random chance. Critically: all decisions about selecting the components happen before the components are compared to the retinotopic maps. Hence there is no double-dipping in the selection of components, as the choice of candidate ICA maps is not informed by the ground-truth retinotopic maps. We now clarify what the goal of this process is in the results:

      “Success in this process requires that 1) retinotopic organization accounts for sufficient variance in visual activity to be identified by ICA and 2) experimenters can accurately identify these components.” Pg. 10

      The reviewer also alludes to a concern that the researcher selecting the maps was not blind to the ground-truth retinotopic maps from participants and this could have influenced the results. In such a scenario, the researcher could have selected components that have the gradients of activity in the places that the infant has as ground truth. The researcher who made the selection of components (CTE) is one of the researchers who originally traced the areas in the participants approximately a year prior to the identification of ICs. The researcher selecting the components didn’t use the ground-truth retinotopic maps as reference, nor did they pay attention to the participant IDs when sorting the IC components. Indeed, they weren’t trying to find participants-specific maps per se, but rather aimed to find good candidate retinotopic maps in general. In the case of the newly added adult analyses, the ICs were selected before the retinotopic mapping was reviewed or traced; hence, no knowledge about the participant-specific ground truth could have influenced the selection of ICs. Even with this process from adults, we find results of comparable strength as we found in infants, as shown in Figure S3. Nonetheless, there is a possibility that this researcher’s previous experience of tracing the infant maps could have influenced their choice of components at the participant-specific level. If so, it was a small effect since the components the researcher selected were far from the best possible options (i.e., rankings of the selected components averaged in the 64th percentile for spatial frequency maps and the 68th percentile for meridian maps). We believe all reasonable steps were taken to mitigate bias in the selection of ICs.

      Reviewer #3 (Public Review):

      The manuscript reports data collected in awake toddlers recording BOLD while watching videos. The authors analyse the BOLD time series using two different statistical approaches, both very complex but do not require any a priori determination of the movie features or contents to be associated with regressors. The two main messages are that 1) toddlers have occipital visual areas very similar to adults, given that an SRM model derived from adult BOLD is consistent with the infant brains as well; 2) the retinotopic organization and the spatial frequency selectivity of the occipital maps derived by applying correlation analysis are consistent with the maps obtained by standard and conventional mapping.

      Clearly, the data are important, and the author has achieved important and original results. However, the manuscript is totally unclear and very difficult to follow; the figures are not informative; the reader needs to trust the authors because no data to verify the output of the statistical analysis are presented (localization maps with proper statistics) nor so any validation of the statistical analysis provided. Indeed what I think that manuscript means, or better what I understood, may be very far from what the authors want to present, given how obscure the methods and the result presentation are.

      In the present form, this reviewer considers that the manuscript needs to be totally rewritten, the results presented each technique with appropriate validation or comparison that the reader can evaluate.

      We are grateful to the reviewer for the chance to improve the paper. We have broken their review into three parts: clarification of the methods, validation of the analyses, and enhancing the visualization.

      Clarification of the methods

      We acknowledge that the methods we employed are complex and uncommon in many fields of neuroimaging. That said, numerous papers have conducted these analyses on adults (Beckman et al., 2005; Butt et al., 2015; Guntupalli et al., 2016; Haak & Beckman, 2018; Knapen, 2021; Lu et al., 2017) and non-human primates (Arcaro & Livingstone, 2017; Moeller et al., 2009). We have redoubled our efforts in the revision to make the methods as clear as possible, expanding on the original text and providing intuitions where possible. These changes have been added throughout and are too vast in number to repeat here, especially without context, but we hope that readers will have an easier time following the analyses now. 

      Additionally, we updated Figures 3 and 5 in which the main ICA and SRM analyses are described. For instance, in Figure 3’s caption we now add details about how the gradient analyses were performed on the components: 

      “We used the same lines that were manually traced on the task-evoked map to assess the change in the component’s response. We found a monotonic trend within area from medial to lateral, just like we see in the ground truth.” Pg. 11

      Regarding Figure 5, we reconsidered the best way to explain the SRM analyses and decided it would be helpful to partition the diagram into steps, reflecting the analytic process. These updates have been added to Figure 5, and the caption has been updated accordingly.

      We hope that these changes have improved the clarity of the methods. For readers interested in learning more, we encourage them to either read the methods-focused papers that debut the analyses (e.g., Chen et al., 2015), read the papers applying the methods (e.g., Guntupalli et al., 2016), or read the annotated code we publicly release which implements these pipelines and can be used to replicate the findings.

      Validation of the analyses

      One of the requests the reviewer makes is to validate our analyses. Our initial approach was to lean on papers that have used these methods in adults or primates (e.g., Arcaro,

      & Livingstone, 2017; Beckman et al., 2005; Butt et al., 2015; Guntupalli et al., 2016; Haak & Beckman, 2018; Knapen, 2021; Moeller et al., 2009) where the underlying organization and neurophysiology is established. However, we have made changes to these methods that differ from their original usage (e.g., we used SRM rather than hyperalignment, we use meridian mapping rather than traveling wave retinotopy, we use movie-watching data rather than rest). Hence, the specifics of our design and pipeline warrant validation. 

      To add further validation, we have rerun the main analyses on an adult sample. We collected 8 adult participants who completed the same retinotopy task and a large subset of the movies that infants saw. These participants were run under maximally similar conditions to infants (i.e., scanned using the same parameters and without the top of the head-coil) and were preprocessed using the same pipeline. Given that the relationship between adult visual maps and movie-driven (or resting-state) analyses has been shown in many studies (Beckman et al., 2005; Butt et al., 2015; Guntupalli et al., 2016; Haak & Beckman, 2018; Knapen, 2021; Lu et al., 2017), these adult data serve as a validation of our analysis pipeline. These adult participants were included in the original manuscript; however, they were previously only used to support the SRM analyses (i.e., can adults be used to predict infant visual maps). The adult results are described before any results with infants, as a way to engender confidence. Moreover, we have provided new supplementary figures of the adult results that we hope will be integrated with the article when viewing it online, such that it will be easy to compare infant and adult results, as per the reviewer’s request. 

      As per the figures and captions below, the analyses were all successful with the adult participants: 1) Homotopic correlations are higher than correlations between comparable areas in other streams or areas that are more distant within stream. 2) A multidimensional scaling depiction of the data shows that areas in the dorsal and ventral stream are dissimilar. 3) Using independent components analysis on the movie data, we identified components that are highly correlated with the retinotopy task-based spatial frequency and meridian maps. 4) Using shared response modeling on the movie data, we predicted maps that are highly correlated with the retinotopy task-based spatial frequency and meridian maps.

      These supplementary analyses are underpowered for between-group comparisons, so we do not statistically compare the results between infants and adults. Nonetheless, the pattern of adult results is comparable overall to the infant results. 

      We believe these adult results provide a useful validation that the infant analyses we performed can recover fine-grained organization.

      The reviewer raises an additional concern about the lack of visualization of the results. We recognize that the plots of the summary statistics do not provide information about the intermediate analyses. Indeed, we think the summary statistics can understate the degree of similarity between the components or predicted visual maps and the ground truth. Hence, we have added 6 new supplementary figures showing the intensity gradients for the following analyses: 1. spatial frequency prediction using ICA, 2. meridian prediction using ICA, 3. spatial frequency prediction using infant SRM, 4.

      meridian prediction using infant SRM, 5. spatial frequency prediction using adult SRM, and 6. meridian prediction using adult SRM.

      We hope that these visualizations are helpful. It is possible that the reviewer wishes us to also visually present the raw maps from the ICA and SRM, akin to what we show in Figure 3A and 3B. We believe this is out of scope of this paper: of the 1140 components that were identified by ICA, we selected 36 for spatial frequency and 17 for meridian maps. We also created 20 predicted maps for spatial frequency and 20 predicted meridian maps using SRM. This would result in the depiction of 93 subfigures, requiring at least 15 new full-page supplementary figures to display with adequate resolution. Instead, we encourage the reader to access this content themselves: we have made the code to recreate the analyses publicly available, as well as both the raw and preprocessed data for these analyses, including the data for each of these selected maps.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) As mentioned in the public review, the authors should consider incorporating relevant adult fMRI research into the Introduction and explain the importance of testing this question in infants.

      Our public response describes the several citations to relevant adult research we have added, and have provided further motivation for the project.

      (2) The authors should conduct additional analyses to support their conclusion that movie data alone can generate accurate retinotopic maps (i.e., by comparing this approach to other available alternatives).

      We have clarified in our public response that we did not wish to conclude that movie data alone can generate accurate retinotopic maps, and have made substantial edits to the text to emphasize this. Thus, because this claim is already not supported by our analyses, we do not think it is necessary to test it further.

      (3) The authors should re-do the homotopy analyses using movie-defined ROIs (i.e., by splitting the movie-viewing data into independent folds for functional ROI definition and analyses).

      As stated above, defining ROIs based on the movie content is not the intended goal of this project. Even if that were the general goal, we do not believe that it would be appropriate to run this specific analysis with the data we collected. Firstly, halving the data for ROI definition (e.g., using half the movie data to identify and trace areas, and then use those areas in the homotopy analysis to run on the other half of data) would qualitatively change the power of the analyses described here. Secondly, we would be unable to define areas beyond hV4/V3AB with confidence, since our retinotopic mapping only affords specification of early visual cortex. Thus we could not conduct the MDS analyses shown in Figure 2.

      (4) If the authors agree that a primary contribution of this study and paper is to showcase what is possible to do with a limited amount of movie-viewing data, then they should make it clearer, sooner, how much usable movie data they have from infants. They could also consider conducting additional analyses to determine the minimum amount of fMRI data necessary to reveal the same detailed characteristics of functional responses in the visual cortex.

      We agree it would be good to highlight the amount of movie data used. When the infant data is first introduced in the results section, we now state the durations:

      “All available movies from each session were included (Table S2), with an average duration of 540.7s (range: 186--1116s).” Pg. 5

      Additionally, we have added a homotopy analysis that describes the contribution of data quantity to the results observed. We compare the amount of data collected with the magnitude of same vs. different stream effect (Figure 1B) and within stream distance effect (Figure 1C). We find no effect of movie duration in the sample we tested, as reported below:

      “We found no evidence that the variability in movie duration per participant correlated with this difference [of same stream vs. different stream] (r=0.08, p=.700).” Pg. 6-7

      “There was no correlation between movie duration and the effect (Same > Adjacent: r=-

      0.01, p=.965, Adjacent > Distal: r=-0.09, p=.740).” Pg. 7

      (5) If any of the methodological approaches are novel, the authors should make this clear. In particular, has the approach of visually inspecting and categorizing components generated from ICA and movie data been done before, in adults/other contexts?

      The methods we employed are similar to others, as described in the public review.

      However, changes were necessary to apply them to infant samples. For instance, Guntupalli et al. (2016) used hyperalignment to predict the visual maps of adult participants, whereas we use SRM. SRM and hyperalignment have the same goal — find a maximally aligned representation between participants based on brain function — but their implementation is different. The application of functional alignment to infants is novel, as is their use in movie data that is relatively short by comparison to standard adult data. Indeed, this is the most thorough demonstration that SRM — or any functional alignment procedure — can be usefully applied to infant data, awake or sleeping. We have clarified this point in the discussion.

      “This is initial evidence that functional alignment may be useful for enhancing signal quality, like it has in adults27,32,33, or revealing changing function over development45, which may prove especially useful for infant fMRI52.” Pg. 21

      (6) The authors found that meridian maps were less identifiable from ICA and movie data and suggest that this may be because these maps are more susceptible to noise or gaze variability. If this is the case, you might predict that these maps are more identifiable in adult data. The authors could consider running additional analyses with their adult participants to better understand this result.

      As described in the manuscript, we hypothesize that meridian maps are more difficult to identify than spatial frequency maps because meridian maps are a less smooth, more fine-grained map than spatial frequency. Indeed, it has previously been reported (Moeller et al., 2009) that similar procedures can result in meridian maps that are constituted by multiple independent components (e.g., a component sensitive to horizontal orientations, and a separate component sensitive to vertical components). Nonetheless, we have now conducted the ICA procedure on adult participants and again find it is easier to identify spatial frequency components compared to meridian maps, as reported in the public review.

      Minor corrections:

      (1) Typo: Figure 3 title: "Example retintopic task vs. ICA-based spatial frequency maps.".

      Fixed

      (2) Given the age range of the participants, consider using "infants and toddlers"? (Not to diminish the results at all; on the contrary, I think it is perhaps even more impressive to obtain awake fMRI data from ~1-2-year-olds). Example: Figure 3 legend: "A) Spatial frequency map of a 17.1-monthold infant.".

      We agree with the reviewer that there is disagreement about the age range at which a child starts being considered a toddler. We have changed the terms in places where we refer to a toddler in particular (e.g., the figure caption the reviewer highlights) and added the phrase “infants and toddlers” in places where appropriate. Nonetheless, we have kept “infants” in some places, particularly those where we are comparing the sample to adults. Adding “and toddlers” could imply three samples being compared which would confuse the reader.

      (3) Figure 6 legend: The following text should be omitted as there is no bar plot in this figure: "The bar plot is the average across participants. The error bar is the standard error across participants.".

      Fixed

      (4) Table S1 legend: Missing first single quote: Runs'.

      Fixed

      Reviewer #2 (Recommendations For The Authors):

      I request that this paper cite more of the existing literature on the fMRI of human infants and toddlers using task-driven and resting-state data. For example, early studies by (first authors) Biagi, Dehaene-Lambertz, Cusack, and Fransson, and more recent studies by Chen, Cabral, Truzzi, Deen, and Kosakowski.

      We have added several new citations of recent task-based and resting state studies to the second sentence of the main text:

      “Despite the recent growth in infant fMRI1-6, one of the most important obstacles facing this research is that infants are unable to maintain focus for long periods of time and struggle to complete traditional cognitive tasks7.”

      Reviewer #3 (Recommendations For The Authors):

      In the following, I report some of my main perplexities, but many more may arise when the material is presented more clearly.

      The age of the children varies from 5 months to about 2 years. While the developmental literature suggests that between 1 and 2 years children have a visual system nearly adult-like, below that age some areas may be very immature. I would split the sample and perhaps attempt to validate the adult SRM model with the youngest children (and those can be called infants).

      We recognize the substantial age variability in our sample, which is why we report participant-specific data in our figures. While splitting up the data into age bins might reveal age effects, we do not think we can perform adequately powered null hypothesis testing of the age trend. In order to investigate the contribution of age, larger samples will be needed. That said, we can see from the data that we have reported that any effect of age is likely small. To elaborate: Figures 4 and 6 report the participant-specific data points and order the participants by age. There are no clear linear trends in these plots, thus there are no strong age effects.

      More broadly, we do not think there is a principled way to divide the participants by age. The reviewer suggests that the visual system is immature before the first year of life and mature afterward; however, such claims are the exact motivation for the type of work we are doing here, and the verdict is still out. Indeed, the conclusion of our earlier work reporting retinotopy in infants (Ellis et al., 2021) suggests that the organization of the early visual cortex in infants as young as 5 months — the youngest infant in our sample — is surprisingly adult-like.

      The title cannot refer to infants given the age span.

      There is disagreement in the field about the age at which it is appropriate to refer to children as infants. In this paper, and in our prior work, we followed the practice of the most attended infant cognition conference and society, the International Congress of Infant Studies (ICIS), which considers infants as those aged between 0-3 years old, for the purposes of their conference. Indeed, we have never received this concern across dozens of prior reviews for previous papers covering a similar age range. That said, we understand the spirit of the reviewer’s comment and now refer to the sample as “infants and toddlers” and to older individuals in our sample as “toddlers” wherever it is appropriate (the younger individuals would fairly be considered “infants” under any definition).

      Figure 1 is clear and an interesting approach. Please also show the average correlation maps on the cortical surface.

      While we would like to create a figure as requested, we are unsure how to depict an area-by-area correlation map on the cortical surface. One option would be to generate a seed-based map in which we take an area and depict the correlation of that seed (e.g., vV1) with all other voxels. This approach would result in 8 maps for just the task-defined areas, and 17 maps for anatomically-defined areas. Hence, we believe this is out of scope of this paper, but an interested reader could easily generate these maps from the data we have released.

      Figure 2 results are not easily interpretable. Ventral and dorsal V1-V3 areas represent upper or lower VF respectively. Higher dorsal and ventral areas represent both upper and lower VF, so we should predict an equal distance between the two streams. Again, how can we verify that it is not a result of some artifacts?

      In adults, visual areas differ in their functional response properties along multiple dimensions, including spatial coding. The dorsal/ventral stream hypothesis is derived from the idea that areas in each stream support different functions, independent of spatial coding. The MDS analysis did not attempt to isolate the specific contribution of spatial representations of each area but instead tested the similarity of function that is evoked in naturalistic viewing. Other covariance-based analyses specifically isolate the contribution of spatial representations (Haak et al., 2013); however, they use a much more constrained analysis than what was implemented here. The fact that we find broad differentiation of dorsal and ventral visual areas in infants is consistent with adults (Haak & Beckman, 2018) and neonate non-human primates (Arcaro & Livingstone, 2017). 

      Nonetheless, we recognize that we did not mention the differences in visual field properties across areas and what that means. If visual field properties alone drove the functional response then we would expect to see a clustering of areas based on the visual field they represent (e.g., hV4 and V3AB should have similar representations). Since we did not see that, and instead saw organization by visual stream, the result is interesting and thus warrants reporting. We now mention this difference in visual fields in the manuscript to highlight the surprising nature of the result.

      “This separation between streams is striking when considering that it happens despite differences in visual field representations across areas: while dorsal V1 and ventral V1 represent the lower and upper visual field, respectively, V3A/B and hV4 both have full visual field maps. These visual field representations can be detected in adults41; however, they are often not the primary driver of function39. We see that in infants too: hV4 and V3A/B represent the same visual space yet have distinct functional profiles.” Pg. 8

      The reviewer raises a concern that the MDS result may be spurious and caused by noise. Below, we present three reasons why we believe these results are not accounted for by artifacts but instead reflect real functional differentiation in the visual cortex. 

      (1) Figure 2 is a visualization of the similarity matrix presented in Figure S1. In Figure S1, we report the significance testing we performed to confirm that the patterns differentiating dorsal and ventral streams — as well as adjacent areas from distal areas — are statistically reliable across participants. If an artifact accounted for the result then it would have to be a kind of systematic noise that is consistent across participants.

      (2) One of the main sources of noise (both systematic and non-systematic) with infant fMRI is motion. Homotopy is a within-participant analysis that could be biased by motion. To assess whether motion accounts for the results, we took a conservative approach of regressing out the framewise motion (i.e., how much movement there is between fMRI volumes) from the comparisons of the functional activity in regions. Although the correlations numerically decreased with this procedure, they were qualitatively similar to the analysis that does not regress out motion:

      “Additionally, if we control for motion in the correlation between areas --- in case motion transients drive consistent activity across areas --- then the effects described here are negligibly different (Figure S5).” Pg. 7

      (3) We recognize that despite these analyses, it would be helpful to see what this pattern looks like in adults where we know more about the visual field properties and the function of dorsal and ventral streams. This has been done previously (e.g., Haak & Beckman, 2018), but we have now run those analyses on adults in our sample, as described in the public review. As with infants, there are reliable differences in the homotopy between streams (Figure S1). The MDS results show that the adult data was more complex than the infant data, since it was best described by 3 dimensions rather than 2. Nonetheless, there is a rotation of the MDS such that the structure of the ventral and dorsal streams is also dissociable. 

      Figure 3 also raises several alternative interpretations. The spatial frequency component in B has strong activity ONLY at the extreme border of the VF and this is probably the origin of the strong correlation. I understand that it is only one subject, but this brings the need to show all subjects and to report the correlation. Also, it is important to show the putative average ICA for retinotopy and spatial frequencies across subjects and for adults. All methods should be validated on adults where we have clear data for retinotopy and spatial frequency.

      The reviewer notes that the component in Figure 3 shows strong negative response in the periphery. It is often the case, as reported elsewhere (Moeller et al., 2009), that ICA extracts portions of visual maps. To make a full visual map would require combining components into a composite (e.g., a component that has a high response in the periphery and another component that has a high response in the fovea). If we were to claim that this component, or others like it, could replace the need for retinotopic mapping, then we would want to produce these composite maps; however, our conclusion in this project is that the topographic information of retinotopic maps manifest in individual components of ICA. For this purpose, the analysis we perform adequately assesses this topography.

      Regarding the request to show the results for all subjects, we address this in the public response and repeat it here briefly: we have added 6 new figures to show results akin to Figure 3C and D. It is impractical to show the equivalent of Figure 3A and B for all participants, yet we do release the data necessary to see to visualize these maps easily.

      Finally, the reviewer suggests that we validate the analyses on adult participants. As shown in Figure S3 and reported in the public response, we now run these analyses on adult participants and observe qualitatively similar results to infants.

      How much was the variation in the presumed spatial frequency map? Is it consistent with the acuity range? 5-month-old infants should have an acuity of around 10c/deg, depending on the mean luminance of the scene.

      The reviewer highlights an important weakness of conducting ICA: we cannot put units on the degree of variation we see in components. We now highlight this weakness in the discussion:

      “Another limitation is that ICA does not provide a scale to the variation: although we find a correlation between gradients of spatial frequency in the ground truth and the selected component, we cannot use the component alone to infer the spatial frequency selectivity of any part of cortex. In other words, we cannot infer units of spatial frequency sensitivity from the components alone.” Pg. 20

      Figure 5 pipeline is totally obscure. I presumed that I understood, but as it is it is useless. All methods should be clearly described, and the intermediate results should be illustrated in figures and appropriately discussed. Using such blind analyses in infants in principle may not be appropriate and this needs to be verified. Overall all these techniques rely on correlation activities that are all biased by head movement, eye movement, and probably the dummy sucking. All those movements need to be estimated and correlated with the variability of the results. It is a strong assumption that the techniques should work in infants, given the presence of movements.

      We recognize that the SRM methods are complex. Given this feedback, we remade Figure 5 with explicit steps for the process and updated the caption (as reported in the public review).

      Regarding the validation of these methods, we have added SRM analyses from adults and find comparable results. This means that using these methods on adults with comparable amounts of data as what we collected from infants can predict maps that are highly similar to the real maps. Even so, it is not a given that these methods are valid in infants. We present two considerations in this regard. 

      First, as part of the SRM analyses reported in the manuscript, we show that control analyses are significantly worse than the real analyses (indicated by the lines on Figure 6). To clarify the control analysis: we break the mapping (i.e., flip the order of the data so that it is backwards) between the test participant and the training participants used to create the SRM. The fact that this control analysis is significantly worse indicates that SRM is learning meaningful representations that matter for retinotopy. 

      Second, we believe that this paper is a validation of SRM for infants. Infant fMRI is a nascent field and SRM has the potential to increase the signal quality in this population. We hope that readers will see these analyses as a proof of concept that SRM can be used in their work with infants. We have stated this contribution in the paper now.

      “Additionally, we wish to test whether methods for functional alignment can be used with infants. Functional alignment finds a mapping between participants using functional activity -- rather than anatomy -- and in adults can improve signal-to-noise, enhance across participant prediction, and enable unique analyses27,32-34.” Pg. 4

      “This is initial evidence that functional alignment may be useful for enhancing signal quality, like it has in adults27,32,33, or revealing changing function over development45.” Pg. 21

      Regarding the reviewer’s concern that motion may bias the results, we wish to emphasize the nature of the analyses being conducted here: we are using data from a group of participants to predict the neural responses in a held-out participant. For motion to explain consistency between participants, the motion would need to be timelocked across participants. Even if motion was time-locked during movie watching, motion will impair the formation of an adequate model that can contain retinotopic information. Thus, motion should only hurt the ability for a shared response to be found that can be used for predicting retinotopic maps. Hence, the results we observed are despite motion and other sources of noise.

      What is M??? is it simply the mean value??? If not, how it is estimated?

      M is an abbreviation for mean. We have now expanded the abbreviation the first time we use it.

      Figure 6 should be integrated with map activity where the individual area correlation should be illustrated. Probably fitting SMR adult works well for early cortical areas, but not for more ventral and associative, and the correlation should be evaluated for the different masks.

      With the addition of plots showing the gradients for each participant and each movie (Figures S10–S13) we hope we have addressed this concern. We additionally want to clarify that the regions we tested in the analysis in Figure 6 are only the early visual areas V1, V2, V3, V3A/B, and hV4. The adult validation analyses show that SRM works well for predicting the visual maps in these areas. Nonetheless, it is an interesting question for future research with more extensive retinotopic mapping in infants to see if SRM can predict maps beyond extrastriate cortex.

      Occipital masks have never been described or shown.

      The occipital mask is from the MNI probabilistic structural atlas (Mazziotta et al., 2001), as reported in the original version and is shared with the public data release. We have added the additional detail that the probabilistic atlas is thresholded at 0% in order to be liberally inclusive. 

      “We used the occipital mask from the MNI structural atlas63 in standard space -- defined liberally to include any voxel with an above zero probability of being labelled as the occipital lobe -- and used the inverted transform to put it into native functional space.” Pg. 27–28

      Methods lack the main explanation of the procedures and software description.

      We hope that the additions we have made to address this reviewer’s concerns have provided better explanations for our procedures. Additionally, as part of the data and code release, we thoroughly explain all of the software needed to recreate the results we have observed here.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      In this study, Bu et al examined the dynamics of TRPV4 channel in cell overcrowding in carcinoma conditions. They investigated how cell crowding (or high cell confluence) triggers a mechano-transduction pathway involving TRPV4 channels in high-grade ductal carcinoma in situ (DCIS) cells that leads to large cell volume reduction (or cell volume plasticity) and pro-invasive phenotype.

      In vitro, this pathway is highly selective for highly malignant invasive cell lines derived from a normal breast epithelial cell line (MCF10CA) compared to the parent cell line, but not present in another triple-negative invasive breast epithelial cell line (MDA-MB-231). The authors convincingly showed that enhanced TRPV4 plasma membrane localization correlates with high-grade DCIS cells in patient tissue samples.

      Specifically in invasive MCF10DCIS.com cells, they showed that overcrowding or over-confluence leads to a decrease in cell volume and intracellular calcium levels. This condition also triggers the trafficking of TRPV4 channels from intracellular stores (nucleus and potentially endosomes), to the plasma membrane (PM). When these over-confluent cells are incubated with a TRPV4 activator, there is an acute and substantial influx of calcium, attesting to the fact that there are a high number of TRPV4 channels present on the PM. Long-term incubation of these over-confluent cells with the TRPV4 activator results in the internalization of the PM-localized TRPV4 channels.

      In contrast, cells plated at lower confluence primarily have TRPV4 channels localized in the nucleus and cytosol. Long-term incubation of these cells at lower confluence with a TRPV4 inhibitor leads to the relocation of TRPV4 channels to the plasma membrane from intracellular stores and a subsequent reduction in cell volume. Similarly, incubation of these cells at low confluence with PEG 3000 (a hyperosmotic agent) promotes the trafficking of TRPV4 channels from intracellular stores to the plasma membrane.

      Strengths:

      The study is elegantly designed and the findings are novel. Their findings on this mechano-transduction pathway involving TRPV4 channels, calcium homeostasis, cell volume plasticity, motility, and invasiveness will have a great impact in the cancer field and are potentially applicable to other fields as well. Experiments are well-planned and executed, and the data is convincing. The authors investigated TRVP4 dynamics using multiple different strategies- overcrowding, hyperosmotic stress, and pharmacological means, and showed a good correlation between different phenomena.

      Weaknesses:

      A major emphasis in the study is on pharmacological means to relate TRPV4 channel function to the phenotype. I believe the use of genetic means would greatly enhance the impact and provide compelling proof for the involvement of TRPV4 channels in the associated phenotype. In this regard, I wonder if siRNA-mediated knockdown of TRPV4 in over-confluent cells (or knockout) would lead to an increase in cell volume and normalize the intracellular calcium levels back to normal, thus ultimately leading to a decrease in cell invasiveness.

      We greatly appreciate the positive feedback regarding the design of our study and the novelty of our findings. We also acknowledge the constructive suggestion to complement our pharmacological approaches with genetic manipulation of TRPV4.

      In response to the comment regarding siRNA-mediated knockdown or knockout of TRPV4, we fully agree that this would further substantiate our findings. We will use shRNA targeting TRPV4 approaches to further explore the functional effects of TRPV4 knockdown on cell volume plasticity, intracellular calcium level changes, and invasiveness phenotypes through motility assays at the single cell level under cell crowding or hyperosmotic stress and will include these results in our revised manuscript.

      Reviewer #2 (Public review):

      Summary:

      The metastasis poses a significant challenge in cancer treatment. During the transition from non-invasive cells to invasive metastasis cells, cancer cells usually experience mechanical stress due to a crowded cellular environment. The molecular mechanisms underlying mechanical signaling during this transition remain largely elusive. In this work, the authors utilize an in vitro cell culture system and advanced imaging techniques to investigate how non-invasive and invasive cells respond to cell crowding, respectively.

      Strengths:

      The results clearly show that pre-malignant cells exhibit a more pronounced reduction in cell volume and are more prone to spreading compared to non-invasive cells. Furthermore, the study identifies that TRPV4, a calcium channel, relocates to the plasma membrane both in vitro and in vivo (patient samples). Activation and inhibition of the TRPV4 channel can modulate the cell volume and cell mobility. These results unveil a novel mechanism of mechanical sensing in cancer cells, potentially offering new avenues for therapeutic intervention targeting cancer metastasis by modulating TRPV4 activity. This is a very comprehensive study, and the data presented in the paper are clear and convincing. The study represents a very important advance in our understanding of the mechanical biology of cancer.

      Weaknesses:

      However, I do think that there are several additional experiments that could strengthen the conclusions of this work. A critical limitation is the absence of genetic ablation of the TRPV4 gene to confirm its essential role in the response to cell crowding.

      We are grateful for the positive assessment of our study and the acknowledgment of the impact of our findings on the understanding of mechanical signaling in cancer progression. We also appreciate the suggestion to include genetic ablation experiments to confirm the role of TRPV4 in cell crowding responses. As noted in our response to reviewer #1, we plan to use shRNA TRPV4 to examine the functional effects of TRPV4 knockdown on cell volume plasticity, changes in intracellular calcium levels, and invasive phenotypes through motility assays at the single-cell level under conditions of cell crowding or hyperosmotic stress. We will include these results in our revised manuscript.

      Once again, we thank the reviewers for their valuable feedback, which will help us further improve our manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      In this manuscript, Ferhat and colleagues describe their study aimed at developing a blood-brain barrier (BBB) penetrant agent that could induce hypothermia and provide neuroprotection from the sequelae of status epilepticus (SE) in mice. Hypothermia is used clinically in an attempt to reduce neurological sequelae of injury and disease. Hypothermia can be effective, but physical means used to reduce core body temperature are associated with untoward effects. Pharmacological means to induce hypothermia could be as effective with fewer untoward complications. Intracerebroventricularly applied neurotensin can cause hypothermia; however, neurotensin applied peripherally is degraded and does not cross the BBB. Here the authors develop and characterize a neurotensin conjugate that can reach the brain, induce hypothermia, and reduce seizures, cognitive changes, and inflammatory changes associated with status epilepticus. 

      Strengths: <br /> (1) In general, the study is well-reasoned, well-designed, and seemingly well-executed. 

      (2) Strong dose-response assessment of multiple neurotensin conjugates in mice. 

      (3) Solid assessment of binding affinity, in vitro stability in blood, and brain uptake of the conjugate. 

      (4) Appropriate inclusion of controls for SE and for drug injections. However, perhaps a vehicle control could have been employed. 

      Sham animals received saline 0.9% which is the vehicle control considering it was used to dilute the water-soluble VH-N412 molecule.

      (5) Multifaceted assessment of neurodegeneration, inflammation, and mossy fiber sprouting in the different groups. 

      (6) Inclusion of behavioral assessments. 

      (7) Evaluates NSTR1 receptor distribution in multiple ways; however, does not evaluate changes in receptor distribution or ping wo/w SE and/or various drugs. 

      (8) Demonstrates that this conjugate can induce hypothermia and have positive effects on the sequelae of SE. Could have a great impact on the application of pharmacologically-induced hypothermia as a neuroprotective measure in patients. 

      Weaknesses: 

      (1) The authors make the claim, repeatedly, that the hypothermia caused by the neurotensin conjugate is responsible for the effects they see; however, what they really show is that the conjugate causes hypothermia AND has favorable effects on the sequelae of SE. They need to discuss that they did not administer the conjugate without allowing the pharmacological hypothermia (e.g., by warming the animal, etc.). 

      We agree with Reviewer 1. We indeed hypothesize that it is principally the hypothermia induced by the NT conjugate that is responsible for the effects we observe. However, we do not exclude the possibility that the conjugate itself can have direct effects on the sequelae of SE. We tried to address this question with the in vitro experiments. Our results suggest that indeed, in the absence of hypothermia, the conjugate showed intrinsic neuroprotection of cultured hippocampal neurons challenged with excitotoxic agents such as NMDA or KA. Besides the description of these results in the “Results Section”, end of page 19 of the original manuscript, we had discussed them at the end of the “Discussion Section”, top of page 43 of the original manuscript.

      In order to separate the hypothermia component from the potential direct neuroprotective effects of the NT conjugate, we did consider abolishing hypothermia in animals that were injected with the NT conjugate by warming them up. However, it is particularly difficult to increase in a well- controlled manner the body temperature of mice, in particular undergoing seizures, in a closed temperature-controlled chamber. In response to Reviewer 1 demand, we added a few sentences in the “Discussion Section”, page 45 of the revised version.

      (2) In the status epilepticus studies, it is unclear how or whether they monitored animals for the development of spontaneous seizures. Can the authors please describe this?

      The KA model we used was originally discovered more than 30 years ago, developed and very well characterized and mastered in our laboratory by Ben-Ari (Ben-Ari et al., 1979). Most of KA-treated mice that developed SE after KA injection developed spontaneous seizures subsequent to a latent period of about 1 week as described in Figure 3A, Results Section page 11 and in the reference we had mentioned in the Materials and Methods Section, page 27 (Schauwecker and Steward, 1997).

      We agree that information regarding the development of spontaneous seizures is missing. We added 2 references, Gröticke et al., 2008; Wu et al., 2021 in the Materials and Methods Section, page 28 of the revised version, that describe the occurrence of spontaneous seizures after KA administration in mice. We also now added the following information in the Materials and Methods Section, end of page 29: In order to study mice in the chronic stage of epilepsy with spontaneous seizures, they were observed daily (at least 3 hours per day) for general behavior and occurrence of SRS. These are highly reproducible in the mouse KA model, allowing for visual monitoring and scoring of epileptic activity. After 3 weeks, most animals exhibited SRS, with 2 to 3 seizures per day, similar to previous observations (Wu et al., 2021). The detection of at least one spontaneous seizure per day was used as criterion indicating the animals had reached chronic phase that can ultimately be confirmed by mossy fiber sprouting (see Figure 7).

      (3) They do not evaluate changes in receptor distribution or ping wo/w SE and/or various drugs. 

      It is not clear to us what changes in receptor distribution need evaluation. We suppose the question concerns NTSR1 receptor. It would indeed be very interesting to compare NTSR1 in brain regions and different brain cells wo/w SE and/or various drugs, to assess receptor distribution or re-distribution, if any. However, addressing such a question is a project in itself that could not be addressed in the present study. Reviewer 1 also evokes ping wo/w SE and/or various drugs and if our understanding is correct, Reviewer 1 alludes to PING, Pyramidal Interneuronal Network γ (Dugladze et al., 2013, see reference below). Although we did not assess PING per se, we used multi-electrode arrays (MEA) on hippocampal brain slices stimulated wo/w KA to assess whether the VH-N412 conjugate could modulate pyramidal neuron activity. In order to respond to Reviewer 1 concern we added these data as Figure S2 with corresponding modifications in the Material and Methods Section (pages 34-35), in the Results Section (page 19) and in the Discussion Section page 43 of the revised version of our manuscript.

      Dugladze T, Maziashvili N, Börgers C, Gurgenidze S, Häussler U, Winkelmann A, Haas CA, Meier JC, Vida I, Kopell NJ, Gloveli T. GABA(B) autoreceptor-mediated cell type-specific reduction of inhibition in epileptic mice. Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):15073-8. doi: 10.1073/pnas.1313505110. Epub 2013 Aug 26. PMID: 23980149; PMCID: PMC3773756.

      Bas du formulaire

      (4) It is not clear why several different mouse strains were employed. 

      We used 2 mouse strains in our work as mentioned in the Materials and Methods Section, page 21. The conjugates we developed and hypothermia evaluation were initially tested on adult Swiss CD-1 males. For the KA model and for behavioral tests, adult male FVB/N mice were used because they are considered as reliable and well described mouse models of epilepsy, where seizures are associated with cell death (Schauwecker, 2003). This not the case for a number of mouse strains that demonstrate very heterogeneous behavior in SE and heterogeneous neuronal death, sprouting and neuroinflammation. The FVB/N are also well suited for behavioral tests.

      In response to the Reviewer 1 demand, the following sentence has been introduced in the Results Section, page 11 and in the Materials and Methods Section, page 21 of the revised manuscript: We assessed our conjugates in a model of KA-induced seizures using adult male FVB/N mice. This mouse strain was selected as a reliable and well described mouse model of epilepsy, where seizures are associated with cell death and neuroinflammation (Schauwecker, 2003; Wu et al., 2021).

      Reviewer #2 (Public Review): 

      Summary: 

      The authors generated analogs consisting of modified neurotensin (NT) peptides capable of binding to low-density lipoprotein (LDL) and NT receptors. Their lead analog was further evaluated for additional validation as a novel therapeutic. The putative mechanism of action for NT in its antiseizure activity is hypothermia, and as therapeutic hypothermia has been demonstrated in epilepsy, NT analogs may confer antiseizure activity and avoid the negative effects of induced hypothermia. 

      Strengths: 

      The authors demonstrate an innovative approach, i.e. using LDLR as a means of transport into the brain, that may extend to other compounds. They systematically validate their approach and its potential through binding, brain penetration, in vivo antiseizure efficacy, and neuroprotection studies. 

      Weaknesses: 

      Tolerability studies are warranted, given the mechanism of action and the potential narrow therapeutic index. In vivo studies were used to assess the efficacy of the peptide conjugate analogs in the mouse KA model. However, it would be beneficial to have shown tolerability in naïve animals to better understand the therapeutic potential of this approach. 

      Tolerability studies were performed, but the results were not presented in the first version of the manuscript. In order to comply with Reviewer 2 demand, we have added the following text in the Results section, page 11 of the revised version to describe our tolerability results.

      Finally, tolerability studies were performed with the administration up to 20 and 40 mg/kg Eq. NT (i.e. 25.8 and 51.6 mg/kg of VH-N412) with n=3 for these doses. The rectal temperature of the animals did not fall below 32.5 to 33.2°C, similar to the temperature induced with the 4 mg/kg Eq. NT dose. We observed no mortality or notable clinical signs other than those associated with the rapid HT effect such as a decrease in locomotor activity. We thus report a very interesting therapeutic index since the maximal tolerated dose (MTD) was > 40 mg/kg Eq. NT, while the maximum effect is observed at a 10x lower dose of 4 mg/kg Eq. NT and an ED50 established at 0.69 mg/kg as shown in Figure 1G.

      Mice may be particularly sensitive to hypothermia. It would be beneficial to show similar effects in a rat model. 

      We have tested our conjugate in mice, rats, and pigs, with in all cases nice dose response curves. We added a few words in the Discussion Section, page 38 of the revised version to mention that we can elicit hypothermia with our conjugates in the above-mentioned species.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      (1) In Figures 4, 5, 6, 8, and 9, scale bars are needed on all panels. 

      We have looked carefully at the Figures. Scale bars are present on all Figures, as mentioned in the Legends of all Figures, but not necessarily on all panel pictures at the same magnification.

      (2) The supplemental would seemingly be better moved into the main body of the manuscript. 

      In agreement with Reviewer 1 demand, we moved the Supplemental Figures into the main body of the manuscript, except for Figure S1, previously Figure S3, and the new Figure S2. Tables S1 to S5 remain as Supplemental files.

      Reviewer #2 (Recommendations For The Authors): 

      Activation of LDLRs can have widespread effects in the CNS and peripherally. The authors should further discuss any beneficial or untoward effects of binding to LDL and activating LDLRs. 

      As mentioned in the Introduction and in a number of references where we describe the development of our family of LDLR peptide ligands (see below), we only selected peptide ligands that do not compete with LDL, one of the major ligands of the LDLR. We indeed showed that while LDL binds the ligand-binding domain of the LDLR, the peptide ligands we developed bind to the EGF-precursor homology domain of the receptor (See Malcor et al., 2008 below).

      We have studied our peptide ligands in vitro and in vivo for more than 15 years and we have not observed beneficial or adverse effects. Actually, one of the members of our LDLR peptide family has been validated as a theragnostic agent and is in Phase 1 clinical trials for brain glioblastoma and pancreatic cancer. Hence, to our knowledge, the peptide ligand we describe in the present study shows no beneficial or untoward effects on LDL binding and activation of the LDLR. In response to Reviewer 2 recommendation, we added the following information and references in the Introduction Section, page 6 of the revised version of our manuscript: These peptides bind the EGF precursor homology domain of the LDLR and thus do not compete with LDL binding on the ligand-binding domain. To our knowledge, they have no beneficial or untoward effects on LDL binding and LDLR activity (Malcor et al., 2012; Jacquot et al., 2016; David et al., 2018; Varini et al., 2019; Acier et al., 2021, Yang et al., 2023; Broc et al., 2024).

      Broc B, Varini K, Sonnette R, Pecqueux B, Benoist F, Masse M, Mechioukhi Y, Ferracci G, Temsamani J, Khrestchatisky M, Jacquot G, Lécorché P. LDLR-Mediated Targeting and Productive Uptake of siRNA-Peptide Ligand Conjugates In Vitro and In Vivo. Pharmaceutics. 2024 Apr 17;16(4):548. doi: 10.3390/pharmaceutics16040548. PMID: 38675209; PMCID: PMC11054735.

      Yang X, Varini K, Godard M, Gassiot F, Sonnette R, Ferracci G, Pecqueux B, Monnier V, Charles L, Maria S, Hardy M, Ouari O, Khrestchatisky M, Lécorché P, Jacquot G, Bardelang D. Preparation and In Vitro Validation of a Cucurbit[7]uril-Peptide Conjugate Targeting the LDL Receptor. J Med Chem. 2023 Jul 13;66(13):8844-8857. doi: 10.1021/acs.jmedchem.3c00423. Epub 2023 Jun 20. PMID: 37339060. 

      Acier A, Godard M, Gassiot F, Finetti P, Rubis M, Nowak J, Bertucci F, Iovanna JL, Tomasini R, Lécorché P, Jacquot G, Khrestchatisky M, Temsamani J, Malicet C, Vasseur S, Guillaumond F. LDL receptor-peptide conjugate as in vivo tool for specific targeting of pancreatic ductal adenocarcinoma. Commun Biol. 2021 Aug 19;4(1):987. doi: 10.1038/s42003-021-02508-0. PMID: 34413441; PMCID: PMC8377056.

      Varini K, Lécorché P, Sonnette R, Gassiot F, Broc B, Godard M, David M, Faucon A, Abouzid K, Ferracci G, Temsamani J, Khrestchatisky M, Jacquot G. Target engagement and intracellular delivery of mono- and bivalent LDL receptor- binding peptide-cargo conjugates: Implications for the rational design of new targeted drug therapies. J Control Release. 2019 Nov 28;314:141-161. doi: 10.1016/j.jconrel.2019.10.033. Epub 2019 Oct 20. PMID: 31644939.

      David M, Lécorché P, Masse M, Faucon A, Abouzid K, Gaudin N, Varini K, Gassiot F, Ferracci G, Jacquot G, Vlieghe P, Khrestchatisky M. Identification and characterization of highly versatile peptide-vectors that bind non- competitively to the low-density lipoprotein receptor for in vivo targeting and delivery of small molecules and protein cargos. PLoS One. 2018 Feb 27;13(2):e0191052. doi: 10.1371/journal.pone.0191052. PMID: 29485998; PMCID: PMC5828360.

      Molino Y, David M, Varini K, Jabès F, Gaudin N, Fortoul A, Bakloul K, Masse M, Bernard A, Drobecq L, Lécorché P, Temsamani J, Jacquot G, Khrestchatisky M. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. FASEB J. 2017 May;31(5):1807-1827. doi: 10.1096/fj.201600827R. Epub 2017 Jan 20. PMID: 28108572.

      Jacquot G, Lécorché P, Malcor JD, Laurencin M, Smirnova M, Varini K, Malicet C, Gassiot F, Abouzid K, Faucon A, David M, Gaudin N, Masse M, Ferracci G, Dive V, Cisternino S, Khrestchatisky M. Optimization and in Vivo Validation of Peptide Vectors Targeting the LDL Receptor. Mol Pharm. 2016 Dec 5;13(12):4094-4105. doi: 10.1021/acs.molpharmaceut.6b00687. Epub 2016 Oct 11. PMID: 27656777.

      Malcor JD, Payrot N, David M, Faucon A, Abouzid K, Jacquot G, Floquet N, Debarbieux F, Rougon G, Martinez J, Khrestchatisky M, Vlieghe P, Lisowski V. Chemical optimization of new ligands of the low-density lipoprotein receptor as potential vectors for central nervous system targeting. J Med Chem. 2012 Mar 8;55(5):2227-41. doi: 10.1021/jm2014919. Epub 2012 Feb 14. PMID: 22257077.

      As described above, the authors should also comment on the tolerability of these analogs. 

      Tolerability studies were performed, but the results were not presented in the first version of the manuscript. In order to comply with Reviewer 2 demand, we have added the following text in the Results section, page 11 of the revised version to describe our tolerability results.

      Finally, tolerability studies were performed with the administration up to 20 and 40 mg/kg Eq. NT (i.e. 25.8 and 51.6 mg/kg of VH-N412) with n=3 for these doses. The rectal temperature of the animals did not fall below 32.5 to 33.2°C, similar to the temperature induced with the 4 mg/kg Eq. NT dose. We observed no mortality or notable clinical signs other than those associated with the rapid HT effect such as a decrease in locomotor activity. We thus report a very interesting therapeutic index since the maximal tolerated dose (MTD) was > 40 mg/kg Eq. NT, while the maximum effect is observed at a 10x lower dose of 4 mg/kg Eq. NT and an ED50 established at 0.69 mg/kg as shown in Figure 1G.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We are deeply appreciative of the reviewers' insightful comments and constructive feedback on our manuscript. In response, we have implemented substantial revisions to enhance the clarity and impact of our work. Key changes include: 

      Reframing: We have shifted our focus from cognitive control to attention and memory processes, aligning more closely with our experimental design. This reframing is reflected throughout the manuscript, including additional citations highlighting the triple network model's involvement in memory processing. To reflect this change, we have updated the title to "Causal dynamics of salience, default mode, and frontoparietal networks during episodic memory formation and recall: A multi-experiment iEEG replication".

      Control analyses using resting-state epochs: We have conducted new analyses comparing task periods to resting baseline epochs. These results demonstrate enhanced directed information flow from the anterior insula to both the default mode and frontoparietal networks during encoding and recall periods compared to resting state across all four experiments. This finding underscores the anterior insula's critical role in memory and attention processing.

      Control analysis using the inferior frontal gyrus: To address specificity concerns, we performed control analyses using the inferior frontal gyrus as a comparison region. This analysis confirms that the observed directed information flow to the default mode and frontoparietal networks is specific to the anterior insula, rather than a general property of task-engaged brain regions.

      These revisions, combined with our rigorous methodologies and comprehensive analyses, provide compelling support for the central claims of our manuscript. We believe these changes significantly enhance the scientific contribution of our work.

      Our point-by-point responses to the reviewers' comments are provided below.

      Reviewer 1:

      -  The authors present results from an impressively sized iEEG sample. For reader context, this type of invasive human data is difficult and time-consuming to collect and many similar studies in high-level journals include 5-20 participants, typically not all of whom have electrodes in all regions of interest. It is excellent that they have been able to leverage open-source data in this way. 

      -  Preprocessing of iEEG data also seems sensible and appropriate based on field standards. 

      -  The authors tackle the replication issues inherent in much of the literature by replicating findings across task contexts, demonstrating that the principles of network communication evidenced by their results generalize in multiple task memory contexts. Again, the number of iEEG patients who have multiple tasks' worth of data is impressive. 

      We thank the reviewer for the encouraging comments and appreciate the positive feedback.  

      (1.1) The motivation for investigating the tripartite network during memory tasks is not currently well-elaborated. Though the authors mention, for example, that "the formation of episodic memories relies on the intricate interplay between large-scale brain networks (p. 4)", there are no citations provided for this statement, and the reader is unable to evaluate whether the nodes and networks evidenced to support these processes are the same as networks measured here. 

      Recommendation: Detail with citations the motivation for assessing the tripartite network in these tasks. Include work referencing network-level and local effects during encoding and recall.

      We appreciate the reviewer's feedback and suggestions for improving our framing. We have substantially expanded and revised the Introduction to elaborate on the motivation for investigating the tripartite network during memory tasks, supported by relevant citations.

      We now provide a stronger rationale for examining these networks in the context of episodic memory, emphasizing that while the tripartite network has been extensively studied in cognitive control tasks, growing evidence suggests its relevance to episodic memory as a domain-general network. We cite several key studies that demonstrate the involvement of the salience, default mode, and frontoparietal networks in memory processes, including work by Sestieri et al. (2014) and Vatansever et al. (2021), which show the consistent engagement of these networks during memory tasks. We have also included references to studies examining network-level and local effects during encoding and recall, such as the work by Xie et al. (2012) on disrupted intrinsic connectivity in amnestic mild cognitive impairment, and Le Berre et al. (2017) on the role of insula connectivity in memory awareness (pages 4-5).

      Furthermore, we have clarified how our study aims to address gaps in the current understanding by investigating the electrophysiological basis of these network interactions during memory formation and retrieval, which has not been explored in previous research. This expanded framing provides a clearer motivation for our investigation and places our study within the broader context of memory and network neuroscience research (pages 3-6).  

      (1.2) In addition, though the tripartite network has been proposed to support cognitive control processes, and the neural basis of cognitive control is the framed focus of this work, the authors do not demonstrate that they have measured cognitive control in addition to simple memory encoding and retrieval processes. Tasks that have investigated cognitive control over memory (such as those cited on p. 13 - Badre et al., 2005; Badre & Wagner, 2007; Wagner et al., 2001; Wagner et al., 2005) generally do not simply include encoding, delay, and recall (as the tasks used here), but tend to include some manipulation that requires participants to engage control processes over memory retrieval, such as task rules governing what choice should be made at recall (e.g., from Badre et al., 2005 Fig. 1: congruency of match, associative strength, number of choices, semantic similarity). Moreover, though there are task-responsive signatures in the nodes of the tripartite networks, concluding that cognitive control is present because cognitive control networks are active would be a reverse inference.

      Recommendation: If present, highlight components of the tasks that are known to elicit cognitive control processes and cite relevant literature. If the tasks cannot be argued to elicit cognitive control, reframe the motivation to focus on task-related attention or memory processes. If the latter, reframe the motivation for investigating the tripartite network in this context absent control.

      We appreciate the reviewer's insightful comment and recommendation. We acknowledge that our tasks do not include specific manipulations designed to elicit cognitive control processes over memory retrieval. In light of this, we have reframed our motivation and discussion to focus on the role of the tripartite network in attention and memory processes more broadly, rather than cognitive control specifically (pages 3-6).

      As noted in Response 1.1, we have revised the Introduction to emphasize the domain-general nature of these networks and their involvement in various cognitive processes, including memory. We also highlight how the salience, default mode, and frontoparietal networks contribute to different aspects of memory formation and retrieval, drawing on relevant literature.

      Our revised framing examines the salience network's role in detecting behaviorally relevant stimuli and orienting attention during encoding, the default mode network's involvement in internally-driven processes during recall, and the frontoparietal network's contribution to maintaining and manipulating information in working memory. We now present our study as an investigation into how these networks interact during different phases of memory processing, rather than focusing specifically on cognitive control. This approach aligns better with our experimental design and allows us to explore the broader applicability of the tripartite network model to memory processes. 

      This revised reframing provides a more accurate representation of our study's scope and contribution to understanding the role of large-scale brain networks in memory formation and retrieval (pages 3-6). 

      (1.3) It is currently unclear if the directed information flow from AI to DMN and FPN nodes truly arises from task-related processes such as cognitive control or if it is a function of static brain network characteristics constrained by anatomy (such as white matter connection patterns, etc.). This is a concern because the authors did not find that influences of AI on DMN or FPN are increased relative to a resting baseline (collected during the task) or that directed information flow differs in successful compared to unsuccessful retrieval. I doubt that this AI influence is 1) supporting a switch between the DMN and FPN via the SN or 2) relevant for behavior if it doesn't differ from baseline-active task or across accuracy conditions. An additional comparison that may help investigate whether this is reflective of static connectivity characteristics would be a baseline comparison during non-task rest or sleep periods.  

      Recommendation: As described in the task of the concern, analyze the PTE across the same contacts during sleep or task-free rest periods (if present in the dataset). 

      We thank the reviewer for this suggestion. We have now carried out additional analyses using resting-state baseline epochs. We found that directed information flow from the AI to both the DMN and FPN were enhanced during the encoding and recall periods compared to resting-state baseline in all four experiments. These new results have now been included in the revised Results (page 12):    

      “Enhanced information flow from the AI to the DMN and FPN during episodic memory processing, compared to resting-state baseline  

      We next examined whether directed information flow from the AI to the DMN and FPN nodes during the memory tasks differed from the resting-state baseline. Resting-state baselines were extracted immediately before the start of the task sessions and the duration of task and rest epochs were matched to ensure that differences in network dynamics could not be explained by differences in duration of the epochs. Directed information flow from the AI to both the DMN and FPN were higher during both the memory encoding and recall phases and across the four experiments, compared to baseline in all but two cases (Figures S6, S7). These findings provide strong evidence for enhanced role of AI directed information flow to the DMN and FPN during memory processing compared to the resting state.” 

      (1.4) Related to the above concern, it is also questionable how directed information flow from AI facilitates switching between FPN and DMN during both encoding and recall if high gamma activity does not significantly differ in AI versus PCC or mPFC during recall as it does during encoding. It seems erroneous to conclude that the network-level communication is happening or happening with the same effect during both task time points when these effects are decoupled in such a way from the power findings.  

      We appreciate the reviewer's insightful observation regarding the apparent discrepancy between our directed information flow findings and the high-gamma activity results. This comment highlights an important distinction in interpreting our results, and we thank the reviewer for the opportunity to address this point.

      Our findings demonstrate that directed information flow from the AI to the DMN and FPN persists during both encoding and recall, despite differences in local high-gamma activity patterns. This dissociation suggests that the network-level communication facilitated by the AI may operate independently of local activation levels in individual nodes. It is important to note that our directed connectivity analysis (using phase transfer entropy) was conducted on broadband signals (0.5-80 Hz), while the power analysis focused specifically on the high-gamma band (80-160 Hz). These different frequency ranges may capture distinct aspects of neural processing. The broadband connectivity might reflect more general, sustained network interactions, while high-gamma activity may be more sensitive to specific task demands or cognitive processes.

      The phase transfer entropy analysis captures directed interactions over extended time periods, while the high-gamma power analysis provides a more temporally precise measure of local neural activity. The persistent directed connectivity from AI during recall, despite changes in local activity, might reflect the AI's ongoing role in coordinating network interactions, even when its local activation is not significantly different from other regions.

      Rather than facilitating "switching" between FPN and DMN, as we may have previously overstated, our results suggest that the AI maintains a consistent pattern of influence on both networks across task phases. This influence might serve different functions during encoding (e.g., orienting attention to external stimuli) and recall (e.g., monitoring and evaluating retrieved information), even if local activation patterns differ.

      It is crucial to note that in the three verbal tasks, our analysis of memory recall is time-locked to word production onset. However, the precise timing of the internal recall process initiation is unknown. This limitation may affect our ability to capture the full dynamics of network interactions during recall, particularly in the early stages of memory retrieval. Interestingly, in the spatial memory task WMSM, the PCC/precuneus exhibited an earlier onset and enhanced activity compared to the AI. This task may provide a clearer window into recall processes:

      findings align with the view that DMN nodes may play a crucial role in triggering internal recall processes. However, the precise timing of internal retrieval initiation remains a challenge in the three verbal tasks, potentially limiting our ability to capture the full dynamics of regional activity, and its replicability, during early stages of recall.

      These observations highlight the need for more detailed investigation of the temporal dynamics of network interactions during memory recall. To further elucidate the relationship between directed connectivity and local activity, future studies could employ time-resolved connectivity analyses and investigate coupling between different frequency bands. This could provide a more precise understanding of how network-level communication relates to local neural dynamics across different task phases.

      We have revised the manuscript to more accurately reflect these points and avoid overstating the implications of our findings (pages 15-19). We thank the reviewer for prompting this important clarification, which we believe strengthens the interpretation and discussion of our results.

      (1.5) Missing information about the methods used for time-frequency conversion for power calculation and the power normalization/baseline-correction procedure bars a thorough evaluation of power calculation methods and results. 

      Recommendation: Include more information about how power was calculated. For example, how were time-series data converted to time-frequency (with complex wavelets, filter-hilbert, etc.)? What settings were used (frequency steps, wavelet length)? How were power values checked for outliers and normalized (decibels, Z-transform)? How was baseline correction applied (subtraction, division)?

      We have now included detailed information related to our power calculation and normalization steps as we note on page 28: “We first filtered the signals in the high-gamma (80160 Hz) frequency band (Canolty et al., 2006; Helfrich & Knight, 2016; Kai J. Miller, Weaver, & Ojemann, 2009) using sequential band-pass filters in increments of 10 Hz (i.e., 80–90 Hz, 90– 100 Hz, etc.), using a fourth order two-way zero phase lag Butterworth filter. We used these narrowband filtering processing steps to correct for the 1/f decay of power. We then calculated the amplitude (envelope) of each narrow band signal by taking the absolute value of the analytic signal obtained from the Hilbert transform (Foster, Rangarajan, Shirer, & Parvizi, 2015). Each narrow band amplitude time series was then normalized to its own mean amplitude, expressed as a percentage of the mean. Finally, we calculated the mean of the normalized narrow band amplitude time series, producing a single amplitude time series. Signals were then smoothed using 0.2s windows with 90% overlap (Kwon et al., 2021) and normalized with respect to 0.2s pre-stimulus periods by subtracting the pre-stimulus baseline from the post-stimulus signal.” 

      (1.6) If revisions to the manuscript can address concerns about directed information flow possibly being due to anatomical constraints - such as by indicating that directed information flow is not present during non-task rest or sleep - this work may convey important information about the structure and order of communication between these networks during attention to tasks in general. However, the ability of the findings to address cognitive control-specific communication and the nature of neurophysiological mechanisms of this communication - as opposed to the temporal order and structure of recruited networks - may be limited.

      We appreciate the reviewer's insightful feedback, which has led to significant improvements in our manuscript. In response, we have made the following key changes. We have shifted our focus from cognitive control to the broader roles of the tripartite network in attention and memory processes. This reframing aligns more closely with our experimental design and the nature of our tasks. We have revised the Introduction, Results, and Discussion sections to reflect this perspective, providing a more accurate representation of our study's scope and contribution. Additionally, to strengthen our findings, we have conducted new analyses comparing task periods to resting-state baselines. These analyses revealed that directed information flow from the anterior insula to both the DMN and FPN was significantly enhanced during memory encoding and recall periods compared to resting-state across all four experiments. This finding provides robust evidence for the specific involvement of these network interactions in memory processing. Please also see Response 1.2 above. 

      (1.7) Because phase-transfer entropy is presented as a "causal" analysis in this investigation (PTE), I also believe it is important to highlight for readers recent discussions surrounding the description of "causal mechanisms" in neuroscience (see "Confusion about causation" section from Ross and Bassett, 2024, Nature Neuroscience). A large proportion of neuroscientists (admittedly, myself included) use "causal" only to refer to a mechanism whose modulation or removal (with direct manipulation, such as by lesion or stimulation) is known to change or control a given outcome (such as a successful behavior). As Ross and Bassett highlight, it is debatable whether such mechanistic causality is captured by Granger "causality" (a.k.a. Granger prediction) or the parametric PTE, and the imprecise use of "causation" may be confusing. The authors could consider amending language regarding this analysis if they are concerned about bridging these definitions of causality across a wide audience. 

      We thank the reviewer for this suggestion. We would like to clarify here that we define causality in our manuscript as follows: a brain region has a causal influence on a target if knowing the past history of temporal signals in both regions improves the ability to predict the target's signal in comparison to knowing only the target's past, as defined in earlier studies (Granger, 1969; Lobier, Siebenhühner, Palva, & Matias, 2014). We have now included this clarification in the Introduction section (page 6).  

      We also agree with the reviewer that to more mechanistically establish a causal link between the neural dynamics and behavior, lesion or brain stimulation studies are necessary. We have now acknowledged this in the revised Discussion as we note: “Although our computational methods suggest causal influences, direct causal manipulations, such as targeted brain stimulation during memory tasks, are needed to establish definitive causal relationships between network nodes.” (page 19). 

      Minor additional information that would be helpful to the reader to include: 

      (1.8) How exactly was line noise (p. 24) removed? (For example, if notch filtered, how were slight offsets of the line noise from exactly 60.0Hz and harmonics identified and handled?). 

      We would like to clarify here that to filter line noise and its harmonics, we used bandstop filters at 57-63 Hz, 117-123 Hz, and 177-183 Hz. To create a band-stop filter, we used a fourth order two-way zero phase lag Butterworth filter. This information has now been included in the revised Methods (page 26). 

      (1.9) Why were the alpha and beta bands collapsed for narrowband filtering?

      Please note that we did not combine the alpha (8-12 Hz) and beta (12-30 Hz) bands for narrowband filtering, rather these two frequency bands were analyzed separately. However, we combined the delta (0.5-4 Hz) and theta (4-8 Hz) frequency bands into a combined delta-theta (0.5-8 Hz) frequency band for our analysis since previous human electrophysiology studies have not settled on a specific band of frequency (delta or theta) for memory processing. Previous human iEEG (Ekstrom et al., 2005; Ekstrom & Watrous, 2014; Engel & Fries, 2010; Gonzalez et al., 2015; Watrous, Tandon, Conner, Pieters, & Ekstrom, 2013) as well as scalp EEG and MEG studies, have shown that both the delta and theta frequency band oscillations play a prominent role for human memory encoding as well as retrieval (Backus, Schoffelen, Szebényi, Hanslmayr, & Doeller, 2016; Clouter, Shapiro, & Hanslmayr, 2017; Griffiths, Martín-Buro, Staresina, & Hanslmayr, 2021; Guderian & Düzel, 2005; Guderian, Schott, Richardson-Klavehn, & Düzel, 2009).  

      Reviewer 2:

      In this study, the authors leverage a large public dataset of intracranial EEG (the University of Pennsylvania RAM repository) to examine electrophysiologic network dynamics involving the participation of salience, frontoparietal, and default mode networks in the completion of several episodic memory tasks. They do this through a focus on the anterior insula (AI; salience network), which they hypothesize may help switch engagement between the DMN and FPN in concert with task demands. By analyzing high-gamma spectral power and phase transfer entropy (PTE; a putative measure of information "flow"), they show that the AI shows higher directed PTE towards nodes of both the DMN and FPN, during encoding and recall, across multiple tasks. They further demonstrate that high-gamma power in the PCC/precuneus is decreased relative to the AI during memory encoding. They interpret these results as evidence of "triple-network" control processes in memory tasks, governed by a key role of the AI. 

      I commend the authors on leveraging this large public dataset to help contextualize network models of brain function with electrophysiological mechanisms - a key problem in much of the fMRI literature. I also appreciate that the authors emphasized replicability across multiple memory tasks, in an effort to demonstrate conserved or fundamental mechanisms that support a diversity of cognitive processes. However, I believe that their strong claims regarding causal influences within circumscribed brain networks cannot be supported by the evidence as presented. In my efforts to clearly communicate these inadequacies, I will suggest several potential analyses for the authors to consider that might better link the data to their central hypotheses.

      We thank the reviewer for the encouraging comments and suggestions for improving the manuscript. Please see our detailed responses and clarifications below. 

      (2.1) As a general principle, the effects that the authors show - both in regards to their highgamma power analysis and PTE analysis - do not offer sufficient specificity for a reader to understand whether these are general effects that may be repeated throughout the brain, or whether they reflect unique activity to the networks/regions that are laid out in the Introduction's hypothesis. This lack of specificity manifests in several ways, and is best communicated through examples of control analyses. 

      We appreciate the reviewer's insightful comment regarding the specificity of our findings. We agree that additional analyses could provide valuable context for interpreting our results. In response, we have conducted the following additional analyses and made corresponding revisions to the manuscript:

      Following the reviewer's suggestion, we have selected the inferior frontal gyrus (IFG, BA 44) as a control region. The IFG serves as an ideal control region due to its anatomical adjacency to the AI, its involvement in a wide range of cognitive control functions including response inhibition (Cai, Ryali, Chen, Li, & Menon, 2014), and its frequent co-activation with the AI in fMRI studies. Furthermore, the IFG has been associated with controlled retrieval of memory (Badre et al., 2005; Badre & Wagner, 2007; Wagner et al., 2001), making it a compelling region for comparison. We repeated our PTE analysis using the IFG as the source region, comparing its directed influence on the DMN and FPN nodes to that of the AI.  

      Our analysis revealed a striking contrast between the AI and IFG in their patterns of directed information flow. While the AI exhibited strong causal influences on both the DMN and FPN, the IFG showed the opposite pattern. Specifically, both the DMN and FPN demonstrated higher influence on the IFG than the reverse, during both encoding and recall periods, and across all four memory experiments (Figures S4, S5). 

      These findings highlight the unique role of the AI in orchestrating large-scale network dynamics during memory processes. The AI's pattern of directed information flow stands in contrast to that of the IFG, despite their anatomical proximity and shared involvement in cognitive control processes. This dissociation underscores the specificity of the AI's function in coordinating network interactions during memory formation and retrieval. These results have now been included in our revised Results on page 11.  

      (2.2) First, the PTE analysis is focused solely on the AI's interactions with nodes of the DMN and FPN; while it makes sense to focus on this putative "switch" region, the fact that the authors report significant PTE from the AI to nodes of both networks, in encoding and retrieval, across all tasks and (crucially) also at baseline, raises questions about the meaningfulness of this statistic. One way to address this concern would be to select a control region that would be expected to have little/no directed causal influence on these networks and repeat the analysis. Alternatively (or additionally), the authors could examine the time course of PTE as it evolves throughout an encoding/retrieval interval, and relate that to the timing of behavioral events or changes in high-gamma power. This would directly address an important idea raised in their own Discussion, "the AI is wellpositioned to dynamically engage and disengage with other brain areas."  

      Please see Response 2.1 above for additional analyses related to control region.  

      We also appreciate the reviewer's suggestion regarding time-resolved PTE analysis. However, it's important to note that our current methodology does not allow for such fine-grained temporal analysis. This is due to the fact that PTE, which is an information theoretic measure and relies on constructing histograms of occurrences of singles, pairs, or triplets of instantaneous phase estimates from the phase time-series (Hillebrand et al., 2016) (Methods), requires sufficient number of cycles in the phase time-series for its reliable estimation (Lobier et al., 2014). PTE is based on estimating the time-delayed directed influences from one time-series to the other and its estimate is the most accurate when a large number of time-points (cycles) are available (Lobier et al., 2014). Since our encoding and recall epochs in the verbal recall tasks were only 1.6 seconds long, which corresponds to only 800 time-points with a 500 Hz sampling rate, we used the entire encoding and recall epochs for the most efficient estimate of PTE, rather than estimating PTE in a time-resolved manner. Please note that this is consistent with previous literature which have used ~ 225000 time-points (3 minutes of resting-state data with 1250 Hz sampling rate) for estimating PTE, for example, see (Hillebrand et al., 2016). 

      This limitation prevents us from examining how directed connectivity evolves throughout the encoding and retrieval intervals on a moment-to-moment basis. Future studies employing longer task epochs or alternative methods for time-resolved connectivity analysis could provide valuable insights into the dynamic engagement and disengagement of the AI with other brain areas based on task demands. Such analyses could potentially reveal task-specific temporal patterns in the AI's influence on DMN and FPN nodes during different phases of memory processing.

      Finally, it is crucial to note that in the three verbal tasks, our analysis of memory recall is timelocked to word production onset. However, the precise timing of the internal retrieval process initiation is unknown. This limitation may affect our ability to capture the full dynamics of network interactions during recall, particularly in the early stages of memory retrieval. Interestingly, in the spatial memory task, where this timing issue is less problematic due to the nature of the task, we observe that the PCC/precuneus shows an earlier onset of activity compared to the AI. This process is aligned with the view that DMN nodes may trigger internal recall processes, the full extent and replication of which across verbal and spatial tasks could not be examined in this study.  

      We have added a discussion of these limitations and future directions to the manuscript to provide a more nuanced interpretation of our findings and to highlight important areas for further investigation (page 19). 

      (2.3) Second, the authors state that high-gamma suppression in the PCC/precuneus relative to the AI is an anatomically specific signature that is not present in the FPN. This claim does not seem to be supported by their own evidence as presented in the Supplemental Data (Figures S2 and S3), which to my eye show clear evidence of relative suppression in the MFG and dPPC (e.g. S2a and S3a, most notably) which are notated as "significant" with green bars. I appreciate that the magnitude of this effect may be greater in the PCC/precuneus, but if this is the claim it should be supported by appropriate statistics and interpretation.  

      We thank the reviewer for raising this point. We have now directly compared the high-gamma power of the PCC/precuneus with the dPPC and MFG nodes of the FPN and we note that the suppression effects of the PCC/precuneus are stronger compared to those of the dPPC and MFG during memory encoding (Figures S8, S9). 

      (2.4) I commend the authors on emphasizing replicability, but I found their Bayes Factor (BF) analysis to be difficult to interpret and qualitatively inconsistent with the results that they show. For example, the authors state that BF analysis demonstrates "high replicability" of the gamma suppression effect in Figure 3a with that of 3c and 3d. While it does appear that significant effects exist across all three tasks, the temporal structure of high gamma signals appears markedly different between the two in ways that may be biologically meaningful. Moreover, it appears that the BF analysis did not support replicability between VFR and CATVFR, which is very surprising; these are essentially the same tasks (merely differing in the presence of word categories) and would be expected to have the highest degree of concordance, not the lowest. I would suggest the authors try to analytically or conceptually reconcile this surprising finding. 

      We appreciate the reviewer's commendation on our emphasis on replicability and thank the reviewer for the opportunity to provide clarification.

      First, we would like to clarify the nature of our BF analysis. Bayes factors are calculated as the ratio of the marginal likelihood of the replication data, given the posterior distribution estimated from the original data, and the marginal likelihood for the replication data under the null hypothesis of no effect (Ly, Etz, Marsman, & Wagenmakers, 2019). Specifically, BFs use the posterior distribution from the first experiment as a prior distribution for the replication test of the second experiment to constitute a joint multivariate distribution (i.e., the additional evidence for the alternative hypothesis given what was already observed in the original study) and this joint distribution is dependent on the similarity between the two experiments (Ly et al., 2019).  This analysis revealed that PCC/precuneus suppression, in comparison to the AI during memory encoding, observed in the VFR during memory encoding was detected in two other tasks, PALVCR, and WMSM with high BFs. In the CATVFR task, although there were short time periods of PCC/precuneus suppression (Figure 3), the effects were not strong enough like the three other tasks.  

      Regarding the high-gamma suppression effect, our BF analysis indeed supports replicability across the VFR, PALVCR, and WMSM tasks. While we agree with the reviewer that the temporal structure of high-gamma signals appears different across tasks, the BF analysis focuses on the overall presence of the suppression effect rather than its precise temporal profile. The high BFs indicate that the core finding - PCC/precuneus suppression relative to the AI during memory encoding - is replicated across these tasks, despite differences in the timing of this suppression. Moreover, at no time point did responses in the PCC/precuneus exceed that of the AI in any of the four memory encoding tasks. 

      The reason for differences in temporal profiles is not clear. While VFR and CATVFR are similar, the addition of categorical structure in CATVFR may have introduced cognitive processes that alter the temporal dynamics of regional responses. Moreover, differences in electrode placements across participants in each experiment may also have contributed to variability in the observed effects. Further studies using within-subjects experimental designs are needed to address this. 

      We have updated our Results and Discussion sections to reflect these points and to provide a more nuanced interpretation of the replicability across tasks.  

      (2.5) To aid in interpretability, it would be extremely helpful for the authors to assess acrosstask similarity in high-gamma power on a within-subject basis, which they are wellpowered to do. For example, could they report the correlation coefficient between HGP timecourses in paired-associates versus free-recall tasks, to better establish whether these effects are consistent on a within-subject basis? This idea could similarly be extended to the PTE analysis. Across-subject correlations would also be a welcome analysis that may provide readers with better-contextualized effect sizes than the output of a Bayes Factor analysis.  

      We thank the reviewer for this suggestion. However, a within-subject analysis was not possible because very few participants participated in multiple memory tasks. 

      For example, for the AI-PCC/Pr analysis, only 1 individual participated in both the VFR and PALVCR tasks (Tables S2a, S2c). Similarly, for AI-mPFC analysis, only 3 subjects participated in both the VFR and PALVCR tasks (Tables S2a, S2c).  

      Due to these small sample sizes, it was not feasible for us to assess replicability across tasks on a within-subject basis in our dataset. Therefore, for all our analysis, we have pooled electrode pairs across subjects and then subjected these to a linear mixed effects modeling framework for assessing significance and then subsequently assessing replicability of these effects using the Bayes factor (BF) framework.    

      Recommendations For The Authors: 

      (2.6) I would emphasize manuscript organization in a potential rewrite; it was very difficult to follow which analyses were attempting to show a contrast between effects versus a similarity between effects. Results were grouped by the underlying experimental conditions (e.g. encoding/recall, network identity, etc.) but may be better grouped according to the actual effects that were found. 

      We thank the reviewer for this suggestion. We considered this possibility, but we feel that the Results section is best organized in the order of the hypotheses we set out to test, starting from analyzing local brain activity using high-gamma power analysis, and then results related to analyzing brain connectivity using PTE. All these results are systematically ordered by presenting results related to encoding first and then the recall periods as they appear sequentially in our task-design, presenting the results related to the VFR task first and then demonstrating replicability of the results in the three other experiments. Results are furthermore arranged by nodes, where we first discuss results related to the DMN nodes, and then the same for the FPN nodes. This is to ensure systematic, unbiased organization of all our results for the readers to clearly follow the hypotheses, statistical analyses, and the brain regions considered. Therefore, for transparency and ethical reasons, we would respectfully like to present our results as they appear in our current manuscript, rather than presenting the results based on effect sizes. 

      However, please note that we indeed have ordered our results in the Discussion section based on actual effects, as suggested by the reviewer.  

      (2.7) The absence of a PTE effect when analyzing through the lens of successful vs. unsuccessful memory is an important limitation of the current study and a significant departure from the wealth of subsequent memory effects reported in the literature (which the authors have already done a good job citing, e.g. Burke et al. 2014 Neuroimage). I'm glad that the authors raised this in their Discussion, but it is important that the results of such an analysis actually be shown in the manuscript. 

      We thank the reviewer for this suggestion. We have now included the results related to PTE dynamics for successful vs. unsuccessful memory trials in the revised Results section as we note on page 12: 

      “Differential information flow from the AI to the DMN and FPN for successfully recalled and forgotten memory trials 

      We examined memory effects by comparing PTE between successfully recalled and forgotten memory trials. However, this analysis did not reveal differences in directed influence from the AI on the DMN and FPN or the reverse, between successfully recalled and forgotten memory trials during the encoding as well as recall periods in any of the memory experiments (all ps>0.05).”

      (2.8) I believe the claims of causality through the use of the PTE are overstated throughout the manuscript and may contribute to further confusion in the literature regarding how causality in the brain can actually be understood. See Mehler and Kording, 2018 arXiv for an excellent discussion on the topic (https://arxiv.org/abs/1812.03363). My recommendation would be to significantly tone down claims that PTE reflects causal interactions in the brain. 

      We thank the reviewer for this suggestion. We would like to clarify here that we define causality in our manuscript as follows: a brain region has a causal influence on a target if knowing the past history of temporal signals in both regions improves the ability to predict the target's signal in comparison to knowing only the target's past, as defined in earlier studies (Granger, 1969; Lobier et al., 2014). We have now included this clarification in the Introduction section (page 6).  

      We also agree with the reviewer that to more mechanistically establish a causal link between the neural dynamics and behavior, lesion or brain stimulation studies are necessary. We have now acknowledged this in the revised Discussion as we note: “Although our computational methods suggest causal influences, direct causal manipulations, such as targeted brain stimulation during memory tasks, are needed to establish definitive causal relationships between network nodes.” (page 19). 

      Finally, we have now significantly toned down our claims that PTE reflects causal interactions in the brain, in the Introduction, Results, and Discussion sections of our revised manuscript.  

      (2.9) Relatedly, it may be useful for the authors to consider a supplemental analysis that uses classic measures of inter-regional synchronization, e.g. the PLV, and compare to their PTE findings. They cite literature to suggest a metric like the PTE may be useful, but this hardly rules out the potential utility of investigating narrowband phase synchronization. 

      We thank the reviewer for this suggestion. We have now run new analyses based on PLV to examine phase synchronization between the AI and the DMN and FPN. However, we did not find a significant PLV for the interactions between the AI and DMN and FPN nodes for the different task periods compared to the resting baselines, as we note on page 13: 

      “Narrowband phase synchronization between the AI and the DMN and FPN during encoding and recall compared to resting baseline  

      We next directly compared the phase locking values (PLVs) (see Methods for details) between the AI and the PCC/precuneus and mPFC nodes of the DMN and also the dPPC and MFG nodes of the FPN for the encoding and the recall periods compared to resting baseline. However, narrowband PLV values did not significantly differ between the encoding/recall vs. rest periods, in any of the delta-theta (0.5-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), gamma (30-80 Hz), and high-gamma (80-160 Hz) frequency bands. These results indicate that PTE, rather than phase synchronization, more robustly captures the AI dynamic interactions with the DMN and the FPN.” 

      Please note that phase locking measures such as the PLV or coherence do not probe directed causal influences and cannot address how one region drives another. Instead, our study examined the direction of information flow between the AI and the DMN and FPN using robust estimators of the direction of information flow. PTE assesses with the ability of one time-series to predict future values of other time-series, thus estimating the time-delayed causal influences between the two time-series, whereas PLV or coherence can only estimate “instantaneous” phase synchronization, but not predict the future time-series. 

      Additionally, please note that the directed information flow from the AI to both the DMN and FPN were enhanced during the encoding and recall periods compared to resting state across all four experiments, in a new set of analyses that we have carried out in our revised manuscript. Specifically, we have now carried out our task versus rest comparison by using resting baseline epochs before the start of the entire session of the task periods, rather than our previously used rest epochs which were in between the task periods. These new results have now been included in the revised Results as we note on page 12:  

      “Enhanced information flow from the AI to the DMN and FPN during episodic memory processing, compared to resting-state baseline

      We next examined whether directed information flow from the AI to the DMN and FPN nodes during the memory tasks differed from the resting-state baseline. Resting-state baselines were extracted immediately before the start of the task sessions and the duration of task and rest epochs were matched to ensure that differences in network dynamics could not be explained by differences in duration of the epochs. Directed information flow from the AI to both the DMN and FPN were higher during both the memory encoding and recall phases and across the four experiments, compared to baseline in all but two cases (Figures S6, S7). These findings provide strong evidence for enhanced role of AI directed information flow to the DMN and FPN during memory processing compared to the resting state.”  

      References 

      Backus, A. R., Schoffelen, J. M., Szebényi, S., Hanslmayr, S., & Doeller, C. F. (2016). Hippocampal-Prefrontal Theta Oscillations Support Memory Integration. Curr Biol, 26(4), 450-457. doi:10.1016/j.cub.2015.12.048

      Bastos, A. M., Vezoli, J., Bosman, C. A., Schoffelen, J. M., Oostenveld, R., Dowdall, J. R., . . . Fries, P. (2015). Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron, 85(2), 390-401. doi:10.1016/j.neuron.2014.12.018

      Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., . . . Knight, R. T. (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science, 313(5793), 1626-1628. doi:10.1126/science.1128115

      Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends Cogn Sci, 14(11), 506-515. doi:10.1016/j.tics.2010.09.001

      Chen, L., Wassermann, D., Abrams, D. A., Kochalka, J., Gallardo-Diez, G., & Menon, V. (2019). The visual word form area (VWFA) is part of both language and attention circuitry. Nat Commun, 10(1), 5601. doi:10.1038/s41467-019-13634-z

      Clouter, A., Shapiro, K. L., & Hanslmayr, S. (2017). Theta Phase Synchronization Is the Glue that Binds Human Associative Memory. Curr Biol, 27(20), 3143-3148.e3146. doi:10.1016/j.cub.2017.09.001

      Crone, N. E., Boatman, D., Gordon, B., & Hao, L. (2001). Induced electrocorticographic gamma activity during auditory perception. Brazier Award-winning article, 2001. Clin Neurophysiol, 112(4), 565-582. doi:10.1016/s1388-2457(00)00545-9

      Daitch, A. L., & Parvizi, J. (2018). Spatial and temporal heterogeneity of neural responses in human posteromedial cortex. Proc Natl Acad Sci U S A, 115(18), 4785-4790. doi:10.1073/pnas.1721714115

      Das, A., de Los Angeles, C., & Menon, V. (2022). Electrophysiological foundations of the human default-mode network revealed by intracranial-EEG recordings during restingstate and cognition. Neuroimage, 250, 118927. doi:10.1016/j.neuroimage.2022.118927

      Das, A., & Menon, V. (2020). Spatiotemporal Integrity and Spontaneous Nonlinear Dynamic Properties of the Salience Network Revealed by Human Intracranial Electrophysiology: A Multicohort Replication. Cereb Cortex, 30(10), 5309-5321. doi:10.1093/cercor/bhaa111

      Das, A., & Menon, V. (2021). Asymmetric Frequency-Specific Feedforward and Feedback Information Flow between Hippocampus and Prefrontal Cortex during Verbal Memory Encoding and Recall. J Neurosci, 41(40), 8427-8440. doi:10.1523/jneurosci.080221.2021

      Das, A., & Menon, V. (2022). Replicable patterns of causal information flow between hippocampus and prefrontal cortex during spatial navigation and spatial-verbal memory formation. Cereb Cortex, 32(23), 5343-5361. doi:10.1093/cercor/bhac018

      Das, A., & Menon, V. (2023). Concurrent- and after-effects of medial temporal lobe stimulation on directed information flow to and from prefrontal and parietal cortices during memory formation. J Neurosci, 43(17), 3159-3175. doi:10.1523/jneurosci.1728-22.2023

      Edwards, E., Soltani, M., Deouell, L. Y., Berger, M. S., & Knight, R. T. (2005). High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. J Neurophysiol, 94(6), 4269-4280. doi:10.1152/jn.00324.2005

      Ekstrom, A. D., Caplan, J. B., Ho, E., Shattuck, K., Fried, I., & Kahana, M. J. (2005). Human hippocampal theta activity during virtual navigation. Hippocampus, 15(7), 881-889. doi:10.1002/hipo.20109

      Ekstrom, A. D., & Watrous, A. J. (2014). Multifaceted roles for low-frequency oscillations in bottom-up and top-down processing during navigation and memory. Neuroimage, 85 Pt 2, 667-677. doi:10.1016/j.neuroimage.2013.06.049

      Engel, A. K., & Fries, P. (2010). Beta-band oscillations--signalling the status quo? Curr Opin Neurobiol, 20(2), 156-165. doi:10.1016/j.conb.2010.02.015

      Foster, B. L., Rangarajan, V., Shirer, W. R., & Parvizi, J. (2015). Intrinsic and task-dependent coupling of neuronal population activity in human parietal cortex. Neuron, 86(2), 578590. doi:10.1016/j.neuron.2015.03.018

      Gonzalez, A., Hutchinson, J. B., Uncapher, M. R., Chen, J., LaRocque, K. F., Foster, B. L., . . . Wagner, A. D. (2015). Electrocorticography reveals the temporal dynamics of posterior parietal cortical activity during recognition memory decisions. Proc Natl Acad Sci U S A, 112(35), 11066-11071. doi:10.1073/pnas.1510749112

      Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Crossspectral Methods. Econometrica, 37(3), 424-438. doi:10.2307/1912791

      Griffiths, B. J., Martín-Buro, M. C., Staresina, B. P., & Hanslmayr, S. (2021). Disentangling neocortical alpha/beta and hippocampal theta/gamma oscillations in human episodic memory formation. Neuroimage, 242, 118454. doi:10.1016/j.neuroimage.2021.118454

      Guderian, S., & Düzel, E. (2005). Induced theta oscillations mediate large-scale synchrony with mediotemporal areas during recollection in humans. Hippocampus, 15(7), 901-912. doi:10.1002/hipo.20125

      Guderian, S., Schott, B. H., Richardson-Klavehn, A., & Düzel, E. (2009). Medial temporal theta state before an event predicts episodic encoding success in humans. Proc Natl Acad Sci U S A, 106(13), 5365-5370. doi:10.1073/pnas.0900289106

      Helfrich, R. F., & Knight, R. T. (2016). Oscillatory Dynamics of Prefrontal Cognitive Control. Trends Cogn Sci, 20(12), 916-930. doi:10.1016/j.tics.2016.09.007

      Hillebrand, A., Tewarie, P., van Dellen, E., Yu, M., Carbo, E. W., Douw, L., . . . Stam, C. J. (2016). Direction of information flow in large-scale resting-state networks is frequencydependent. Proc Natl Acad Sci U S A, 113(14), 3867-3872. doi:10.1073/pnas.1515657113

      Jeffreys, H. (1998). The Theory of Probability (3rd ed.). Oxford, England: Oxford University Press.

      Kwon, H., Kronemer, S. I., Christison-Lagay, K. L., Khalaf, A., Li, J., Ding, J. Z., . . . Blumenfeld, H. (2021). Early cortical signals in visual stimulus detection. Neuroimage, 244, 118608. doi:10.1016/j.neuroimage.2021.118608

      Lachaux, J. P., George, N., Tallon-Baudry, C., Martinerie, J., Hugueville, L., Minotti, L., . . . Renault, B. (2005). The many faces of the gamma band response to complex visual stimuli. Neuroimage, 25(2), 491-501. doi:10.1016/j.neuroimage.2004.11.052

      Lobier, M., Siebenhühner, F., Palva, S., & Matias, P. J. (2014). Phase transfer entropy: A novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions. Neuroimage, 85, 853-872. doi:10.1016/j.neuroimage.2013.08.056

      Ly, A., Etz, A., Marsman, M., & Wagenmakers, E. J. (2019). Replication Bayes factors from evidence updating. Behav Res Methods, 51(6), 2498-2508. doi:10.3758/s13428-0181092-x

      Mainy, N., Kahane, P., Minotti, L., Hoffmann, D., Bertrand, O., & Lachaux, J. P. (2007). Neural correlates of consolidation in working memory. Hum Brain Mapp, 28(3), 183-193. doi:10.1002/hbm.20264

      Miller, K. J., Leuthardt, E. C., Schalk, G., Rao, R. P., Anderson, N. R., Moran, D. W., . . . Ojemann, J. G. (2007). Spectral changes in cortical surface potentials during motor movement. J Neurosci, 27(9), 2424-2432. doi:10.1523/jneurosci.3886-06.2007

      Miller, K. J., Weaver, K. E., & Ojemann, J. G. (2009). Direct electrophysiological measurement of human default network areas. Proceedings of the National Academy of Sciences, 106(29), 12174-12177. doi:10.1073/pnas.0902071106

      Nuzzo, R. L. (2017). An Introduction to Bayesian Data Analysis for Correlations. Pm r, 9(12), 1278-1282. doi:10.1016/j.pmrj.2017.11.003

      Ray, S., Crone, N. E., Niebur, E., Franaszczuk, P. J., & Hsiao, S. S. (2008). Neural correlates of high-gamma oscillations (60-200 Hz) in macaque local field potentials and their potential implications in electrocorticography. J Neurosci, 28(45), 11526-11536. doi:10.1523/jneurosci.2848-08.2008

      Sederberg, P. B., Schulze-Bonhage, A., Madsen, J. R., Bromfield, E. B., Litt, B., Brandt, A., & Kahana, M. J. (2007). Gamma oscillations distinguish true from false memories. Psychol Sci, 18(11), 927-932. doi:10.1111/j.1467-9280.2007.02003.x

      Tallon-Baudry, C., Bertrand, O., Hénaff, M. A., Isnard, J., & Fischer, C. (2005). Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cereb Cortex, 15(5), 654-662. doi:10.1093/cercor/bhh167

      Watrous, A. J., Tandon, N., Conner, C. R., Pieters, T., & Ekstrom, A. D. (2013). Frequencyspecific network connectivity increases underlie accurate spatiotemporal memory retrieval. Nature Neuroscience, 16(3), 349-356. doi:10.1038/nn.3315

      Wetzels, R., & Wagenmakers, E. J. (2012). A default Bayesian hypothesis test for correlations and partial correlations. Psychon Bull Rev, 19(6), 1057-1064. doi:10.3758/s13423-0120295-x

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      (1) The introduction includes the following sentence: "CDH1 interacts with the APC/C during G1 and S-phase. On entering mitosis, CDK and polo kinases phosphorylate the APC/C and CDH1 to effect switching to CDC20." In fact, CDH1 is inactivated from late G1 to mid-mitosis as a result of phosphorylation by G1/S, S phase, and mitotic Cdk-cyclin complexes. Phosphorylation of the APC/C, not inactivation of CDH1, enables the switch to CDC20. 

      Thank you for this. We have corrected the text and include the Zachariae et al (1998) reference.

      (2) Supplementary Table 1 provides a long list of APC/C sites phosphorylated in vitro by Cdk2-cyclin A-Cks2 and Plk1 (note that the main text states only Cdk2-cyclin A). It seems likely that the high amount of kinase in these reactions has led to minor levels of phosphorylation at many of these sites. Although I realize that these results are peripheral to the central findings of the paper, it would be helpful to see confidence scores or other evidence of significance for the indicated phosphopeptides. Perhaps the Cdk consensus sites could be marked on the table in some way, and a description of the MS methods could be provided in the Methods section. 

      We have implemented this useful suggestion to highlight the Cdk consensus sites. Unfortunately we don’t have confidence scores of significance of the indicated phosphopeptides.

      Reviewer #2 (Recommendations For The Authors): 

      (1) My only real concern is with the phosphorylated APC/C structure. The authors provide a table that lists a bunch of phosphorylation sites detected before and after in vitro phosphorylation by purified kinases, and in the purified protein gels, some mobility shifts that would be consistent with significant phosphorylation are observed for some of the subunits. However, the mass spec data are non-quantitative. It would be more useful to provide estimated stoichiometries for the various phosphorylation sites to help support the expectation that the complex is heavily phosphorylated and that the structure presented actually represents hyperphosphorylated APC/C. No evidence of phosphorylated amino acids is noted in the cryo-EM structures, presumably because resolution is not high enough and/or there is too much flexibility in these areas. Given that hyperphosphorylation does not affect enzymatic activity and has very little impact on the complex structure, it seems important to provide readers with additional confidence that the complex is indeed heavily phosphorylated and that the complex isolated from insect cells is not heavily phosphorylated. Since the complex is purified from a eukaryotic expression system it seems formally possible that key phosphorylation sites could already be present due to the activity of endogenous Cdk or other kinases in insect cells and, indeed, quite a few sites are noted to exist even without in vitro phosphorylation. Providing stoichiometry of these sites might help address the likelihood that key regulatory sites are already occupied upon purification. It might at least be worth addressing this in the text. 

      The suggestion to comment on the level of phosphorylation of the ‘unphosphorylated’ and Cdk-treated ‘phosphorylated’ APC/C is an excellent idea. The text has been modified on page 9 to include such a discussion. Unfortunately we don’t have quantification of the stoichiometry of the phospho-sites.

      (2) On a minor note, in the results text the authors mention that cyclin A-Cdk2 is used for in vitro phosphorylation, but in the methods, it states both cyclin A-Cdk2 and Plk1 are used. This should be edited for consistency. 

      Thank you for noticing this. Now corrected.

      (3) Another minor issue - the authors state in the introduction (third paragraph) that "CDH1 interacts with the APC/C during G1 and S-phase". Actually, Cdh1 becomes phosphorylated and APC/CCdh1 inactivated at S-phase onset, both in S. cerevisiae and humans. In fact, phosphorylation of Cdh1 is an important driver of the irreversible transition from G1 to S-phase. This statement should be corrected. 

      Thank you for noticing this. This error has been corrected and include the Zachariae et al (1998) reference.

      Reviewer #3 (Recommendations For The Authors):

      To be addressed in a revised manuscript: 

      (1) The authors should cite and discuss Cole Ferguson et al., Mol Cell 2022. This study describes the loss of APC7 in a human disease and provides a detailed structural and biochemical examination of the effects of APC7 loss on human APC/C. Given that much of our understanding of APC7 comes from this work, it should be highlighted in the introduction and discussed in depth in light of the new work on S. cerevisiae APC/C. 

      Thank you for mentioning this interesting paper. We discuss its main findings in the ‘Discussion’. Given the paper shows that deletion of APC7 has no discernible effect on the stability of human APC/C, we have deleted the discussion that APC7 stabilises human APC/C analogous to the stabilisation conferred on S. cerevisiae APC/C by APC9.

      (2) There are multiple cases in the manuscript where the text was referring to the human complex but APC/CCdh1:Hsl1 was written, including labeling of Figure 4b. It would be useful to consider nomenclature considering that Hsl1 is a yeast protein. 

      Thank you for noticing this. We mistakenly wrote ‘Hsl1’ instead of ‘Emi1’. Now corrected.

      (3) The authors should tone down claims regarding their discoveries absence of APC7 in S. cerevisiae. The absence of APC7 has been known for nearly two decades and the authors confirm this {Pan et al.l 2007, Journal of Cell Science) and then show the structure. 

      We agree with this as explained in response to point 1.

      (4) On page 7, the authors are writing about the four helices mediating the APC/C-CDH1 interactions but list only 3. 

      We have revised the sentence to clarify this point.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Thank you for your careful reviews of our manuscript. This revision is mainly aimed at addressing some minor errors in the text, English writing, grammar, etc. The details are as follows:

      (1) We added the information for the sntB-HA strain in table 1.

      (2) We added the primer information for the construction of sntB-HA strain in table 2.

      (3) Some errors in English writing, grammar. Please see the revised manuscript with markers.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The study used root tips from semi-hydroponic tea seedlings. The strategy followed sequential steps to draw partial conclusions.

      Initially, protoplasts obtained from root tips were processed for scRNA-seq using the 10x Genomics platform. The sequencing data underwent pre-filtering at both the cell and gene levels, leading to 10,435 cells. These cells were then classified into eight clusters using t-SNE algorithms. The present study scrutinised cell typification through protein sequence similarity analysis of homologs of cell type marker genes. The analysis was conducted to ensure accuracy using validated genes from previous scRNA-seq studies and the model plant Arabidopsis thaliana. The cluster cell annotation was confirmed using in situ RT-PCR analyses. This methodology provided a comprehensive insight into the cellular differentiation of the sample under study. The identified clusters, spanning 1 to 8, have been accurately classified as xylem, epidermal, stem cell niche, cortex/endodermal, root cap, cambium, phloem, and pericycle cells.

      Then, the authors performed a pseudo-time analysis to validate the cell cluster annotation by examining the differentiation pathways of the root cells. Lastly, they created a differentiation heatmap from the xylem and epidermal cells and identified the biological functions associated with the highly expressed genes.

      Upon thoroughly analysing the scRNA-seq data, the researchers delved into the cell heterogeneity of nitrate and ammonium uptake, transport, and nitrogen assimilation into amino acids. The scRNA-seq data was validated by in situ RT-PCR. It allows the localisation of glutamine and alanine biosynthetic enzymes along the cell clusters and confirms that both constituent the primary amino acid metabolism in the root. Such investigation was deemed necessary due to the paramount importance of these processes in theanine biosynthesis since this molecule is synthesised from glutamine and alanine-derived ethylamine.

      Afterwards, the authors analysed the cell-specific expression patterns of the theanine biosynthesis genes, combining the same molecular tools. They concluded that theanine biosynthesis is more enriched in cluster 8 "pericycle cells" than glutamine biosynthesis (Lines 271-272). However, the statement made in Line 250 states that the highest expression levels of genes responsible for glutamine biosynthesis were observed in Clusters 1, 3, 4, 6, and 8, leading to an unclear conclusion.

      Thank you for your interest in and feedback on the paper. We have made revisions to the manuscript as per your suggestions. We would like to emphasize that the precursors of theanine biosynthesis are alanine-derived ethylamine and glutamate, not glutamine. Furthermore, in terms of the intermediates, only ethylamine is specific to the theanine biosynthetic pathway, as glutamate is the primary product of nitrogen assimilation and serves as a precursor for the biosynthesis of amino acids, proteins, chlorophyll, and many secondary metabolites.

      In this study, we observed a high expression of genes encoding enzymes involved in the glutamate biosynthetic pathway (CsGOGATs and CsGDHs) across all 8 clusters, with particularly strong expression in cluster 1, 3, 4, 6, and 8 (Figure 4D and 5B). However, the gene encoding CsTHSI responsible for catalyzing theanine biosynthesis from glutamate and ethylamine was determined to be more enriched in cluster 8 (Figure 5B and 5C). Therefore, we concluded that theanine biosynthesis was more enriched in cluster 8, whereas glutamate biosynthesis was more broadly active in clusters 1, 3, 4, 6 and 8.

      The regulation of theanine biosynthesis by the MYB transcription factor family is well-established. In particular, CsMYB6, a transcription factor expressed specifically in roots, has been  to promote theanine biosynthesis by binding to the promoter of the TSI gene responsible for theanine synthesis. However, their findings indicate that CsMYB6 expression is present in Cluster 3 (SCN), Cluster 6 (cambium cells), and Cluster 1 (xylem cells) but not in Cluster 8 (pericycle cells), which is known for its high expression of CsTSI. Similarly, their scRNA-seq data indicated that CsMYB40 and CsHHO3, which activate and repress CsAlaDC expression, respectively, did not show high expression in Cluster 1 (the cell cluster with high CsAlaDC expression). Based on these findings, the authors hypothesised that transcription factors and target genes are not necessarily always highly expressed in the same cells. Nonetheless, additional evidence is essential to substantiate this presumption.

      Thank you for your advice. We fully agree that additional evidence is essential to support the presumption that transcription factors and target genes are not always highly expressed in the same cells. Therefore, in this study, we identified another transcription factor, CsLBD37, which was characterized to negatively regulate CsAlaDC expression in response to nitrogen levels. Consistent with our presumption, the expression of CsLBD37 was not enriched in cluster 1, where the expression of CsAlaDC was primarily enriched (Figure 5B and 6D; Line 365).

      To further identify supporting evidence, we also analyzed the expression of some transcription factors and their target genes in the model plant Arabidopsis, using published single cell RNA-seq data (Ryu et al., 2019; Wendrich et al., 2020; Zhang et al., 2019; Denyer et al., 2019; Jean-Baptiste et al. 2019; Shulse et al., 2019; Shahan et al., 2022) and database (Root Cell Atlas, https://rootcellatlas.org/; BAR, https://bar.utoronto.ca/#GeneExpressionAndProteinTools). Similar to the situation in tea plants, the regulators were not exactly the same as the cell types in which their target genes were highly expressed. For example, AtARF7 and AtARF19 were highly expressed in the cortex and stele, respectively, whereas their target genes AtLBD16 and AtLBD29 were highly expressed in endodermal cells (Okushima et al.,2007; Supplemental figure 8B and 8C; Line 312-325 and Line 525-526); AtPHR1 was highly expressed in root epidermal cells and pericyte cells, but its target gene AtF3’H was highly expressed in the cortex and AtRALF23 was highly expressed in xylem cells (Liu et al., 2022; Tang et al., 2022; Supplemental figure 8B and 8C; Line 322-327 and Line 527-530).

      At the same time, we discussed that we cannot rule out the possibility of transcription factors regulating their target genes in the same cell type and both being highly expressed. One of the reasons is that these theanine-associated genes are promiscuous, having many target genes and regulate multiple biological processes in tea plants. We have only shown that high expression in the same cell type is not a necessary condition (Line 534-554). We strongly agree with the reviewer's opinion that more evidence is needed to illustrate this model in the future.

      Reference:

      Denyer, T. et al. (2019). Spatiotemporal developmental trajectories in the arabidopsis root revealed using high-throughput single-cell RNA sequencing. Dev Cell. 48:840-852.e5.

      Liu, Z. et al. (2022). PHR1 positively regulates phosphate starvation-induced anthocyanin accumulation through direct upregulation of genes F3'H and LDOX in Arabidopsis. Planta. 256:42.

      Okushima, Y. et al. (2007). ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell. 19:118-30.

      Ryu, K. H., Huang, L., Kang, H. M. & Schiefelbein, J. (2019). Single-cell RNA sequencing resolves molecular relationships among individual plant cells. Plant Physiol. 179:1444-1456.

      Shahan, R. et al. (2022). A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants. Dev Cell. 57:543-560.e9.

      Shulse, C. et al. (2019). High-throughput single-cell transcriptome profiling of plant cell types. Cell Rep. 27:2241-2247.e4.

      Tang, J. et al. (2022). Plant immunity suppression via PHR1-RALF-FERONIA shapes the root microbiome to alleviate phosphate starvation. EMBO J. 41:e109102.

      Wendrich, J.R., et al. (2020). Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions. Science. 370:eaay4970.

      Zhang, T. et al. (2019). A single-cell RNA sequencing profiles the developmental landscape of arabidopsis root. Mol Plant. 12:648-660.

      Lastly, the authors have discovered a novel transcription factor belonging to the Lateral Organ Boundaries Domain (LBD) family known as CsLBD37 that can co-regulate the synthesis of theanine and the development of lateral roots. The authors observed that CsLBD37 is located within the nucleus and can repress the CsAlaDC promoter's activity. To investigate this mechanism further, the authors conducted experiments to determine whether CsLBD37 can inhibit CsAlaDC expression in vivo. They achieved this by creating transiently CsLBD37-silenced or over-expression tea seedlings through antisense oligonucleotide interference and generation of transgenic hairy roots. Based on their findings, the authors hypothesise that CsLBD37 regulates CsAlaDC expression to modulate the synthesis of ethylamine and theanine.

      Additionally, the available literature suggests that the transcription factors belonging to the Lateral Organ Boundaries Domain (LBD) family play a crucial role in regulating the development of lateral roots and secondary root growth. Considering this, they confirmed that pericycle cells exhibit a higher expression of CsLBD37. A recent experiment revealed that overexpression of CsLBD37 in transgenic Arabidopsis thaliana plants led to fewer lateral roots than the wild type. From this observation, the researchers concluded that CsLBD37 regulates lateral root development in tea plants. I respectfully submit that the current conclusion may require additional research before it can be considered definitive.

      Further efforts should be made to investigate the signalling mechanisms that govern CsLBD37 expression to arrive at a more comprehensive understanding of this process. In the context of Arabidopsis lateral root founder cells, the establishment of asymmetry is regulated by LBD16/ASL18 and other related LBD/ASL proteins, as well as the AUXIN RESPONSE FACTORs (ARF7 and ARF19). This is achieved by activating plant-specific transcriptional regulators such as LBD16/ASL18 (Go et al., 2012, https://doi.org/10.1242/dev.071928). On the other hand, other downstream homologues of LBD genes regulated by cytokinin signalling play a role in secondary root growth (Ye et al., 2021, https://doi.org/10.1016/j.cub.2021.05.036). It is imperative to shed light on the hormonal regulation of CsLBD37 expression in order to gain a comprehensive understanding of its involvement in the morphogenic process.

      We are very grateful for your valuable suggestions and we fully agree with you. In an earlier study, we also observed a link between theanine metabolism, hormone metabolism and root development (Chen et al., 2022), but there is still insufficient evidence to fully characterize these links. In the current study, the focus was on the cell-specific theanine biosynthesis, transport and regulation, and we identified that CsLBD37 negatively regulates theanine biosynthesis. However, the upstream regulatory mechanism of CsLBD37 has not been addressed in this study. It is a pertinent question for future investigation as to how CsLBD37 is regulated in root development. We have included the following additional discussion in the revised manuscript: “Besides, it has been reported that LBD family TFs were regulated by, or interacted with, regulators of hormone pathways (e.g., ARFs) to regulate the process of root morphogenesis (Goh et al., 2012; Ye et al., 2021). Based on these findings, we speculated that CsLBD37 is likely regulated by, or interacts with, other proteins to form a complex to regulate root development or theanine biosynthesis.” (Line 573-576). At the same time, we revised the text “These results provided support for a model in which CsLBD37 plays a role in regulating lateral root development in tea plants” to “These findings suggested that CsLBD37 may play a role in regulating lateral root development in tea plant roots” (Line 401-402).

      Reference:

      Chen, T. et al. (2022). Theanine, a tea plant specific non-proteinogenic amino acid, is involved in the regulation of lateral root development in response to nitrogen status. Hortic. Res. 10:uhac267.

      Goh, T., Joi, S., Mimura, T. & Fukaki, H. (2012). The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins. Development 139:883-893.

      Ye, L. et al. (2021). Cytokinins initiate secondary growth in the Arabidopsis root through a set of LBD genes. Curr. Biol. 31:3365-3373.e3367.

      Strength:

      The manuscript showcases significant dedication and hard work, resulting in valuable insights that serve as a fundamental basis for generating knowledge. The authors skillfully integrated various tools available for this type of study and meticulously presented and illustrated every step involved in the survey. The overall quality of the work is exceptional, and it would be a valuable addition to any academic or professional setting.

      Weaknesses:

      In its current form, the article presents certain weaknesses that need to be addressed to improve its overall quality. Specifically, the authors' conclusions appear to have been drawn in haste without sufficient experimental data and a comprehensive discussion of the entire plant. It is strongly advised that the authors devote additional effort to resolving the abovementioned issues to bolster the article's credibility and dependability. This will ensure that the article is of the highest quality, providing readers with reliable and trustworthy information.

      Thank you for your feedback. We acknowledge that our experiments and data require further improvement. Currently, the genetic transformation of the tea plant remains a challenge, making it difficult to obtain sufficient in vivo evidence. Despite this situation, we have made every effort to obtain support for our conclusions based on the current situation and available technology. Indeed, additional studies will be performed once the impediment associated with genetic transformation of the tea plant has been resolved.

      Reviewer #2 (Public Review):

      Summary:

      In their manuscript, Lin et al. present a comprehensive single-cell analysis of tea plant roots. They measured the transcriptomes of 10,435 cells from tea plant root tips, leading to the identification and annotation of 8 distinct cell clusters using marker genes. Through this dataset, they delved into the cell-type-specific expression profiles of genes crucial for the biosynthesis, transport, and storage of theanine, revealing potential multicellular compartmentalization in theanine biosynthesis pathways. Furthermore, their findings highlight CsLBD37 as a novel transcription factor with dual regulatory roles in both theanine biosynthesis and lateral root development.

      Strengths:

      This manuscript provides the first single-cell dataset analysis of roots of the tea plants. It also enables detailed analysis of the specific expression patterns of the gene involved in theanine biosynthesis. Some of these gene expression patterns in roots were further validated through in-situ RT-PCR. Additionally, a novel TF gene CsLBD37's role in regulating theanine biosynthesis was identified through their analysis.

      Weaknesses:

      Several issues need to be addressed:<br /> (1) The annotation of single-cell clusters (1-8) in Figure 2 could benefit from further improvement. Currently, the authors utilize several key genes, such as CsAAP1, CsLHW, CsWAT1, CsIRX9, CsWOX5, CsGL3, and CsSCR, to annotate cell types. However, it is notable that some of these genes are expressed in only a limited number of cells within their respective clusters, such as CsAAP1, CsLHW, CsGL3, CsIRX9, and CsWOX5. It would be advisable to utilize other marker genes expressed in a higher percentage of cells or employ a combination of multiple marker genes for more accurate annotation.

      Thank you for your comments. In this study, we first utilized classical marker genes, such as CsWAT1 and CsPP2, to annotate cell types. The expression patterns of these marker genes were confirmed using in situ RT-PCR. Additionally, a combination of multiple marker genes was employed for cell type annotation. We also analyzed the top 10 cluster-enriched genes, in each cluster, and their homologous expression in Arabidopsis, populus, etc., to serve as a reference for cluster annotation (Figure 2D; Supplemental Figures 2-6; Supplemental data 3). Subsequently, differentiation trajectories of root cells were analyzed based on pseudo-time analyses, which aligned well with cell type annotation and further supported the reliability of our annotations through these combined methods.

      (2) Figure 3 could enhance clarity by displaying the trajectory of cell differentiation atop the UMAP, similar to the examples demonstrated by Monocle 3.

      Thanks for this advice. We have supplied the trajectory of cell differentiation atop the UMAP in the revised supplemental figure 7 (Line 185).

      (3) The identification of CsLBD37 primarily relies on bulk RNA-seq data. The manuscript could benefit from elaborating on the role of the single-cell dataset in this context.

      Thanks for your comments. In this study, we determined that CsTSI was highly expressed in cluster 8, but its regulator CsMYB6 was highly expressed in cluster 3, cluster 6 and cluster 1 (Line 301-304). Thus, target genes and their regulators seem not to always be highly expressed in the same cell cluster. A similar situation was also observed in terms of CsAlaDC transcriptional regulation (Line 305-311). Based on these findings, we hypothesized that, for the regulation of theanine biosynthesis, it is not necessary for transcription factors and target genes to always be highly expressed in the same cells. Thus, taking the transcriptional regulation of CsAlaDC as an example, we next analyzed the TFs that were co-expressed with CsAlaDC to test this notion. We used scRNA-seq data to screen for genes that were not highly co-expressed with CsAlaDC, such as CsLBD37, to test our hypothesis (Line 338-340 and Line 365).

      (4) The manuscript's conclusions predominantly rely on the expression patterns of key genes. This reliance might stem from the inherent challenges of tea research, which often faces limitations in exploring molecular mechanisms due to the lack of suitable genetic and molecular methods. The authors may consider discussing this point further in the discussion section.

      Thanks for your suggestions and we totally agree. We discussed this point in the discussion section, “In some non-model plants, including tea, transgenic technologies are not currently available and, hence, we used in situ RNA hybridization to establish the location(s) for gene expression. In some studies, isolation of different cell types was combined with q-RT-PCR to detect cell-type marker gene expression (Wang et al., 2022). However, this approach has two limitations in that it cannot display the gene location directly and has only low resolution”, “After numerous trials, we were able to optimize in situ RT-PCR assays (detailed in the Methods), which enabled a cell-specific characterization of gene expression in tea plant root cells, prior to establishing a genetic transformation system for tea…we note the challenge associated with weak calling of homologous marker genes…” (Line 431-444).

      Reviewer #3 (Public Review):

      Summary:

      Lin et al., performed a scRNA-seq-based study of tea roots, as an example, to elucidate the biosynthesis and regulatory processes for theanine, a root-specific secondary metabolite, and established the first map of tea roots comprised of 8 cell clusters. Their findings contribute to deepening our understanding of the regulation of the synthesis of important flavor substances in tea plant roots. They have presented some innovative ideas.

      It is notable that the authors - based on single-cell analysis results - proposed that TFs and target genes are not necessarily always highly expressed in the same cells. Many of the important TFs they previously identified, along with their target genes (CsTSI or CsAlaDC), were not found in the same cell cluster. Therefore, they proposed a model in which the theanine biosynthesis pathway occurs via multicellular compartmentation and does not require high co-expression levels of transcription factors and their target genes within the same cell cluster. Since it is not known whether the theanine content is absolutely high in the cell cluster 1 containing a high CsAlaDC expression level (due to the lack of cell cluster theanine content determination, which may be a current technical challenge), it is difficult to determine whether this non-coexpressing cell cluster 1 is a precise regulatory mechanism for inhibiting theanine content in plants.

      Thank you for your comments. We concur with your assessment that the accumulation level of the spatial distribution of theanine may affect the expression of these genes. However, as you said, due to some technical limitations, we are not currently in a position to verify this distribution of theanine at the root cell spatial level. The spatial distribution of theanine in the roots can be affected by transport processes. So, it is likely that the cell types in which theanine is distributed do not exactly correspond to the cell types in which theanine is being synthesized (Line 491-493). We will make efforts in this direction to characterize the spatial distribution of theanine using techniques such as spatial metabolome and mass spectrometry imaging in the future (Line 582-586).

      In fact, there are a small number of cells where TFs and CsAlaDC are simultaneously highly expressed, but the quantity is insufficient to form a separate cluster. However, these few cells may be sufficient to meet the current demands for theanine synthesis. This possibility may better align with some previous experiments and validation results in this study. Moreover, I feel that under normal conditions, plants may not mobilize a large number of cells to synthesize a particular substance. Perhaps, cell cluster 1 is actually a type of cell that inhibits the synthesis of theanine, aiming to prevent excessive theanine production? I do not oppose the model proposed by the author, but I feel there is a possibility as I mentioned. If it seems reasonable, the author may consider adding it to an appropriate position in the discussion.

      Thanks a lot for your suggestion. We agree that tea plant roots likely have mechanisms aiming to prevent excessive theanine production.We have improved our discussion according your suggestion. 

      Theanine is the most abundant free amino acid in the tea plant, accounting for 1-2% of leaf dry weight (Line 62-63), and can even reach 4-6% in the root, accounting for more than 60%-80% of the total free amino acids (Yang et al., 2020). This means that theanine biosynthesis indeed requires the root cells to consume significant resources and energy. Thus, theanine biosynthesis needs to be controlled by a series of regulation mechanisms, which would function as a “brake”. In a previous study, we suggested that CsMYB40 and CsHHO3 bound to the CsAlaDC promoter to regulate theanine synthesis, at the transcription level, in “accelerator” or “brake” mode to maintain stable synthesis of theanines (Guo et al., 2022). At a posttranslational level, CsTSI and CsAlaDC are modified by ubiquitination, which is probably involved in the degradation of these proteins in response to N levels (Wang et al., 2021). In the current study, we discovered a novel “brake” in the form of spatial separation. The differential expression of AlaDC and TSI suggests that ethylamine and theanine are synthesized in separate different cell types, allowing cell compartmentalization of the synthetic precursor and the product to form multicellular compartmentation of metabolites (Line 270-280). On the one hand, compartmentalization may effectively prevent interference between secondary metabolic pathways, whereas compartmentalization could also be used as a way of metabolic regulation to avoid excessive, or inhibition of, theanine synthesis (Line 483-488).

      Reference

      Guo, J. et al. (2022). Potential “accelerator” and “brake” regulation of theanine biosynthesis in tea plant (Camellia sinensis). Hortic. Res. 9:uhac169.

      Yang, T. et al. (2020). Transcriptional regulation of amino acid metabolism in response to nitrogen deficiency and nitrogen forms in tea plant root (Camellia sinensis L.). Sci. Rep. 10:6868.

      Wang, Y. et al. (2021). Nitrogen-Regulated Theanine and Flavonoid Biosynthesis in Tea Plant Roots: Protein-Level Regulation Revealed by Multiomics Analyses. J Agric Food Chem. 69:10002-10016.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      (1) The dataset, including the raw sequencing data and processed files is *.Rdata and should be deposited in a public database for accessibility and reproducibility.

      Thanks for your comments and advice. The raw data and processed files have been submitted to the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE267845 (Line 763-764).

      (2) Providing the code for the primary analysis steps in a publicly accessible location would facilitate others in replicating the analysis.

      Thank you for your comment. Unfortunately, we have been unable to obtain permission to publicly release a portion of the primary analysis code due to its intellectual property belonging to OE Corporation.

      (3) Enhancements in the writing of the manuscript are recommended for improved clarity and coherence.

      Thanks. We revised our writing to improve the manuscript clarity and coherence.

      Reviewer #3 (Recommendations For The Authors):

      Suggestions for revisions:

      (1) Introduction and Discussion, there are too many paragraphs, even one sentence is a paragraph. I suggest that all the sentences in Introduction be merged into three big paragraphs. For example, lines 30-57 become the first paragraph, lines 58-87 become the second paragraph, lines 88-106 become the third paragraph, and the authors can merge them reasonably according to the content. The discussion part is also suggested to be divided into several paragraphs according to the focus, and perhaps it is more appropriate to give a title to each paragraph.

      Thank you for your comments and suggestions. We have merged several paragraphs and added a title to each paragraph in the Discussion section (“Cell cluster annotation of non-transgenic plants” in line 428; “Nitrogen metabolism and transport of tea plant root at the single cell level” in line 445; “Multicellular compartmentation of theanine metabolism and transport” in line 469; “The regulation of theanine biosynthesis at the single cell level” in line 517; “Cross-talk between theanine metabolism and root development” in line 554).

      (2) Tea is a food, while tea tree is a substance. It should be tea plant root instead of tea root, it is suggested to revise this issue in the whole text.

      Thanks. We corrected “tea root” to “tea plant root” in this manuscript.

      (3) Lines 35-43, this sentence is too long, suggest each example should be one sentence.

      Thanks. We revised this sentence into short sentences. We changed this part to “Root-synthesized flavonoids regulate root tip growth through affecting auxin transport and metabolism (Santelia et al., 2008; Wan et al., 2018). Legume roots secrete flavonoids as signaling agents to attract symbiotic bacteria, such as Rhizobium for nitrogen fixation (Hartman et al., 2017). In Abies nordmanniana, volatile organic compounds (e.g., propanal, g-nonalactone, and dimethyl disulfide) function to recruit certain bacteria or fungi, such as Paenibacillus. Paenibacillus sp. S37 produces high quantities of indole-3-acetic acid that can then promote plant root growth (Garcia-Lemos et al., 2020; Schulz-Bohm et al., 2018).” (Line 35-42)

      (4) Line 510 is missing a reference.

      Thank you - we have added the reference in the revised manuscript (Line 549 and Line 840-842).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This manuscript addresses two main issues:

      (i) do MAPKs play an important role in SAC regulation in single-cell organism such as S. pombe?

      (ii) what is the nature of their involvement and what are their molecular targets?

      The authors have extensively used the cold-sensitive β-tubulin mutant to activate or inactivate SAC employing an arrest-release protocol. Localization of Cdc13 (cyclin B) to the SPBs is used as a readout for the SAC activation or inactivation. The roles of two major MAPK pathways i.e. stress-activated pathway (SAP) and cell integrity pathway (CIP), have been explored in this context (with CIP more extensively than SAP). sty1Δ or pmk1Δ mutants were used to inactivate the SAP or CIP pathways and wis1DD or pek1DD expression was utilized to constitutively activate these pathways, respectively. Lowering of Slp1Cdc20 abundance (by phosphorylation of Slp1-Thr 480) is revealed as the main function of MAPK to augment the robustness of the spindle assembly checkpoint.

      Strengths:

      The experiments are generally well-conducted, and the results support the interpretations in various sections. The experimental data clearly supports some of the key conclusions:

      (1) While inactivation of SAP and CIP compromises SAC-imposed arrest, their constitutive activation delays the release from the SAC-imposed arrest.

      (2) CIP signaling, but not SAP signaling, attenuates Slp1Cdc20 levels.

      (3) Pmk1 and Cdc20 physically interact and Pmk1-docking sequences in Slp1 (PDSS) are identified and confirmed by mutational/substitution experiments.

      (4) Thr480 (and also S76) is identified as the residue phosphorylated by Pmk1. S28 and T31 are identified as Cdk1 phosphorylation sites. These are confirmed by mutational and other related analyses.

      (5) Functional aspects of the phosphorylation sites have been elucidated to some extent: (a) Phosphorylation of Slp1-T480 by Pmk1 reduces its abundance thereby augmenting the SAC-induced arrest; (b) S28, T31 (also S59) are phosphorylated by Cdk1; (c) K472 and K479 residues are involved in ubiquitylation of Slp1.

      Weaknesses:

      (1) Cdc13 localization to SPBs has been used as a readout for SAC activation/inactivation throughout the manuscript. However, the only image showing such localization (Figure 1C) is of poor quality where the Cdc13 localization to SPBs is barely visible. This should be replaced by a better image.

      We have replaced those pictures with a new set of representative images, which show clear presence or absence of SPB-localized Cdc13-GFP.

      (2) The overlapping error bars in Cdc13-localization data in some figures (for instance Figure 3E and 4H) make the effect of various mutations on SAC activation/inactivation rather marginal. In some of these cases, Western-blotting data support the authors' conclusions better.

      We agree that the overlapping error bars may look ambiguous in most figures showing time course curves, this is due to the fact that all these data from a group of strains have to be better presented in a single graph to more directly compare the potential effects. We have been fully aware of the drawback of these figure representations, that is why we always presented the data corresponding two major time points (0 and 50 min after release) from all time course analyses in an alternative way, namely using individual histograms to represent the data from each strain with means of repeats, absolute values, error bars and p values clearly labeled. In particular, the data from time point 0 min can provide important information on the SAC activation efficiency. Generally, we placed those data and graphs in corresponding supplemental figures, such as: Figure 1-figure supplement 1C, Figure 1-figure supplement 2D, Figure 3-figure supplement 3, Figure 4-figure supplement 6B, Figure 5-figure supplement 1, and Figure 6-figure supplement 2.

      In addition, as you have noticed, almost all time course data were backed up by our Western blotting data.

      (3) This specific point is not really a weakness but rather a loose end:

      One of the conclusions of this study is that MAPK (Pmk1) contributes to the robustness of SAC-induced arrest by lowering the abundance of Slp1Cdc20. The authors have used pmk1Δ or constitutively activating the MAPK pathways (Pek1DD) and documented their effect on SAC activation/inactivation dynamics. It is not clear if SAC activation also leads to activation of MAPK pathways for them to contribute to the SAC robustness. To tie this loose end, the author could have checked if the MAPK pathway is also activated under the conditions when SAC is activated. Unless this is shown, one must assume that the authors are attributing the effect they observe to the basal activity of MAPKs.

      We agree with your concern. We have followed your suggestion and performed further experiments. Please see our more detailed response to your point #ii(a) in your “Recommendations for the authors”.

      (4) This is also a loose end:

      The authors show that activation of stress pathways (by addition of KCl for instance) causes phosphorylation-dependent Slp1Cdc20 downregulation (Figure 6) under the SAC-activating condition. Does activation of the stress pathway cause phosphorylation-dependent Slp1Cdc20 downregulation under the non-SAC-activation condition or does it occur only under the SAC-activating condition?

      We agree with your concern. We have followed your suggestion and performed further experiments. Please see our more detailed response to your point #ii(b) in your “Recommendations for the authors”.

      (5) Although the authors have gone to some length to identify S28 and T31 (also S59) as phosphorylation sites for Cdk1, their functional significance in the context of MAPK involvement is not yet clear. Perhaps it is outside the scope of this study to dig deeper into this aspect more than the authors have.

      Based on our data from Mass spectrometry analysis, mutational analysis, in vitro and in vivo kinase assays using phosphorylation site-specific antibodies, we confirmed that at least S28 and T31 are Cdk1 phosphorylation sites. From our time course analysis of these phosphorylation-deficient mutants, it seems the mechanisms of Slp1 activity or protein abundance regulated by Cdk1 or MAPK are quite different. How these two or even more kinases coordinate to control Slp1 activity during APC/C activation is one very interesting issue to be investigated, however, as you have realized, it is indeed beyond the scope of our current study.

      (6) In its current state, the Discussion section is quite disjointed. The first section "Involvement of MAPKs in cell cycle regulation" should be in the Introduction section (very briefly, if at all). It certainly does not belong to the Discussion section. In any case, the Discussion section should be more organized with a better flow of arguments/interpretations.

      We have re-organized our “Discussion” section. Please see our more detailed response to your point #iii in your “Recommendations for the authors”.

      Reviewer #2 (Public Review):

      Summary:

      This study by Sun et al. presents a role for the S. pombe MAP kinase Pmk1 in the activation of the Spindle Assembly Checkpoint (SAC) via controlling the protein levels of APC/C activator Cdc20 (Slp1 in S. pombe). The data presented in the manuscript is thorough and convincing. The authors have shown that Pmk1 binds and phosphorylates Slp1, promoting its ubiquitination and subsequent degradation. Since Cdc20 is an activator of APC/C, which promotes anaphase entry, constitutive Pmk1 activation leads to an increased percentage of metaphase-arrested cells. The authors have used genetic and environmental stress conditions to modulate MAP kinase signalling and demonstrate their effect on APC/C activation. This work provides evidence for the role of MAP kinases in cell cycle regulation in S. pombe and opens avenues for exploration of similar regulation in other eukaryotes.

      Strengths:

      The authors have done a very comprehensive experimental analysis to support their hypothesis. The data is well represented, and including a model in every figure summarizes the data well.

      Weaknesses:

      As mentioned in the comments, the manuscript does not establish that MAP kinase activity leads to genome stability when cells are subjected to genotoxic stressors. That would establish the importance of this pathway for checkpoint activation.

      We understand your concern. We have followed your suggestion and performed further experiments to examine whether the absence of Pmk1 causes chromosome segregation defects. Please see our more detailed response to your point #5 in your “Recommendations for the authors”.

      Recommendations for the authors:

      Reviewing Editor

      Please go through the reviews and recommendations and revise the paper accordingly. I think nearly everything is very straightforward and all issues raised by the two expert referees are fully justified. I look forward to seeing an appropriately revised manuscript.

      Reviewer #1 (Recommendations For The Authors):<br /> (i) Cdc13 localization to SPBs has been used as a readout for SAC activation/inactivation throughout the manuscript. However, the only image showing such localization (Figure 1C) is of poor quality where the Cdc13 localization to SPBs is barely visible. This should be replaced by a better image.

      We have replaced those pictures with a new set of representative images, which show clear presence or absence of SPB-localized Cdc13-GFP.

      (ii) I reiterate the loose ends in this manuscript I have mentioned above. If the authors have already conducted these experiments, they should include the results in the manuscript to tighten the story further. (I am not suggesting that the authors must perform these experiments...if they have not).

      (a) One of conclusions of this study is that MAPK (Pmk1) contributes to the robustness of SAC-induced arrest by lowering the abundance of Slp1Cdc20. The authors have used pmk1Δ or constitutively activating the MAPK pathways (pek1DD) and documented their effect on SAC activation/inactivation dynamics. It is not clear if SAC activation also leads to activation of MAPK pathways for them to contribute to the SAC robustness. To tie this loose end, the author could have checked if the MAPK pathway is also activated under the conditions when SAC is activated. Unless this is shown, one must assume that the authors are attributing the effect they observe to the basal activity of MAPKs.

      Actually, our data shown in Figure 6B demonstrated that SAC activation per se cannot trigger activation of MAPK pathway CIP, because we did not observe any elevated Pmk1 phosphorylation (i.e. Pmk1-P detected by anti-phospho p42/44 antibodies) in nda3-arrested cells (Please see “control” samples in Figure 6B).

      To corroborate this observation, we further examined the Pmk1 phosphorylation/activation in Mad2-overexpressing cells, and could not detect elevated Pmk1 phosphorylation. This data again lends support to the notion that SAC activation per se cannot trigger activation of CIP signaling.

      We have added our newly obtained result in Figure 6-figure supplement 1 in our revised manuscript.

      (b) The authors show that activation of stress pathways (by addition of KCL instance) causes phosphorylation-dependent Slp1Cdc20 downregulation (Figure 6) under the SAC-activating conditions. Does activation of the stress pathway cause phosphorylation-dependent Slp1Cdc20 downregulation under the non-SAC-activation conditions or does it occur only under the SAC-activating condition?

      As you suggested, we have constructed cdc25-22 background strains with pmk1+ deleted or expressing Padh11-pek1DD to remove or constitutively activate CIP signaling, respectively. By immunoblotting, we followed the Slp1Cdc20 levels when cells went through mitosis after being released at 25 °C from G2/M-arrest at high temperature. We found that Slp1Cdc20 levels in pek1DD cells were only marginally reduced compared to wild-type cells, whereas we failed to observe any elevated Slp1Cdc20 levels in pmk1Δ cells. These results suggested that CIP signaling only plays a negligible role in influencing Slp1Cdc20 levels under the non-SAC-activation conditions.

      We have presented our newly obtained result in Figure 2-figure supplement 1 in our revised manuscript.

      (iii) The Discussion section is quite disjointed. The first section "Involvement of MAPKs in cell cycle regulation" should be in the Introduction section (very briefly, if at all). It certainly does not belong to the Discussion section. In any case, the Discussion section should be more organized with a better flow of arguments/interpretations.

      Thank you for suggestion on the organization and flow for “Discussion”. We have reorganized our “Discussion” sections and moved the previous “Involvement of MAPKs in cell cycle regulation” to the section “Introduction” and rewrote the corresponding paragraph.

      (iv) A minor point in this context:

      In the cold-sensitive β-tubulin mutant, growth at 18C causes loss of kinetochore-microtubule attachments as well as the intra-kinetochore tension. Both perturbations individually can lead to the activation of SAC. This study does not distinguish whether MAPK involvement in SAC dynamics is relevant to one perturbation or another or both. It would be pertinent to briefly mention this point in the Discussion section.

      As you suggested, we have added two sentences to briefly mention this point in our “Discussion” section.

      Reviewer #2 (Recommendations For The Authors):

      This study by Sun et al. presents a role for the S. pombe MAP kinase Pmk1 in the activation of the Spindle Assembly Checkpoint (SAC) via controlling the protein levels of APC/C activator Cdc20 (Slp1 in S. pombe). The data presented in the manuscript is thorough and convincing. The authors have shown that Pmk1 binds and phosphorylates Slp1, promoting its ubiquitination and subsequent degradation. Since Cdc20 is an activator of APC/C, which promotes anaphase entry, constitutive Pmk1 activation leads to an increased percentage of metaphase-arrested cells. The authors have used genetic and environmental stress conditions to modulate MAP kinase signalling and demonstrate their effect on APC/C activation. This work provides evidence for the role of MAP kinases in cell cycle regulation in S. pombe and opens avenues for exploration of similar regulation in other eukaryotes.

      Although the data largely supports the conclusions, a major addition will be testing whether cells accumulate chromosomal or inheritance defects when MAPK Pmk1 is absent. It will be interesting to know that this mechanism of SAC activation contributes to genome integrity.

      Some additions that can improve the manuscript are mentioned below:

      (1) In Figure 1, the authors should also test the effect of constitutive activation of Spk1 to rule out the involvement of the PSP pathway.

      To meet your curiosity and requirement, we have constructed yeast strains expressing constitutively active byr1DD alleles carrying S214D and T218D point mutations under the control of the adh21 or adh11 promoters (Padh21 or Padh11 in short), i.e. Padh21-6HA-byr1DD and Padh11-6HA-byr1DD, respectively. We examined the expression of these byr1DD alleles by Western blotting, and tested the TBZ sensitivity of these alleles and also checked whether they affect the efficiency of SAC activation or inactivation. Our results showed that constitutive activation of Spk1 by overexpressing Byr1DD does not cause yeast cells to be TBZ-sensitive or affect the efficiency of SAC activation or inactivation.

      We have added these new data in Figure 1-figure supplement 2 in our revised manuscript.

      (2) The number of analyzed cells (n) should be mentioned in the figure legends in Figure 1D, and all other figure panels should represent similar data in the consequent figures.

      We have added the information on sample size for all experiments involving time course analyses.

      (3) The authors should also use another arresting mechanism (e.g. nocodazole treatment) and corroborate the result in Figure 1C to rule out any effects due to the mutant.

      Figure 1C in our manuscript actually shows our experimental design and not the result. We guess here you asked for alternative strategy to arrest cells at metaphase and confirm our results shown in Figure 1D.

      We need to mention that, as a commonly used inhibitor of microtubule polymerization, Nocodazole is very effective in mammalian and human cells and also in budding yeast cells, but not effective at all in wild-type fission yeast cells. It has been found that Nocodazole is only active in fission yeast α- or β-tubulin mutants (please see Umesono, K., et al., J Mol Biol. 168 (2): 271-284 (1983); PMID: 6887245; DOI: 10.1016/s0022-2836(83)80018-7.) or multidrug resistance (MDR) transporter mutants (please see Kawashima, SA, et al., Chemistry & Biology 19, 893–901 (2012); PMID: 22840777; doi: 10.1016/j.chembiol.2012.06.008.). Therefore, this feature of Nocodazole has limited and restricted its routine use as a metaphase arrest or spindle checkpoint activation drug in fission yeast.

      Instead, in order to achieve the spindle checkpoint activation and metaphase arrest, we took advantage of a metaphase-arresting mechanism involving Mad2 overexpression, which has been described and used previously (Please see He, X., et al., Proc Natl Acad Sci USA. 94 (15): 7965-70 (1997); PMID: 9223296; DOI: 10.1073/pnas.94.15.7965, and May, K.M., et al., Current Biology, 27(8):1221-1228 (2017); PMID: 28366744; DOI: 10.1016/j.cub.2017.03.013). With this strategy, we could analyze the metaphase-arresting and SAC-activation efficiency by counting cells with short spindles as judged by GFP-Atb2 signals. We compared the frequencies of cells with short spindles in wild-type, pmk1Δ, sty1-T97A, and spk1Δ backgrounds after Mad2 has been induced to overexpress for 18 hours, and found that SAC-activating efficiency was compromised in pmk1Δ and sty1-T97A cells, but not in spk1Δ cells. This data indeed corroborated our result shown in Figure 1D and ruled out possible effects due to the nda3-KM311 mutant.

      We have added this new data in Figure 1-figure supplement 3 in our revised manuscript.

      (4) It would also be helpful to assess SAC or APC/C activation with another cellular readout in addition to Cdc13-GFP accumulation on SPBs, at least for initial experiments.

      Actually, Cdc13-GFP accumulation on SPBs has been routinely used as a reliable cellular readout for SAC or APC/C activation in the field. It was first developed and used by Kevin Hardwick lab in their paper (Vanoosthuyse V and Hardwick KG. Curr Biol. 2009, 19(14):1176-81. PMID: 19592249; doi: 10.1016/j.cub.2009.05.060.). This method was also used in a paper by Meadows JC, et al. (2011) (Dev Cell. 20(6):739-50. PMID: 21664573; doi: 10.1016/j.devcel.2011.05.008.).

      In our previous study, we also employed a different strategy to assess SAC inactivation or APC/C activation, in which degradation of nuclear Cut2-GFP was used as a cellular readout (Please see S4 Fig in Bai S, et al., PLoS Genet 18(9): e1010397 (2022); PMID: 36108046; DOI: 10.1371/journal.pgen.1010397.). Cut2 is the securin homologue in S. pombe and therefore also a target of APC/C at anaphase. Our data in the above paper confirmed that the degradation of both nuclear Cut2-GFP and SPB-localized Cdc13-GFP shows similar dynamics when cells are released from metaphase-arrest.

      As we described in our response to your comment #3, we employed short spindles visualized by GFP-Atb2 signals as an alternative readout for metaphase-arrest and SAC-activation in cells overexpressing Mad2. We confirmed that SAC-activation efficiency was compromised in pmk1Δ and sty1-T97A cells, but not in spk1Δ cells.

      (5) The authors have shown a role for Pmk1 in controlling the activation of APC/C and, hence, cell cycle progression through metaphase to anaphase. One crucial experiment would be to check if pmk1Δ cells show an accumulation of chromosomal aberrations or unequal distribution when subjected to genotoxic stressors. That would implicate a direct importance on Pmk1's role in cell cycle arrest and genome maintenance.

      As you suggested, we have constructed cdc25-22 GFP-atb2+ strains with pmk1+ present or deleted, and treated cells with 0.6 M KCl or 2 μg/mL caspofungin to activate MAPKs and checked whether the absence of pmk1 could cause defective chromosome segregation in anaphase cells. Indeed, we found that stressed pmk1Δ cells displayed greatly increased frequency of lagging chromosomes and chromosome mis-segregation at mitotic anaphase compared to similarly treated wild-type cells and also untreated pmk1Δ cells. This new data implicated a direct role for Pmk1 in cell cycle arrest and genome maintenance, especially when cells are exposed to adverse environment.

      We have presented this new data as Figure 7 in our revised manuscript.

      Typos:

      (1) In line 406, "docking" is misspelled as "docing".

      Thank you for pointing this out. We have corrected this mistake.

      (2) In Figure 6, panel "F" is not marked in the figure.

      We mistakenly mentioned and labeled “F” in Figure 6 legend. In our revised manuscript, we have added new results of protein levels of Pmk1 phosphorylation- and ubiquitylation-deficient Slp1Cdc20 mutants upon SAC activation detected by Western blotting in Figure 6-figure supplement 3.

      (3) In Figure S1, panel "D" is not marked.

      We apologize for our previous wording in our former Figure S1 legend, which was misleading. Actually, there was no panel “D” in Figure S1 (now Figure 1-figure supplement 1). We have rewritten the legend to avoid ambiguity.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The manuscript characterizes a functional peptidergic system in the echinoderm Apostichopus japonicus that is related to the widely conserved family of calcitonin/diuretic hormone 31 (CT/DH31) peptides in bilaterian animals. In vitro analysis of receptor-ligand interactions, using multiple receptor activation assays, identifies three cognate receptors for two CT-like peptides in the sea cucumber, which stimulate cAMP, calcium, and ERK signaling. Only one of these receptors is closely related to the family of calcitonin and calcitonin-like receptors (CTR/CLR) in bilaterian animals, whereas two other receptors cluster with invertebrate pigment dispersing factor receptors (PDFRs). In addition, this study sheds light on the transcript expression and in vivo functions of CT-like peptides in A. japonicus, by quantitative real-time PCR, in situ hybridization, pharmacological experiments on body wall muscle and intestine preparations, and peptide injection and RNAi knockdown experiments. This reveals a conserved function of CT-like peptides as muscle relaxants and hints at a potential role as growth regulators in A. japonicus.

      Strengths:

      This work combines both in vitro and in vivo functional assays to identify a CT-like peptidergic system in an economically relevant echinoderm species, the sea cucumber A. japonicus. A major strength of the study is that it identifies three G protein-coupled receptors for AjCT-like peptides, one related to the CTR/CLR family and two related to the PDFR family. A similar finding was previously reported for the CT-related peptide DH31 in Drosophila melanogaster that activates both CT-type and PDF-type receptors. Here, the authors expand this observation to a deuterostomian animal, which suggests that receptor promiscuity is a more general feature of the CT/DH31 peptide family and that CT/DH31-like peptides may activate both CT-type and PDF-type receptors in other animals as well.

      Besides the identification of receptor-ligand pairs, the downstream signaling pathways of AjCT receptors have been characterized, highlighting broad effects on cAMP, calcium, and ERK signaling. Functional characterization of the CT-related peptide system in heterologous cells is complemented with ex vivo and in vivo experiments. First, peptide injection and RNAi knockdown experiments establish transcriptional regulation of all three identified receptors in response to changing AjCT peptide levels. Second, ex vivo experiments reveal a conserved role for the two CT-like peptides as muscle relaxants, which have differential effects on body wall muscle and intestine preparations. Finally, peptide injection studies suggest a putative role for one of the two CT-like peptides (AjCT2) in growth regulation.

      Weaknesses:

      (1) Analysis of transcript expression is limited to the CT-peptide encoding gene, while no gene expression analysis was attempted for the three identified receptors. Differences in the activation of downstream signaling pathways between the three receptors are also questionable due to unclarities in the statistical analysis and variation in the control and experimental data in heterologous assays. Together, this makes it difficult to propose a mechanism underlying differences in the functions of the two CT-like peptides in muscle control and growth regulation.

      Thank you for the reviewer’s comment, we will supplement the expression analysis for the three identified receptors. Actually, we did all the statistical tests for all the experiments, and maybe the form of marking is a bit messy, so sorry for the confusion and we will uniform them and include all this information both in the figure legends and the methods section. And for the variation in the control and experimental data, because every control is transfected with different receptors or uses cells from different batches, that is why the control conditions in different experiments have little bit variation.

      (2) The authors also suggest a putative orexigenic role for the CT-like peptidergic system in feeding behavior. This effect is not well supported by the experimental data provided, as no detailed analysis of feeding behavior was carried out (only indirect measurements were performed that could be influenced by other peptidergic effects, such as on muscle relaxation) and no statistically significant differences were reported in these assays.

      Thank you for the reviewer’s comment. Actually, we did all the statistical tests for all the experiments, the mass of remaining bait and the excrement were added in Figure 7A-figure supplement 1 and we will conduct additional behavioral experiments to explore the changes in feeding behavior of A. japonicus after injection of CT-type neuropeptides to support the role of CT-like peptidergic system in the regulation of feeding behavior, as I mentioned above, maybe the form of marking is a bit messy, so sorry for the confusion and we will uniform them and include all this information both in the figure legends and the methods section. And also we will supplement the experiments to further support our claim by assessing the feeding and growth factors after knocking down the CTP encoding genes.

      (3) Overall, details regarding statistical analyses are not (clearly) specified in the manuscript, and there are several instances where statements are not supported by literature evidence.

      Again, actually, we did all the statistical tests for all the experiments, as I mentioned above, maybe the form of marking is a bit messy, so sorry for the confusion and we will uniform them and include all this information both in the figure legends and the methods section. And we will also supplement more experiments and add more literature evidence to support our statements.

      Reviewer #2 (Public review):

      Summary:

      The authors show that A. japonicus calcitonins (AjCT1 and AjCT2) activate not only the calcitonin/calcitonin-like receptor but also activate the two PDF receptors, ex vivo. They also explore secondary messenger pathways that are recruited following receptor activation. They determine the source of CT1 and CT2 using qPCR and in situ hybridization and finally test the effects of these peptides on tissue contractions, feeding, and growth. This study provides solid evidence that CT1 and CT2 act as ligands for calcitonin receptors; however, evidence supporting cross-talk between CT peptides and PDF receptors is only based on ex vivo experiments.

      Strengths:

      This is the first study to report the pharmacological characterization of CT receptors in an echinoderm. Multiple lines of evidence in cell culture (receptor internalization and secondary messenger pathways) support this conclusion.

      Weaknesses:

      (1) The authors claim that A. japonicus CTs activate "PDF" receptors and suggest that this cross-talk is evolutionarily ancient since a similar phenomenon also exists in the fly Drosophila melanogaster. These conclusions are not fully supported for several reasons. The authors perform phylogenetic analysis to show that the two "PDF" receptors form an independent clade. This clade is sister to the clade comprising CT receptors. This phylogenetic analysis suffers from several issues. Firstly, the phylogenies lack bootstrap support. Secondly, the resolution of the phylogeny is poor because representative members from diverse phyla have not been included. For instance, insect or other protostomian PDF receptors have not been included so how can the authors distinguish between "PDF" receptors or another group of CT receptors? Thirdly, no in vivo evidence has been presented to support that CT can activate "PDF" receptors in vivo.

      We do agree with the reviewer that the cross-talk between CTs and PDFRs is not so solid based on our current study.

      So firstly, we will re-do the phylogenetic analyses as the reviewer suggested and mark the bootstrap value, then we will supplement more experiments (like PDFR knockdown) to further confirm that CT can activate “PDF” receptors in vivo.

      (2) The source of CT which mediates the effects on longitudinal muscles and intestine is unclear. Is it autocrine or paracrine signaling by CT from the same tissue or is it long-range hormonal signaling?

      Thank you for the reviewer’s comment, actually we have done in situ and immunohistochemical experiments for CTP and CT in different tissues, we just did not put them in our current manuscript, we will add them in the revised version.

      (3) Pharmacology experiments showing the effects of CT1 and CT2 on ACh-induced contractions were performed. Sample traces have been provided but no traces with ACh alone have been included. How long do ACh-induced contractions persist? These controls are necessary to differentiate between the eventual decay of ACh effects and relaxation induced by CT1 and CT2. The traces also do not reflect the results portrayed in dose-response curves. For instance, in Figure 6B, maximum relaxation is reported for 10-6M. Yet, the trace hardly shows any difference before and after the addition of 10-6M peptide. The maximum effect in the trace appears to be after the addition of 10-8M peptide.

      Thank you for the reviewer’s comment, we will provide the trace of contraction caused by ACh alone. In Figure 6B, the trace represents successive treatments of neuropeptides at different concentrations, which represents a cumulative effect. Therefore, the corresponding receptors may become desensitized when high concentration of peptide is finally applied. Actually, we examined the pharmacological effects of CT2 at 10-6M concentrations, which exhibited the maximum relaxation, and we will provide this trace.

      (4) I am unsure how differences in wet mass indicate feeding and growth differences since no justification has been provided. Couldn't wet mass also be influenced by differences in osmotic balance, a key function of calcitonin-like peptides in protostomian invertebrates? The statistical comparisons have not been included in Figure 7B.

      Thank you for the reviewer’s comment, we will analyze the weight gain rate, growth rate and feeding rate of A. japonicus to explain the difference of feeding and growth between injection group and control group. And we can confirm that wet mass is not influenced by differences in osmotic balance, we will put our supporting evidence in supplementary files in revised manuscript and we did not find the key function of calcitonin-like peptides observed in protostomian invertebrates. And we will include the statistical comparisons in Figure 7B.

      (5) While the authors succeeded in knocking down CT, the physiological effects of reduced CT signaling were not examined.

      Thank you for the reviewer’s insightful suggestion, we will supplement the experiments about the physiological effects after knocking down CT.

    1. Author response:

      Response to Reviewer #1:

      We agree with the reviewer that ChIP is much better than ChEC at recovering RNA polymerase II and elongation factors associated with the transcribed regions.  We believe that this is due to cross-linking, which enriches for these interactions.  However, as we highlight in the manuscript, cross-linking may not accurately report on the occupancy of RNA polymerase II and elongation factors over all regions.  Although, by ChEC, we observe elongation factors upstream of the transcribed region, compared with total RNA polymerase II, the relative enrichment of elongation factors or phosphorylated RNA polymerase II is significantly higher over transcribed regions, with a bias to the 3’ end (Figure 4B & C). This is consistent with these proteins and modifications functioning in elongation.  

      Regarding how convincing the results with the gcn4-pd mutant are, we would highlight that the phenotype of this mutant is a quantitative decrease in transcription and this leads to a quantitative decrease, rather than qualitative loss, of RNA polymerase II over the promoter, without impacting the association of RNA polymerase II over the UAS region.  This effect was small but statistically significant (p = 4e-5). Obviously, more mechanistic studies will need to be performed, but this result supports a role for the interaction with the nuclear pore complex in either enhancing the transfer of RNA polymerase II from the enhancer to the promoter or in preventing its dissociation from the promoter.

      Response to Reviewer #2:

      Thank you for your supportive comments and suggestions.  We will clarify our use of Nascent RNA in the text.  We agree that the stronger enrichment of the transcribed region from Rpb1 ChIP-seq experiments should correlate well with actively transcribing RNA polymerase II observed by PRO-seq; enrichment by PRO-seq reported in a paper from John Lis’ lab strongly favors transcribed regions with a modest peak over the terminator (PMID: 27197211, Figure 2A).  ChEC reveals functionally important forms of RNA polymerase II that are not engaged in transcription.  This manuscripts highlights the potential utility of ChEC-seq2 in measuring these interactions - suggested by the recent work from Buratowski and Gelles’ single molecule studies - globally.

    1. Author response:

      (1) Rationale of the study and key finding

      We respectively disagree with Reviewer #1’s comments on ‘the fundamental weakness of this paper … about regional identity ...’. We believe that they misunderstood the rationale and key message of the paper.

      The rationale of the study stems from the increasing recognition of the importance of generating ‘regional-specific’ astrocytes from iPSCs for disease modelling, due to astrocyte heterogeneity and their region-specific involvement in disease pathology. Regional astrocytes are typically differentiated from neural progenitors (NPCs) that are ‘patterned’ to the desired fate during iPSC neural induction. While the efficiency is not 100%, it is nevertheless assumed that the initial lineage composition (%) of patterned NPCs is preserved during the course of astrocyte differentiation and hence that the derived astrocytes represent the intended regional fate.

      We questioned this approach using genetic lineage tracing with ventral midbrain-patterned neural progenitors as an example. By monitoring astrocytic induction of purified BFP+ NPCs and unsorted ventral midbrain-patterned NPC (referred to as BFP- in the paper, line 154 submitted PDF), we demonstrate that despite BFP+ NPCs being the vast majority (>90% LMX1A+ and FOXA2+) at the onset of astrocytic induction, their derivatives were lost in the final astrocyte product unless BFP+ NPCs were purified prior to astrocytic induction and differentiation. 

      Our findings demonstrate that iPSC-derived astrocytes may not faithfully represent the antecedent neural progenitor pool in terms of lineage, and that the regionality of PSC-derived astrocytes should not be assumed based on the (dominant) NPC identity. We believe that this finding is important for iPSC disease modelling research, especially where disease pathophysiology concerns astrocytes of specific brain regions.

      Reviewer #1 raised several interesting questions concerning floor plate marker expression during astrocytic induction and astrocyte differentiation in normal development. These are important outstanding questions in developmental neurobiology, but they are outside the scope of this in vitro study. Indeed, the approach taken by published PSC-astrocyte studies - such as assigning regional identity of PSC-derived astrocytes based on the starting NPC fate or validating PSC-astrocyte using regional markers defined in the developing embryo - is partly due to our limited knowledge about the developing and mature astrocytes in different brain regions. This knowledge gap consequently restricts a thorough characterisation of the regional identity of PSC-astrocytes in such cases.

      (2) LMX1A expression in the brain and LMX1A-BFP lineage tracer line

      We thank Reviewer #1 for highlighting the wider expression of LMX1A. We are fully aware of this consideration and hence the thorough examination of PSC-derived ventral midbrain-patterned NPCs by immunostaining and single cell RNA-sequencing in this and a previous study (PMID: 38132179). All LMX1A+ cells produced in our protocol exhibit ventral midbrain progenitor gene expression profiles when compared to dataset obtained from human fetal ventral midbrain.

      Some of the comments give us the impression that there might be some confusion regarding the lineage tracing system used in this study. The LMX1A-Cre/AAVS1-BFP line is not a classic reporter line that mark LMX1A-expressing cells in real time. Instead, it was designed as a tracer line that expresses BFP in the derivatives of LMX1A+ cells as well as cells expressing LMX1A at the time of analysis.  

      (3) Is regional identity fixed?

      We feel that Reviewer #1 misunderstood the paper in their comments ‘The authors are making an assumption that regional identity is fixed when they begin their astrocyte differentiation protocol - not necessarily true…’.  We in fact pointed out in the paper that expression of LMX1A and FOXA2, a signature of midbrain floor plate progenitors, is lost in our BFP+ astrocytes. In this paper, ‘regional identity’ was loosely used to also refer to lineage identity and genetic traits, not just gene expression. We will consider alternative wording during revision to avoid potential confusion.  

      (4) Splice disruption in the COL3A1 gene and potential effect on astrocyte differentiation of Kolf2 iPSCs

      We thank Reviewer #2 for highlighting the variations in KOLF2C1 hiPSCs and the study by Bradley et al. (2019) on differential COL3A1 expression in some ventral astrocytes. We noted that the progenitors produced by Bradley et al. were NKX2.1+ ventral forebrain cells, rather than the LMX1A+ ventral midbrain progenitors investigated in our study. Our scRNAseq data show that all three populations of astrocytes exhibit low levels of COL3A1 expression. While we will continue to examine astrocyte COL3A1 expression in publicly available gene expression datasets, we feel that a selective impairment in astrocyte differentiation of BFP+ cells is unlikely.

      (5) Additional data analysis and validation of potential new markers

      We will carefully consider the reviewers’ suggestions on further analysis of our single-cell RNA sequencing dada during revision. Regarding eLife’s assessment of validating differential gene expression in different brain regions, it is worth noting that both BFP+ and BFP- cells mapped to the published midbrain scRNAseq data set (La Manno et al, Cell 2016, PMID: 27716510), supporting their midbrain fate. We agree in principle that all single-cell RNA sequencing findings should be validated by immunostaining. It would be beneficial to experimentally verify that our candidate BFP+ differentially expressed genes indeed mark astrocytes derived from LMX1A+ NPCs in vivo, as opposed to other midbrain NPCs. However, this verification cannot be realistically performed in a human setting, but only in an analogous mouse tracer line.

      The current eLife assessment nicely summarised part of our findings, in a sense secondary output of this work. We would appreciate a revised eLife assessment that include the message that iPSC-derived astrocytes, in terms of genetic lineage, can deviate greatly from the starting progenitor pool.  We would be very happy to provide further information or clarification if it would be helpful. We are committed to doing our best as authors to enhance reader experience and support the continued success of eLife.

    1. Author response:

      Reviewer #1:

      Summary:

      García-Vázquez et al. identify GTSE1 as a novel target of the cyclin D1-CDK4/6 kinases. The authors show that GTSE1 is phosphorylated at four distinct serine residues and that this phosphorylation stabilizes GTSE1 protein levels to promote proliferation.

      Strengths:

      The authors support their Kindings with several previously published results, including databases. In addition, the authors perform a wide range of experiments to support their Kindings.

      Weaknesses:

      I feel that important controls and considerations in the context of the cell cycle are missing. Cyclin D1 overexpression, Palbociclib treatment and apparently also AMBRA1 depletion can lead to major changes in cell cycle distribution, which could strongly inKluence many of the observed effects on the cell cycle protein GTSE1. It is therefore important that the authors assess such changes and normalize their results accordingly.

      We have approached the question of GTSE1 phosphorylation to account for potential cell cycle effects from multiple angles:  

      (i) We conducted in vitro experiments with puriIied, recombinant proteins and shown that GTSE1 is phosphorylated by cyclin D1-CDK4 in a cell-free system (Figure 2A-C). This experiment provides direct evidence of GTSE1 phosphorylation by cyclin D1-CDK4 without the inIluence of any other cell cycle effectors.  

      (ii) We present data using synchronized AMBRA1 KO cells (Figure 2G and Supplementary Figure 3B).  As shown previously (Simoneschi et al., Nature 2021, PMC8875297), AMBRA1 KO cells progress faster in the cell cycle but they are still synchronized as shown, for example by the mitotic phosphorylation of Histone H3. Under these conditions we observed that while phosphorylation of GTSE1 in parental cells peaks at the G2/M transition, AMBRA1 KO cells exhibited sustained phosphorylation of GTSE1 across all cell cycle phases.  This is evident when using Phos-tag gels as in the current top panel of Figure 2G. We now re-run one the biological triplicates of the synchronized cells using higher concentration of Zn+2-Phos-tag reagent and lower voltage to allow better separation.  Under these conditions, GTSE1 phosphorylation is more apparent. In the new version of the paper, we will either show both blots or substitute the old panel with the new one. This experiment provides evidence that high levels of cyclin D1 in AMBRA1 KO cells affect GTSE1 independently of the speciIic points in the cell cycle.  

      (iii) The relative short half-life of GTSE1 (<4 hours) makes its levels sensitive to acute treatments such as Palbococlib or AMBRA1 depletion. The effects of these treatments on GTSE1 levels are measurable within a time frame too short to affect cell cycle progression in a meaningful way. For example, we used cells with fusion of endogenous AMBRA1 to a mini-Auxin Inducible Degron (mAID) at the N-terminus. This system allows for rapid and inducible degradation of AMBRA1 upon addition of auxin, thereby minimizing compensatory cellular rewiring. Again, we observed an increase in GTSE1 levels upon acute ablation of AMBRA1 (i.e., in 8 hours) (Figure 3B), when no signiIicant effects on cell cycle distribution are observed (please see Simoneschi et al., Nature 2021, PMC8875297 and Rona et al., Mol. Cell 2024, PMC10997477). 

      All together, these lines of evidence support our conclusion that GTSE1 is a target of cyclin D1-CDK4, independent of cell cycle effects. In conclusion, as stated in the Discussion section, GTSE1 has been established as a substrate of mitotic cyclins, but we observed that overexpression of cyclin D1-CDK4 induce GTSE1 phosphorylation at any point of the cell cycle. Thus, we propose that GTSE1 is phosphorylated by CDK4 and CDK6 particularly in pathological states, such as cancers displaying overexpression of D-type cyclins beyond the G1 phase. In turn, GTSE1 phosphorylation induces its stabilization, leading to increased levels that, as expected based on the existing literature, contribute to enhanced cell proliferation. So, the cyclin D1-CDK4/6 kinase-dependent phosphorylation of GTSE1 induces its stabilization independently of the cell cycle.  

      Reviewer #2:

      Summary:

      The manuscript by García-Vázquez et al identifies the G2 and S phases expressed protein

      1(GTSE1) as a substrate of the CycD-CDK4/6 complex. CycD-CDK4/6 is a key regulator of the G1/S cell cycle restriction point, which commits cells to enter a new cell cycle. This kinase is also an important therapeutic cancer target by approved drugs including Palbocyclib. Identification of substrates of CycD-CDK4/6 can therefore provide insights into cell cycle regulation and the mechanism of action of cancer therapeutics. A previous study identified GTSE1 as a target of CycB-Cdk1 but this appears to be the first study to address the phosphorylation of the protein by Cdk4/6.

      The authors identified GTSE1 by mining an existing proteomic dataset that is elevated in AMBRA1 knockout cells. The AMBRA1 complex normally targets D cyclins for degradation. From this list, they then identified proteins that contain a CDK4/6 consensus phosphorylation site and were responsive to treatment with Palbocyclib. 

      The authors show CycD-CDK4/6 overexpression induces a shift in GTSE1 on phostag gels that can be reversed by Palbocyclib. In vitro kinase assays also showed phosphorylation by CDK4. The phosphorylation sites were then identified by mutagenizing the predicted sites and phostag got to see which eliminated the shift. 

      The authors go on to show that phosphorylation of GTSE1 affects the steady state level of the protein. Moreover, they show that expression and phosphorylation of GTSE1 confer a growth advantage on tumor cells and correlate with poor prognosis in patients.

      Strengths:

      The biochemical and mutagenesis evidence presented convincingly show that the GTSE1 protein is indeed a target of the CycD-CDK4 kinase. The follow-up experiments begin to show that the phosphorylation state of the protein affects function and has an impact on patient outcomes. 

      Weaknesses:

      It is not clear at which stage in the cell cycle GTSE1 is being phosphorylated and how this is affecting the cell cycle. Considering that the protein is also phosphorylated during mitosis by CycB-Cdk1, it is unclear which phosphorylation events may be regulating the protein.

      In cells that do not overexpress cyclin D1, GTSE1 is phosphorylated at the G2/M transition, consistent with the known cyclin B1-CDK1-mediated phosphorylation of this protein. However, AMBRA1 KO cells exhibited high levels of cyclin D1 throughout the cell cycle and sustained phosphorylation of GTSE1 across all cell cycle points (Figure 2G and Supplementary Figure 3B). Please see also answer to Reviewer #1.  Moreover, we show that, compared to the amino acids phosphorylated by cyclin D1-CDK4, cyclin B1-CDK1 phosphorylates GTSE1 on either additional residues or different sites (Figure 2H). Finally, we show that expression of a phospho-mimicking GTSE1 mutant leads to accelerated growth and an increase in the cell proliferative index (Figure 4C).  However, we have not evaluated how phosphorylation affects the cell cycle distribution.  We will perform FACS analyses and include them in the new version. 

      Reviewer #3:

      Summary:

      This paper identifies GTSE1 as a potential substrate of cyclin D1-CDK4/6 and shows that GTSE1 correlates with cancer prognosis, probably through an effect on cell proliferation. The main problem is that the phosphorylation analysis relies on the over-expression of cyclin D1. It is unclear if the endogenous cyclin D1 is responsible for any phosphorylation of GTSE1 in vivo, and what, if anything, this moderate amount of GTSE1 phosphorylation does to drive proliferation.

      Strengths: 

      There are few bonafide cyclin D1-Cdk4/6 substrates identified to be important in vivo so GTSE1 represents a potentially important finding for the field. Currently, the only cyclin D1 substrates involved in proliferation are the Rb family proteins.

      Weaknesses:

      The main weakness is that it is unclear if the endogenous cyclin D1 is responsible for phosphorylating GTSE1 in the G1 phase. For example, in Figure 2G there doesn't seem to be a higher band in the phos-tag gel in the early time points for the parental cells. This experiment could be redone with the addition of palbociclib to the parental to see if there is a reduction in GTSE1 phosphorylation and an increase in the amount in the G1 phase as predicted by the authors' model. The experiments involving palbociclib do not disentangle cell cycle effects. Adding Cdk4 inhibitors will progressively arrest more and more cells in the G1 phase and so there will be a reduction not just in Cdk4 activity but also in Cdk2 and Cdk1 activity. More experiments, like the serum starvation/release in Figure 2G, with synchronized populations of cells would be needed to disentangle the cell cycle effects of palbociclib treatment.    

      In normal cells, GTSE1 is phosphorylated at the G2/M transition in a cyclin B1-CDK1dependent manner.  During G1, when the levels of cyclin D1 peak, GTSE1 is not phosphorylated. This could be due to a higher affinity between GTSE1 and mitotic cyclins as compared to G1 cyclins or to a higher concentration of mitotic cyclins compared to G1 cyclins.  We show that higher levels of cyclin D1 induce GTSE1 phosphorylation during interphase, but we do not rely only on the overexpression of exogenous cyclin D1. In fact, we observe similar effect when we deplete endogenous AMBRA1, resulting in the stabilization of endogenous cyclin D1.  As mentioned in the Discussion section, we propose that GTSE1 is phosphorylated by CDK4 and CDK6 particularly in pathological states, such as cancers displaying overexpression of D-type cyclins (i.e., the overexpression appears to overcome the lower afIinity of the cyclin D1-GTSE1 complex). In sum, our study suggests that overexpression of cyclin D1, which is often observed in cancers cells beyond the G1 phase, induces phosphorylation of GTSE1 at all points in the cell cycle displaying high levels of cyclin D1.  Please see also response to Reviewer #1.  Concerning the experiments involving palbociclib, we limited confounding effects on the cell cycle by treating cells with palbociclib for only 4-6 hours. Under these conditions, there is simply not enough time for the cells to arrest in G1.

      It is unclear if GTSE1 drives the G1/S transition. Presumably, this is part of the authors' model and should be tested.

      We are not claiming that GTSE1 drives the G1/S transition.  GTSE1 is known to promote cell proliferation, but how it performs this task is not well understood.  Our experiments indicate that, when overexpressed, cyclin D1 promotes GTSE1 phosphorylation and its consequent stabilization.  In agreement with the literature, we show that higher levels of GTSE1 promote cell proliferation.  To measure cell cycle distribution upon expressing various forms of GTSE1, we will now perform FACS analyses and include them in the new version. 

      The proliferation assays need to be more quantitative. Figure 4B should be plotted on a log scale so that the slope can be used to infer the proliferation rate of an exponentially increasing population of cells. Figure 4c should be done with more replicates and error analysis since the effects shown in the lower right-hand panel are modest.

      In Figure 4B, we plotted data in a linear scale as done in the past (Donato et al. Nature Cell Biol. 2017, PMC5376241) to better represent the changes in total cell number overtime.  The experiments in Figure 4C were performed in triplicate. Error analysis was not included for simplicity, given the complexity of the data. We will include the other two sets of experiments in the revised version.  While the effects shown in the lower right-hand panel of Figure 4C are modest, they demonstrate the same trend as those observed in the AMBRA KO cells (Figure 4C and Simoneschi et al., Nature 2021, PMC8875297). It's important to note that this effect is achieved through the stable expression of a single phosphomimicking protein, whereas AMBRA KO cells exhibit changes in numerous cell cycle regulators.

      We appreciate the constructive comments and suggestions made by the reviewers, and we believe that the resulting additions and changes will improve the clarity and message of our study.

    1. Author response:

      We thank the reviewers for their valuable comments and recommendations for improvement. In this provisional response we aim to address a few of the major concerns and briefly outline a plan for revision. We plan to submit a more detailed response along with the revised manuscript.

      The reviewers have suggested additional analyses to strengthen the manuscript. As noted, the primary focus of this paper is on single units, to act as a starting point in the characterization of orofacial sensorimotor cortical activity in relation to tongue direction. Research on the cortical mechanisms that underlie sensorimotor control of tongue movements has lagged research on limb movements. Thus, the goal of our paper was to first characterize the individual neuron’s 3D directional tuning properties to provide a basis for future in-depth analysis of population dynamics. However, as multiple reviewers have pointed out the strengths of further investigating population activity, we will aim to address this through additional analysis and discussion. Our starting point for this will be to try other decoding algorithms and dimensionality reduction techniques.

      Reviewers 1 and 2 suggested we compare a subset of trials from the nerve block dataset that has similar kinematics to the control to eliminate the confounding effect of differing kinematics between the two conditions. We did this for feeding, by sampling an equal number of trials with similar kinematics for both control and nerve block despite the different overall distribution. We will be sure to make this clearer within the text. We will also implement this for drinking by subsampling trials from each category with similar kinematics to see if this can account for the difference in neural activity.

      We understand that while using a small number of datasets is typical in non-human primate neuroscience, the inclusion of additional data would greatly reinforce our findings. We are working to process data from other sessions and have completed a few since this submission, which we will run through the analysis and consider adding a comparison into the manuscript.

      Reviewer 3 has raised a valid point that the different movement of the jaw may be a confounding factor in our study of tongue movements. We reported in our recent paper (see Supplementary Fig. 4 in Laurence-Chasen et al., 2023) that “Through iterative sampling of sub-regions of the test trials, we found that correlation of tongue kinematic variables with mandibular motion does not account for decoding accuracy. Even at times where tongue motion was completely un-correlated with the jaw, decoding accuracy could be quite high.” We expect that this also will be true for the analysis of single-unit activity.  

      To address the concern on the robustness of our analytical methods, we plan to show the variability of neural firing rates across trials using the Fano factor and use a bootstrap test for the directional tuning analysis.

      As recommended, we will expand the introduction/discussion to further contextualize the results of this paper within the existing literature and attempt to clarify some of the sections that reviewers have identified.

      “Have the authors confirmed or characterized the strength of their inactivation or block, I was unable to find any electrophysiological evidence characterizing the perturbation.”

      The strength of the nerve block is characterized by a decrease in baseline firing rate of SIo neurons. We can include a figure showing this as supplementary material in the revised version.

      “Can the authors explain (or at least speculate) why there was such a large difference in behavioral effect due to nerve block between the two monkeys (Figure 7)?”

      We acknowledge this as a variable inherent to this type of experimentation. Previous studies have found large kinematic variation in the effect of oral nerve block as well as in the following compensatory strategies between subjects. Every animal’s biology and how they respond to perturbation will be different, which is something we are unable to prevent. Indeed, our subjects exhibited different feeding behavior even in the absence of nerve block perturbation (see Figure 2 in Laurence-Chasen et al., 2022). This is why each individual serves as its own control.

    1. Author response:

      Reviewer #1 (Public Review):

      (1) All the figure legends need to expand significantly, so it is clear what is being presented. All experiments showing data quantification need the numbers of independent biological replicates to be added, plus an indication of what the P-values are associated with the asterisks (and the tests used).

      Thank you for your valuable suggestions. We will significantly expand the figure legends to provide a clear and detailed description of the data presented in each figure. Additionally, we will include dot plots in the bar graphs to illustrate the number of independent biological replicates for each experiment. Furthermore, we will specify the statistical tests used for each analysis and include the corresponding P-values associated with the asterisks in the figure legends.

      (2) All the Related to point 1, the description of the data in the text needs to expand significantly, so the figure panels are interpretable. Examples are given below but this is not an exhaustive list.

      We appreciate your feedback on the clarity of the data description in the text. In response to your suggestion, we will significantly expand the descriptions throughout the manuscript to ensure that each figure panel is fully interpretable. The revised text will provide a more detailed and comprehensive explanation of the data presented.

      (3) All the The addition of "super-enhancer-driven" to the title is a distraction. This is the starting point but the finding is portrayed by the last part of the title. Moreover, it is not clear why this is a super enhancer rather than just a typical enhancer as only one seems to be relevant and functional. I suggest avoiding this term after initial characterisations.

      Thank you for your thoughtful comment. In this study, the key molecule ZFP36L1 was identified as a target gene through the characterization of the super-enhancer ZFP36L1-SE. The enrichment of H3K27ac at this site meets the threshold defined by the ROSE algorithm, and transcription of ZFP36L1 is regulated by BRD4, making it susceptible to inhibition by the super-enhancer inhibitor JQ1. Although we were unable to directly observe the effects of knocking out the ZFP36L1-SE via Cas9 due to experimental constraints, we believe that the indirect evidence we have gathered is sufficient to demonstrate the super-enhancer's driving role. This approach is consistent with the conventions of previous studies on super-enhancers.

      (4) The descriptions of Figures 1B, C, and D are very poor. How for example do you go from nearly 2000 SE peaks to a couple of hundred target genes? What are the other 90% doing? What is the definition of a target gene? This whole start section needs a complete overhaul to make it understandable and this is important as is what leads us to ZFP36L1 in the first place.

      We appreciate your feedback and apologize for the confusion caused by the initial descriptions. As described in the manuscript, the function of SE peaks depends on their location. Figure 1C shows the distribution of these peaks, where "Over 50% of these peaks were located in the non-coding regions such as exons and introns, and their predicted target genes were transcribed to produce non-coding RNAs; the peaks distributed in transcription start and termination sites activated the promoters and directly drove the transcription of protein-coding genes". Our research focuses on protein-coding genes, and we apologize for any misunderstanding due to the inadequate description. We will provide additional clarification to make this distinction clear.

      (5) It is impossible to work out what Figures 1F, H, and I are from the accompanying text. The same applies to supplementary Figure S1D. Figure 1G is not described in the results.

      Thank you for pointing out these issues. We will make the necessary revisions to provide additional explanations for Figures 1F, H, I, G, and supplementary Figure S1D.

      (6) What is Figure 2A? There is no axis label or description.

      Thank you for bringing this to our attention. We will add the missing axis labels and provide a detailed description for Figure 2A to ensure clarity and accurate interpretation.

      (7) Why is CD274 discussed in the text from Figure 2E but none of the other genes? The rationale needs expanding.

      CD274 (also known as PD-L1) is a key focus of our subsequent research. The other immune checkpoints are not expressed on tumor cells but rather on immune cells. We will provide additional explanation in the text to clarify this distinction.

      (8) Figure 2G needs zooming in more over the putative SE region and the two enhancers labelling. This looks very strange at the moment and does not show typical peak shapes for histone acetylation at enhancers.

      We appreciate your feedback. Our intention with Figure 2G was to present the position of ZFP36L1-SE at a macro level rather than focusing on specific details. This broader view is meant to provide context for the SE region in relation to the surrounding genomic landscape.

      (9) The use of JQ1 does not prove something is a super enhancer, just that it is BRD4 regulated and might be a typical enhancer.

      Thank you for your comment. The role of JQ1 as a super-enhancer inhibitor has been widely reported and recognized in the literature. Its use in experimental studies targeting super-enhancers is a well-established practice. We acknowledge that while JQ1 inhibition indicates BRD4 regulation, it is consistent with the identification of super-enhancers as well.

      (10) An explanation of how the motifs were identified in E1 is needed. Enrichment over what? Were they purposefully looking for multiple motifs per enhancer? Otherwise what it all comes down to later in the figure is a single motif, and how can that be "enriched"?

      Thank you for your feedback. We used the MEME-ChIP online tool for motif identification, which is a widely recognized method in transcription factor research. MEME-ChIP applies established algorithms to identify known motifs within DNA sequences. For detailed information on the tool's working principles and algorithms, please refer to the reference provided and the URL included in the Materials and Methods section of our manuscript. MEME-ChIP: https://meme-suite.org/meme/tools/meme.

      (11) A major missing experiment is to deplete rather than over-express SPI1 for the various assays in Figure 4.

      We apologize for this oversight and acknowledge that the depletion of SPI1, in addition to over-expression, would have provided a more comprehensive analysis. Due to experimental constraints, we are unable to include this depletion experiment in the current study. We appreciate your understanding and will consider this suggestion for future research.

      (12) The authors start jumping around cell lines, sometimes with little justification. Why is MGC803 used in Figure 4I rather than MKN45? This might be due to more endogenous SPI1. However, this does not make sense in Figure 5M, where ZFP36L is overexpressed in this line rather than MKN45. If SPI1 is already high in MGC803, then the prediction is that ZFP36L1 should already be high. Is this the case?

      Thank you for your feedback. We want to clarify that we are not arbitrarily jumping between cell lines. Each experiment was validated in two different cell lines. We aimed to present representative results within the constraints of the manuscript, but if more detailed results from additional cell lines are needed, we can provide them upon request. Regarding your concern, results from the MKN45 cell line are consistent with those observed in MGC803, and these findings are not influenced by SPI1 or ZFP36L1 expression levels.

      (13) In Figure 5, HDAC3 should also be depleted to show opposite effects to over-expression (as the latter could be artefactual). Also, direct involvement should be proven by ChIP.

      We appreciate your feedback. We acknowledge that depleting HDAC3, in addition to overexpressing it, would provide a more comprehensive analysis. Unfortunately, due to experimental constraints, we are unable to include this depletion experiment in the current study. We recognize these limitations and appreciate your understanding. We will consider these aspects for future research. Additionally, we would like to clarify that HDAC3 is a histone deacetylase and not a transcription factor, so it does not directly bind to DNA and therefore is not suitable for ChIP analysis.

      (14) Figure 5G and H are not discussed in the text.

      Thank you for pointing this out. We will include a discussion of Figures 5G and H in the revised manuscript. The additional details should provide the necessary context and interpretation for these figures.

      (15) Figure 6C needs explaining. Why are three patients selected here? Are these supposed to be illustrative of the whole cohort? What sub-type of GC are these?

      Thank you for your comment. The three patients with infiltrative GC shown in Figure 6C were selected as representative images based on prior reviewer suggestions.

      (16) Figure 6E onwards, they switch to MFC cell line. They provide a rationale but the key regulatory axis should be sown to also be operational in these cells to use this as a model system.

      Thank you for your comment. We would like to clarify that we used the MC38 cell line, which is a colon cancer cell line, rather than MFC. Our focus was on demonstrating the role of ZFP36L1 in vivo, rather than specifically discussing the regulatory axis in this context. We chose MC38 cells instead of MFC cells due to practical considerations. Specifically, MFC cells were shown in our experiments to be unable to form tumors in wild-type mice, despite previous reports suggesting their tumorigenicity. We will provide a rationale for this choice in the manuscript. We acknowledge that validating the entire regulatory axis in the MC38 cell line would enhance the study's depth. However, due to experimental constraints, we are unable to complete this additional validation. We appreciate your understanding and will consider this aspect for future research.

      Reviewer #2( Public Review):

      (17) The difference in H3K27ac over the ZFP36L1 locus and SE between the expanding and infiltrative GC is marginal (Figure 2G). Although the authors establish that ZFP36L1 is upregulated in GC, particularly in the infiltrative subtype, no direct proof is provided that the identified SE is the source of this observation. CRISPR-Cas9 should be employed to delete the identified SE to prove that it is causatively linked to the expression of ZFP36L1.

      Thank you for your thoughtful comment. In this study, the key molecule ZFP36L1 was identified as a target gene through the characterization of the super-enhancer ZFP36L1-SE. The enrichment of H3K27ac at this site meets the threshold defined by the ROSE algorithm, and transcription of ZFP36L1 is regulated by BRD4, making it susceptible to inhibition by the super-enhancer inhibitor JQ1. Although we were unable to directly observe the effects of knocking out the ZFP36L1-SE via Cas9 due to experimental constraints, we believe that the indirect evidence we have gathered is sufficient to demonstrate the super-enhancer's driving role. This approach is consistent with the conventions of previous studies on super-enhancers.

      (18) In Figure 3C the impact of shZFP36L1 on PD-L1 expression is marginal and it is observed in the context of IFNg stimulation. Moreover, in XGC-1 cell line the shZFP36L1 failed to knock down protein expression thus the small decrease in PD-L1 level is likely independent of ZFP36L1. The same is the case in Figure 3D where forced expression of ZFP36L1 does not upregulate the expression of PDL1 and even in the context of IFNg stimulation the effect is marginal.

      Thank you for your detailed observations. In our study, the regulatory effect of ZFP36L1 on PD-L1 was validated at the mRNA level, protein level, and through flow cytometry, with each experiment being repeated multiple times. The results of the Western blot were quantitatively assessed using densitometry rather than relying solely on visual inspection. It is important to note that interferon-gamma (IFNγ) stimulation significantly enhances PD-L1 expression, which under the same exposure conditions, may make the baseline expression of PD-L1 appear unchanged. This could explain the marginal effect observed under IFNγ stimulation.

      (19) In Figure 4, it is unclear why ELF1 and E2F1 that bind ZFP36L1-SE do not upregulate its expression and only SPI1 does. In Figure 4D the impact of SPI overexpression on ZFP36L1 in MKN45 cells is marginal. Likewise, the forced expression of SPI did not upregulate PD-L1 which contradicts the model. Only in the context of IFNg PD-L1 is expressed suggesting that whatever role, if any, ZFP36L1-SPI1 axis plays is secondary.

      Thank you for your insightful comments. First, ELF1, E2F1, and SPI1 were predicted transcription factors, and experimental validation is crucial. Our results specifically demonstrate that only SPI1 binds to ZFP36L1-SE, while ELF1 and E2F1 do not, confirming the specificity of SPI1. Second, Second, as mentioned in point (18), experimental results, such as those from western blot, should not be evaluated by eye alone. Our findings are quantitatively assessed, and the regulatory relationships have been confirmed through repeated experiments. This finding is supported by multiple experimental validations, including mRNA, protein, and flow cytometry analyses. Furthermore, using IFNγ to study the regulation of PD-L1 is a common and widely accepted approach in this field. Many studies adopt this model, and it should not be concluded that the axis is secondary simply because PD-L1 expression is observed primarily under IFNγ stimulation. Similarly, other popular research areas, such as ferroptosis and autophagy, also use specific inducers, but this does not diminish the significance of the pathways being studied.

      (20) The data presented in Figure 6 are not convincing. First, there is no difference in the tumor growth (Figure 6E). IHC in Figure 6I for CD8a is misleading. Can the authors provide insets to point CD8a cells? This figure also needs quantification and review from a pathologist.

      Regarding this observation, we will provide an explanation in the discussion section: "Several studies have proposed that reducing PD-L1 expression enhances the tumor-killing effect of cytotoxic T lymphocytes in vitro and reduces primary tumor foci in vivo. Conversely, findings from this study suggest that PD-L1 expression is associated with immune evasion in metastatic foci." We are unsure why those studies concluded that PD-L1 expression levels would impact the size of the primary tumor. We are more inclined to support the perspective of John et al.Klement JD, Redd PS, Lu C, et al. Tumor PD-L1 engages myeloid PD-1 to suppress type I interferon to impair cytotoxic T lymphocyte recruitment. Cancer Cell. 2023;41(3):620-636.e9. doi:10.1016/j.ccell.2023.02.005

      Reviewer #1 (Recommendations For The Authors):

      (21) Supplementary Figure 1 lacks a legend.

      We will add the legend for Supplementary Figure 1.

      (22) Figure 1E, data from "expanding" GC samples is not discussed.

      We will add a discussion of the "expanding" GC samples in the manuscript.

      (23) How are "high" and "low" defined in Figure 2A, right?

      Thank you for your question. In Figure 2A, the "high" and "low" categories on the x-axis are derived from the Friends analysis. This analysis is designed to compare the similarity between different genes or gene sets based on semantic similarity metrics from Gene Ontology (GO). The x-axis represents the semantic similarity score, which reflects how closely related the functions of the genes or gene sets are. This helps in identifying the most significant genes or those related to specific pathways or cell types of interest.

      GOSemSim[2.22.0]

      Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S. GOSemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinformatics. 2010;26(7):976-978. doi:10.1093/bioinformatics/btq064

      (24) Font sizes in multiple figures need to increase. For example, Figure 2C (but many other places).

      The font sizes in the figures, including Figure 2C, will be increased as requested.

      (25) Figure 4K assays TE activity, not SE as stated in the text.

      SEs are composed of multiple TEs. ZFP36L1-E1 is a core element of the ZFP36L1-SE. Due to the excessive length of the ZFP36L1-SE sequence, it was not feasible to insert the entire SE into a dual-luciferase reporter plasmid. It is a common practice to validate such experiments by inserting the typical enhancer elements instead.

      (26) In Figure 6I, why is CD8 shown? What is the reason for choosing this?

      CD8α is primarily used to assess immune evasion by tumor cells against T-cell cytotoxicity. CD8α is typically negatively correlated with PD-L1 expression and serves as an indicator of T-cell infiltration.

      (27) The discussion should be more focussed. The majority of this is general stuff about either super enhancers or PD-L1 regulation. This should be curtailed and more pertinent things retained.

      We will revise the discussion to be more focused. The content will be streamlined to emphasize the most pertinent points related to our study.

      Reviewer #2 (Recommendations For The Authors):

      (28) In Figure 1H various immune cell populations differ between the two types of GC. Unclear what is the biological significance in the context of ZFP36L1.

      The results in Figure 1H provide insight into the SE-driven immune escape signatures of infiltrative gastric cancer (GC). These findings help to contextualize the role of ZFP36L1 in modulating the tumor microenvironment, particularly in relation to immune cell infiltration and immune evasion mechanisms.

      (29) A bivalent profile for H3K27ac is also observed in expanding gastric cancer (Figure 1B), not only in infiltrating GC as the authors claim.

      We did not intend to imply that bivalent H3K27ac enrichment is exclusive to infiltrating gastric cancer. In fact, super-enhancers were identified in both expanding and infiltrative GC. Our point was to highlight that the bivalent enrichment profile is more pronounced in infiltrative GC.

      (30) There is a typo in line 81.

      The typo in line 81 will be corrected. Thank you for pointing it out.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public reviews

      This study describes a group of CRH-releasing neurons, located in the paraventricular nucleus of the hypothalamus, which, in mice, affects both the state of sevoflurane anesthesia and a grooming behavior observed after it. PVHCRH neurons showed elevated calcium activity during the post-anesthesia period. Optogenetic activation of these PVHCRH neurons during sevoflurane anesthesia shifts the EEG from burst-suppression to a seemingly activated state (an apparent arousal effect), although without a behavioral correlate. Chemogenetic activation of the PVHCRH neurons delays sevoflurane-induced loss of righting reflex (another apparent arousal effect). On the other hand, chemogenetic inhibition of PVHCRH neurons delays recovery of righting reflex and decreases sevoflurane-induced stress (an apparent decrease in the arousal effect). The authors conclude that PVHCRH neurons "integrate" sevoflurane-induced anesthesia and stress. The authors also claim that their findings show that sevoflurane itself produces a post-anesthesia stress response that is independent of any surgical trauma, such as an incision. In its revised form, the article does not achieve its intended goal and will not have impact on the clinical practice of anesthesiology nor on anesthesiology research.

      Thanks for the reviews. Please see our responses to the following comments.

      Weaknesses:

      The most significant weaknesses remain:

      a) overinterpretation of the significance of their findings

      b) the failure to use another anesthetic as a control,

      c) a failure to compellingly link their post-sevoflurane measures in mice to anything measured in humans, and

      d) limitations in the novelty of the findings. These weaknesses are related to the primary concerns described below:

      Concerns about the primary conclusion that PVHCRH neurons integrate the anesthetic effects and post-anesthesia stress response of sevoflurane GA

      (1) After revision, their remain multiple places where it is claimed that PVHCRH neurons mediate the anesthetic effects of sevoflurane (impact statement: we explain "how sevoflurane-induced general anesthesia works..."; introduction: "the neuronal mechanisms that mediate the anesthetic effects...of sevoflurane GA remain poorly understood" and "PVHCRH neurons may act as a crucial node integrating the anesthetic effect and stress response of sevoflurane").The manuscript simply does not support these statements. The authors show that a short duration exposure to sevoflurane inhibits PVHCRH neurons, but this is followed by hyperexcitability of these neurons for a short period after anesthesia is terminated. They show that the induction and recovery from sevoflurane anesthesia can be modulated by PVHCRH neuronal activity, most likely through changes in brain state (measured by EEG). They also show that PVHCRH neuronal activity modulates corticosterone levels and grooming behavior observed post-anesthesia (which the authors argue are two stress responses).These two things (effects during anesthesia and effects post-anesthesia)may be mechanistically unrelated to each other. None of these observations relate to the primary mechanism of action for sevoflurane. All claims relating to "anesthetic effects" should be removed. Even the term "integration" seems wrong-it implies the PVH is combining information about the anesthetic effect and post-anesthesia stress responses.

      As requested, we have removed all claims related to ‘anesthetic effects’ or ‘integration’. Please see the revised manuscript.

      (2) lt is important to compare the effects of sevoflurane with at least one other inhaled ether anesthetic as one step towards elevating the impact of this paper to the level required for a journal such as eLife. Isoflurane, desflurane, and enflurane are ether anesthetics that are very similar to each other, as well as being similar to sevoflurane. For example, one study cited by the authors (Marana et al.2013) concludes that there is weak evidence for differences in stress-related hormones between sevoflurane and desflurane, with lower levels of cortisol and ACTH observed during the desflurane intraoperative period. It is important to determine whether desflurane activates PVHCRH neurons in the post-anesthesia period, and whether this is accompanied by excess grooming in the mice, because this will distinguish whether the effects of sevoflurane generalize to other inhaled anesthestics, or, alternatively, relate to unique idiosyncratic properties of this gas that may not be a part of its anesthetic properties.

      Thanks for your insightful comments and suggestions. Regarding your request for additional experiments, we acknowledge the value they could add to our study. However, investigating whether the effects of sevoflurane generalize to other inhaled anesthetics is beyond the scope of our current study. There is evidence indicating the prevalence of anesthetic stress caused by inhaled ether anesthetics1,2. The post-anesthesia stress-related behaviors caused by sevoflurane administration are reminiscent of delirium observed clinically. Notably, studies have shown that the use of desflurane for maintenance of anesthesia did not significantly affect the incidence or duration of delirium compared to sevoflurane administration3. This suggests that our observations likely represent a generalized response to inhaled ether anesthetic rather than being specific to sevoflurane.

      Concerns about the clinical relevance of the experiments

      In anesthesiology practice, perioperative stress observed in patients is more commonly related to the trauma of the surgical intervention, with inadequate levels of antinociception or unconsciousness intraoperatively and/or poor post-operative pain control. The authors seem to be suggesting that the sevoflurane itself is causing stress because their mice receive sevoflurane but no invasive procedures, but there is no evidence of sevoflurane inducing stress in human patients. It is important to know whether sevoflurane effectively produces behavioral stress in the recovery room in patients that could be related to the putative stress response (excess grooming) observed in mice. For example, in surgeries or procedures which required only a brief period of unconsciousness that could be achieved by administering sevoflurane alone (comparable to the 30 min administered to the mice), is there clinical evidence of post-operative stress? It is also important to describe a rationale for using a 30 min sevoflurane exposure. What proportion of human surgeries using sevoflurane use exposure times that are comparable to this?

      It is also the case that there are explicit published findings showing that mild and moderate surgical procedures in children receiving sevoflurane (which might be the closest human proxy to the brief 30 minutes sevoflurane exposure used here) do not have elevated cortisol (Taylor et al, J Clin Endocrinol Metab, 2013). This again raises the question of whether the enhanced grooming or elevated corticosterone observed in the mice here has any relevance to humans.

      Thanks for the comments. Most ear, nose, and throat surgeries in children involve a short period of anesthesia with sevoflurane alone4-6, which is similar to the 30-minute exposure in our mouse study. In clinical settings, emergence delirium and agitation are common in young children undergoing sevoflurane anesthesia7, often accompanied by troublesome excitation phenomena during induction and awakening8. These clinical observations align with the post-operative stress response (e.g., excessive grooming) we identified in our study.

      It is the experience of one of the reviewers that human patients who receive sevoflurane as the primary anesthetic do not wake up more stressed than if they had had one of the other GABAergic anesthetics. If there were signs of stress upon emergence (increased heart rate, blood pressure, thrashing movements) from general anesthesia, this would be treated immediately. The most likely cause of post-operative stress behaviors in humans is probably inadequate anti-nociception during the procedure, which translates into inadequate post-op analgesia and likely delirium. It is the case that children receiving sevoflurane do have a higher likelihood of post-operative delirium. Perhaps the authors' studies address a mechanism for delirium associated with sevoflurane, but this is barely mentioned. Delirium seems likely to be the closest clinical phenomenon to what was studied. As noted by the Besnier et al (2017) article cited by the authors, surgery can elevate postoperative glucocorticoidstress hormones, but it generally correlates with the intensity of the surgical procedure. Besnier et al also note the elevation of glucocorticoids is generally considered to be adaptive. Thus, reducing glucocorticoids during surgery with sevoflurane may hamper recovery, especially as it relates to tissue damage, which was not measured or considered here. This paper only considers glucocorticoid release as a negative factor, which causes "immunosuppression", "proteolysis", and "delays postoperative recovery and leads to increased morbidity".

      Thanks for the comments. We agree that the post-anesthetic stress behaviors mentioned in our manuscript are similar to the clinical phenomenon of delirium, which were defined in Cheng Li’s study as ‘sevoflurane-induced post-operative delirium’9. Therefore, we conducted additional behavioral tests for cognitive function, including the Y-maze and novel object recognition test, in mice administrated 30-minute sevoflurane anesthesia. The results demonstrate that chemogenetic inhibition of PVHCRH neurons ameliorated the short-term memory impairment in mice exposed to 30-minute sevoflurane GA (Figure 7-figure supplement 9), suggesting PVHCRH neurons may involve in modulating sevoflurane-induced postoperative delirium.

      Concerns about the novelty of the findings:

      The key finding here is that CRH neurons mediate measures of arousal, and arousal modulates sevoflurane anesthesia induction and recovery. However, CRH is associated with arousal in numerous studies. In fact, the authors' own work, published in eLife in 2021, showed that stimulating the hypothalamic CRH cells lead to arousal and their inhibition promoted hypersomnia. In both papers the authors use fos expression in CRH cells during a specific event to implicate the cells, then manipulate them and measure EEG responses. In the previous work, the cells were active during wakefulness; here- they were active in the awake state the follows anesthesia (Figure1). Thus, the findings in the current work are incremental and not particularly impactful. Claims like "Here, a core hypothalamic ensemble, corticotropin-releasing hormone neurons in the paraventricular nucleus of the hypothalamus, is discovered" are overstated. PVHCRH cell populations were discovered in the 1980s. Suggesting that it is novel to identify that hypothalamic CRH cells regulate post-anesthesia stress is unfounded as well: this PVH population has been shown over four decades to regulate a plethora of different responses to stress. Anesthesia stress is no different. Their role in arousal is not being discovered in this paper. Even their role in grooming is not discovered in this paper.

      Thanks for the comments. As requested, we have revised our manuscript by removing overstated sentences. Please see the revised manuscript. In terms of novelty, our study reveals that PVHCRH neurons are implicated not only in the induction and emergence of sevoflurane general anesthesia but also in sevoflurane-induced post-operative delirium. This finding represents a novel contribution to the field, as it has not been previously reported by other studies.

      The activation of CRH cells in PVH has already been shown to result in grooming by Jaideep Bains (a paper cited by the authors). Thus, the involvement of these cells in this behavior is not surprising. The authors perform elaborate manipulations of CRH cells and numerous analyses of grooming and related behaviors. For example, they compare grooming and paw licking after anesthesia with those after other stressors such as forced swim, spraying mice with water, physical attack and restraint. The authors have identified a behavioral phenomenon in a rodent model that does not have a clear correlation with a behavior state observed in humans during the use of sevoflurane as part of an anesthetic regimen. The grooming behaviors are not a model of the emergence delirium or the cognitive dysfunction observed commonly in patients receiving sevoflurane for general anesthesia. Emergence delirium is commonly seen in children after sevoflurane is used as part of general anesthesia and cognitive dysfunction is commonly observed in adults-particularly the elderly-- following general anesthesia. No features of delirium or cognitive dysfunction are measured here.

      As requested, behavioral tests for cognitive function have been conducted and displayed in Figure 7-figure supplement 9.

      Other concerns:

      In Figure 2, cFos was measured in the PVH at different points before, during and after sevoflurane. The greatest cFos expression was seen in Post 2, the latest time point after anesthesia. However, this may simply reflect the fact that there is a delay between activity levels and expression of cFos (as noted by the authors, 2-3 hours). Thus, sacrificing mice 30 minutes after the onset of sevoflurane application would be expected to drive minimal cFos expression, and the cFos observed at 30 minutes would not accurately reflect the activity levels during the sevoflurane. Also, the authors state that the hyperactivity, as measured by cFos, lasted "approximately 1 hours before returning to baseline", but there is no data to support this return to baseline.

      Thanks for the comments. We apologize that the protocol we used for c-fos staining may not accurately reflect the activity levels, so we have removed Figure 2F. The sentence ‘lasted approximately 1 hours before returning to baseline’ refers to the calcium signal but not c-fos level.

      In Figure 7, the number of animals appears to change from panel to panel even though they are supposed to show animals from the same groups. For example, cort was measured in only 3 saline-treated O2 animals (Fig 7E), but cFos and CRH were assessed in 4 (Fig C,D). Similarly, grooming time and time spent in open arms was measured in 6 saline-treated O2 controls (Fig 7F, H) but central distance was measured in 8(Fig 7G). There are other group number discrepancies in this figure--the number of data points in the plots do not match what is reported in the legend for numerous groups. Similarly, Figure 4 has a mismatch between the Ns reported in the legend and the number of points plotted per bar. For example, there were 10 animals in the hM3Di group; all are shown for the LORR and time to emergence plots, but only8 were used for time to induction. The legends reported N=7 for the mCherry group, yet 9 are shown for the time to emergence panel. No reason for exclusions is cited. These figures (and their statistics) should be corrected.

      Thanks for the comments. We have rechecked and corrected our figures and illustrations in the revised manuscript.

      Recommendations for the authors:

      In Figure 6, the BSR pre-stim data points for panels F and H look exactly identical, even though these data are from two different sets of mice. It seems likely that one of these panels is not depicting the correct pre-stim data points. Please check this.

      Thanks for the comments. We have corrected this mistake.

      General anesthesia is a combination of behavioral and physiological states induced and maintained primarily by pharmacologic agents. The authors do not provide a definition of general anesthesia.

      Thanks for the advice. We have added the definition of general anesthesia in the introduction part.

      The first sentence of the abstract closely resembles the first sentence of the abstract of Brown,Purdon and Van Dort,Annu. Rev. Neurosci. 2011,34:601-28 yet, there is no citation.

      Thanks for the comments. We have revised the first sentence.

      ln the Discussion, the authors cite the research on circuitry that is relevant for emergence from general anesthesia. Conspicuously missing from this section of the paper is the large body of work by Solt and colleagues which has demonstrated that dopamine agonists (such as methylphenidate), electrical stimulation of the ventral tegmental area and optogenetic stimulation of the D1 neurons in the ventral tegmental area can hasten emergence from general anesthesia. Also omitted is the work of Kelzand colleagues and a discussion of neural inertia.

      Thanks for the suggestions. We have added these citations as requested.

      As regards the weaknesses of p-values for reporting the results of scientific studies, l offer the following reference to the authors. Ronald L. Wasserstein & Nicole A.Lazar (2016)The ASA Statement on p-Values: Context, Process, and Purpose, The American Statistician,70:2,129- 133, DOl:10.1080/00031305.2016.1154108

      Thanks for the suggestions. We have revised the manuscript as requested.

      The methods for the CRF antibody are unclear. It was previously suggested that the antibody be validated (for example, show an absence of immunostaining with CRF knockdown) because the concentration of antiserum (1:800) is quite high, suggesting either the antibody is not potent or (more concerning) not specific. The methods also indicated that colchicine was infused ICV prior to perfusion for staining of cFos and CRF, but no surgical methods are described that would enable ICV infusion, and it is not clear why colchicine was used. Please clarify.

      The anti-CRF antibody is validated by other studies11,12. F For CRF immunostaining, animals' brains were pre-treated with intraventricular injections of colchicine (20 μg in 500 nL saline) 24 hours before perfusion to inhibit fast axonal transport13,14. Additional details regarding these methods have been included in the Method section of the revised manuscript.

      Editor's note:

      Full statistical reporting including exact p-values alongside summary statistics (test statistic and df) and 95% confidence intervals is lacking.

      Thanks for the suggestions. We have added full statistical reporting in the revised manuscript as requested.

      Reference

      (1) Marana, E. et al. Desflurane versus sevoflurane: a comparison on stress response. Minerva Anestesiol 79, 7-14 (2013).

      (2) Yang, L., Chen, Z. & Xiang, D. Effects of intravenous anesthesia with sevoflurane combined with propofol on intraoperative hemodynamics, postoperative stress disorder and cognitive function in elderly patients undergoing laparoscopic surgery. Pak J Med Sci 38, 1938-1944, doi:10.12669/pjms.38.7.5763 (2022).

      (3) Driscoll, J. N. et al. Comparing incidence of emergence delirium between sevoflurane and desflurane in children following routine otolaryngology procedures. Minerva Anestesiol 83, 383-391, doi:10.23736/s0375-9393.16.11362-8 (2017).

      (4) Galinkin, J. L. et al. Use of intranasal fentanyl in children undergoing myringotomy and tube placement during halothane and sevoflurane anesthesia. Anesthesiology 93, 1378-1383, doi:10.1097/00000542-200012000-00006 (2000).

      (5) Greenspun, J. C., Hannallah, R. S., Welborn, L. G. & Norden, J. M. Comparison of sevoflurane and halothane anesthesia in children undergoing outpatient ear, nose, and throat surgery. J Clin Anesth 7, 398-402, doi:10.1016/0952-8180(95)00071-o (1995).

      (6) Messieha, Z. Prevention of sevoflurane delirium and agitation with propofol. Anesth Prog 60, 67-71, doi:10.2344/0003-3006-60.3.67 (2013).

      (7) Shi, M. et al. Dexmedetomidine for the prevention of emergence delirium and postoperative behavioral changes in pediatric patients with sevoflurane anesthesia: a double-blind, randomized trial. Drug Des Devel Ther 13, 897-905, doi:10.2147/dddt.S196075 (2019).

      (8) Veyckemans, F. Excitation and delirium during sevoflurane anesthesia in pediatric patients. Minerva Anestesiol 68, 402-405 (2002).

      (9) Xu, Y., Gao, G., Sun, X., Liu, Q. & Li, C. ATPase Inhibitory Factor 1 Is Critical for Regulating Sevoflurane-Induced Microglial Inflammatory Responses and Caspase-3 Activation. Front Cell Neurosci 15, 770666, doi:10.3389/fncel.2021.770666 (2021).

      (10) Friedman, E. B. et al. A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia. PLoS One 5, e11903, doi:10.1371/journal.pone.0011903 (2010).

      (11) Giardino, W. J. et al. Parallel circuits from the bed nuclei of stria terminalis to the lateral hypothalamus drive opposing emotional states. Nat Neurosci 21, 1084-1095, doi:10.1038/s41593-018-0198-x (2018).

      (12) Yeo, S. H., Kyle, V., Blouet, C., Jones, S. & Colledge, W. H. Mapping neuronal inputs to Kiss1 neurons in the arcuate nucleus of the mouse. PLoS One 14, e0213927, doi:10.1371/journal.pone.0213927 (2019).

      (13) de Goeij, D. C. et al. Repeated stress-induced activation of corticotropin-releasing factor neurons enhances vasopressin stores and colocalization with corticotropin-releasing factor in the median eminence of rats. Neuroendocrinology 53, 150-159, doi:10.1159/000125712 (1991).

      (14) Yuan, Y. et al. Reward Inhibits Paraventricular CRH Neurons to Relieve Stress. Curr Biol 29, 1243-1251.e1244, doi:10.1016/j.cub.2019.02.048 (2019).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      Li Zhang et al. characterized two new Gram-negative endolysins identified through an AMPtargeted search in bacterial proteomes. These endolysins exhibit broad lytic activity against both Gram-negative and Gram-positive bacteria and retain significant antimicrobial activity even after prolonged exposure to high temperatures (100{degree sign}C for 1 hour). This stability is attributed to a temperature-reversible transition from a dimer to a monomer. The authors suggest several potential applications, such as complementing heat sterilization processes or being used in animal feed premixes that undergo high-temperature pelleting, which I agree with. 

      We appreciate the reviewer’s valuable comments and suggestions.

      Strengths: 

      The claims are well-supported by relevant and complementary assays, as well as extensive bioinformatic analyses. 

      We appreciate the reviewer’s valuable comments and suggestions.

      Weaknesses: 

      There are numerous statements in the introduction and discussion sections that I currently do not agree with and consider need to be addressed. Therefore, I recommend major revisions. 

      Based on your valuable comments and suggestions, we have revised relevant introduction and discussion sections (pages 3-4, lines 82-101; page 21, lines 480-483).

      Major comments: 

      Introduction and Discussion: 

      The introduction and the discussion are currently too general and not focused. Furthermore, there are some key concepts that are missing and are important for the reader to have an overview of the current state-of-the-art regarding endolysins that target gram-negatives. Specifically, the concepts of 'Artilysins', 'Innolysins', and 'Lysocins' are not introduced. Besides this, the authors do not mention other high-throughput mining or engineering strategies for endolysins, such as e.g. the VersaTile platform, which was initially developed by Hans Gerstmans et al. for one of the targeted pathogens in this manuscript (i.e., Acinetobacter baumannii). Recent works by Niels Vander Elst et al. have demonstrated that this VersaTile platform can be used to high-throughput screen and hit-to-lead select endolysins in the magnitude tens of thousands. Lastly, Roberto Vázquez et al. have recently demonstrated with bio-informatic analyses that approximately 30% of Gram-negative endolysin entries have AMP-like regions (hydrophobic short sequences), and that these entries are interesting candidates for further wet lab testing due to their outer membrane penetrating capacities. Therefore, I fully disagree with the statement being made in the introduction that endolysin strategies to target Gram-negatives are 'in its infancy' and I urge the authors to provide a new introduction that properly gives an overview of the Gram-negative endolysin field.   

      We thank the reviewer for the valuable suggestions. A new paragraph has been added to the revised manuscript to reflect the concepts and strategies for lysin engineering and discovery against Gram-negative bacteria (pages 3-4, lines 82-101). 

      Results: 

      It should be mentioned that the halo assay is a qualitative assay for activity testing. I personally do not like that the size of the halos is used to discriminate in endolysin activity. In this reviewer's opinion, the size of the halo is highly dependent on (i) the molecular size of the endolysin as smaller proteins can diffuse further in the agar, and (ii) the affinity of the CBD subdomain of the endolysin for the bacterial peptidoglycan. It should also be said that in the halo assay, there is a long contact time between the endolysin and the bacteria that are statically embedded in the agar, which can result in false positive results. How did the authors mitigate this? 

      We quite agree with the reviewer that the halo assay is only a qualitative method for activity testing and may be perturbed by multiple parameters (DOI:

      10.3390/antibiotics9090621). In our study, the halo assay was used only as a preliminary method to rapidly distinguish the activities of multiple candidates, and then the candidates with high antibacterial activities were further characterized through a series of in vitro and in vivo assays in this work.

      Testing should have been done at equimolar concentrations. If the authors decided to e.g. test 50 µg/mL for each protein, how was this then compensated for differences in molecular weight? For example, if PHAb10 and PHAb11 have smaller molecular sizes than PHAb7, 8, and 9, there is more protein present in 50 µg/mL for the first two compared to the others, and this would explain the higher decrease in bacterial killing (and possibly the larger halos). 

      We thank the reviewer for his valuable suggestions and concerns. We agree with the reviewer that when we need to know exactly how much times more active an enzyme is than the another, we should directly compare the performance of the two enzymes at equimolar concentrations. In our previous work, we followed this rule to distinguish novel chimeric lysins from their parental lysins or their variants (DOI: 10.1128/AAC.00311-20; DOI: 10.1128/AAC.01610-19; DOI: 10.1128/AAC.02043-18). In the present work, our initial goal of testing was to reflect the robustness and efficiency of screening strategy initiated by lysinderived antimicrobial peptides. With this in mind, we therefore did not spend more effort to compare the activities of these candidates in detail but continued to clarify their host range and thermo-tolerance mechanisms, and then continued to examine their performance in infection models. Nonetheless, in future work, we will definitely follow your suggestions when it is necessary to quantify the differences between these candidates.  

      Reviewer #2 (Public Review)

      Summary: 

      The study explores a new strategy of lysin-derived antimicrobial peptide-primed screening to find peptidoglycan hydrolases from bacterial proteomes. Using this strategy authors identified five peptidoglycan hydrolases from A. baumannii. They further tested their antimicrobial activities on various Gram-positive and Gram-negative pathogens.

      We appreciate the reviewer’s valuable comments.

      Strengths: 

      Overall, the study is good and adds new members to the peptidoglycan hydrolases family. The authors also show that these lysins have bactericidal activities against both Gram-positive and Gram-negative bacteria. The crystal structure data is good, and reveals different thermostablility to the peptidoglycan hydrolases. Structural data also reveals that PhAb10 and PHAb11 form thermostable dimers and data is corroborated by generating variant protein defective in supporting intermolecular bond pairs. The mice bacterial infection shows promise for the use of these hydrolases as antimicrobial agents. 

      We appreciate the reviewer’s valuable comments and suggestions.

      Weaknesses: 

      While the authors have employed various mechanisms to justify their findings, some aspects are still unclear. Only CFU has been used to test bactericidal activity. This should also be corroborated by live/dead assay. Moreover, SEM or TEM analysis would reveal the effect of these peptidoglycan hydrolases on Gram-negative /Gram-positive cell envelopes. The authors claim that these hydrolases are similar to T4 lysozyme, but they have not correlated their findings with already published findings on T4 lysozyme. T4 lysozyme has a C-terminal amphipathic helix with antimicrobial properties. Moreover, heat, denatured lysozyme also shows enhanced bactericidal activity due to the formation of hydrophobic dimeric forms, which are inserted in the membrane. Authors also observe that heat-denatured PHAb10 and PHAb11 have bactericidal activity but no enzymatic activity. These findings should be corroborated by studying the effect of these holoenzymes/ truncated peptides on bacterial cell membranes. Also, a quantitative peptidoglycan cleavage assay should be performed in addition to the halo assay. Including these details would make the work more comprehensive. 

      We thank the reviewer for his valuable suggestions and concerns. We agree with the reviewer that employing more methods and techniques such as SEM, TEM, live/dead imaging, and GC-MS will provide a deeper understanding of how these peptidoglycan hydrolases interact with the bacterial envelopes and peptidoglycan bones, which will definitely make our study more comprehensive. The principal idea of this study is, however, to test the robustness and effectiveness of the screening strategy triggered by lysin-derived antimicrobial peptide in discovering new peptidoglycan hydrolases. Therefore, we did not put more efforts in charactering the interactions of these peptidoglycan hydrolases with the bacterial envelopes/membranes in multiple assays; instead, we continued to elucidate their host range and thermo-tolerance mechanisms and then continued to examine their performance in infection models. 

      We are also very grateful to the reviewers for their suggestions to correlate our results to published findings on lysozymes. Based on these suggestions, we have included an extensive discussion in the Discussion section of the revised manuscript (page 22, lines 502-514).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      Abstract and title. 

      In my opinion, the current title does not fully cover the work that is presented in the manuscript. 

      According to your valuable comment, we have revised the title to “Dimer-monomer transition defines a hyper-thermostable peptidoglycan hydrolase mined from bacterial proteome by lysin-derived antimicrobial peptide-primed screening”.

      Please remove the word 'novel' from the title, as well as elsewhere in the manuscript. As it is true that PHAb10 and PHAb11 are new, they are not novel. There are many reports that have been published on endolysins with activity against Gram-negatives, and sometimes even also Gram-positives. 

      We have changed the description of PHAb10 and PHAb11 to avoid using the word “novel”, but alternatively, using “new” or “active” in the title and throughout the text in the revised manuscript.

      Additional information for the Introduction section in the Public Review: 

      DOI: 10.1128/AAC.00285-16  

      DOI: 10.1038/s41598-020-68983-3 

      DOI: 10.1128/AAC.00342-19  

      DOI: 10.1126/sciadv.aaz1136   

      DOI: 10.1111/1751-7915.14339 

      DOI: 10.1128/JVI.00321-21  G-

      We appreciate the reviewer for these selected references and have cited almost all of them in a new paragraph in the Introduction section of the revised manuscript (pages 3-4, lines 82-101).

      Minor Comments: 

      Line 30. For a lay person it is not clear what is meant by 'unique mechanism of action.' 

      These has been replaced by “direct peptidoglycan degradation activity” in the revised manuscript (page 2, lines 30-31).

      Line 60 & 62. Please merge these sentences into one as they have the same meaning.

      We have deleted one of the sentences based on your suggestion.

      Line 67. Replace 'also' with 'simultaneously'. 

      Revised as suggested (page 3, line 66).

      Line 74. 'Modern clinical practice' should specifically refer to infectious diseases in humans. 

      Revised as suggested (page 3, line 73).

      Line 76 to 105. There is too much information that is not focused. This section should be rewritten so that it is in line with the focus of the presented work. I would remove this section and replace it with a new section as proposed in my major comments. 

      Based on your suggestion, we deleted this section and prepared a new paragraph in the revised manuscript (pages 3-4, lines 82-101).

      Line 113. I strongly disagree with the wording 'in its infancy'. Please see my major comment. 

      We have rewritten the paragraph as “However, compared with the current progress in the clinical translation of lysins against Gram-positive bacteria, the discovery of lysins against Gram-negative bacteria that meet the needs described in the WHO priority pathogen list is still urgently needed.” according to your valuable comments in the revised manuscript (page 4, lines 98-101).

      Line 116. Remove 'on'. 

      Revised as suggested (page 4, line 104).

      Results. 

      Additional information for the Results section in the Public Review: 

      DOI: 10.3390/antibiotics9090621

      We thank the reviewer for this valuable reference, which has been cited in the Results section and Methods sections of the revised manuscript (page 7, line 159; page 25, line 605).

      Minor comments: 

      Line 135. Replace 'would' with 'could'.

      Revised as suggested (page 5, line 124).

      Line 150. Why was this naming decided to go from 11 -> 7, whereas in Figure 1a the clades go from I to V? This way of naming is not clear to me. 

      Thank you for the reviewer's question. There are two numbering systems here: 1-11 is the numbering of peptidoglycan hydrolases mined from different bacterial proteomes by lysin-derived peptide primer screening strategy, and the characterization of candidates mined from the proteome of A. baumannii are 7 to 11 (characterization candidates numbered 1 to 6 are from other bacterial proteomes). Whereas the cladistic analysis of all potential candidates in the A. baumannii proteome is regularly labelled by clade I to V. 

      Line 250. Replace 'casts doubt' with 'questions'. 

      Revised as suggested (page 10, line 244).

      Line 252 to 257. I would encourage the authors to mention if there is any homology in between the peptides on the one hand, and in between the lysozyme catalytic domains on the other hand.

      This information has been added to the revised manuscript (page 10, lines 249-251).

      Line 266. The following sentence should be reworded: 'However, rare lytic activity was observed in P11-NP, suggesting that a potential role for it in functions other than bactericidal

      activity.' 

      In the revised manuscript (page 11, lines 261-262), the sentence has been revised as “However, rare lytic activity was observed in P11-NP, suggesting that its function remains to be established”.

      Line 276. Replace 'asked' with 'questioned'.

      Revised as suggested (page 11, line 270).

      From 302 onwards. Why was it chosen to solve the crystal structure of PHAb8, and not PHAb7 and 9? This should be briefly mentioned. 

      Initially we tried to decipher the structures of all five enzymes, but we finally obtained the crystal structures of only three enzymes, PHAb8, PHAb10, and PHAb11 by Xray crystallography. This reason has been added in the revised manuscript (page 13, lines 300301).

      Line 437. Replace 'the burn wound model' with 'a burn wound model'. 

      Revised as suggested (page 19, line 433).

      Line 445. Replace 'the mouse abscess model' with 'a mouse abscess model'. 

      Revised as suggested (page 19, line 441).

      Line 449 to 451. Given that the mice received 5 doses of minocycline and no difference was observed with the group that received tris buffer, was it tested if the Acinetobacter baumannii 3437 isolates became resistant against minocycline during the experiment? 

      We appreciate the Reviewer for his valuable concern. In our study, we did not explore in detail the reasons why minocycline was ineffective. But we strongly agree with the reviewer that drug resistance may be one of the reasons.

      Discussion. 

      Minor comments. 

      Line 479. Delete this sentence: 'Policy makers, scientists, enterprisers, and investigators have worked together for decades to exploit the 'trojan horse' globally, but new options for treating antimicrobial resistance in the clinic remain to be seen'. 

      Revised as suggested.

      Line 483. Reformulate as follows: 'unique mechanism of action, potent bactericidal activity, low risks of drug resistance, and ongoing clinical trials targeting Gram-positive bacteria.' To my knowledge, all these clinical trials target S. aureus, but I might be wrong. 

      Revised as suggested (page 21, lines 476-478).

      Line 486. 'However, for Gram-negative bacteria, the effects of phage-derived lysins were often hampered by their outer membranes, which requires more strategies to overcome this barrier.' After this sentence, the concepts of Artilysins, Innolysins, and Lysocins should be mentioned, in addition to the introduction. These are important engineering strategies and the reader should be informed that your strategy is thus not the only existent one. 

      Revised as suggested (page 21, lines 480-482).

      Line 491. Please, again refer to the work of Roberto Vázquez et al., who has done very similar work to your work presented. DOI: 10.1128/JVI.00321-21 

      We have cited this interesting work in the Introduction section and Discussion section of the revised manuscript (page 4, line 106; page 21, lines 482-483).

      Line 499. Reformulate: 'Gram-positive bacteria are primarily killed through the action of the antimicrobial peptides only'. 

      According to your suggestion, it was changed to “while Gram-positive bacteria are killed mainly through the action of the intrinsic antimicrobial peptides” in the revised manuscript (pages 21-22, lines 497-498).

      Line 500. Delete this sentence, as this is already mentioned in the results and too detailed:

      'Interestingly, we noted a difference in the killing of Gram-positive bacteria by PHAb10 and PHAb11, which may be due to the fact that P11-CP had one more basic amino acid than P10CP, so it had stronger bactericidal activity.' 

      Revised as suggested.

      Line 503. This statement doesn't make sense because you cannot directly compare ug/mL between endolysins, you must compare equimolar concentrations. Furthermore, testing conditions between studies were different, thus making this claim unjustified. 

      These statements have been deleted in the revised manuscript.

      Line 524. Please delete:' To our knowledge, this is the first time that an enzyme had been found to adapt to ambient temperature by altering its dimerization state.' 

      Revised as suggested.

      Figures. 

      Figure 1a. Please choose a different name for 'dry job' and 'wet job'. 

      Following your suggestion, they have been specified as “In silico analysis” and “Experimental verification” in the revised Figure 1a. 

      Figure 6. I suggest moving Figure 6e to the supplementary materials and reorganizing Figure 6 with only panels a to d. 

      Revised as suggested.

      Materials and Methods, References, and Supplementary Materials.  No comments. 

      Reviewer #2 (Recommendations For The Authors): 

      Most figure labelings are very small and difficult to read. 

      All figures in the revised manuscript have been replaced with high-resolution figures, which hopefully will make these labels easier to follow.

      The authors should include a data availability statement in the manuscript.

      Revised as suggested (page 28, lines 704-706).

    1. Author response:

      Reviewer #1:

      (1) Adding microscopy of the untreated group to compare Figure 2A with would further strengthen the findings here.

      Thank you for your comments on our manuscript. We will carefully revise this part. Actually, we used a time-lapse method to capture images at 0 minute before any drugs were added. We will change '0 min' to 'untreated,' which will further strengthen our findings.

      (2) Quantification of immune infiltration and histological scoring of kidney, liver, and spleen in the various treatment groups would increase the impact of Figure 4.

      Thank you for your comments on our manuscript. To further strengthen Figure 4, we will use quantification of immune infiltration and histological scoring of the kidney, liver, and spleen in different groups. Additionally, we will use ImageJ software for molecular immunohistochemistry and determine the ratio of normal to abnormal cells, providing more comprehensive insights into the effects of the treatments.

      (3) The data in Figure 6 I is not sufficiently convincing as being significant.

      Thank you for your comments on our manuscript. Previous researches have shown that antibiotics and other drugs can cause alterations in gut microbiota. Therefore, we plan to study the effects of linalool on gut microbiota. The results of this part were mostly built on gut microbiota sequencing and correlation analysis, we have tried several times to isolate vital microbes from the gut, but this is a very challenging work and the results were not good. Thus, in this study, we just predicted the effects of linalool on gut microbiota. In the future, we will continue to delve into interesting aspects of how linalool affects gut microbiota.

      (4) Comparisons of the global transcriptomic analysis of the untreated group to the PC, LP, and LT groups would strengthen the author's claims about the immunological and transcriptomic changes caused by linalool and provide a true baseline.

      Thank you for your comments on our manuscript. We will compare the global transcriptomic analysis of the untreated group with the PC, LP, and LT groups to strengthen the claims about the immunological and transcriptomic changes induced by linalool, thereby providing a true baseline.

      Reviewer #2:

      (1) The authors have taken for granted that the readers already know the experiments/assays used in the manuscript. There was not enough explanation for the figures as well as figure legends.

      Thank you for your comments on our manuscript. We will provide more detailed explanations of the experiments and assays used in the manuscript, as well as enhance the descriptions in the figure legends, to ensure that readers have a clear understanding of the figures and context.

      (2) The authors missed adding the serial numbers to the references.

      Thank you for your comments on our manuscript. We will add serial numbers to the references to ensure proper citation and improve the clarity of our manuscript.

      (3) The introduction section does not provide adequate rationale for their work, rather it is focused more on the assays done.

      Thank you for your comments on our manuscript. We will add a section to the introduction that provides a rationale for our work, specifically focusing on the impact of plant extract on immunoregulation.

      (4) Full forms are missing in many places (both in the text and figure legends), also the resolution of the figures is not good. In some figures, the font size is too small.

      Thank you for your comments on our manuscript. We will ensure that all abbreviations are expanded where necessary, both in the text and figure legends. Additionally, we will improve the resolution of the figures and increase the font size where needed to enhance clarity.

      (5) There is much mislabeling of the figure panels in the main text. A detailed explanation of why and how they did the experiments and how the results were interpreted is missing.

      Thank you for your comments on our manuscript. We will improve the labeling of the figure panels, provide detailed explanations of the experimental methods, including their rationale and interpretation, and clarify the connections between the methods.

      (6) There is not enough experimental data to support their hypothesis on the mechanism of action of linalool. Most of the data comes from pathway analysis, and experimental validation is missing.

      Thank you for your comments on our manuscript. We have tried our best to link transcriptomic data, pathway analysis, experimental validation. We carried out many experiments to substantiate the changes inferred from the transcriptomic data as SEM, TEM, CLSM, molecular docking, RT-qPCR, histopathological examinations. The detailed information is listed as follows. (1) As shown in Figure 2, we combined the transcriptomic data related to membrane and organelle with SEM, TEM, and CLSM images. After deep analysis of these data and observation together, we illustrated that cell membrane may be a potential target for linalool. (2) As shown in Figure 3, we carried out molecular docking to explore the specific binding protein of linalool with ribosome which were screen out as potential target of linalool by transcriptomic data. (3) As shown in Figure 5, transcriptomic data illustrated that linalool enhanced the host complement and coagulation system. To substantiate these changes, we carried out RT-qPCR to detect those important immune-related gene expressions, and found that RT-qPCR analysis results were consistent with the expression trend of transcriptome analysis genes. (4) As shown in Figure 4 and 5, transcriptomics data revealed that linalool promoted wound healing tissue repair, and phagocytosis (Figure. 5E). To ensure these, we carried out histopathological examinations, and found that linalool alleviated tissue damage caused by S. parasitica infection on the dorsal surface of grass carp and enhancing the healing capacity (Figure. 4G). But we know the antimicrobial mechanism of linalool need further investigation, we will conduct more experiments to explore the antimicrobial mechanism of action of linalool in the future.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors of this study aim to use an optimization algorithm approach, based on the established NelderMead method, to infer polymer models that best match input bulk Hi-C contact data. The procedure infers the best parameters of a generic polymer model that combines loop-extrusion (LE) dynamics and compartmentalization of chromatin types driven by weak biochemical affinities. Using this and DNA FISH, the authors investigate the chromatin structure of the MYC locus in leukemia cells, showing that loop extrusion alone cannot explain local pathogenic chromatin rearrangements. Finally, they study the locus single-cell heterogeneity and time dynamics.

      Strengths:

      - The optimization method provides a fast computational tool that speeds up the parameter search of complex chromatin polymer models and is a good technical advancement.

      - The method is not restricted to short genomic regions, as in principle it can be applied genome-wide to any input Hi-C dataset, and could be potentially useful for testing predictions on chromatin structure.

      Weaknesses:

      (1) The optimization is based on the iterative comparison of simulated and Hi-C contact matrices using the Spearman correlation. However, the inferred set of the best-fit simulation parameters could sensitively depend on such a specific metric choice, questioning the robustness of the output polymer models. How do results change by using different correlation coefficients?

      This is an important question. We have tested several metrics in the process of building the fitting procedure. We now showcase side-by-side comparisons of the fitting results obtained using these different metrics in supplementary figure 2.

      (2) The best-fit contact threshold of 420nm seems a quite large value, considering that contact probabilities of pairs of loci at the mega-base scale are defined within 150nm (see, e.g., (Bintu et al. 2018) and  (Takei et al. 2021)).

      This is a good point. Unfortunately, there is no established standard distance cutoff to map distances to Hi-C contact frequency data. Indeed, previous publications have used anywhere between 120 nm to 500 nm (see e.g. (Cardozo Gizzi et al. 2019), (Cattoni et al. 2017) , (Mateo et al. 2019), (Hafner et al. 2022), (Murphy and Boettiger 2022), (Takei et al. 2021), (Fudenberg and Imakaev 2017) , (Wang et al. 2016), (Su et al. 2020), (Chen et al. 2022), (Finn et al. 2019)). 

      We have included a supplementary table in the revised preprint (supplementary table 3) listing these values to demonstrate the lack of consensus. This large variation could reflect different chromatin compaction levels across distinct model systems, and different spatial resolutions in DNA FISH experiments performed by different labs. The variance in the threshold choice is also likely partially explained by Hi-C experimental details, e.g. the enzyme used for digestion, which biases the effective length scale of interactions detected (Akgol Oksuz et al. 2021). Among commonly used restriction enzymes, HindIII has a relatively low cutting frequency which results in a lower sensitivity to short-range interactions; on the other hand, MboI has a higher cutting frequency which results in a higher sensitivity to short-range interactions (Akgol Oksuz et al. 2021). Because the Hi-C data we used for the Myc locus in (Kloetgen et al. 2020) was generated using HindIII, we chose a distance cutoff close to the larger end of published values (420 nm). 

      (3) In their model, the authors consider the presence of LE anchor sites at Hi-C TAD boundaries. Do they correspond to real, experimentally found CTCF sites located at genomic positions, or they are just assumed? A track of CTCF peaks of the considered chromatin loci would be needed.

      We apologize this was not clear. The LE anchor sites in the simulation model were chosen because they correspond to experimental CTCF sites and ChIP-seq peaks located at the corresponding genomic positions. Representative CTCF ChIP-seq tracks from (Kloetgen et al. 2020) have been added to figure 2A in the revised preprint version to emphasize this point.

      (4) In the model, each TAD is assigned a specific energy affinity value. Do the different domain types (i.e., different colors) have a mutually attractive energy? If so, what is its value and how is it determined? The simulated contact maps (e.g., Figure 2C) seem to allow attractions between different blocks, yet this is unclear.

      Sorry this was not explicit. The attraction energy between a pair of monomers in the simulation is determined using the geometric mean of the affinities of the two monomers. This applies to both monomers within the same domain and in different domains. This detail has been clarified in the Methods section: “To optimize the simulation duration to streamline the parameter search (Supp. Fig. 1 B), we computed the autocorrelation function of the TAD2-TAD4 inter-TAD distance using the initial guess simulation parameters of the MYC locus in CUTLL. The simulation was saved every 5 simulation blocks.”

      (5) To substantiate the claim that the simulations can predict heterogeneity across single cells, the authors should perform additional analyses. For instance, they could plot the histograms (models vs. experiments) of the TAD2-TAD4 distance distributions and check whether the models can recapitulate the FISH-observed variance or standard deviation. They could also add other testable predictions, e.g., on gyration radius distributions, kurtosis, all-against-all comparison of single-molecule distance matrices, etc,.

      We agree that heterogeneity prediction is a key advantage of the simulations. We do note that the histograms (models vs. experiments) of the TAD2-TAD4 distance distributions measured by FISH were plotted in Fig. 3C as empirical cumulative probability distributions (as is standard in the field), side by side with the simulation predictions. Simulations indeed recapitulate the variance observed by FISH. We also had emphasized this important point in the main text: “Importantly, not just the average distances, but the shape of the distance distribution across individual cells closely matches the predictions of the simulations in both cell types, further confirming that the simulations can predict heterogeneity across cells.”

      (6) The authors state that loop extrusion is crucial for enhancer function only at large distances. How does that reconcile, e.g., with Mach et al. Nature Gen. (2022) where LE is found to constrain the dynamics of genomically close (150kb) chromatin loci?

      This is an interesting question. In (Mach et al. 2022), the authors tracked the physical distance between two fluorescent labels positioned next to either anchor of a ~150 kb engineered topological domain using live-cell imaging. They found that abrogation of the loop anchors by ablation of the CTCF binding motifs, or knock-down of the cohesin subunit Rad21 resulted in increased physical distance between the loci. HMM Modeling of the distance over time traces suggests that the increased distance resulted from rarer and shorter contacts between the anchors. While this might seem at odds with the results of Fig. 4L, we note a key difference between the loci. While (Mach et al. 2022) observed the dynamics of the distance separating two CTCF loop anchors, in our model only the MYC promoter is proximal to a loop anchor, while the position of the second locus is varied, but remains far from the other anchor. The deletion of the CTCF sites at both anchors in (Mach et al. 2022) indeed results in a lowered sensitivity of the physical distance to Rad21 knock-down, reminiscent of the results of Fig. 4L in our work. This result demonstrates that loop extrusion disruption disproportionately impacts distances between loci close to loop anchors, consistent with Hi-C results (Rao et al. 2017; Nora et al. 2017). We therefore believe that the models in our work and (Mach et al. 2022) are not at odds, but simply reflect that loop extrusion perturbations impact distances between loop anchors the most.  Enhancer-Promoter loops are generally distinct from CTCF-mediated loops (Hsieh et al. 2020, 2022). While (Mach et al. 2022) represents a landmark study in our understanding of the dynamics of genomic folding by loop extrusion, we therefore believe that the locus we chose here - which matches the endogenous MYC architecture - may more accurately represent Enhancer-Promoter dynamics than a synthetic CTCF loop.  To better articulate the similarities between model predictions and differences between the two loci, we have simulated a synthetic locus matching that of (Mach et al. 2022) in the revised preprint. Our simulation recapitulates the results obtained by Mach et al, including the sensitivity of contact frequency and duration to in silico cohesin knock-down (supplementary figure 6). We have updated the Results section accordingly: “The dependence of contact dynamics on loop extrusion in our simulations of MYC differs from that previously observed for two TAD boundaries (45). To check whether the different results are the product of different simulation models, we simulated contact dynamics across two TAD boundaries matching the locus of (45). Our simulations recapitulate the distance distribution and loop extrusion dependence previously observed (Supp. Fig. 6), establishing that the differences between the two systems are biological. While loop extrusion controls both the frequency and duration of contacts at TAD boundaries, it exerts a more nuanced effect on the frequency of contacts in loci pairs like the MYC locus that might better reflect typical enhancer-promoter pairs.”

      Reviewer #2 (Public Review):

      Summary:

      The authors Fu et al., developed polymer models that combine loop extrusion with attractive interactions to best describe Hi-C population average data. They analyzed Hi-C data of the MYC locus as an example and developed an optimization strategy to extract the parameters that best fit this average Hi-C data.

      Strengths:

      The model has an intuitive nature and the authors masterfully fitted the model to predict relevant biology/Hi-C methodology parameters. This includes loop extrusion parameters, the need for self-interaction with specific energies, and the time and distance parameters expected for Hi-C capture.

      Weaknesses:

      (1) We are no longer in the age in which the community only has access to population average Hi-C. Why was only the population average Hi-C used in this study?

      Can single-cell data: i.e. single-cell Hi-C/Dip-C data or chromatin tracing data (i.e. see Tan et al Science 2018 - for Dip-C, Bintu et al Science 2018, Su et al Cell 2020 for chromatin tracing, etc.) or even 2 color DNA FISH data (used here only as validation) better constrain these models? At the very least the simulations themselves could be used to answer this essential question.

      I am expecting that the single-cell variance and overall distributions of distances between loci might better constrain the models, and the authors should at least comment on it.

      We agree that it is possible to recapitulate single-cell Hi-C or chromatin tracing data with simulations, and that these data modalities have a superior potential to constrain polymer models because they provide an ensemble of single allele structures rather than population-averaged contact frequencies. However, these data remain out of reach for most labs compared to Hi-C. Our goal with this work was to provide an approachable method that anyone interested could deploy on their locus of choice, and reasoned that Hi-C currently remains the data modality available to most. We envision this strategy will help reach labs beyond the small number of groups expert in single cell chromatin architecture, and thus hopefully broaden the impact of polymer simulations in the chromatin organization field. 

      Nevertheless, we do agree that the comparison of single-cell chromatin architectures to simulations is a fertile ground for future studies, and have modified the preprint accordingly (Discussion):

      “Future work extending this framework to single cell readouts out chromatin architecture (e.g. single-cell Hi-C or chromatin tracing) holds promise to further constrain chromatin models.”

      (2) The authors claimed "Our parameter optimization can be adapted to build biophysical models of any locus of interest. Despite the model's simplicity, the best-fit simulations are sufficient to predict the contribution of loop extrusion and domain interactions, as well as single-cell variability from Hi-C data. Modeling dynamics enables testing mechanistic relationships between chromatin dynamics and transcription regulation. As more experimental results emerge to define simulation parameters, updates to the model should further increase its power." The focus on the Myc locus in this study is too narrow for this claim. I am expecting at least one more locus for testing the generality of this model.

      We note that we used two distinct loci in the initial version of our study, the MYC locus in leukemia vs T cells (Figs. 2-3) and a representative locus in experiments comparing WT CTCF with a mutant that leads to loss of a subset of CTCF binding sites (Fig. 1L). To further demonstrate generality, we have added to the revised preprint a demonstration of the simulation fitting to other loci acquired in different cell types (supplementary figure 3).

      Recommendations for the authors:.

      Reviewer #1 (Recommendations For The Authors):

      (1) The Methods part of the imaging analysis lacks some quantitative details that could be useful for the readers: what is the frequency of double detections? How "small" is the 3D region around the centroid? How many cells with no spots or more than four spots are excluded?

      We have clarified these important analysis parameters in the revised version of the preprint (Methods), including supplementary Table 2, listing the statistics of excluded cells:

      “We then cropped out a small 3D region (20x20x10 pixels) around each approximate centroid, and subtracted the surrounding background intensity.”

      “Cells with no spots or more than four spots were excluded from the cell cycle analysis (statistics in Supp. Table 2).”

      (2) How is the autocorrelation function of chromatin structures computed?

      We computed the autocorrelation function of the TAD2-TAD4 inter-TAD distance using the initial guess simulation parameters (Eattr, boundary permeabilities) of the MYC locus in CUTLL. All other simulation parameters are the same as other simulations in the preprint. The structure of the locus was saved every 5 simulation blocks. These structures were used to compute the TAD2-TAD4 inter-TAD distance as a function of time, which was used to calculate the autocorrelation function. This has been clarified in the revised version of the preprint (Methods):

      “To optimize the simulation duration to streamline the parameter search (Supp. Fig. 1 B), we computed the autocorrelation function of the TAD2-TAD4 inter-TAD distance using the initial guess simulation parameters of the MYC locus in CUTLL. The simulation was saved every 5 simulation blocks.”

      (3) How is the monomer length (35nm) chosen to best compare FISH data?

      Because monomer length is difficult to derive from first principles, the standard in the field is to convert the size of a simulated monomer into a physical distance using a reference measurement in the system of choice. Similar to the Hi-C distance threshold, values for monomer size vary throughout the literature, e.g. 53 nm per 3 kbp monomer (Giorgetti et al. 2014), 50 nm per 2.5 kbp monomer (Nuebler et al. 2018), or from 36 to 60 nm per 3 kbp monomer, depending on the cell line or model details (Conte et al. 2022; Conte et al. 2020). 

      Here we used the mean of the median TAD2-TAD4 distances in T Cells and CUTLL as our length reference, and converted simulation distances into nm by matching this value. We obtained 35 nm per 2.5 kbp monomer, a value well within the range of the literature values (see above).

      Using this simple conversion, the simulated distance distributions recapitulate two independent metrics accessible by DNA FISH: the shift in median distances between T cell and CUTLL, and the width of each distribution. This agreement indicates that simulations recapitulate both the differences between the two cell types, and the single cell heterogeneity within each cell type. 

      (4) The main text does not make clear the "known" biophysical parameters that establish the model ground truth.

      In the initial validation of the fitting procedure, by “known biophysical parameters”, we meant that we generated simulated Hi-C maps in which we set the left/right permeabilities at each boundary, and Eattr values within each TAD to known values. We then assessed how well the fitting could recover these known ground truth values by trying to match the simulated representative Hi-C map. The specific values chosen are plotted for each set of simulations in Fig.1 F, H, J. The main text has been made more explicit in the revised preprint version (Results):

      “We first validated the optimization method using ground truth maps built from simulation runs with known values of StallL, StallR, Eattr for each boundary/domainbiophysical parameters.”

      (5) What are the correlation coefficients between experimental and model contact maps in Figure 1L?

      We apologize for the oversight. The missing coefficient values have been added in the revised version of the manuscript (Results):

      “As expected, the simulation predicted a significant drop of 0.13 in boundary permeability in CTCFmut compared to WT (Fig. 1 L; Spearman Correlation: 0.85±0.02 for CTCFmut, 0.82±0.01 for WT).”

      (6) Figure 2A, B: Contact matrices look oversaturated. Next, why do model contact maps have negative values?

      We apologize this was not clear. Figure 2 A,B plotted the log value of the contact matrices, thus the negative values. This has been made explicit in the revised version of the preprint (Fig. 2 Legend). 

      (7) For model reproducibility, the authors could report the coordinates of the Hi-C TAD boundaries employed for the model.

      We have included in the revised version of the preprint an explicit mention of all genomic coordinates of the loci simulated in the Methods section:

      “The model used to fit into MYC Hi-C data consists of 1920 monomers representing chr8:126,720,000131,680,000, with the TAD boundaries located at monomer 456 (chr8: 127,840,000 - 127,880,001), monomer

      808 (chr8: 128,720,000 - 128,760,001), monomer 1178 (chr8: 130,160,000 - 130,200,001) and monomer 1592 (chr8: 130,680,000 - 130,720,001).”

      (8) What is the shaded area in Figure 3C?

      The shaded area in Figure 3C is the standard deviation calculated from three independent DNA FISH or simulation replicates for each bin of the histogram. This detail has been clarified in the revised preprint (Figure 3 legend). 

      (9) In the Discussion, I suggest changing as follows: "the time- and distance-gated model proposed here recapitulates several observations" -> "the time- and distance-gated model proposed here could recapitulate several observations", as they are speculations.

      The sentence has been changed accordingly in the revised preprint (Discussion). Thank you for the suggestion. 

      Reviewer #2 (Recommendations For The Authors):

      Suggest analyzing the ability of single-cell data to better constrain dynamical models.

      While we agree that modeling single-cell distributions is a worthwhile endeavor to be explored in future work, we believe that the tool presented here serves a slightly different purpose: enabling labs that only have access to the most widespread technique at present to perform simulations to interrogate the forces that shape the organization of an arbitrary locus in their model of choice. Analyzing single-cell data is in principle very powerful, but would by necessity be limited to the small number of systems where these cutting-edge techniques have been deployed. 

      Suggest selecting another locus other than MYC to demonstrate generality.

      We note that we used two distinct loci in the study, the MYC locus in leukemia vs. T cells (Figs. 2-3) and a representative locus in experiments comparing WT CTCF with a mutant that leads to loss of a subset of CTCF binding sites (Fig. 1L). To further demonstrate generality, we have added to the revised preprint a demonstration of the simulation fitting to other loci acquired in different cell types (supplementary figure 3).

      Akgol Oksuz, Betul, Liyan Yang, Sameer Abraham, Sergey V. Venev, Nils Krietenstein, Krishna Mohan Parsi, Hakan Ozadam, et al. 2021. “Systematic Evaluation of Chromosome Conformation Capture Assays.” Nature Methods 18 (9): 1046–55.

      Bintu, Bogdan, Leslie J. Mateo, Jun-Han Su, Nicholas A. Sinnott-Armstrong, Mirae Parker, Seon Kinrot, Kei Yamaya, Alistair N. Boettiger, and Xiaowei Zhuang. 2018. “Super-Resolution Chromatin Tracing Reveals Domains and Cooperative Interactions in Single Cells.” Science 362 (6413). https://doi.org/10.1126/science.aau1783.

      Cardozo Gizzi, Andrés M., Diego I. Cattoni, Jean-Bernard Fiche, Sergio M. Espinola, Julian Gurgo, Olivier Messina, Christophe Houbron, et al. 2019. “Microscopy-Based Chromosome Conformation Capture Enables Simultaneous Visualization of Genome Organization and Transcription in Intact Organisms.” Molecular Cell 74 (1): 212–22.e5.

      Cattoni, Diego I., Andrés M. Cardozo Gizzi, Mariya Georgieva, Marco Di Stefano, Alessandro Valeri, Delphine Chamousset, Christophe Houbron, et al. 2017. “Single-Cell Absolute Contact Probability Detection Reveals Chromosomes Are Organized by Multiple Low-Frequency yet Specific Interactions.” Nature Communications 8 (1): 1753.

      Chen, Liang-Fu, Hannah Katherine Long, Minhee Park, Tomek Swigut, Alistair Nicol Boettiger, and Joanna Wysocka. 2022. “Structural Elements Facilitate Extreme Long-Range Gene Regulation at a Human Disease Locus.” bioRxiv. https://doi.org/10.1101/2022.10.20.513057.

      Finn, Elizabeth H., Gianluca Pegoraro, Hugo B. Brandão, Anne-Laure Valton, Marlies E. Oomen, Job Dekker, Leonid Mirny, and Tom Misteli. 2019. “Extensive Heterogeneity and Intrinsic Variation in Spatial Genome Organization.” Cell 176 (6): 1502–15.e10.

      Fudenberg, Geoffrey, and Maxim Imakaev. 2017. “FISH-Ing for Captured Contacts: Towards Reconciling FISH and 3C.” Nature Methods 14 (7): 673–78.

      Hafner, Antonina, Minhee Park, Scott E. Berger, Elphège P. Nora, and Alistair N. Boettiger. 2022. “Loop Stacking Organizes Genome Folding from TADs to Chromosomes.” bioRxiv. https://doi.org/10.1101/2022.07.13.499982.

      Hsieh, Tsung-Han S., Claudia Cattoglio, Elena Slobodyanyuk, Anders S. Hansen, Xavier Darzacq, and Robert Tjian. 2022. “Enhancer-Promoter Interactions and Transcription Are Largely Maintained upon Acute Loss of CTCF, Cohesin, WAPL or YY1.” Nature Genetics 54 (12): 1919–32.

      Hsieh, Tsung-Han S., Claudia Cattoglio, Elena Slobodyanyuk, Anders S. Hansen, Oliver J. Rando, Robert Tjian, and Xavier Darzacq. 2020. “Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding.” Molecular Cell 78 (3): 539–53.e8.

      Kloetgen, Andreas, Palaniraja Thandapani, Panagiotis Ntziachristos, Yohana Ghebrechristos, Sofia Nomikou, Charalampos Lazaris, Xufeng Chen, et al. 2020. “Three-Dimensional Chromatin Landscapes in T Cell Acute Lymphoblastic Leukemia.” Nature Genetics 52 (4): 388–400.

      Mach, Pia, Pavel I. Kos, Yinxiu Zhan, Julie Cramard, Simon Gaudin, Jana Tünnermann, Edoardo Marchi, et al. 2022. “Cohesin and CTCF Control the Dynamics of Chromosome Folding.” Nature Genetics 54 (12): 1907–18.

      Mateo, Leslie J., Sedona E. Murphy, Antonina Hafner, Isaac S. Cinquini, Carly A. Walker, and Alistair N. Boettiger. 2019. “Visualizing DNA Folding and RNA in Embryos at Single-Cell Resolution.” Nature 568 (7750): 49–54.

      Murphy, Sedona, and Alistair Nicol Boettiger. 2022. “Polycomb Repression of Hox Genes Involves Spatial Feedback but Not Domain Compaction or Demixing.” bioRxiv. https://doi.org/10.1101/2022.10.14.512199.

      Nora, Elphège P., Anton Goloborodko, Anne-Laure Valton, Johan H. Gibcus, Alec Uebersohn, Nezar Abdennur, Job Dekker, Leonid A. Mirny, and Benoit G. Bruneau. 2017. “Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization.” Cell 169 (5): 930–44.e22.

      Nuebler, Johannes, Geoffrey Fudenberg, Maxim Imakaev, Nezar Abdennur, and Leonid A. Mirny. 2018. “Chromatin Organization by an Interplay of Loop Extrusion and Compartmental Segregation.” Proceedings of the National Academy of Sciences of the United States of America 115 (29): E6697–6706.

      Rao, Suhas S. P., Su-Chen Huang, Brian Glenn St Hilaire, Jesse M. Engreitz, Elizabeth M. Perez, Kyong-Rim Kieffer-Kwon, Adrian L. Sanborn, et al. 2017. “Cohesin Loss Eliminates All Loop Domains.” Cell 171 (2): 305–20.e24.

      Su, Jun-Han, Pu Zheng, Seon S. Kinrot, Bogdan Bintu, and Xiaowei Zhuang. 2020. “Genome-Scale Imaging of the 3D Organization and Transcriptional Activity of Chromatin.” Cell 182 (6): 1641–59.e26.

      Takei, Yodai, Shiwei Zheng, Jina Yun, Sheel Shah, Nico Pierson, Jonathan White, Simone Schindler, Carsten H. Tischbirek, Guo-Cheng Yuan, and Long Cai. 2021. “Single-Cell Nuclear Architecture across Cell Types in the Mouse Brain.” Science 374 (6567): 586–94.

      Wang, Siyuan, Jun-Han Su, Brian J. Beliveau, Bogdan Bintu, Jeffrey R. Moffitt, Chao-Ting Wu, and Xiaowei Zhuang. 2016. “Spatial Organization of Chromatin Domains and Compartments in Single Chromosomes.” Science 353 (6299): 598–602.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Matsui et al. present an experimental pipeline for visualizing the molecular machinery of synapses in the brain, which includes numerous techniques, starting with generating labeled antibodies and recombinant mice, continuing with HPF and FIB milling, and finishing with tilt series collection and 3D image processing. This pipeline represents a breakthrough in the preparation of brain tissue for high-resolution imaging and can be used in future tomographic research to reconstruct molecular details of synaptic complexes as well as pre- and post-synaptic assemblies. This methodology can also be adapted for a broader range of tissue preparations and signifies the next step towards a better structural understanding of how molecular machineries operate in natural conditions.

      Strengths:

      The manuscript is very well written, contains a detailed description of methodology, provides nice illustrations, and will be an outstanding guide for future research.

      Weaknesses:

      None noted.

      Reviewer #2 (Public Review):

      Summary:

      The authors present a method that allows for the identification and localization of molecular machinery at chemical synapses in unstained, unfixed native brain tissue slices. They believe that this approach will provide a 3D structural basis for understanding different mechanisms of synaptic transmission, plasticity, and development. To achieve this, the group used genetically engineered mouse lines and generated thin brain slices that underwent high-pressure freezing (HPF) and focused ion beam (FIB) milling. Utilizing cryo-electron tomography (cryo-ET) and integrating it with cryo-fluorescence microscopy, they achieved micrometer resolution in identifying the glutamatergic synapses along with nanometer resolution to locate AMPA receptors GluA2-subunits using Fab-AuNP conjugates. The findings are summarized with detailed examples of successfully prepared substrates for cryo-ET, specific morphological identification and localization, and the detailed structural organization of excitatory synapses, including synaptic vesicle clusters close to the postsynaptic density and in the cleft.

      Strengths:

      The study advances previous work that used cultured neurons or synaptosomes. Combining cryo-electron tomography (cryo-ET) with fluorescence-guided targeting and labeling with Fab-AuNP conjugates enabled the study of synapses and molecular structures in their native environment without chemical fixation or staining. This preserves their near-native state, offering high specificity and resolution. The methods developed are generalizable, allowing adaptation for identifying and localizing other key molecules at glutamatergic synapses and potentially useful for studying a variety of synapses and cellular structures beyond the scope of this research.

      Weaknesses

      The preparation and imaging techniques are complex and require highly specialized equipment and expertise, potentially limiting their accessibility and widespread adoption.

      Additionally, the methods might need further modifications/tweaks to study other types of synapses or molecular structures effectively.

      The reliance on genetically engineered mouse lines may again impact the generalizability of the findings.

      Similarly, the requirement of monoclonal, high-affinity antibodies/Fab fragments to specifically label receptors/proteins would limit the wider employment of these methods.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Matsui et al. present an experimental pipeline for visualizing the molecular machinery of synapsis in the brain, which includes numerous techniques, starting with generating labeled antibodies and recombinant mice, continuing with HPF and FIB milling, and finishing with tilt series collection and 3D image processing. This pipeline represents a breakthrough in the preparation of brain tissue for high-resolution imaging and can be used in future tomographic research to reconstruct molecular details of synaptic complexes as well as pre- and post-synaptic assemblies. This methodology can also be adapted for a broader range of tissue preparations and signifies the next step towards a better structural understanding of how molecular machineries operate in natural conditions.

      The manuscript is very well written, contains a detailed description of methodology, provides nice illustrations, and will be an outstanding guide for future research. I only have a few suggestions to further improve this excellent manuscript.

      The labeling experiment in Supplementary Figure 3 may have a limitation in the accessibility of certain "narrow" regions to 15F1Fabs (both JF646 and AuNP labeled). Would that be more correct to refer to the labeling of accessible GluA2-containing AMPARs rather than the majority of these receptors in the tissue (lines 180-183)?

      The text has been modified to reference “accessible GluA2-containing AMPARs”

      Minor comments:

      (1) Lines 38-39. "natively derived" appears to be unnecessary here and can be deleted.

      Done

      (2) Line 153. Please specify the 20% dextran cryoprotectant.

      Done.

      (3) Lines 155-157. Please label the stratum radiatum and stratum lacunosum-moleculare in Figure 3B.

      Done

      (4) Figures 1C, 2B, 5B, 5D-E. Missing units for Y-axes.

      Done

      (5) Supplemental Figure 1. Please add band annotation.

      Done

      (6) Supplemental Figure 3. Scale bars are missing.

      Done

      (7) Supplemental Video 1 does not play.

      The video file has been corrected.

      Reviewer #2 (Recommendations For The Authors):

      My congratulations to the authors for undertaking this challenging work.

      Major concerns that need to be addressed:

      It's unclear if the anti-GluA2 15F1 Fab-AuNP conjugate would affect the receptor clustering and localization on the synaptic membranes. It binds at the distal end, which is likely to impact its interactions with other synaptic proteins, which may affect the synaptic organization and function.

      Concern addressed in the ‘Discussion’ section.

      The hippocampal slices were treated with the anti-GluA2 15F1 Fab-148 AuNP conjugate for 1 hour at room temperature. It might be helpful to discuss the potential affects of Fab-AuNp on synaptic function. It has been demonstrated previously that introducing binders of the receptors ectodomains can affect synaptic function.

      Concern also addressed in the ‘Discussion’ section. 

      Kunimichi Suzuki et al. Science369,eabb4853(2020).DOI:10.1126/science.abb4853 https://patents.google.com/patent/US20230192810A1/en

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors established an in vitro triple co-culture BBB model and demonstrated its advantages compared with the mono or double co-culture BBB model. Further, the authors used their established in vitro BBB model and combined it with other methodologies to investigate the specific mechanism that co-culture with astrocytes but also neurons enhanced the integrity of endothelial cells.

      Strengths:

      The results persuasively showed the established triple co-culture BBB model well mimicked several important characteristics of BBB compared with the mono-culture BBB model, including better barrier function and in vivo/in vitro correlation. The human-derived immortalized cells used made the model construction process faster and more efficient, and have a better in vivo correlation without species differences. This model is expected to be a useful high-throughput evaluation tool in the development of CNS drugs.

      Based on the previous experimental results, detailed studies investigated how co-culture with neurons and astrocytes promoted claudin-5 and VE-cadherin in endothelial cells, and the specific signaling mechanisms were also studied. Interestingly, the authors found that neurons also released GDNF to promote barrier properties of brain endothelial cells, as most current research has focused on the promoting effect of astrocytes-derived GDNF on BBB. Meanwhile, the author also validated the functions of GDNF for BBB integrity in vivo by silencing GDNF in mouse brains. Overall, the experiments and data presented support their claim that, in addition to astrocytes, neurons also have a promoting effect on the barrier function of endothelial cells through GDNF secretion.

      Weaknesses:

      Although the authors demonstrated a highly usable for predicting the BBB permeability, recorded TEER measurements are still far from the human BBB in vivo reported measurements of TEER, and expression of transporters was not promoted by co-culture, which may lead to the model being unsuitable for studying drug transport mediated by transporters on BBB.

      Thank the reviewer very much for the opportunity to improve our manuscript. The immortalized human cell lines, hCMEC/D3 cell, have poor barrier properties and differences in the expression of some transporters and metabolic enzymes as well as TEER compared to human physiological BBB. However, the use of human primary BMECs may be restricted by the acquisition of materials and ethical approval. Isolation and purification of human primary BMECs are time-consuming and laborious. Moreover, culture conditions can alter transcriptional activity (PMID: 37076016). All limit the establishment of BBB models based on primary human BMECs for high-throughput screening. Thus, hCMEC/D3 is still widely used to study characteristics of drug transport across BBB and the effects of certain diseases on BBB (PMID: 37076016; 38711118; 31163193) as it is easy to culture and can express a large number of transporters and metabolic enzymes in its physiological state. Therefore, hCMEC/D3 cells were selected to develop our in vitro BBB model.

      Reviewer #1 (Recommendations For The Authors):

      Point 1: The authors claim that GDNF is mainly released by human neuroblastoma SH-SY5Y cells in the in vitro BBB model, but there are still some differences between the characteristics of cell lines and neurons. The authors should discuss or provide evidence about the distribution and source of GDNF in the brain to support this conclusion.

      We greatly appreciate your helpful suggestions. According to your advice, we have revised the “Discussion” in the revised manuscript as follows:

      In “Discussion”:

      “GDNF is mainly expressed in astrocytes and neurons (Lonka-Nevalaita et al., 2010; Pochon et al., 1997). In adult animals, GDNF is mainly secreted by striatal neurons rather than astrocytes and microglial cells (Hidalgo-Figueroa et al., 2012). The present study also shows that GDNF mRNA levels in SH-SY5Y cells were significantly higher than that in U251 cells. GDNF was also detected in conditioned medium from SH-SY5Y cells. All these results demonstrate that neurons may secrete GDNF”.

      Point 2: The authors found that co-culture induced the proliferation of endothelial cells (Figure 1H). I suggest the authors discuss whether the proliferation of endothelial cells would affect their permeability.

      Thanks for your suggestion. According to your advice, we have investigated the effect of cell proliferation on the leakage of the cell layer and included the results in Figure 1—figure supplement 1. The present study showed that basic fibroblast growth factor (bFGF) increased cell proliferation of hCMEC/D3 cells but little affected the expression of both claudin-5 and VE-cadherin (in Figure 2F). The hCMEC/D3 cells were incubated with different doses of bFGF and permeabilities of fluorescein (NaF) and FITC-Dextran 3–5 kDa across hCMEC/D3 cell monolayer were measured. The results showed that incubation with bFGF increased cell proliferation and reduced permeabilities of fluorescein and FITC-Dextran across hCMEC/D3 cell monolayer. However, the permeability reduction was less than that by double co-culture with U251 cells or triple co-culture. These results inferred that contribution of cell proliferation to the barrier function of hCMEC/D3 cells was minor. We have made the modifications in “Results” of our manuscript as follows:

      In “Result”:

      “Furthermore, hCMEC/D3 cells were incubated with basic fibroblast growth factor (bFGF), which promotes cell proliferation without affecting both claudin-5 and VE-cadherin expression (Figure 2F). The results showed that incubation with bFGF increased cell proliferation and reduced permeabilities of fluorescein and FITC-Dex across hCMEC/D3 cell monolayer. However, the permeability reduction was less than that by double co-culture with U251 cells or triple co-culture. These results inferred that contribution of cell proliferation to the barrier function of hCMEC/D3 was minor (Figure 1—figure supplement 1)”.

      Point 3: The authors claimed that GDNF induced the expression of claudin-5 and VE-cadherin separately. However, Andrea Taddei et al. reported that VE-cadherin itself also regulates claudin-5 through the inhibitory activity of FoxO1 (Andrea Taddei et al., 2008). The authors did not consider whether the upregulation of claudin-5 is associated with the increase of VE-cadherin.

      Thank you for your suggestion. We also investigated whether VE-cadherin affected claudin-5 expression in hCMEC/D3 cells transfected with VE-cadherin siRNA. It was not consistent with the report by Taddei et al. that silencing VE-cadherin only slightly decreased the mRNA level of claudin-5 without significant difference. Furthermore, basal and GDNF-induced claudin-5 protein levels were unaltered by silencing VE-cadherin. The discrepancies may come from characteristics of the tested cells. Endothelial cells derived from murine embryonic stem cells with homozygous null mutation were used in Taddei’s study, while we transfected immortalized brain microvascular endothelial cells with siRNA. Several reports have demonstrated different mechanisms regulating expression of claudin-5 and VE-cadherin. In retinal endothelial cells, hyperglycemia remarkably reduced claudin-5 expression (but not VE-cadherin) (PMID: 24594192). However, in hCMEC/D3 cells, hypoglycemia significantly decreased claudin-5 (not VE-cadherin) expression but hyperglycemia increased VE-cadherin expression (not claudin 5) (PMID: 24708805). Therefore, the roles of VE-cadherin in regulation of claudin-5 in BBB should be further investigated.

      Following your valuable suggestion, we have modified the “Results”, “Discussion” and “Figure 4—figure supplement 1” in the revised manuscript as follows:

      In “Result”:

      “It was reported that VE-cadherin also upregulates claudin-5 via inhibiting FOXO1 activities (Taddei et al, 2008). Effect of VE-cadherin on claudin-5 was studied in hCMEC/D3 cells silencing VE-cadherin. It was not consistent with the report by Taddei et al. that silencing VE-cadherin only slightly decreased the mRNA level of claudin-5 without significant difference. Furthermore, basal and GDNF-induced claudin-5 protein levels were unaltered by silencing VE-cadherin (Figure 4—figure supplement 1). Thus, the roles of VE-cadherin in regulation of claudin-5 in BBB should be further investigated.”

      In “Discussion”:

      “Claudin-5 expression is also regulated by VE-cadherin (Taddei et al., 2008). Differing from the previous reports, silencing VE-cadherin with siRNA only slightly affected basal and GDNF-induced claudin-5 expression. The discrepancies may come from different characteristics of the tested cells. Several reports have supported the above deduction. In retinal endothelial cells, hyperglycemia remarkably reduced claudin-5 expression (but not VE-cadherin) (Saker et al., 2014). However, in hCMEC/D3 cells, hypoglycemia significantly decreased claudin-5 expression but hyperglycemia increased VE-cadherin expression (Sajja et al., 2014)”.

      “Figure 4—figure supplement 1: The contribution of VE-Cadherin on the GDNF-induced claudin-5 expression. Effects of the VE-Cadherin siRNA (siVE-Cad) on mRNA expression of VE-cadherin (A) and claudin-5 (B). Effects of siVE-Cad and GDNF on claudin-5 and VE-cadherin protein expression (C). NC: negative control plasmids. The above data are shown as the mean ± SEM. Four biological replicates per group. Two technical replicates for A and B, and one technical replicate for C. Statistical significance was determined using unpaired Student’s t-test or one-way ANOVA test followed by Fisher’s LSD test.”

      Point 4:  The annotation of significance with the p-values in the figures might not be visually concise and clear. It is recommended to provide the p-values in the legends or raw data.

      Thank you for your valuable suggestion. We have revised our figures in our revised manuscript. The specific p-values and statistical methods were summarized in the source data files of each figure.

      Point 5: The authors need to note the material of the Transwell membrane used to increase the reproducibility of experiments, because different materials may cause differences in permeability and TEER (DianeM. Wuest et al., 2013).

      We greatly appreciate your valuable suggestions. According to your advice, we have provided the information on the material of the Transwell membrane in the “Materials and Methods” in the revised manuscript as follows:

      In “Materials and Methods”:

      “U251 cells were seeded at 2 × 104 cells/cm2 on the bottom of Transwell inserts (PET, 0.4 µm pore size, SPL Life Sciences, Pocheon, Korea) coated with rat-tail collagen (Corning Inc., Corning, NY, USA)”.

      Point 6: It is not necessary to abbreviate "in vitro/in vivo correlation" in the legend of Figure 7 as it was not mentioned again in the following text.

      Thank you for your valuable suggestion. We have deleted the abbreviation of "Figure 7" of the revised manuscript.

      In “Figure 7”

      “Figure 7. In vitro/in vivo correlation assay of BBB permeability."

      Reviewer #2 (Public Review):

      Summary:

      Yang and colleagues developed a new in vitro blood-brain barrier model that is relatively simple yet outperforms previous models. By incorporating a neuroblastoma cell line, they demonstrated increased electrical resistance and decreased permeability to small molecules.

      Strengths:

      The authors initially elucidated the soluble mediator responsible for enhancing endothelial functionality, namely GDNF. Subsequently, they elucidated the mechanisms by which GDNF upregulates the expression of VE-cadherin and Claudin-5. They further validated these findings in vivo, and demonstrated predictive value for molecular permeability as well. The study is meticulously conducted and easily comprehensible. The conclusions are firmly supported by the data, and the objectives are successfully achieved. This research is poised to advance future investigations in BBB permeability, leakage, dysfunction, disease modeling, and drug delivery, particularly in high-throughput experiments. I anticipate an enthusiastic reception from the community interested in this area. While other studies have produced similar results with tri-cultures (PMID: 25630899), this study notably enhances electrical resistance compared to previous attempts.

      Weaknesses:

      (A) Considerable effort has been directed towards developing in vitro models that more closely resemble their in vivo counterparts, utilizing stem cell-derived NVU cells. Although these examples are currently rudimentary, they offer better BBB mimicry than Yang's study.

      Thank you very much for your valuable comments. Indeed, hCMEC/D3 cells, have poor barrier properties and low TEER compared to human physiological BBB. The human pluripotent stem cells BBB models (hPSC-BBB models) make it possible to provide a robust and scalable cell source for BBB modeling, although many challenges remain, particularly concerning reproducibility and recreation of multifaceted phenotypes in vitro with increasing complexity. Moreover, the hPSC-derived BBB models are highly dependent upon the heterogeneous incorporation of hPSC-derived BMEC origins, cells derived from different protocols are not well validated and standardized in the BBB models. Thus, the hPSC-BBB models are still being developed and their clinic applications are still at an early stage (PMID: 34815809; 35755780). The hCMEC/D3 cell line is still widely used to study characteristics of drug transport across BBB and the effects of certain diseases on BBB (PMID: 37076016; 38711118; 31163193) as it is easy to culture and can express a large number of transporters and metabolic enzymes in its physiological state. Therefore, hCMEC/D3 cells were selected to develop our in vitro BBB model.

      (B) Additionally, some instances might benefit from more robust statistical tests; nonetheless, I do not think this would significantly alter the experimental conclusions.

      Thank you for your valuable suggestions on the statistical methods used in our study, which made us realize our lack of rigor in selecting statistical methods. We have made modifications to statistical methods, and all statistical results showed the manuscript have been updated accordingly.

      (C) Similar experiments with tri-cultures yielding analogous results have been reported by other authors (PMID: 25630899). TEER values are a bit higher than the aforementioned experiments; however, this study has values at least one order of magnitude lower than physiological levels.

      Thank your advice. We also noticed that TEER values in the present study were different from previous reports, which may come from types of BEMCs, astrocytes, and neurons.

      Reviewer #2 (Recommendations For The Authors):

      Point 1: If you've already decided to enhance the model by incorporating additional cell types, why not include pericytes as well? As mentioned in the public review, other studies have explored tri-culture models; adding pericytes or other cell types could provide valuable insights.

      We greatly appreciate your helpful suggestions. As you mentioned, the barrier function of our model still needs further improvement, which is also a limitation of our current model. In our future research, we will aim to optimize our model by incorporating other NVU cells. Beyond drug screening, we also hope that our in vitro BBB model can serve as a versatile tool to investigate underlying factors associated with neuropathological disorders. According to your advice, we have modified “Discussion” in the revised manuscript as follows:

      In “Discussion”:

      “However, the study also has some limitations. In addition to neurons and astrocytes, other cells such as microglia, pericytes, and vascular smooth muscle cells, especially pericytes, may also affect BBB function. How pericytes affect BBB function and interaction among neurons, astrocytes, and pericytes needs further investigation.”

      Point 2: The decline in TEER after 6 days is concerning. Have you extended your experiments beyond day 7? If so, what were the outcomes? Did the system degrade, leading to decreased resistance, or did cell death occur?

      We greatly appreciate your helpful recommendation. We also observed that the TEER of our culture system began to decline on day 7. To ensure the reliability of our experiments, our experiments were conducted on day 6 of co-cultivation and did not extend beyond day 7. We speculate that the reason for the decrease in TEER values may be due to excessive cell contact, which could inhibit cell proliferation and long-term cultivation may lead to cell aging. Similar results showing a decrease in TEER of i_n vitro_ BBB models after prolonged culture have been reported in other studies (PMID: 31079318; 8470770). To eliminate misunderstandings, we have made the following modifications to our manuscript:

      In “Result”:

      “TEER values were measured during the co-culture (Figure 1B). TEER values of the four in vitro BBB models gradually increased until day 6. On day 7, the TEER values showed a decreasing trend. Thus, six-day co-culture period was used for subsequent experiments”.

      In “In vitro BBB permeability study” of “Materials and Methods”:

      “On day 7, the TEER values of BBB models showed a decreasing trend. Therefore, the subsequent experiments were all completed on day 6”.

      Point 3: It is standard practice for figures to be referenced in the order they appear in the manuscript. However, Figures 1A and 1B are not mentioned until the end of the methods section. Adding a brief sentence at the beginning of the main body referencing these figures would improve the clarity of the experimental approach.

      Thank you for your valuable suggestion. We had made modifications to Figure 1, and the details of the cell model establishment process had been included in Figure 9 which is mentioned in the “Materials and Methods” section.

      Point 4: To strengthen the evidence supporting the proliferative effect of GDNF, consider incorporating additional measures beyond cell count alone. While an increase in cell count could be attributed to reduced cell death (given GDNF's pro-survival properties), proliferation effects have also been shown (PMID: 28878618). I suggest demonstrating proliferation with markers or cell cycle analysis would provide more robust evidence.

      Thank you for your helpful suggestion. We used EdU incorporation and CCK-8 assays to further detect the proliferation of hCMEC/D3 cells, and corresponding results were added in the revised Figure 1H and Figure 1I. The description of results is shown as follows:

      In “Results”:

      “Co-culture with SH-SY5Y, U251, and U251 + SH-SY5Y cells also enhanced the proliferation of hCMEC/D3 cells. Moreover, the promoting effect of SH-SY5Y cells was stronger than that of U251 cells (Figure 1G-1I).”

      Point 5: Could you specify the use of technical replicates in your experiments? How many?

      Thank you for your helpful suggestion, and we apologize for the issue you pointed out. We have now specified the technical replicates of experiments in the legends of the revised manuscript. In general, the technical replicate number of ELISA and qPCR is two, and that of the rest experiments is one. And we have also made the following modifications to our manuscript:

      In “Statistical analyses” of “Materials and Methods”:

      “All results are presented as mean ± SEM. The average of technical replicates generated a single independent value that contributes to the n value used for comparative statistical analysis”.

      Point 6: Given the sample size of 4 in most experiments, it may be insufficient for passing a normality test. Therefore, it's advisable to employ non-parametric tests such as the Kruskal-Wallis test, followed by appropriate post-hoc tests.

      Thank you for your valuable and useful suggestion. We apologize for our initial oversight regarding statistics. Based on your suggestion, we have thoroughly reviewed and revised the statistical methods and statistical results in the manuscript. Referring to the ‘Statistics Guide’ of GraphPad (H. J. Motulsky, "The power of nonparametric tests", GraphPad Statistics Guide. Accessed 20 June 2024. https://www.graphpad.com/guides/prism/latest/statistics/stat_the_power_of_nonparametric_tes.htm), the Kruskal-Wallis test is more robust when the data does not follow a normal distribution or homogeneity of variance. However, due to its reliance on ranks, it may have lower sensitivity in detecting small differences. If the total sample size is tiny, the Kruskal-Wallis test will always give a P value greater than 0.05 no matter how much the groups differ. To address this, we first used the Shapiro-Wilk test to assume whether the samples come from Gaussian distributions. For samples meeting this criterion, parametric tests were employed. For samples that do not follow the Gaussian distribution, as per your advice, we utilized the non-parametric tests. We have modified the “Statistical analyses” in the revised manuscript as follows:

      In “Statistical analyses” of “Materials and Methods”:

      “The data were assessed for Gaussian distributions using Shapiro-Wilk test. Brown-Forsythe test was employed to evaluate the homogeneity of variance between groups. For comparisons between two groups, statistical significance was determined by unpaired 2-tailed t-test. The acquired data with significant variation were tested using unpaired t-test with Welch's correction, and non-Gaussian distributed data were tested using Mann-Whitney test. For multiple group comparisons, one-way ANOVA followed by Fisher’s LSD test was used to determine statistical significance. The acquired data with significant variation were tested using Welch's ANOVA test, and non-Gaussian distributed data were tested using Kruskal-Wallis test. P < 0.05 was considered statistically significant. The simple linear regression analysis was used to examine the presence of a linear relationship between two variables. Data were analyzed using GraphPad Prism software version 8.0.2 (GraphPad Software, La Jolla, CA, USA)”.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In particular, theoretical analysis of the extant evidence and formulation of the hypothesis remains elusive in terms of the potential mechanisms of updating/maintaining balance in obesity

      We thank the reviewer for their feedback regarding the theoretical analysis and hypothesis formulation in our manuscript. We have attempted to build our hypothesis based on established correlations between dopamine levels and working memory capabilities, as seen in various populations affected by dopaminerelated changes (e.g. Parkinson’s disease (Fallon et al. 2017), older individuals (Podell et al., 2012), or more generally, in individuals with lower dopamine synthesis capacity (Colzato et al., 2013)). Our hypothesis — that individuals with higher BMI might show impaired updating — is an extrapolation from observed patterns in these conditions. We recognize that the evidence connecting obesity to similar neuropsychological profiles may seem preliminary. We have tried to elaborate more clearly on how we reached our hypotheses in the revised version of the introduction. 

      “Based on the above considerations these inconsistencies may be due to prior studies not clearly differentiating between distractor-resistant maintenance and updating in the context of working memory. This distinction may be crucial, however, as indirect evidence hints at potential specific alteration in these two sub-processes in obesity. For instance, obesity has been associated with aberrant dopamine transmission, with there being an abundance of literature linking obesity to changes in D2 receptor availability in the striatum (see e.g. Horstmann et al., 2015). However, results are not consensual, with studies reporting decreased, increased, or unchanged D2 receptor availability in obesity (Ribeiro et al., 2023; Janssen & Horstmann, 2022; see Darcey et al. (2023) for a potential explanation). Additionally, there are reports of differences in dopamine transporter (DAT) availability in both obese humans (Chen et al., 2008; but also see Pak et al., 2023) and rodents (Narayanaswami et al., 2013; Jones et al., 2021; Hamamah et al., 2023). The observed changes in dopamine are often interpreted as being due to chronic dopaminergic overstimulation resulting from overeating (Volkow & Wise, 2005; Volkow et al., 2008) and altered reward sensitivity as a consequence thereof (Blum et al., 1996). Considering that working memory gating is highly dependent on dopamine signaling, such changes could theoretically alter the balance between maintenance and updating processes in obesity. Next to this, obesity has frequently been associated with functional and structural changes in WM gating-related brain areas, implying another pathway through which working memory gating might get affected. At the level of the prefrontal cortex (PFC), studies have reported reduced gray matter volume and compromised white matter microstructure in individuals with obesity (Debette et al., 2014; Kullmann et al., 2016; Morys et al., 2024; Lv et al., 2024), and functional changes become evident with frequent reports of decreased activity in the dorsolateral PFC during tasks requiring cognitive control (e.g., Morys et al., 2018; Xu et al., 2017). Notably, Han et al. (2022) observed significantly lower spontaneous dlPFC activity during rest, potentially indicating reduced baseline dlPFC activity in obesity. On the level of the striatum, gray matter volume seems to correlate positively with measures of obesity (Horstmann et al., 2011), and individuals with obesity show greater activation of the dorsal striatum in response to high-calorie food stimuli compared to normal-weight individuals, indicating a stronger dopamine-dependent reward response to food cues (Stice et al., 2008; Small et al., 2003). Additionally, changes in connectivity between and within the striatum and PFC in obesity, both structurally (Li et al., 2023) and functionally (Verdejo-Román et al., 2017a, 2017b; Contreras-Rodríguez et al., 2017) have been reported. Although these studies mostly investigate brain function in relation to food and reward processing, changes in these areas may also impair the ability to adequately engage in working memory gating processes, as activity in affective (reward) and cognitive fronto-striatal loops immensely overlap (Janssen et al., 2019). On the behavioral level, individuals with obesity consistently demonstrate impairments in food-specific (Janssen et al., 2017) but also non-food specific goal-directed behavioral control (Janssen et al., 2020) and reinforcement learning (Weydmann et al., 2023). It seems that difficulties with integrating negative feedback may be central to these alterations (Mathar et al., 2017; Kastner et al., 2017), which could explain a potential insensitivity to the negative consequences associated with (over) eating. Crucially, in humans, a substantial contribution to (reward) learning is mediated by working memory processes (Moustafa et al., 2008; Collins & Frank, 2012, 2018; Collins et al., 2014, 2017; Westbrook et al., 2024). The observed difficulties in reward learning in obesity may hence partly be rooted in a failure to update working memory with new reward information, suggesting cognitive issues that extend beyond mere difficulties in valuation processes. However, empirical support for this interpretation is currently lacking. A more nuanced understanding of the effects of obesity on working memory is crucial, however, as it could lead to more targeted intervention options.”

      The result that Taq1A and DARPP-32 moderated the interaction between WM condition and BMI requires intricate post hoc analysis to understand the bearings to update. The authors found that Taq1A or DARPP32 genotype moderated the negative association between BMI and WM exclusively in the update condition (significant two-way interaction effect), suggesting that the BMI-WM associations in other conditions were similar across genotypes. Importantly, visual inspection of the relationship between WM and BMI (Fig 4 & 5) suggests more prevalent positive effects of the putatively advantageous Taq1A-A1 and DARPP-32-AA genotypes to the overall negative relationship between WM and BMI in updating, but not in the other conditions. Given that an overall negative relationship was statistically supported across all conditions (model 1), a plausible interpretation would be that the updating condition stands out in terms of a positive moderation by putative advantageous genotypes, rather than compound negative consequences of BMI and genotype in updating. Critically, this interpretation stands in stark contrast with the interpretation put forth by the authors suggesting a specifically negative association between BMI and WM updating.

      We are grateful for the reviewers’ thorough review and insightful comments. We appreciate the attention to detail and the opportunity to improve our manuscript. We agree that further examination of the relationship between Taq1A, DARPP-32, and BMI, particularly in the update condition, is crucial for a comprehensive understanding of our results. In response to your feedback, we have conducted additional post hoc analyses, which indeed revealed the effects anticipated by the reviewer. Accordingly, we have revisited our discussion and conclusions to ensure that they accurately reflect the complexities of our findings, particularly regarding the positive moderation by putative advantageous genotypes in the update condition. Once again, we appreciate your thoughtful review and are grateful for the opportunity to strengthen the manuscript based on your feedback.

      In the results section we added: 

      “Further post hoc examination of the effects on updating revealed that, the association between BMI and performance was significant for A1-carriers (95%CIs: -0.488 to -0.190), with 33.9% lower probability to score correctly per unit change in BMI, but non-significant for non-A1-carriers (95%CIs: -0.153 to 0.129; 1.22% lower probability). Interestingly, compared to all other conditions, in the update condition, the negative association between BMI and task performance was weakest for non-A1-carriers (estimate = -0.012, SE = 0.072, but strongest for A1-carriers (estimate = -0.339, SE = 0.076; see Figure 3 and Table S6), emphasizing that genotype impacts this condition the most. To further check if this difference in slope was statistically significant across conditions, we stratified the sample into Taq1A subgroups (A1+ vs. A1-) and assessed whether BMI affected task performance differently across conditions separately for each subgroup. This analysis revealed no significant difference in the relationship between BMI and task performance across conditions among A1+ individuals (pBMI*condition = 0.219). However, within the A1- subgroup, a significant interaction effect between BMI and condition emerged (pBMI*condition = 0.049). Collectively, these findings suggest that the absence of the A1-allele is linked to improved task performance, particularly in the context of updating, where it seems to mitigate the otherwise negative effects of BMI.” 

      “Once more, further examination of the observed DARPP-32, BMI, and condition interaction showed that, in the update condition, the negative association between BMI and task performance was weakest and nonsignificant for A/A (estimate = -0.044, SE = 0.066; 95%CIs: -0.174 to 0.086), but strongest and significant for G-carrying individuals (estimate = -0.324, SE = 0.079; 95%CIs: -0.478 to – 0.170). See Table S7 and Figure 5.  Splitting the sample in to DARPP subgroups (A/A vs. G-carrier) revealed that in both subgroups, there was significant interaction effect of BMI and condition on task performance (pA/A = 0.034, pG-carrier = 0.003). In the case of DARPP, it hence appears that carrying the disadvantageous G-allele could exacerbate the negative effects of BMI, while the more advantageous allele (A/A) might mitigate them - once again particularly in the context of updating.” 

      Following from this, we added the following text snippets to the discussion:

      “Noteworthy, our data revealed that differences in updating appeared to be driven by the non-risk allele groups. Despite increasing BMI, performance remained stable.” 

      “However, as BMI increases, the possession of a greater D2 receptor density seems to become advantageous, as evidenced by the lack of a negative correlation between BMI and updating performance in non-A carriers. We speculate that this phenomenon could potentially be attributed to the compensating effects of this genotype. While individuals with fewer D2 receptors (A1+) may have quicker saturation of receptors regardless of dopamine levels, in those with more D2 receptors (A1-) saturation may be slower. This could contribute to a more finely tuned balance between "go" and "no-go" signaling, despite potential alterations in dopamine tone in obesity (Horstmann et al., 2015; but also see Darcey et al., 2023 or Janssen & Horstmann, 2022). Clearly, the current data cannot provide empirical evidence for these speculations, and further discrete research is needed to establish firm conclusions. 

      Regarding DARPP, we found that carrying the G-allele significantly exacerbated the negative effects of BMI, while the more advantageous allele (A/A) mitigated them, once again particularly in the context of updating.”

      “Collectively, our observations hint at the potential of advantageous genotypes to moderate the adverse impacts of high BMI on cognitive functions.” 

      In conclusion, in its current form the title of the present work is ambivalent in terms of 1) the use of the term "impaired" in the context of cognitively normal individuals, 2) a BMI group difference specifically in the updating condition, and 3) the dopaminergic mechanisms based on observational data

      Given the results of the additional post hoc analyses, we agree with the reviewer and have refined the title of our work to be less misleading. The title now reads:     

      “Working Memory Gating in Obesity is Moderated by Striatal Dopaminergic Gene Variants” 

      Reviewer #1 (Recommendations for the Authors):

      Beyond the issues raised in the public review, I recommend the authors adjust the use of pathologizing terminology in the context of a clinically healthy population. In particular, terms like "dopaminergic abnormalities" and "working memory deficits/impairment" seem pathologizing in a healthy, non-morbidly obese cohort. To that end, despite a negative continuous association between BMI and WM, there are high and low-performing individuals in all BMI segments, and group differences (high vs low BMI; not reported) do not seem as dramatic as between healthy controls and say Parkinson's disease patients. Furthermore, owing to the observational design of the present study the authors should pay attention to the use of terms suggesting causal relationships, such as "influence" in the context of statistical associations. Also, sentences like "Our study is the first to show such selective effects" seem problematic not only in terms of claims of primacy, but also in terms of the selectivity of the effects (associations). See the public review for an alternative interpretation of selectivity to updating conditions.   

      Of minor importance are the occasional spelling errors, that should be carefully checked by the authors. Also, I would like the authors to double-check the model configurations reported in the main text and the supplementary material. According to the supplement model 1 contains task condition by subject as a random effect (random slope model), whereas the main text states that this model configuration didn't converge and therefore only subject-specific intercepts are included. Hence, there seems to be discordance between the model descriptions in the main text and supplement. To that end, it would seem appropriate to briefly motivate the use of LME and the random effect for subject (within-subject correlation between conditions). Also, the origin of the odds ratios (OR) reported in the results section is not explicitly defined in the methods or results.

      We appreciate the reviewer's thoughtful recommendations and have taken several steps to address the concerns raised:

      (1) We have revised our manuscript to ensure that the language is less pathologizing and avoids suggesting causal relationships where only associations are indicated.  

      For example: 

      In the abstract, we replaced “abnormalities” with “alterations”:   

      “Dopaminergic alterations have emerged as a potential mediator. However, current models suggest these alterations should only shift the balance in working memory tasks, not produce overall deficits”

      In the introduction we replaced “impairments” with “alterations”:               

      “This distinction may be crucial, however, as indirect evidence hints at potential specific alteration in these two sub-processes in obesity.

      Generally, we took care to replace terms like 'dopaminergic abnormalities' and 'working memory deficits/impairments' with more neutral descriptors suitable for a clinically healthy population in the whole manuscript. 

      (2) We have modified primacy statements to be more nuanced. In the discussion, for example, we now say “This finding is compelling as it demonstrates a rarely observed selective effect.” Instead of “This finding is compelling as we are the first to show such selective effects.”

      (3) We have conducted an additional thorough review of our manuscript to correct any spelling errors.

      (4) Upon reevaluation, we corrected the inconsistencies with respect to the random structure of model 1. We therefore have revised the supplementary material to now accurately reflect that the model did not converge when including condition as a random factor, and thus, only subject-specific intercepts are included.

      (5) We have expanded our methods section to better explain the use of linear mixed effects models (LMEs) and the inclusion of random effects for subjects to account for within-subject correlation between conditions. We added the following text:

      “Given the within-subject design of our study, we used generalized linear mixed models (GLM) […]” and

      “The random structure of the model was thus reduced to include the factor ‘subject’ only, thereby accounting for the repeated measures taken from each subject.”

      (6) We have clearly defined the derivation of the odds ratios reported in our results in the methods section of our manuscript. We added the following text to the methods section:

      “Reported odds ratios (OR) are retrieved from exponentiating the log-odds coefficients called with the summary() function.”

      Reviewer #2 (Public Review):

      The majority of participants seem to fall within the normal BMI range, whereas the interaction between BMI and genetic variations or amino acid ratio particularly surfaces at higher BMI. As genetic variations are usually associated with small effect sizes, the effective sample size, although large for a behavioral analysis only, might have been too small to detect meaningful effects of risk alleles of COMT and C957T.

      We thank the reviewer for the valuable feedback. We concur that the effective sample size may have posed a limitation in detecting meaningful effects of COMT and C957T, particularly given the skewness of our data towards participants within the normal BMI range. In response to the reviewer’s comments, we have refined the relevant paragraph in the limitations section of our manuscript, emphasizing the importance of recruiting a more balanced sample, including individuals with higher BMI, in future studies.

      “Furthermore, an additional limitation is that our data is slightly skewed towards participants within the normal BMI range. The effective sample size to detect meaningful genotype effects (e.g. for COMT or C957T) might thus have been too small, particularly at higher BMI levels. Future studies may address this limitation by recruiting a more balanced sample, including more individuals with higher BMI.”

      The relationships between genetic variations, BMI, and specific disturbances in dopamine signaling are complex, as compensating mechanisms might be at play to mitigate any detrimental effects. The results would therefore benefit from more direct measures or manipulations of dopaminergic processes.

      We thank the reviewer for this valuable input. We acknowledge the potential benefits of employing a more direct measure, or ideally, a dopaminergic manipulation, to establish a clearer causal link between dopamine processes and working memory gating in the context of obesity. In response to the reviewers' constructive feedback, we have addressed this limitation in the discussion section of our manuscript, emphasizing the need for further research in this area:

      “Additionally, the correlational nature of our findings highlights the need for more direct experimental manipulations of dopaminergic processes in obesity. Previous studies have established a causal link between dopamine and WM gating through drug manipulations (Fallon et al., 2017, 2019). Applying a similar approach to an obese sample could help establish a clearer causal link between dopamine activity and WM gating in the context of obesity.”

      The introduction could benefit from a more elaborate description of the predicted effects: into which direction (better or worse updating) would the authors predict each effect to go and why? This is clearly explained for COMT, but not for e.g. DARPP-32.

      We thank the reviewer for their valuable feedback. We appreciate the suggestion to provide a more detailed description of the predicted effects for each genetic marker in the introduction. We would like to note, however, that the analyses involving markers such as DARPP-32 were inherently exploratory in nature. Consequently, we intentionally refrained from formulating directed hypotheses, as our primary aim was to observe and report any emergent patterns.

      Reviewer #2 (Recommendations for the Authors):              

      To what extent are the polymorphisms or amino acid ratios associated with BMI? For example, when including C957T polymorphism in the analysis, the detrimental effect of BMI on working memory is no longer statistically significant. Could this be due to a relatively strong relationship between C957T polymorphism and BMI? Could the authors provide figures showing how BMI relates to the genetic polymorphisms and amino acid ratio?

      We appreciate the reviewer's insightful comment and have thoroughly investigated the potential relationship between the polymorphism and BMI. Our analysis did not reveal any direct association between C957T and BMI. We have included this analysis in our manuscript. The reviewer’s comment strengthened the comprehensiveness of our study.

      “Because the main effect of BMI dissipated when including C957T in the model, we ran an additional exploratory analysis to check whether this polymorphism directly related to BMI. Linear regression, predicting BMI by genotype, showed no association between the two (p = 0.2432), indicating that BMI effect is probably not masked by the presence of the C957T polymorphism. See Table S8.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment 

      This valuable manuscript reports alterations in autophagy present in dopaminergic neurons differentiated from iPSCs in patients with WDR45 mutations. The authors identified compounds that improved the defects present in mutant cells by generating isogenic iPSC without the mutation and performing an automated drug screening. The methodological approaches are solid, but the claims still need to be completed: showing the effects of the identified compounds on iron-related alterations is crucial. The effects of these drugs in vivo would be a great addition to the study. 

      Thank you for this assessment. We agree that further hit validation would be a great addition to the study. At present, we provide this through RNAseq data but not at the protein level. Further validation using in vivo models would also be warranted but is beyond the scope of the current work.

      Public Reviews:

      Reviewer #1 (Public Review): 

      Summary: 

      In the current study, Papandreou et al. developed an iPSC-based midbrain dopaminergic neuronal cell model of Beta-Propeller Protein-Associated Neurodegeneration (BPAN), which is caused by mutations in the WDR45 gene and is known to impair autophagy. They also noted defective autophagy and abnormal BPAN-related gene expression signatures. Further, they performed a drug screening and identified five cardiac glycosides. Treatment with these drugs effectively in improved autophagy defects and restored gene expression. 

      Strengths: 

      Seeing the autophagy defects and impaired expression of BPAN-related genes adds strength to this study. Importantly, this work shows the value of iPSC-based modeling in studying disease and finding therapeutic strategies for genetic disorders, including BPAN. 

      Weaknesses: 

      It is unclear whether these cells show iron metabolism defects and whether treatment with these drugs can ameliorate the iron metabolism phenotypes. 

      We are pleased to ascertain that the reviewer feels the work is an important step in the field for BPAN. We also absolutely agree that secondary hit validation assays showing cardiac glycoside efficacy in restoring patient-related in vitro phenotypes would be very valuable. 

      We set up  assays to investigate iron metabolism phenotypes, including  western blotting for Ferritin Heavy Chain 1, Transferrin and Ferroportin 1 (SLC40A1) at day 65 of differentiation, but found no significant difference when comparing patient lines to controls (data not shown). 

      We also performed cell viability studies using the Alamar Blue assay on Day 11 ventral midbrain progenitors after 24 hour exposure to a) glucose starvation, b) media with no antioxidants (L-ascorbic acid and B-27 supplement), c) oxidative stressors MPP+ 1mM and FeCl3 100 uM (MPP+ and FeCl3 as suggested by  Seibler et al  (Brain 2018 PMID: 30169597). We found no difference in cell viability between patients, age-matched controls and CRISPR lines (data not shown). Additionally, we examined lysosomal function in BPAN Day 11 progenitors (2 age-matched controls, 3 patient lines, 2 isogenic controls); again, using the autophagy flux treatments mentioned above) via LAMP1 high content imaging immunofluorescence. We have seen no difference in LAMP1 puncta production between patient lines and controls and, therefore, have not included this data in our revision.

      Overall, we agree with the reviewer that  more validation of the compound hits’ ability to restore robust BPAN-related in vitro and in vivo phenotypes (including studies of iron metabolism/ homeostasis) will be needed in the future – this could be undertaken in more mature 2D culture systems, 3D organoid models and disease-relevant animal models.

      Reviewer #2 (Public Review): 

      Summary: 

      In this manuscript, the authors aim to demonstrate that cardiac glycosides restore autophagy flux in an iPSC-derived mDA neuronal model of WDR45 deficiency. They established a patientderived induced pluripotent stem cell (iPSC)-based midbrain dopaminergic (mDA) neuronal model and performed a medium-throughput drug screen using high-content imaging-based IF analysis. Several compounds were identified to ameliorate disease-specific phenotypes in vitro. 

      Strengths: 

      This manuscript engaged in an important topic and yielded some interesting data. 

      Weaknesses: 

      This manuscript failed to provide solid evidence to support the conclusion. 

      We are pleased that the reviewer assesses the work as conceptually important and interesting. We also agree that more work to understand the pathophysiology underpinning BPAN, and the mechanisms through which cardiac glycosides help restore affected intracellular pathways are warranted. More validation of the compound hits’ ability to restore broader disease-specific in vitro and in vivo phenotypes is also needed in future studies. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      Overall, this is a nicely executed study. Here are my suggestions:

      (1) Showing the iron phenotypes in these cells and testing if treatment with these drugs rescues iron-related phenotypes will add significant value to this work. 

      We absolutely agree that secondary hit validation assays showing  glycoside efficacy in restoring disease-related in vitro phenotypes is warranted. The main issue here is identifying how WDR45 deficiency leads to cellular dysfunction or dyshomeostasis and early death. Unfortunately, the mechanism by which this happens is not yet delineated, and more relevant future work is needed. 

      In our lab, we set up such assays. Regarding iron metabolism-related phenotypes, we performed western blotting for Ferritin Heavy Chain 1, Transferrin and Ferroportin 1 (SLC40A1) but found no significant difference when comparing patient lines to controls (data not shown). We also performed cell viability studies using the Alamar Blue assay on Day 11 ventral midbrain progenitors after 24 hour exposure to a) glucose starvation, b) media with no antioxidants (L-ascorbic acid and B-27 supplement), c) oxidative stressors MPP+ 1mM and FeCl3 100 uM (MPP+ and FeCl3, as suggested by the Seibler et al paper, Brain 2018 PMID: 30169597). We found no difference in cell viability between patients, age-matched controls and CRISPR lines (data not shown). Additionally, we examined lysosomal function in BPAN Day 11 progenitors (2 age-matched controls, 3 patient lines, 2 isogenic controls; again, using the autophagy flux treatments mentioned above) via LAMP1 high content imaging immunofluorescence. We have seen no difference in LAMP1 puncta production between patient lines and controls and, therefore, have not included this data in our revision.

      (2) Assessing the effects of these drugs in an in vivo model will strengthen this study. 

      This is a valid point, and we agree that further validation using in vivo models such as the reported BPAN mouse models, would be warranted in the future.

      Reviewer #2 (Recommendations For The Authors): 

      While this manuscript engaged in an important topic and yielded exciting data, there are still some concerns for the authors to address. 

      (1) The biggest concern is that the characterization of autophagic flux solely with LC3 is not convincing enough. Although ATG2A and ATG2B are required for phagophore formation during autophagy, their interaction with WDR45 seems dispensable for phagophore formation for a mild autophagy defect observed in WDR45 knockout cell models and mouse models. All wdr45/- mice are born normally and survive the postnatal starvation period, unlike mice lacking essential ATG proteins, like ATG5, ATG7, and VMP1. The functional relevance of WDR45 and autophagy remains to be fully established. Overall, this manuscript failed to provide solid evidence to support the conclusion. 

      This is a valid point. We have looked at autophagy flux in fibroblasts and Day 11 ventral midbrain stage. For fibroblasts, 1 control line and three patient lines were used; for Day 11 progenitors, 2 control lines, 2 patient lines and one isogenic control were used. Cells from different lines were cultured on the same 96-well plates, at the same plating density, and treated concurrently to minimise fluctuations in flux due to unaccounted factors, e.g., confluence, incubator temperature etc. Treatments consisted of a) DMSO (basal condition), b) Bafilomycin A1 (flux inhibition via autophagosome/ lysosome fusion blockage), c) Torin A1 (mTOR inhibitor, flux inducer) and d) combination of Bafilomycin A1 and Torin 1, for a total of 3 hours. In all these conditions, LC3 puncta production in BPAN lines was reduced when compared to controls. We believe that these results indicate defective autophagy flux in BPAN in different cell types.

      Moreover, we have demonstrated defects in autophagy-related gene (ATG) expression through RNA sequencing, that is restored after CRISPR/Cas9-mediated correction of the disease-causing mutation in a patient derived line, but also after treatments with torin 1 and digoxin. These results suggest a dysregulated ATG network in WDR45 deficiency. 

      (2) WDR45 is linked to BPAN. Do the authors detect any iron accumulation in DA progenitors or mDA neurons? 

      Regarding iron metabolism-related phenotypes, we performed western blotting for Ferritin Heavy Chain 1, Transferrin and Ferroportin 1 (SLC40A1) but found no significant difference when comparing patient lines to controls (data not shown). We agree that more studies into the links between WDR45 deficiency, iron metabolism and neurodegeneration are needed. 

      (3) It is necessary to detect LC3 protein levels by western blot to distinguish LC3I and LC3II and gain a more accurate understanding for the process of LC3 - marked autophagosome. 

      Thank you for this valid point. 

      Due to the very dynamic nature of autophagy, and many factors influencing flux , we have not been able to meaningfully examine autophagy-related markers in an iPSC-derived system that is also inherently prone to variability.  Therefore, LC3 and p62 values exhibited high variability, and hence we are unable to adequately interpret them (data not shown). Instead, in this manuscript we have focused on high-content assays with cells cultured and treated simultaneously at Day 11 of differentiation, which have shown autophagy flux defects.

      We have looked at autophagy flux in fibroblasts and at Day 11 ventral midbrain stage. For fibroblasts, 1 control line and three patient lines were used; for Day 11 progenitors, 2 control lines, 2 patient lines and one isogenic control were used. Cells from different lines were cultured on the same 96-well plates, at the same plating density, and treated concurrently to minimise fluctuations in flux due to unaccounted factors, e.g., confluence, incubator temperature etc. Treatments consisted of a) DMSO (basal condition), b) Bafilomycin A1 (flux inhibition via autophagosome/ lysosome fusion blockage), c) Torin A1 (mTOR inhibitor, flux inducer) and d) combination of Bafilomycin A1 and Torin 1, for a total of 3 hours. In all these conditions, LC3 puncta production in BPAN lines was reduced when compared to controls. We believe that these results indicate defective autophagy flux in BPAN in different cell types.

      (4)  Some methodological details need to be included - detailed descriptions of various quantifications for IF staining should be provided. For example, it is unclear how "% cells+ ve for marker combination" (Fig.1B) was quantified, and there are many unconventional units such as "% cells+ ve for marker combination "; please check and correct them. 

      Thank you for pointing this out. We have changed the legends in Figure 1B and Supplementary Figure 2C to ‘percentage of cells positive for marker combination’. Moreover, in our Methods section (Immunocytochemistry sub-section), we have updated the text as follows, to give more clarification on the process of marker quantification (Page 25, Paragraph 2): ‘For quantification, 4 random fields were imaged from each independent experiment. Subsequently, 1200 to 1800 randomly selected nuclei were quantified using ImageJ (National Institutes of Health). Manual counting for nuclear (DAPI) staining and co-staining with the marker of interest was performed, and percentages of cells expressing combinations of markers were calculated as needed.’

      (5) In Figure 3 and Figure 4, the quantifications for IF images were inconsistent with the shown IF image, for example, the representative IF image for detection of LC3 with Tor1 treatment. 

      Due to space restrictions, we have not included representative images from all patient lines, and every treatment condition depicted in the graphs. In Figure 3 (describing the set-up of the LC3 screening assay), only one control line and one patient line is shown in basal (DMSO-treated) conditions. In Supplementary Figure 4D, only one patient line and the corresponding isogenic control line are depicted after Torin 1 treatments.

      Quantification of the LC3 puncta in this assay (20 fields per well, each condition in a technical duplicate, n=8 biological replicates) was automated, using ImageJ and R Studio, with subsequent statistical significance calculation on GraphPad Prism. Hence, the immunofluorescence figures depict a reduction in LC3 puncta per nuclei numbers in patient-derived lines versus controls, but not the exact difference after automated image analysis. We have detailed this in the Methods section (High content imaging-based immunofluorescence subsection) of our manuscript (Page 26, Paragraph 2): ‘For all high content imaging-based experiments, the PerkinElmer Opera Phenix microscope was used for imaging. 20 fields were imaged per well, at 40 x magnification, Numerical Aperture 1.1, Binning 1. Image analysis was performed using ImageJ and R Studio.60 For the drug screen, puncta values were normalised according to positive and negative controls from each plate and Z-scores for each compound screened were generated.  Statistical significances were calculated on GraphPad Prism V.

      8.1.2. software (GraphPad Software, Inc.; https://www.graphpad.com/scientific-software/prism/).’

      (6)  In Figure 4C, LC3 should be co-stain with the DA progenitor maker to indicate that the intercellular LC3 level within the projectors. 

      Thank you for raising this point. The images from Figure 4C were obtained during the medium throughput drug screen, where the FOXA2 co-stain was not used. The FOXA2 stain was only used during the initial set-up of the LC3 screening assay, to confirm that the Day 11 cells had ventral midbrain identities. Indeed, most of the Day 11 cells used in the high content imaging-related experiments were FOXA2-positive, as shown in Figure 3 and Supplementary Figure 4.

      (7) Examining P62, one of the most important indicators for autophagic flux, should be parallel with LC3 detection. In Figure 5A, P62 accumulation seems not significant in patient 02 Day 11 ventral midbrain projectors; how about that in Day 65? 

      The reviewer is raising a valid point. We have not examined p62 and LC3 staining in parallel in high content imaging-based experiments but agree that this would be good to examine in future studies. 

      Some other minor points 

      (8) It needs to give a more detailed description of the tested compounds you mentioned in the text. 

      Thank you for this point. We have elaborated on the contents of the Prestwick library used for the screening, as below (Page 9, Paragraph 3): ‘We then utilised this high-content imaging LC3 assay to identify novel compounds of potential therapeutic interest for BPAN by screening the Prestwick Chemical Library containing 1,280 compounds, of which more than 95% FDA/ EMA approved.’

      In the Methods Section, Page 25, Paragraph 5, we also detail the library as follows: ‘For drug screening, the Prestwick Chemical Library (1,280 compounds, 95% FDA/ EMA approved, 10 mM in DMSO, https://www.prestwickchemical.com/screening-libraries/prestwick-chemical-library/) was used; cells were treated with compounds for 24 hours at 10 μM final concentration.’

      (9) Please pay attention to the abbreviation; many gene names only have abbreviations without full names when they first appear in the context. 

      Thank you for this point. We have corrected this in various places throughout the manuscript and especially in the introduction section.

      (10) Almost all figures have the problem of insufficient image resolution, or the font of the indicated words needs to be bigger to be distinguished clearly, like in Fig.1B, 1C, 1E. 

      Thank you for this point, we have ensured that all figures have adequate image resolution as specified by the journal requirements. 

      (11) The sample size or biological repeated times should be given in figure legends. 

      Thank you for this point. We have now indicated numbers of biological replicates where appropriate.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Below, I will list the points that should be addressed by the authors:

      (1) Line 139: The authors conclude that the lack of a phenotype induced by knockdown of Polr1F is due to reduced baseline sleep because of the leakiness of the Genswitch system. However, it is not clear why the argument of the SybGS being leaky should not apply to all experiments done with this tool. The authors should comment on that aspect. Furthermore, this claim is testable since it should be detectable against genetic controls. An alternative explanation to the proposed scenario is that the Polr1F sleep phenotype observed in the constitutive knockdown experiment is based on developmental defects. The authors should provide additional evidence to explain the discrepancy.

      We appreciate the reviewer’s insightful feedback. We assume the reviewer is referring to Regnase-1 RNAi (and not Polr1F) as Regnase-1 RNAi flies exhibit reduced sleep before dusk, potentially hindering further detection of sleep reduction. The leaky sleep reduction was based upon comparison with genetic controls in that experiment. Nevertheless, to discern whether our observations stem from developmental effects, we conducted adult-specific knockdowns of both Polr1F and Regnase-1 using the TARGET system. We generated the R35B12-Gal4:TubGal80ts line and crossed it with the UAS-Polr1FRNAi and UAS-Regnase-1RNAi lines. We confirmed that Polr1F RNAi promotes sleep when knocked down in adults (Figure 3 - supplemental figure 1). Conversely, Regnase-1 showed no effect on sleep in the adult stage, which is consistent with our nSyb-GS experiments, and suggests, as noted by the reviewer, that the Regnase-1 RNAi sleep effect is likely developmental (Figure 3 – supplemental figure 3).

      (2) Line 170: Regnase1 knockdown affects all memory types, including short-term and long-term memory. The authors conclude that these genes are involved in consolidation. However, besides consolidation, it has been shown that α′β′ KCs are involved in short-term appetitive memory retrieval. Thus, an equally possible explanation is that the knockdown impairs the neuronal function per se, which would lead to a defect in all behaviors related to α′β′ KCs, rather than a specific role for consolidation. The authors have to provide additional evidence to substantiate their claim.

      The exact role of Regnase-1 in the α′β′ KCs remains unclear.  We acknowledge the reviewer’s concern and have amended our conclusion to include this potential explanation suggested by the reviewer.

      (3) Line 87-88: For the protocol used, it was reported that GFPnls cannot be used for FACS sorting. The authors might want to comment/clarify that aspect. https://star-protocols.cell.com/protocols/1669.

      For our RNA-seq experiments, we conducted single cell isolation by FACS sorting cells, instead of nuclei, labeled with GFP.nls. The protocol mentioned that GFP.nls is not effective for single nuclear RNA-seq as it is not specific for nuclei, but for our cell sorting purposes that did not matter.

      (4) Line 131: The authors should report the concentration of RU486.

      Sorry, this is now in methods.

      (5) Line 155: Is that really 42 hours? This might be a typo. If not, it would be good to justify the prolonged re-starvation period.

      Flies fed after training form sleep-dependent memories but did not show robust long-term memory after 30 h of restarvation. As starvation is a requisite for appetitive memory retrieval (Krashes and Waddell 2008), the low memory scores after 30 h could be due to inadequate starvation. Therefore, we starved flies for 42h, which is similar to the sleep-independent memory paradigm in which flies are starved for 18 h before training and then tested 24 h after training; this protocol resulted in robust long-term memory performance. These flies were fine and able to make choices in a T-maze after 42 h starvation.

      (6) I will be listing mistakes/unclear points in the figures. However, all figures should be checked very carefully for clarity.

      Thanks for these valuable comments. We have gone over the figures carefully and fixed any issues we found.

      (7) Figure 1C: It is not entirely clear to me how this heatmap was created and what the values mean.

      The 59 differentially expressed genes (DEGs) were selected based on DESeq2 described in the methods. For the heatmap, Transcripts per million (TPM) of these 59 DEGs were log-transformed and then scaled row-wise and plotted with IDEP v0.95 (http://bioinformatics.sdstate.edu/idep95/).

      (8) Figures 2A and 2B: The units might be missing. For Supplementary Figure 2, it is not clear what the different groups are without looking at the main figure.

      Fixed.

      (9) Figure 3: The panel arrangement is confusing. Furthermore, the "B)" is cut. The same issue is present in the Supplementary Figure.

      Sorry! We rearranged the panels, and fixed the issue in both figures.

      (10) Figure 5B: It is not clear what the scale bar means.

      Now indicated

      (11) Line 119: The citation "Marygold et al n.d."?

      Fixed

      (12) Line 620: I'm not sure that the rate and localization of nascent peptide synthesis are measured.

      Great point. We used the puromycin assay to estimate significant changes in translation. However, we did not measure the absolute translational rate or the localization of newly synthesized proteins. We rephrased this in the updated manuscript.

      (13) Line 627, the authors should give the NA of the objective, further the authors should double-check the information they provide on the resolution.

      Fixed, it was 20X.

      (14) Line 629 "Fuji" is unclear, it might refer to the Fiji software, and in that case, it should be listed in the used software. Further, the authors have to check on the information they provide on the intensity, e.g. is that GFP fluorescence?

      Yes, it was Fiji and GFP. The manuscript has been updated accordingly.

      (15) Line 634, It is stated that two concentrations of CX-5461 are used, however, as far as I can see only data for the 0.2 mM.

      We apologize for the confusion. Data are indeed only shown for 0.2 mM. We also tested 0.4 mM and 0.6 mM under fed conditions once and 0.1 mM under starved conditions twice. Since all effects were not significant, we only presented the complete 0.2 mM results in the supplementary figure.

      (16) Line 352 "Marygold et al nd" is probably a glitch in the citation?

      It’s a citation tool issue and has been fixed.

      (17) The authors use apostrophe rather than a prime in describing the α "prime" β "prime" KCs

      We have corrected this.

      Reviewer #2 (Recommendations For The Authors):

      The authors have generated an interesting study that promises to advance the understanding of how context-dependent changes in sleep and memory are executed at the molecular level. The manuscript is well-written and the statistical analyses appear robust. Major and minor comments are detailed below.

      Overall, I would suggest that the authors try to obtain additional evidence that Pol1rF modulates sleep and test the effect of acute adult-stage knockdown of Polr1F and Regnase-1 specifically in ap α'β' MBNs rather than pan-neuronally.

      Major comments

      (1) In Figures 2 and 3 and associated supplemental figures, the authors first test for a role for Polr1F and Regnase-1 specifically in ap α'β' MBNs (Fig. 2), then test for an acute role for these proteins via pan-neuronal drug inducible expression (Fig. 3). Because the former manipulation is cell-specific and the latter is pan-neuronal, it is hard for the reader to draw conclusions pertaining to ap α'β' MBNs from the second dataset. Perhaps Regnase-1 indeed acutely regulates sleep in ap α'β' MBNs, but that effect is masked by counteracting roles in other neurons? Conversely, it remains possible that Polr1F and Regnase-1 act during development in ap α'β' MBNs to modulate sleep. Indeed, since silencing the output of ap α'β' MBNs using temperature-sensitive shibire does not alter baseline sleep (Chouhan et al., (2021) Nature), the notion that Regnase-1 could act acutely in ap α'β' MBNs to reduce baseline sleep is somewhat surprising.

      The authors could address this by using a method such as TARGET (temperature-sensitive GAL80) to acutely reduce Polr1F and Regnase-1 expression specifically in ap α'β' MBNs and test how this impacts sleep.

      Thanks for the very helpful suggestions. We have done the suggested experiments and discuss them above in response to Reviewer 1. They are included in the manuscript as Figure 3 – supplemental figure 1 and figure 3 – supplemental figure 3.

      (2) Figure 4 presents data examining whether Polr1F and Regnase-1 knockdown suppresses training-induced increases in sleep. For the untrained flies, based on the data in Fig. 2C, E I expected that Polr1F knockdown flies would exhibit more sleep than their respective controls (Fig. 4E), but this was not the case. These data suggest that more evidence may be warranted to strengthen the link between Polr1F (and potentially Regnase-1) knockdown and sleep. Could the authors use independent RNAi constructs or cell-specific CRISPR (all available from current stock centres) to validate their current results? Related to this, it would be useful to know whether the authors outcrossed any of their transgenic reagents into a defined genetic background.

      The untrained flies in figure 4E are not equivalent to flies tested for Polr1F effects on sleep in figure 2C. In Figure 4E, flies were starved for 18 h and then exposed to sucrose without an odor at ZT6. Following sucrose exposure, flies were moved to sucrose locomotor tubes, and sleep was assessed only in the ZT8-12 interval. Sleep was not significantly different between untrained R35B12>Polr1FRNAi and Polr1FRNAi/+ flies, and while it was higher in R35B12>Polr1FRNAi than in R35B12/+ untrained flies, the data overall indicate that Polr1F downregulation has no impact on sleep under these conditions and at this time. Similarly, in fully satiated settings (Figure 2C), we found no difference in sleep during the ZT8-12 period between R35B12>Polr1FRNAi flies and genetic controls. We did not outcross our transgenic lines but have now tested another available Polr1F RNAi (VDRC: v103392) (Figure 3 – supplemental figure 1). As shown in the figure, adult-specific knockdown of Polr1F by this RNAi line promoted sleep, as did the initial RNAi line.

      (3) Could the authors provide additional evidence that Polr1F knockdown in ap α'β' MBNs does not enhance sleep by reducing movement? A separate assay such as climbing would be beneficial. Alternatively, examining peak activity levels at dawn/dusk from the 12L: 12D DAM data.

      We checked the peak activity per minute per day for adult specific knockdown of PorlF1 and Regnase-1 (data shown in Figure 3 – supplemental figure 4). The results show that Polr1F knockdown in ap α'β' MBNs does not enhance sleep by reducing movement.

      (4) In terms of validating their proposed model, over-expressing of Polr1F during appetitive training might be predicted to suppress training-induced sleep increases and potentially long-term memory. Do the authors have any evidence for this?

      We were unable to find any Pol1rF overexpression line. However, we obtained the Regnase-1 over-expression line from Dr. Ryuya Fukunaga’s lab and found that Regnase-1 OE does not affect sleep (Figure 4 – supplemental figure 1).

      Minor comments

      (1) Abstract: can the authors please define 'ap' as anterior posterior?

      Fixed.

      (2) Figure 2 Supplemental 1: can the authors please denote the genotypes each color refers to in?

      Fixed.

      (3) In Figure 3 Supplemental 1, the authors state that acute Regnase-1 knockdown did not reduce sleep, but sleep during the night period does appear to be reduced (panel A). Was this quantified?

      We quantified this, and it was not significant.

      (4) Discussion, line 234: the heading of this section is 'Polr1F regulates ribosome RNA synthesis and memory' but the data presented in Figure 4 suggests that Polr1F does not affect memory. Can the authors clarify this?

      We made an adjustment to the title and acknowledge that at the present time we cannot say Polr1F affects memory.

      (5) Methods, Key Resource Table: can the authors please identify which fly lines were used for Polr1F and Regnase-1 knockdown experiments?

      Fixed. Fly line BDSC64553 was used for Polr1F RNAi except in Figure 3 – supplemental figure 1 and 4, where VDRC 103392 was used. VDRC 27330 was used for Regnase-1 knockdown experiments.

      Reviewer #3 (Recommendations For The Authors):

      (1) Figure 1B: This plot is currently labelled as PCA of DEGs, which I believe is inaccurate, as such a plot is a quality control that examines the overall clustering of samples by using all read counts (not just the DEGs). In addition, the color key value of this Figure 1B is not provided.

      Thank you for the insightful suggestion. The reviewer’s comment here that typically PCA plots are used for overall clustering of RNA-seq samples is indeed valid. We've acknowledged that our samples, due to their high similarity in cell populations and mild treatments, do not exhibit clear separation when we use all genes. However, we show a PathwayPCA plot of all DEGs. We aim to highlight that RNA processing pathways enriched among the DEGs account for much of the separation of the groups.

      (2) A reviewer token is not provided to examine the sequencing data set.

      The RNA-seq data has been submitted to the Sequence Read Archive (SRA) with NCBI BioProject accession number PRJNA1132369. The reviewer token is https://dataview.ncbi.nlm.nih.gov/object/PRJNA1132369?reviewer=cvqkddp8rjuebsjefk0f19556r.

      (3) In the discussion, the author pointed out that many of the 59 DEGs have implicated functions in RNA processing. To strengthen the statement, it would be beneficial to conduct the Gene Ontology analysis to test whether the DEGs are enriched for RNA processing-related GO terms.

      We have included the GO analysis results in Figure1 and another GO analysis of all DEGs in Figure 1 – supplemental figure 1.

      (4) Figure 4E presents an intriguing finding because it shows that the untrained R35B12>Polr1FRNAi flies exhibit reduced sleep (instead of increased sleep) when compared to untrained Polr1/+ control flies.

      Please see above response to reviewer #2 question2.

      (5) For the memory assay method, the identity of odor A and odor B is not provided.

      We used 4-methylcyclohexanol and 3-octanol; this information has been added into the methods section.

      (6) Female flies were used for the sleep assay. However, it is not clear whether only female flies were used for the memory assay.

      Mixed sexes are used for memory assays because a huge number of files is needed for these experiments. We added this information in the methods.

      (7) It is important to provide olfactory acuity data on control and experimental animals to rule out that the learning/memory phenotype is caused by defects in sensing the odor used for training and testing.

      Since Polr1F RNAi flies perform well, odor acuity is not an issue. Regnase1RNAi affects both short-term and long-term memories, but this seems to be a developmental issue, so we did not do the odor acuity experiments here.

      (8) Line 20: "ap alpha'/beta'" neurons should be spelled as "anterior posterior (ap) alpha'/beta' neurons", as this is the first time that this anatomical name appears in this manuscript.

      Fixed.

      (9) Figure 2C and 2D labelling: R35B12>control; UAS control should be changed to R35B12/+ control; UAS-RNAi/+ control.

      Fixed.

      (10) Line 155: it is unclear why the flies were re-starved for 42hr before testing. Is this a different protocol from the 30hr re-starvation that was used by Chouhan et al., 2021?

      We have explained the rationale above. The starvation period was increased to get better memory scores.

      (11) Line 160: it is stated that knocking down Polr1F did not affect memory, which is consistent with Polr1f levels typically decreasing during memory consolidation. Is there a reference demonstrating that Polr1f levels typically decrease during memory consolidation?

      It’s from our RNA-seq dataset from Figure1C. The level of Polr1F decreased in fed trained flies compared with other control flies.

      (12)  Genotype labeling in Figure 4F is inconsistent with the rest of the manuscript.

      Fixed.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      This is a very nice study of Belidae weevils using anchored phylogenomics that presents a new backbone for the family and explores, despite a limited taxon sampling, several evolutionary aspects of the group. The phylogeny is useful to understand the relationships between major lineages in this group and preliminary estimation of ancestral traits reveals interesting patterns linked to host-plant diet and geographic range evolution. I find that the methodology is appropriate, and all analytical steps are well presented. The paper is well-written and presents interesting aspects of Belidae systematics and evolution. The major weakness of the study is the very limited taxon sampling which has deep implications for the discussion of ancestral estimations.

      Thank you for these comments.

      The taxon sampling only appears limited if counting the number of species. However, 70 % of belid species diversity belongs to just two genera. Moreover, patterns of host plant and host organ usage and distribution are highly conserved within genera and even tribes. Therefore, generic-level sampling is a reasonable measure of completeness. Although 60 % of the generic diversity was sampled in our study, we acknowledge that our discussion of ancestral estimations would be stronger if at least one genus of

      Afrocorynina and the South American genus of Pachyurini could be included.

      Reviewer #2 (Public Review):

      Summary:

      The authors used a combination of anchored hybrid enrichment and Sanger sequencing to construct a phylogenomic data set for the weevil family Belidae. Using evidence from fossils and previous studies they can estimate a phylogenetic tree with a range of dates for each node - a time tree. They use this to reconstruct the history of the belids' geographic distributions and associations with their host plants. They infer that the belids' association with conifers pre-dates the rise of the angiosperms. They offer an interpretation of belid history in terms of the breakup of Gondwanaland but acknowledge that they cannot rule out alternative interpretations that invoke dispersal.

      Strengths:

      The strength of any molecular-phylogenetic study hinges on four things: the extent of the sampling of taxa; the extent of the sampling of loci (DNA sequences) per genome; the quality of the analysis; and - most subjectively - the importance and interest of the evolutionary questions the study allows the authors to address. The first two of these, sampling of taxa and loci, impose a tradeoff: with finite resources, do you add more taxa or more loci? The authors follow a reasonable compromise here, obtaining a solid anchored-enrichment phylogenomic data set (423 genes, >97 kpb) for 33 taxa, but also doing additional analyses that included 13 additional taxa from which only Sanger sequencing data from 4 genes was available. The taxon sampling was pretty solid, including all 7 tribes and a majority of genera in the group. The analyses also seemed to be solid - exemplary, even, given the data available.

      This leaves the subjective question of how interesting the results are. The very scale of the task that faces systematists in general, and beetle systematists in particular, presents a daunting challenge to the reader's attention: there are so many taxa, and even a sophisticated reader may never have heard of any of them. Thus it's often the case that such studies are ignored by virtually everyone outside a tiny cadre of fellow specialists. The authors of the present study make an unusually strong case for the broader interest and importance of their investigation and its focal taxon, the belid weevils.

      The belids are of special interest because - in a world churning with change and upheaval, geologically and evolutionarily - relatively little seems to have been going on with them, at least with some of them, for the last hundred million years or so. The authors make a good case that the Araucaria-feeding belid lineages found in present-day Australasia and South America have been feeding on Araucaria continuously since the days when it was a dominant tree taxon nearly worldwide before it was largely replaced by angiosperms. Thus these lineages plausibly offer a modern glimpse of an ancient ecological community.

      Weaknesses:

      I didn't find the biogeographical analysis particularly compelling. The promise of vicariance biogeography for understanding Gondwanan taxa seems to have peaked about 3 or 4 decades ago, and since then almost every classic case has been falsified by improved phylogenetic and fossil evidence. I was hopeful, early in my reading of this article, that it would be a counterexample, showing that yes, vicariance really does explain the history of *something*. But the authors don't make a particularly strong claim for their preferred minimum-dispersal scenario; also they don't deal with the fact that the range of Araucaria was vastly greater in the past and included places like North America. Were there belids in what is now Arizona's petrified forest? It seems likely. Ignoring all of that is methodologically reasonable but doesn't yield anything particularly persuasive.

      Thank you for these comments.

      The criticism that the biogeographical analysis is “not very compelling” is true to a degree, but it is only a small part of the discussion and, as stated by the reviewer, cannot be made more “persuasive”, in part because of limitations in taxon sampling but also because of uncertainties of host associations (e.g. with ferns). We tried to draw persuasive conclusions while not being too speculative at the same time. Elaborating on our short section here would only make it much more speculative — and dispersal scenarios more so than vicariance ones (at least in Belinae).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I have a few comments relative to this last point of a more general nature:

      - I think it would be informative in Figure 1 to present family names for the outgroups.

      Family names for outgroups have been added to Figure 1.

      - There is a summary of matrix composition in the results but I think a table would be better listing all necessary information for each dataset (number of taxa, number of taxa with only Sanger data, parsimony informative sites, GC content, missing data, etc...).

      We added Table S4 with detailed information about the matrices.

      - Perhaps I missed it, but I didn't find how fossil calibrations were implemented in BEAST (which prior distribution was chosen and with which parameters).

      We used uniform priors, this has been added to the Methods section.

      - I am worried that the taxon sampling (ca. 10% of the family) is too low to conduct meaningful ancestral estimations, without mentioning the moderately supported relationships among genera and large time credibility intervals. This should be better acknowledged in the paper and perhaps should weigh more into the discussion.

      Belidae in general are a rare group of weevils, and it has been a huge effort and a global collaboration to sample all tribes and over 60 % of the generic diversity in the present study. A high degree of conservation of host plant associations, host plant organ usage and distribution are observed within genera and even tribes. Therefore, we feel strongly that the resulting ancestral states are meaningful.

      Moreover, 70 % of the belid species diversity belongs to only two genera, Rhinotia and Proterhinus. Our species sampling is about 36 % if we disregard the 255 species of these two genera.

      However, we acknowledge that our results could be improved by sampling more genera of Afrocorynina and Pachyurini. However, these taxa are very hard to collect. We have acknowledged the limitation of our taxon sampling, branching supports and timetree credibility intervals in the discussion to minimize speculative in conclusions.

      - It might be nice to have a more detailed discussion of flanking regions. In my experience and from the literature there seems to be increasing concern about the use of these regions in phylogenomic inferences for multiple solid reasons especially the more you go back in time (complex homology assessment, overall gappyness, difficulty to partition the data, etc...)

      We tested the impact of flanking regions on the results of our analyses and showed this data did not having a detrimental impact. We added more details about this to the results section of the paper, including information about the cutoffs we used to trim the flanking regions.

      Reviewer #2 (Recommendations For The Authors):

      Line 42, change "recent temporal origins" to "recent origins".

      Modified in the text.

      Line 97-98, "phylogenetic hypotheses have been proposed for all genera" This is ambiguous. The syntax makes it sound like these were separate hypotheses for each genus - the relationships of the species within them, maybe. However, the context implies that the hypotheses relate to the relationships between the genera. Clarify. "A phylogenetic hypothesis is available for generic relationships in each subfamily. . . " or something.

      Modified in the text.

      Line 162, ". . . all three subtribes (Agnesiotinidi, Belini. . . " Something's wrong here. Change "subtribes" to "tribes"?

      Modified in the text.

      Line 219, the comma after "unequivocally" needs to be a semicolon.

      Modified in the text.

      Line 327 and elsewhere, the abbreviation "AHE" is used but never spelled out; spell out what it stands for at first use. Or why not spell it out every single time? You hardly ever use it and scientists' habit of using lots of obscure abbreviations is a bad one that's worth resisting, especially now that it no longer requires extra ink and paper to spell things out.

      Modified in the text.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      Minor

      (MN1) The segregants should be referred to as F2 segregants as they are derived from an F1 cross.

      We thank the reviewer for pointing out this important oversight. We indeed analyzed segregants of an F1 cross and have corrected this in the text.

      (MN2) The connections to eQTLs in other organisms should be addressed in the introduction and conclusion. For example, in humans, there has been little evidence for trans eQTLs in contrast to what has been found in yeast.

      We thank the reviewer for pointing this out and improved our introduction and conclusion with such connections.

      (M3) The authors state that an advantage of scRNAseq over bulk is that it captures rare cell populations (line 79), but this advantage is not exploited in this study.

      While we did not explicitly demonstrate the effect of using scRNA-seq on capturing variation in rare cell populations, the referenced literature (21, 40) provides evidence that pooled scRNA-seq captures important expression heterogeneity (which implicitly contains potentially rare expression states). In our study, this is leveraged on F2 segregants to assess expression variation within the same lineage (genotype). This impacts the partitioning of expression variance from genotype.

      Thus, we mentioned this point to further support the choice of using scRNA-seq for this analysis and showed that even a few single cells enable the reconstruction of the genome and expression profile of rare cell types.

      (MN4) The authors use ~5% of the lineages from the original study. There is no rationale for why this is an appropriate sample size. Is there an argument for using more cells in eQTL mapping or conversely could the authors ask if fewer cells would provide similar conclusions by downsampling?

      Although scRNA-seq is highly scalable, it has limitations in terms of throughput. Indeed, a single library with 10x Genomics generates data in the order of 10^4 wellcovered cells. With these limitations, our choice of ~5% of the lineages of the original study stems from the need to recover the same lineage multiple times within these 10^4 cells (in our study, each lineage is recovered on average 4 times). 

      While it is possible to run multiple libraries and sequencing lanes, budget limitations prevent us from running more libraries, especially since we expect power to scale with the square-root of the number of lineages (there is diminishing returns). 

      (MN5) I do not agree that the use of UMIs overcomes the challenges of low sequencing depth. UMIs mitigate the possible technical artifacts due to massive PCR amplification.

      We thank the reviewer for this comment and will clarify this in the manuscript. Indeed, we intended to refer to the breadth of coverage (instead of the depth), which would usually manifest with massive PCR amplification of few transcripts.

      (MN6) There is an inadequate reference to prior work on scRNAseq in yeast that established the methods used by the authors and eQTL mapping in human cells using scRNAseq.

      We thank the reviewer for this and have added more context on scRNA-seq methods benchmark in yeast (drop-seq etc) and sc-eQTL in human. Additionally, we have cited Jariani et al. (2020) in eLife where similar techniques were employed for scRNA-seq in yeast.

      (MN7) The use of empty quotes in Figure 4A is confusing and an alternative presentation method should be used.

      We will remove these empty quotes characters and replace them with a more meaningful representation like “none”.

      (MN8) The authors speculate about the use of predicted fitness instead of observed fitness, but this is something they could explicitly address in their current study.

      We thank the reviewer for this comment but have decided not to perform a whole new bulk-segregant analysis experiment (X-QTL) to identify QTL that way. However, we do agree that we could in principle use the QTL that were identified in our previous study (Nguyen Ba et al, 2022). Despite this, we do not see the need for this because the predicted fitness is the overlap between genotype and phenotype (within the variance partitioning framework, it is the ‘narrow-sense heritability’ if one ignores epistasis). Thus, the use of predicted fitness when partitioning for expression variation would be constrained to that overlap (as opposed to the real observed fitness). This means that within the variance partitioning framework, the overlap of genotype, expression, and fitness is fully recapitulated by using predicted fitness instead (given that this predicted fitness is accurate to the narrow-sense heritability). In our previous study, we found that the QTL essentially predict all of the narrow-sense heritability. We believe it is therefore evident that the use of predicted fitness would be sufficient if and only if the expression variation independent of genotype is not associated with observed fitness.

      We note that our study cannot generalize whether the overlap between genotype and expression fully captures fitness variation explained by expression. Indeed, we believe this is not generalizable to many other contexts (for example, in development). Thus, at present, the use of predicted fitness remains a speculation.

      Major:

      (MJ1) There is insufficient information provided about the nature of data. At a minimum, the following information should be provided to enable assessment of the study: What is the total library size, how many genes are identified per cell, how many UMIs are found per cell, what is the doublet rate, and how are doublets identified (e.g. on the basis of heterozygous calls at polymorphic loci?), how many times is each genotype observed, and how many polymorphic sites are identified per cell that are the basis of genotype inferences?

      We understand that these metrics are relevant to the reader to have an idea of the power of our approach and integrate them in the manuscript in Table 1.

      (MJ2) The prior study analyzed 18 different conditions, whereas this study only assays expression in a single condition. However, the power of the authors' approach is that its efficiency enables testing eQTLs in multiple conditions. The study would be greatly strengthened through analysis of at least one more condition, and ideally several more conditions. The previous fitness study would be a useful guide for choosing additional conditions as identifying those conditions that result in the greatest contrasts in fitness QTL would be best suited to testing the generalizations that can be drawn from the study.

      We agree that a major strength of our approach is that it rapidly allows eQTL mapping in several conditions. While the experiments presented here are likely less expensive than the classical eQTL mapping experiments, the cost of 10x genomics and sequencing is still an important consideration. The pleiotropy analysis of the prior study was substantially difficult to interpret and put in context, and thus we decided to focus on a proof of concept and leave room for a more thorough analysis of multiple environments for a future study. We acknowledge that this is a main weakness of our manuscript.

      (MJ3) Alternatively, the authors could demonstrate the power of their approach by applying it to a cross between two other yeast strains. As the cross between BY and RM has been exhaustively studied, applying this approach to a different cross would increase the likelihood of making novel biological discoveries.

      We thank the reviewers for this suggestion, and it is indeed something that our lab is considering. Currently, one of our main point of the manuscript still relies on growth measurements of segregants (the fitness), which we cannot obtain from segregants and scRNA-seq alone. 

      Unfortunately, in this experimental design, it is difficult to obtain the fitness of cells and the genotype simultaneously because the barcode of the segregant is not expressed and not frequently read during genotyping. Thus, we still need to perform a whole QTL panel for a new cross without substantial re-engineering. 

      That being said, we are working on this but feel that including a new panel in this study is beyond the scope of our manuscript. 

      (MJ4) Figure 1 is misleading as A presents the original study from 2022 without important details such as how genotypes were identified. It is unclear what the barcode is in this study and how it is used in the analysis. Is the barcode for each lineage transcribed so that it is identified in the scRNA-seq data? Or, does the barcode in B refer to the cell index barcode? A clearer presentation and explanation of terms are needed to understand the method.

      Because F2 segregant lineage barcodes are not expressed, the barcode indicated in Figure 1B refers to cell barcodes from 10x Genomics. Our present study does not make use of the lineage barcode. We clarified this in the figure clarifying that panel A refers to the original study from 2022 and explicitly mentioning ‘cell barcodes’. 

      (MJ5) The rationale for the analysis reported in Figure 2B is unclear. The fitness data are from the previous study and the goal is to estimate the heritability using the genotyping data from the scRNA-Seq data. What is the explanation for why the data don't agree for only one condition, i.e. 37C? And, what are we to understand from the overall result?

      The rationale of Figure 2A/B is to show that cell lineage genotyping with scRNA-seq yields consistent results with previous genotype-phenotype analyses of the same cross. While Figure 2A shows that the single-cell imputed genotypes resemble the reference panel (sequenced in the Nguyen Ba 2022 study), Figure 2B shows that the variance partitioning to associate genotype to phenotype can be performed using the single-cell genotypes themselves (bypassing the reference panel). We believe this is an interesting result given that the reads obtained by scRNA-seq are constrained to a subset of SNP. However, we note that if the imputed single-cell genotypes were perfectly matching with the reference panel, it would not be surprising that one could do genotype-phenotype mapping from the single-cell genotypes.

      In Figure 2B, we tested whether the similarity of the single-cell imputed genotypes to the reference panel was enough to estimate heritabilities (another summary statistic). 

      In the remaining paragraphs of that result section, we further discuss that the single-cell lineage genotypes can be used for QTL mapping as well, recapitulating many of the QTL identified in the reference panel (provided that one controls for power). This result did not make it as a main Figure but is included in Figure S4.

      That being said, we decided to update the figure by comparing the estimates in subsamples of batch1 scRNA-seq to subsamples of batch 1 reference panel and subsamples of the full reference panel. Subsamples were performed to control for power in the variance partitioning. We also noticed that the fitness of several F2 segregants is missing for the phenotypes 33C, 35C and 37C in the original study so we decided to exclude these environments.

      (MJ6) Figure 3 presents an analysis of variance partitioning as a Venn diagram. This summarized result is very hard to understand in the absence of any examples of what the underlying raw data look like. For example, what does trait variation look like if only genotype explains the variance or if only gene expression explains the variance? The presented highly summarized data is not intuitive and its presentation is poor - the result that is currently provided would be easier to read in a table format, but the reader needs more information to be able to interpret and understand the result.

      The Venn diagram is largely adopted in the context of variance partitioning (see Cohen, Jacob, and Patricia Cohen. 1975. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences.) but we realize that it has not been used often for displaying heritability estimates. To this end, we have added explanatory labels for the biological meaning of the areas or components of the diagram in the Figure and in the text. 

      (MJ7) I am concerned about the conclusions that can be drawn about expression heritability. The authors claim that expression heritability is correlated with expression levels. It seems likely that this reflects differing statistical power. How can this possibility be excluded?

      We thank the reviewer for highlighting this. We now explicitly acknowledge this potential confounding factor in the manuscript.

      (MJ8) Conversely, the authors claim that the genes with the lowest heritability are genes involved in the cell cycle. However, uniquely in scRNA-seq, cell cycle regulated genes appear to have the highest variance in the data as they are only expressed in a subset of cells. Without incorporating this fact one would erroneously conclude that the variation is not heritable. To test the heritability of cell cycle regulation genes the authors should partition the cells into each cell cycle stage based on expression.

      The reviewer is right to say that the low heritability of cell cycle control genes could be explained by the fact that these genes are only expressed in a subset of the dataset. Indeed, a high transcriptomic variance does not necessarily imply a low expression heritability: the cell cycle could be the residual of the expression heritability model, i.e. it explains expression variance with low association to genetic mutation.

      That being said, our result is consistent with results obtained from yeast bulk RNA-seq (Albert et al. 2018), in which cell cycle is averaged out. 

      In our study, we also average out the cell-cycle as we use the consensus expression and the consensus genome to estimate the heritability.

      (MJ9) I do not understand Figure S5 and how eQTL sites are assigned to these specific classes given that the authors say that causative variation cannot be resolved because of linkage disequilibrium.

      The rationale for Figure S5 is to show that the QTL model obtained from single-cell data is consistent with the reference panel QTL mapping experiment. Although there is uncertainty around the exact position of the QTL, we relied on the loci with the highest likelihood and showed that the datasets have consistent features. This is enabled by the fact that the QTL identified using the scRNA-seq genotypes are the ones with largest effect size in the reference panel, and are thus more likely to be mapped accurately.

      (MJ10) The paragraph starting at line 305 is very confusing. In particular, the authors state that they identify a hotspot of regulation at the mating type locus. It is not obvious why this would be the case. Moreover, they claim that they find evidence for both MATa and MATalpha gene expression. Information is not provided about how segregants were isolated, but assuming that the authors did not dissect 25,000 tetrads to obtain 100,000 segregants I would infer that random spore using SGA was used. In that case, all cells should be MATa. The authors should clarify and explain this observation.

      Although most of the cells have the MATa mating type (as selected by random spore using SGA), it is well known and discussed in Nguyen Ba et al. paper that there are few lineages with other mating types or diploids (they are leakers in the selection process). 

      Indeed, we verified that we can detect a small number of MATalpha cells or diploids within this pool.

      (MJ11) Ultimately, it is not clear what new biological findings the authors have made. There are no novel findings with respect to causative variation underlying eQTLs and I would encourage the authors to make clearer statements in their abstract, introduction, and conclusion about the key discoveries. E.g. What are the "new associations between phenotypic and transcriptomic variations" mentioned in the abstract?

      This paper focuses more on the proof of concept that scRNA-seq can help integrate expression data in GPM analysis to reveal broad scale associations between fitness and expression. Indeed, novel findings include new hotspots of expression regulation in the RM/BY genetic background, we find that trans-regulation of expression has more impact than cis-regulation on fitness and evaluate the strength of the association between the genome, the transcriptome and fitness (in one environment). Additionally, the analysis reveals biological questions that cannot be answered even by increasing the experimental scale of eQTL mapping experiments. For example, we find that most of the missing heritability is not explained by expression. These key points will be clarified in the abstract, introduction and conclusion as suggested by the editors.

      Reviewer #2:

      (MJ1) Most of the figures center on methods development and validation for the authors' single-cell RNA-seq in the yeast cross […] One potential novelty of the study is the methods per se: that is, showing that scRNA-seq works for concomitant genotyping and gene expression profiling in the natural variation context. The authors' rigor and effort notwithstanding: in my view, this can be described as modest in terms of principles. That is, the authors did a good job putting the scRNA-seq idea into practice, but their success is perhaps not surprising or highly relevant for work outside of yeast (as the discussion says).

      Although the scope of the method is limited, we think that it can apply to any largescale dataset in which transcription variance and genetic diversity are not small. This can help reduce the lack of associations between trait heritability and expression regulation, which is frequent as these two parameters are often not measured within the same dataset. 

      We can, however, think of some other settings where a similar experiment may be interesting. This includes, for example, pooling cells from different human individuals (with enough genetic diversity) and applying the same scRNA-seq method to back-identify the individuals and matching them to a particular phenotype. We believe our proof of concept is therefore an important contribution as these other experiments might have broad implications.

      (MJ2) The more substantive claim by the authors for the impact of the study is that they make new observations about the role of expression in phenotype (lines 333-335). The major display item of the manuscript on this theme is Figure 4A, reporting which loci that control growth phenotype (from an earlier paper) also control expression. This is solid but I regret to say that the results strike me as modest.

      This paper focuses more on the proof of concept that scRNA-seq can help integrate expression data in GPM analysis to reveal broad scale associations between fitness and expression. Indeed, novel findings include new hotspots of expression regulation in the RM/BY genetic background, we find that trans-regulation of expression has more impact than cis-regulation on fitness and evaluate the strength of the association between the genome, the transcriptome and fitness (in one environment). Additionally, the analysis reveals biological questions that cannot be answered even by increasing the experimental scale of eQTL mapping experiments. For example, we find that most of the missing heritability is not explained by expression. These key points will be clarified in the abstract, introduction and conclusion as suggested by the editors.

      (MJ3) The discussion makes some perhaps fairly big claims that the work has helped "bridge understanding of how genetic variation influences transcriptomic variation" and ultimately cellular phenotype. But with the data as they stand, the authors have missed an opportunity to crystallize exactly how a given variant affects expression (perhaps in waves of regulators affecting targets that affect more regulators) and then phenotype, except for the speculations in the text on lines 305-319. The field started down this road years ago with Bayesian causality inference methods applied to eQTL and phenotype mapping (via e.g. the work of Eric Schadt). The authors could now try Mendelian randomization-type fine-grained detailed models for more firepower toward the same end, and/or experimental tests of the genotype-to-expression-to-phenotype relationship. I would see these directions, motivated by fundamental questions that are relevant to the field at large, as leading to a major advance for this very crowded field. As it stands, I felt their absence in this manuscript especially if the authors are selling principles about linking expression and phenotype as their take-home.

      We thank the reviewer for this suggestion and agree that the analysis of the genotypeto-expression-to-phenotype relationship would benefit from a more fine-grain model. While we are interested in exploring this, we decided to limit the scope of this manuscript to the proof of concept that scRNA-seq can help gain insights about the genotypephenotype map at a broader scale.

      (MN1) I also wonder whether the co-mapping of expression and growth traits in Figure 4A would have been possible with e.g. the bulk RNA-seq from Albert et al., 2018, and I recommend that the authors repeat the Figure 4A-type analyses with the latter to justify their statement that their massive scRNA data set would actually be necessary for them to bear fruit (lines 386-388).

      By repeating our eQTL hotspot analysis with Albert et al. (2018) data, we observed a non-significant association between eQTL hotspot and QTL (χ2 p = 0.50). That being said, there are some differences in the Albert et al. Experiment that preclude us from conclusively saying whether the bulk RNA-seq experiments by Alberts would not bear fruit. Indeed, that experiment is only 4 times smaller in scale and so we would not expect dramatic differences. To highlight power differences, the Albert et al. Paper identified about 6 eQTL per gene, while our study identified about 21 which is consistent with the power differences.

      This highlights that this scRNA-seq experiment is scalable, so the technique may be useful for further studies. In addition, this pooled scRNA-seq strategy enables analysis of the association of transcription with phenotype.

      (MN2) I also read the discussion of the manuscript as bringing to the fore some of the challenges a reader has in judging the current state of the results to be of actionable impact. The discussion, and the manuscript, will be improved if the authors can put the work in context, posing concrete questions from the field and stating how they are addressed here and what's left to do.

      We agree with the reviewer and have summarized our answers to some of the questions in the field in the discussion section.

      All that being said, we acknowledge the limitations of our study.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The study investigated how root cap cell corpse removal affects the ability of microbes to colonize Arabidopsis thaliana plants. The findings demonstrate how programmed cell death and its control in root cap cells affect the establishment of symbiotic relationships between plants and fungi. Key details on molecular mechanisms and transcription factors involved are also given. The study suggests reevaluating microbiome assembly from the root tip, thus challenging traditional ideas about this process. While the work presents a key foundation, more research along the root axis is recommended to gain a better understanding of the spatial and temporal aspects of microbiome recruitment.

      We thank Reviewer #1 for their positive evaluation and critical feedback.

      Reviewer #2 (Public Review):

      Summary:

      The authors identify the root cap as an important key region for establishing microbial symbioses with roots. By highlighting for the first time the crucial importance of tight regulation of a specific form of programmed cell death of root cap cells and the clearance of their cell corpses, they start unraveling the molecular mechanisms and its regulation at the root cap (e.g. by identifying an important transcription factor) for the establishment of symbioses with fungi (and potentially also bacterial microbiomes).<br /> Strengths:

      It is often believed that the recruitment of plant microbiomes occurs from bulk soil to rhizosphere to endosphere. These authors demonstrate that we have to re-think microbiome assembly as a process starting and regulated at the root tip and proceeding along the root axis.

      Weaknesses:

      The study is a first crucial starting point to investigate the spatial recruitment of beneficial microorganisms along the root axis of plants. It identifies e.g. an important transcription factor for programmed cell death, but more detailed investigations along the root axis are now needed to better understand - spatially and temporally - the orchestration of microbiome recruitment.

      We appreciate Reviewers #2 insightful comments and agree that further investigations are needed to gain a deeper understanding of the intricate interplay between the spatial and temporal recruitment of the microbiome and developmental cell death in future studies.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      - Given that the smb-3 altered PCD phenotype has already been reported in several publications, the aim of using Evans blue staining to highlight LRC cell corpses along the root surface of smb-3 is not clear. Maybe S1 would be more informative as main figure.

      As an indicator of membrane integrity loss and cell death, Evans blue staining was used to characterize all dPCD mutants described in this study and their interactions with S. indica. To avoid redundancies with other publications, we restructured Figure 1, incorporating panel S1A to provide an introductory overview of the smb-3 phenotype. The former Figure 1B is now located in Figure S1.

      - It is not clear how the analysis of protein aggregates fits into the rationale, why analyze these formations? What role should they have in the process of PCD or interaction with microbes?

      The manuscript has been modified the following way to clarify the analysis of protein aggregates in the dPCD mutants: “The transcription factor SMB promotes the expression of various dPCD executor genes, including proteases that break down and clear cellular debris and protein aggregates following cell death induction. In the LRCs of smb-3 mutants, the absence of induction of these proteases potentially explains the accumulation of protein aggregates in uncleared dead LRC cells.”.

      - Is the accumulation of misfolded and aggregated proteins also present during physiological PCD of LRC cells in the WT?

      The biochemical mechanisms underlying PCD can vary depending on the affected cell types and tissues. Within the root tip of Arabidopsis, two different modes of PCD have been described, differentiating between columella root cap cells and LRC cells. For clarification the manuscript has been adjusted the following way:” Under physiological conditions in WT roots, we previously observed protein aggregate accumulation in sloughed columella cell packages, but not during dPCD of distal LRC clearance (Llamas et al., 2021). This aligns with the findings that dPCD of the columella is affected by the loss of autophagy, while dPCD of the LRC is not (Feng et al., 2022).”.

      - I suggest being more careful when using the term "root cap" instead of "LRC" to reduce ambiguity (i.e. lines 56; 137), maybe you need to double-check the text.

      We agree with the reviewer that a clear distinction between “root cap” and “LRC” is very important. We have adjusted the manuscript to avoid any misunderstandings.

      - A technical question regarding qPCR sample preparation: doesn't washing the smb-3 roots cause a loss of LRC stretched cells and would it therefore lead to an alteration of the results?

      The mechanical washing of roots is essential to ensure a clear distinction between intraradical fungal growth and accommodation around roots. While we cannot exclude the possibility that mechanical washing removes LRC cells, intraradical quantification of fungal biomass aims to measure S. indica growth in the epidermal and cortical cell layers, underneath the uncleared LRC cells. Thus, we complemented this assay with extraradical colonization assays to quantify external fungal biomass with intact LRC cells.

      - It is not clear if S. indica promotes PCD in wt and/or in smb-3, could you comment on it?

      It remains an open question whether and to what extent S. indica promotes PCD, although there are strong indications that this fungus activates different cell death pathways at various developmental stages, including dAdo mediated cell death. We posit that certain microbes have evolved to regulate and manipulate different dPCD processes to enhance colonization, implicating a complex crosstalk between various PCD pathways. We have adjusted the manuscript to underscore this perspective the following way:” Transcriptomic analysis of both established and predicted key dPCD marker genes revealed diverse patterns of upregulation and downregulation during S. indica colonization. These findings provide a valuable foundation for future studies investigating the dynamics of dPCD processes during beneficial symbiotic interactions and the potential manipulation of these processes by symbiotic partners.”.

      - How analysis of BFN1 expression in whole root confirms its downregulation at the onset of cell death in S. indica-colonized plants. Moreover, is the transcriptional regulation of BFN1 important for PCD, or is the BFN1 protein level correlated with the establishment of cell death?

      BFN1 gene expression in Arabidopsis shows a transient decrease around 6–8 days after S. indica inoculation, coinciding with the proposed onset of S. indica-induced cell death. While we can only speculate on a potential correlation between BFN1 downregulation and the onset of S. indica-induced cell death, we have described other pathways through which S. indica induces cell death. For example, it produces small metabolites such as dAdo through the synergistic activity of two secreted fungal effector proteins (Dunken et al., 2023). This suggests that S. indica recruits different pathways to induce cell death, which may vary depending on the host plant and interact with each other as shown for many other immunity related cell death pathways which share some components.

      Regarding the second part of the question, BFN1 expression correlates positively with cells primed for dPCD (Olvera-Carrillo et al., 2015). BFN1 protein accumulates in the ER lumen and is released into the cytoplasm upon cell death induction to exert its DNase functions (Fendrych et al., 2014). If accumulation of BFN1 is cause or consequence of cell death remains to be validated.

      - Line 190: there is a typo "in the nucleus", this is superfluous given that the reporter is nuclear.

      The manuscript has been adjusted accordingly; see line L208. However, we consider the distinction important as we aim to emphasize the difference between the nuclear localization of the fluorescent signal in "healthy" cells and the dispersed fluorescent signal spreading in the cytoplasm of cells priming or undergoing dPCD.

      - Line 255: there is a typo, stem cells can not differentiate.

      The manuscript has been adjusted.

      - During root hair development some epidermal cells undergo PCD to allow the emergence of root hairs. Furthermore, during plant defense against pathogens, epidermal cells undergo cell death to prevent further colonization. Have these cell death events been reported to occur under physiological conditions during development?

      Plant defence responses in roots and the hypersensitive response (HR) still remain largely unexplored. The HR is a defence mechanism that consists of a localized and rapid cell death at the site of pathogen invasion. It is triggered by pathogenic effector proteins, usually recognized by intracellular immune receptors (NLRs), and accompanied by other features such as ROS signalling, Ca2+ bursts and cell wall modifications (Balint-Kurti, 2019). Notably, HR has been widely described in leaves, but no strong evidence has been shown for the occurrence of HR in plant roots (Hermanns et al., 2003, Radwan et al., 2005). Additionally, previous studies have not shown any transcriptional parallels between common dPCD marker genes and HR PCD in Arabidopsis (Olvera-Carrillo et al., 2015; Salguero-Linares et al., 2022).

      While S. indica is a beneficial root endophyte that does not induce classical hypersensitive response (HR) in host plants, the impact of dPCD on S. indica colonization should not be overlooked. S. indica promotes root hair formation in its hosts (Saleem et al., 2022), and in Arabidopsis, root hair cells naturally undergo cell death 2–3 weeks after emergence (Tan et al., 2016). This aspect could be particularly relevant for understanding the dynamics of S. indica colonization.

      - Showing the analysis of pBFN1 in smb-3 would help in validating the idea that the downregulation of BFN1 by S. indica is regulated independently of SMB.

      SMB is known to be a root cap specific transcription factor (Willemsen et al., 2008; Fendrych et al., 2014). The pBFN1:tdTOMATO reporter line shows that BFN1 expression occurs in many different tissues undergoing dPCD, above and below ground, where SMB is not expressed or present. Therefore, we can postulate that the downregulation of BFN1 by S. indica in the differentiation zone is regulated independently of SMB.

      - A question of great interest still remains open: is it the microbe that induces the regulation of BFN1 causing a delay in cell clearance and favoring the infection or is it the plant that reduces BFN1 to favor the interaction with the microbe? In other words, is the mechanism a response to stress or a consolidation of the interaction with the host?

      We agree with this reviewer that this question remains open. Whether active interference by fungal effector proteins, fungal-derived signaling molecules, or a systemic response of Arabidopsis roots underlies BFN1 downregulation during S. indica colonization remains to be investigated. Yet, it is noteworthy that the downregulation of BFN1 in Arabidopsis is not specific to S. indica but also occurs during interactions with other beneficial microbes such as S. vermifera and two bacterial synthetic communities. This suggests that it could be a broader plant response to microbial presence. However, at this stage, we can only speculate on these possibilities. We therefore changed some of the statements in the paper to moderate our conclusions: e.g. “Expression of plant nuclease BFN1, which is associated with senescence, is modulated to facilitate root accommodation of beneficial microbes” to leave open who exactly is controlling BFN1, the plant or the microbes.

      Reviewer #2 (Recommendations For The Authors):

      This is a straightforward study, well executed and well written. I have only a few specific comments, and some concern the statistics which is a bit more serious and where I would like to get answers first. Looking at the figures, I am sure that the authors can easily clarify the issues in the manuscript.

      We appreciate the positive feedback and included clarifications in the statistical section in the material and methods.

      Statistics:

      - The statistics are not detailed in Material and Methods, but are only briefly indicated in the headings of the figures. Include a statistics section in Material and Methods.

      We added an extra paragraph with statistical analysis in the Material and Method section for clarifications, which reads as follows:” All statistical analyses, except for the transcriptomic analysis, were performed using Prism8. Individual figures state the applied statistical methods, as well as p and F values. p-values and corresponding asterisks are defined as following, p<0.05 *, p<0.01**, p<0.001***.”.

      - Figure 1/ Figure S3, etc: First of all, a **** with p< 0.00001 does not exist! Significance in statistics just means that we assume that there is a difference with some kind of probability that has been defined as p<0.05 *, p<0.01**, p<0.001***, and NOT more! Even if p<0.000001, it is still p<0.001***. Stating the meaning of asterisks in a separate Statistics section in Materials and Methods would also avoid repetitive explanations (e.g. Figure 4, L68: 'Asterisk indicates significantly different...').

      We agree and have updated the manuscript accordingly. See comment above.  

      - Also, it is advisable to reduce the digits of the p-values to a meaningful length (e.g. Figure 2 L 36: (*P<0.0466) should be (F[1, ?] = ?; p<0.047). The * is not necessary in the text, as p<0.05 is already given. We do not obtain more information by a more exact p-value, because all we need to know is that p<0.05.

      We adjusted the p-values accordingly throughout the manuscript.

      - It is NOT sufficient to communicate just the p-value of a statistical analysis. What is always needed is the F-value (student test and ANOVA) with both nominator and denominator degrees of freedom (e.g. F[2, 10] =) AND the p-value.

      We included F-values throughout the manuscript in all main and supplemental figures to provide more clarity for the readers.

      - The reason becomes clear in Fig. 2D where the authors state that they used 3 biological replicates, each with 40 plants. I assume the statistics was wrongly based on calculating with 120 plants (F[1,120] =) as technical replicates instead of correctly the biological replicates (3 means of 40 technical replicates each, (F[1,3] =))?? If F-value and df had been given, errors like this would be immediately visible - for any reviewer/reader, but also to the authors.<br /> \=>Please re-analyze the statistics correctly.

      To assess S. indica-induced growth promotion, we measured and compared the root length of Arabidopsis plants under S. indica colonization or mock conditions at three different time points. Each genotype and treatment combination involved measuring 50 plants, with each plant serving as an independent biological replicate inoculated with the same S. indica spore solution. For comprehensive statistical analysis, we conducted the experiment a total of 3 times, using fresh fungal inoculum each time, originally referred to as "three biological replicates." We maintain that including all plant measurements is essential for a thorough statistical analysis of our growth promotion experiment. However, in order to avoid confusion, we have updated the figure legend to clarify the experimental set-up as following: “(D) Root length measurements of WT plants and smb-3 mutant plants, during S. indica colonization (seed inoculated) or mock treatment. 50 plants for each genotype and treatment combination were observed and individually measured over a time period of two weeks. WT roots show S. indica-induced growth promotion, while growth promotion of smb-3 mutants was delayed and only observed at later stages of colonization. This experiment was repeater 2 more independent times, each time with fresh fungal material. Statistical analysis was performed via one-way ANOVA and Tukey’s post hoc test (F [11, 1785] = 1149; p < 0.001). For visual representation of statistical relevance each time point was additionally evaluated via one-way ANOVA and Tukey’s post hoc test at 8dpi (F [3, 593] = 69.24; p < 0.001), 10dpi (F [3, 596] = 47.59; p < 0.001) and 14dpi (F [3, 596] = 154.3; p < 0.001).”

      - Figure 2, L 18; Figure 5, L 95, Figure S5 L53, etc: I am worried about executing a statistical test 'before normalization' - what does it mean?? WHY was a normalization necessary, WHAT EXACTLY was normalized and do we see normalized plots that do NOT correspond to the data on which the statistics was based? At least this implies 'before normalization'! Please explain, and/or re-analyze the statistics correctly.

      We agree that the phrasing “before normalization” may lead to confusion, as the normalization of data to the mean of the control group does not alter the statistical analysis. Normalization was performed to achieve a clearer visual representation. Additionally, Evans blue staining is quantified by measuring the mean grey value, which does not correspond to a specific unit. Normalizing the data allows for the representation of relative staining intensities. The manuscript has been adjusted accordingly throughout.

      - Statistics in Figure 1: L8/9: 'in reference to B' is unclear, I guess the mean of the control was used as a reference? This would also explain the variation in relative staining intensity (Figure 1C). if normalization was carried out (see above) all control (WT) values should be exactly 1, but they are not. I guess it was normalized to the mean of the control?

      “In reference to X” or “corresponding to X” typically means that Figure X shows an example image from the dataset on which the statistical quantification is based. We have updated the manuscript throughout the main and supplemental figure legends to use “refers to image shown in X” to avoid confusion.  

      Figure S4, L 42: '(corresponding to A)', see comment above.

      See comment above.

      Figure 5B, L 87: '(in reference to A)'; L93: (in reference to C), etc. - see above. Unclear how A was used as a reference. Was it the mean of A? BUT again only 3 biological replicates! So it has to be the mean of 3 reps that was used as control! OR can we at least say that the 10 measured roots were independent of each other (crucial (!) precondition for executing student's test or ANOVA? Then you would have at least 10 replicates (mean of 4 pictures taken per root for each).

      Quantification of Evans blue staining intensity involved taking 4 pictures along the main root axis of each plant. We re-evaluated the statistical analysis correctly with the averaged datapoints for each plant root. We adjusted main figures (Fig.1C and 5B) and supplementary figures (Fig. S1C and S4B) and changed the material and methods section of the manuscript as following: “4 pictures were taken along the main root axis of each plant and averaged together, for an overview of cell death in the differentiation zone.”.

      - Statistics in Figure 4, L 69: what means 'adjusted p-value'? Which analysis?

      The material and method section of the manuscript has been adjusted as following for clarification: “Differential gene expression analysis was performed using the R package DESeq2 (Love et al., 2014). Genes with an FDR adjusted p-value < 0.05 were considered as differentially expressed genes (DEGs). The adjusted p-value refers to the transformation of the p-value obtained with the Wald test after considering multiple testing. To visualize gene expression, genes expression levels were normalized as Transcript Per kilobase million (TPM).”.

      - Statistics in Figure 5, L102-105: see above! Were the statistics correctly calculated with 7 reps, or wrongly with 30? # I guess each time point was normalized to the mean of WT? By the way, it is not clear if repeated measurements were done on the same plants. If repeated measurements were done on the SAME plants, then these data are statistically not independent anymore (time-series analysis), and e.g. MANOVA must be used and significant (!) before proceeding to ANOVA and Tukey.

      The statistics for quantifying intraradical colonization of Arabidopsis roots were calculated with 7 replicates. For each replicate, 30 plants were pooled to obtain sufficient material for RNA extraction and cDNA synthesis. Plants from the same genotype were harvested separately for each time point, ensuring that the time points are statistically independent from one another.

      Statistics Fig. S1, L 11-12: see above, '5 plants were imaged for each mock and ..., evaluating 4 pictures ...' That means you have means of 4 pictures for 5 biological replicates - the figure shows 20 replicates. However, the statistics must be based on 5 reps! You may indicate the 4 pictures per root by different colours. Change throughout all figures and calculate the statistics correctly (show this by indicating the correct df in your statistics as discussed above).

      We have conducted a re-evaluation of the statistical analysis of Evans blue staining for all figures presented throughout the manuscript. See comment above.

      Statistics Fig. S3, L 31: 'Relative quantification of ...' see above, relative to what? Explain this also clearly in Statistics in Materials and Methods.

      Relative quantification refers to normalizing data to the mean of the corresponding control group. Figure legends have been revised to clarify this point.

      Statistics Fig. S5, L 57/58: 'Genes are clustered using spearmen correlation as distance measure'. If I understand it correctly, Spearman correlation is NOT a distance measure. You used Spearman correlation to cluster gene expression. Now it would be interesting to know WHICH clustering method was used, e.g. a hierarchical or non-hierarchical clustering method? and which one, e.g. single linkage, complete linkage? The outcome depends very much on the clustering method. Therefore, this information is important.

      To perform gene clustering, we set the option “clustering_distance_rows = "spearman" “ of the Heatmap function included in the ComplexHeatmap package. The function first computes the distance matrix using the formula 1 - cor(x, y, method) with Spearman as correlation method. It then performs hierarchical clustering using the complete linkage method by default.

      # Arabidopsis is a genus name and by convention, this has to be written throughout the MS in italics - even if the authors define Arabidopsis thaliana (in italics) = Arabidopsis (without).

      # typos

      L 24: smb-3 mutants (must be explained)

      L 83 insert: ...two well-characterized SMB loss-of-function ...

      While smb-3 is a SMB loss-of-function mutant bfn1-1 is a BFN1 loss-of-function mutant, independent of SMB.

      L 93: The switch between the biotrophic..

      L 119: distal border

      L 125: aggregates in the smb-3 mutant

      L 132: between the meristematic

      L 177/178: was observed at 6 dpi in Arabidopsis colonized by S. indica.

      L 250: colonization stages by S. indica.

      L 288: and root cell death (RCD)

      L 289: and towards...

      L 296: dPCD protects the

      L 304: This raises the

      L 351: to remove loose

      All the above-mentioned typos have been addressed in the manuscript.

      Materials and Methods

      L 327: give composition and supplier of MYP medium

      L 344 name supplier of MS medium

      L 338 name supplier of PNM medium

      L 353: replace 'Following,..' with 'Subsequently, ..'

      L 360: replace 'on plate' with 'on the agar plate' - change throughout the Materials and methods!

      L 360: name supplier of Alexa Fluor 488

      L 363: name supplier of (MS) square plate

      L 377: insert comma: After cleaning, the roots...

      L 394: explain the acronym and name supplier of PBS

      L 399: explain the acronym and name supplier of TBST

      All the above-mentioned comments in the material and methods have been addressed in the manuscript.  

      Figure 2G) x-axis, change order: Hoechst/Proteostat

      Figure 3, L53: propidium iodide: name supplier

      Figure 4, L68: Asterisks

      L 60: explain LRC

      L 67, L69, L70: explain the acronym TPM and how expression values were measured in Materials and Methods, the brief explanation in the figure is unclear and not sufficient

      All the above-mentioned comments in the figure legends have been addressed.

      Figure S5, L50: explain 'SynComs'

      L 51: corrects 30 plans => 30 plants

      L 56: vaules => values

      L 57: use capital letter: Spearman correlation

      All the above-mentioned comments in the supplemental figure legends have been addressed.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review): 

      Summary: 

      The authors investigated the anatomical features of the synaptic boutons in layer 1 of the human temporal neocortex. They examined the size of each synapse, the macular or perforated appearance, the size of the synaptic active zone, the number and volume of the mitochondria, and the number of synaptic and dense core vesicles, also differentiating between the readily releasable, the recycling, and the resting pool of synaptic vesicles. The coverage of the synapse by astrocytic processes was also assessed, and all the above parameters were compared to other layers of the human temporal neocortex. The authors conclude that the subcellular morphology of the layer 1 synapses are suitable for the functions of the neocortical layer, i.e. the synaptic integration within the cortical column. The low glial coverage of the synapses might allow increased glutamate spillover from the synapses, enhancing synaptic crosstalk within this cortical layer. 

      Strengths: 

      The strengths of this paper are the abundant and very precious data about the fine structure of the human neocortical layer 1. Quantitative electron microscopy data (especially that derived from the human brain) are very valuable since this is a highly time- and energy-consuming work. The techniques used to obtain the data, as well as the analyses and the statistics performed by the authors are all solid, strengthen this manuscript, and mainly support the conclusions drawn in the discussion. 

      We would like to thank reviewer#1 for his very positive comments on our manuscript stating that such data about the fine structure of the human neocortex are are highly relevant.

      Weaknesses: 

      There are several weaknesses in this work. First, the authors should check and review extensively for improvements to the use of English. Second, several additional analyses performed on the existing data could substantially elevate the value of the data presented. Much more information could be gained from the existing data about the functions of the investigated layer, of the cortical column, and about the information processing of the human neocortex. Third, several methodological concerns weaken the conclusions drawn from the results. 

      We would like to thank the reviewer for his critical and thus helpful comments on our manuscript. We took the first comment of the reviewer concerning the English and have thus improved our manuscript by rephrasing and shortening sentences. Secondly, according to the reviewer several additional analyses should be performed on the existing data, which could substantially elevate the value of the data presented. We will implement some of the suggestions in the improved version of the manuscript where appropriate. We will address a more detailed answer to the reviewer’s queries in her/his suggestions to the authors (see below). However, the reviewer states himself: “The techniques used to obtain the data, as well as the analyses and the statistics performed by the authors are all solid, strengthen this manuscript, and mainly support the conclusions drawn in the discussion”.

      Reviewer #2 (Public review): 

      Summary: 

      The study of Rollenhagen et al. examines the ultrastructural features of Layer 1 of the human temporal cortex. The tissue was derived from drug-resistant epileptic patients undergoing surgery, and was selected as far as possible from the epilepsy focus, and as such considered to be non-epileptic. The analyses included 4 patients with different ages, sex, medication, and onset of epilepsy. The manuscript is a follow-on study with 3 previous publications from the same authors on different layers of the temporal cortex: 

      Layer 4 - Yakoubi et al 2019 eLife

      Layer 5 - Yakoubi et al 2019 Cerebral Cortex

      Layer 6 - Schmuhl-Giesen et al 2022 Cerebral Cortex.

      They find, that the L1 synaptic boutons mainly have a single active zone, a very large pool of synaptic vesicles, and are mostly devoid of astrocytic coverage. 

      Strengths: 

      The manuscript is well-written and easy to read. The Results section gives a detailed set of figures showing many morphological parameters of synaptic boutons and glial elements. The authors provide comparative data of all the layers examined by them so far in the Discussion. Given that anatomical data in the human brain are still very limited, the current manuscript has substantial relevance. The work appears to be generally well done, the EM and EM tomography images are of very good quality. The analysis is clear and precise.

      We would like to thank the reviewer for his very positive evaluation of our paper and the comments that such data have a substantial relevance, in particular in the human neocortex. In contrast to reviewer#1, this reviewer’s opinion is that the manuscript is well written and easy to read.

      Weaknesses: 

      One of the main findings of this paper is that "low degree of astrocytic coverage of L1 SBs suggests that glutamate spillover and as a consequence synaptic cross-talk may occur at the majority of synaptic complexes in L1". However, the authors only quantified the volume ratio of astrocytes in all 6 layers, which is not necessarily the same as the glial coverage of synapses. In order to strengthen this statement, the authors could provide 3D data (that they have from the aligned serial sections) detailing the percentage of synapses that have glial processes in close proximity to the synaptic cleft, that would prevent spillover. 

      We agree with the reviewer that we only quantified the volume ratio of the astrocytic coverage but not necessarily the percentage of synapses that may or not contribute to the formation of the ‘tripartite’ synapse. As suggested, we will re-analyze our material with respect to the percentage of coverage for individual synaptic boutons in each layer and will implement the results in the improved version of the manuscript. However, since this is a completely new analysis that is time-consuming we would like to ask the reviewer for additional time to perform this task.

      A specific statement is missing on whether only glutamatergic boutons were analyzed in this MS, or GABAergic boutons were also included. There is a statement, that they can be distinguished from glutamatergic ones, but it would be useful to state it clearly in the Abstract, Results, and Methods section what sort of boutons were analyzed. Also, what is the percentage of those boutons from the total bouton population in L1? 

      We would like to thank the reviewer for this comment. Although our title clearly states, we focused on quantitative 3D-models of excitatory synaptic boutons, we will point out that more clearly in the Methods and Result chapters. Our data support recent findings by others (see for example Cano-Astorga et al. 2023, 2024; Shapson-Coe et al. 2024) that have evaluated the ratio between excitatory vs. inhibitory synaptic boutons in the temporal lobe neocortex, the same area as in our study, which was between 10-15% inhibitory terminals but with a significant layer and region specific difference. We will include the excitatory vs. inhibitory ratio and the corresponding citations in the Results section.

      Synaptic vesicle diameter (that has been established to be ~40nm independent of species) can properly be measured with EM tomography only, as it provides the possibility to find the largest diameter of every given vesicle. Measuring it in 50 nm thick sections results in underestimation (just like here the values are ~25 nm) as the measured diameter will be smaller than the true diameter if the vesicle is not cut in the middle, (which is the least probable scenario). The authors have the EM tomography data set for measuring the vesicle diameter properly. 

      We partially disagree with the reviewer on this point. Using high-resolution transmission electron microscopy, we measured the distance from the outer-to-outer membrane only on those synaptic vesicles that were round in shape with a clear ring-like structure to avoid double counts and discarded all those that were only partially cut according to criteria developed by Abercrombie (1946) and Boissonnat (1988). We assumed that within a 55±5 nm thick ultrathin section (silver to gray interference contrast) all clear-ring-like vesicles were distributed in this section assuming a vesicle diameter between 25 to 40nm. For large DCVs, double-counts were excluded by careful examination of adjacent images and were only counted in the image where they appeared largest.

      In addition, we have measured synaptic vesicles using TEM tomography and came to similar results. We will address this in Material and Methods that both methods were used.

      It is a bit misleading to call vesicle populations at certain arbitrary distances from the presynaptic active zone as readily releasable pool, recycling pool, and resting pool, as these are functional categories, and cannot directly be translated to vesicles at certain distances. Indeed, it is debated whether the morphologically docked vesicles are the ones, that are readily releasable, as further molecular steps, such as proper priming are also a prerequisite for release.

      We thank the reviewer for this comment. However, nobody before us tried to define a morphological correlate for the three functionally defined pools of synaptic vesicles since synaptic vesicles normally are distributed over the entire nerve terminal. As already mentioned above, after long and thorough discussions with Profs. Bill Betz, Chuck Stevens, Thomas Schikorski and other experts in this field we tried to define the readily releasable (RRP), recycling (RP) and resting pools by measuring the distance of each synaptic vesicle to the presynaptic density (PreAZ). Using distance as a criterion, we defined the RRP including all vesicles that were located within a distance (perimeter) of 10 to 20 nm from the PreAZ that is less than an average vesicle diameter (between 25 to 40 nm). The RP was defined as vesicles within a distance of 60-200 nm away, still quite close but also rapidly available on demand and the remaining ones beyond 200 nm were suggested to belong to the resting pool. This concept was developed for our first publication (Sätzler et al. 2002) and this approximation since then is very much acknowledged by scientist working in the field of synaptic neuroscience and computational neuroscientist. We were asked by several labs worldwide whether they can use our data of the perimeter analysis for modeling. We agree that our definition of the three pools can be seen as arbitrary but we never claimed that our approach is the truth but nothing as the truth. Concerning the debate whether only docked vesicles or also those very close the PreAZ should constitute the RRP we have a paper in preparation using our perimeter analysis, EM tomography and simulations trying to clarify this debate. Our preliminary results suggest that the size of the RRP should be reconsidered.

      Tissue shrinkage due to aldehyde fixation is a well-documented phenomenon that needs compensation when dealing with density values. The authors cite Korogod et al 2015 - which actually draws attention to the problem comparing aldehyde fixed and non-fixed tissue, still the data is non-compensated in the manuscript. Since all the previous publications from this lab are based on aldehyde fixed non-compensated data, and for this sake, this dataset should be kept as it is for comparative purposes, it would be important to provide a scaling factor applicable to be able to compare these data to other publications.

      We thank the reviewer for his suggestion. However, for several reasons we did not correct for shrinkage caused by aldehyde fixation. There are papers by Eyre et al. (2007) and the mentioned paper by Korogod et al. 2015 that have demonstrated that cryo-fixation reveals larger numbers of docked synaptic vesicles, a smaller glial volume, and a less intimate glial coverage of synapses and blood vessels compared to chemical fixation. Other structural subelements such as active zone size and shape and the total number of synaptic vesicles remained unaffected. In two further publications Zhao et al. (2012a, b) investigating hippocampal mossy fiber boutons using cryo-fixation and substitutions came to similar results with respect to bouton and active zone size and number and diameter of synaptic vesicles compared to aldehyde-fixation as described by Rollenhagen et al. 2007 for the same nerve terminal. This was one of the reasons not correcting for shrinkage. In addition, all cited papers state that chemical fixation in general provides a much better ultrastructural preservation of tissue samples when compared with cryo-fixation and substitution where optimal preservation is only regional within a block of tissue and therefore less suitable for large-scale ultrastructural analyses as we performed.

      Reviewer #3 (Public review): 

      Summary: 

      Rollenhagen et al. offer a detailed description of layer 1 of the human neocortex. They use electron microscopy to assess the morphological parameters of presynaptic terminals, active zones, vesicle density/distribution, mitochondrial morphology, and astrocytic coverage. The data is collected from tissue from four patients undergoing epilepsy surgery. As the epileptic focus was localized in all patients to the hippocampus, the tissue examined in this manuscript is considered non-epileptic (access) tissue. 

      Strengths: 

      The quality of the electron microscopic images is very high, and the data is analyzed carefully. Data from human tissue is always precious and the authors here provide a detailed analysis using adequate approaches, and the data is clearly presented. 

      We are very thankful to the reviewer upon his very positive comments about our data analysis and presentation.

      Weaknesses: 

      The study provides only morphological details, these can be useful in the future when combined with functional assessments or computational approaches. The authors emphasize the importance of their findings on astrocytic coverage and suggest important implications for glutamate spillover. However, the percentage of synapses that form tripartite synapses has not been quantified, the authors' functional claims are based solely on volumetric fraction measurements. 

      We thank the reviewer for his critical comments on our findings concerning the layer-specific astrocytic coverage as also suggested by reviewer#2. As already stated above we will analyze the astrocytic coverage and the layer-specific percentage of astrocytic contribution to the ‘tripartite’ synapse in more detail. We are, however, a bit puzzled about the comment that structural anatomists usually receive that our study only provides morphological details. Our thorough analysis of structural and synaptic parameters of synaptic boutons underlie and might even predict the function of synaptic boutons in a given microcircuit or network and will thus very much improve our understanding and knowledge about the functional properties of these structures, in particular in the human brain where such studies are still quite rare. The main goal of our studies in the human neocortex was the quantitative morphology of synaptic boutons and thus the synaptic organization of the cortical column, layer by layer which to our knowledge is the first such detailed study undertaken in the human brain. Our efforts have set a golden standard in the analysis of synaptic boutons embedded in different microcircuits und is meanwhile internationally very well accepted.

      The distinction between excitatory and inhibitory synapses is not clear, they should be analyzed separately. 

      As already stated above in response to reviewer#1 our study focused on excitatory synaptic boutons since they represent the majority of synapses. However, in the improved version of our manuscript in the Material and Method section we included a paragraph with structural criteria to distinguish excitatory from inhibitory terminals (see also our comment to reviewer#1 concerning this point) including appropriate citations.

      The text connects functional and morphological characteristics in a very direct way. For example, connecting plasticity to any measurement the authors present would be rather difficult without any additional functional experiments. References to various vesicle pools based on the location of the vesicles are also more complex than suggested in the manuscript. The text should better reflect the limitations of the conclusions that can be drawn from the authors' data. 

      We thank the reviewer for this comment. However, it has been shown by meanwhile numerous publications that the shape and size of the active zone together with the pool of synaptic vesicles and the astrocytic coverage critically determines synaptic transmission and synaptic strength, but can also contribute to the modulation of synaptic plasticity (see also citations within the text). It has been shown that synaptic boutons can switch upon certain stimulation conditions to different modes of release (uni- vs. multiquantal, uni- vs multivesicular release) and from asynchronous to synchronous release leading also to the modulation of synaptic short- and long-term plasticity. To the second comment: When we started with our first paper about the Calyx of Held – principal neuron synapse in the MNTB (Sätzler et al. 2002) we tried to define a morphological correlate for the three functionally defined pools. As already mentioned above in our reply to the other two reviewers, this is rather difficult since synaptic vesicles are normally distributed over the entire nerve terminal. After long and thorough discussions with Bill Betz, Chuck Stevens and other leading scientist in the field of synaptic neuroscience, we together with Bert Sakmann tried to define a morphological correlate for the functionally defined pools using a perimeter analysis. We defined the readily releasable pool as vesicles 10 to 20 nm away from the presynaptic active zone, the recycling pool as those in 60-200 nm distance and the remaining as those belonging to the resting pool. However, it has been shown by capacitance measurements (see for example Hallermann et al 2003), FM1-43 investigations (see for example Henkel et al. 1996) and high-resolution electron microscopy (see for example Schikorski and Stevens 2001; Schikorski 2014) that our estimate of the RRP nearly perfectly matches with the functionally defined pools at hippocampal and cortical synapses (Silver et al. 2003). In addition, in one of our own papers (Rollenhagen et al. 2018) we also estimated the RP functionally from trains of EPSPs using an exponential fit analysis and came to similar results upon its size using the perimeter analysis.

      Of course, as stated by the reviewer the scenario could be more complex, using other criteria but we never claimed that our morphologically defined pools are the truth but nothing as the truth but we believe it offers a quite good approximation.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer 1:

      Lines 43 to 46 cannot be referred to as methodology: 

      "to investigate a) determinants of attribution; b) patterns of investigated events, including species and breed affected, history of previous abortion and recent stressful events, and the seasonality of cases; c) determinants of reporting, investigation and attribution; (d) cases in which zoonotic pathogens were detection". 

      The above should be deleted from the methodology.  

      The text is in the abstract and describes, in brief, analyses that we performed and the rationale for these analyses, which we consider relevant for understanding the approach.  As such, we think the text should remain.   

      Italicize et al. in the citations

      This has been done.

      Reviewer 2: 

      Data Presentation: While the analysis is comprehensive, the presentation of data could be enhanced with the use of more visual aids such as tables, graphs, or charts to illustrate key findings. 

      While further visualisation of findings would be possible, we consider the key results are captured effectively in the existing figures and tables.  Open access to the data also allows for further analyses that might be of interest to readers. 

      Discussion Section: The paper could benefit from a more in-depth discussion of the implications of the findings for disease control strategies and policy formulation in Tanzania. 

      We thank the reviewer for this important comment.  In most of the paragraphs of the Discussion we discuss the implications of the findings with specific reference, where relevant, to disease control in Tanzania.  For example, in the paragraph regarding human capacity building, we discuss how LFOs might be incentivised to report health events and how this could improve the reach and sensitivity of future surveillance platforms.  Similarly, these issues are discussed in other paragraphs of the Discussion. 

      Future Directions: Including recommendations for future research or areas for further investigation would add depth to the paper.

      This suggestion has been acted upon and we have added text in the conclusion to describe recommendations for future research.

      Reviewer 3:

      The thoughts of the authors on the topic and its significance are implied, and the methodological approach needs further clarity.  The number of wards in the study area, statistical selection of wards, type of questionnaire ie open or close-ended. Statistical analyses of outcomes were not clearly elucidated in the manuscript. 

      The number of wards and how they were selected (from randomly selected wards included in earlier cross-sectional exposure studies (Bodenham et al. 2021)) is described in the Abortion Surveillance Platform section of the Methods.  We have added description of the questionnaire to indicate that it was a mixture of open and closed questions. We have reviewed the statistical analyses and consider that they have been fully and appropriately described and so have not changed this. 

      Fifteen wards were mentioned in the text but 13 used what were the exclusion criteria. 

      As described, the study focussed on fifteen wards however two wards did not report any cases. As such, investigations only took place in thirteen of the fifteen wards and this has been described in the text. 

      Observations were from pastoral, agropastoral, and smallholder agroecological farmers. No sample numbers or questionnaires were attributed to the above farming systems to correlate findings with management systems. 

      As described, the 15 wards comprised five wards that were expected to be predominantly pastoral, three were expected to be predominantly agropastoral and seven expected to predominantly smallholder, and these categories were assigned by the research team following discussion with local experts (typically the district level veterinary officer) (Bodenham et al. 2021). As such, we consider this to be described sufficiently.  

      The impacts of the research investigation output are not clearly visible as to warrant intervention methods. 

      The aim of this paper was to provide insights on the feasibility and value of establishing a livestock abortion surveillance platform. The aetiological data that could be used to inform specific disease control measures or interventions was the focus of a previous paper (Thomas et al. 2022) as described in the text.    

      What were the identified pathogens from laboratory investigation, particularly with the use of culture and PCR not even mentioning the zoonotic pathogens encountered if any? 

      An earlier published paper describing the aetiology of the cases was mentioned (Thomas et al. 2022).  This paper fully describes the identified pathogens and the methods used for identification and attribution. Additionally, in the Sample Analysis section we describe the pathogens that were tested and the methods used.  In the section Exposure to Zoonotic Pathogens we specifically list Brucella spp. C. burnetiid, T. gondii and RVFV and so we consider that we have sufficiently described the pathogens tested for, the methods and the zoonotic pathogens detected. 

      The public health importance of any of the abortifacient agents was not highlighted. 

      The Introduction provides background information on the public health importance of abortifacient agents and we dedicate a whole section (Exposure to Zoonotic Pathogens) to the public health implications of the number of cases in which zoonotic pathogens were detected. Additionally, we discuss the implications of this in the Discussion. 

      Comments in manuscript itself:

      Line 230: Why are you estimating. The study was supposed to be based on real time abortion events or at least abortion events within 72 hours

      We were estimating the sensitivity of the platform by dividing the number of investigated abortion cases by the number of abortions for the livestock population in each of the study wards that would have been expected over the study period.  Because the denominator in this calculation was an expected number, and not a measured count, we can only estimate.

      236: In areas where there was no reported abortion event why will you estimate. This action will lead to false conclusion of abortion event in area that did have an event.

      We think there has been some misunderstanding of what this section of text was describing. We were not attributing a case to an area where there was none. Rather, as mentioned above, the aim of this particular analysis was to estimate the sensitivity of the platform. To achieve this, we needed to estimate what the expected number of abortion cases in each ward would have been. 

      279: Give a brief description of R

      A citation and some explanatory text have been added.

      348: Table 1: Your table did not show cases where estimate values were used

      We think this comment has resulted from the confusion described above regarding estimated cases.  Table 1 has summary data for the actual cases that were reported in the study and does not have the data for the estimated number of abortions that were expected to have occurred in each ward.  As described in line 247, this data is given in Supplementary Materials 3.

      404: Not clear, please rephase

      This sentence has been re-drafted to improve clarity

      467: Why are you numbering the findings of your investigation in your discussion? You have not told us about the previous abortion event in your study area prior to this study and why you embarked on this study in this regions. The current abortion event situation in your country based on other researchers work is missing and how your findings is important as it related to similar investigation elsewhere.

      We number the key findings for clarity and to make each finding distinct and so prefer to retain it. 

      The study area was chosen because it was the site of an earlier cross-sectional exposure study within which the wards were randomly selected.  As a result, thirteen of the fifteen wards targeted in the reported study were randomly selected.  Two additional wards were selected purposively because of strong existing relationships with the livestock-keeping community.  This was explained in the Methods in Lines 161 – 164. 

      Regarding livestock abortion in Tanzania, as explained in the Introduction (lines 112-114), there is little data on abortion in livestock in Tanzania and elsewhere. Nonetheless, in the Discussion, we do describe the results with respect to other abortion studies carried out in

      Ethiopia, Nigeria and India (lines 592-598). Moreover, as described in the Introduction (line 90-94), the implementation of syndromic or event-based surveillance in livestock is rare and to the authors’ knowledge has mostly been implemented in Europe, North America or Australasia with only a single pilot project identified in Africa.  

      494: Why will you use an estimate for abortion event that were not reported

      As described above, this comment reflects a misunderstanding of what was being described.  As written in line 494, an attempt was made to gauge the sensitivity of the surveillance platform by estimating the percentage of expected abortions that the investigated cases represented. That is, to estimate the percentage of abortions that the surveillance platform managed to detect, we divided the number of investigated abortions by the expected number of abortions (in each ward).  The method for this estimation was described in lines 228-238.  

      511: Why was farming pattern excluded. Livestock rearing condition is equally critical for this type of investigation example an animal reared intensive system farming method will definitely experience different stress than livestock on nomadic free range system

      We agree with the reviewer that livestock rearing system might be expected to impact both the aetiology and incidence of livestock abortion.  However, because the number of wards was small and the distribution across system not equal, any association between investigated cases and and livestock rearing system could not be assessed.  We have made this clearer with additional text in the same paragraph of the Discussion.

      529: Nothing was mentioned about educating the farmers or livestock owners to assist in some instances on possible sample collection during this abortion events and

      sending these samples as quickly as possible to the central laboratory in suitable condition for investigation and result of the finding communicated back to the farmers

      Because abortions can be caused by zoonotic pathogens, we did not involve livestock keepers in the collection of samples.  Rather, sample collection was carried out by the research team and livestock field officers who had received appropriate training.  In addition, results were reported back to the livestock keepers within 10 days of the investigation and, where pathogens were detected, more specific advice provided as to management strategies that could minimise further transmission to livestock and people. This is all described in the Methods (lines 181-199).

      540: The livestock owner can be taught how to collect vaginal swab and send samples under suitable condition to the laboratory and the findings reported back to them.

      Please see above response.

      549: Please summerise.

      Line 549-581 succinctly describes the attribution of cases to specific pathogens.  The text given is required for comprehension and any further summarisation could impact understanding. Consequently, we have left the text as it is. 

      584: Please summerise.

      Line 584-626 describes the patterns of livestock abortion in Tanzania.  The text given is required to fully discuss the findings and any further reduction in text could impact understanding. Consequently, we have left the text as it is.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      Deletion of the hrp2 and hrp3 loci in P. falciparum poses an immediate public health threat. This manuscript provides a more complete understanding of the dynamic nature with which these deletions are generated. By delving into the likely mechanisms behind their generation, the authors also provide interesting insight into general Plasmodium biology that can inform our broader understanding of the parasite's genomic evolution.

      Strengths:

      The sub-telomeric regions of P. falciparum (where hrp2 and hrp3 are located) are notoriously difficult to study with short-read sequence data. The authors take an appropriate, targeted approach toward studying the loci of interest, which includes read-depth analysis and local haplotype reconstruction. They additionally use both long-read and short-read data to validate their major findings. There is an extensive set of supplementary plots, which helps clarify several aspects of the data.

      Weaknesses:

      In this first version, there are a few factors that hinder a full assessment of the robustness and replicability of the results.

      Reviewer #1 (Recommendations For The Authors):

      Reviewer comment: First, a number of the analyses lack basic details in the methods; for instance, one must visit the authors' personal website to find some of the tools used.

      We have extensively updated the methods to clarify which tools were used and how they were run. All code and results for the analyses have been deposited in Zenodo at https://doi.org/10.5281/zenodo.12167687.

      Reviewer comment: Second, there are several tricky methodological points that are not fully documented. Read depths are treated (and plotted) discretely as 0/1/2 without any discussion of how thresholds were used and determined.

      We have added to the methods section the full details on how read depth was handled, including rounding to the closest 1 normalized coverage for visualizations. To ensure analysis of only highly confident deleted strains, normalized coverage of 0.1 or more was round to 1 instead of 0. Samples were considered for potential genomic deletion if they had zero coverage after rounding from chromosome 8 1,375,557 to 1,387,982 for pfhrp2, chromosome 13 from 2,841,776 to 2,844,785 for pfhrp3, and from chromosome 11 1,991,347 to 2,003,328. These numbers were chosen after visual inspection of samples with any zero coverage within the genomic region of pfhrp2/3.

      Reviewer comment: For read mapping to standard vs hybrid chromosomes, there is no documentation on how assignments were made if partially ambiguous or how final sample calls were determined when some reads were discordant. There is no mention of how missing data were handled. Without this, it is difficult to know when conclusions were based on analyses that were more quantitative (for instance, using pre-determined read thresholds) or more subjective (with patterns being extracted visually).

      We have updated several parts of the methods section to explicitly state what thresholds and analysis pipelines to use, making our documentation clearer. For mapping to the hybrid vs standard chromosomes for the long reads, spanning reads across the duplicated region were required to extend 50bp upstream and downstream of the region. These regions are significantly different between chromosomes 11 and 13, so requiring spanning reads to map to these regions prevented multi-mapping reads. Reads that started within the duplicated region were allowed to map to both the hybrid and standard chromosomes for visualization in Figure 4. Importantly, for both HB3 and SD01, no reads spanned from the duplicated region into chromosome 13, showing a complete lack of reads that contained the portion of chromosome 13 that came after the duplicated region. None of the other isolates had any spanning reads across the hybrid chromosomes. Details on deletion calls were based on initial visualization of pfhrp2/3 and then on read thresholds (see above response for details).

      Reviewer comment: Third, while a new method is employed for local haplotype reconstruction (PathWeaver), the manuscript does not include details on this approach or benchmarking data with which to evaluate its performance and understand any potential artifacts.

      We have added an analysis based on biallelic SNPs to compare to the PathWeaver results, which produced similar results to help validate the PathWeaver results. PathWeaver manuscript is in preparation.

      Reviewer #2 (Public Review):

      This work investigates the mechanisms, patterns, and geographical distribution of pfhrp2 and pfhrp3 deletions in Plasmodium falciparum. Rapid diagnostic tests (RDTs) detect P. falciparum histidine-rich protein 2 (PfHRP2) and its paralog PfHRP3 located in subtelomeric regions. However, laboratory and field isolates with deletions of pfhrp2 and pfhrp3 that can escape diagnosis by RDTs are spreading in some regions of Africa. They find that pfhrp2 deletions are less common and likely occur through chromosomal breakage with subsequent telomeric healing. Pfhrp3 deletions are more common and show three distinct patterns: loss of chromosome 13 from pfhrp3 to the telomere with evidence of telomere healing at breakpoint (Asia; Pattern 13-); duplication of a chromosome 5 segment containing pfhrp1 on chromosome 13 through non-allelic homologous recombination (NAHR) (Asia; Pattern 13-5++); and the most common pattern, duplication of a chromosome 11 segment on chromosome 13 through NAHR (Americas/Africa; Pattern 13-11++). The loss of these genes impacts the sensitivity of RDTs, and knowing these patterns and geographic distribution makes it possible to make better decisions for malaria control.

      Reviewer #3 (Public Review):

      Summary:

      The study provides a detailed analysis of the chromosomal rearrangements related to the deletions of histidine-rich protein 2 (pfhrp2) and pfhrp3 genes in P. falciparum that have clinical significance since malaria rapid diagnostic tests detect these parasite proteins. A large number of publicly available short sequence reads for the whole genome of the parasite were analyzed, and data on coverage and discordant mapping allowed the authors to identify deletions, duplications, and chromosomal rearrangements related to pfhrp3 deletions. Long-read sequences showed support for the presence of a normal chromosome 11 and a hybrid 13-11 chromosome lacking pfhrp3 in some of the pfhrp3-deleted parasites. The findings support that these translocations have repeatedly occurred in natural populations. The authors discuss the implications of these findings and how they do or do not support previous hypotheses on the emergence of these deletions and the possible selective pressures involved.

      Strengths:

      The genomic regions where these genes are located are challenging to study since they are highly repetitive and paralogous and the use of long-read sequencing allowed to span the duplicated regions, giving support to the identification of the hybrid 13-11 chromosome.

      All publicly available whole-genome sequences of the malaria parasite from around the world were analysed which allowed an overview of the worldwide variability, even though this analysis is biased by the availability of sequences, as the authors recognize.

      Despite the reduced sample size, the detailed analysis of haplotypes and identification of the location of breakpoints gives support to a single origin event for the 13-5++ parasites.

      The analysis of haplotype variation across the duplicated chromosome-11 segment identified breakpoints at varied locations that support multiple translocation events in natural populations. The authors suggest these translocations may be occurring at high frequency in meiosis in natural populations but are strongly selected against in most circumstances, which remains to be tested.

      Weaknesses:

      Reviewer comment: Relying on sequence data publicly available, that were collected based on diagnostic test positivity and that are limited by sequencing availability, limits the interpretation of the occurrence and relative frequency of the deletions.

      However, we have uncovered more mechanisms than previously detected for hrp2 (involving MDR1) in SEA and South American parasites are likely detected by microscopy as RDTs were never introduced due to the presence of the deletions.

      Reviewer comment: In the discussion, caution is needed when identifying the least common and most common mechanisms and their geographical associations. The identification of only one type of deletion pattern for Pfhrp2 may be related to these biases.

      We added a section in the Discussion on the limitations of our study, which states the following, “Limitations of this study include the use of publicly available sequencing data that were collected often based on positive rapid diagnostic tests, which limits our interpretation of the occurrence and relative frequency of these deletions. This could introduce regional biases due to different diagnostic methods as well as limit the full range of deletion mechanisms, particularly pfhrp2.”

      Reviewer comment: The specific objectives of the study are not stated clearly, and it is sometimes difficult to know which findings are new to this study. Is it the first study analyzing all the worldwide available sequences? Is it the first one to do long-read sequencing to span the entire duplicated region?

      In the Introduction, we added, “The objectives of this study were to determine the pfhrp3 deletion patterns along with their geographical associations and sequence and assemble the chromosomes containing the deletions using long-read sequencing.”

      We also added in the Discussion, “To the best of our knowledge, no prior studies have performed long-read sequencing to definitively span and assemble the entire segmental duplication involved in the deletions.”

      Reviewer comment: Another aspect that should be explained in the introduction is that there was previous information about the association of the deletions to patterns found in chromosomes 5 and 11. In the short-read sequences results, it is not clear if these chromosomes were analysed because of the associations found in this study (and no associations were found to putative duplications or deletions in other chromosomes), or if they were specifically included in the analysis because of the previous information (and the other chromosomes were not analysed).

      The former is correct. Chromosomes 5 and 11 were analyzed due to the associations found in this study, not from prior information. We have added the following sentence in the Results: “As a result of our short-read analysis demonstrating these three patterns and discordant reads between the chromosomes involved, chromosomes 5, 11, and 13 were further examined. No other chromosomes had associated discordant reads or changes in read coverage. ”

      Reviewer comment: An interesting statement in the discussion is that existing pfhrp3 deletions in a low-transmission environment may provide a genetic background on which less frequent pfhrp2 deletion events can occur. Does it mean that the occurrence of pfhrp3 deletions would favor the pfhrp2 deletion events? How, and is there any evidence for that?

      We should have stated more explicitly that selection would better be able to act on the now doubly deleted parasite versus a parasite with HRP3 still intact and weakly detectable by RDTs.Since fully RDT-negative parasites require a two-hit mechanism, where both pfhrp2 and pfhrp3 need to be deleted, and since there appear to be more mechanisms and drivers for pfhrp3 deletions, this would create a population of parasites with one hit already and would only require the additional hit of pfhrp2 deletion to occur to become RDT negative. So the point in the discussion being made is not that the pfhrp3 deletion would favor pfhrp2 deletion but rather that there is a population circulating with one hit already, which would make it more likely that the less frequent pfhrp2 deletion would result in a dual deleted parasite and therefore an RDT-negative parasite. The discussion has been modified to the following to try to make this point more clear. “In the setting of RDT use in a low-transmission environment, a pfhrp2 deletion occurring in the context of an existing pfhrp3 deletion may be more strongly selected for compared to pfhrp2 deletion occurring alone still detectable by RDTs.”

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Reviewer comment: In the text, clonal propagation is the proposed hypothesis for the presence of near-identical copies of the chromosome 11 duplicated region. Even among the parasites showing variation between chromosomes, Figure 5 shows 3 haplotype groups with multiple sample members, which is also suggestive that these are highly related parasites. In addition to confirming COI status, it would be straightforward to calculate the genome-wide relatedness between/among parasites belonging to the same haplotype group. The assumption is that they are clones or highly related. A different finding would require more thought into potential genomic artifacts driving the pattern.

      Thank you for this helpful suggestion. We confirmed the COI of each sample using THE REAL McCOIL. Six samples were not monoclonal, and we removed these samples from the downstream analysis to remove any contribution of polyclonal samples to the downstream haplotype analysis. Then, by using hmmIBD on whole-genome biallelic SNPs, we determined the whole-genome relatedness between the parasites. The haplotype groups do appear clonal though there appear to be several clonal groups within the larger groups of clusters 01 (n=28) and 03 (n=12) which combined with the variation seen within the 15.2kb region on chromosome 11/13, there appears to be different events that then lead to the same duplicated chromosome 11.

      Reviewer comment: By way of validating the PathWeaver results, it could be useful to use another comparator method on the samples that are COI=1 or 2.

      We have added an analysis based on biallelic SNPs to compare to the PathWeaver results, which produced similar results to help validate the PathWeaver results. We continued to use PathWeaver (Hathaway, in preparation), which is better able to detect variation relative to standard GATK4 analyses due to the refined local alignments from assembled haplotypes.

      Questions regarding Methods:

      Reviewer comment: Were any metrics of genome quality factored into sample selection?

      Yes, samples were removed if there was less than <5x median whole genome coverage. Additionally, several subsets of sWGA samples were removed based on visual inspection. These details have been added to the methods section.

      Reviewer comment: How were polyclonal samples treated to ensure they did not produce analysis artifacts?

      The read-depth analysis required zero coverage across the regions of pfhrp2/pfhrp3, which made it so that most of the samples analyzed were monoclonal (or polyclonal infections of only deleted strains). We have now used THE REAL McCOIL on whole genome SNPs to determine COIs. Six samples were identified as polyclonal, and we removed them for the analysis and updated the manuscript. Their removal did not significantly impact the results or conclusions.

      Reviewer comment: How was local realignment of short-read data performed? Was this step informed by the conserved, non-paralogous genomic regions, or were these only used for downstream variant analysis?

      No local realignment of short-read data was performed. The analysis was either read depth or de novo assembly from reads from specific regions. Regarding the de novo assembly, variant calls were replaced by complete local haplotypes, and a region was typed based on the haplotype called for the region.

      Reviewer comment: For read-depth estimation, what cutoffs were used to classify windows as deletion, WT, or duplication? How much variability was present in the data? The plot legends imply a continuous scale, but in reality, only 3 discrete colors are used (0, 1, 2), so these must represent the data after rounding.

      These have been added to the manuscript. See response to Reviewer #1 questions #2 and #3 above

      Reviewer comment: Similarly, what thresholds were used for mapping the long-reads? In Fig S21, it appears there is a high proportion of discordant reads.

      Long reads were mapped using minimap2 with default settings. For Figure 21, since it is from the mappings to 3D7 chromosome 11 and hybrid 3D7 13-11 chromosome, the genome from the duplicated region from the blue bar underneath is identical, so reads are expected to map to both since the genome regions are identical. The significance of this figure and Figure 4 is the number of long reads that span the whole chr11/13 duplicated region connection the 3D7 chromosome 11 and the hybrid proving that there are reads that start with chromosome 13 sequence and end with chromosome 11 sequence and the lack of reads that span from chromosome 13 into the 3D7 chromosome 13.

      Reviewer comment: The section on the mdr1 breakpoints is too vague.

      We have updated the methods section to be more explicit about how these breakpoints were determined.

      Reviewer comment: I assume that the "Homologous Genomic Structure" section of the Methods is the number analysis that was alluded to in the Results? As with other sections, this needs more information on exact methods and tools

      We have now updated the methods section to include exactly how the nucmer commands were run.

      Smaller comments:

      Reviewer comment: Introduction sub-header: "Precise *pfhrp2* and..."

      We have corrected the sub-header.

      Reviewer comment: Results (p.5) cite Table S4 instead of S3

      We have corrected this to Table S3.

      Reviewer comment: Results (p.5) "We identified 27 parasites with pfhrp2 deletion, 172 with pfhrp3 deletion, and 21 with both pfhrp2 and pfhrp3 deletions." This sentence makes it sound like they are 3 mutually exclusive categories. I'd suggest a rewording like "We identified 27 parasites with pfhrp2 deletion and 172 with pfhrp3 deletion. Of these, 21 contained both deletions."

      We have re-worded this sentence to the following: “We identified 26 parasites with pfhrp2 deletion and 168 with pfhrp3 deletion. Twenty field samples contained both deletions; 11 were found in Ethiopia, 6 in Peru, and 3 in Brazil, and all had the 13-11++ pfhrp3 deletion pattern.”

      Reviewer comment: The annotations used for the deletions differ between the text and the figures. It would be easier for the reader to harmonize the two if these matched.

      The figures have been updated to reflect the annotations of the text.

      Reviewer comment: Figure numbering does not match the order they are first referenced in the text

      The figure numbers have been updated to match the order in which they are first referenced.

      Reviewer comment: Results (p. 8) there is no Table S4

      This has been changed to Table S3.

      Reviewer comment: Results (p.8) mention a genome-wide number analysis, but I couldn't find these results. The referenced figure is for the duplicated region only.

      We have updated to point to the correct location of the nucmer results by adding a supplemental table with the results and updated to point to the correct figure.

      Reviewer comment: Discussion typo: "Here, we used publicly available short-read and long-read *short-read sequencing data* from..."

      This was not a typo, as we used publicly available PacBio long-read data and then generated new Nanopore long-read data. However, we did clarify this in the sentence.

      Reviewer #2 (Recommendations For The Authors):

      Introduction

      Reviewer comment: "(...) suggesting the genes have important infections in normal infections and their loss is selected against". The word "infections" is in place of "role", etc.

      We have changed the word accordingly.

      Results

      Reviewer comment: In the section "Pfhrp2 and pfhrp3 deletions in the global P. falciparum genomic dataset" it is mentioned the number of parasites with each deletion and where it is more common. "We identified 27 parasites with pfhrp2 deletion, 172 with pfhrp3 deletion, and 21 with both pfhrp2 and pfhrp3 deletions." and "Across all regions, pfhrp3 deletions were more common than pfhrp2 deletions; specifically, pfhrp3 deletions and pfhrp2 deletions were present in Africa in 43 and 12, Asia in 53 and 4, and South America in 76 and 11 parasites." It is not clear where the 21 parasites with both pfhrp2 and pfhrp3 deletions are located.

      We have specified the following in the Results section: “We identified 26 parasites with pfhrp2 deletion and 168 with pfhrp3 deletion. Twenty field samples contained both deletions; 11 were found in Ethiopia, 6 in Peru, and 3 in Brazil, and all had the 13-11++ pfhrp3 deletion pattern”

      Reviewer comment: "It should be noted that these numbers are not accurate measures of prevalence given that most WGS specimens have been collected based on RDT positivity." This, combined with the fact that subtelomeric regions are difficult to sequence and assembly, means these numbers are underestimated. I believe it should be more stressed in the text.

      We have added the following sentence, “Furthermore, subtelomeric regions are difficult to sequence and assemble, meaning these numbers may be significantly underestimated.”

      Reviewer comment: In the section "Pattern 13-11++ breakpoint occurs in a segmental duplication of ribosomal genes on chromosomes 11 and 13", Figures 2a and 2b should be mentioned in the text instead of just Figure 2.

      We have specified Figures 2a and 2b in the text now.

      Figures and Tables:

      Reviewer comment: Figure 2: I believe the color scale for percentage of identity is unnecessary given that the goal is to show that the paralogs are highly similar, and not that there is a significant difference between 0.99 and 0.998.

      Updated the color scale to represent the number of variants between segments rather than percent identity which ranges between 55-133 so that it represents something more discreet than 0.99 and 0.998.

      Reviewer comment: Adjust Figure 2b and the size of supplementary figure legends.Supplementary Figure 5-15: the legends are hard to read.

      All legends have been adjusted to be much more readable.

      Reviewer #3 (Recommendations For The Authors):

      Some minor suggestions:

      Reviewer comment: The order of the figures should follow the flow of the text, for example, Figure 5 appears in the text between Figure 1 and Figure 2.

      We have reordered the figures according to the order in which they appear in the text.

      Reviewer comment: Page 3 - "deleted parasites" - better to use: pfhrp2/3-deleted parasites.

      We have edited this accordingly.

      Reviewer comment: Define the acronyms the first time they are used, e.g. SEA.

      We have defined the acronyms accordingly.

      Reviewer comment: In the figures where pfmdr1 appears, indicate the correspondence to the full name of the gene that appears in the legend (multidrug resistance protein 1).

      Legends updated.

      Reviewer comment: Page 5 - Table S4 is missing.

      We apologize for our typo. There is no Table S4. We meant to refer to Table S3, which has been updated accordingly.

      Reviewer comment: Page 5 - "We identified 27 parasites with pfhrp2 deletion, 172 with pfhrp3 deletion, and 21 with both pfhrp2 and pfhrp3 deletions" - is it "and 21..." OR "from which, 21..."?

      We have reworded the sentence to the following: “We identified 26 parasites with pfhrp2 deletion and 168 with pfhrp3 deletion. Twenty field samples contained both deletions; 11 were found in Ethiopia, 6 in Peru, and 3 in Brazil, and all had the 13-11++ pfhrp3 deletion pattern.”

      Reviewer comment: Page 5 - "most WGS specimens have been collected based on RDT positivity." - explain better which tests are done - to detect pfhrp2, pfhrp3 or both?

      Co-occurrence is not detected?

      We used all publicly available WGS data that spanned over 30 studies, and the exact details of what RDTs were used are not readily available to fully answer this question. Though the exact details of RDTs are not known, this does not affect the deletion patterns found in the genomic data but does limit the ability to comment on how this affects prevalence. We have updated the manuscript to the following to be more explicit that we don’t have the full details: “It should be noted that these numbers are not accurate measures of prevalence, given that the publicly available WGS specimens utilized in this analysis come from locations and time periods that commonly used RDT positivity for collection”

      Reviewer comment: Supplementary Figure 1 - Legend for "Pattern" - what is the white?

      The “Pattern” refers to pfhrp3 deletion pattern with “white” being no pfhrp3 deletion. The annotation title has been changed to “pfhrp3- Pattern” to make this more clear and added to the text of the legend the following:”Of the 6 parasites without HRP3 deletion (marked as white in pfhrp3- Pattern column for having no pfhrp3 deletion),...”

      Reviewer comment: Supplementary Figure 8 - explain the haplotype rank. How was it obtained?

      The haplotype rank is based on the prevalence of the haplotype. To clarify this better the following has been added to the caption “Each column contains the haplotypes for that genomic region colored by the haplotype prevalence rank (more prevalent have a lower rank number, with most prevalent having rank 1) at that window/column. Colors are by frequency rank of the haplotypes (most prevalent haplotypes have rank 1 and colored red, 2nd most prevalent haplotypes are rank 2 and colored orange, and so forth. Shared colors between columns do not mean they are the same haplotype. If the column is black, there is no variation at that genomic window.”

      Reviewer comment: Figure 1 - Pattern in legend appears 11++13- but in text it is always referenced as 13-11++

      Figure legend has been updated to reflect the annotation within the text

      Reviewer comment: Page 6 - pattern 13- is which one(s) in Figure 1?

      This refers to the 13- with TARE1 sequence detected, the text has been updated to “(pattern 13-TARE1)” and the legend of Figure 1 has been updated so these statements match more closely.

      Reviewer comment: Page 7 - states "The 21 parasites with pattern 13-" and refers to Supplementary Figure 3 which presents "50 parasites with deletion pattern 13-". I believe this is pattern 13- unassociated with other rearrangements but it should be made clear in the text and legend of the supplementary figure.

      Thank you, you are correct. The manuscript has been updated in two locations for better clarity. The text has been updated to be “The 20 parasites with pattern 13-TARE1 without associated other chromosome rearrangements had deletions of the core genome averaging 19kb (range: 11-31kb). Of these 13-TARE1 deletions, 19 out of 20 had detectable TARE1 (pattern 13-TARE) adjacent to the breakpoint, consistent with telomere healing.” The Supplemental Figure 3 legend has been updated to “for the 48 parasites with pfhrp3 deletions not associated with pattern 13-11++”

      Reviewer comment: Supplementary figure 25 - "regions containing the pfhrp genes (lighter blue bars below chromosomes 11 and 13)" - the light blue bars are shown below chromosome 8 and 13; what is the difference between yellow and pink bars (telomere associates repetitive elements in the truncated legend)?

      The yellow bars are associated with the telomere-associated repetitive element 3 and the pink bars are telomere-associated repetitive element 1. To add clarity the legend has been updated to be “The yellow (TARE3) and pink (TARE1) bars on the bottom of the chromosomes represent the telomere-associated repetitive elements found at the end of chromosomes.”

      Reviewer comment: It would be helpful to have a positioning scale in the figures.

      Most plots have y-axis and x-axis with the genomic positioning labeled which can serve as a positioning scale so we opted not to add more to the figures to keep them less crowded. Other plots have regions plotted in genomic order but are all relatively positioned which prevents the usage of a positioning scale, we tried to clarify this by adding more details to the captions of these figures.

      Reviewer comment: Legend of Figure 6 - The last paragraph seems to be out of place

      We have deleted the last sentence in the legend of Figure 6 accordingly.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer 1:

      I understand that the only spermatids observed in cKO testes are coming from cells that escaped the Cre system. However, I do think that the authors could provide sperm counts data also showing decreased sperm counts in the mutant, to make their claim stronger. This is a very common fertility assessment.

      All round spermatids isolated from Arid1acKO testes appeared only to express the normal transcript associated with the floxed allele (Fig. S4A).

      [New Data - Lines 154-159] Our evaluation of the first round of spermatid development based on DNA content (1C, 2C, and 4C), revealed a significantly reduced abundance of round spermatids (1C) in mutant testes compared to wild-type testes. This finding, obtained through flow cytometry, supports the observed meiotic block at the pachytene stage (new Fig. S5A-B).

      Reviewer 3:

      Lines 154-5: Currently read 'inefficient Stra8-cre inefficiency'. Should read 'inefficient Stra8-cre activity.' I see that this was noted in the first round of review but the original wording has persisted.

      The nucleolin antibody used should be listed in Supplementary table 3.

      'inefficient Stra8-cre inefficiency' now reads “inefficient Stra8-Cre activity”  [Line 158]

      Nucleolin antibody is now listed in Supplementary Table 3

    1. Author response:

      Response to Public Comment of Reviewer 1: We thank the Reviewer for the positive assessment of the manuscript. We also are grateful to the Reviewer for pointing out that providing alternatives to our model is a strength, and not a weakness, potentially stimulating future experiments that could falsify our model.  

      Response to Public Comment of Reviewer 2: We thank the Reviewer for the positive assessment of the manuscript. 

      In our manuscript, we already provide some references to evidence supporting reversible β-cell inactivation in a high-glucose environment. In the revision, we will expand this discussion, emphasize it, and add additional references that we have discovered recently. 

      In the revision, we will additionally expand our discussion of what is and is not known about the features of β-cell dysfunction in KPD, the relevant timescales, and so on. We will expand on how little is known about the possible pre-KPD state: individuals with KPD usually show up in a hospital with a new onset of diabetes, and often have had little access to medical care prior to this presentation. Thus, prior medical records are often unavailable. We hope this theoretical work will help justify appropriate future studies of the clinical history of KPD patients. 

      In the revision of the manuscript, we plan to briefly discuss how our model might, indeed, account for the honeymoon phase of type 1 diabetes, as well as for some phenomenology of gestational diabetes, and progression of type 2 diabetes in youth. In other words, the model developed for explaining KPD is potentially much broader, explaining many other phenomena. However, we prefer to leave the detailed modeling of these conditions, and comparisons to alternate hypotheses of their pathogenesis, to a future publication.

    1. Author response:

      We’d like to thank the reviewers for their fair, thoughtful, and critical review of our manuscript.

      We acknowledge that the small number of specimens limits the impact of our findings. While we are unable to expand the study, we are optimistic that more cases with insulitis will be made available for research and spatial technologies will become more cost-effective over time. We hope that the design and analyses in our study are useful to future efforts and that our findings can be validated and revised.

      We intend to revise the manuscript to address all other points raised by reviewers. These include a) adding HLA genotype information for each patient, b) analyzing how key immune signatures relate to the clinical variables, diabetes duration and age of onset, and c) measuring the relationship between IDO+ islets and HLA-ABC expression. We will also revise the text and figures for clarity in specific places and discuss important considerations including stem cell memory T cells and the potential impact of prolonged stays in the ICU.

    1. Author response:

      The following is the authors’ response to the original reviews.

      In this useful study, a solid machine learning approach based on a broad set of systems to predict the R2 relaxation rates of residues in intrinsically disordered proteins (IDPs) is described. The ability to predict the patterns of R2 will be helpful to guide experimental studies of IDPs. A potential weakness is that the predicted R2 values may include both fast and slow motions, thus the predictions provide only limited new physical insights into the nature of the relevant protein dynamics.

      Fast motions are less sequence-dependent (e.g., as shown by R1). Hence the sequence-dependent part of R2 singles out slow motion.

      Public Reviews:

      Reviewer #1 (Public Review):

      Solution state 15N backbone NMR relaxation from proteins reports on the reorientational properties of the N-H bonds distributed throughout the peptide chain. This information is crucial to understanding the motions of intrinsically disordered proteins and as such has focussed the attention of many researchers over the last 20-30 years, both experimentally, analytically and using numerical simulation.

      This manuscript proposes an empirical approach to the prediction of transverse 15N relaxation rates, using a simple formula that is parameterised against a set of 45 proteins. Relaxation rates measured under a wide range of experimental conditions are combined to optimize residuespecific parameters such that they reproduce the overall shape of the relaxation profile. The purely empirical study essentially ignores NMR relaxation theory, which is unfortunate, because it is likely that more insight could have been derived if theoretical aspects had been considered at any level of detail.

      NMR relaxation theory is very valuable in particular regarding motions on different timescales. However, it has very little to say about the sequence dependence of slow motions, which is the focus of our work.

      Despite some novel aspects, in particular the diversity of the relaxation data sets, the residuespecific parameters do not provide much new insight beyond earlier work that has also noted that sidechain bulkiness correlated with the profile of R2 in disordered proteins.

      The novel insight from our work is that R2 can mostly be predicted based on the local sequence.

      Nevertheless, the manuscript provides an interesting statistical analysis of a diverse set of deposited transverse relaxation rates that could be useful to the community.

      Thank you!

      Crucially, and somewhat in contradiction to the authors stated aims in the introduction, I do not feel that the article delivers real insight into the nature of IDP dynamics. Related to this, I have difficulty understanding how an approximate prediction of the overall trend of expected transverse relaxation rates will be of further use to scientists working on IDPs. We already know where the secondary structural elements are (from 13C chemical shifts which are essential for backbone assignment) and the necessary 'scaling' of the profile to match experimental data actually contains a lot of the information that researchers seek.

      Again, the novel insight is that slow motions that dictate the sequence dependence of R2 can mostly be predicted based on the local sequence. The scaling factor may contain useful information but does not tell us anything about the sequence dependence of IDP dynamics.

      This reviewer brings up a lot of valuable points, clearly from an NMR spectroscopist’s perspective. The emphasis of our paper is somewhat different from that perspective. For example, we were interested in whether tertiary contacts make significant contributions to R2, as sometimes claimed. Our results show that, in general, they do not; instead local contacts dominate the sequence dependence of R2.

      (1) The introduction is confusing, mixing different contributions to R2 as if they emanated from the same physics, which is not necessarily true. 15N transverse relaxation is said to report on 'slower' dynamics from 10s of nanoseconds up to 1 microsecond. Semi-classical Redfield theory shows that transverse relaxation is sensitive to both adiabatic and non-adiabatic terms, due to spin state transitions induced by stochastic motions, and dephasing of coherence due to local field changes, again induced by stochastic motions. These are faster than the relaxation limit dictated by the angular correlation function. Beyond this, exchange effects can also contribute to measured R2. The extent and timescale limit of this contribution depends on the particular pulse sequence used to measure the relaxation. The differences in the pulse sequences used could be presented, and the implications of these differences for the accuracy of the predictive algorithm discussed.

      Indeed pulse sequences affect the measured R2 values. We make the modest assumption that such experimental idiosyncrasy would not corrupt the sequence dependence of IDP dynamics. As for exchange effects, our expectation is that the current SeqDYN may not do well for R2s where slow exchange plays a dominant role in generating sequence dependence, as tertiary contacts would be prominent in those cases; we now present one such case (new Fig. S5).

      (2) Previous authors have noted the correlation between observed transverse relaxation rates and amino acid sidechain bulkiness. Apart from repeating this observation and optimizing an apparently bulkiness-related parameter on the basis of R2 profiles, I am not clear what more we learn, or what can be derived from such an analysis. If one can possibly identify a motif of secondary structure because raised R2 values in a helix, for example, are missed from the prediction, surely the authors would know about the helix anyway, because they will have assigned the 13C backbone resonances, from which helical propensity can be readily calculated.

      We think that a sequence-based method that is demonstrated to predict well R2 values from expensive NMR experiments is significant. That pi-pi and cation-pi interactions are prominent features of local contacts and may seed tertiary contacts and mediate inter-chain contacts that drive phase separation is a valuable insight.

      (3) Transverse relaxation rates in IDPs are often measured to a precision of 0.1s-1 or less. This level of precision is achieved because the line-shapes of the resonances are very narrow and high resolution and sensitivity are commonly measurable. The predictions of relaxation rates, even when applying uniform scaling to optimize best-agreement, is often different to experimental measurement by 10 or 20 times the measured accuracy. There are no experimental errors in the figures. These are essential and should be shown for ease of comparison between experiment and prediction.

      Again, our focus is not the precision of the absolute R2 values, but rather the sequence dependence of R2.

      (4) The impact of structured elements on the dynamic properties of IDPs tethered to them is very well studied in the literature. Slower motions are also increased when, for example the unfolded domain binds a partner, because of the increased slow correlation time. The ad hoc 'helical boosting' proposed by the authors seems to have the opposite effect. When the helical rates are higher, the other rates are significantly reduced. I guess that this is simply a scaling problem. This highlights the limitation of scaling the rates in the secondary structural element by the same value as the rest of the protein, because the timescales of the motion are very different in these regions. In fact the scaling applied by the authors contains very important information. It is also not correct to compare the RMSD of the proposed method with MD, when MD has not applied a 'scaling'. This scaling contains all the information about relative importance of different components to the motion and their timescales, and here it is simply applied and not further analysed.

      Actually, applying the boost factor achieves the effect of a different scaling factor for the secondary structure element than for the rest of the protein.

      Regarding comparing RMSEs of SeqDYN and MD, it is true that SeqDYN applies a scaling factor whereas MD does not. However, even if we apply scaling to MD results it will not change the basic conclusion that “SeqDYN is very competitive against MD in predicting _R_2, but without the significant computational cost.”

      (5) Generally, the uniform scaling of all values by the same number is serious oversimplification. Motions are happening on all timescales they are giving rise to different transverse relaxation. It is not possible to describe IDP relaxation in terms of one single motion. Detailed studies over more than 30 years, have demonstrated that more than one component to the autocorrelation function is essential in order to account for motions on different timescales in denatured, partially disordered or intrinsically unfolded states. If one could 'scale' everything by the same number, this would imply that only one timescale of motion were important and that all others could be neglected, and this at every site in the protein. This is not expected to be the case, and in fact in the examples shown by the authors it is also never the case. There are always regions where the predicted rates are very different from experiment (with respect to experimental error), presumably because local dynamics are occurring on different timescales to the majority of the molecule. These observations contain useful information, and the observation that a single scaling works quite well probably tells us that one component of the motion is dominant, but not universally. This could be discussed.

      The reviewer appears to equate a single scaling factor with a single type of motion -- this is not correct. A single scaling factor just means that we factor out effects (e.g., temperature or magnetic field) that are uniform across the IDP sequence.

      (6) With respect to the accuracy of the prediction, discussion about molecular detail such as pi-pi interactions and phase separation propensity is possibly a little speculative.

      It is speculative; we now add more support to this speculation (p. 18 and new Fig. S6).

      (7) The authors often declare that the prediction reproduces the experimental data. The comparisons with experimental data need to be presented in terms of the chi2 per residue, using the experimentally measured precision which as mentioned, is often very high.

      Again, our interest is the sequence dependence of R2, not the absolute R2 value and its measurement precision.

      Reviewer #2 (Public Review):

      Qin, Sanbo and Zhou, Huan-Xiang created a model, SeqDYN, to predict nuclear magnetic resonance (NMR) spin relaxation spectra of intrinsically disordered proteins (IDPs), based primarily on amino acid sequence. To fit NMR data, SeqDYN uses 21 parameters, 20 that correspond to each amino acid, and a sequence correlation length for interactions. The model demonstrates that local sequence features impact the dynamics of the IDP, as SeqDYN performs better than a one residue predictor, despite having similar numbers of parameters. SeqDYN is trained using 45 IDP sequences and is retrained using both leave-one-out cross validation and five-fold cross validation, ensuring the model's robustness. While SeqDYN can provide reasonably accurate predictions in many cases, the authors note that improvements can be made by incorporating secondary structure predictions, especially for alpha-helices that exceed the correlation length of the model. The authors apply SeqDYN to study nine IDPs and a denatured ordered protein, demonstrating its predictive power. The model can be easily accessed via the website mentioned in the text.

      While the conclusions of the paper are primarily supported by the data, there are some points that could be extended or clarified.

      (1) The authors state that the model includes 21 parameters. However, they exclude a free parameter that acts as a scaling factor and is necessary to fit the experimental data (lambda). As a result, SeqDYN does not predict the spectrum from the sequence de-novo, but requires a one parameter fitting. The authors mention that this factor is necessary due to non-sequence dependent factors such as the temperature and magnetic field strength used in the experiment.

      Given these considerations, would it be possible to predict what this scaling factor should be based on such factors?

      There are still too few data to make such a prediction.

      (2) The authors mention that the Lorentzian functional form fits the data better than a Gaussian functional form, but do not present these results.

      We tested the different functional forms at the early stage of the method development. The improvement of the Lorentzian over the Gaussian was slight and we simply decided on the Lorentzian and did not go back and do a systematic analysis.

      (3) The authors mention that they conducted five-fold cross validation to determine if differences between amino acid parameters are statistically significant. While two pairs are mentioned in the text, there are 190 possible pairs, and it would be informative to more rigorously examine the differences between all such pairs.

      We now present t-test results for other pairs in new Fig. S3.

      Reviewer #3 (Public Review):

      The manuscript by Qin and Zhou presents an approach to predict dynamical properties of an intrinsically disordered protein (IDP) from sequence alone. In particular, the authors train a simple (but useful) machine learning model to predict (rescaled) NMR R2 values from sequence. Although these R2 rates only probe some aspects of IDR dynamics and the method does not provide insight into the molecular aspects of processes that lead to perturbed dynamics, the method can be useful to guide experiments.

      A strength of the work is that the authors train their model on an observable that directly relates to protein dynamics. They also analyse a relatively broad set of proteins which means that one can see actual variation in accuracy across the proteins.

      A weakness of the work is that it is not always clear what the measured R2 rates mean. In some cases, these may include both fast and slow motions (intrinsic R2 rates and exchange contributions). This in turn means that it is actually not clear what the authors are predicting. The work would also be strengthened by making the code available (in addition to the webservice), and by making it easier to compare the accuracy on the training and testing data.

      Our method predicts the sequence dependence of R2, which is dominated by slower dynamics.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      (1) Should make sure to define abbreviations such as NMR and SeqDYN.

      We now spell out NMR at first use. SeqDYN is the name of our method and is not an abbreviation.

      (2) The authors do not mention how the curves in Figure 2A are calculated.

      As we stated in the figure caption, these curves are drawn to guide the eye.

      (3) May be interesting to explore how the model parameters (q) correlate with different measures of hydrophobicity (especially those derived for IDPs like Urry). This may point to a relationship between amino acid interactions and amino acid dynamics

      We now present the correlation between q and a stickiness parameter refined by Tesei et al. (new ref 45) and used for predicting phase separation equilibrium (new Fig. S6).

      (4) The authors demonstrate that secondary structure cannot be fully accounted for by their model. They make a correction for extended alpha-helices, but the strength of this correction seems to only be based on one sequence. Would a more rigorous secondary structure correction further improve the model and perhaps allow its transferability to ordered proteins?

      We have five 4 test cases (Figs. 4E, F and 5H, I). However, we doubt that the SeqDYN method will be transferable to ordered proteins.

      Reviewer #3 (Recommendations For The Authors):

      Changes that could strengthen the manuscript substantially.

      (1) The authors do not really define what they mean by dynamics, but given that they train and benchmark on R2 measurements, the directly probe whatever goes into the measured R2. Using a direct measurement is a strength since it makes it clear what they are predicting. It also, however, makes it difficult to interpret. This is made clear in the text when the authors, for example write "𝑅2 is the one most affected by slower dynamics (10s of ns to 1 μs and beyond)." First, with the "and beyond" it could literally mean anything. Second, the "normal" R2 rate is limited up to motions up to the (local) "tumbling/reorganization" time (which is much faster), so any slow motions that go into R2 would be what one would normally call "exchange". The authors should thus make it clearer what exactly it is they are probing. In the end, this also depends on the origin of the experimental data, and whether the "R2" measurements are exchange-free or not. This may be a mixture, which hampers interpretations and which may also explain some of the rescaling that needs to be done.

      We now remove “and beyond”, and also raise the possibility that R2 measurements based on 15N relaxation may have relatively small exchange contributions (p. 17).

      (2) Related to the above, the authors might consider comparing their predictions to the relaxation experiments from Kriwacki and colleagues on a fragment of p27. In that work, the authors used dispersion experiments to probe the dynamics on different timescales. The authors would here be able to compare both to the intrinsic R2 rates (when slow motions are pulsed away) as well as the effective R2 rates (which would be the most common measurement). This would help shed light on (at least in one case) which type of R2 the prediction model captures. https://doi.org/10.1021/jacs.7b01380

      We now report this comparison in new Fig. S5 and discuss its implications (p. 17-18).

      (3) In some cases, disagreement between prediction and experiments is suggested to be due to differences in temperature, and hence is used as an argument for the rescaling done. Here, the authors use a factor of 2.0 to explain a difference between 278K and 298K, and a factor of 2.4 to explain the difference between 288K and 298K. It would be surprising if the temperature effect from 288K->298K is larger than from 278K->298K. Does this not suggest that the differences come as much from other sources?

      Note that the scaling factors 2.0 and 2.4 were obtained on two different IDPs. It is most likely that different IDPs have different scaling factors for temperature change. As a simple model, the tumbling time for a spherical particle scales with viscosity and the particle volume; correspondingly the scaling factor for temperature change should be greater for a larger particle than for a smaller particle.

      (4) The authors find (as have others before) aromatic residues to be common at/near R2 peaks. They suggest this to be indicative for Pi-Pi interactions. Could this not be other types of interactions since these residues are also "just" more hydrophobic? Also, can the authors rule out that the increased R2 rates near aromatic residues is not due to increased dynamics, but simply due to increased Rex-terms due to greater fluctuations in the chemical shifts near these residues (due to the large ring current effects).

      We noted both pi-pi and cation-pi as possible interactions that raise R2. There can be other interactions involving aromatic residues, but it’s unlikely to be only hydrophobic as Arg is also in the high-q end. For the same reason, a ring-current based explanation would be inadequate.

      (5) The authors write: "We found that, by filtering PsiPred (http://bioinf.cs.ucl.ac.uk/psipred) (35) helix propensity scores (𝑝,-.) with a very high cutoff of 0.99, the surviving helix predictions usually correspond well with residues identified by NMR as having high helix propensities." It would be good to show the evidence for this in the paper, and quantify this statement.

      The cases of most interest are the ones with long predicted helices, of which there are only 3 in the training set. For Sev-NT and CBP-ID4, we already summarize the NMR data for helix identification in the first paragraph of Results; the third case is KRS-NT, which we elaborate in p. 14.

      (6) When analysing the nine test proteins, it would be very useful for the reader to get a number for the average accuracy on the nine proteins and a corresponding number for the training proteins. The numbers are maybe there, but hard to find/compare. This would be important so that one can understand how well the model works on the training vs testing data.

      We now present the mean RMSE comparison in p. 14.

      (7) The authors write: "The 𝑞 parameters, while introduced here to characterize the propensities of amino acids to participate in local interactions, appear to correlate with the tendencies of amino acids to drive liquid-liquid phase separation." It would be good to show this data and quantify this.

      We now list supporting data in p. 18 and present new Fig. S6 for further support.

      (8) It is great that the authors have made a webservice available for easy access to the work. They should in my opinion also make the training code and data available, as well as the final trained model. Here it would also be useful to show the results from the use of a Gaussian that was also tested, and also state whether this model was discarded before or after examining the testing data.

      We have listed the IDP characteristics and sequences in Tables S1 and S2. We’re unsure whether we can disseminate the experimental R2 data without the permission of the original authors. As for the Gaussian function, as stated above, it was abandoned at an early state, before examining the testing data.

      Changes that would also be useful

      (1) The authors should make it clearer what they predict and what they don't. They mention transient helix formation and various contacts, but there isn't a one-to-one relationship between these structural features and R2 rates. Hence, they should make it clearer that they don't predict secondary structure and that an increased R2 rate may be indicative of many different structural/dynamical features on many different time scales.

      We clearly state that we apply a helix boost after the regular SeqDYN prediction.

      (2) The authors write "Instead, dynamics has emerged as a crucial link between sequence and function for IDPs" and cite their own work (reference 1) as reference for this statement. As far as I can see, that work does not study function of IDPs. Maybe the authors could cite additional work showing that the dynamics (time scales) affects function of IDPs beyond "just" structure? Otherwise, the functional consequences are not clear. Maybe the authors mean that R2 rates are indicative of (residual) structure, but that is not quite the same. Also, even in that case, there are likely more appropriate references.

      Ref. 1 summarized a number of scenarios where dynamics is related to function.

      (3) The authors might want to look at some of the older literature on interpreting NMR relaxation rates and consider whether some of it is worth citing.

      Fitting/understanding R2 profiles https://doi.org/10.1021/bi020381o https://doi.org/10.1007/s10858-006-9026-9

      MD simulations and comparisons to R2 rates without ad hoc reweighting (in addition to the papers from the authors themselves). https://doi.org/10.1021/ja710366c https://doi.org/10.1021/ja209931w

      The R2 data for the two unfolded proteins are very helpful! We now present the comparison of these data to SeqDYN prediction in Fig. 6C, D. The MD papers are superseded by more recent studies (e.g., refs. 1 and 14).

      There are more like these.

      (4) In the analysis of unfolded lysozyme, I assume that the authors are treating the methylated cysteines (which are used in the experiments) simply as cysteine. If that is the case, the authors should ideally mention this specifically.

      Treatment of methylated cysteines is now stated in the Fig. 6 caption.

      (5) The authors write "Pro has an excessively low ms𝑅2 [with data from only two IDPs (32, 33)], but that is due to the absence of an amide proton." It would be useful with an explanation why lacking a proton gives rise to low 15N R2 rates.

      That assertion originated from ref. 32.

      (6) When applying the model, the authors predict msR2 and then compare to experimental R2 by rescaling with a factor gamma. It would be good to make it clearer whether this parameter is always fitted to the experiments in all the comparisons. It would be useful to list the fitted gamma values for all the proteins (e.g. in Table S1).

      We already give a summary of the scaling factors (“For 39 of the 45 IDPs, Υ values fall in the range of 0.8 to 2.0 s–1”, p. 10).

      (7) p. 14 "nineth" -> "ninth"

      Corrected

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      The manuscript proposes an alternative method by SDS-PAGE calibration of Halo-Myo10 signals to quantify myosin molecules at specific subcellular locations, in this specific case filopodia, in epifluorescence datasets compared to the more laborious and troublesome single molecule approaches. Based on these preliminary estimates, the authors developed further their analysis and discussed different scenarios regarding myosin 10 working models to explain intracellular diffusion and targeting to filopodia. 

      Strengths: 

      I confirm my previous assessment. Overall, the paper is elegantly written and the data analysis is appropriately presented. Moreover, the novel experimental approach offers advantages to labs with limited access to high-end microscopy setups (super-resolution and/or EM in particular), and the authors proved its applicability to both fixed and live samples. 

      Weaknesses: 

      Myself and the other two reviewers pointed to the same weakness, the use of protein overexpression in U2OS. The authors claim that Myosin10 is not expressed by U2OS, based on Western blot analysis. Does this completely rule out the possibility that what they observed (the polarity of filopodia and the bulge accumulation of Myo10) could be an artefact of overexpression? I am afraid this still remains the main weakness of the paper, despite being properly acknowledged in the Limitations.

      Respectfully, our observations do not capture an “artefact” of overexpression but rather the “response” to overexpression. Our goal in this project was to overexpress Myo10 in a situation where it is the limiting reagent for generating filopodia. As Reviewer 3 notes below, overexpression shows that filopodial tips “can accommodate a surprisingly (shockingly) large number of motors.” This is exactly the point. Reviewer 2 considered our handling of this issue to be a strength of the paper. As far as whether bulges occur in endogenous Myo10 systems, please see our comments to Reviewer 3. 

      I consider all the remaining issues I expressed during the first revision solved. 

      Reviewer #2 (Public Review): 

      Summary: 

      The paper sought to determine the number of myosin 10 molecules per cell and localized to filopodia, where they are known to be involved in formation, transport within, and dynamics of these important actin-based protrusions. The authors used a novel method to determine the number of molecules per cell. First, they expressed HALO tagged Myo10 in U20S cells and generated cell lysates of a certain number of cells and detected Myo10 after SDS-PAGE, with fluorescence and a stained free method. They used a purified HALO tagged standard protein to generate a standard curve which allowed for determining Myo10 concentration in cell lysates and thus an estimate of the number of Myo10 molecules per cell. They also examined the fluorescence intensity in fixed cell images to determine the average fluorescence intensity per Myo10 molecule, which allowed the number of Myo10 molecules per region of the cell to be determined. They found a relatively small fraction of Myo10 (6%) localizes to filopodia. There are hundreds of Myo10 in each filopodia, which suggests some filopodia have more Myo10 than actin binding sites. Thus, there may be crowding of Myo10 at the tips, which could impact transport, the morphology at the tips, and dynamics of the protrusions themselves. Overall, the study forms the basis for a novel technique to estimate the number of molecules per cell and their localization to actin-based structures. The implications are broad also for being able to understand the role of myosins in actin protrusions, which is important for cancer metastasis and wound healing. 

      Strengths: 

      The paper addresses an important fundamental biological question about how many molecular motors are localized to a specific cellular compartment and how that may relate to other aspects of the compartment such as the actin cytoskeleton and the membrane. The paper demonstrates a method of estimating the number of myosin molecules per cell using the fluorescently labeled HALO tag and SDS-PAGE analysis. There are several important conclusions from this work in that it estimates the number of Myo10 molecules localized to different regions of the filopodia and the minimum number required for filopodia formation. The authors also establish a correlation between number of Myo10 molecules filopodia localized and the number of filopodia in the cell. There is only a small % of Myo10 that tip localized relative to the total amount in the cell, suggesting Myo10 have to be activated to enter the filopodia compartment. The localization of Myo10 is log-normal, which suggests a clustering of Myo10 is a feature of this motor. 

      One of the main critiques of the manuscript was that the results were derived from experiments with overexpressed Myo10 and therefore are hard to extrapolate to physiological conditions. The authors counter this critique with the argument that their results provide insight into a system in which Myo10 is a limiting factor for controlling filopodia formation. They demonstrate that U20S cells do not express detectable levels of Myo10 (supplementary Figure 1E) and thus introducing Myo10 expression demonstrates how triggering Myo10 expression impacts filopodia. An example is given how melanoma cells often heavily upregulate Myo10. 

      In addition, the revised manuscript addresses the concerns about the method to quantitate the number of Myo10 molecules per cell and therefore puncta in the cell. The authors have now made a good faith effort to correct for incomplete labeling of the HALO tag (Figure 2A-C, supplementary Figure 2D-E). The authors also address the concerns about variability in transfection efficiency (Figure 1D-E). 

      A very interesting addition to the revised manuscript was the quantitation of the number of Myo10 molecules present during an initiation event when a newly formed filopodia just starts to elongate from the plasma membrane. They conclude that 100s of Myo10 molecules are present during an initiation event. They also examined other live cell imaging events in which growth occurs from a stable filopodia tip and correlated with elongation rates. 

      Weaknesses: 

      The authors acknowledge that a limitation of the study is that all of the experiments were performed with overexpressed Myo10. They address this limitation in the discussion but also provide important comparisons for how their work relates to physiological conditions, such as melanoma cells that only express large amounts of Myo10 when they are metastatic. Also, the speculation about how fascin can outcompete Myo10 should include a mechanism for how the physiological levels of fascin can complete with the overabundance of Myo10 (page 10, lines 401-408). 

      We have expanded the discussion about fascin competing with high concentrations of Myo10 in filopodial tips on pg. 15. The key feature is that fascin binding in a bundle is essentially irreversible, so it wins if any space opens up and it manages to bind before the next Myo10 arrives.

      Reviewer #3 (Public Review): 

      Summary 

      The work represents progress in quantifying the number of Myo10 molecules present in the filopodia tip. It reveals that cells overexpressing fluorescently labeled Myo10 that the tip can accommodate a wide range of Myo10 motors, up to hundreds of molecules per tip. 

      The revised, expanded manuscript addresses all of this reviewer's original comments. The new data, analysis and writing strengthen the paper. Given the importance of filopodia in many cellular/developmental processes and the pivotal, as yet not fully understood role of Myo10 in their formation and extension, this work provides a new look at the nature of the filopodial tip and its ability to accommodate a large number of Myo10 motor proteins through interactions with the actin core and surrounding membrane. 

      Specific comments - 

      (1) One of the comments on the original work was that the analysis here is done using cells ectopically expressing HaloTag-Myo10. The author's response is that cells express a range of Myo10 levels and some metastatic cancer cells, such as breast cancer, have significantly increased levels of Myo10 compared to non-transformed cell lines. It is not really clear how much excess Myo10 is present in those cells compared to what is seen here for ectopic expression in U2OS cells, making a direct correspondence difficult.

      We agree, a direct correspondence is difficult, and is further complicated by other variables (e.g., expression levels of Myo10 activators, cargoes, fascin, or other filopodial components) that may differ among cell lines. Properly sorting this out will require additional work in a few key cellular systems.

      However, there are two points to keep in mind that somewhat mitigate this concern. First, because ectopic expression of Myo10 causes an ~30x increase in the number of filopodia, the activated Myo10 population is divided over that larger filopodial population. Second, the log-normal distribution of Myo10 across filopodia has a long tail, which means that some cells with low levels of Myo10 will concentrate that Myo10 in a few filopodia. 

      In response to comments about the bulbous nature of many filopodia tips the authors point out that similar-looking tips are seen when cells are immunostained for Myo10, citing Berg & Cheney (2002). In looking at those images as well as images from papers examining Myo10 immunostaining in metastatic cancer cells (Arjonen et al, 2014, JCI; Summerbell et al, 2020, Sci Adv) the majority of the filopodia tips appear almost uniformly dot-like or circular. There is not too much evidence of the elongated, bulbous filopodial tips seen here.

      Yes, the tips in Berg and Cheney are circular, but their size varies considerably (just as a balloon is roughly circular, its size varies with the amount of air it contains). Non-bulbous filopodial tips have a theoretical radius of ~100 nm, which is below the diffraction limit. However, many of the filopodial tips are larger than the diffraction limit in Berg and Cheney, Fig. 1a. We cropped and zoomed in the images to show each fully visible filopodial tip

      We attempted to perform a similar analysis of the images in Arjonen and Summerbell. Unfortunately, their images are too small to do so. 

      However, in reconsidering the approach and results, it is the case that the finding here do establish the plasticity of filopodia tips that can accommodate a surprisingly (shockingly) large number of motors. The authors discuss that their results show that targeting molecules to the filopodia tip is a relatively permissive process (lines 262 - 274). That could be an important property that cells might be able to use to their advantage in certain contexts. 

      (2) The method for arriving at the intensity of an individual filopodium puncta (starting on line 532 and provided in the Response), and how this is corrected for transfection efficiency and the cell-to-cell variation in expression level is still not clear to this reviewer. The first part of the description makes sense - the authors obtain total molecules/cell based on the estimation on SDS-PAGE using the signal from bound Halo ligand. It then seems that the total fluorescence intensity of each expressing cell analyzed is measured, then summed to get the average intensity/cell. The 'total pool' is then arrived at by multiplying the number of molecules/cell (from SDS-PAGE) by the total number of cells analyzed. After that, then: 'to get the number of molecules within a Myo10 filopodium, the filopodium intensity was divided by the bioreplicate signal intensity and multiplied by 'total pool.' ' The meaning of this may seem simple or straightforward to the authors, but it's a bit confusing to understand what the 'bioreplicate signal intensity' is and then why it would be multiplied by the 'total pool'. This part is rather puzzling at first read.

      We agree, such information is critical. We have now revised this description with more precise terms and have included a formula on pg. 20.

      Since the approach described here leads the authors to their numerical estimates every effort should be made to have it be readily understood by all readers. A flow chart or diagram might be helpful. 

      We have added a diagram of the calculations to the supplemental material (Figure 1—figure supplement 3). We hope that both changes will make it easier for others to follow our work.

      (3) The distribution of Myo10 punctae around the cell are analyzed (Fig 2E, F) and the authors state that they detect 'periodic stretches of higher Myo10 density along the plasma membrane' (line 123) and also that there is correlation and anti-correlation of molecules and punctae at opposite ends of the cells. 

      In the first case, it is hard to know what the authors really mean by the phrase 'periodic stretches'. It's not easy to see a periodicity in the distribution of the punctae in the many cells shown in Supp Fig 3. Also, the correlation/anti-correlation is not so easily seen in the quantification shown in Fig 2F. Can the authors provide some support or clarification for what they are stating? 

      The periodic pattern that we refer to is most apparent in the middle panels of Fig. 2E, F. These panels show the density of Myo10 puncta. These puncta numbers closely correspond to filopodia counts, with the caveat that some filopodia might have multiple puncta. This periodic density might not be as apparent in the raw data shown in Supp. Fig. 3. We have therefore rewritten this paragraph to clarify our observations (pg. 6).

      (4) The authors are no doubt aware that a paper from the Tyska lab that employs a completely different method of counting molecules arrives at a much lower number of Myo10 molecules at the filopodial tip than is reported here was just posted (Fitz & Tyska, 2024, bioRxiv, DOI: 10.1101/2024.05.14.593924). 

      While it is not absolutely necessary for the authors to provide a detailed discussion of this new work given the timing, they may wish to consider adding a note briefly addressing it. 

      We are aware of this manuscript and that it uses a different approach for calibrating the fluorescence signal in microscopy. However, we are not comfortable commenting on that manuscript at this time, given that it has not yet been peer reviewed with the chance for author revisions.

      Recommendations for the authors: 

      Reviewer #1 (Recommendations For The Authors): 

      The manuscript the authors are now presenting does not comply with the formatting limits of a Short report, but it is instead presented as a full article type. I believe the authors could shorten the Discussion, and meet the criteria for a more appropriate Short Report format. 

      For instance, I continue to believe that the study of truncation variants could sustain the claim that membrane binding represents the driving force that leads to Myo10 accumulation. I understand the authors want to address these mechanisms in a follow-up story, for this reason, I encourage them to shorten the discussion, which seems unnecessarily long for a technique-based manuscript.

      In the first round of review, Reviewer 3 asked us to expand the discussion. Given that, we are happy with where we have landed on the length of the discussion.

      Figure 2, could include some images to facilitate the readers on the different messages of the two rose plots E and F, by picking one of the examples from the supplementary Figure 3 

      We have now added a supplemental figure showing an example cell (Fig. 2 figure supplement 2). But please note that the averaging of ~150 cells (Fig. 2E, F) should be more reliable to show these overall trends.

      Reviewer #2 (Recommendations For The Authors): 

      Also, the speculation about how fascin can outcompete Myo10 should include a mechanism for how the physiological levels of fascin can complete with the overabundance of Myo10 (page 10, lines 401-408). 

      As noted above, we have now clarified this point. 

      Reviewer #3 (Recommendations For The Authors): 

      line 495 - what is GOC? 

      We have now defined this oxygen scavenger system in the main text.

      lines 603/604 - it is stated that 'velocity analysis does not only account for Myo10 punctum that moved away from the starting point of the trajectory.' It's not clear what this really means. 

      The sentence now reads: "For Figure 4 parts G-H, note that velocity analysis includes a few Myo10 puncta that switch direction within a single trajectory (e.g., a retracting punctum that then elongates)."

      References #4 and #14 are the same. 

      Thank you for catching that; it has now been corrected.

      Fig 1C - the plot for signal intensity versus fmol of protein has numbers for the standard and then live and fixed cells. While the R2 value is quite good, it seems a bit odd that the three (?) data points for live cells are all quite small relative to the fixed cells and all bunched together at the left side of the plot. 

      As mentioned in the main text, the time post-transfection has a noticeable effect on the level of Myo10 expression. The three fixed-cell bioreplicates had higher Myo10 expression because they were analyzed 48 hours post-transfection compared to the three live-cell bioreplicates (24 hours). Therefore, the fixed cell data points are larger in value because they represent more molecules, and the live cell data points are on the left side of the plot because they represent fewer molecules.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Strengths: 

      The paper clearly presents the resource, including the testing of candidate enhancers identified from various insects in Drosophila. This cross-species analysis, and the inherent suggestion that training datasets generated in flies can predict a cis-regulatory activity in distant insects, is interesting. While I can not be sure this approach will prevail in the future, for example with approaches that leverage the prediction of TF binding motifs, the SCRMShaw tool is certainly useful and worth consideration for the large community of genome scientists working on insects. 

      We thank the reviewer for the positive comments, and would just like to point out that we agree: while we cannot of course know if other methods will overtake SCRMshaw for enhancer prediction—we assume they will, at some point (although motif-based approaches have not fared as well in the past)—for now, SCRMshaw provides strong performance and is a useful part of the current toolkit.

      Weaknesses: 

      While the authors made the effort to provide access to the SCRMShaw annotations via the RedFly database, the usefulness of this resource is somewhat limited at the moment. First, it is possible to generate tables of annotated elements with coordinates, but it would be more useful to allow downloads of the 33 genome annotations in GFF (or equivalent) format, with SCRMshaw predictions appearing as a new feature. Also, I should note that unlike most species some annotations seem to have issues in the current RedFly implementation. For example, Vcar and Jcoen turn empty. 

      We have addressed these weaknesses in several ways:

      (1) We have created GFF versions of the SCRMshaw predictions and provide them standalone and also merged into the available annotation GFFs for each of the 33 species

      (2) We have made these GFF files, and also the original SCRMshaw output files, available for download in a Dryad repository linked to the publication (https://doi.org/10.5061/dryad.3j9kd51t0).

      (3) We have added the inadvertently omitted species to the REDfly/SCRMshaw database.

      We agree that the database functions are still somewhat limited, but note that database development is ongoing and we expect functionality to increase over time. In the meantime, the Dryad repository ensures that all results reported in this paper are directly available.

      Reviewer #2 (Public Review): 

      Summary: 

      … Upon identification of predicted enhancer regions, the authors perform post-processing step filtering and identify the most likely predicted enhancer candidates based on the proximity of an orthologous target gene. …

      We respectfully point out a small misunderstanding here on the part of the reviewer. We stress that putative target gene assignments and identities have no impact at all on our prediction of regulatory sequences, i.e., they are not “based on the proximity of an orthologous target gene.” Predictions are solely based on sequence-dependent SCRMshaw scores, with no regard to the nature or identities of nearby annotated features. Putative target genes are mapped to Drosophila orthologs purely as a convenience to aid in interpreting and prioritizing the predicted regulatory elements. We have added language on page 8 (lines 189ff) to make this more clear in the text.

      Weaknesses:

      This work provides predicted enhancer annotations across many insect species, with reporter gene analysis being conducted on selected regions to test the predictions. However, the code for the SCRMshaw analysis pipeline used in this work is not made available, making reproducibility of this work difficult. Additionally, while the authors claim the predicted enhancers are available within the REDfly database, the predicted enhancer coordinates are currently not downloadable as Supplementary Material or from a linked resource. 

      We have placed all the code for this paper into a GitHub repository “Asma_etal_2024_eLife” (https://github.com/HalfonLab/Asma_etal_2024_eLife) to address this concern. As described in our response to Reviewer 1, above, all results are now available in multiple formats in a linked Dryad repository in addition to the REDfly/SCRMshaw database.

      The authors do not validate or benchmark the application of SCRMshaw against other published methods, nor do they seek to apply SCRMshaw under a variety of conditions to confirm the robustness of the returned predicted enhancers across species. Since SCRMshaw relies on an established k-mer enrichment of the training loci, its performance is presumably highly sensitive to the selection of training regions as well as the statistical power of the given k-mer counts. The authors do not justify their selection of training regions by which they perform predictions. 

      Our objective in this study was not to provide proof-of-principle for the SCRMshaw method, as we have established the efficacy of the approach at this point in several previous publications. Rather, the objective here was to make use of SCRMshaw to provide an annotation resource for insect regulatory genomics. Note that the training regions we used here are the same as those we have used in earlier work. Naturally, we performed various assessments to establish that the method was working here, but we make no claims in this work about SCRMshaw’s relative efficiency compared to other methods. Some of our prior publications include assessments of the sort the reviewer references, which suggest that SCRMshaw is at least comparable to other enhancer discovery approaches. We note that benchmarking of such methods is in fact extremely complicated due to the fact that there are no established true positive/true negative data sets against which to benchmark (we have explored this in Asma et al. 2019 BMC Bioinformatics).

      While there is an attempt made to report and validate the annotated predicted enhancers using previously published data and tools, the validation lacks the depth to conclude with confidence that the predicted set of regions across each species is of high quality. In vivo, reporter assays were conducted to anecdotally confirm the validity of a few selected regions experimentally, but even these results are difficult to interpret. There is no large-scale attempt to assess the conservation of enhancer function across all annotated species. 

      We respectfully disagree that there is insufficient validation. We bring several different lines of evidence to bear suggesting that our results fall into the accuracy range—roughly 75%—established both here and in previous work. We are also clear about the fact that these are predictions only and need to be viewed as such (e.g. line 638). Although “large-scale” in vivo validation assays would certainly be both interesting and worthwhile, the necessary resources for such an assessment places it beyond our present capability.

      Lastly, it is suggested that predicted regions are derived from the shared presence of sequence features such as transcription factor binding motifs, detected through k-mer enrichment via SCRMshaw. This assumption has not been examined, although there are public motif discovery tools that would be appropriate to discover whether SCRMshaw is assigning predicted regions based on previously understood motif grammar, or due to other sequence patterns captured by k-mer count distributions. Understanding the sequence-derived nature of what drives predictions is within the scope of this work and would boost confidence in the predicted enhancers, even if it is limited to a few training examples for the sake of clarity of interpretation. 

      Again, we respectfully disagree that “this assumption has not been examined.” Although we did not undertake this analysis here, we have in the past, where we have shown that known TFBS motifs can be recovered from sets of SCRMshaw predictions (e.g., Kazemian et al. 2014 Genome Biology and Evolution). We return to this point when we address the Comments to Authors, below.

      Reviewer #3 (Public Review): 

      Weaknesses:  

      The rates of predicted true positive enhancer identification vary widely across the genomes included here based on the simulations and comparison to datasets of accessible chromatin in a manner that doesn't map neatly onto phylogenetic distance. At this point, it is unclear why these patterns may arise, although this may become more clear as regulatory annotation is undertaken for more genomes. 

      We agree that we do not see clear patterns with respect to phylogenetic distance in our results. However, we note that this initial data set is still fairly small, and not carefully phylogenetically distributed. We are hoping that, as the reviewer suggests, some of these questions become more clear as we add more genomes to our analysis. Fortunately, the list of available genomes with chromosome-level assembly is growing rapidly, and as we move ahead we should have much greater ability to choose informative species.

      Functional assessment of predicted enhancers was performed through reporter gene assays primarily in Drosophila melanogaster imaginal discs, a system amenable to transgenics. Unfortunately, this mode of canonical imaginal disc development is only representative of a subset of all holometabolous insects; therefore, it is difficult to interpret reporter gene expression in a fly imaginal disc as evidence of a true positive enhancer that would be active in its native species whose adult appendages develop differently through the larval stage (for example, Coleopteran and Lepidopteran legs). However, the reporter gene assays from other tissues do offer strong evidence of true positive enhancer detection, and constraints on transgenic experiments in other systems mean that this approach is the best available. 

      Please see an extensive discussion of this point in our response to Reviewer 3, below.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors): 

      Major Concerns: 

      (1) While the GitHub source code for SCRMshaw is provided, the authors do not provide a repository of manuscriptspecific code and scripts for readers. This is a barrier to reproducibility and the code used to perform the analysis should be made available. Additionally, links to available scripts do not work, see Line 690. Post-processing scripts point to a general lab folder, but again, no specific analysis or code is sourced for the work in this specific manuscript (e.g. Line 637). 

      As noted above, we have corrected this oversight and established a specific GitHub repository for this manuscript “Asma_etal_2024_eLife” (https://github.com/HalfonLab/Asma_etal_2024_eLife). 

      (2) On lines 479-488, there is a discussion about the annotations being provided on REDfly, though no link is provided. 

      We have included a link in the text at this point (now line 515).

      Additionally, for transparency, it would be valuable to provide in Supplementary Table 1 the genomic coordinates of the original training sets in addition to their identity. 

      These coordinates have been added to Supplementary Table 1 as suggested.

      Also, it is suggested to provide genomic coordinates of the predicted enhancers for each training set across all species, perhaps with a column denoting a linked ID of one genomic coordinate in a species to another species (i.e. if there is a linked region found from D. melanogaster to J. coenia, labeling this column in both coordinate sets as blastoderm.mapping1_region1). Providing these annotations directly in the work enhances the transparency of the results. 

      We are unsure exactly what the reviewer means here by “a linked region.” It is critical to understanding our approach to recognize that the genome sequences have diverged to the point where there is no alignment of non-coding regions possible. Thus there is no way to directly “link” coordinates of a predicted enhancer from one species to those of a predicted enhancer in another species. The coordinates for each prediction are available on a per-species basis either through the database or in the files now available in the linked Dryad repository; these can be filtered for results from a specific training set. The database will allow users to select all results for a given orthologous locus, from any subset of species. More complex searches will continue to become available as we improve functionality of the database, an ongoing project in collaboration with the REDfly team.

      (3) Figure 2B: It is unclear what this figure shows. Are the No Fly Orthologs false positives, Orthology pipeline issues, or interesting biology? 

      We have clarified this in the Figure 2 legend. “No Mapped Fly Orthologs” indicates that our orthology mapping pipeline did not identify clear D. melanogaster orthologs. For any given gene, this could reflect either a true lack of a respective ortholog, or failure of our procedure to accurately identify an existing ortholog.

      (4) SCRMshaw appears to be a versatile tool, previously published in a variety of works. However, in this manuscript, there is little discussion of the sensitivity of SCRMshaw to different initial parameters, how the selection of training loci can impact outcomes, or how SCRMshaw k-mer discovery methods compare to other similar tools.

      - This paper would be strengthened by addressing this weakness. Some specific suggestions below: 

      In order to strengthen confidence that SCRMshaw is a reliable predictor of enhancer regions in other species, it is suggested that you benchmark against other k-mer-derived methods to assign enhancers, such as GSK-SVM developed by the Beer Lab in 2016  (https://www.beerlab.org/gkmsvm/, https://www.biorxiv.org/content/10.1101/2023.10.06.561128v1). 

      We have established the effectiveness of SCRMshaw as an enhancer discovery method in previous work, and the main goal of this study was to make use of the established method to annotate numerous insect genomes as a community resource. Our claim here is that SCRMshaw works well for this purpose; we do not attempt a strong claim about whether other approaches may work equally well or marginally better (although we do not believe this is the case, based on prior work). Benchmarking enhancer discovery is challenging, as we point out in Asma et al. 2019 (BMC Bioinformatics), and, while important, best left for a dedicated comprehensive study. A major problem is that there are no independent objective “truth” sets for enhancers from the various species we interrogate here. Thus, while we could also run, e.g., GSK-SVM, what criteria would we use to establish which method had better accuracy for a given species? Note that the work from Beer’s lab took advantage of the ability to match human-mouse orthologous (or syntenic) regions and available open-chromatin data to assess whether conserved enhancers were discovered, but this is not possible given the degree of divergence, limited synteny, and relative lack of additional data for the insect genomes we are annotating.

      - In Table S1, we see that 7-146 regions are used as training sets, which is a huge variety. Does an increase in training set size provide a greater "rate of return" for predicted regions? Is the opposite true? Addressing this question would allow readers to understand if they wish to use SCRMshaw, a reasonable scope for their own training region selections. 

      - Within a training set, does subsampling provide the same outcomes in terms of prediction rates? There is no exploration of how "brittle" the training sets are, and whether the generalized k-mer count distributions that are established in a training set are consistent across randomly selected subgroups. Performing this analysis would raise confidence in the method applied and the resulting annotations. 

      These are interesting and important questions, but again we feel they are beyond the scope of this particular study, which is focused primarily on using SCRMshaw and not on optimizing various search parameters. That said, this is of course something we have investigated, although as with other aspects of enhancer discovery, the absence of a true gold standard enhancer set makes evaluation difficult. We have not found a clear correlation between training set size and performance beyond the very general finding that performance appears to be best when training set size is moderate, e.g. 20-40 initial enhancers. We suspect that larger training sets often contain too many members that don’t fit the core regulatory model and thus add noise, whereas sets that are too small may not contain enough signal for best performance (although small sets can still be useful, especially if used in an iterative cycle; see Weinstein et al. 2023 PLoS Genetics). However, establishing this rigorously is highly challenging given the limitations with assessing true and false positive rates at scale.

      (5) In Figure 2C, when plotting hexMCD, IMM, pacRC, and then the merged set, it is unclear whether the scorespecific bar allows coordinate redundancy, though this is implied. What might be more useful is a revision of this plot where the hexMCD/IMM/pac-RC-specific loci are plotted, with the merged set alongside as is currently reported. This would give the reader a clearer understanding of the variability between these scoring methods and why this variability occurs. 

      We have added the breakdowns between IMM, hexMCD, and pacRC in Supplementary Table S2, and made more complete reference to this in the text (lines 682ff). Both the database and the data files in the Dryad repository allow exploration of the overlap between the different methods and contain both separate and merged (for overlap and redundancy) results.

      Additionally, there is no information in the Methods section of these three SCRMshaw scores and what they represent, even colloquially. While SCRMshaw has been applied in several papers previously, it would help with scientific clarity to describe in a sentence or two what each score is meant to represent and why one is different from another. 

      We had chosen to err on the side of brevity given prior publication of the SCRMshaw methodology, but we recognize now that we went too far in that direction. We have added more complete descriptions of the methods in both the Results (lines 164-167) and the Methods (lines 667-681) sections.

      (6) When describing results in Figure 2, an important question arises: "Is there an anti-correlation between the number of predicted regions and evolutionary distance?" This would be an expected result that could complement Figure 4's point that shared orthology across 16 species is rarer than across 10 species. Visualizing and adding this to Figure 2 or Figure 4 would be a powerful statement that would boost confidence in the returned predicted enhancers and/or orthologous regions. 

      This is an important question and one in which we are very interested. Unfortunately, we do not have sufficient data at this time to address this proper statistical rigor. As we remarked above in response to Reviewer 3, “We agree that we do not see clear patterns with respect to phylogenetic distance in our results. However, we note that this initial data set is still fairly small, and not carefully phylogenetically distributed. We are hoping that, as the reviewer suggests, some of these questions become more clear as we add more genomes to our analysis. Fortunately, the list of available genomes with chromosome-level assembly is growing rapidly, and as we move ahead we should have much greater ability to choose informative species.”

      (7) In Figure 3, the authors seek to convey that SCRMshaw predicts enhancer regions that are mapped nearby one another, across different loci widths, and that this occurrence of nearby predicted regions occurs more than a randomly selected control. This is presumably meant to validate that SCRMshaw is not providing predictions with low specificity, but rather to highlight the possibility that SCRMshaw is identifying groups of shadow enhancers. However, these plots are extremely difficult to decipher and do not strongly support the claims due to the low resolution and difficult interpretability of the boxplot interquartile distributions.

      Additionally, as the majority of predicted regions are around ~750bp, how does that address loci groups of <1000bp? This suggests that predicted regions are overlapping, and therefore cannot be meaningfully interpreted as shadow enhancers. This plot should either be moved to the supplements or reworked to more effectively convey the point that "SCRMshaw is detecting predicted regions that are proximal to one another and that this proximity is not due to chance". 

      - A suggestion to rework this plot is to change this instead to a bar plot, where the y-axis instead represents "number of predictions with at least 2 predicted regions proximal to one another" divided by "total number of predictions", separating bar color by simulated/observed values. The x-axis grouping can remain the same. Because this plot is a broad generalization of the statement you're trying to make above, knowing whether a few loci have 2 versus 4 proximal predicted enhancers doesn't enhance your point. 

      We agree with the reviewer that these are not the clearest plots, and thank them for the suggestions regarding revision. We tried many variations on visualizing these complex data, including those suggested by the reviewer, and have concluded that despite their weaknesses, these plots are still the best visualization. The main problem is that the observed data cluster heavily around zero, so that the box plots are very squat and mainly only the outlier large values are observed. The key point, however, is that the expected values almost never give values much greater than one, so that the observed outlier points are the only points seen in the upper ranges of the y-axis. This is true across the three species, across the bins of locus sizes, and across training sets (averaged into the box plots). The reviewer is correct as well about the bins where locus size is < 1000. However, inspection of the data shows that this is not a large concern, as very few data points lie in this range and we never see multiple predicted enhancers there. Thus we believe while not the prettiest of graphs, Figure 3 does effectively support the claims made in the text. In keeping with our view that it is preferable to have data in the main paper whenever possible, we choose to keep the figure in place rather than move it to the Supplement.

      - Label the species for the reader's understanding of each subplot on the plot. 

      We apologize for this oversight and have now labeled each plot with its relevant species.

      (8) SCRMshaw operates on k-mer count distributions compared to a genomic background across different species, allowing it to assign predicted regions without prior knowledge of an organism's cis-regulatory sequences. This is powerful and boosts the versatility of the method. However, understanding the cis-regulatory origins of the kinds of kmers that are driving the detection of orthologous regions across species is crucial and absolutely within the scope of the paper, particularly for the justification of the provided annotations. Is SCRMshaw making use of enriched motifs within the training region set to assign regions in other species? One would presume so, but it is necessary to show this. There are many motif discovery tools that are readily available and require little up-front knowledge and little to no use of a CLI, such as MEMESuite (https://meme-suite.org/meme/tools/meme). It is highly recommended that, even for a few training pairs that are well understood (e.g. mesoderm.mapping1, dorsal_ectoderm.mapping1), assess the motif enrichment within the original sequence set, then see whether motif enrichments are reflected in the predicted enhancers. As evolutionary distance increases between D. melanogaster and the species of interest, is the assignment of enriched motifs more sparse? Is there a loss of a key motif? These are the kinds of questions that will allow readers to understand how these annotations are assigned as well as boost confidence in their usage. 

      This is a very important point and a subject of significant interest to us. We have demonstrated in earlier work (e.g., Kazemian et al. 2014 Genome Biol. Evol.) that SCRMshaw-predicted enhancers do contain expected TFBS motifs, across multiple species—and that even an overall arrangement of sites is sometimes conserved. Thus we have previously answered, in part, the reviewer’s question. 

      What we also learned from our previous work is that filtering out relevant motifs from the noise inherent in motif-finding is both arduous and challenging. As the reviewer is no doubt aware, while using motif discovery tools is simple, interpreting the output is much less so. In response to the reviewer’s comments, we revisited this issue with data from a small sample of training sets. We can discover motifs; we can see that the motif profiles are different between different training sets; and we can observe the presence of expected motifs based on the activity profile of the enhancers (e.g., Single-minded binding sites in our mesectoderm/midline training and result data). However, to do this cleanly and with appropriate statistical rigor is beyond what we feel would be practical for this paper. We hope to return to this important question in the future when we have a larger and phylogenetically more evenly-distributed set of species, and the time and resources to address it appropriately.

      (9) Figures 5-7 need to have better descriptions. 

      We have added to the figure 6 and 7 legends in response to this comment; please note as well that there is substantial detail provided in the text. If there are specific aspects of the figures that are not clear or which lack sufficient description, we are happy to make additional changes.

      Minor Concerns 

      (1)  In Figure 1A, it is implied that "k-mer count distributions" are actually only "5-mer count distributions". However, in the published documentation of SCRMshaw, it is suggested that k-mers between 1-6 bp are involved in establishing sequence distributions. Please add a justification for the selection of these criteria. It would be helpful to understand the implications of using up to a 3-mer versus a 12-mer when assessing k-mer counts using SCRMshaw.

      We have clarified in the Figure 1 legend that this is just an example, and the k-mers of different sizes are used in the IMM method; we have also increased the description of the basic method in the Methods section. To be clear, the hexMCD sub-method is 6-mer based (5th-order Markov chain), as is pacRC, while the IMM method considers Markov chains of orders 0-5.

      (2) Control the y-axis to remove white space from Figure 2D. 

      We have amended the figure as suggested.

      Additionally, expand in the manuscript on expected results from SCRMshaw. Given training regions of 750 bp, is the expectation that you return predicted enhancers of the same length? This is not explicitly stated, only a description of outliers. 

      The scoring is not dependent on the length of the training sequences, and there is no direct expectation of predicted enhancer length. Scores are calculated on 10-bp intervals, and a peak-calling algorithm is used to determine the endpoints of each prediction based on where the scores drop below a cutoff value. Thus there is no explicit minimum prediction length beyond the smallest possible length of 10-bp. That said, the initial scoring takes place over a 500-bp sequence window (for reasons of computational efficiency), which does influence scores away from the smaller end of the possible range. We correct for this in part by reducing scores below a certain threshold to zero, to prevent multiple low-scoring regions from combining to give a low but positive score over a long interval. Indeed, we found that in the original version of SCRMshawHD (Asma et al. 2019), multiple low-scoring but above-threshold intervals would get concatenated together in broad peaks, leading to an unrealistically large average prediction length. In the version used here, described in Supplementary Figure S6, low-scoring windows are now first reset to zero and a new threshold is calculated before overlapping scores are summed. This helps to prevent the broad peak problem, and we find that it results in a median prediction length ~750 bp, more in line with expected enhancer sizes.

      Reviewer #3 (Recommendations For The Authors): 

      Line 161: Given that the SCRMshaw HD method is the basis for the pipeline, the methodology deserves at least an "in brief" recapitulation in this manuscript. 

      As we remark in our response to Reviewer 2, above, “We had chosen to err on the side of brevity given prior publication of the SCRMshaw methodology, but we recognize now that we went too far in that direction. We have added more complete descriptions of the methods in both the Results (lines 164-167) and the Methods (lines 667-681) sections.” 

      Line 219: Throughout the reporting of the results, there appeared to be a bit of inconsistency/potential typos regarding whether threshold or exact P values were reported. In lines 219, 222, 265, 696, and 811, the reported values seem to clearly be thresholds (< a standard cutoff), while in lines 291,293, 297,300, values appear to be exact but are reported as thresholds (<). 

      This is not an error but rather reflects two different types of analysis. The predictions per locus (originally lines 219, 222 etc) are evaluated using an empirical P-value based on 1000 permutations. As such, they are thresholded at 1/1000. The overlap with open chromatin regions, on the other hand, are based on a z-score with the P-values taken from a standard conversion of z-scores to P-values.

      Page 13/Table 2: At face value, it seems surprising that the overlap between Dmel SCRMshaw predictions with open chromatin is so much smaller than the overlap between predictions and open chromatin in other species, both in raw % (Tcas, D plexippus, H. himera) and fold enrichment (Tcas), given that the training sets for SCRMshaw are all derived from Dmel data. The discussion here does not touch on this aspect of the results, and the interpretation of this approach, in general, would be strengthened if the authors could comment on potential reasons why this pattern may be arising here, or at least acknowledge that this is an open question.

      There are many variables at play here, as the data are from different species, from different tissues, and from different methods. Thus we think it is difficult to read too much into the precise results from these comparisons—the main take-home is really just that there is a significant amount of overlap. In acknowledgment of this, we have slightly modified the text in this section so that it now notes (line 302ff): “These comparisons are imperfect, as the tissues used to obtain the chromatin data do not precisely correspond to the training sequences used for SCRMshaw, and the data were obtained using a variety of methods.”

      Line 318-329: The inferences from the reporter gene assay deserve a more nuanced treatment than they are given here. The important nuance that was not addressed by the discussion here is that the imaginal disc mode of development in Drosophila is not broadly representative of the development of larval/adult epithelial tissues across Holometabola; thus, inference of a true positive validation becomes complicated in cases where predicted enhancers from a species were tested and shown to drive expression in a fly imaginal disc that the native species have no direct disc counterpart to. For example, in line 388 a Tcas enhancer is reported to drive expression in the eye-antennal disc, and in lines 404 and 423 additional Tcas enhancers were reported to drive expression in the leg discs; however, Tribolium larvae do not possess antennal discs or leg discs set aside during embryogenesis in the sense that flies do - instead the homologous epithelial tissues form larval antennae and larval legs external to the body wall that are actively used at this life stage and are starkly different in morphology than an internally invaginated epithelial disc, that will directly give rise to adult tissues in subsequent molts. Is the interpretation of an expression pattern driven in a fly disc as a true positive really as straightforward as it was presented here, when in the native species the expression pattern driven by the enhancer in question would be in the context of an extremely different tissue morphology? That said, I understand and am deeply sympathetic to the constraints on the authors in performing transgenic experiments outside of the model fly; but these divergent modes of development across Holometabola deserve a mention and nuance in the interpretation here. 

      This is indeed a very important point, and we greatly appreciate Reviewer 3 pointing out this caveat when interpreting the outcomes of our cross-species reporter assay. Reviewer 3 is correct that the imaginal disc mode of adult tissue (i.e. imaginal) development found in Diptera does not represent the imaginal development across Holometabola. 

      In fact, imaginal development is quite diverse among Holometabola. For instance, larval leg and antennal cells appear to directly develop into the adult legs and antennae in Coleoptera (i.e. primordial imaginal cells function as larval appendage cells), while some cells within the larval legs and antennae are set aside during larval development specifically for adult appendages in Lepidopteran species (i.e. imaginal cells exist within the larval appendages but do not contribute to the formation of larval appendages). In contrast, an almost entire set of cells that develop into adult epithelia are set aside as imaginal discs during embryogenesis in Diptera. Furthermore, the imaginal disc mode of development appears to have evolved independently in

      Hymenoptera. Therefore, determining how imaginal primordial tissues correspond to each other among Holometabola has been a challenging task and a topic of high interest within the evo-devo and entomology communities.

      Nevertheless, despite these differences in mode of imaginal development, decades of evo-devo studies suggest that the gene regulatory networks (GRNs) operating in imaginal primordial tissues appear to be fairly well conserved among holometabolan species (for example, see Tomoyasu et al. 2009 regarding wing development and Angelini et al. 2012 regarding leg development between flies and beetles). These outcomes imply that a significant portion of the transcriptional landscape might be conserved across different modes of imaginal development. Therefore, an enhancer functioning in the Tribolium larval leg tissue (which also functions as adult leg primordium) could be active even in the leg imaginal disc of Drosophila, if the trans factors essential for the activation of the enhancer are conserved between the two imaginal tissues. 

      That being said, we fully expect there to be both false negative and false positive results in our cross-species reporter assay. We are optimistic about the biological relevance of the positive outcomes of our crossspecies reporter assay, especially when the enhancer activity recapitulates the expression of the corresponding gene in Drosophila (for example, Am_ex Fig6B and Tc_hth Fig7B). Nonetheless, the biological relevance of these enhancer activities needs to be further verified in the native species through reporter assays, enhancer knock-outs, or similar experiments.

      In recognition of the Reviewer’s important point, we added the following caveat in our Discussion (lines 549553): “Furthermore, the unique imaginal disc mode of adult epithelial development in D. melanogaster  might have prevented some enhancers of other species from working properly in D. melanogaster imaginal discs, likely producing additional false negative results. Evaluating enhancer activities in the native species will allow us to address the degree of false negatives produced by the cross-species setting.” We moreover mention this caveat in the Results section when we first introduce the reporter assays (line 342).

      Line 580: This is the first time that the weakness of the closest-gene pairing approach is mentioned. This deserves mention earlier in the manuscript, as unfortunately, this is one of the major bottlenecks to this and any other approaches to investigating enhancer function. Could the authors address this earlier, perhaps pages 7-8, and provide citations for current understanding in the field of how often closest-gene pairing approaches correctly match enhancers to target genes? 

      We have added text as suggested on p.7-8 acknowledging the shortcomings of the closest-gene approach. We also clarify at the end of that section (lines 173-181) that target gene assignments, while useful for interpretation, have no bearing on the enhancer predictions themselves (which are generated prior to the target gene assignment steps).

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors demonstrate impairments induced by a high cholesterol diet on GLP-1R dependent glucoregulation in vivo as well as an improvement after reduction in cholesterol synthesis with simvastatin in pancreatic islets. They also map sites of cholesterol high occupancy and residence time on active versus inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations and screened for key residues selected from these sites and performed detailed analyses of the effects of mutating one of these residues, Val229, to alanine on GLP-1R interactions with cholesterol, plasma membrane behaviour, clustering, trafficking and signalling in pancreatic beta cells and primary islets, and describe an improved insulin secretion profile for the V229A mutant receptor.

      These are extensive and very impressive studies indeed. I am impressed with the tireless effort exerted to understand the details of molecular mechanisms involved in the effects of cholesterol for GLP-1 activation of its receptor. In general the study is convincing, the manuscript well written and the data well presented.

      Some of the changes are small and insignificant which makes one wonder how important the observations are. For instance in figure 2 E (which is difficult to interpret anyway because the data are presented in percent, conveniently hiding the absolute results) does not show a significant result of the cyclodextrin except for insignificant increases in basal secretion. That is not identical to impairment of GLP-1 receptor signaling!

      We assume that the reviewer refers to Fig. 1E, where we show the percentage of insulin secretion in response to 11 mM glucose +/- exendin-4 stimulation in mouse islets pretreated with vehicle or MβCD loaded with 20 mM cholesterol. While we concur with the reviewer that the effect in this case is triggered by increased basal insulin secretion at 11 mM glucose, exendin-4 can no longer compensate for this increase by proportionally amplifying insulin responses in cholesterol-loaded islets, leading to a significantly decreased exendin-4-induced insulin secretion fold increase under these circumstances, as shown in Fig. 1F. We interpret these results as a defect in the GLP-1R capacity to amplify insulin secretion beyond the basal level to the same extent as in vehicle conditions. An alternative explanation is that there is a maximum level of insulin secretion in our cells, and 11 mM glucose + exendin-4 stimulation gets close to that value. With the increasing effect of cholesterol-loaded MβCD on basal secretion at 11 mM glucose, exendin-4 stimulation appears as working less well. A simple experiment to rule out this possibility would be to test insulin secretion following KCl stimulation under these conditions to determine if maximal stimulation has been reached or not. We will perform this control experiment in the revised manuscript to clarify this point. We will also include absolute insulin results as well as percentages of secretion to improve the completeness of the report.

      To me the most important experiment of them all is the simvastatin experiment, but the results rest on very few numbers and there is a large variation. Apparently, in a previous study using more extensive reduction in cholesterol the opposite response was detected casting doubt on the significance of the current observation. I agree with the authors that the use of cyclodextrin may have been associated with other changes in plasma membrane structure than cholesterol depletion at the GLP-1 receptor.

      We agree with the reviewer that the insulin secretion results in vehicle versus LPDS/simvastatin treated mouse islets (Fig. 1H, I) are relatively variable and we therefore plan to perform further biological repeats of this experiment for the paper revision to consolidate our current findings. 

      The entire discussion regarding the importance of cholesterol would benefit tremendously from studies of GLP-1 induced insulin secretion in people with different cholesterol levels before and after treatment with cholesterol-lowering agents. I suspect that such a study would not reveal major differences.

      We agree with the reviewer that such study would be highly relevant. While this falls outside the scope of the present paper, we encourage other researchers with access to clinical data on GLP-1RA responses in individuals taking cholesterol lowering agents to share their results with the scientific community. We will highlight this point in the paper discussion to emphasise the importance of more research in this area.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript the authors provided a proof of concept that they can identify and mutate a cholesterol-binding site of a high-interest class B receptor, the GLP-1R, and functionally characterize the impact of this mutation on receptor behavior in the membrane and downstream signaling with the intent that similar methods can be useful to optimize small molecules that as ligands or allosteric modulators of GLP-1R can improve the therapeutic tools targeting this signaling system.

      Strengths:

      The majority of results on receptor behavior are elucidated in INS-1 cells expressing the wt or mutant GLP-1R, with one experiment translating the findings to primary mouse beta-cells. I think this paper lays a very strong foundation to characterize this mutation and does a good job discussing how complex cholesterol-receptor interactions can be (ie lower cholesterol binding to V229A GLP-1R, yet increased segregation to lipid rafts). Table 1 and Figure 9 are very beneficial to summarize the findings. The lower interaction with cholesterol and lower membrane diffusion in V229A GLP-1R resembles the reduced diffusion of wt GLP-1R with simv-induced cholesterol reductions, although by presumably decreasing the cholesterol available to interact with wt GLP-1R. This could be interesting to see if lowering cholesterol alters other behaviors of wt GLP-1R that look similar to V229A GLP-1R. I further wonder if the authors expect that increased cholesterol content of islets (with loading of MβCD saturated with cholesterol or high-cholesterol diets) would elevate baseline GLP-1R membrane diffusion, and if a more broad relationship can be drawn between GLP-1R membrane movement and downstream signaling.

      Membrane diffusion experiments are difficult to perform in intact islets as our method requires cell monolayers for RICS analysis. We do however agree that it would be interesting to perform further RICS analysis in INS-1 832/3 SNAP/FLAG-hGLP-1R cells pretreated with vehicle or MβCD loaded with 20 mM cholesterol, and we will therefore add this experiment to the paper revisions.

      Weaknesses:

      I think there are no obvious weaknesses in this manuscript and overall, I believe the authors achieved their aims and have demonstrated the importance of cholesterol interactions on GLP-1R functioning in beta-cells. I think this paper will be of interest to many physiologists who may not be familiar with many of the techniques used in this paper and the authors largely do a good job explaining the goals of using each method in the results section.

      The intent of some methods, for example the Laurdan probe studies, are better expanded in the discussion.

      To clarify the intent of the Laurdan experiments early in the manuscript, we will add the following text to the methods section in the paper revisions: “Laurdan, 6-dodecanoyl-2-dimethylaminonaphthalene (product D250) was purchased from ThermoFisher.  Laurdan (40 μM) was excited using a 405 nm solid state laser and SNAP/FLAG-hGLP-1R labelled with SNAP-Surface Alexa Fluor 647 with a pulsed (80 MHz) super-continuum white light laser at 647 nm. Laurdan emission was recorded in the ranges of 420–460 nm (IB) and 470–510 nm (IR), and the general polarisation (GP) formula (GP = IB-IR/IB+IR) used to retrieve the relative lateral packing order of lipids at the plasma membrane. Values of GP vary from 1 to −1, where higher numbers reflect lower fluidity or higher lateral lipid order, whereas lower numbers indicate increasing fluidity.”

      I found it unclear what exactly was being measured to assess 'receptor activity' in Fig 7E and F. 

      Figs. 7E and F refer to bystander complementation assays measuring the recruitment of nanobody 37 (Nb37)-SmBiT, which binds to active Gas, to either the plasma membrane (labelled with KRAS CAAX motif-LgBiT), or to endosomes (labelled with Endofin FYVE domain-LgBiT) in response to GLP-1R stimulation with exendin-4. This assay therefore measures GLP-1R activation specifically at each of these two subcellular locations. We will add a schematic of this assay to the methods section in the paper revisions to clarify the aim of these experiments.

      Certainly many follow-up experiments are possible from these initial findings and of primary interest is how this mutation affects insulin homeostasis in vivo under different physiological conditions. One of the biggest pathologies in insulin homeostasis in obesity/t2d is an elevation of baseline insulin release (as modeled in Fig 1E) that renders the fold-change in glucose stimulated insulin levels lower and physiologically less effective. No difference in primary mouse islet baseline insulin secretion was seen here but I wonder if this mutation would ameliorate diet-induced baseline hyperinsulinemia.

      We concur with the reviewer that it would be interesting to determine the effects of the GLP-1R V229A mutation on insulin secretion responses under diet-induced metabolic stress conditions. While performing in vivo experiments on glucoregulation in mice harbouring the V229A mutation falls outside the scope of the present study, in the paper revisions we will include ex vivo insulin secretion experiments in islets from GLP-1R KO mice transduced with adenoviruses expressing SNAP/FLAG-hGLP-1R WT or V229A and subsequently treated with vehicle versus MβCD loaded with 20 mM cholesterol to replicate the conditions of Fig. 1E.

      I would have liked to see the actual islet cholesterol content after 5wks high-cholesterol diet measured to correlate increased cholesterol load with diminished glucose-stimulated inulin. While not necessary for this paper, a comparison of islet cholesterol content after this cholesterol diet vs the more typical 60% HFD used in obesity research would be beneficial for GLP-1 physiology research broadly to take these findings into consideration with model choice.

      We will include these data and compare islet cholesterol levels after the high cholesterol diet with those of HFD-fed mouse islets in the paper revisions.

      Another area to further investigate is does this mutation alter ex4 interaction/affinity/time of binding to GLP-1 or are all of the described findings due to changes in behavior and function of the receptor?

      To answer this question, we will perform exendin-4 binding affinity experiments in INS-1 832/3 SNAP/FLAG-hGLP-1R WT versus V229A cells for the paper revisions.

      Lastly, I wonder if V229A would have the same impact in a different cell type, especially in neurons? How similar are the cholesterol profiles of beta-cells and neurons? How this mutation (and future developed small molecules) may affect satiation, gut motility, and especially nausea, are of high translational interest. The comparison is drawn in the discussion between this mutation and ex4-phe1 to have biased agonism towards Gs over beta-arrestin signaling. Ex4-phe1 lowered pica behavior (a proxy for nausea) in the authors previously co-authored paper on ex4-phe1 (PMID 29686402) and I think drawing a parallel for this mutation or modification of cholesterol binding to potentially mitigate nausea is worth highlighting.

      While experiments in neurons are outside the scope of the present study, we will add this worthy point to the discussion and hypothesise on possible effects of the V229A mutation on central GLP-1R effects in the revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank the reviewers and the editorial team for a thoughtful and constructive assessment. We appreciate all comments, and we try our best to respond appropriately to every reviewer’s queries below. It appears to us that one main worry was regarding appropriate modelling of the complex and rich structure of confounding variables in our movie task. 

      One recent approach fits large feature vectors that include confounding variables along the variable(s) of interest to the activity of each voxel in the brain to disentangle the contributions of each variable to the total recorded brain response. While these encoding models have yielded some interesting results, they have two major drawbacks which makes using them unfeasible for our purposes (as we explain in more detail below): first, by fitting large vectors to individual voxels, they tend to over-estimate effect size; second, they are very ineffective at unveiling group-level effects due to high variability between subjects. Another approach able to deal with at least the second of these worries is “inter-subject-correlation”. In this technique brain responses are recorded from multiple subjects while they are presented with natural stimuli. For each brain area, response time courses from different subjects are correlated to determine whether the responses are similar across subjects. Our “peak and valley” analysis is a special case of this analysis technique, as we explain in the manuscript and below. 

      For estimating individual-level brain-activation, we opted for an approach that adapts a classical method of analysing brain data – convolution - to naturalistic settings. Amplitude modulated deconvolution extends classical brain analysis tools in several ways to handle naturalistic data:

      (1) The method does not assume a fixed hemodynamic response function (HRF). Instead, it estimates the HRF over a specified time window from the data, allowing it to vary in amplitude based on the stimulus. This flexibility is crucial for naturalistic stimuli, where the timing and nature of brain responses can vary widely. 

      (2) The method only models the modulation of the amplitude of the HRF above its average with respect to the intensity or characteristics of the stimulus. 

      (3) By allowing variation in the response amplitude, non-linear relationships between the stimulus and brain-response can be captured. 

      It is true that amplitude modulated deconvolution does not come without its flaws – for example including more than a few nuisance regressors becomes computationally very costly. Getting to grips with naturalistic data (especially with fMRI recordings) continuous to be an active area of research and presents a new and exciting challenge. We hope that we can convince reviewers and editors with this response and the additional analyses and controls performed, that the evidence presented for the visual context dependent recruitment of brain areas for abstract and concrete conceptual processing is not incomplete. 

      Overview of Additional Analyses and Controls Performed by the Authors:

      (1) Individual-Level Peaks and Valleys Analysis (Supplementary Material, Figures S3, S4, and S5)

      (2) Test of non-linear correlations of BOLD responses related to features used in the Peak and Valley Analysis (Supplementary Material, Figures S6, S7)

      (3) Comparison of Psycholinguistic Variables Surprisal and Semantic Diversity between groups of words analysed (no significant differences found)  

      (4) Comparison of Visual Variables Optical Flow, Colour Saturation, and Spatial Frequency for 2s Context Window between groups of words analysed (no significant differences found)

      These controls are in addition to the five low-level nuisance regressors included in our model, which are luminance, loudness, duration, word frequency, and speaking rate (calculated as the number of phonemes divided by duration) associated with each analysed word. 

      Public Reviews:

      Reviewer #1 (Public Review):

      Peaks and Valleys Analysis: 

      (1) Doesn't this method assume that the features used to describe each word, like valence or arousal, will be linearly different for the peaks and valleys? What about non-linear interactions between the features and how they might modulate the response? 

      Within-subject variability in BOLD response delays is typically about 1 second at most (Neumann et al., 2003). As individual words are presented briefly (a few hundred Ms at most) and the BOLD response to these stimuli falls within that window (1s/TR), any nonlinear interactions between word features and a participant’s BOLD response within that window are unlikely to significantly affect the detection of peaks and valleys.

      To quantitatively address the concern that non-linear modulations could manifest outside of that window, we include a new analysis in Figure S6, which compares the average BOLD responses of each participant in each cluster and each combination of features, showing that only a very few of all possible comparisons differ significantly from each other (~ 5000 combinations of features were significantly different from each other given an overall number of ~130.000 comparisons between BOLD responses to features, which amounts to 3.85%), suggesting that there are no relevant non-linear interactions between features. For a full list of the most non-linearly interacting features see Figure S7. 

      (2) Doesn't it also assume that the response to a word is infinitesimal and not spread across time? How does the chosen time window of analysis interact with the HRF? From the main figures and Figures S2-S3 there seem to be differences based on the timelag. 

      The Peak and Valley (P&V) method does not assume that the response to a word is infinitesimal or confined to an instantaneous moment. The units of analysis (words) fall within one TR, as they are at most hundreds of Ms long – for this reason, we are looking at one TR only. The response of each voxel at that TR will be influenced by the word of interest, as well as all other words that have been uttered within the 1s TR, and the multimodal features of the video stimulus that fall within that timeframe. So, in our P&V, we are not looking for an instantaneous response but rather changes in the BOLD signal that correspond to the presence of linguistic features within the stimuli. 

      The chosen time window of analysis interacts with the human response function (HRF) in the following way: the HRF unfolds over several seconds, typically peaking around 5-6 seconds after stimulus onset and returning to baseline within 20-30 seconds (Handwerker et al., 2004).

      Our P&V is designed to match these dynamics of fMRI data with the timing of word stimuli. We apply different lags (4s, 5s, and 6s) to account for the delayed nature of the HRF, ensuring that we capture the brain's response to the stimuli as it unfolds over time, rather than assuming an immediate or infinitesimal effect. We find that the P&V yields our expected results for a 5s and a 6s lag, but not a 4s lag. This is in line with literature suggesting that the HRF for a given stimulus peaks around 5-6s after stimulus onset (Handwerker et al., 2004). As we are looking at very short stimuli (a few hundred ms) it makes sense that the distribution of features would significantly change with different lags. The fact that we find converging results for both a 5s and 6s lag, suggests that the delay is somewhere between 5s and 6s. There is no way of testing this hypothesis with the resolution of our brain data, however (1 TR). 

      (3) Were the group-averaged responses used for this analysis? 

      Yes, the response for each cluster was averaged across participants. We now report a participant-level overview of the Peak and Valley analysis (lagged at 5s) with similar results as the main analysis in the supplementary material see Figures S3, S4, and S5.

      (4) Why don't the other terms identified in Figure 5 show any correspondence to the expected categories? What does this mean? Can the authors also situate their results with respect to prior findings as well as visualize how stable these results are at the individual voxel or participant level? It would also be useful to visualize example time courses that demonstrate the peaks and valleys. 

      The terms identified in figure 5 are sensorimotor and affective features from the combined Lancaster and Brysbaert norms. As for the main P&V analysis, we only recorded a cluster as processing a given feature (or term) when there were significantly more instances of words highly rated in that dimension occurring at peaks rather than valleys in the HRF. For some features/terms, there were never significantly more words highly rated on that dimension occurring at peaks compared to valleys, which is why some terms identified in figure 5 do not show any significant clusters.  We have now also clarified this in the figure caption. 

      We situate the method in previous literature in lines 289 – 296. In essence, it is a variant of the well-known method called “reverse correlation” first detailed in Hasson et al., 2004 (reference from the manuscript) and later adapter to a peak and valley analysis in Skipper et al., 2009 (reference from the manuscript). 

      We now present a more fine-grained characterisation of each cluster on an individual participant level in the supplementary material. We doubt that it would be useful to present an actual example time-course as it would only represent a fraction of over one hundred thousand analysed time-series. We do already present an exemplary time-course to demonstrate the method in Figure 1. 

      Estimating contextual situatedness: 

      (1) Doesn't this limit the analyses to "visual" contexts only? And more so, frequently recognized visual objects? 

      Yes, it was the point of this analysis to focus on visual context only, and it may be true that conducting the analysis in this way results in limiting it to objects that are frequently recognized by visual convolutional neural networks. However, the state-of-the-art strength of visual CNNs in recognising many different types of objects has been attested in several ways (He et al., 2015). Therefore, it is unlikely that the use of CNNs would bias the analysis towards any specific “frequently recognised” objects. 

      (2) The measure of situatedness is the cosine similarity of GloVe vectors that depend on word co-occurrence while the vectors themselves represent objects isolated by the visual recognition models. Expectedly, "science" and the label "book" or "animal" and the label "dog" will be close. But can the authors provide examples of context displacement? I wonder if this just picks up on instances where the identified object in the scene is unrelated to the word. How do the authors ensure that it is a displacement of context as opposed to the two words just being unrelated? This also has a consequence on deciding the temporal cutoff for consideration (2 seconds). 

      The cosine similarity is between the GloVe vectors of the word (that is situated or displaced) and the words referring to the objects identified by the visual recognition model. Therefore, the correlation is between more than just two vectors and both correlated representations depend on co-occurrence. The cosine similarity value reported is not from a comparison between GloVe vectors and vectors that are (visual) representations of objects from the visual recognition model. 

      A word is displaced if all the identified object-words in the defined context window (2s before word-onset) are unrelated to the word (_see lines 105-110 (pg. 5); lines 371-380 pg. 1516 and Figure 2 caption). Thus, a word is considered to be displaced if _all identified objects (not just two as claimed by the reviewer) in the scene are unrelated to the word. Given a context of 60 frames and an average of 5 identified objects per frame (i.e. an average candidate set of 300 objects that could be related) per word, the bar for “displacement” is set high. We provide some further considerations justifying the context window below in our responses to reviewers 2 and 3. 

      (3) While the introduction motivated the problem of context situatedness purely linguistically, the actual methods look at the relationship between recognized objects in the visual scene and the words. Can word surprisal or another language-based metric be used in place of the visual labeling? Also, it is not clear how the process identified in (2) above would come up with a high situatedness score for abstract concepts like "truth". 

      We disagree with the reviewer that the introduction motivated the problem of context situatedness purely linguistically, as we explicitly consider visual context in the abstract as well as the introduction. Examples in text include lines 71-74 and lines 105-115. This is also reflected in the cited studies that use visual context, including Kalenine et al., 2014; Hoffmann et al., 2013; Yee & Thompson-Schill, 2016; Hsu et al., 2011. However, we appreciate the importance of being very clear about this point, so we added various mentions of this fact at the beginning of the introduction to avoid confusion.

      We know that prior linguistic context (e.g. measured by surprisal) does affect processing. The point of the analysis was to use a non-language-based metric of visual context to understand how this affects conceptual representation in naturalist settings. Therefore, it is not clear to us why replacing this with a language-based metric such as surprisal would be an adequate substitution. However, the reviewer is correct that we did not control for the influence of prior context. We obtained surprisal values for each of our words but could not find any significant differences between conditions and therefore did not include this factor in the analyses conducted.  For considerations of differences in surprisal between each of the analysed sets of words, see the supplementary material.  

      The method would yield a high score of contextual situatedness for abstract concepts if there were objects in the scene whose GloVe embeddings have a close cosine distance to the GloVe embedding of that abstract word (e.g., “truth” and “book”). We believe this comment from the reviewer is rooted in a misconception of our method. They seem to think we compared GloVe vectors for the spoken word with vectors from a visual recognition model directly (in which case it is true that there would be a concern about how an abstract concept like “truth” could have a high situatedness). Apart from the fact that there would be concerns about the comparability of vectors derived from GloVe and a visual recognition model more generally, this present concern is unwarranted in our case, as we are comparing GloVe embeddings.  

      (4) It is a bit hard to see the overlapping regions in Figures 6A-C. Would it be possible to show pairs instead of triples? Like "abstract across context" vs. "abstract displaced"? Without that, and given (2) above, the results are not yet clear. Moreover, what happens in the "overlapping" regions of Figure 3? 

      To make this clearer, we introduced the contrasts (abstract situated vs displaced and concrete situated vs displaced) that were previously in the supplementary materials in the main text (now Figure 6, this was also requested by reviewer 2). We now show the overlap between the abstract situated (from the contrast in Figure 6) with concrete across context and the overlap between concrete displaced (from the contrast in Figure 6) with abstract across context separately in Figure 7. 

      The overlapping regions of Figure 3 indicate that both concrete and abstract concepts are processed in these regions (though at different time-points). We explain why this is a result of our deconvolution analysis on page 23:  

      “Finally, there was overlap in activity between modulation of both concreteness and abstractness (Figure 3, yellow). The overlap activity is due to the fact that we performed general linear tests for the abstract/concrete contrast at each of the 20 timepoints in our group analysis. Consequently, overlap means that activation in these regions is modulated by both concrete and abstract word processing but at different time-scales. In particular, we find that activity modulation associated with abstractness is generally processed over a longer time-frame. In the frontal, parietal, and temporal lobes, this was primarily in the left IFG, AG, and STG, respectively. In the occipital lobe, processing overlapped bilaterally around the calcarine sulcus.”

      Miscellaneous comments: 

      (1) In Figure 3, it is surprising that the "concrete-only" regions dominate the angular gyrus and we see an overrepresentation of this category over "abstract-only". Can the authors place their findings in the context of other studies? 

      The Angular Gyrus (AG) is hypothesised to be a general semantic hub; therefore it is not surprising that it should be active for general conceptual processing (and there is some overlap activation in posterior regions). We now situate our results in a wider range of previous findings in the results section under “Conceptual Processing Across Context”. 

      “Consistent with previous studies, we predicted that across naturalistic contexts, concrete and abstract concepts are processed in a separable set of brain regions. To test this, we contrasted concrete and abstract modulators at each time point of the IRF (Figure 3). This showed that concrete produced more modulation than abstract processing in parts of the frontal lobes, including the right posterior inferior frontal gyrus (IFG) and the precentral sulcus (Figure 3, red). Known for its role in language processing and semantic retrieval, the IFG has been hypothesised to be involved in the processing of action-related words and sentences, supporting both semantic decision tasks and the retrieval of lexical semantic information (Bookheimer, 2002; Hagoort, 2005). The precentral sulcus is similarly linked to the processing of action verbs and motor-related words (Pulvermüller, 2005). In the temporal lobes, greater modulation occurred in the bilateral transverse temporal gyrus and sulcus, planum polare and temporale. These areas, including primary and secondary auditory cortices, are crucial for phonological and auditory processing, with implications for the processing of sound-related words and environmental sounds (Binder et al., 2000). The superior temporal gyrus (STG) and sulcus (STS) also showed greater modulation for concrete words and these are said to be central to auditory processing and the integration of phonological, syntactic, and semantic information, with a particular role in processing meaningful speech and narratives (Hickok & Poeppel, 2007). In the parietal and occipital lobes, more concrete modulated activity was found bilaterally in the precuneus, which has been associated with visuospatial imagery, episodic memory retrieval, and self-processing operations and has been said to contribute to the visualisation aspects of concrete concepts (Cavanna & Trimble, 2006). More activation was also found in large swaths of the occipital cortices (running into the inferior temporal lobe), and the ventral visual stream. These regions are integral to visual processing, with the ventral stream (including areas like the fusiform gyrus) particularly involved in object recognition and categorization, linking directly to the visual representation of concrete concepts (Martin, 2007). Finally, subcortically, the dorsal and posterior medial cerebellum were more active bilaterally for concrete modulation. Traditionally associated with motor function, some studies also implicate the cerebellum in cognitive and linguistic processing, including the modulation of language and semantic processing through its connections with cerebral cortical areas (Stoodley & Schmahmann, 2009).

      Conversely, activation for abstract was greater than concrete words in the following regions (Figure 3, blue): In the frontal lobes, this included right anterior cingulate gyrus, lateral and medial aspects of the superior frontal gyrus. Being involved in cognitive control, decision-making, and emotional processing, these areas may contribute to abstract conceptualization by integrating affective and cognitive components (Shenhav et al., 2013). More left frontal activity was found in both lateral and medial prefrontal cortices, and in the orbital gyrus, regions which are key to social cognition, valuation, and decision-making, all domains rich in abstract concepts (Amodio & Frith, 2006). In the parietal lobes, bilateral activity was greater in the angular gyri (AG) and inferior parietal lobules, including the postcentral gyrus. Central to the default mode network, these regions are implicated in a wide range of complex cognitive functions, including semantic processing, abstract thinking, and integrating sensory information with autobiographical memory (Seghier, 2013). In the temporal lobes, activity was restricted to the STS bilaterally, which plays a critical role in the perception of intentionality and social interactions, essential for understanding abstract social concepts (Frith & Frith, 2003). Subcortically, activity was greater, bilaterally, in the anterior thalamus, nucleus accumbens, and left amygdala for abstract modulation. These areas are involved in motivation, reward processing, and the integration of emotional information with memory, relevant for abstract concepts related to emotions and social relations (Haber & Knutson, 2010, Phelps & LeDoux, 2005).

      Finally, there was overlap in activity between modulation of both concreteness and abstractness (Figure 3, yellow). The overlap activity is due to the fact that we performed general linear tests for the abstract/concrete contrast at each of the 20 timepoints in our group analysis. Consequently, overlap means that activation in these regions is modulated by both concrete and abstract word processing but at different time-scales. In particular, we find that activity modulation associated with abstractness is generally processed over a longer time-frame (for a comparison of significant timing differences see figure S9). In the frontal, parietal, and temporal lobes, this was primarily in the left IFG, AG, and STG, respectively. Left IFG is prominently involved in semantic processing, particularly in tasks requiring semantic selection and retrieval and has been shown to play a critical role in accessing semantic memory and resolving semantic ambiguities, processes that are inherently time-consuming and reflective of the extended processing time for abstract concepts (Thompson-Schill et al., 1997; Wagner et al., 2001; Hofman et al., 2015). The STG, particularly its posterior portion, is critical for the comprehension of complex linguistic structures, including narrative and discourse processing. The processing of abstract concepts often necessitates the integration of contextual cues and inferential processing, tasks that engage the STG and may extend the temporal dynamics of semantic processing (Ferstl et al., 2008; Vandenberghe et al., 2002). In the occipital lobe, processing overlapped bilaterally around the calcarine sulcus, which is associated with primary visual processing (Kanwisher et al., 1997; Kosslyn et al., 2001).”

      The finding that concrete concepts activate more brain voxels compared to abstract concepts is generally aligned with existing research, which often reports more extensive brain activation for concrete versus abstract words. This is primarily due to the richer sensory and perceptual associations tied to concrete concepts - see for example Binder et al., 2005 (figure 2 in the paper). Similarly, a recent meta-analysis by Bucur & Pagano (2021) consistently found wider activation networks for the “concrete > abstract” contrast compared to the “abstract > concrete contrast”.   

      (2) The following line (Pg 21) regarding the necessary differences in time for the two categories was not clear. How does this fall out from the analysis method? 

      - Both categories overlap **(though necessarily at different time points)** in regions typically associated with word processing - 

      This is answered in our response above to point (4) in the reviewer’s comments. We now also provide more information on the temporal differences in the supplementary material (Figure S9). 

      Reviewer #2 (Public Review):

      The critical contrasts needed to test the key hypothesis are not presented or not presented in full within the core text. To test whether abstract processing changes when in a situated context, the situated abstract condition would first need to be compared with the displaced abstract condition as in Supplementary Figure 6. Then to test whether this change makes the result closer to the processing of concrete words, this result should be compared to the concrete result. The correlations shown in Figure 6 in the main text are not focused on the differences in activity between the situated and displaced words or comparing the correlation of these two conditions with the other (concrete/abstract) condition. As such they cannot provide conclusive evidence as to whether the context is changing the processing of concrete/abstract words to be closer to the other condition. Additionally, it should be considered whether any effects reflect the current visual processing only or more general sensory processing. 

      The reviewer identifies the critical contrast as follows:

      “The situated abstract condition would first need to be contrasted with the displaced abstract condition. Then, these results should be compared to the concrete result.” 

      We can confirm that this is indeed what had been done and we believe the reviewer’s confusion stems from a lack of clarity on our behalf. We have now made various clarifications on this point in the manuscript, and we changed the figures to make clear that our results are indeed based on the contrasts identified by this reviewer as the essential ones.

      Figure 6 in the main text now reflects the contrast between situated and displaced abstract and concrete conditions (as requested by the reviewer, this was previously Figure S7 from the supplementary material). To compare the results from this contrast to conceptual processing across context, we use cosine similarity, and we mention these results in the text. We furthermore show the overlap between the conditions of interest (abstract situated x concrete across context; concrete displaced x abstract across context) in a new figure (Figure 7) to bring out the spatial distribution of overlap more clearly.

      We also discussed the extent to which these effects reflect current visual processing only or more general sensory processing in lines 863 – 875 (pg. 33 and 34).   

      “In considering the impact of visual context on the neural encoding of concepts generally, it is furthermore essential to recognize that the mechanisms observed may extend beyond visual processing to encompass more general sensory processing mechanisms. The human brain is adept at integrating information across sensory modalities to form coherent conceptual representations, a process that is critical for navigating the multimodal nature of real-world experiences (Barsalou, 2008; Smith & Kosslyn, 2007). While our findings highlight the role of visual context in modulating the neural representation of abstract and concrete words, similar effects may be observed in contexts that engage other sensory modalities. For instance, auditory contexts that provide relevant sound cues for certain concepts could potentially influence their neural representation in a manner akin to the visual contexts examined in this study. Future research could explore how different sensory contexts, individually or in combination, contribute to the dynamic neural encoding of concepts, further elucidating the multimodal foundation of semantic processing.”

      Overall, the study would benefit from being situated in the literature more, including a) a more general understanding of the areas involved in semantic processing (including areas proposed to be involved across different sensory modalities and for verbal and nonverbal stimuli), and b) other differences between abstract and concrete words and whether they can explain the current findings, including other psycholinguistic variables which could be included in the model and the concept of semantic diversity (Hoffman et al.,). It would also be useful to consider whether difficulty effects (or processing effort) could explain some of the regional differences between abstract and concrete words (e.g., the language areas may simply require more of the same processing not more linguistic processing due to their greater reliance on word co-occurrence). Similarly, the findings are not considered in relation to prior comparisons of abstract and concrete words at the level of specific brain regions. 

      We now present an overview of the areas involved in semantic processing (across different sensory modalities for verbal and nonverbal stimuli) when we first present our results (section: “Conceptual Processing Across Context”).

      We looked at surprisal as a potential cofound and found no significant differences between any of the set of words analysed. Mean surprisal of concrete words is 22.19, mean surprisal of abstract words is 21.86. Mean surprisal ratings for concrete situated words are 21.98 bits, 22.02 bits for the displaced concrete words, 22.10 for the situated abstract words and 22.25 for the abstract displaced words. We also calculated the semantic diversity of all sets of words and found now significant differences between the sets. The mean values for each condition are: abstract_high (2.02); abstract_low (1.95); concrete_high (1.88); concrete_low (2.19); abstract_original (1.96); concrete_original (1.92). Hence processing effort related to different predictability (surprisal), or greater semantic diversity cannot explain our findings. 

      We submit that difficulty effects do not explain any aspects of the activation found for conceptual processing, because we included word frequency in our model as a nuisance regressor and found no significant differences associated with surprisal. Previous work shows that surprisal (Hale, 2001) and word frequency (Brysbaert & New, 2009) are good controls for processing difficulty.

      Finally, we added considerations of prior findings comparing abstract and concrete words at the level of specific brain regions to the discussion (section: Conceptual Processing Across Context). 

      The authors use multiple methods to provide a post hoc interpretation of the areas identified as more involved in concrete, abstract, or both (at different times) words. These are designed to reduce the interpretation bias and improve interpretation, yet they may not successfully do so. These methods do give some evidence that sensory areas are more involved in concrete word processing. However, they are still open to interpretation bias as it is not clear whether all the evidence is consistent with the hypotheses or if this is the best interpretation of individual regions' involvement. This is because the hypotheses are provided at the level of 'sensory' and 'language' areas without further clarification and areas and terms found are simply interpreted as fitting these definitions. For instance, the right IFG is interpreted as a motor area, and therefore sensory as predicted, and the term 'autobiographical memory' is argued to be interoceptive. Language is associated with the 'both' cluster, not the abstract cluster, when abstract >concrete is expected to engage language more. The areas identified for both vs. abstract>concrete are distinguished in the Discussion through the description as semantic vs. language areas, but it is not clear how these are different or defined. Auditory areas appear to be included in the sensory prediction at times and not at others. When they are excluded, the rationale for this is not given. Overall, it is not clear whether all these areas and terms are expected and support the hypotheses. It should be possible to specify specific sensory areas where concrete and abstract words are predicted to be different based on a) prior comparisons and/or b) the known locations of sensory areas. Similarly, language or semantic areas could be identified using masks from NeuroSynth or traditional metaanalyses.  A language network is presented in Supplementary Figure 7 but not interpreted, and its source is not given. 

      “The language network” was extracted through neurosynth and projected onto the “overlap” activation map with AFNI. We now specify this in the figure caption. 

      Alternatively, there could be a greater interpretation of different possible explanations of the regions found with a more comprehensive assessment of the literature. The function of individual regions and the explanation of why many of these areas are interpreted as sensory or language areas are only considered in the Discussion when it could inform whether the hypotheses have been evidenced in the results section. 

      We added extended considerations of this to the results (as requested by the reviewer) in the section “Conceptual Processing Across Contexts”. 

      “Consistent with previous studies, we predicted that across naturalistic contexts, concrete and abstract concepts are processed in a separable set of brain regions. To test this, we contrasted concrete and abstract modulators at each time point of the IRF (Figure 3). This showed that concrete produced more modulation than abstract processing in parts of the frontal lobes, including the right posterior inferior frontal gyrus (IFG) and the precentral sulcus (Figure 3, red). Known for its role in language processing and semantic retrieval, the IFG has been hypothesised to be involved in the processing of action-related words and sentences, supporting both semantic decision tasks and the retrieval of lexical semantic information (Bookheimer, 2002; Hagoort, 2005). The precentral sulcus is similarly linked to the processing of action verbs and motor-related words (Pulvermüller, 2005). In the temporal lobes, greater modulation occurred in the bilateral transverse temporal gyrus and sulcus, planum polare and temporale. These areas, including primary and secondary auditory cortices, are crucial for phonological and auditory processing, with implications for the processing of sound-related words and environmental sounds (Binder et al., 2000). The superior temporal gyrus (STG) and sulcus (STS) also showed greater modulation for concrete words and these are said to be central to auditory processing and the integration of phonological, syntactic, and semantic information, with a particular role in processing meaningful speech and narratives (Hickok & Poeppel, 2007). In the parietal and occipital lobes, more concrete modulated activity was found bilaterally in the precuneus, which has been associated with visuospatial imagery, episodic memory retrieval, and self-processing operations and has been said to contribute to the visualisation aspects of concrete concepts (Cavanna & Trimble, 2006). More activation was also found in large swaths of the occipital cortices (running into the inferior temporal lobe), and the ventral visual stream. These regions are integral to visual processing, with the ventral stream (including areas like the fusiform gyrus) particularly involved in object recognition and categorization, linking directly to the visual representation of concrete concepts (Martin, 2007). Finally, subcortically, the dorsal and posterior medial cerebellum were more active bilaterally for concrete modulation. Traditionally associated with motor function, some studies also implicate the cerebellum in cognitive and linguistic processing, including the modulation of language and semantic processing through its connections with cerebral cortical areas (Stoodley & Schmahmann, 2009).

      Conversely,  activation for abstract was greater than concrete words in the following regions (Figure 3, blue): In the frontal lobes, this included right anterior cingulate gyrus, lateral and medial aspects of the superior frontal gyrus. Being involved in cognitive control, decisionmaking, and emotional processing, these areas may contribute to abstract conceptualization by integrating affective and cognitive components (Shenhav et al., 2013). More left frontal activity was found in both lateral and medial prefrontal cortices, and in the orbital gyrus, regions which are key to social cognition, valuation, and decision-making, all domains rich in abstract concepts (Amodio & Frith, 2006). In the parietal lobes, bilateral activity was greater in the angular gyri (AG) and inferior parietal lobules, including the postcentral gyrus. Central to the default mode network, these regions are implicated in a wide range of complex cognitive functions, including semantic processing, abstract thinking, and integrating sensory information with autobiographical memory (Seghier, 2013). In the temporal lobes, activity was restricted to the STS bilaterally, which plays a critical role in the perception of intentionality and social interactions, essential for understanding abstract social concepts (Frith & Frith, 2003). Subcortically, activity was greater, bilaterally, in the anterior thalamus, nucleus accumbens, and left amygdala for abstract modulation. These areas are involved in motivation, reward processing, and the integration of emotional information with memory, relevant for abstract concepts related to emotions and social relations (Haber & Knutson, 2010, Phelps & LeDoux, 2005).

      Finally, there was overlap in activity between modulation of both concreteness and abstractness (Figure 3, yellow). The overlap activity is due to the fact that we performed general linear tests for the abstract/concrete contrast at each of the 20 timepoints in our group analysis. Consequently, overlap means that activation in these regions is modulated by both concrete and abstract word processing but at different time-scales. In particular, we find that activity modulation associated with abstractness is generally processed over a longer timeframe (for a comparison of significant timing differences see figure S9). In the frontal, parietal, and temporal lobes, this was primarily in the left IFG, AG, and STG, respectively. Left IFG is prominently involved in semantic processing, particularly in tasks requiring semantic selection and retrieval and has been shown to play a critical role in accessing semantic memory and resolving semantic ambiguities, processes that are inherently timeconsuming and reflective of the extended processing time for abstract concepts (ThompsonSchill et al., 1997; Wagner et al., 2001; Hofman et al., 2015). The STG, particularly its posterior portion, is critical for the comprehension of complex linguistic structures, including narrative and discourse processing. The processing of abstract concepts often necessitates the integration of contextual cues and inferential processing, tasks that engage the STG and may extend the temporal dynamics of semantic processing (Ferstl et al., 2008; Vandenberghe et al., 2002). In the occipital lobe, processing overlapped bilaterally around the calcarine sulcus, which is associated with primary visual processing (Kanwisher et al., 1997; Kosslyn et al., 2001).”

      Additionally, these methods attempt to interpret all the clusters found for each contrast in the same way when they may have different roles (e.g., relate to different senses). This is a particular issue for the peaks and valleys method which assesses whether a significantly larger number of clusters is associated with each sensory term for the abstract, concrete, or both conditions than the other conditions. The number of clusters does not seem to be the right measure to compare. Clusters differ in size so the number of clusters does not represent the area within the brain well. Nor is it clear that many brain regions should respond to each sensory term, and not just one per term (whether that is V1 or the entire occipital lobe, for instance). The number of clusters is therefore somewhat arbitrary. This is further complicated by the assessment across 20 time points and the inclusion of the 'both' categories. It would seem more appropriate to see whether each abstract and concrete cluster could be associated with each different sensory term and then summarise these findings rather than assess the number of abstract or concrete clusters found for each independent sensory term. In general, the rationale for the methods used should be provided (including the peak and valley method instead of other possible options e.g., linear regression). 

      We included an assessment of whether each abstract and concrete cluster could be associated with each different sensory term and then summarised these findings on a participant level in the supplementary material (Figures S3, S4, and S5). 

      Rationales for the Amplitude Modulated Deconvolution are now provided on page 10 (specifically the first paragraph under “Deconvolution Analysis” in the Methods section) and for the P&V on pages 13, 14 and 15 (under “Peaks and Valley” (particularly the first paragraph) in the Methods section). 

      The measure of contextual situatedness (how related a spoken word is to the average of the visually presented objects in a scene) is an interesting approach that allows parametric variation within naturalistic stimuli, which is a potential strength of the study. This measure appears to vary little between objects that are present (e.g., animal or room), and those that are strongly (e.g., monitor) or weakly related (e.g., science). Additional information validating this measure may be useful, as would consideration of the range of values and whether the split between situated (c > 0.6) and displaced words (c < 0.4) is sufficient.  

      The main validation of our measure of contextual situatedness derives from the high accuracy and reliability of CNNs in object detection and recognition tasks, as demonstrated in numerous benchmarks and real-world applications. 

      One reason for low variability in our measure of contextual situatedness is the fact that we compared the GloVe vector of each word of interest with an average GloVe vector of all object-words referring to objects present in 56 frames (~300 objects on average). This means that a lot of variability in similarity measures between individual object-words and the word of interest is averaged out. Notwithstanding the resulting low variability of our measure, we thought that this would be the more conservative approach, as even small differences between individual measures (e.g. 0.4 vs 0.6) would constitute a strong difference on average (across the 300 objects per context window).  Therefore, this split ensures a sufficient distinction between words that are strongly related to their visual context and those that are not – which in turn allows us to properly investigate the impact of contextual relevance on conceptual processing.

      Finally, the study assessed the relation of spoken concrete or abstract words to brain activity at different time points. The visual scene was always assessed using the 2 seconds before the word, while the neural effects of the word were assessed every second after the presentation for 20 seconds. This could be a strength of the study, however almost no temporal information was provided. The clusters shown have different timings, but this information is not presented in any way. Giving more temporal information in the results could help to both validate this approach and show when these areas are involved in abstract or concrete word processing. 

      We provide more information on the temporal differences of when clusters are involved in processing concrete and abstract concepts in the supplementary material (Figure S9) and refer to this information where relevant in the Methods and Results sections. 

      Additionally, no rationale was given for this long timeframe which is far greater than the time needed to process the word, and long after the presence of the visual context assessed (and therefore ignores the present visual context). 

      The 20-second timeframe for our deconvolution analysis is justified by several considerations. Firstly, the hemodynamic response function (HRF) is known to vary both across individuals and within different regions of the brain. To accommodate this variability and capture the full breadth of the HRF, including its rise, peak, and return to baseline, a longer timeframe is often necessary. The 20-second window ensures that we do not prematurely truncate the HRF, which could lead to inaccurate estimations of neural activity related to the processing of words. Secondly and related to this point, unlike model-based approaches that assume a canonical HRF shape, our deconvolution analysis does not impose a predefined form on the HRF, instead reconstructing the HRF from the data itself – for this, a longer time-frame is advantageous to get a better estimation of the true HRF. Finally, and related to this point, the use of the 'Csplin' function in our analysis provides a flexible set of basis functions for deconvolution, allowing for a more fine-grained and precise estimation of the HRF across this extended timeframe. The 'Csplin' function offers more interpolation between time points, which is particularly advantageous for capturing the nuances of the HRF as it unfolds over a longer time-frame. 

      Although we use a 20-second timeframe for the deconvolution analysis to capture the full HRF, the analysis is still time-locked to the onset of each visual stimulus. This ensures that the initial stages of the HRF are directly tied to the moment the word is presented, thus incorporating the immediate visual context. We furthermore include variables that represent aspects of the visual context at the time of word presentation in our models (e.g luminance) and control for motion (optical flow), colour saturation and spatial frequency of immediate visual context. 

      Reviewer #3 (Public Review):

      The context measure is interesting, but I'm not convinced that it's capturing what the authors intended. In analysing the neural response to a single word, the authors are presuming that they have isolated the window in which that concept is processed and the observed activation corresponds to the neural representation of that word given the prior context. I question to what extent this assumption holds true in a narrative when co-articulation blurs the boundaries between words and when rapid context integration is occurring. 

      We appreciate the reviewer's critical perspective on the contextual measure employed in our study. We agree that the dynamic and continuous nature of narrative comprehension poses challenges for isolating the neural response to individual words. However, the use of an amplitude modulated deconvolution analysis, particularly with the CSPLIN function, is a methodological choice to specifically address these challenges. Deconvolution allows us to estimate the hemodynamic response function (HRF) without assuming its canonical shape, capturing nuances in the BOLD signal that may reflect the integration of rapid contextual shifts (only beyond the average modulation of the BOLD signal. The CSPLIN function further refines this approach by offering a flexible basis set for modelling the HRF and by providing a detailed temporal resolution that can adapt to the variance in individual responses. 

      Our choice of a 20-second window is informed by the need to encompass not just the immediate response to a word but also the extended integration of the contextual information. This is consistent with evidence indicating that the brain integrates information over longer timescales when processing language in context (Hasson et al., 2015). The neural representation of a word is not a static snapshot but a dynamic process that evolves with the unfolding narrative. 

      Further, the authors define context based on the preceding visual information. I'm not sure that this is a strong manipulation of the narrative context, although I agree that it captures some of the local context. It is maybe not surprising that if a word, abstract or concrete, has a strong association with the preceding visual information then activation in the occipital cortex is observed. I also wonder if the effects being captured have less to do with concrete and abstract concepts and more to do with the specific context the displaced condition captures during a multimodal viewing paradigm. If the visual information is less related to the verbal content, the viewer might process those narrative moments differently regardless of whether the subsequent word is concrete or abstract. I think the claims could be tailored to focus less generally on context and more specifically on how visually presented objects, which contribute to the ongoing context of a multimodal narrative, influence the subsequent processing of abstract and concrete concepts.

      The context measure, though admittedly a simplification, is designed to capture the local visual context preceding word presentation. By using high-confidence visual recognition models, we ensure that the visual information is reliably extracted and reflects objects that have a strong likelihood of influencing the processing of subsequent words. We acknowledge that this does not capture the full richness of narrative context; however, it provides a quantifiable and consistent measure of the immediate visual environment, which is an important aspect of context in naturalistic language comprehension.

      With regards to the effects observed in the occipital cortex, we posit that while some activation might be attributable to the visual features of the narrative, our findings also reflect the influence of these features on conceptual processing. This is especially because our analysis only looks at the modulation of the HRF amplitude beyond the average response (so also beyond the average visual response) when contrasting between conditions of high and low visual-contextual association with important (audio-visual) control variables included in the model. 

      Lastly, we concur that both concrete and abstract words are processed within a multimodal narrative, which could influence their neural representation. We believe our approach captures a meaningful aspect of this processing, and we have refined our claims to specify the influence of visually presented objects on the processing of abstract and concrete concepts, rather than making broader assertions about multimodal context. We also highlight several other signals (e.g. auditory) that could influence processing. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The approach taken here requires a lot of manual variable selection and seems a bit roundabout. Why not build an encoding model that can predict the BOLD time course of each voxel in a participant from the feature-of-interest like valence etc. and then analyze if (1) certain features better predict activity in a specific region (2) the predicted responses/regression parameters are more positive (peaks) or more negative (valleys) for certain features in a specific brain region (3) maybe even use contextual features use a large language model and then per word (like "truth") analyze where the predicted responses diverge based on the associated context. This seems like a simpler approach than having multiple stages of analysis. 

      It is not clear to us why an encoding model would be more suitable for answering the question at hand (especially given that we tried to clarify concerns about non-linear relationships between variables). On the contrary, fitting a regression model to each individual voxel has several drawbacks. First, encoding models are prone to over-estimate effect sizes (Naselaris et al., 2011). Second, encoding models are not good at explaining group-level effects due to high variability between individual participants (Turner et al., 2018). We would also like to point out that an encoding model using features of a text-based LLM would not address the visual context question - unless the LLM was multimodal. Multimodal LLMs are a very recent research development in Artificial Intelligence, however, and models like LLaMA (adapter), Google’s Gemini, etc. are not truly multimodal in the sense that would be useful for this study, because they are first trained on text and later injected with visual data. This relates to our concern that the reviewer may have misunderstood that we are interested in purely visual context of words (not linguistic context).

      (2) In multiple analyses, a subset of the selected words is sampled to create a balanced set between the abstract and concrete categories. Do the authors show standard deviation across these sets? 

      For the subset of words used in the context-based analyses, we give mean ratings of concreteness, log frequency and length and conduct a t-test to show that these variables are not significantly different between the sets. We also included the psycholinguistic control variables surprisal and semantic diversity, as well as the visual variables motion (optical flow), colour saturation and spatial frequency.  

      Reviewer #2 (Recommendations For The Authors):

      Figures S3-5 are central to the argument and should be in the main text (potentially combined).  

      These have been added to the main text

      S5 says the top 3 terms are DMN (and not semantic control), but the text suggests the r value is higher for 'semantic control' than 'DMN'? 

      Fixed this in the text, the caption now reads: 

      “This was confirmed by using the neurosynth decoder on the unthresholded brain image - top keywords were “Semantic Control” and “DMN”.”

      Fig. S7 is very hard to see due to the use of grey on grey. Not used for great effect in the final sentence, but should be used to help interpret areas in the results section (if useful). It has not been specified how the 'language network' has been identified/defined here. 

      We altered the contrast in the figure to make boundaries more visible and specified how the language network was identified in the figure caption. 

      In the Results 'This showed that concrete produced more modulation than abstract modulation in the frontal lobes,' should be parts of /some of the frontal lobes as this isn't true overall. 

      Fixed this in the text.  

      There are some grammatical errors and lack of clarity in the context comparison section of the results. 

      Fixed these in the text.

      Reviewer #3 (Recommendations For The Authors):

      •  The analysis code should be shared on the github page prior to peer review.  

      The code is now shared under: https://github.com/ViktorKewenig/Naturalistic_Encoding_Concepts

      •  At several points throughout the methods section, information was referred to that had not yet been described. Reordering the presentation of this information would greatly improve interpretability. A couple of examples of this are provided below. 

      Deconvolution Analysis: the use of amplitude modulation regression was introduced prior to a discussion of using the TENT function to estimate the shape of the HRF. This was then followed by a discussion of the general benefits of amplitude modulation. Only after these paragraphs are the modulators/model structure described. Moving this information to the beginning of the section would make the analysis clearer from the onset. 

      Fixed this in the text

      Peak and Valley Analysis: the hypotheses regarding the sensory-motor features and experiential features are provided prior to describing how these features were extracted from the data (e.g., using the Lancaster norms). 

      Fixed this in the text.

      •  The justification for and description of the IRF approach seems overdone considering the timing differences are not analyzed further or discussed. 

      We now present a further discussion of timing differences in the supplementary material.

      •  The need and suitability of the cluster simulation method as implemented were not clear. The resulting maps were thresholded at 9 different p values and then combined, and an arbitrary cluster threshold of 20 voxels was then applied. Why not use the standard approach of selecting the significance threshold and corresponding cluster size threshold from the ClustSim table? 

      We extracted the original clusters at 9 different p values with the corresponding cluster size from the ClustSim table, then only included clusters that were bigger than 20 voxels.  

      •  Why was the center of mass used instead of the peak voxel? 

      Peak voxel analysis can be sensitive to noise and may not reliably represent the region's activation pattern, especially in naturalistic imaging data where signal fluctuations are more variable and outliers more frequent. The centre of mass provides a more stable and representative measure of the underlying neural activity. Another reason for using the center of mass is that it better represents the anatomical distribution of the data, especially in large clusters with more than 100 voxels where peak voxels are often located at the periphery. 

      • Figure 1 seems to reference a different Figure 1 that shows the abstract, concrete, and overlap clusters of activity (currently Figure 3). 

      Fixed this in the text.

      • Table S1 seems to have the "Touch" dimension repeated twice with different statistics reported. 

      Fixed this in the text, the second mention of the dimension “touch” was wrong.  

      • It appears from the supplemental files that the Peaks and Valley analysis produces different results at different lag times. This might be expected but it's not clear why the results presented in the main text were chosen over those in the supplemental materials. 

      The results in the main text were chosen over those in the supplementary material, because the HRF is said to peak at 5s after stimulus onset. We added a specification of this rational to the “2. Peak and Valley Analysis” subsection in the Methods section.  

      References (in order of appearance) 

      (1) Neumann J, Lohmann G, Zysset S, von Cramon DY. Within-subject variability of BOLD response dynamics. Neuroimage. 2003 Jul;19(3):784-96. doi: 10.1016/s10538119(03)00177-0. PMID: 12880807.

      (2) Handwerker DA, Ollinger JM, D'Esposito M. Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage. 2004 Apr;21(4):1639-51. doi: 10.1016/j.neuroimage.2003.11.029. PMID: 15050587.

      (3) Binder JR, Westbury CF, McKiernan KA, Possing ET, Medler DA. Distinct brain systems for processing concrete and abstract concepts. J Cogn Neurosci. 2005 Jun;17(6):90517. doi: 10.1162/0898929054021102. PMID: 16021798

      (4) Bucur, M., Papagno, C. An ALE meta-analytical review of the neural correlates of abstract and concrete words. Sci Rep 11, 15727 (2021). heps://doi.org/10.1038/s41598-021-94506-9 

      (5) Hale., J. 2001. A probabilistic earley parser as a psycholinguistic model. In Proceedings of the second meeting of the North American Chapter of the Association for Computational Linguistics on Language technologies (NAACL '01). Association for Computational Linguistics, USA, 1–8. heps://doi.org/10.3115/1073336.1073357

      (6) Brysbaert, M., New, B. Moving beyond Kučera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods 41, 977–990 (2009). heps://doi.org/10.3758/BRM.41.4.977 

      (7) Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., & Malach, R. (2004). Intersubject Synchronization of Cortical Activity During Natural Vision. Science, 303(5664), 6.

      (8) Naselaris T, Kay KN, Nishimoto S, Gallant JL. Encoding and decoding in fMRI. Neuroimage. 2011 May 15;56(2):400-10. doi: 10.1016/j.neuroimage.2010.07.073. Epub 2010 Aug 4. PMID: 20691790; PMCID: PMC3037423.

      (9) Turner BO, Paul EJ, Miller MB, Barbey AK. Small sample sizes reduce the replicability of task-based fMRI studies. Commun Biol. 2018 Jun 7;1:62. doi: 10.1038/s42003-0180073-z. PMID: 30271944; PMCID: PMC6123695.

      (10) He, K., Zhang, Y., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. Bioarchive (Tech Report). heps://doi.org/heps://doi.org/10.48550/arXiv.1512.03385

      (11) Hasson, U., & Egidi, G. (2015). What are naturalistic comprehension paradigms teaching us about language? In R. M. Willems (Ed.), Cognitive neuroscience of natural language use (pp. 228–255). Cambridge University Press. heps://doi.org/10.1017/CBO9781107323667.011

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The study made fundamental findings in investigations of the dynamic functional states during sleep. Twenty-one HMM states were revealed from the fMRI data, surpassing the number of EEG-defined sleep stages, which can define sub-states of N2 and REM. Importantly, these findings were reproducible over two nights, shedding new light on the dynamics of brain function during sleep.

      Strengths:

      The study provides the most compelling evidence on the sub-states of both REM and N2 sleep. Moreover, they showed these findings on dynamics states and their transitions were reproducible over two nights of sleep. These novel findings offered unique information in the field of sleep neuroimaging.

      Weaknesses:

      The only weakness of this study has been acknowledged by the authors: limited sample size.

      We thank the reviewer for the overall enthusiasm for this study.

      Reviewer #1 (Recommendations For The Authors):

      (1) Were there differences in the extent of head motion during sleep among sleep stages? How was the potential motion parameter differences handled during the statistical analyses?

      If there were large head motions that continued for a long time (e.g., longer than 1 minute), how did the authors deal with that scanning session? For an extremely long scanning session (3 hours), how was motion correction conducted? It would be great if the authors could provide more details.

      We found that N3 sleep stage had lowest head motion, followed by REM, N2, N1, and lastly Wake. In other words, participants have lower head motion during sleep than during Wakefulness. We added this information to the Supplemental Results, copied below.

      We performed standardized motion correction during preprocessing using AFNI regardless of the duration of the scans. We did not include motion parameters in the HMM model. Time frames with Excessive head motion (any of 6 head motion parameters exceeding 0.3 mm or degree) was censored. Previous analysis of the same data indicated that motion during extended sleep scans is comparable to the motion observed in shorter resting-state scans (Moehlman et al., 2019).

      In Supplemental Results, “Motion parameters with sleep stages.

      Averaged motion across six motion parameters decreased from wake to light sleep to deep sleep at night 2. For example, mean (standard deviation) motion for each sleep stage is as follows, N1: 0.043 (0.37); N2: 0.039 (0.033); N3: 0.035 (0.031); REM: 0.035 (0.032); Wake: 0.057 (0.052).

      Similarly, the percentage of timepoints retained after censoring decreased from wake to light sleep to deep sleep at night 2. N1: 91%; N2: 93%; N3: 96%; REM: 89%; Wake 90%.”

      In the method section, “Previous analysis of the same data indicated that motion during extended sleep scans is comparable to the motion observed in shorter resting-state scans (Moehlman et al., 2019). We also found that motion is lower during deep sleep compared to wake, see Supplemental Results.”

      (2) It is possible that the data input for the HMM analyses might vary among participants and between the two nights, how did the authors deal with this issue during statistical analyses?

      This is a great question. We standardized BOLD timecourses for each participant and each night to avoid differences among participants and between two nights. We revised the description in the method section to make this point clear.

      In the method section, “To prepare the data for analysis, we first standardized the participant-specific sets of 300 ROI timecourses (scaled to a mean of 0, and a standard deviation of 1), which were then concatenated across all participants. This standardization was performed separately for each night. ”

      (3) Figures 2 and 4, the top part seems to be missing, e.g., "Night 2" in Figure 2, and "N2-related" in Figure 4.

      Thank you for pointing out these errors. We fixed them.

      (4) Figure 3 seems to be more stretched vertically than horizontally.

      We revised the figure to ensure it appears balanced on both sides.

      Reviewer #2 (Public Review):

      Summary:

      Yang and colleagues used a Hidden Markov Model (HMM) on whole-night fMRI to isolate sleep and wake brain states in a data-driven fashion. They identify more brain states (21) than the five sleep/wake stages described in conventional PSG-based sleep staging, show that the identified brain states are stable across nights, and characterize the brain states in terms of which networks they primarily engage.

      Strengths:

      This work's primary strengths are its dataset of two nights of whole-night concurrent EEG-fMRI (including REM sleep), and its sound methodology.

      Weaknesses:

      The study's weaknesses are its small sample size and the limited attempts at relating the identified fMRI brain states back to EEG.

      We thank the reviewer for the positive feedback and helpful suggestions for this study.

      General appraisal:

      The paper's conclusions are generally well-supported, but some additional analyses and discussions could improve the work.

      The authors' main focus lies in identifying fMRI-based brain states, and they succeed at demonstrating both the presence and robustness of these states in terms of cross-night stability. Additional characterization of brain states in terms of which networks these brain states primarily engage adds additional insights.

      A somewhat missed opportunity is the absence of more analyses relating the HMM states back to EEG. It would be very helpful to the sleep field to see how EEG spectra of, say, different N2-related HMM states compare. Similarly, it is presently unclear whether anything noticeable happens within the EEG time course at the moment of an HMM class switch (particularly when the PSG stage remains stable). While the authors did look at slow wave density and various physiological signals in different HMM states, a characterization of the EEG itself in terms of spectral features is missing. Such analyses might have shown that fMRI-based brain states map onto familiar EEG substates, or reveal novel EEG changes that have so far gone unnoticed.

      We thank the reviewer for this great suggestion. We performed EEG spectral analysis on each HMM state. Results were added to Suppementary Results and Supplementary Figure 10 and 11 (Copied below). Specifically, we confirmed that N3-related states had highest Delta power and that the Deep-N2 module showed different spectral profiles compared to Light-N2 module.

      In Supplemental Results: “We conducted spectral analysis for each TR and calculated the average power spectrum for each common EEG brainwave—Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8-13 Hz), Beta (13-30 Hz), and Gamma (30-100 Hz)—across the 21 HMM states. See Supplementary Figure 10 and 11 for night 2 and night 1 data, respectively. As expected, we found that N3-related states 8 and 10 had highest Delta power in both nights. In addition, the Deep-N2 module had higher power in Theta and Alpha bands compared to the Light-N2 module.”

      It is unclear how the presently identified HMM brain states relate to the previously identified NREM and wake states by Stevner et al. (2019), who used a roughly similar approach. This is important, as similar brain states across studies would suggest reproducibility, whereas large discrepancies could indicate a large dependence on particular methods and/or the sample (also see later point regarding generalizability).

      This is a great question. There are some similarities and differences between the current study and Stevner et al. (2019). We discussed this in the Supplementary Discussion. Copied below.

      In the Supplementary Discussion: “Both studies demonstrated that HMM states can be effectively divided into meaningful modules solely based on transition probabilities. Furthermore, both studies indicated that pre-sleep wakefulness differs from post-sleep wakefulness.

      However, despite the similar approaches used, key differences in data acquisition and analysis make it challenging to directly compare HMM states between these two studies. Firstly, Stevner et al. (2019) collected only 1-hour-long sleep data from 18 participants, whereas our current study includes 8-hour-long sleep data from 12 participants for two consecutive nights. As discussed in the main text, full sleep cycling cannot be obtained from 1-hour long sleep due to the lack of REM stage and incomplete sleep cycles. Secondly, in Stevner et al. (2019) (Figure 4e), the four wake-NREM stages had roughly the same duration. In contrast, in our current study (Night 2, Figure 2A), the N2 stage comprises 43% of total sleep, which aligns with the natural N2 composition of nocturnal sleep stages. This discrepancy might explain the different number of N2-related states found in the two studies, with 3 out of 19 in Stevner et al. (2019) versus 13 out of 21 in our current study.”

      More justice could be done to previous EEG-based efforts moving beyond conventional AASM-defined sleep/wake states. Various EEG studies performed data-driven clustering of brain states, typically indicating more than 5 traditional brain states (e.g., Koch et al. 2014, Christensen et al. 2019, Decat. et al 2022). Beyond that, countless subdivisions of classical sleep stages have been proposed (e.g., phasic/tonic REM, N2 with/without spindles, N3 with global/local slow waves, cyclic alternating patterns, and many more). While these aren't incorporated into standard sleep stage classification, the current manuscript could be misinterpreted to suggest that improved/data-driven classifications cannot be achieved from EEG, which is incorrect.

      We agree with the reviewer that previous EEG-based efforts should be mentioned. We now added this in the manuscript. Copied below.

      In the Discussion section, “Third, we chose to not include EEG features in our data-driven model. However, the current method is not limited to fMRI data and can be applied to EEG data. Given that previous data-driven studies based on EEG data have suggested that there might be more than five traditional sleep stages (Christensen et al., 2019; Decat et al., 2022; Koch et al., 2014), as well as subdivisions within these traditional sleep stages (Brandenberger et al., 2005; Decat et al., 2022; Simor et al., 2020), future studies may apply data-driven models on both fMRI and EEG data. ”

      More discussion of the limitations of the current sample and generalizability would be helpful. A sample of N=12 is no doubt impressive for two nights of concurrent whole-night EEG-fMRI. Still, any data-driven approach can only capture the brain states that are present in the sample, and 12 individuals are unlikely to express all brain states present in the population of young healthy individuals. Add to that all the potentially different or altered brain states that come with healthy ageing, other demographic variables, and numerous clinical disorders. How do the authors expect their results to change with larger samples and/or varying these factors? Perhaps most importantly, I think it's important to mention that the particular number of identified brain states (here 21, and e.g. 19 in Stevner) is not set in stone and will likely vary as a function of many sample- and methods-related factors.

      We thank the reviewer for the great suggestions. We now included these points when discussing limitations in the Discussion section. We think that a HMM model with larger sample size might produce more fine-grained results, but this remains to be investigated when a more extensive dataset becomes available.

      In the Discussion section, “Secondly, while our study involved a relatively small number of participants (12), it included a large amount of fMRI data (~16 hours scan) per participant. Although the HMM trained on data from 12 participants was robust, the generalizability of the current results to different populations—such as healthy aging individuals and clinical populations—needs to be demonstrated in future studies, particularly with larger sample sizes and more diverse populations.”

      “Fourth, while we selected 21 HMM brain sleep states based on model evaluation parameters in the current study, the exact number of sleep states is not fixed and likely depends on various sample- and methods-related factors, such as sample size and model setups.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      Comment #1: Insufficient Network Analysis for Explainability: The paper does not sufficiently delve into network analysis to determine whether the model's predictions are based on accurately identifying and matching the 18 items of the ROCF or if they rely on global, item-irrelevant features. This gap in analysis limits our understanding of the model's decision-making process and its clinical relevance.

      Response #1: Thank you for your comment. We acknowledge the importance of understanding the decision-making process of AI models is crucial for their acceptance and utility in clinical settings. However, we believe that our current approach, which focuses on providing individual scores for each of the 18 items of the Rey-Osterrieth Complex Figure (ROCF), inherently offers a higher level of explainability and practical utility for clinicians than a network analysis could. Our multi-head convolutional neural network is designed with a dedicated output head for each of the 18 items in the ROCF, and thus provides separate scores for each of the 18 items in the ROCF. This architecture helps that the model focuses on individual elements rather than relying on global, item-irrelevant features.

      This item-specific approach directly aligns with the traditional clinical assessment method, thereby making the results more interpretable and actionable for clinicians. The individual scores for each item provide detailed insights into a patient's performance. Clinicians can use these scores to identify specific areas of strength and weakness in a patient's visuospatial memory and drawing abilities.

      Furthermore, we evaluated the model's performance on each of the 18 items separately, providing detailed metrics that show consistent accuracy across all items. This item-level performance analysis offers clear evidence that the model is not relying on irrelevant global features but is indeed making decisions based on the specific characteristics of each item. We believe that our approach provides a level of explainability that is directly useful and relevant to clinical practitioners.

      Comment #2: Generative Model Consideration: The critique suggests exploring generative models to model the joint distribution of images and scores, which could offer deeper insights into the relationship between scores and specific visual-spatial disabilities. The absence of this consideration in the study is seen as a missed opportunity to enhance the model's explainability and clinical utility.

      Response #2: Thank you for your thoughtful comment and the suggestion to explore generative models. We appreciate the potential benefits that generative models to model the joint distribution of images and scores. However, we chose not to pursue this approach in our study for several reasons: First, our primary goal was to develop a model that provides accurate and interpretable scores for each of the 18 individual items in the ROCF figure. Second, generative models, while powerful, would add a layer of complexity that might diminish the clarity and immediate clinical applicability of our results. Generative models, (particularly deep learning-based) can be challenging to interpret in terms of how they make decisions or why they produce specific outputs. This lack can be a concern in critical applications involving neurological and psychiatric disorders. Clinicians require tools that provide clear insights without the need for additional layers of analysis. Our current model provides detailed, item-specific scores that clinicians can directly use to assess visuospatial memory and drawing abilities. Initially, we explored using generative models (i.e. GANs) for data augmentation to address the scarcity of low-score images compared to high-score images. Moreover, for the low-score images, the same score can be achieved by numerous combinations of figure elements. However, due to our extensive available dataset, we did not observe any substantial performance improvements in our model. Nevertheless, future studies could explore generative models, such as Variational Autoencoders (VAEs) or Bayesian Networks, and test them on the data from the current prospective study to compare their performance with our results.

      In the revised manuscript, we have included additional sentences discussing the potential use of generative models and their implications for future research.

      “The data augmentation did not include generative models. Initially, we explored using generative models, specifically GANs, for data augmentation to address the scarcity of low-score images compared to high-score images. However, due to the extensive available dataset, we did not observe any substantial performance improvements in our model. Nevertheless, Future studies could explore generative models, such as Variational Autoencoders (VAEs) or Bayesian Networks, which can then be tested on the data from the current prospective study and compared with our results.”

      Comment #3: Lack of Detailed Model Performance Analysis Across Subject Conditions: The study does not provide a detailed analysis of the model's performance across different ages, health conditions, etc. This omission raises questions about the model's applicability to diverse patient populations and whether separate models are needed for different subject types.

      Response #3: Thank you for your this important comment. Although the initial version of our manuscript already provided detailed “item-specific” and “across total scores” performance metrics, we recognize the importance of including detailed analyses across different patient demographics to enhance the robustness and applicability of our findings. In response to your comment, we have conducted additional analyses that provide a comprehensive evaluation of model performance across various patient demographics, such as age groups, gender, and different neurological and psychiatric conditions. This additional analysis demonstrates the generalizability and reliability of our model across diverse populations. We have included these analyses in the revised manuscript.

      “In addition, we have conducted a comprehensive model performance analysis to evaluate our model's performance across different ROCF conditions (copy and recall), demographics (age, gender), and clinical statuses (healthy individuals and patients) (Figure 4A). These results have been confirmed in the prospective validation study (Supplementary Figure S6). Furthermore, we included an additional analysis focusing on specific diagnoses to assess the model's performance in diverse patient populations (Figure 4B). Our findings demonstrate that the model maintains high accuracy and generalizes well across various demographics and clinical conditions.”

      Comment #4: Data Augmentation: While the data augmentation procedure is noted as clever, it does not fully encompass all affine transformations, potentially limiting the model's robustness.

      Response #4: We appreciate your feedback on our data augmentation strategy. We acknowledge that while our current approach significantly improves robustness against certain semantic transformations, it may not fully cover all possible affine transformations.

      Here, we provide further clarification and justification for our chosen methods and their impact on the model's performance: In our study, we implemented a data augmentation pipeline to enhance the robustness of our model against common and realisitc geometric and semantic-preserving transformations. This pipeline included rotations, perspective changes, and Gaussian blur, which we found to be particularly effective in improving the model's resilience to variations in input data. These transformations are particularly relevant for the present application since users in real-life are likely to take pictures of drawings that might be slightly rotated or with a slightly tilted perspective. With these intuitions in mind, we randomly transformed drawings during training. Each transformation was a combination of Gaussian blur, a random perspective change, and a rotation with angles chosen randomly between -10° and 10°. These transformations are representative of realistic scenarios where images might be slightly tilted or photographed from different angles. We intentionally did not explicitly address all affine transformations, such as shearing or more complex geometric transformations because these transformations could alter the score of individual items of the ROCF and would be disruptive to the model.

      As noted in our manuscript and demonstrated in supplementary Figure S1, the data augmentation pipeline significantly improved the model's robustness against rotations and changes in perspective. Importantly, our tablet-based scoring application can further ensure that the photos taken do not exhibit excessive semantic transformations. By leveraging the gyroscope built into the tablet, the application can help users align the images properly, minimizing issues such as excessive rotation or skew. This built-in functionality helps maintain the quality and consistency of the images, reducing the likelihood of significant semantic transformations that could affect model performance.

      Comment #5: Additionally, the rationale for using median crowdsourced scores as ground truth, despite evidence of potential bias compared to clinician scores, is not adequately justified.

      Response #5: Thank you for this valuable comment. Clarifying the rationale behind using the median score of crowdsourcing as the ground truth is indeed important. To reach high accuracy in predicting individual sample scores of the ROCFs, it is imperative that the scores of the training set are based on a systematic scheme with as little human bias as possible influencing the score. However, our analysis (see results section) and previous work (Canham et al., 2000) suggested that the scoring conducted by clinicians may not be consistent, because the clinicians may be unwittingly influenced by the interaction with the patient/participant or by the clinicians factor (e.g. motivation and fatigue). For this reason and the incomplete availability of clinician scores for all figures (i.e. for 19% of the 20’225 figures), we did not use the clinicians scores as ground truth scores. Instead, we have trained a large pool (5000 workers) of human internet workers (crowdsourcing) to score ROCFs drawings guided by our self-developed interactive web application. Each element of the figure was scored by several human workers (13 workers on average per figure). We have obtained the ground truth for each drawing by computing the median for each item in the figure, and then summed up the medians to get the total score for the drawing in question. To further ensure high-quality data annotation, we identified and excluded crowdsourcing participants that have a high level of disagreement (>20% disagreement) with this rating from trained clinicians, who carefully scored manually a subset of the data in the same interactive web application.

      We chose the median score for several reasons: (1) the median score is less influenced by outliers compared to the mean. Given the variability of scoring between different clinicians and human workers (see human MSE and clinician MSE), using the median ensures that the ground truth is not skewed by extreme values, leading to more stable and reliable scores. (2) Crowdsource data do not always follow a normal distribution. In cases where the distribution is skewed or not symmetric, the median can be a more representative measure of the center. (3) The original scoring system involves ordinal scales (0,0.5,1,2). For ordinal scales, the median is often more appropriate than the mean. Finally, by aggregating multiple scores from a large pool of crowdsourced raters, the median provides a consensus that reflects the most common assessment. This approach mitigates the variability introduced by individual rater biases and ensures a more consistent ground truth. In clinical settings, the consensus of multiple expert opinions often serves as the benchmark for assessments. The use of median scores mirrors this practice, providing a ground truth that is representative of collective human judgment.

      Canham, R. O., S. L. Smith, and A. M. Tyrrell. 2000. “Automated Scoring of a Neuropsychological Test:

      The Rey Osterrieth Complex Figure.” Proceedings of the 26th Euromicro Conference. EUROMICRO 2000. Informatics: Inventing the Future. https://doi.org/10.1109/eurmic.2000.874519.

      Reviewer #2:

      Comment #1: There is no detail on how the final scoring app can be accessed and whether it is medical device-regulated.

      Response #1: We appreciate the opportunity to provide more information about the current status and plans for our scoring application. At this stage, the final scoring app is not publicly accessible as it is currently undergoing rigorous beta testing with a select group of clinicians in real-world settings. The feedback from these clinicians is instrumental in refining the app’s features, interface, and overall functionality to improve its usability and user experience. This ensures that the app meets the high standards required for clinical tools. Following the successful completion of the beta testing phase, we aim to seek FDA approval for the scoring app. Achieving this regulatory milestone will guarantee that the app meets the stringent requirements for medical devices, providing an additional layer of confidence in its safety and efficacy for clinical use. Once FDA approval is obtained, we plan to make the app publicly accessible to clinicians and healthcare institutions worldwide. Detailed instructions on how to access and use the app will be provided at that time on our website (https://www.psychology.uzh.ch/en/areas/nec/plafor/research/rfp.html).

      Comment #2: No discussion on the difference in sample sizes between the pre-registration of the prospective study and the results (e.g., aimed for 500 neurological patients but reported data from 288). Demographics for the assessment of the representation of healthy and non-healthy participants were not present.

      Response #2: Thank you for your comment. We believe there might have been a misunderstanding regarding our preregistration details. In the preregistration, we planned to prospectively acquire ROCF drawings from 1000 healthy subjects. Each subject should have drawn two ROCF drawings (copy and memory condition). Consequently, 2000 samples should have been collected. In addition, in our pre-registration plan, we aimed to collect 500 drawings from patients (i.e. 250 patients), not 500 patients as the reviewer suggested (https://osf.io/82796). Thus in total, the goal was to obtain 2500 ROCF figures. The final prospective data set, which contained 2498 ROCF images from 961 healthy adults and 288 patients very closely matches the sample size, we aimed for in the the pre-registration. We do not see a necessity to discuss this negligible discrepancy in the main manuscript. The prospective data set remains substantial and sufficient to test our model on the independent prospective data set. Importantly, we want to highlight that the test set in the retrospective data set (4045 figures) was also never seen by the model. Both the retrospective and prospective data sets demonstrate substantial global diversity as the data has been collected in 90 different countries. Please note, that Supplementary Figures S2 & S3 provide detailed demographics of the participants in the prospectively collected data, present their performance in the copy and (immediate) recall condition across the lifespan, and the worldwide distribution of the origin of the data.

      Comment #3: Supplementary Figure S1 & S4 is poor quality, please increase resolution.

      Response #3: We apologize for the poor quality of Supplementary Figures S1 and S4 in the initial submission. In the revised version of our submission, we have increased the resolution of both Supplementary Figure S1 and Supplementary Figure S4 to ensure that all details are clearly visible and the figures are of high quality.

      Comment #4: Regarding medical device regulation; if the app is to be used in clinical practice (as it generates a score and classification of performance), I believe such regulation is necessary - but there are ways around it. This should be detailed.

      Response #4: We agree that regulation is essential for any application intended for use in clinical practice, particularly one that generates scores and classifications of performance. As discussed in response #1, the final scoring application is currently undergoing intensive beta testing in real-world settings with a limited group of clinicians and is therefore not publicly accessible at this time. We are fully committed to obtaining the necessary regulatory approvals before the app is made publicly accessible for clinical use. Once the beta testing phase is complete and the app has been refined based on clinician feedback, we will prepare and submit a comprehensive regulatory dossier. This submission will include all necessary data on the app's development, testing, validation, and clinical utility. We are adhering to relevant regulatory standards and guidelines, such as ISO 13485 for medical devices and the FDA's guidance on software as a medical device (SaMD).

      Comment #7: Need to clarify that work was already done and pre-printed in 2022 for the main part of this study, and that this paper contributes to an additional prospective study.

      Response #7: We would like to clarify that the pre-print the reviewer is referring to is indeed the current paper submitted to ELife. The submitted paper includes both the work that was pre-printed in 2022 and the additional prospective study, as you correctly identified.

      Reviewer #3:

      Comment #1: The considerable effort and cost to make the model only for an existing neuropsychological test.

      Response #1: We acknowledge that significant effort and resources were dedicated to developing our model for the Rey-Osterrieth Complex Figure (ROCF) test. Below, we provide a detailed rationale for this investment and the broader implications of our work. The ROCF test is one of the most widely used neuropsychological assessments worldwide, providing critical insights into visuospatial memory and executive function. While the initial effort and cost are substantial, the long-term benefits of an automated, reliable, objective, fast and widely applicable neuropsychological assessment tool justify the investment. The scoring application will significantly reduce the time for scoring the test and thus provide more efficient use of clinical resources, and the potential for broader applications makes this a worthwhile endeavor. The methods and infrastructure developed for this model can be adapted and scaled to other neuropsychological tests and assessments (e.g. Taylor Figure).

      Comment #2: I was truly impressed by the authors' establishment of a system that organizes the methods and fields of diverse specialties in such a remarkable way. I know the primary purpose of ROCFT. However, beyond the score, neuropsychologically, these are observed by specialists while ROCFT and that is attractive of the test: the turn of each stroke (e.g., from right to left, from the main structure to the margin or small structure), the process to total completeness as a figure, e.g., confidential speed and concentration, the boldness of strokes, unnatural fragmentation of strokes, the not deviated place in a paper, turning of the figure itself (before the scanning level), the total size, the level compared with the age, education, and experiences of the patient. Those are reflected by the disease, visuospatial intelligence, executive function, and ability to concentrate. Scores are crucial, but by observing the drawing process, we can obtain diverse facts or parts of symptoms that imply the complications of human behavior.

      Response #2: Thank you for your insightful comments and observations regarding our system for organizing diverse specialties within the ROCFT methodology. We agree that beyond the numerical scores, the detailed observation of the drawing process provides invaluable neuropsychological insights. How strokes are executed, from their direction and placement to the overall completion process, offers a nuanced understanding of factors like spatial orientation, concentration, and executive function. In fact, we are working on a ROCF pen tracking application, which enables the patient to draw the ROCF with a digital pen on a tablet. The tablet can 1) assess the sequence order of drawing the items and the number of strokes, 2) record the exact coordinate of each drawn pixel at each time point of the assessment, 3) measure the duration for each pen stroke as well as total drawing time, and 4) assess the pen stroke pressure. Through this, we aim to extract additional information on processing speed, concentration, and other cognitive domains. However, this development is outside the scope of the current manuscript.

    1. Author response:

      We would like to thank the editors and reviewers for their constructive feedback, and we look forward to addressing their comments in the revised manuscript. We also appreciate the acknowledgment that the use of laminar electrodes in awake-behaving animals is an important advancement for the TBI community, and that our results provide a potential physiological link between coalescing TBI pathologies and cognitive deficits. We believe that integrating the reviewer comments will help to make our analyses even more rigorous and will improve the overall manuscript. Please find comments related to specific concerns raised in the public review below:

      The paper is written as if the experiment was exploratory and not hypothesis-driven despite the fact that there is a wealth of experimental evidence about this TBI model that could have informed very specific predictions to test a hypothesis that is only hinted at in the discussion… It is also unclear what the rationale was for recording single units in a novel and familiar environment. Furthermore, this analysis comparing single-unit activity between familiar and novel environments is quite rudimentary. There are much more rigorous analyses to answer the question of how hippocampal single-unit firing patterns differ across changes in environments.

      Previous mechanistic and physiological studies suggested interneuronal dysfunction following TBI that we hypothesized would disrupt oscillatory dynamics underlying temporal coding (single unit entrainment to theta/gamma, phase precession, and phase-amplitude coupling). These are known to support hippocampal-dependent learning and memory tasks such as the Morris Water Maze. While we did not record during a goal-directed behavioral task, the goal of recording in a familiar and novel environment was to assess remapping across these environments. Unfortunately, occupancy in the two environments was not high enough to rigorously characterize place cell specificity and phase precession or and investigate remapping, although putative place cells were identified. Despite this shortcoming, we were still able to confirm that the spike timing of interneurons relative to hippocampal oscillations was disrupted which we believe underlies the massive reduction in theta-gamma phase amplitude coupling reported. This opens the door to more strongly hypothesis-driven, mechanistic studies (i.e. closed loop stimulation) to alter the spike timing of interneurons relative to theta phase and potentially rescue these effects on phase amplitude coupling and behavior.

      The number of rats used for the spatial working memory experiment is not reported. Some of the statistics are not completely reported… There are details lacking about the number of units recorded per session and per rat, all of which are usually reported in studies that record single units.

      The number of rats used for the spatial working memory task was reported in the text and Figure legend where the statistics were reported, but we will ensure that the statistics are more completely reported by including relevant statistical results and parameters outside of the test used and p-value. Additionally, we will report the number of units recorded per animal.

      Spatial working memory assessment is delegated to a single panel of a supplementary figure. More importantly, there is no effort to dissociate between spatial working memory deficits and other motor, motivational, or sensory deficits that could have been driving the lower "memory score" in the experimental group

      The spatial working memory deficit that we report in the Morris Water Maze is not a novel finding and has been demonstrated numerous times in this TBI model. Our goal in including this was to increase the rigor of the study by verifying this deficit in our hands at the injury level used for these physiology experiments. The dissociation between spatial working memory deficits and other motor, motivational, or sensory deficits from TBI in the Morris Water Maze (e.g. swim speed and escape latency with visible platforms) has been well characterized in this TBI model at many injury levels including more severe injuries than those used in this study. We will address this in the Discussion as it is an important point.

      The text focuses on deficits in the theta and gamma bands, but the reduction in power appears to be broadband (see Figure 1F, especially Pyramidal cell layer panel). Therefore, the overall decrease in broadband (in the injured population) must be normalized between sham and injured animals before a selective comparison between sham and injured animals can be conducted. That is the only way that selective narrow bands i.e., theta and low gamma can be compared between the two cohorts. A brief discussion of the significance of a broadband decrease would be appreciated.

      We agree that there is a broadband downward shift in power following TBI especially in the pyramidal cell layer. We will include a normalization of the power spectra in order to specifically compare the theta and gamma bands between sham and injured rats and include discussion about the broadband decrease.

      Discoveries made in the paper and their broad interpretations can be helped with further characterization and comparison among the brain and behavioral states both during immobility and movement. The impact of brain injury in several parts of the brain can alter brain-wide LFP and/or behavior. The altered behavior and/or LFP patterns might then lead to reduced spiking and unreliable LFP oscillations in the hippocampus. Hence, claims made in the abstract such as "These results reveal deficits in information encoding and retrieval schemes essential to cognition that likely underlie TBI-associated learning and memory impairments, and elucidate potential targets for future neuromodulation therapies" do not have enough evidence to test whether the disruptions were information encoding and retrieval related or due to sensory-motor and/or behavioral deficits that could also occur during TBI.

      Movement velocity is already known to be correlated to the entrainment of spikes with the theta rhythm and also in some cases with the gamma oscillations. So, it is important to disentangle the differences in behavioral variables and the observed effects. As an example, the author's claims of disrupted temporal coding (as shown in the graphical abstract) might have suffered from these confounds. The observed results of reduced entrainment might, on one hand, be due to the decreased LFP power (induced by injury in different brain areas) resulting in altered behavior and/or the unreliable oscillations of the LFP bands such as theta and gamma, rather than memory encoding and retrieval related disruption of spikes synchrony to the rhythms, while on the other hand, they may simply be due to reduced excitability in the neurons particularly in the behavioral and brain state in which the effects were observed, rather than disrupted temporal code. Hence, further investigations into dissociating these factors could help readers mechanistically understand the interesting results observed by the authors.

      We agree that changes in hippocampal physiology that we report could arise due to disrupted inputs from TBI, and this study is inherently limited due to recording exclusively from CA1. We chose to record from the hippocampus due to its importance for learning and memory, and its vulnerability in TBI. Future studies will investigate how hippocampal afferents are affected by injury, and we hope that the layer-specific changes we report will help to inform which inputs may be preferentially disrupted. Importantly, these inputs along with local processing within the hippocampus change drastically depending on the behavior of the animal. We will more rigorously assess movement and the behavioral state of the rats when comparing physiological properties, especially the firing rates reported in Figure 3.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript the authors investigate the contributions of the long noncoding RNA snhg3 in liver metabolism and MAFLD. The authors conclude that liver-specific loss or overexpression of Snhg3 impacts hepatic lipid content and obesity through epigenetic mechanisms. More specifically, the authors invoke that nuclear activity of Snhg3 aggravates hepatic steatosis by altering the balance of activating and repressive chromatin marks at the Pparg gene locus. This regulatory circuit is dependent on a transcriptional regulator SNG1.

      Strengths:

      The authors developed a tissue specific lncRNA knockout and KI models. This effort is certainly appreciated as few lncRNA knockouts have been generated in the context of metabolism. Furthermore, lncRNA effects can be compensated in a whole organism or show subtle effects in acute versus chronic perturbation, rendering the focus on in vivo function important and highly relevant. In addition, Snhg3 was identified through a screening strategy and as a general rule the authors the authors attempt to follow unbiased approaches to decipher the mechanisms of Snhg3.

      Weaknesses:

      Despite efforts at generating a liver-specific knockout, the phenotypic characterization is not focused on the key readouts. Notably missing are rigorous lipid flux studies and targeted gene expression/protein measurement that would underpin why loss of Snhg3 protects from lipid accumulation. Along those lines, claims linking the Snhg3 to MAFLD would be better supported with careful interrogation of markers of fibrosis and advanced liver disease. In other areas, significance is limited since the presented data is either not clear or rigorous enough. Finally, there is an important conceptual limitation to the work since PPARG is not established to play a major role in the liver.

      We thank the reviewer for the nice comment. As the reviewer comment, the manuscript still exists some shortcomings, we added partial shortcomings in the section of Discussion, please check them in the third paragraph on p17 and the first paragraph on p18.

      We agree the reviewer comment, there are still conflicting conclusions about the role of PPARγ in MASLD. We had discussed it in the section of Discussion, please check them in the first paragraph on p13.

      Reviewer #2 (Public Review):

      Through RNA analysis, Xie et al found LncRNA Snhg3 was one of the most down-regulated Snhgs by high fat diet (HFD) in mouse liver. Consequently, the authors sought to examine the mechanism through which Snhg3 is involved in the progression of metabolic dysfunction-associated fatty liver diseases (MASLD) in HFD-induced obese (DIO) mice. Interestingly, liver-specific Sngh3 knockout reduced, while Sngh3 over-expression potentiated fatty liver in mice on a HFD. Using the RNA pull-down approach, the authors identified SND1 as a potential Sngh3 interacting protein. SND1 is a component of the RNA-induced silencing complex (RISC). The authors found that Sngh3 increased SND1 ubiquitination to enhance SND1 protein stability, which then reduced the level of repressive chromatin H3K27me3 on PPARg promoter. The upregulation of PPARg, a lipogenic transcription factor, thus contributed to hepatic fat accumulation.

      The authors propose a signaling cascade that explains how LncRNA sngh3 may promote hepatic steatosis. Multiple molecular approaches have been employed to identify molecular targets of the proposed mechanism, which is a strength of the study. There are, however, several potential issues to consider before jumping to the conclusion.

      (1) First of all, it's important to ensure the robustness and rigor of each study. The manuscript was not carefully put together. The image qualities for several figures were poor, making it difficult for the readers to evaluate the results with confidence. The biological replicates and numbers of experimental repeats for cell-based assays were not described. When possible, the entire immunoblot imaging used for quantification should be presented (rather than showing n=1 representative). There were multiple mis-labels in figure panels or figure legends (e.g., Fig. 2I, Fig. 2K and Fig. 3K). The b-actin immunoblot image was reused in Fig. 4J, Fig. 5G and Fig. 7B with different exposure times. These might be from the same cohort of mice. If the immunoblots were run at different times, the loading control should be included on the same blot as well.

      We thank the reviewer for the detailed comment. We have provided the clear figures in revised manuscript, please check them.

      The biological replicates and numbers of experimental repeats for cell-based assays had been updated and please check them in the manuscript.

      The entire immunoblot imaging used for quantification had been provided in the primary data. Please check them.

      The original Figure 2I, Figure 2K, Figure 3K have been revised and replaced with new Figure 2F, 2H, 3H, and their corresponding figure legends has also been corrected in revised manuscript.

      The protein levels of CD36, PPARγ and β-ACTIN were examined at the same time and we had revised the manuscript, please check them in revised Figure 7B and C.

      (2) The authors can do a better job in explaining the logic for how they came up with the potential function of each component of the signaling cascade. Sngh3 is down-regulated by HFD. However, the evidence presented indicates its involvement in promoting steatosis. In Fig. 1C, one would expect PPARg expression to be up-regulated (when Sngh3 was down-regulated). If so, the physiological observation conflicts with the proposed mechanism. In addition, SND1 is known to regulate RNA/miRNA processing. How do the authors rule out this potential mechanism? How about the hosting snoRNA, Snord17? Does it involve in the progression of NASLD?

      We thank the reviewer for the detailed comment. In this study, although the expression of Snhg3 was decreased in DIO mice, Snhg3 deficiency decreased the expression of hepatic PPARγ and alleviated hepatic steatosis in DIO mice, and Snhg3 overexpression induced the opposite effect, which led us to speculate that the downregulation of Snhg3 in DIO mice might be a stress protective reaction to high nutritional state, but the specific details need to be clarified. This is probably similar to FGF21 and GDF15, whose endogenous expression and circulating levels are elevated in obese humans and mice despite their beneficial effects on obesity and related metabolic complications (Keipert and Ost, 2021). We had added the content in the Discussion section, please check it in the second paragraph on p12.

      SND1 has multiple roles through associating with different types of RNA molecules, including mRNA, miRNA, circRNA, dsRNA and lncRNA. We agree with the reviewer good suggestion, the potential mechanism of SND1/lncRNA-Snhg3 involved in hepatic lipid metabolism needs to be further investigated. We also discussed the limitation in the manuscript and please refer the section of Discussion in the third paragraph on p17.

      Snhg3 serves as host gene for producing intronic U17 snoRNAs, the H/ACA snoRNA. A previous study found that cholesterol trafficking phenotype was not due to reduced Snhg3 expression, but rather to haploinsufficiency of U17 snoRNA (Jinn et al., 2015). Additionally, knockdown of U17 snoRNA in vivo protected against hepatic steatosis and lipid-induced oxidative stress and inflammation (Sletten et al., 2021). In this study, the expression of U17 snoRNA decreased in the liver of DIO Snhg3-HKO mice and remain unchanged in the liver of DIO Snhg3-HKI mice, but overexpression of U17 snoRNA had no effect on the expression of SND1 and PPARγ (figure supplement 5A-C), indicating that Sngh3 induced hepatic steatosis was independent on U17 snoRNA. We had discussed it in revised manuscript, please refer to p15 of the Discussion section.

      References

      JINN, S., BRANDIS, K. A., REN, A., CHACKO, A., DUDLEY-RUCKER, N., GALE, S. E., SIDHU, R., FUJIWARA, H., JIANG, H., OLSEN, B. N., SCHAFFER, J. E. & ORY, D. S. 2015. snoRNA U17 regulates cellular cholesterol trafficking. Cell Metab, 21, 855-67. DIO:10.1016/j.cmet.2015.04.010, PMID:25980348

      KEIPERT, S. & OST, M. 2021. Stress-induced FGF21 and GDF15 in obesity and obesity resistance. Trends Endocrinol Metab, 32, 904-915. DIO:10.1016/j.tem.2021.08.008, PMID:34526227

      SLETTEN, A. C., DAVIDSON, J. W., YAGABASAN, B., MOORES, S., SCHWAIGER-HABER, M., FUJIWARA, H., GALE, S., JIANG, X., SIDHU, R., GELMAN, S. J., ZHAO, S., PATTI, G. J., ORY, D. S. & SCHAFFER, J. E. 2021. Loss of SNORA73 reprograms cellular metabolism and protects against steatohepatitis. Nat Commun, 12, 5214. DIO:10.1038/s41467-021-25457-y, PMID:34471131

      (3) The role of PPARg in fatty liver diseases might be a rodent-specific phenomenon. PPARg agonist treatment in humans may actually reduce ectopic fat deposition by increasing fat storage in adipose tissues. The relevance of the finding to human diseases should be discussed.

      We thank the reviewer for the detailed comment. We agree the reviewer comment, there are still conflicting conclusions about the role of PPARγ in MASLD. We had discussed it in the section of Discussion, please check them in the first paragraph on p13.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I do not have further recommendations beyond what I mentioned in the original review. The authors have not adequately addressed all the issues but the manuscript has improved and the overall strength of evidence is now solid from incomplete.

      We appreciate positive feedback from the reviewer. While we acknowledge that the updated manuscript has significantly improved, we recognize that it remains incomplete and additional details regarding Snhg3 will be warranted in our future studies. Moreover, we have discussed those potential weakness in the section of Discussion (please refer in the third paragraph on p17 and the first paragraph on p18).

      Reviewer #2 (Recommendations For The Authors):

      The authors have provided explanations and some new data to clarify the comments from the first submission. They have also included the original immunoblots for all the experimental repeats. The CHX protein stability results shown in Fig. 5J were not consistent between experiments, perhaps because the difference was subtle. The results on PPARg protein expression were not clearcut. The inclusion of a PPARg knockdown control would be helpful to validate the specificity of the antibody. Of note, the immunoblots used for Fig. 5I (PA treated) repeats 2, 4 and 1 were identical to those of Fig. 7F repeats 3, 1 and 5. The authors should provide an explanation for the potential issue.

      We thank the further comments and suggestions from the reviewer. We agree with the reviewer comment about Snhg3-mediated SND1 protein stability. In this study, Snhg3 promoted the protein, not mRNA, level of SND1, but Snhg3 subtly increased the SND1 protein stability. We revised the description in the manuscript, “Meanwhile, Snhg3 regulated the protein, not mRNA, expression of SND1 in vivo and in vitro by mildly promoting the stability of SND1 protein (Figures 5G-I).” This revision can be found in the second paragraph on p9. While our findings indicated that Snhg3 can influence SND1 expression at the protein level, we acknowledge the possibility of additional mechanisms contributing to this complex regulatory network. Therefore, further investigation is necessary to clarify whether Snhg3 regulates SND1 protein expression through other potential mechanisms. In light of this, we have added it in the Discussion section. Please refer to the second paragraph on p16.

      In this study, the protein level of PPARγ (molecular weight ~57 kDa) was detected using anti-PPARγ antibody (Abclonal, Cat. A11183), which has been used to determine PPARγ protein expression in 13 published papers as showed in the ABclonal Technology Co., Ltd. (https://abclonal.com.cn/catalog/A11183). And the specificity of this antibody has been validated in Zhang’s study by PPARγ knockdown (Zhang et al., 2019). In our study, hepatic PPARγ protein sometimes showed two bands (~ 57kDa and > 75kDa) using this antibody. It is well established that the PPARγ gene encodes two protein isoforms (PPARγ1, a 477 amino acid protein, and PPARγ2, a 505 amino acid protein) via differential promoter usage and alternative splicing (Gene: Pparg (ENSMUSG00000000440) - Transcript comparison - Mus_musculus - Ensembl genome browser 112) (Hernandez-Quiles et al., 2021). The molecular weight difference between PPARγ1 and PPARγ2 is about 3kd. Therefore, we consider that the band shown larger than 75kd in our study is likely nonspecific. In line with the reviewer’s suggestion, the antibody’s specificity could be further validated by knockdown or knockout of PPARγ in the future.

      We thank the reviewer for the detailed comment. In this study, we tested the effect of Snhg3 overexpression on SND1 protein level and the effect of Snhg3 or Snd1 overexpression on PPARγ protein level in Hepa1-6 cells by transfecting with Snhg3, SND1 and the control, respectively. The results indicated that overexpression of Snhg3 promoted the protein levels of SND1 and PPARγ, and overexpression of SND1 also induced the protein level of PPARγ. Considering scholarly and professional thinking and writing, we firstly showed that overexpression of Snhg3 promoted the protein level of SND1 in Figure 5I, followed by demonstrating that the overexpression of Snhg3 or SND1 elicited PPARγ expression in Figures 7F. However, we acknowledge that this order of presentation may cause confusion. In fact, these experiments were repeatedly performed by multiple times, and we have provided the new original western blot data and analysis for Figure 5I (PA treatment) for further clarification. Please check them.

      References

      HERNANDEZ-QUILES, M., BROEKEMA, M. F. & KALKHOVEN, E. 2021. PPARgamma in Metabolism, Immunity, and Cancer: Unified and Diverse Mechanisms of Action. Front Endocrinol (Lausanne), 12, 624112. DIO:10.3389/fendo.2021.624112, PMID:33716977

      ZHANG, Z., ZHAO, G., LIU, L., HE, J., DARWAZEH, R., LIU, H., CHEN, H., ZHOU, C., GUO, Z. & SUN, X. 2019. Bexarotene Exerts Protective Effects Through Modulation of the Cerebral Vascular Smooth Muscle Cell Phenotypic Transformation by Regulating PPARgamma/FLAP/LTB(4) After Subarachnoid Hemorrhage in Rats. Cell Transplant, 28, 1161-1172. DIO:10.1177/0963689719842161, PMID:31010302

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review): 

      Summary: 

      This manuscript nicely outlines a conceptual problem with the bFAC model in A-motility, namely, how is the energy produced by the inner membrane AglRQS motor transduced through the cell wall into mechanical force on the cell surface to drive motility? To address this, the authors make a significant contribution by identifying and characterizing a lytic transglycosylase (LTG) called AgmT. This work thus provides clues and a future framework work for addressing mechanical force transmission between the cytoplasm and the cell surface. 

      Strengths: 

      (1) Convincing evidence shows AgmT functions as an LTG and, surprisingly, that mltG from E. coli complements the swarming defect of an agmT mutant. 

      (2) Authors show agmT mutants develop morphological changes in response to treatment with a b-lactam antibiotic, mecillinam. 

      (3) The use of single-molecule tracking to monitor the assembly and dynamics of bFACs in WT and mutant backgrounds. 

      (4) The authors understand the limitations of their work and do not overinterpret their data. 

      Weaknesses: 

      (1) A clear model of AgmT's role in gliding motility or interactions with other A-motility proteins is not provided. Instead, speculative roles for how AgmT enzymatic activity could facilitate bFAC function in A-motility are discussed. 

      We appreciate the reviewer for this comment. We have added a new figure, Fig. 6, and updated the Discussion to propose a mechanism, “rather than interacting with bFAC components directly and specifically, AgmT facilitates proper bFAC assembly indirectly through its LTG activity. LTGs usually break glycan strands and produce unique anhydro caps on their ends40-44. However, because AgmT is the only LTGs that is required for gliding, it is not likely to facilitate bFAC assembly by generating such modification on glycan strands. E. coli MltG is a glycan terminase that controls the length of newly synthesized PG glycans25. Likewise, AgmT could generate short glycan strands and thus uniquely modify the overall structure of M. xanthus PG, such as producing small pores that retard and retain the inner subcomplexes of bFACs (Fig. 6). On the contrary, the M. xanthus mutants that lack active AgmT could produce PG with increased strain length, which blocks bFACs from binding to the cell wall and precludes stable bFAC assembly. However, it would be very difficult to demonstrate how glycan length affects the connection between bFACs and PG”.

      (2) Although agmT mutants do not swarm, in-depth phenotypic analysis is lacking. In particular, do individual agmT mutant cells move, as found with other swarming defective mutants, or are agmT mutants completely nonmotile, as are motor mutants? 

      We appreciate the reviewer for bringing up an important question. Prompted by this question, we analyzed the gliding phenotype of the ΔagmT pilA mutant on the single cell level. We found that the ΔagmT pilA cells are not completely static. Instead, they move for less than half cell length before pauses and reversal. We moved on to quantify the velocity and gliding persistency and found that the gliding phenotype of the ΔagmT pilA cells matches the prediction on the bFACs that loses the connection between the inner subcomplexes and PG.  

      We then imaged individual ∆agmT pilA- cells on 1.5% agar surface at 10-s intervals using bright-field microscopy. To our surprise, instead of being static, individual ∆agmT pilA- cells displayed slow movements, with frequent pauses and reversals (Video 1). To quantify the effects of AgmT, we measured the velocity and gliding persistency (the distances cells traveled before pauses and reversals) of individual cells. Compared to the pilA- cells that moved at 2.30 ± 1.33 μm/min (n = 46) and high persistency (Video 2 and Fig. 2C, D), ∆agmT pilA- cells moved significantly slower (0.88 ± 0.62 μm/min, n = 59) and less persistent (Video 1 and Figure. 2C, D). Such aberrant gliding motility is distinct from the “hyper reversal” phenotype. Although the hyper reversing cells constitutively switching their moving directions, they usually maintain gliding velocity at the wild-type level27. due to the polarity regulators Instead, the slow and “slippery” gliding of the ∆agmT pilA- cells matches the prediction that when the inner complexes of bFACs lose connection with PG, bFACs can only generate short, and inefficient movements19. Our data indicate that AgmT is not essential component in the bFACs. Thus, AgmT is likely to regulate the assembly and stability of bFACs, especially their connection with PG.         

      (3) The bioinformatic and comparative genomics analysis of agmT is incomplete. For example, the sequence relationships between AgmT, MltG, and the 13 other LTG proteins in M. xanthus are not clear. Is E. coli MltG the closest homology to AgmT? Their relationships could be addressed with a phylogenetic tree and/or sequence alignments. Furthermore, are there other A-motility genes in proximity to agmT? Similarly, does agmT show specific co-occurrences with the other A-motility genes across genera/species?  

      We answered the first question in the Discussion (it was in the first Results section in the previous version), “Both M. xanthus AgmT and E. coli MltG belong to the YceG/MltG family, which is the first identified LTG family that is conserved in both Gram-negative and positive bacteria25,41. About 70% of bacterial genomes, including firmicutes, proteobacteria, and actinobacteria, encode YceG/MltG domains25. The unique inner membrane localization of this family and the fact that AgmT is the only M. xanthus LTG that belongs to this family (Table S2) could partially explain why it is the only LTG that contributes to gliding motility”.

      For the second, we added one sentence in the Results, “No other motility-related genes are found in the vicinity of agmT”.

      For the third question, we do not believe a co-occurrence analysis is necessary. Because M. xanthus gliding is very unique but “about 70% of bacterial genomes, including firmicutes, proteobacteria, and actinobacteria, encode YceG/MltG domains25”, gliding should show no co-occurrence with the YceG/MltG family LTGs.

      (4) Related to iii, what about the functional relationship of the endogenous 13 LTG genes? Although knockout mutants were shown to be motile, presumably because AgmT is present, can overexpression of them, similar to E. coli MltG, complement an agmT mutant? In other words, why does MltG complement and the endogenous LTG proteins appear not to be relevant? 

      We appreciate the reviewer for this question, which prompted us to think the uniqueness of AgmT more carefully. AgmT is unique for its inner-membrane localization, rather than activity. We answered this question in the discussion, “LTGs usually break glycan strands and produce unique anhydro caps on their ends40-44. However, because AgmT is the only LTGs that is required for gliding, it is not likely to facilitate bFAC assembly by generating such modification on glycan strands”. We then moved on to propose a possible mechanism, “E. coli MltG is a glycan terminase that controls the length of newly synthesized PG glycans25. Likewise, AgmT could generate short glycan strands and thus uniquely modify the overall structure of M. xanthus PG, such as producing small pores that retard and retain the inner subcomplexes of bFACs (Fig. 6). On the contrary, the M. xanthus mutants that lack active AgmT could produce PG with increased strain length, which blocks bFACs from binding to the cell wall and precludes stable bFAC assembly. However, it would be very difficult to demonstrate how glycan length affects the connection between bFACs and PG”. 

      (5) Based on Figure 2B, overexpression of MltG enhances A-motility compared to the parent strain and the agmT-PAmCh complemented strain, is this actually true? Showing expanded swarming colony phenotypes would help address this question. 

      We appreciate the reviewer for bringing up an important question. Prompted by this question, we analyzed the effects of MltG expression at the single-cell level. We found that “Consistent with its LTG activity, the expression of MltGEc restored gliding motility of the ΔagmT pilA- cells on both the colony (Fig. 2B) and single-cell (Fig. 2C, D) levels. Interestingly, in the absence of sodium vanillate, the leakage expression of MltGEc using the vanillate-inducible promoter was sufficient to compensate the loss of AgmT. A plausible explanation of this observation is that as E. coli grows much faster (generation time 20 - 30 min) than M. xanthus (generation time ~4 h), MltGEc could possess significantly higher LTG activity than AgmT. Induced by 200 μM sodium vanillate, the expression of MltGEc further but non significantly increased the velocity and gliding persistency (Fig. 2B-D). Importantly, the expression of MltGEc failed to restore gliding motility in the agmTEAEA pilA cells, even in the presence of 200 μM sodium vanillate (Fig. 2B). Consistent with the mecillinam resistance assay (Fig. 3C), this result suggests that AgmTEAEA still binds to PG and that in the absence of its LTG activity, AgmT does not anchor bFACs to PG”. These results are shown in the new panels C and D in Figure 2. 

      (6) Cell flexibility is correlated with gliding motility function in M. xanthus. Since AgmT has LTG activity, are agmT mutants less flexible than WT cells and is this the cause of their motility defect? 

      We appreciate the reviewer for bringing up an important question. We saw cells that lack AgmT making S-turns and U-turns frequently under microscope. We used a GRABS assay to quantify cell stiffness and found that neither the absence of AgmT nor the expression of MltGEc affect cell stiffness. We added this result in the manuscript, “The assembly of bFACs produces wave-like deformation on cell surface6,37, suggesting that their assembly may require a flexible PG layer2,6,11,12. As a major contributor to cell stiffness, PG flexibility affects the overall stiffness of cells38. To test the possibility that AgmT and MltGEc facilitate bFAC assembly by reducing PG stiffness, we adopted the GRABS assay38 to quantify if the lack of AgmT and the expression of MltGEc affects cell stiffness. To quantify changes in cell stiffness, we simultaneously measured the growth of the pilA-, ΔagmT pilA-, and ΔagmT Pvan-MltGEc pilA- (with 200 μM sodium vanillate) cells in a 1% agarose gel infused with CYE and liquid CYE and calculated the GRABS scores of the ΔagmT pilA-, and ΔagmT Pvan-MltGEc pilA- cells using the pilA- cells as the reference, where positive and negative GRABS scores indicate increased and decreased stiffness, respectively (see Materials and Methods and Ref38). The GRABS scores of the ΔagmT pilA-, and ΔagmT Pvan-MltGEc pilA- (with 200 μM sodium vanillate) cells were -0.06 ± 0.04 and -0.10 ± 0.07 (n = 4), respectively, indicating that neither AgmT nor MltGEc affects cell stiffness significantly. Whereas PG flexibility could still be essential for gliding, AgmT and MltGEc do not regulate bFAC assembly by modulating PG stiffness. Instead, these LTGs could connect bFACs to PG by generating structural features that are irrelevant to PG stiffness”.      

      Reviewer #2 (Public Review): 

      The manuscript by Carbo et al. reports a novel role for the MltG homolog AgmT in gliding motility in M. xanthus. The authors conclusively show that AgmT is a cell wall lytic enzyme (likely a lytic transglycosylase), its lytic activity is required for gliding motility, and that its activity is required for proper binding of a component of the motility apparatus to the cell wall. The data are generally well-controlled. The marked strength of the manuscript includes the detailed characterization of AgmT as a cell wall lytic enzyme, and the careful dissection of its role in motility. Using multiple lines of evidence, the authors conclusively show that AgmT does not directly associate with the motility complexes, but that instead its absence (or the overexpression of its active site mutant) results in the failure of focal adhesion complexes to properly interact with the cell wall. 

      An interpretive weakness is the rather direct role attributed to AgmT in focal adhesion assembly. While their data clearly show that AgmT is important, it is unclear whether this is the direct consequence of AgmT somehow promoting bFAC binding to PG or just an indirect consequence of changed cell wall architecture without AgmT. In E. coli, an MltG mutant has increased PG strain length, suggesting that M. xanthus's PG architecture may likewise be compromised in a way that precludes AglR binding to the cell wall. However, this distinction would be very difficult to establish experimentally. MltG has been shown to associate with active cell wall synthesis in E. coli in the absence of protein-protein interactions, and one could envision a similar model in M. xanthus, where active cell wall synthesis is required for focal adhesion assembly, and MltG makes an important contribution to this process. 

      Based on the data that AgmT does not assemble into bFACs and that heterologous MltGEc substitutes M. xanthus AgmT in gliding, we believe that AgmT facilitates the proper assembly of bFACs indirectly. At the end of Introduction, we pointed out, “Hence, the LTG activity of AgmT anchors bFAC to PG, potentially by modifying PG structure”. Following the reviewer’s recommendation, we revised the Discussion to emphasize that AgmT facilitates proper bFAC assembly indirectly through its LTG activity. For the reviewer’s convenience, the revised paragraph is pasted here, with the changes highlighted in blue:  

      “It is surprising that AgmT itself does not assemble into bFACs and that MltGEc substitutes AgmT in gliding. Thus, rather than interacting with bFAC components directly and specifically, AgmT facilitates proper bFAC assembly indirectly through its LTG activity. LTGs usually break glycan strands and produce unique anhydro caps on their ends40-44. However, because AgmT is the only LTGs that is required for gliding, it is not likely to facilitate bFAC assembly by generating such modification on glycan strands. E. coli MltG is a glycan terminase that controls the length of newly synthesized PG glycans25. Likewise, AgmT could generate short glycan strands and thus uniquely modify the overall structure of M. xanthus PG, such as producing small pores that retard and retain the inner subcomplexes of bFACs (Fig. 6). On the contrary, the M. xanthus mutants that lack active AgmT could produce PG with increased strain length, which blocks bFACs from binding to the cell wall and precludes stable bFAC assembly. However, it would be very difficult to demonstrate how glycan length affects the connection between bFACs and PG”.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      The last sentence of the Discussion implies that anchoring LTG (AgmT) in the inner membrane is important. I did not see this mentioned about AgmT. Does it contain an inner membrane anchoring domain? Along these lines, the AgmT and MltG proteins appear to be of different sizes (Figure 1A). Please clarify, perhaps including full-length sequence alignment and/or domain architecture for these proteins. 

      We revised the first paragraph in the Results and clarified, “Among these genes, agmT (ORF K1515_0491023) was predicted to encode an inner membrane protein with a single N-terminal transmembrane helix (residues 4 – 25) and a large “periplasmic solute-binding” domain22.”

      We appreciate the reviewer for spotting the mistake in Fig. 2A. The E. coli MltG sequence shown in the alignment starts from residue 158, instead of 88. We have corrected this mistake in the figure. M. xanthus AgmT and E. coli MltG are of similar sizes, with 239 and 240 amino acids, respectively. 

      In Figure 3 legend, define D3. 

      The definition of D_3_ was added into the figure legend.

      Figure 4A shows 100-frame composite micrographs, but no time interval between frames is given. 

      The imaging frequency, 10 Hz, was stated in the text. We also added this information into the figure legend.

      Line 98, the term "Especially" does not flow well, change to "This includes the characteristic..." or similar. 

      We deleted “especially” from the sentence.

      Line 179, "not" is not accurate, replace with "rarely." 

      Changed.

      Line 188, add a qualifier, "proper" before "bFACs assembly." 

      Added.

      Lines 196 and 202, provide the sizes of each protein in these fusion constructs. 

      We added these numbers to the figure legend.

      In Figure 5A add arrows to identify each band. State in legend whether this is a denaturing gel, if so, why are AgmT-PAmCherry homodimers present?

      Protein electrophoresis was done using SDS-PAGE. It is not unusual that some proteins, especially membrane proteins, are resistant to dissociation by SDS and appear as multimers in SDS-PAGE. The authors have seen this phenomenon repeatedly in both our experiments and the literature. Nevertheless, we clarified our experimental condition in the text, “Similar to many membrane proteins that resistant to dissociation by SDS34, immunoblot using an anti-mCherry antibody showed that AgmTPAmCherry accumulated in two bands in SDS-PAGE that corresponded to monomers and dimers of the full-length fusion protein, respectively (Fig. 5A)”.

      A few examples for membrane proteins remaining as oligomers are listed in below:

      Rath et al., 2009, PNAS 106: 1760-1765

      Sulistijo et al., 2003, J Biol Chem 278: 51950-51956

      Sukharev 2002, Biophy J 83: 290-298

      Neumann et al., 1998, J Bacteriol 180: 3312-3316

      Blakey et al., 2002, Biochem J 364: 527-535

      Wegner and Jones, 1984, J Biol Chem 259: 1834-1841

      Jiang et al., 2002, Nature 417: 515-522

      Heginbotham and Miller, 1997, Biochem 36: 10335-10342

      Gentile et al., 2002, J Biol Chem 277: 44050-44060

      Line 207, "near evenly along cell bodies" does not seem consistent with Figure 5B as there looks to be an enrichment of AgmT at cell poles. 

      We have replaced panel 5B with more typical images. Due to the shape difference between cell poles and the cylindrical nonpolar regions, many surface-associated proteins could appear “enriched” at cell poles. This effect was very obvious in Fig. 5B, possibly due to the unevenness of the agar surface. We examined our data carefully and did not find significant polar enrichment. Compared to AglZ that significantly enriches at poles and forms evenly-spaced clusters along the cell body, the localization of AgmT is completely different.  

      Lines 252 and 260, change "Fig. 5B" to "Fig. 5C." 

      We apologize for these mistakes. They have been corrected.

      Line 266, insert "the" before "cell envelope." 

      Added.

      Line 278, insert "presumably" between "AgmT generates (small openings)" 

      Corrected.

      Reviewer #2 (Recommendations For The Authors): 

      - Major comment: I would rephrase conclusions regarding a direct role of AgmT in focal adhesion assembly since these data are indirect (AglR binding to the cell wall is reduced in the absence of AgmT - this could also be interpreted as the absence of AgmT causing altered cell wall architecture that precludes AglR binding). Example: I don't think the data support line 222 "AgmT connects bFACs to PG", perhaps rephrased to accommodate more agnostic explanations. Likewise, line 308 states that MltG has been "adopted" by the gliding motility machinery. This conclusion cannot be drawn from the data presented. 

      We agree with the reviewer that the conclusions should be stated precisely. At the end of Introduction, we pointed out, “Hence, the LTG activity of AgmT anchors bFAC to PG, potentially by modifying PG structure”. Following the reviewer’s recommendation, we revised the Discussion to emphasize that AgmT facilitates bFAC assembly indirectly through its LTG activity. For the reviewer’s convenience, the revised paragraph is pasted here, with the changes highlighted in blue: 

      “It is surprising that AgmT itself does not assemble into bFACs and that MltGEc substitutes AgmT in gliding. Thus, rather than interacting with bFAC components directly and specifically, AgmT facilitates proper bFAC assembly indirectly through its LTG activity. LTGs usually break glycan strands and produce unique anhydro caps on their ends40-44. However, because AgmT is the only LTGs that is required for gliding, it is not likely to facilitate bFAC assembly by generating such modification on glycan strands. E. coli MltG is a glycan terminase that controls the length of newly synthesized PG glycans25. Likewise, AgmT could generate short glycan strands and thus uniquely modify the overall structure of M. xanthus PG, such as producing small pores that retard and retain the inner subcomplexes of bFACs (Fig. 6). On the contrary, the M. xanthus mutants that lack active AgmT could produce PG with increased strain length, which blocks bFACs from binding to the cell wall and precludes stable bFAC assembly. However, it would be very difficult to demonstrate how glycan length affects the connection between bFACs and PG”.

      However, we believe that the conclusion that “AgmT connects bFACs to PG" still stands true. Although AgmT is not likely to interact with the gliding machinery directly, its activity does increase the binding between bFACs and PG. 

      We agree with the reviewer that “adopt” may not be the best word to describe AgmT’s function in gliding. In the revised manuscript, we changed the phrase to “contributes to gliding motility”. 

      - Line 35: define "bFAC" at first use. 

      Fixed.

      - Figure 2: Mention in the caption why the pilA mutation is significant. Also, make more clear what one is supposed to see. You could include an arrow showing motile cells extruding from the colony edge, and mark + label the edge of the colony. 

      Following the reviewer’s recommendations, we described the motility phenotypes in detail in the main text, “On a 1.5% agar surface, the pilA- cells moved away from colony edges both as individuals and in “flare-like” cell groups, indicating that they were still motile with gliding motility. In contrast, the ∆aglR pilA- cells that lack an essential component in the gliding motor, were unable to move outward from the colony edge and thus formed sharp colony edges. Similarly, the ∆agmT pilA- cells also formed sharp colony edges, indicating that they could not move efficiently with gliding (Fig. 2B)”. 

      We also added a schematic block into panel B and two sentences into the legend, “To eliminate S-motility, we further knocked out the pilA gene that encodes pilin for type IV pilus. Cells that move by gliding are able to move away from colony edges.” 

      - Figure 3 caption. Mecillinam concentration should presumably be µg/mL, not g/mL?

      Also, remove the ".van,." in the second to last line. 

      We apologize for these mistakes. We have corrected them in the figure legend. 

      - Line 212 - at this point in the manuscript, the fact that AgmT likely does not assemble into bFACs is quite well established, so I would start this paragraph with something like "As an additional test, we...". 

      Revised as the reviewer recommended.

      - Figure 5C - this assay needs a protein loading control. How about whole-cell AglR before pelleting PG? 

      We do have a whole-cell loading control, which we have added into the revised figure.

      - Figure 5A - how are the dimers visible? Is this a native gel? If so, please add to the Methods section (I would find information on Western Blot there, but not on gel electrophoresis). 

      Protein electrophoresis was done using SDS-PAGE. It is not unusual that some proteins, especially membrane proteins, are resistant to dissociation by SDS and appear as multimers in SDS-PAGE. The authors have seen this phenomenon repeatedly in both our experiments and the literature. Nevertheless, we clarified our experimental condition in the text, “Similar to many membrane proteins that resistant to dissociation by SDS34, immunoblot using an anti-mCherry antibody showed that AgmTPAmCherry accumulated in two bands in SDS-PAGE that corresponded to monomers and dimers of the full-length fusion protein, respectively (Fig. 5A)”.

      A few examples for membrane proteins remaining as oligomers are listed in below:

      Rath et al., 2009, PNAS 106: 1760-1765

      Sulistijo et al., 2003, J Biol Chem 278: 51950-51956

      Sukharev 2002, Biophy J 83: 290-298

      Neumann et al., 1998, J Bacteriol 180: 3312-3316

      Blakey et al., 2002, Biochem J 364: 527-535

      Wegner and Jones, 1984, J Biol Chem 259: 1834-1841

      Jiang et al., 2002, Nature 417: 515-522

      Heginbotham and Miller, 1997, Biochem 36: 10335-10342

      Gentile et al., 2002, J Biol Chem 277: 44050-44060

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review):

      The authors present data on outer membrane vesicle (OMV) production in different mutants, but they state that this is beyond the scope of the current manuscript, which I disagree with. This data could provide valuable physiological context that is otherwise lacking. The preliminary blots suggest that YafK does not alter OMV biogenesis. I recommend repeating these blots with appropriate controls, such as blotting for proteins in the culture media, an IM protein, periplasmic protein and an OM protein to strengthen the reliability of these findings. Including this data in the manuscript, even if it does not directly support the initial hypothesis, would enhance the physiological relevance of the study. Currently, the manuscript relies completely on the experimental setup (labeling-mass spec) previously developed by the authors, which limits the broader scope and interpretability of this study.

      As stated in the previous response to the reviewers,  MBP and  RpoA were indeed used in the western blot experiments as  appropriate controls for periplasmic and cytoplasmic proteins, respectively. The open review process of eLife has enabled us to include additional data from experiments suggested by the reviewers. We think that this mode of publication is appropriate in the present case for the reporting of the requested analysis of OMVs. Indeed, these data are of interest only to a rather specialized audience.

      Reviewer #2 (Public Review):  

      Weaknesses:

      Figure 3 and 4 - why are the data shown here only two biological replicates, when there are 3-5 replicates shown in table S1 and S2? This makes it seem like you are cherry picking your favorite replicates. Please present the data as the mean of all the replicates performed, with error shown on the graph.

      We apologize for forgetting to update the legend to Figures 3 and 4. In the modified version, we have indicated that the values used for the plots are the average of three to five replicates. The full set of data together with the means and standard deviations appear in Tables S1 and S2. We would like to keep the current presentation of the data because introducing standard deviations in these figures compromise the legibility of the data.

      This work will have a moderate impact on the field of research in which the connections between the OM and peptidoglycan are being studied in E. coli. Since lpp is not widely conserved in gram negatives, the impact across species is not clear. The authors do not discuss the impact of their work in depth.

      We have already answered this comment in the first response to the reviewers.

    1. Author response:

      The following is the authors’ response to the current reviews.

      eLife assessment: I find that the eLife assessment mentions “statistical analyses are yet to be carried out to support statements of statistical significance” while the reviewers mention that the data are compelling and results are technically solid. Besides all observations in the manuscript are presented with robust and established norms of statistical analysis.

      Public Reviews:

      Reviewer #1 (Public Review):

      Strengths:

      The use of data from before COVID-19 is both a strength and a weakness. Because COVID had effects on vascular health and had higher death rates for groups with the comorbidities of interest here, it has likely shifted the demographics in ways that would shift the results in unpredictable ways if the analysis were repeated with current data. This can be a strength in providing a reference point for studying those changes as well as allowing researchers to study differences between regions without the complication of different public health responses adding extra variation to the data. On the other hand, it limits the usefulness of the data in research concerned with the current status of the various populations.

      We completely agree with the observation, but were restricted as the purpose was to use the most robust and technically qualified data from GBD. The post COVID19 GBD data has not yet been released, but I am sure the observations made in the study can help in guiding the issues in the post COVID era too, because genetics is not going to change in these population groups.

      However, we did highlight this aspect of COVID19 even in our original version and also in the revised version.

      Reviewer #2 (Public Review):

      Weaknesses:

      The presentation is not focused. It is important to include p-values for all comparisons and focus the presentation on the main effects from the dataset analysis.

      The significant p-values were restricted to public health data only to identify and distinguish differences in incidence, prevalence and mortality and how they differ across world populations. These differences have often been interpreted from socio-economic point of view, while our manuscript presents the reasons for differences for main condition (Stroke) and its comorbid condition among different ethnicities from a genetic perspective. This genetic perspective was further explored to identify unique ethnic specific variants and their patterns of linkage disequilibrium in distinguishing the phenotypic variations. Considering the quantum and diversity of data, both for public health and GWAS data, there can be several directions but for presentation we focused only on the most distinguishing and established phenotypic differences. I am sure this will open up avenues for several future investigations including COVID, as has been highlighted by the reviewers too. All observations were presented with robust and established norms of statistical analysis.


      The following is the authors’ response to the original reviews.

      Thanks for the constructive observations on strengths and weaknesses of our manuscript. Interestingly, some of the weaknesses mentioned here also turns out to be the strength of the article. For example COVID19 has been mentioned by the reviewer as a driver to increase the mortality in some comorbid conditions and stroke. Firstly, I must clarify that, our data is from PreCOVID era and we indeed mention that in COVID era, COVID-19 might differentially impact the risk of stroke. Possibly this differential influence on the comorbidities of stroke, is likely to be influenced by its underlying genetics of stroke and its comorbidities.

      I have tried to address the concerns raised by the reviewers, which ideally doesn’t impact the original manuscript. Statistical limitation has been commented pertaining to P-values, which has been clarified here. However, certain minor concerns such as abbreviations have been resolved in the revised manuscript. My response to weakness and reviewer’s comments are mentioned below.

      Reviewer #1 (Public Review):

      Strengths:

      The data provided here will provide a foundation for a lot of future research into the causes of the observed correlations as well as whether the observed differences in comorbidities across regions have clinically relevant effects on risk management.

      Weaknesses:

      • As with any cross-national analysis of rates, the data is vulnerable to differences in classification and reporting across jurisdictions.

      GBD data is the most robust and most comprehensive data resource which has been used and accepted globally in predicting the health metrics statistics.

      GBD data indeed considers normalisations, regarding classification and reporting.

      To the best of our knowledge this is the best available resource to consider all health metrics analysis.

      • Furthermore, given the increased death rate from COVID-19 associated with many of these comorbid conditions and the long-term effects of COVID-19 infection on vascular health, it is expected that many of the correlations observed in this dataset will shift along with the shifting health of the underlying populations.

      I must clarify that we have used data prior to COVID-19.

      But yes the patterns after COVID19 will shift due to the impact of covid. This makes the study even more relevant as the comorbid conditions of stroke are also the risk drivers for COVID19 and mortality. This shift has been reported by some authors, which has been discussed in the discussion.

      Therefore, understanding the genetic factors underlying stroke and its comorbid conditions might help in resolving how COVID19 might differentially impact on health outcome.

      We did highlight this aspect of COVID19 even in our original version.

      Introduction 1st para:

      “It is the accumulated risk of comorbid conditions that enhances the risk of stroke further. Are these comorbid conditions differentially impacted by socio-economic factors and ethnogeographic factors. This was clearly evident in COVID era, when COVID-19 differentially impacted the risk of stroke, possibly due to its differential influence on the comorbidities of stroke.”

      Discussion 3rd para:

      “Studies reported reduction in life expectancy in 31 of 37 high-income countries, deduced to be due to COVID-191 . However, it would be unfair to ignore the comorbid conditions which could also be the critical determinants for reduced life expectancy in these countries.”

      Recommendations For The Authors:

      On page 5, the authors make a note about Africa and the Middle East having the highest ASMR for high SBP and comment about the relative populations of these regions. The populations of the regions are irrelevant to the rate.

      Since the study is on comorbid factors of stroke and its impact on mortality therefore, relative burden seems critical. This has been further elaborated here to justify the comment, which indeed is an integral part of the original manuscript.

      Paragraph referred – Results section 2:

      “Ethno-regional differences in mortality and prevalence of stroke and its major comorbid conditions

      We observed interesting patterns of ASMRs of stroke, its subtypes and its major comorbidities across different regions over the years as shown in figure 1a, table 1 and supplementary files S2 & S3. When assessed in terms of ranks, high SBP is the most fatal condition followed by IHD in all regions, except Oceania (OCE) where IHD and high SBP swap ranks. Africa (AFR; 206.2/100000, 95%UI 177.4-234.2) and Middle East (MDE; 198.6/100000, 95%UI 162.8-234.4) have the highest ASMR for high SBP, even though they rank as only the third and sixth most populous continents (fig. S2), respectively.”

      On page 17, the authors are alarmed by a large ratio between prevalence rates and mortality rates for certain conditions. This is confusing since this indicates that these conditions are not as dangerous as the other conditions.

      This has been further elaborated here to justify the comment, which indeed is an integral part of the original manuscript.

      Paragraph referred – Discussion para 1:

      “While the global stroke prevalence is nearly 15 times its mortality rate, prevalence of comorbid conditions such as high SBP, high BMI, CKD, T2D are alarmingly 150- to 500-fold higher than their mortality rates. These comorbid conditions can drastically affect the outcome of stroke.”

      In Figure 4, the colors are not defined.

      In Structure plot colours are assigned as per each K, it doesn’t directly refer to any population. But the plot distinguishes the stratification of populations as per K. Ramasamy, R.K., Ramasamy, S., Bindroo, B.B. et al. STRUCTURE PLOT: a program for drawing elegant STRUCTURE bar plots in user friendly interface. SpringerPlus 3, 431 (2014). https://doi.org/10.1186/2193-1801-3-431

      Reviewer #2 (Public Review):

      Strengths:

      The idea is interesting and the data are compelling. The results are technically solid.

      The authors identify specific genetic loci that increase the risk of a stroke and how they differ by region.

      Weaknesses:

      The presentation is not focused. It would be better to include p-values and focus presentation on the main effects of the dataset analysis.

      I presume the comment is made with reference to results with significant p-values.

      P-values are mentioned in the main text when referring to significant decrease or increase with respect to global rates and time e.g. P-values for comparison of a year 2019, are based on regional rates to global rates of 2019. Supplementary table S2a (mortality) and S3a (prevalence) e.g. P-values for comparison between year is based on 2019 rates to 2009 rates in Supplementary table S2b (mortality) and S3b (prevalence) e.g. P-values for proportional mortality and proportional prevalence in Supplementary table S4 and S5 is also based on global rates.

      Recommendations For The Authors:

      It would be better to minimize the use of acronyms. Often one has to go back to decipher what the acronym stands for. It is fine to have acronyms in figure legends, if necessary. However, at least for regions, please do not use acronyms.

      In the revised version we have tried to minimise the Acronyms.

      Removed the acronyms for regions and other places wherever possible however, the diseases acronyms have been maintained as per the GBD terms.

      Please focus the presentation on the main results. Currently, the presentation wanders and repeats itself a lot.

      Since the manuscript tries to address the global and regional rates of prevalence, mortality and its relationship to genetic correlates, it is difficult not to repeat the same to stress the significant observations coming out of different analysis methods. This might reflect on some amount of repetitiveness but the intention was to stress the significant observations.

      I would also recommend acknowledging and discussing socioeconomic factors earlier in the manuscript.

      Current mention happens in 3rd para of Discussion

      “The changing dynamics of stroke or its comorbid conditions can be attributed to multitude of factors. Often global burden of stroke has been discussed from the point of view of socio-economic parameters. Studies indicate that half of the stroke-related deaths are attributable to poor management of modifiable risk factors 8,9. However, we observe that different socio-economic regions are driven by different risk factors.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this study, Gonzalez Alam et al. report a series of functional MRI results about the neural processing from the visual cortex to high-order regions in the default-mode network (DMN), compiling evidence from task-based functional MRI, resting-state connectivity, and diffusionweighted imaging. Their participants were first trained to learn the association between objects and rooms/buildings in a virtual reality experiment; after the training was completed, in the task-based MRI experiment, participants viewed the objects from the earlier training session and judged if the objects were in the semantic category (semantic task) or if they were previously shown in the same spatial context (spatial context task). Based on the task data, the authors utilised resting-state data from their previous studies, visual localiser data also from previous studies, as well as structural connectivity data from the Human Connectome Project, to perform various seed-based connectivity analysis. They found that the semantic task causes more activation of various regions involved in object perception while the spatial context task causes more activation in various regions for place perception, respectively. They further showed that those object perception regions are more connected with the frontotemporal subnetwork of the DMN while those place perception regions are more connected with the medial-temporal subnetwork of the DMN. Based on these results, the authors argue that there are two main pathways connecting the visual system to highlevel regions in the DMN, one linking object perception regions (e.g., LOC) leading to semantic regions (e.g., IFG, pMTG), the other linking place perception regions (e.g., parahippocampal gyri) to the entorhinal cortex and hippocampus.

      Below I provide my takes on (1) the significance of the findings and the strength of evidence, (2) my guidance for readers regarding how to interpret the data, as well as several caveats that apply to their results, and finally (3) my suggestions for the authors.

      (1) Significance of the results and strength of the evidence

      I would like to praise the authors for, first of all, trying to associate visual processing with high-order regions in the DMN. While many vision scientists focus specifically on the macroscale organisation of the visual cortex, relatively few efforts are made to unravel how neural processing in the visual system goes on to engage representations in regions higher up in the hierarchy (a nice precedent study that looks at this issue is by Konkle and Caramazza, 2017). We all know that visual processing goes beyond the visual cortex, potentially further into the DMN, but there's no direct evidence. So, in this regard, the authors made a nice try to look at this issue.

      We thank the reviewer for their positive feedback and for their very thoughtful and thorough comments, which have helped us to improve the quality of the paper.

      Having said this, the authors' characterisation of the organisation of the visual cortex (object perception/semantics vs. place perception/spatial contexts) does not go beyond what has been known for many decades by vision neuroscience. Specifically, over the past two decades, numerous proposals have been put forward to explain the macroscale organisation of the visual system, particularly the ventrolateral occipitotemporal cortex. A lateral-medial division has been reliably found in numerous studies. For example, some researchers found that the visual cortex is organised along the separation of foveal vision (lateral) vs. peripheral vision (medial), while others found that it is structured according to faces (lateral) vs. places (medial). Such a bipartite division is also found in animate (lateral) vs. inanimate (medial), small objects (lateral) vs. big objects (medial), as well as various cytoarchitectonic and connectomic differences between the medial side and the lateral side of the visual cortex. Some more recent studies even demonstrate a tripartite division (small objects, animals, big objects; see Konkle and Caramazza, 2013). So, in terms of their characterisation of the visual cortex, I think Gonzalez Alam et al. do not add any novel evidence to what the community of neuroscience has already known.

      The aim of our study was not to provide novel evidence about visual organisation, but rather to understand how these well-known visual subdivisions are related to functional divisions in memory-related systems, like the DMN. We agree that our study confirms the pattern observed by numerous other studies in visual neuroscience.  

      However, the authors' effort to link visual processing with various regions of the DMN is certainly novel, and their attempt to gather converging evidence with different methodologies is commendable. The authors are able to show that, in an independent sample of restingstate data, object-related regions are more connected with semantic regions in the DMN while place-related regions are more connected with navigation-related regions in the DMN, respectively. Such patterns reveal a consistent spatial overlap with their Kanwisher-type face/house localiser data and also concur with the HCP white-matter tractography data. Overall, I think the two pathways explanation that the authors seek to argue is backed by converging evidence. The lack of travelling wave type of analysis to show the spatiotemporal dynamics across the cortex from the visual cortex to high-level regions is disappointing though because I was expecting this type of analysis would provide the most convincing evidence of a 'pathway' going from one point to another. Dynamic caudal modelling or Granger causality may also buttress the authors' claim of pathway because many readers, like me, would feel that there is not enough evidence to convincingly prove the existence of a 'pathway'.

      By ‘pathway’ we are referring to a pattern of differential connectivity between subregions of visual cortex and subregions of DMN, suggesting there are at least two distinct routes between visual and heteromodal regions. However, these routes don’t have to reflect a continuous sequence of cortical areas that extend from visual cortex to DMN – and given our findings of structural connectivity differences that relate to the functional subdivisions we observe, this is unlikely to be the sole mechanism underpinning our findings. We have now clarified this in the discussion section of the manuscript. We agree it would be interesting to characterise the spatiotemporal dynamics of neural propagation along our pathways, and we have incorporated this proposal into the future directions section.

      “One important caveat is that we have not investigated the spatiotemporal dynamics of neural propagation along the pathways we identified between visual cortex and DMN. The dissociations we found in task responses, intrinsic functional connectivity and white matter connections all support the view that there are at least two distinct routes between visual and heteromodal DMN regions, yet this does not necessarily imply that there is a continuous sequence of cortical areas that extend from visual cortex to DMN – and given our findings of structural connectivity differences that relate to the functional subdivisions we observe, this is unlikely to be the sole mechanism underpinning our findings. It would be interesting in future work to characterise the spatiotemporal dynamics of neural propagation along visualDMN pathways using methods optimised for studying the dynamics of information transmission, like Granger causality or travelling wave analysis.”

      We have also edited the wording of sentences in the introduction and discussion that we thought might imply directionality or transmission of information along these pathways, or to clarify the nature of the pathways (please see a couple of examples below):

      In the Introduction:

      “We identified dissociable pathways of connectivity between from different parts of visual cortex to and DMN subsystems “

      In the Discussion:

      “…pathways from visual cortex to DMN -> …pathways between visual cortex and DMN“.

      (2) Guidance to the readers about interpretation of the data

      The organisation of the visual cortex and the organisation of the DMN historically have been studied in parallel with little crosstalk between different communities of researchers. Thus, the work by Gonzalez Alam et al. has made a nice attempt to look at how visual processing goes beyond the realm of the visual cortex and continues into different subregions of the DMN.

      While the authors of this study have utilised multiple methods to obtain converging evidence, there are several important caveats in the interpretation of their results:

      (1) While the authors choose to use the term 'pathway' to call the inter-dependence between a set of visual regions and default-mode regions, their results have not convincingly demonstrated a definitive route of neural processing or travelling. Instead, the findings reveal a set of DMN regions are functionally more connected with object-related regions compared to place-related regions. The results are very much dependent on masking and thresholding, and the patterns can change drastically if different masks or thresholds are used.

      We would like to qualify that our findings do not only reveal a set of any “DMN regions that are functionally more connected with object-related regions compared to place-related regions”. Instead, we show a double dissociation based on our functional task responses: DMN regions that were more responsive to semantic decisions about objects are more functionally and structurally connected to visual regions more activated by perceiving objects, while DMN regions that were more responsive to spatial decisions are more connected to visual regions activated by the contrast of scene over object perception.

      We do not believe that the thresholding or masking involved in generating seeds strongly affected our results. We are reassured of this by two facts:

      (1) We re-analysed the resting-state data using a stricter clustering threshold and this did not change the pattern of results (see response below).

      (2) In response to a point by reviewer #2, we re-analysed the data eroding the masks of the MT-DMN, and this also didn’t change the pattern of results (please see response to reviewer 2).

      In this way, our results are robust to variations in mask shape/size and thresholding.

      (2) Ideally, if the authors could demonstrate the dynamics between the visual cortex and DMN in the primary task data, it would be very convincing evidence for characterising the journey from the visual cortex to DMN. Instead, the current connectivity results are derived from a separate set of resting state data. While the advantage of the authors' approach is that they are able to verify certain visual regions are more connected with certain DMN regions even under a task-free situation, it falls short of explaining how these regions dynamically interact to convert vision into semantic/spatial decision.

      We agree that a valuable future direction would be to collect evidence of spatiotemporal dynamics of propagation of information along these pathways. This could be the focus of future studies designed to this aim, and we have suggested this in the manuscript based on the reviewer’s suggestion. Furthermore, as stated above, we have now qualified our use of the term ‘pathway’ in the manuscript to avoid confusion.

      “These pathways refer to regions that are coupled, functionally or structurally, together, providing the potential for communication between them.”

      (3) There are several results that are difficult to interpret, such as their psychophysiological interactions (PPI), representational similarity analysis, and gradient analysis. For example, typically for PPI analysis, researchers interrogate the whole brain to look for PPI connectivity. Their use of targeted ROI is unusual, and their use of spatially extensive clusters that encompass fairly large cortical zones in both occipital and temporal lobes as the PPI seeds is also an unusual approach. As for the gradient analysis, the argument that the semantic task is higher on Gradient 1 than the spatial task based on the statistics of p-value = 0.027 is not a very convincing claim (unhelpfully, the figure on the top just shows quite a few blue 'spatial dots' on the hetero-modal end which can make readers wonder if the spatial context task is really closer to the unimodal end or it is simply the authors' statistical luck that they get a p-value under 0.05). While it is statistically significant, it is weak evidence (and it is not pertinent to the main points the authors try to make).

      To streamline the manuscript, we have moved the PPI and RSA results to the

      Supplementary Materials. However, we believe the gradient analysis is highly pertinent to understanding the functional separation of these pathways. In the revision, we show that not only was the contrast between the Semantic and Spatial tasks significant, in addition, the majority of participants exhibited a pattern consistent with the result we report. To show the results more clearly, we have added a supplementary figure (Figure S8) focussed on comparisons at the participant level.

      This figure shows the position in the gradient for each peak per participant per task. The peaks for each participant across tasks are linked with a line. Cases where the pattern was reversed are highlighted with dashed lines (7/27 participants in each gradient). This allows the reader and reviewer to verify in how many cases, at the individual level, the pattern of results reported in the text held (see “Supplementary Analysis: Individual Location of pathways in whole-brain gradients”).  

      (3) My suggestion for the authors

      There are several conceptual-level suggestions that I would like to offer to the authors:

      (1)  If the pathway explanation is the key argument that you wish to convey to the readers, an effective connectivity type of analysis, such as Granger causality or dynamic caudal modelling, would be helpful in revealing there is a starting point and end point in the pathway as well as revealing the directionality of neural processing. While both of these methods have their issues (e.g., Granger causality is not suitable for haemodynamic data, DCM's selection of seeds is susceptible to bias, etc), they can help you get started to test if the path during task performance does exist. Alternatively, travelling wave type of analysis (such as the results by Raut et al. 2021 published in Science Advances) can also be useful to support your claims of the pathway.

      As we have stated above, we agree with the reviewer that, given the pattern of results obtained in our work, analyses that characterise the spatiotemporal dynamics of transmission of information along the pathways would be of interest. However, we are concerned that our data is not well-optimised for these analyses.

      (2)  I think the thresholding for resting state data needs to be explained - by the look of Figure 2E and 3E, it looks like whole-brain un-thresholded results, and then you went on to compute the conjunction between these un-thresholded maps with network templates of the visual system and DMN. This does not seem statistically acceptable, and I wonder if the conjunction that you found would disappear and reappear if you used different thresholds. Thus, for example, if the left IFG cluster (which you have shown to be connected with the visual object regions) would disappear when you apply a conventional threshold, this means that you need to seriously consider the robustness of the pathway that you seek to claim... it may be just a wild goose that you are chasing.

      We believe the reviewer might be confused regarding the procedure we followed to generate the ROIs used in the pathways connectivity analysis. As stated in the last paragraph of the “Probe phase” and “Decision phase” results subsections, the maps the reviewer is referring to (Fig. 3E, for example) were generated by seeding the intersection of our thresholded univariate analysis (Fig. 3A) with network templates. In the case of Fig 3E, these are the Semantic>Spatial decision results after thresholding, intersected with Yeo DMN (MT, FT and Core, combined). These seeds were then entered into a whole-brain seed-based spatial correlation analysis, which was thresholded and cluster-corrected using the defaults of CONN. The same is true for Fig. 2E, but using the thresholded Probe phase

      Semantic>Context regions. Thus, we do not believe the objections to statistical rigour the reviewer is raising apply to our results.

      The thresholding of the resting-state data itself was explained in the Methods (Spatial Maps and Seed-to-ROI Analysis). As stated above, we thresholded using the default of the CONN software package we used (cluster-forming threshold of p=.05, equivalent to T=1.65). For increased rigour, we reproduced the thresholded maps from Figs 2E and 3E further increasing the threshold from p=.05, equivalent to T=1.65, to p=.001, equivalent to T=3.1. The resulting maps were very similar, showing minimal change with a spatial correlation of r > .99 between the strict and lax threshold versions of the maps for both the probe and decision seeds. This can be seen in Figure 2E and Figure 33E, which depict the maps produced with stricter thresholding. These maps can also be downloaded from the Neurovault collection, and the re-analysis is now reported in the Supplementary Materials (see section “Supplementary Analysis: Resting-state maps with stricter thresholding”) Probe phase (compare with Fig. 2E):

      (3) There are several analyses that are hard to interpret and you can consider only reporting them in the supplementary materials, such as the PPI results and representational similarity analysis, as none of these are convincing. These analyses do not seem to add much value to make your argument more convincing and may elicit more methodological critiques, such as statistical issues, the set-up of your representational theory matrix, and so on.

      We have moved the PPI and RSA results to the supplementary materials. We agree this will help us streamline the manuscript.  

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Alam et al. sought to understand how memory interacts with incoming visual information to effectively guide human behavior by using a task that combines spatial contexts (houses) with objects of one or multiple semantic categories. Three additional datasets (all from separate participants) were also employed: one that functionally localized regions of interest (ROIs) based on subtractions of different visually presented category types (in this case, scenes, objects, and scrambled objects); another consisting of restingstate functional connectivity scans, and a section of the Human Connectome Project that employed DTI data for structural connectivity analysis. Across multiple analyses, the authors identify dissociations between regions preferentially activated during scene or object judgments, between the functional connectivity of regions demonstrating such preferences, and in the anatomical connectivity of these same regions. The authors conclude that the processing streams that take in visual information and support semantic or spatial processing are largely parallel and distinct.

      Strengths:

      (1) Recent work has reconceptualized the classic default mode network as two parallel and interdigitated systems (e.g., Braga & Buckner, 2017; DiNicola et al., 2021). The current manuscript is timely in that it attempts to describe how information is differentially processed by two streams that appear to begin in visual cortex and connect to different default subnetworks. Even at a group level where neuroanatomy is necessarily blurred across individuals, these results provide clear evidence of stimulus-based dissociation.

      (2) The manuscript contains a large number of analyses across multiple independent datasets. It is therefore unlikely that a single experimenter choice in any given analysis would spuriously produce the overall pattern of results reported in this work.

      We thank the reviewer for their remarks on the strengths of our manuscript.

      Weaknesses:

      (1) Throughout the manuscript, a strong distinction is drawn between semantic and spatial processing. However, given that only objects and spatial contexts were employed in the primary experiment, it is not clear that a broader conceptual distinction is warranted between "semantic" and "spatial" cognition. There are multiple grounds for concern regarding this basic premise of the manuscript.

      a. One can have conceptual knowledge of different types of scenes or spatial contexts. A city street will consistently differ from a beach in predictable ways, and a kitchen context provides different expectations than a living room. Such distinctions reflect semantic knowledge of scene-related concepts, but in the present work spatial and "all other" semantic information are considered and discussed as distinct and separate.

      The “building” contexts we created were arbitrary, containing beds, desks and an assortment of furniture that did not reflect usual room distributions, i.e., a kitchen next to a dining room. We have made this aspect of our stimuli clearer in the Materials section of the task. 

      “The learning phase employed videos showing a walk-through for twelve different buildings (one per video), shot from a first-person perspective. The videos and buildings were created using an interior design program (Sweet Home 3D). Each building consisted of two rooms: a bedroom and a living room/office, with an ajar door connecting the two rooms. The order of the rooms (1st and 2nd) was counterbalanced across participants. Each room was distinctive, with different wallpaper/wall colour and furniture arrangements. The building contexts created by these rooms were arbitrary, containing furniture that did not reflect usual room distributions (i.e., a kitchen next to a dining room), to avoid engaging further conceptual knowledge about frequently-encountered spatial contexts in the real world.”

      To help the reviewer and readers to verify this and come to their own conclusions, we have also added the videos watched by the participants to the OSF collection.

      “A full list of pictures of the object and location stimuli employed in this task, as well as the videos watched by the participants can be consulted in the OSF collection associated with this project under the components OSF>Tasks>Training. “

      We agree that scenes or spatial contexts have conceptual characteristics, and we actually manipulated conceptual information about the buildings in our task, in order to assess the neural underpinnings of this effect. In half of the buildings, the rooms/contexts were linked through the presence of items that shared a common semantic category (our “same category building” condition): this presented some conceptual scaffolding that enabled participants to link two rooms together. These buildings could then be contrasted with “mixed category buildings” where this conceptual link between rooms was not available. We found that right angular gyrus was important in the linking together of conceptual and spatial information, in the contrast of same versus mixed category buildings.

      b. As a related question, are scenes uniquely different from all other types of semantic/category information? If faces were used instead of scenes, could one expect to see different regions of the visual cortex coupling with task-defined face > object ROIs? The current data do not speak to this possibility, but as written the manuscript suggests that all (non-spatial) semantic knowledge should be processed by the FT-DMN.

      Thanks for raising this important point. Previous work suggests that the human visual system (and possibly the memory system, as suggested by Deen and Freiwald, 2021) is sensitive to perceptual categories important to human behaviour, including spatial, object and social information. Previous work (Silson et al., 2019; Steel et al., 2021) has shown domain-specific regions in visual regions (ventral temporal cortex; VTC) whose topological organisation is replicated in memory regions in medial parietal cortex (MPC) for faces and places. In these studies, adding objects to the analyses revealed regions sensitive to this category sandwiched between those responsive to people and places in VTC, but not in MPC. However, consistent with our work, the authors find regions sensitive to memory tasks for places and objects (as well as people) in the lateral surface of the brain. 

      Our study was not designed to probe every category in the human visual system, and therefore we cannot say what would happen if we contrasted social judgments about faces with semantic judgments about objects. We have added this point as a limitation and future direction for research:

      “Likewise, further research should be carried out on memory-visual interactions for alternative domains. Our study focused on spatial location and semantic object processing and therefore cannot address how other categories of stimuli, such as faces, are processed by the visual-tomemory pathways that we have identified. Previous work has suggested some overlap in the neurobiological mechanisms for semantic and social processing (Andrews-Hanna et al., 2014; Andrews-Hanna & Grilli, 2021; Chiou et al., 2020), suggesting that the FT-DMN pathway may be highlighted when contrasting both social faces and semantic objects with spatial scenes. On the other hand, some researchers have argued for a ‘third pathway’ for aspects of social visual cognition (Pitcher & Ungerleider, 2021; Pitcher, 2023). Future studies that probe other categories will be able to confirm the generality (or specificity) of the pathways we described.”

      c. Recent precision fMRI studies characterizing networks corresponding to the FT-DMN and MTL-DMN have associated the former with social cognition and the latter with scene construction/spatial processing (DiNicola et al., 2020; 2021; 2023). This is only briefly mentioned by the authors in the current manuscript (p. 28), and when discussed, the authors draw a distinction between semantic and social or emotional "codes" when noting that future work is necessary to support the generality of the current claims. However, if generality is a concern, then emphasizing the distinction between object-centric and spatial cognition, rather than semantic and spatial cognition, would represent a more conservative and bettersupported theoretical point in the current manuscript.

      We appreciate this comment and we have spent quite a bit of time considering what the most appropriate terminology would be. The distinction between object and spatial cognition is largely appropriate to our probe phase, although we feel this label is still misleading for two reasons:

      First, we used a range of items from different semantic categories, not just “objects”, although we have used that term as a shorthand to refer to the picture stimuli we presented. The stimuli include both animals (land animals, marine animals and birds) and man-made objects (tools, musical instruments and sports equipment). This category information is now more prominent in the rationale (Introduction) and the Methods to avoid confusion.

      Interested readers can also review our “object” stimuli in the OSF collection associated with this manuscript:

      Introduction: “…participants learned about virtual environments (buildings) populated with objects belonging to different, heterogeneous, semantic categories, both man-made (tools, musical instruments, sports equipment) and natural (land animals, marine animals, birds).”

      Methods:

      “A full list of pictures of the object and location stimuli employed in this task can be consulted in the OSF collection associated with this project under the components OSF>Tasks>Training.”

      Secondly, we manipulated the task demands so that participants were making semantic judgments about whether two items were in the same category, or spatial judgments about whether two rooms had been presented in the same building. Our use of the terms “semantic” and “spatial” was largely guided by the tasks that participants were asked to perform.

      We have revised the terminology used in the discussion to reflect this more conservative term. However, since the task performed was semantic in nature (participants had to judge whether items belonged to semantic categories), we have modified the term proposed by the reviewer to “object-centric semantics”, which we hope will avoid confusion.  

      (2) Both the retrosplenial/parieto-occipital sulcus and parahippocampal regions are adjacent to the visual network as defined using the Yeo et al. atlas, and spatial smoothness of the data could be impacting connectivity metrics here in a way that qualitatively differs from the (non-adjacent) FT-DMN ROIs. Although this proximity is a basic property of network locations on the cortical surface, the authors have several tools at their disposal that could be employed to help rule out this possibility. They might, for instance, reduce the smoothing in their multi-echo data, as the current 5 mm kernel is larger than the kernel used in Experiment 2's single-echo resting-state data. Spatial smoothing is less necessary in multiecho data, as thermal noise can be attenuated by averaging over time (echoes) instead of space (see Gonzalez-Castillo et al., 2016 for discussion). Some multi-echo users have eschewed explicit spatial smoothing entirely (e.g., Ramot et al., 2021), just as the authors of the current paper did for their RSA analysis. Less smoothing of E1 data, combined with a local erosion of either the MTL-DMN and VIS masks (or both) near their points of overlap in the RSFC data, would improve confidence that the current results are not driven, at least in part, by spatial mixing of otherwise distinct network signals.

      A: The proximity of visual peripheral and DMN-C networks is a property of these networks’ organisation (Silson et al., 2019; Steel et al., 2021), and we agree the potential for spatial mixing of the signal due to this adjacency is a valid concern. Altering the smoothing kernel of the multi-echo data would not address this issue though, since no connectivity analyses were performed in task data. The reviewer is right about the kernel size for task data (5mm), but not about the single echo RS data, which actually has lower spatial resolution (6mm). 

      Since this objection is largely about the connectivity analysis, we re-analysed the RS data by shrinking the size of the visual probe and DMN decision ROIs for the context task using fslmaths. We eroded the masks until the smallest gap between them exceeded the size of our 6mm FWHM smoothing kernel, which eliminates the potential for spatial mixing of signals due to ROI adjacency. The eroded ROIs can be consulted in the OSF collection associated with this project (see component “ROI Analysis/Revision_ErodedMasks”. The results, presented in the supplementary materials as “Eroded masks replication analysis”, confirmed the pattern of findings reported in the manuscript (see SM analysis below). We did not erode the respective ROIs for the semantic task, given that adjacency is not an issue there. 

      “Eroded masks replication analysis:

      The Visual-to-DMN ANOVA showed main effects of seed (F(1,190)=22.82, p<.001), ROI (F(1,190)=9.48, p=.002) and a seed by ROI interaction (F(1,190)=67.02, p<.001). Post-hoc contrasts confirmed there was stronger connectivity between object probe regions and semantic versus spatial context decision regions (t(190)=3.38, p<.001), and between scene probe regions and spatial context versus semantic decision regions (t(190)=-7.66, p<.001).

      The DMN-to-Visual ANOVA confirmed this pattern: again, there was a main effect of ROI (F(1,190)=4.3, p=.039) and a seed by ROI interaction (F(1,190)=57.59, p<.001), with posthoc contrasts confirming stronger intrinsic connectivity between DMN regions implicated in semantic decisions and object probe regions (t(190)=5.06, p<.001), and between DMN regions engaged by spatial context decisions and scene probe regions (t(190)=3.25, p=.001).”

      (3) The authors identify a region of the right angular gyrus as demonstrating a "potential role in integrating the visual-to-DMN pathways." This would seem to imply that lesion damage to right AG should produce difficulties in integrating "semantic" and "spatial" knowledge. Are the authors aware of such a literature? If so, this would be an important point to make in the manuscript as it would tie in yet another independent source of information relevant to the framework being presented. The closest of which I am aware involves deficits in cued recall performance when associates consisted of auditory-visual pairings (Ben-Zvi et al., 2015), but that form of multi-modal pairing is distinct from the "spatial-semantic" integration forwarded in the current manuscript.

      This is a very interesting observation. There is a body of literature pointing to AG (more often left than right) as an integrator of multimodal information: It has been shown to integrate semantic and episodic memory, contextual information and cross-modality content.

      The Contextual Integration Model (Ramanan et al., 2017) proposes that AG plays a crucial role in multimodal integration to build context. Within this model, information that is essential for the representation of rich, detailed recollection and construction (like who, when, and, crucially for our findings, what and where) is processed elsewhere, but integrated and represented in the AG. In line with this view, Bonnici et al (2016) found AG engagement during retrieval of multimodal episodic memories, and that multivariate classifiers could differentiate multimodal memories in AG, while unimodal memories were represented in their respective sensory areas only. Recent work examining semantic processing in temporallyextended narratives using multivariate approaches concurs with a key role of left AG in context integration (Branzi et al., 2020).

      In addition to context integration, other lines of work suggest a role of AG as an integrator across modalities, more specifically. Recent perspectives suggest a role of AG as a dynamic buffer that allows combining distinct forms of information into multimodal representations (Humphreys et al., 2021), which is consistent with the result in our study of a region that brings together semantic and spatial representations in line with task demands. Others have proposed a role of the AG as a central connector hub that links three semantic subsystems, including multimodal experiential representation (Xu et al., 2017). Causal evidence of the role of AG in integrating multimodal features has been provided by Yazar et al (2017), who studied participants performing memory judgements of visual objects embedded in scenes, where the name of the object was presented auditorily. TMS to AG impaired participants’ ability to retrieve context features across multiple modalities. However, these studies do not single out specifically right AG.

      Some recent proposals suggest a causal role of right AG as a key region in the early definition of a context for the purpose of sensemaking, for which integrating semantic information with many other modalities, including vision, may be a crucial part (Seghier, 2023). TMS studies suggest a causal role for the right AG in visual attention across space

      (Olk et al. 2015, Petitet et al. 2015), including visual search and the binding of stimulus- and response-characteristics that can optimise it (Bocca et al. 2015). TMS over the right AG disrupts the ability to search for a target defined by a conjunction of features (Muggleton et al. 2008) and affects decision-making when visuospatial attention is required (Studer et al. 2014). This suggests that the AG might contribute to perceptual decision-making by guiding attention to relevant information in the visual environment (Studer et al. 2014). These, taken together, suggest a causal role of right AG in controlling attention across space and integrating content across modalities in order to search for relevant information. 

      Most of this body of research points to left, rather than right, AG as a key region for integration, but we found regions of right AG to be important when semantic and spatial information could be integrated. We might have observed involvement of the right AG in our study, as opposed to the more-often reported left, given that people have to integrate semantic information with spatial context, which relies heavily on visuospatial processes predominantly located in right hemisphere regions (cf. Sormaz et al., 2017), which might be more strongly connected to right than left AG. 

      Lastly, we are not aware of a literature on right AG lesions impairing the integration of semantic and spatial information but, in the face of our findings, this might be a promising new direction. We have added as a recommendation that patients with damage to right AG should be examined with specific tasks aimed at probing this type of integration. We have added the following to the discussion:

      “We found a region of the right AG that was potentially important for integrating semantic and spatial context information. Previous research has established a key role of the AG in context integration (Ramanan et al., 2017; Bonnici et al., 2016; Branzi et al., 2020) and specifically, in guiding multimodal decisions and behaviour (Humphreys et al., 2021; Xu et al., 2017; Yazar et al., 2017). Although some recent proposals suggest a causal role of right AG in the early establishment of meaningful contexts, allowing semantic integration across modalities (Seghier, 2023; Olk et al., 2015, Petitet et al., 2015; Bocca et al., 2015; Muggleton et al. 2008), the majority of this research points to left, rather than right, AG as a key region for integration. However, we might have observed involvement of the right AG in our study given that people were integrating semantic information with spatial context, and right-lateralised visuospatial processes (cf. Sormaz et al., 2017) might be more strongly connected to right than left AG. We are not aware of a literature on right AG lesions impairing the integration of semantic and spatial information but, in the face of our findings, this might be a promising new direction. Patients with damage to right AG should be examined with specific tasks aimed at probing this type of integration.”

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      (1) I mentioned the numerous converging analyses reported in this manuscript as a strength. However, in practice, it also makes results in numerous dense figures (routinely hitting 7-8 sub-panels) and results paragraphs which, as currently presented, are internally coherent but are not assembled into a "bigger picture" until the discussion. Readers may have an easier time with the paper if introductions to the different analyses ("probe phase", "decision phase", etc.) also include a bigger-picture summary of how the specific analysis is contributing to the larger argument that is being constructed throughout the manuscript. This may also help readers to understand why so many different analysis approaches and decisions were employed throughout the manuscript, why so many different masks were used, etc.

      Thank you for this suggestion. We agree that the range of analyses and their presentation can make digesting them difficult. To address this, we have outlined our analyses rationale at the beginning of the results as a sort of “big picture” summary that links all analyses together, and added introductory paragraphs to each analysis that needed them (namely, the probe, decision, and pathway connectivity analyses, as the gradient and integration analyses already had introductory paragraphs describing their rationale, and the PPI/RSA analyses were moved to supplementary materials), linking them to the summary, which we reproduce below:

      “To probe the organisation of streams of information between visual cortex and DMN, our neuroimaging analysis strategy consisted of a combination of task-based and connectivity approaches. We first delineated the regions in visual cortex that are engaged by the viewing of probes during our task (Figure 2), as well as the DMN regions that respond when making decisions about those probes (Figure 3): we characterised both by comparing the activation maps with well-established DMN and object/scene perception regions, analysed the pattern of activation within them, their functional connectivity and task associations. Having characterised the two ends of the stream, we proceeded to ask whether they are differentially linked: are the regions activated by object probe perception more strongly linked to DMN regions that are activated when making semantic decisions about object probes, relative to other DMN regions? Is the same true for the spatial context probe and decision regions? We answered this question through a series of connectivity analyses (Figure 4) that examined: 1) if the functional connectivity of visual to DMN regions (and DMN to visual regions) showed a dissociation, suggesting there are object semantic and spatial cognition processing ‘pathways’; 2) if this pattern was replicated in structural connectivity; 3) if it was present at the level of individual participants, and, 4) we characterised the spatial layout, network composition (using influential RS networks) and cognitive decoding of these pathways. Having found dissociable pathways for semantic (object) and spatial context (scene) processing, we then examined their position in a high-dimensional connectivity space (Figure 5) that allowed us to document that the semantic pathway is less reliant on unimodal regions (i.e., more abstract) while the spatial context pathway is more allied to the visual system. Finally, we used uni- and multivariate approaches to examine how integration between these pathways takes place when semantic and spatial information is aligned (Figure 6).”

      (2) At various points, figures are arranged out of sequence (e.g., panel d is referenced after panel g in Figure 2) or are missing descriptions of what certain colors mean (e.g., what yellow represents in Figure 6d). This is a minor issue, but one that's important and easy to address in future revisions.

      We thank the reviewer for bringing this issue to our attention. We have added descriptions for the yellow colour to the figure legends of Figures 6 and 7 (now in supplementary materials, Figure S9).

      We have also edited the text to follow a logical sequence with respect to referencing the panels in Figures 2 and 3, where panel d is now referenced after panel c. Lastly, we reorganised the layout of Figure 4 to follow the description of the results in the text.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Thank you for taking the time to review our manuscript. We are grateful to reviewer #1 for positive evaluation of our work and for providing valuable comments that will significantly enhance the presentation of our results. We understand reviewer #2's negative assessment because we did not discuss an alternative model of dosage compensation in Drosophila. We will address this omission in the Introduction section of the revised manuscript and remove any controversial statements from other parts of the text. However, it is important to clarify that our study does not focus on the mechanisms of dosage compensation. The main goal of the manuscript was to investigate the assembly of the MSL complex and its specific binding to the Drosophila X chromosome. We utilized male survival data to demonstrate the efficacy of MSL complex binding to the X chromosome, a relationship that has been supported by numerous independent studies. We understand that Reviewer #2 agrees that disruption of the MSL complex binding results in male lethality. As far as we understand, Reviewer #2 suggests that the MSL complex does not activate transcription of X chromosome genes, but instead facilitate the recruitment of MOF protein and potentially other general transcription factors to the X chromosome. This could explain the decrease in autosomal gene expression due to a reduction in activating factors like MOF at autosomal promoters. In the upcoming revision, we aim to strike a balance between the two models that elucidate dosage compensation in Drosophila. We appreciate your feedback and look forward to enhancing the clarity and coherence of our manuscript based on your insightful comments.

      Reviewer #2 (Public Review):

      Summary:

      A deletion analysis of the MSL1 gene to assess how different parts of the protein product interact with the MSL2 protein and roX RNA to affect the association of the MSL complex with the male X chromosome of Drosophila was performed.

      Strengths:

      The deletion analysis of the MSL1 protein and the tests of interaction with MSL2 are adequate.

      We thank the reviewer for the positive assessment of the experimental work done.

      This reviewer does not adhere to the basic premise of the authors that the MSL complex is the primary mediator of dosage compensation of the X chromosome of Drosophila.

      We completely agree with this reviewer's claim. In the Introduction section we attempted to make clear that there are two models for the functional role of specific recruitment of the MSL complex to the X chromosome in males.

      Several lines of evidence from various laboratories indicate that it is involved in sequestering the MOF histone acetyltransferase to the X chromosome but there is a constraint on its action there. When the MSL complex is disrupted, there is no overall loss of compensation but there is an increase in autosomal expression. Sun et al (2013, PNAS 110: E808-817) showed that ectopic expression of MSL2 does not increase expression of the X and indeed inhibits the effect of acetylation of H4Lys16 on gene expression. Aleman et al (2021, Cell Reports 35: 109236) showed that dosage compensation of the X chromosome can be robust in the absence of the MSL complex. Together, these results indicate that the MSL complex is not the primary mediator of X chromosome dosage compensation. The authors use sex-specific lethality as a measure of disruption of dosage compensation, but other modulations of gene expression are the likely cause of these viability effects.

      Sun et al (2013, PNAS 110: E808-817) showed that recruitment of the MSL complex-specific subunit MSL2 or the MOF protein to the UAS promoter resulted in recruitment of the entire MSL complex in males but not transcriptional activation. This important result argues that the MSL complex does not activate transcription. However, it must be taken into account that the GAL4 DNA binding region used to recruit the chimeric MSL2 protein to the UAS promoter was directly fused to the MSL2 RING domain, which is critical for interaction of MSL2 with MSL1 and its ubiquitination activity (this activity could potentially be involved in transcription activation). It also remains poorly understood what happens to the MSL complex after recruitment to the promoters or HAS on the X chromosome. Subcomplex MSL1/MSL3/MOF can acetylate TF and H4K16 during RNA polymerase II elongation, resulting in increasing of transcription. The separate role of MSL2 and MSL1 in the activation of transcription of gene promoters is also shown. Sun et al. showed that in females, recruitment of MOF to the UAS promoter leads to a strong increase in transcription, which is associated with the inclusion of MOF in the non-specific lethal (NSL) complex, which is bound to promoters and is required for strong transcription activation. In males, MOF is preferentially recruited to the UAS promoter in the full MSL complex or perhaps in the MSL1/MSL3/MOF subcomplex, which stimulates transcription during RNA polymerase II elongation much less strongly than NSL complex. The same result was obtained in the Prestel et al. 2010 (Mol Cell 38:815-26). In this study the GAL4 binding sites were inserted upstream of the lacZ and mini-white genes. Activation of transcription after recruitment of GAL4-MOF to the GAL4 sites was studied in males and females. As in Sun et al. 2013, strong activation of the reporter was observed in females. A weak transcriptional activation of the reporter gene in males was shown, and the MOF protein was detected not only on the promoter, but also in the coding and 3’ regions of the reporter.

      We do not understand how the paper by Aleman et al (Cell Reports 35: 109236, 2021) is consistent with the hypothesis that the MSL complex is not involved in the transcriptional activation of X chromosomal genes. The main conclusions of this paper: 1) Inactivation of Mtor leads to selective activation of the male X chromosome. 2) Mtor-driven attenuation of male X occurs in broad domains linked by the MSL complex. 3) Mtor genetically interacts with MSL components and reduces male mortality; 4) Mtor restrains dose-compensated expression at the level of nascent transcription. Thus, the paper shows that the MSL complex has an activator activity that is partially inhibited by Mtor. Accordingly, inactivation of Mtor only partially restored the survival of males in which dosage compensation was not completely inactivated.

      A detailed explanation was provided by Birchler and Veitia (2021, One Hundred Years of Gene Balance: How stoichiometric issues affect gene expression, genome evolution, and quantitative traits. Cytogenetics and Genome Research 161: 529-550).

      We agree that an alternative model of the dosage compensation mechanism is reasonable. We can assume that both mechanisms can function jointly provide effective dosage compensation in Drosophila males. At the suggestion of the reviewer to reconsider the entire context of the article, we will make many small changes throughout the manuscript.

      Reviewer #1 (Recommendations For The Authors):

      Overall, I found the text well written and the figures logically organized (especially Figure 5, which had the potential to confuse). The authors especially excelled in bringing together the decades of literature in the Discussion.

      I offer several suggestions to improve the readability:

      Consider presenting the coiled-coil domain homology in Figure 1A as a contrast for the N-terminal region, which the authors claim is poorly conserved.

      We added the coiled-coil domain homology in Figure 1A in new version of the manuscript.

      It is difficult to visualize the red MSL2 in Figure 2; the green and red panels should be presented separately in the main text, as they are in the Supplemental Figure 2.

      We prepared Figure 2 with separate green and red panels.

      The ChIP-seq experiments for MSL proteins are well presented, but in my opinion, add little to the overall conclusions:

      Figure 6 mostly recapitulates what has already been published and utilized by several groups, most recently the authors themselves (Tikhonova 2019): that MSL expressed in females targets the X/HAS, similar to in males. While these are nice supporting data for the female transgenic system, I do not believe this figure should be prominently featured as if this is a novelty of the current study.

      We fully agree with the reviewer's comment about the limitation of scientific novelty in Figure 6. It has an auxiliary meaning. Therefore, we transferred this figure to Supplementary material (as supplement for Figure 5).

      The ChIP experiments in Figure 7 agree with the conclusions in Figures 2 and 3 (polytene chromosome immunostaining) when it comes to X/autosome localization. I believe it would help with the flow of the paper if these experiments were combined or at least placed closer together in the narrative, rather than falling at the end.

      We moved Figure 7 (in new version – Figure 5) closer to polytene chromosome immunostaining. We agree with reviewer that this placement of the figure will make it easier to perceive the meaning of the article as a whole.

      I find Figure 8 difficult to understand, especially since the "clusters" are not annotated in the figure, but are described in the text. I struggled to follow the authors' conclusions based on these data. The authors could clarify the figure with annotations, although to be honest I do not currently see the value of this analysis/figure.

      In the new version of the article, we changed this part: we removed clusters for autosomes as difficult for understanding and non-important for this manuscript. Also we tried to place emphasis more clearly in the text of the article for clusters 1 and 2 that characterize HAS.

    1. Author response:

      We thank the reviewers for their time and thoughtful comments. We are encouraged that all reviewers found our work novel and clear. We will submit a full revision to address all the points the reviewers made. Below, we briefly highlight a few clarifications and planned analyses to address major concerns; all other concerns raised by the reviewers will also be addressed in the revision.

      Reviewers #1 and #3 asked whether the variability in grid properties emerged with experience/time in the environment. We agree that this is an interesting question, and we will re-analyze the data to explore whether between-cell variability increases with time within a session. However, we note that since the rats were already familiarized to the environment for 10-20 sessions prior to the recordings, there may be limited additional changes in between-cell variability between recording sessions. In one case, two sessions from the same rat were recorded on consecutive days (R11/R12 and R21/R22) - these sessions did not show any difference in variability. 

      Reviewer #2 noted that the variability in grid properties is known to experimentalists. We will tone down our discussion on the current assumptions in the field to accurately reflect this awareness in the community. However, we would like to emphasize that the lack of work carefully examining the robustness of this variability has prevented a firm understanding of whether this is an inherent property of grid cells or due to noise. The impact of this can be seen in theoretical neuroscience work where a considerable number of articles (including recent publications) start with the assumption that all grid cells within a module have identical properties, with the exception of phase shift and noise. In addition, since grid cells are assumed to be identical in the computational neuroscience community, there has been little work on quantifying how much variability a given model produces. This makes it challenging to understand how consistent different models are with our observations. We believe that making these limitations of previous work clear is important to properly conveying our work’s contribution. 

      Reviewer #3 asked whether the variability in grid properties could be driven by cells that were conjunctively tuned with head direction. We agree that this is an interesting hypothesis and will explore this by performing new analysis. We note that, as reported by Gardner et al. (2022), only 19 of the 168 cells in recording session R12 are conjunctive. Even if these cells are included in the same proportion as pure grid cells by our inclusion criteria (which appears unlikely, given that conjunctive cells may be less reliable across splits of the data), then approximately 9 out of the 82 cells we analyzed would be conjunctive. Therefore, we expect it to be unlikely that they are the main source of the variability we find. However, we will test this in our revised manuscript.

      Reviewer #3 asked whether the “price” paid in having grid property variability was too high for the modest gain in ability to encode local space. We agree that losing the continuous attractor network (CAN) structure, and the ability to path integrate, would be a very large loss. However, we do not believe that the variability we observe necessarily destroys either CAN or path integration. We argue this for two reasons. First, the data we analyzed [from Gardner et al. (2022)] is exactly the data set that was found to have toroidal topology and therefore viewed to be in line with a major prediction of CANs. Thus, the amount of variability in grid properties does not rule out the underlying presence of a continuous attractor. Second, path integration may still be possible with grid cells that have variable properties. To illustrate this, and to address another comment from Reviewer #3, we have begun to analyze the distribution of grid properties in a recurrent neural network (RNN) model trained to perform path integration (Sorscher et al., 2019). This RNN model, in addition to others (Banino et al., 2018; Cueva and Wei, 2018), has been found to develop grid cells and there is evidence that it develops CANs as the underlying circuit mechanism (Sorscher et al., 2023). We find that the grid cells that emerge from this model exhibit variability in their grid spacings and orientations. This illustrates that path integration (the very task the RNN was trained to perform) is possible using grid cells with variable properties.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This very interesting manuscript proposes a general mechanism for how activating signaling proteins respond to species-specific signals arising from a variety of stresses. In brief, the authors propose that the activating signal alters the structure by a universal allosteric mechanism.

      Strengths:

      The unitary mechanism proposed is appealing and testable. They propose that the allosteric module consists of crossed alpha-helical linkers with similar architecture and that their attached regulatory domains connect to phosphatases or other molecules through coiled-coli domains, such that the signal is transduced via rigidifying the alpha helices, permitting downstream enzymatic activity. The authors present genetic and structural prediction data in favor of the model for the system they are studying, and stronger structural data in other systems.

      Weaknesses:

      The evidence is indirect - targeted mutations, structural predictions, and biochemical data. Therefore, these important generalizable conclusions are not buttressed by impeccable data, which would require doing actual structures in B. subtilis, confirming experiments in other organisms, and possibly co-evolutionary coupling. In the absence of such data, it is not possible to rule out variant models.

      We thank the reviewer for their feedback. A challenge of studying flexible proteins is that it is often not possible to directly obtain high resolution structural data. For the case of B. subtilis RsbU, the independent experimental approaches we applied (including two unbiased genetic screens, targeted mutagenesis, SAXS, enzymology, and structure prediction, which includes evolutionary coupling) converged upon a model for activation, which we feel is well supported. Frustratingly, our attempts at determining high resolution experimental structures have been unsuccessful, which we think is due to the flexibility of the proteins revealed by our SAXS experiments. For example, we collected X-ray diffraction data from crystals of a fragment of B. subtilis RsbU containing the N-terminal domain and linker in which the linker was almost entirely disordered in the maps. We agree that doing experiments in other organisms would be valuable next steps to test the hypothesis that this coiled-coil based transduction mechanism is conserved across species, and will modify the text to differentiate this more speculative section of the manuscript. Based on this critique (and the critiques of the other reviewers), we plan to do energetic analysis of the predicted coiled coils from the enzymes we analyzed from other species and to incorporate this into the manuscript. Finally, in the manuscript, we have highlighted that this mechanism is not the only mechanism for activation of other proteins with effector domains connected to linkers, but rather one of many mechanisms (Fig 5G). The reviewer additionally made helpful suggestions about the text in detailed comments that we will incorporate as appropriate.

      Reviewer #2 (Public review):

      Summary:<br /> While bacteria have the ability to induce genes in response to specific stresses, they also use the General Stress Response (GSR) to deal with growth conditions that presumably include a larger range of stresses (for instance, stationary phase growth). The activation of GSR-specific sigma factors is frequently at the heart of the induction of a GSR. Given the range of stresses that can lead to GSR induction, the regulatory inputs are frequently complex. In B. subtilis, the stressosome, a multi-protein complex, contains a set of proteins that, upon appropriate stresses, initiate partner switching cascades that free the sigma B sigma factor from an anti-sigma. The focus here is on the mode of activation of RsbU, a serine/threonine phosphatase of the PPM family, leading to sigB activation. RbsT, a component of the degradosome interacts with RsbU upon stress, activating the phosphatase activity. Once active, RsbU dephosphorylates its target (RsbV, an anti-antisigma), which in turn binds the anti-sigma. The conclusion is that flexible linker domains upstream of the phosphatase domain are the target for activation, via binding of proteins to the N-terminal domain, resulting in a crossed-linker dimeric structure. The authors then use the information on RsbU to suggest that parallel approaches are used to activate PPM phosphatases for the GSR response in other bacteria. (Biology vs. Mechanism, evolution?)

      Strengths and Weaknesses:<br /> Many of these have to do with clarifying what was done and why. This includes the presentation and content of the figures.<br /> One issue relates to the background and context. A bit more information on the stresses that release RsbT would be useful here. The authors might also consider a figure showing the major conclusions and parallels for SpoIIE activation and possibly other partner switches that are discussed, introducing the switch change more clearly to set the stage for the work here (and the generalization). There are a lot of players to keep track of.

      We plan to carefully review the manuscript to improve the clarity of presentation and background. In particular, we thank the reviewer for pointing out the missing information about the release of RsbT from the stressosome. We will incorporate this information into the introduction and provide an additional figure. The reviewer additionally provided detailed helpful comments that we will incorporate in the text and figures.

      Reviewer #3 (Public review):

      Summary:<br /> The authors present a study building on their previous work on activation of the general stress response phosphatase, RsbU, from Bacillus subtilis. Using computed structural models of the RsbU dimer the authors map previously identified activating mutations onto the structure and suggest further protein variants to test the role of the predicted linker helix and the interaction with RsbT on the activation of the phosphatase activity.<br /> Using in vivo and in vitro activity assays, the authors demonstrate that linker variants can constitutively activate RsbU and increase the affinity of the protein for RsbT, thus showing a link between the structure of the linker region and RsbT binding.<br /> Small angle X-ray scattering experiments on RsbU variants alone, and in complex with RsbT show structural changes consistent with a decreased flexibility of the RsbU protein, which is hypothesised to indicate a disorder-order transition in the linker when RsbT binds. This interpretation of the data is consistent with the biochemical data presented by the authors.<br /> Further computed structure models are presented for other protein phosphates from different bacterial species and the authors propose a model for phosphatase activation by partner binding. They compare this to the activation mechanisms proposed for histidine kinase two-component systems and GGDEF proteins and suggest the individual domains could be swapped to give a toolkit of modular parts for bacterial signalling.

      Strengths:<br /> The key mutagenesis data is presented with two lines of evidence to demonstrate RsbU activation - in vivo sigma-b activation assays utilising a beta-galactosidase reporter and in vitro activity assays against the RsbV protein, which is the downstream target of RsbU. These data support the hypothesis for RsbT binding to the RsbU linker region as well as the dimerisation domain to activate the RsbU activity.

      Weaknesses:<br /> Small angle scattering curves are difficult to unambiguously interpret, but the authors present reasonable interpretations that fit with the biochemical data presented. These interpretations should be considered as good models for future testing with other methods - hydrogen/deuterium exchange mass spectrometry, would be a good additional method to use, as exchange rates in the linker region would be affected significantly by the disorder/order transition on RsbT binding.

      We agree with the reviewer that the SAXS data has inherent ambiguity due to the nature of the measurement. However, SAXS is one of the best techniques to directly assess conformational flexibility. Our scattering data for RsbU have multiple signatures of flexibility supporting a high confidence conclusion. While the scattering data support a reduction in flexibility for the RsbT/RsbU complex, we agree that a high resolution structure would be valuable. However the combination of the scattering data with our biochemical and genetic data supports the validity of the AlphaFold predicted model. We thank the reviewer for the suggestion of future hydrogen/deuterium exchange experiments that would be complementary, but which we feel are beyond the scope of this work.

      The interpretation of the computed structure models should be toned down with the addition of a few caveats related to the bias in the models returned by AlphaFold2. For the full-length models of RsbU and other phosphatase proteins, the relationship of the domains to each other is likely to be the least reliable part of the models - this is apparent from the PAE plots shown in Supplementary Figure 8. Furthermore, the authors should show models coloured by pLDDT scores in an additional supplementary figure to help the reader interpret the confidence level of the predicted structures.

      We thank the reviewer for suggestions on how to clarify the discussion of AlphaFold models. We will decrease the emphasis on the computed models in the text and will add figures with the models colored by the pLDDT scores to aid in the interpretation.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors create an elegant sensor for TDP -43 loss of function based on cryptic splicing of CFTR and UNC13A. The usefulness of this sensor primarily lies in its use in eventual high throughput screening and eventual in vivo models. The TDP-43 loss of function sensor was also used to express TDP-43 upon reduction of its levels.

      Strengths:

      The validation is convincing, the sensor was tested in models of TDP-43 loss of function, knockdown and models of TDP-43 mislocalization and aggregation. The sensor is susceptible to a minimal decrease of TDP-43 and can be used at the protein level unlike most of the tests currently employed.

      Weaknesses:

      Although the LOF sensor described in this study may be a primary readout for high-throughput screens, ALS/TDP-43 models typically employ primary readouts such as protein aggregation or mislocalization. The information in the two following points would assist users in making informed choices. 1. Testing the sensor in other cell lines 2. Establishing a correlation between the sensor's readout and the loss of function (LOF) in the physiological genes would be useful given that the LOF sensor is a hybrid structure and doesn't represent any physiological gene. It would be beneficial to determine if a minor decrease (e.g., 2%) in TDP-43 levels is physiologically significant for a subset of exons whose splicing is controlled by TDP-43.

      Considering that most TDP-LOF pathologically occurs due to aggregation and or mislocalization, and in most cases the endogenous TDP-43 gene is functional but the protein becomes non-functional, the use of the loss of function sensor as a switch to produce TDP-43 and its eventual use as gene therapy would have to contend with the fact that the protein produced may also become nonfunctional. This would eventually be easy to test in one of the aggregation modes that were used to test the sensor.. However, as the authors suggest, this is a very interesting system to deliver other genetic modifiers of TDP-43 proteinopathy in a regulated fashion and timely fashion.

      We thank Reviewer #1 for their detailed feedback. In response, we will investigate the function of CUTS in neuronal cells and evaluate how a modest reduction in TDP-43 levels affects the splicing of physiologically relevant TDP-43-regulated cryptic exons within these cells (eg. STMN2, UNC13A, etc…).

      Reviewer #2 (Public review):

      Summary:

      The authors goal is to develop a more accurate system that reports TDP-43 activity as a splicing regulator. Prior to this, most methods employed western blotting or QPCR-based assays to determine whether targets of TDP-43 were up or down-regulated. The problem with that is the sensitivity. This approach uses an ectopic delivered construct containing splicing elements from CFTR and UNC13A (two known splicing targets) fused to a GFP reporter. Not only does it report TDP-43 function well, but it operates at extremely sensitive TDP-43 levels, requiring only picomolar TDP-43 knockdown for detection. This reporter should supersede the use of current TDP-43 activity assays, it's cost-effective, rapid and reliable.

      Strengths:

      In general, the experiments are convincing and well designed. The rigor, number of samples and statistics, and gradient of TDP-43 knockdown were all viewed as strengths. In addition, the use of multiple assays to confirm the splicing changes were viewed as complimentary (ie PCR and GFP-fluorescence) adding additional rigor. The final major strength I'll add is the very clever approach to tether TDP-43 to the loss of function cassette such that when TDP-43 is inactive it would autoregulate and induce wild-type TDP-43. This has many implications for the use of other genes, not just TDP-43, but also other protective factors that may need to be re-established upon TDP-43 loss of function.

      Weaknesses:

      Admittedly, one needs to initially characterize the sensor and the use of cell lines is an obvious advantage, but it begs the question of whether this will work in neurons. Additional future experiments in primary neurons will be needed. The bulk analysis of GFP-positive cells is a bit crude. As mentioned in the manuscript, flow sorting would be an easy and obvious approach to get more accurate homogenous data. This is especially relevant since the GFP signal is quite heterogeneous in the image panels, for example, Figure 1C, meaning the siRNA is not fully penetrant. Therefore, stating that 1% TDP-43 knockdown achieves the desired sensor regulation might be misleading. Flow sorting would provide a much more accurate quantification of how subtle changes in TDP-43 protein levels track with GFP fluorescence.

      Some panels in the manuscript would benefit from additional clarity to make the data easier to visualize. For example, Figure 2D and 2G could be presented in a more clear manner, possibly split into additional graphs since there are too many outputs. Sup Figure 2A image panels would benefit from being labeled, its difficult to tell what antibodies or fluorophores were used. Same with Figure 4B.

      Figure 3 is an important addition to this manuscript and in general is convincing showing that TDP-43 loss of function mutants can alter the sensor. However, there is still wild-type endogenous TDP-43 in these cells, and it's unclear whether the 5FL mutant is acting as a dominant negative to deplete the total TDP-43 pool, which is what the data would suggest. This could have been clarified. Additional treatment with stressors that inactivate TDP-43 could be tested in future studies.

      Overall, the authors definitely achieved their goals by developing a very sensitive readout for TDP-43 function. The results are convincing, rigorous, and support their main conclusions. There are some minor weaknesses listed above, chief of which is the use of flow sorting to improve the data analysis. But regardless, this study will have an immediate impact for those who need a rapid, reliable, and sensitive assessment of TDP-43 activity, and it will be particularly impactful once this reporter can be used in isolated primary cells (ie neurons) and in vivo in animal models. Since TDP-43 loss of function is thought to be a dominant pathological mechanism in ALS/FTD and likely many other disorders, having these types of sensors is a major boost to the field and will change our ability to see sub-threshold changes in TDP-43 function that might otherwise not be possible with current approaches.

      We thank Reviewer #2 for their constructive evaluation of our study. In response, we will assess CUTS in human neuronal cells, as also recommended by Reviewer #1. Additionally, we will incorporate an analysis of CUTS using flow cytometry to provide quantitative measurements of GFP signal. We agree that investigating how CUTS responds to stressors affecting TDP-43 function would be a valuable addition (eg. MG132), and we will include this data in the revisions to the study.

      We also appreciate the feedback on our figures and will work to enhance their clarity, incorporating the Reviewer’s suggestions. Specifically, we will split Figure 2D and 2G into multiple plots and ensure clearer labeling of the image panels in Figures 2A and 4B.

      Regarding the comment on the 5FL data, we believe this occurrence can be explained by existing literature, and we will address this directly in the discussion section of the manuscript.

      Reviewer #3 (Public review):

      The DNA and RNA binding protein TDP-43 has been pathologically implicated in a number of neurodegenerative diseases including ALS, FTD, and AD. Normally residing in the nucleus, in TDP-43 proteinopathies, TDP-43 mislocalizes to the cytoplasm where it is found in cytoplasmic aggregates. It is thought that both loss of nuclear function and cytoplasmic gain of toxic function are contributors to disease pathogenesis in TDP-43 proteinopathies. Recent studies have demonstrated that depletion of nuclear TDP-43 leads to loss of its nuclear function characterized by changes in gene expression and splicing of target mRNAs. However, to date, most readouts of TDP-43 loss of function events are dependent upon PCR-based assays for single mRNA targets. Thus, reliable and robust assays for detection of global changes in TDP-43 splicing events are lacking. In this manuscript, Xie, Merjane, Bergmann and colleagues describe a biosensor that reports on TDP-43 splicing function in real time. Overall, this is a well described unique resource that would be of high interest and utility to a number of researchers. Nonetheless, a couple of points should be addressed by the authors to enhance the overall utility and applicability of this biosensor.

      We thank Reviewer #3 for their time and thoughtful assessment of our manuscript. We will address all their recommendations, including expanding the discussion on the CE sequences utilized in the CUTS sensor and exploring the potential utility of the CUTS sensor in alternative disease-relevant systems.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This preprint explores the involvement of cyclic di-GMP in genome stability and antibiotic persistence regulation in bacterial biofilms. The authors proposed a novel mechanism that, due to bacterial adhesion, increases c-di-GMP levels and influences persister formation through interaction with HipH. While the work may provide useful insights that could attract researchers in biofilm studies and persistence mechanisms, the main findings are inadequately supported and require further validation and refinement in experimental design.

      We sincerely thank eLife for the through assessment of our manuscript. We appreciate the constructive criticism and see it as an opportunity to strengthen our research. In response to the reviewers' comments and suggestions, we have made significant improvements to our study. We have refined our experimental design and conducted additional experiments to provide more robust evidence supporting our findings. We believe that with these additional experiments and refinements, our study provides robust evidence for this novel mechanism, contributing significantly to the fields of biofilm research and bacterial persistence.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors propose a UPEC TA system in which a metabolite, c-di-GMP, acts as the AT with the toxin HipH. The idea is novel, but several key ideas are missing in regard to the relevant literature, and the experimental design is flawed. Moreover, they are absolutely not studying persister cells as Figure 1b clearly shows they are merely studying dying cells since no plateau in killing (or anything close to a plateau) was reached. So in no way has persistence been linked to c-di-GMP. Moreover, I do not think the authors have shown how the c-di-GMP sensor works. Also, there is no evidence that c-di-GMP is an antitoxin as no binding to HipH has been shown. So at best, this is an indirect effect, not a new toxin/antitoxin system as for all 7 TAs, a direct link to the toxin has been demonstrated for antitoxins.

      Thank you for your constructive comments on our manuscript. Your insights have prompted us to revisit our data and experimental design, leading to significant improvements in our study.

      (1) Clarification on Persister Cell Detection: We sincerely appreciate your astute observation regarding the interpretation of our killing curve in Figure 1B. Upon careful re-examination, we concur that our initial methodology had limitations in revealing the characteristic biphasic pattern associated with persister cells. To address these limitations, we have implemented two key modifications: shortening the sampling interval and extending the antibiotic treatment duration. ​These adjustments have resulted in an updated killing curve that now exhibits a more pronounced biphasic pattern and a prominent plateau in the late stage of killing, as illustrated in Response Figure 1.​ This refined pattern aligns with established characteristics of persister cell behavior in antibiotic tolerance studies, providing a more accurate representation of the persister population dynamics in our experimental system. We believe these methodological enhancements significantly improve the reliability and interpretability of our results, offering a clearer insight into the persister cell phenomenon under investigation.

      (2) Validation of c-di-GMP Sensor: We appreciate your point about the c-di-GMP sensor. The c-di-GMP sensor, developed by Howard C. Berg's team, is specifically designed to detect relative intracellular concentrations of c-di-GMP in Escherichia coli cells. This capability is crucial for understanding the dynamic regulation of c-di-GMP during bacterial responses to environmental stimuli. We have expanded our explanation of the sensor's detection mechanism in lines 138-146 of the manuscript, detailing how it functions to reflect changes in c-di-GMP levels within the cells accurately. The mechanism operates through a series of signaling events that are initiated when c-di-GMP binds to the sensor, leading to measurable outputs that correlate with intracellular concentrations. Additionally, we have provided a schematic chart in Figure S1B to visually support our description regarding the sensor. This figure demonstrates the sensor's responsiveness and specificity in detecting fluctuations in c-di-GMP levels, effectively linking the signaling molecule to cellular behavior. We hope these additions clarify the role of the c-di-GMP sensor in our research and address your concerns regarding its functionality.​

      (3) HipH and c-di-GMP Interaction: Our pull-down experiments presented in Figure 5A-E provide robust and compelling evidence for a direct physical interaction between HipH and c-di-GMP, and the effects of their interaction reminiscent of toxin-antitoxin systems. Yet we acknowledge c-di-GMP is not a traditional antitoxin since it is not genetically linked to HipH. We have revised our terminology to "TA-like system" to reflect this difference more accurately.

      Weaknesses:

      (1) L 53: biofilm persisters are no different than any other persisters (there is no credible evidence of any different persister cells) so this reviewer suggests changing 'biofilm persisters' to 'persisters' throughout the text.

      Thank you for your thoughtful consideration. Upon careful consideration of the current scientific literature, we agree that there is no substantial evidence supporting a distinct category of persister cells specific to biofilms. We have systematically replaced 'biofilm persisters' with 'persisters' throughout the manuscript​.

      (2) L 51: persister cells do not mutate and, once resuscitated, mutate like any other growing cell so this sentence should be deleted as it promotes an unnecessary myth about persistence.

      We sincerely appreciate your astute observation regarding the inaccuracy in line 51. We have removed the sentence in question from line 51​. And we also have thoroughly reviewed the entire manuscript to ensure no similar misconceptions are present elsewhere in the text.

      (3) L 69: please include the only metabolic model for persister cell formation and resuscitation here based on single cells (e.g., doi.org/10.1016/j.bbrc.2020.01.102 , https://doi.org/10.1016/j.isci.2019.100792 ); otherwise, you write as if there are no molecular mechanisms for persistence/resuscitation.

      Thank you for your valuable suggestion. We appreciate the opportunity to enhance the scientific context of our manuscript. We have added a brief explanation of how ppGpp mediates ribosome dimerization, leading to persistence, and how its degradation triggers resuscitation [1-3] (lines 68-74). We have described the role of cAMP-CRP in regulating persistence through its effects on metabolism and stress responses [4, 5] (lines 74-78). We also explore potential interactions or synergies between our proposed mechanisms and these established metabolic models [6] (lines 383-409). We believe this revision significantly enhances our manuscript by providing a more accurate representation of the current state of knowledge in the field and demonstrating how our work builds upon and contributes to existing models of bacterial persistence.

      (4) The authors should cite in the Intro or Discussion that others have proposed similar novel TAs including a ppGpp metabolic toxin paired with an enzymatic antitoxin SpoT that hydrolyzes the toxin (http://dx.doi.org/10.1016/j.molcel.2013.04.002).

      We are grateful for your expertise in pointing out this crucial reference. We sincerely appreciate your suggestion to include the reference to previously proposed novel toxin-antitoxin (TA) systems, particularly the ppGpp-SpoT system [6]. In light of this reference, we have expanded our discussion to include: 1) A brief overview of the ppGpp-SpoT system as a novel TA-like mechanism. 2) Comparisons between the ppGpp-SpoT system and our findings on the HipH-c-di-GMP interaction. 3) Reflections on how these systems challenge and expand traditional definitions of TA systems (lines 383-409). We believe this addition significantly enhances the context and strengthens the rationale for considering the HipH-c-di-GMP interaction as a TA-like system. Thank you for your valuable input in helping us situate our research within the broader landscape of TA system biology.

      (5) Figure 1b: there are no results in this paper related to persister cells. Figure 1b simply shows dying cells were enumerated. Hence, the population of stressed cells increased, not 'persister cells' (Figure 1f), in the course of these experiments.

      We sincerely appreciate your astute observation regarding the interpretation of our killing curve in Figure 1B. Upon careful re-examination, we concur that our initial methodology had limitations in revealing the characteristic biphasic pattern associated with persister cells. To address these limitations, we have implemented 1) Shortened sampling interval: We have reduced the interval between measurements to one hour. 2) Extended sampling duration: The total duration of sampling has been increased to 6 hours (Response Figure 1). The updated killing curve now exhibits a more pronounced biphasic pattern and a prominent plateau in the late stage of killing: 1) Initial rapid decline: From 0-1hours, we observe a steep decrease in bacterial survival (slope ≈ -3~-1.8); 2) Slower decline phase: From 4.5-6 hours, the rate of decline is markedly reduced (slope ≈ -0.17~-0.06). This pattern aligns more closely with established characteristics of persister cell behavior in antibiotic tolerance studies.

      (6) Figure S1: I see no evidence that the authors have shown this c-di-GMP detects different c-di-GMP levels since there appears to be no data related to varying c-di-GMP concentrations with a consistent decrease. Instead, there is a maximum. What are the concentration of c-di-GMP on the X-axis for panels C, D, and E? How were c-di-GMP levels varied such that you know the c-di-GMP concentration?

      We appreciate your point about the c-di-GMP sensor. To address this, we have included additional data on the sensor's mechanism and validation. The sensor, developed by Howard C. Berg's team, is designed for detecting intracellular c-di-GMP concentrations in E. coli [7].

      Sensor Design and Mechanism:The sensor developed for detecting c-di-GMP levels in Escherichia coli cells is based on a single fluorescent protein biosensor. The protein includes a Fluorescent Protein Base and a c-di-GMP Binding Domain. The fluorescent protein base is mVenusNB, which is the fastest-folding yellow fluorescent protein (YFP). The c-di-GMP binding domain is the MrkH protein is inserted between Y145 and N146 of mVenusNB. MrkH is a transcription factor with a high affinity for c-di-GMP. When MrkH binds to c-di-GMP, it undergoes a significant conformational change. The amino-terminal domain of MrkH rotates 138° relative to its carboxyl-terminal domain upon c-di-GMP binding.This rotation disrupts the mVenusNB chromophore environment, resulting in reduced fluorescence. The sensor system co-expresses mScarletI, a bright, rapidly folding red fluorescent protein. mScarletI serves as a reference for ratiometric measurements. Such design allows for ratiometric measurement of real-time monitoring of c-di-GMP levels in individual cells and control of variations in protein expression levels between cells. This enables the observation of dynamic changes in c-di-GMP concentration, such as the increase seen after E. coli surface attachment.

      Functioning and Accuracy: The sensor is designed to detect c-di-GMP in the 100 to 700 nM range, which is the physiological range in E. coli. The use of a low copy plasmid for expression ensures detection at low concentrations. The ratio (R) of mVenusNB to mScarletI fluorescence emission is measured for individual cells. The sensor shows at least a twofold dynamic range between low and high c-di-GMP conditions. Cells with low c-di-GMP (expressing phosphodiesterase PdeH) show higher R values compared to cells with high c-di-GMP (expressing constitutively active diguanylate cyclase WspR:D70E). A mutant biosensor (Sensor*) with the R113A mutation in MrkH is used as a control. This mutation eliminates c-di-GMP binding ability, allowing differentiation between specific c-di-GMP effects and other cellular changes.

      This biosensor system provides a sophisticated tool for visualizing and quantifying c-di-GMP levels in individual bacterial cells with high sensitivity and temporal resolution.​ By combining a c-di-GMP-sensitive fluorescent protein with a reference fluorescent protein and utilizing ratiometric analysis, the system can accurately reflect changes in intracellular c-di-GMP levels while controlling for other cellular variables.

      We have expanded our explanation of its detection mechanism in lines 138-146 and Figure S1B.

      (7) The viable portion of the VBNC population are persister cells so there is no reason to use VBNC as a separate term. Please see the reported errors often made with nucleic acid staining dyes in regard to VBNCs.

      We appreciate the opportunity to clarify the distinction between VBNC cells and persister cells in our manuscript. It is essential to recognize that VBNC cells and persister cells represent two fundamentally different states of bacterial dormancy. While both may exhibit viability under certain conditions, persister cells are characterized by their ability to resuscitate and grow when environmental conditions become favorable [8]. In contrast, VBNC cells are in a deep dormant state where they cannot be revived through normal culture conditions [9, 10]. This distinction is critical for accurately representing bacterial survival strategies and population dynamics, which is why we maintain the use of the term VBNC separately from persister cells. We have added related references in lines 259.

      Regarding the reported errors associated with nucleic acid staining dyes for identifying VBNC cells, we acknowledge that these methods can exhibit limitations. Specifically, nucleic acid stains may fail to reliably differentiate between metabolically active and inactive cells, leading to inaccuracies in quantifying the true VBNC population [11]. In our study, we have opted to utilize propidium iodide (PI) staining to assess cell viability more accurately, as it effectively distinguishes dead cells from viable cells based on membrane integrity [12]. By employing this methodology, we ensure a more precise estimation of the VBNC proportion without conflating it with persister cell dynamics.

      Reviewer #2 (Public Review):

      Summary:

      Hebin et al reported a fascinating story about antibiotic persistence in the biofilms. First, they set up a model to identify the increased persisters in the biofilm status. They found that the adhesion of bacteria to the surface leads to increased c-di-GMP levels, which might lead to the formation of persisters. To figure out the molecular mechanism, they screened the E.coli Keio Knockout Collection and identified the HipH. Finally, the authors used a lot of data to prove that c-di-GMP not only controls HipH over-expression but also inhibits HipH activity, though the inhibition might be weak.

      Thank you for your insightful summary of our research. We greatly appreciate your thoughtful consideration of our work.

      Strengths:

      They used a lot of state-of-the-art technologies, such as single-cell technologies as well as classical genetic and biochemistry approaches to prove the concept, which makes the conclusions very solid. Overall, it is a very interesting and solid story that might attract diverse readers working with c-di-GMP, persisters, and biofilm.

      Weaknesses:

      (1) Is HipH the only target identified by screening the E. coli Keio Knockout Collection?

      We appreciate your inquiry about our screening process and the identification of HipH. We did not screen the entire E. coli Keio Knockout Collection. Our approach was more targeted, focusing on mutants relevant to enzyme activity regulation. We selected specific mutants based on their potential involvement in c-di-GMP-mediated regulatory pathways. This focused approach allowed us to efficiently identify candidates likely to be involved in persister formation. Among the screened mutants, HipH emerged as a significant hit. Its identification was particularly noteworthy due to its known role in persister formation and its potential as a regulatory target of c-di-GMP. We acknowledge that our targeted approach may have overlooked other potential candidates. We are considering a more comprehensive screening approach in future studies to identify additional targets.

      (2) Since the story is complicated, a diagrammatic picture might be needed to illustrate the whole story. And the title does not accurately summarize the novelty of this study.

      Thank you for your valuable feedback. We fully agree with your assessment that a visual representation would greatly enhance the clarity of our complex findings. In response to your suggestion, we have added Response Figure 2 (Fig. 6 in revised manuscript, lines 976-981) to our manuscript. This new figure provides a comprehensive visual summary of the key processes and mechanisms uncovered in our study. This graphic summary provides a clear overview of the interconnected nature of surface adhesion, c-di-GMP signaling, and HipH regulation. It also highlights the complex role of c-di-GMP in persister formation and offers readers a visual aid to better understand the molecular mechanisms underlying our findings.

      We sincerely appreciate your thoughtful comment regarding the title and its reflection of the study's novelty. ​After careful consideration, we believe that our original title adequately captures the essence and significance of our research.​ We have strived to ensure that it accurately represents the scope and novelty of our work while maintaining clarity and conciseness. Nevertheless, we value your input and thank you for taking the time to provide this feedback, as it encourages us to critically evaluate our presentation.

      (3) The ratio of mVenusNB to mScarlet-I (R) negatively correlates with the concentration of c-di-GMP. Therefore, R-1 demonstrates a positive correlation with the concentration of c-di-GMP. Is this method validated with other methods to quantify c-di-GMP, or used in other studies?

      We appreciate your point about the c-di-GMP sensor. To address this, we have included additional data on the sensor's mechanism and validation. The sensor, developed by Howard C. Berg's team, is designed for detecting intracellular c-di-GMP concentrations in E. coli [7].

      Sensor Design and Mechanism:The sensor developed for detecting c-di-GMP levels in Escherichia coli cells is based on a single fluorescent protein biosensor. The protein includes a Fluorescent Protein Base and a c-di-GMP Binding Domain. The fluorescent protein base is mVenusNB, which is the fastest-folding yellow fluorescent protein (YFP). The c-di-GMP binding domain is the MrkH protein is inserted between Y145 and N146 of mVenusNB. MrkH is a transcription factor with a high affinity for c-di-GMP. When MrkH binds to c-di-GMP, it undergoes a significant conformational change. The amino-terminal domain of MrkH rotates 138° relative to its carboxyl-terminal domain upon c-di-GMP binding.This rotation disrupts the mVenusNB chromophore environment, resulting in reduced fluorescence. The sensor system co-expresses mScarletI, a bright, rapidly folding red fluorescent protein. mScarletI serves as a reference for ratiometric measurements. Such design allows for ratiometric measurement of real-time monitoring of c-di-GMP levels in individual cells and control of variations in protein expression levels between cells. This enables the observation of dynamic changes in c-di-GMP concentration, such as the increase seen after E. coli surface attachment.

      Functioning and Accuracy: The sensor is designed to detect c-di-GMP in the 100 to 700 nM range, which is the physiological range in E. coli. The use of a low copy plasmid for expression ensures detection at low concentrations. The ratio (R) of mVenusNB to mScarletI fluorescence emission is measured for individual cells. The sensor shows at least a twofold dynamic range between low and high c-di-GMP conditions. Cells with low c-di-GMP (expressing phosphodiesterase PdeH) show higher R values compared to cells with high c-di-GMP (expressing constitutively active diguanylate cyclase WspR:D70). A mutant biosensor (Sensor*) with the R113A mutation in MrkH is used as a control. This mutation eliminates c-di-GMP binding ability, allowing differentiation between specific c-di-GMP effects and other cellular changes.

      This biosensor system provides a sophisticated tool for visualizing and quantifying c-di-GMP levels in individual bacterial cells with high sensitivity and temporal resolution.​ By combining a c-di-GMP-sensitive fluorescent protein with a reference fluorescent protein and utilizing ratiometric analysis, the system can accurately reflect changes in intracellular c-di-GMP levels while controlling for other cellular variables.

      We have expanded our explanation of its detection mechanism in lines 138-146 and Figure S1B.

      (4) References are missing throughout the manuscript. Please add enough references for every conclusion.

      We appreciate your feedback regarding the references in our manuscript. We acknowledge the importance of proper citation to support our conclusions and provide context for our work. ​In response to your comment, we have conducted a comprehensive review of our manuscript and have significantly enhanced our referencing throughout.​ We have added appropriate citations to support each key statement and conclusion presented in our study. These additional references provide a robust foundation for our findings and place our work within the broader context of the field. The complete list of all references, including the newly added ones, can be found at the end of this response letter as well as in the revised manuscript.

      (5) The novelty of this study should be clearly written and compared with previous references. For example, is it the first study to report the mechanism that the adhesion of bacteria to the surface leads to increased persister formation?

      We sincerely appreciate the opportunity to highlight and elaborate the novelty of our research. This study provides novel insights into the relationship between bacterial adhesion to surfaces and the subsequent increase in persister cell formation, which has not been explicitly detailed in previous literature. While existing research has established that biofilms typically harbor higher numbers of persister cells, this investigation not only corroborates that finding but also elucidates the mechanisms through which surface adhesion contributes to this phenomenon.

      Past studies have predominantly focused on the general characteristics of persister cells and their role in biofilm resilience and antibiotic tolerance without specifically addressing the mechanistic link between adhesion and persister formation [13, 14]. For instance, previous work has shown that surface attachment leads to changes in metabolic activity and signaling pathways within bacterial cells, which could promote persistence, but it has not definitively established a causal relationship between adhesion and increased persister formation. Our study highlights that the elevation of cyclic di-GMP levels after surface adhesion triggers a cascade of physiological changes that significantly enhance the formation of persister cells. In particular, we report that adhesion-induced signaling pathways promote dormancy and tolerance to antibiotics, marking an important advancement from the previous understanding that treated persister cells might arise from random phenotypic variation during biofilm development. we have expanded our discussion in lines 366-381.

      In summary, we believe this study stands as one of the first to clearly delineate the mechanism by which bacterial adhesion leads to increased persister formation, providing a valuable contribution to the current understanding of bacterial persistence and biofilm ecology. Thus, we can assert that our findings are not only novel but also essential for informing future research and therapeutic strategies aimed at managing bacterial infections.

      (6) in vitro DNA cleavage assay. Why not use bacterial genomic DNA to test the cleaving of HipH on the bacterial genome?

      Thank you for your feedback regarding our experimental approach. The decision of not directly using genomic DNA in our experiments was made after careful consideration. The high molecular weight of genomic DNA, which presents significant challenges in handling and analysis. The difficulty in extracting intact genomic DNA, which could potentially compromise the integrity of our results. The challenges associated with electrophoretic separation of such large DNA molecules, which could limit our ability to accurately interpret the data.

      Instead, following established practices in molecular biology research and drawing from similar studies in the field [15-17], we opted to use plasmids as model DNA for our experiments.​ This approach offers several advantages: Plasmids are smaller and more manageable, making them easier to manipulate in laboratory conditions; They can be more readily extracted in intact form, ensuring the quality of our experimental material; Plasmid DNA is more amenable to electrophoretic separation, allowing for clearer and more precise analysis. Despite their smaller size, plasmids retain many of the key characteristics of genomic DNA that are relevant to our study. We believe this approach provides a robust and reliable model for our research while overcoming the practical limitations associated with genomic DNA. It allows us to investigate the fundamental principles we're interested in, while maintaining experimental feasibility and data integrity. We have added related references in lines 314 and 599.

      (7) C-di-GMP -HipH is not a TA, it does not fit in the definition of the TA systems. You can say C-di-gmp is an antitoxin based on your study, but C-di-gmp -HipH is not a TA pair.

      We appreciate your insightful feedback regarding the classification of the c-di-GMP-HipH interaction. We acknowledged that while our study suggests c-di-GMP may function as an antitoxin to HipH, the c-di-GMP-HipH pair does not constitute a classical TA system due to the lack of genetic linkage. We have replaced the term "TA system" with "TA-like system" when referring to the c-di-GMP-HipH interaction. This more accurately reflects the nature of their relationship while acknowledging that it differs from traditional TA systems.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Either indent or skip a line to indicate a new paragraph; there is no need to do both.

      Thank you for your feedback regarding the formatting of our manuscript. We have revised the formatting throughout the main text by using a single blank line to separate paragraphs, without indentation.

      (2) L 77: need to define 'c-di-GMP' without using another abbreviation; please write '3,5-cyclic diguanylic acid', etc.

      Thank you for your valuable feedback regarding the proper introduction of abbreviations in our manuscript. We have revised line 86 to introduce the full name of c-di-GMP as "3,5-cyclic diguanylic acid". Following this initial introduction, we consistently use the abbreviation "c-di-GMP" throughout the rest of the manuscript.

      Reviewer #2 (Recommendations For The Authors):

      This is a fascinating story, but the title and the manuscript need careful revision to make it more clear. The novelty and logic are not very easy to follow.

      (1) Figure 1B, " h" is missing

      We sincerely thank you for your attentive review and for pointing out the missing "h" in Figure 1B. We have carefully reviewed and revised the figure legend in Figure 1B.​ The unit of time has been corrected to include "h" (hours) where appropriate, ensuring consistency and accuracy throughout the figure.

      (2) Line 222, the in vivo mice model should be cited with the reference.

      Thank you for the reminding. We have cited the following reference related to the mice model (line 231).

      Pang Y, et al., (2022) Bladder epithelial cell phosphate transporter inhibition protects mice against uropathogenic Escherichia coli infection. Cell reports 39: 110698

      References

      (1) Wood, T.K. and S. Song, Forming and waking dormant cells: The ppGpp ribosome dimerization persister model. Biofilm, 2020. 2: p. 100018.

      (2) Song, S. and T.K. Wood, ppGpp ribosome dimerization model for bacterial persister formation and resuscitation. Biochem Biophys Res Commun, 2020. 523(2): p. 281-286.

      (3) Wood, T.K., S. Song, and R. Yamasaki, Ribosome dependence of persister cell formation and resuscitation. J Microbiol, 2019. 57(3): p. 213-219.

      (4) Niu, H., J. Gu, and Y. Zhang, Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct Target Ther, 2024. 9(1): p. 174.

      (5) Mok, W.W., M.A. Orman, and M.P. Brynildsen, Impacts of global transcriptional regulators on persister metabolism. Antimicrob Agents Chemother, 2015. 59(5): p. 2713-9.

      (6) Amato, S.M., M.A. Orman, and M.P. Brynildsen, Metabolic control of persister formation in Escherichia coli. Mol Cell, 2013. 50(4): p. 475-87.

      (7) Vrabioiu, A.M. and H.C. Berg, Signaling events that occur when cells of Escherichia coli encounter a glass surface. Proc Natl Acad Sci U S A, 2022. 119(6).

      (8) Liu, J., et al., Viable but nonculturable (VBNC) state, an underestimated and controversial microbial survival strategy. Trends Microbiol, 2023. 31(10): p. 1013-1023.

      (9) Pan, H. and Q. Ren, Wake Up! Resuscitation of Viable but Nonculturable Bacteria: Mechanism and Potential Application. Foods, 2022. 12(1).

      (10) Ayrapetyan, M., T. Williams, and J.D. Oliver, Relationship between the Viable but Nonculturable State and Antibiotic Persister Cells. J Bacteriol, 2018. 200(20).

      (11) Zhao, S., et al., Absolute Quantification of Viable but Nonculturable Vibrio cholerae Using Droplet Digital PCR with Oil-Enveloped Bacterial Cells. Microbiol Spectr, 2022. 10(4): p. e0070422.

      (12) Zhao, S., et al., Enumeration of Viable Non-Culturable Vibrio cholerae Using Droplet Digital PCR Combined With Propidium Monoazide Treatment. Front Cell Infect Microbiol, 2021. 11: p. 753078.

      (13) Pan, X., et al., Recent Advances in Bacterial Persistence Mechanisms. Int J Mol Sci, 2023. 24(18).

      (14) Patel, H., H. Buchad, and D. Gajjar, Pseudomonas aeruginosa persister cell formation upon antibiotic exposure in planktonic and biofilm state. Sci Rep, 2022. 12(1): p. 16151.

      (15) Maki, S., et al., Partner switching mechanisms in inactivation and rejuvenation of Escherichia coli DNA gyrase by F plasmid proteins LetD (CcdB) and LetA (CcdA). J Mol Biol, 1996. 256(3): p. 473-82.

      (16) Hockings, S.C. and A. Maxwell, Identification of four GyrA residues involved in the DNA breakage-reunion reaction of DNA gyrase. J Mol Biol, 2002. 318(2): p. 351-9.

      (17) Chan, P.F., et al., Structural basis of DNA gyrase inhibition by antibacterial QPT-1, anticancer drug etoposide and moxifloxacin. Nat Commun, 2015. 6: p. 10048.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment<br /> This important study evaluates the outcomes of a single-institution pilot program designed to provide graduate students and postdoctoral fellows with internship opportunities in areas representing diverse career paths in the life sciences. The data convincingly show the benefit of internships to students and postdocs, their research advisors, and potential employers, without adverse impacts on scientific productivity. This work will be of interest to multiple stakeholders in graduate and postgraduate life sciences education and should stimulate further research into how such programs can best be broadly implemented.

      Thank you for your assessment. We agree that sharing our process for creating this internship program with the wider higher education community is important and we hope it will spur establishment of new programs at other institutions.

      Public Reviews:

      Reviewer #1 (Public Review):

      The goal of this study was to determine whether short (1 month) internships for biomedical science trainees (mostly graduate students but some post-docs) were beneficial for the trainees, their mentors, and internship hosts. Over a 5 year period, the outcomes of trainees who completed internships were compared with peers who did not. Both quantitative results in terms of survey responses and qualitative results obtained from discussion groups were provided. Overall, the data suggest that internships aid graduate students in multiple ways and do not harm progress on dissertation projects. 'Buy-in' from mentors and prospective mentors appeared to increase over time, and hosts also gained from the contributions of the interns even in a short time period. While the program also appeared valuable for post-doctoral trainees, it was less favorably considered by post-doc mentors.

      Thank you for such a positive and concise overview of this paper.

      Strengths:

      The internship program that was examined here appears to have been very well designed in terms of availability to students, range of internship offerings, length of time away from PhD lab, and assessments.

      Having a built-in peer control group of graduate students who did not do internships was valuable for much of the quantitative analyses. However, as the authors acknowledge, those who did opt for internships are a self-selected group who may have character traits that would help them overcome the potential negative impacts of the internship.

      The quantitative data is convincing and addresses important considerations for all stakeholders.

      The manuscript is well-constructed to individually address the impact of the program on each set of stakeholders, while also showcasing areas of mutual benefit.

      The discussion of challenges and limitations, from the perspectives of participating stakeholders, program leaders, and also institutions, is comprehensive and very thoughtful.

      Thank you for noting these strengths in experimental design, control group, and manuscript format.

      Weaknesses:

      The qualitative data that resulted from the 'focus groups' of faculty mentors was somewhat difficult to evaluate given the very limited number of participants (n=7).

      Thank you for pointing out the potential limitations of a small sample size. One reason we selected a qualitative approach to focus group data analysis in our experimental design was to supplement our larger quantitative analyses with faculty advisors. A benefit of relying on qualitative methods is that saturation of a representative set of themes can be reached even with a limited number of participants. This is particularly true when a homogenous sample is used, such as faculty members in the biomedical sciences (Guest, et al. 2006). We have added the following sentences at line 188 in the text to expand on the faculty focus groups:

      “A group of faculty advisors in a range of disciplines and demographics, all of whom were active mentors with extensive training experience were invited to participate in the focus groups. Seven faculty advisors participated in the Year 1 focus group and 5 of those same 7 participated in Year 5. Saturation can occur with as little as six interviews in homogeneous samples (Guest et al. 2006) such as our biomedical faculty research advisors at a single institution.”

      In the original analysis, we increased the generalizability of our findings by gathering faculty opinions and feedback using multiple methods. For example, faculty post internship surveys responses were returned by 75 faculty members over a 5-year period, which represents a 61% response rate. (Faculty post internship surveys results are shown in Figure 1, panels v-x and Figure 4, panels i-t.) In addition, the survey gauging general faculty advisor support for the program (Figure 3); which was administered two times, 4 years apart; gathers the opinions of 115 advisors in year 1 and 122 advisors in year 4. Thus, the faculty focus group surveys were only one of 3 ways that faculty input was gathered. In sum, while the small number of faculty mentors who participated in the focus groups has the potential to introduce bias, we made a conscious decision to use a mixed methods approach to expand beyond one sample to increase the generalizability of our results. However, to acknowledge the complexity of faculty advisor views on internships, we have noted the need to further study faculty advisor support for internships in broader samples as a future direction. This is the new wording we included at line 788:

      “Other future studies could probe faculty advisor support for internships at institutions beyond our own since training culture and faculty perspectives are influenced by many factors and vary from institution to institution.”

      Overall, the data support the authors' conclusions with respect to the utility of internship programs for all stakeholders. As the authors note, the data relate to a specific program where internship length was defined, costs were covered by a grant or institutional funding, and there were multiple off-site internship hosts available. Thus, the results here may not replicate for other programs with different criteria.

      Thank you for noting these advantages that contributed to the success of this program. We agree that other institutions will encounter unique challenges when implementing their own internship program and have addressed some of these limitations in our discussion section. In the Discussion section of the paper, we outline considerations and review lessons learned in an effort to help others know what aspects of the program might or might not work in distinct situations or locations. We also point the reader to distinct internship models at other institutions in the hope that any university hoping to provide their trainees with internship opportunities can benefit from the collective experience of the relatively few programs that have found sustainable ways to accomplish this.  

      This work provides a valuable assessment of how relatively short internships can impact graduate students, both in terms of their graduate tenure and in their decision-making for careers post-graduation. As more graduate programs are heeding calls from funding agencies and professional societies to increase knowledge about, and familiarity with, multiple career paths beyond academia for PhD students, there is a need to evaluate the best ways to accomplish that goal. Hands-on internships are valuable across many spheres so it makes sense that they would be for life science graduates too. However, the fear that time-to-degree and/or productivity would be negatively impacted is important to acknowledge. By providing clear data that this is not the case, these investigators have increased the likelihood that internships could be considered by more institutions. The one big drawback, and one that the authors discuss at some length, is the funding model that could enable internship programs to be used more widely.

      Thank you for providing suggestions to improve the generalizability of our results. We agree that finding a sustainable source of funding for internship programs, and the staff who direct them, is a primary obstacle to implementing these programs more widely. We provide some ideas and funding models for other institutions to consider, and future directions could examine internships that are un-funded or funded primarily by fellowships from supportive granting agencies. Accordingly, we have added the following text to future directions at Line 755:

      “We acknowledge the need for future studies to evaluate the feasibility and outcomes of internship programs funded via different models to see if faculty support and student outcomes would be comparable under different models.”

      Reviewer #2 (Public Review):

      Summary:

      The authors describe five-year outcomes of an internship program for graduate students and postdoctoral fellows at their institution spurred by pilot funding from an NIH BEST grant. They hypothesized that such a program would be beneficial to interns, internship hosts, and research advisors. The mixed methods study used surveys and focus groups to gather qualitative and quantitative data from the stakeholder groups, and the authors acknowledge the limitation that the study subjects were self-selected and also had research advisors who agreed to allow them to participate. Thus the generally favorable outcomes may not be applicable to students such as those who are struggling in the lab and/or lack career focus or supportive research advisors. Nonetheless, the overall findings support the hypothesis and also suggest additional benefits, including in some cases positive impact for the lab, improved communication between the intern and their research advisor, and an advantage for recruitment of students to the institution. The data refute one of the principal concerns of research advisors: that by taking students out of the lab, internships reduce individual and overall lab productivity. Students who did internships were significantly less likely to pursue postdoctoral fellowships before entering the biomedical workforce and were more likely to have science-related careers versus research careers than control students who did not do internships, although the study design cannot determine whether this was due to selection bias or to the internship.

      Thank you for such a positive and concise overview of this paper.

      Strengths:

      (1) The sample size is good (123 internships).

      (2) The internship program is well described. Outcomes are clearly defined.

      (3) Methods and statistical analyses appear to be appropriate (although I am not an expert in mixed methods).

      (4) "Take-home" lessons for institutions considering implementing internship programs are clearly stated.

      Thank you for enumerating these strengths. We also hope that the sample size, positive outcomes, and take-home lessons will be of benefit to other institutions.

      Weaknesses:

      (1) It is possible that interns, hosts, and research advisers with positive experiences were more likely to respond to surveys than those with negative experiences. The response rate and potential bias in responses should be discussed in the Results, not just given in a table legend in Methods.

      Thank you for noting this oversight. We were pleased that throughout our study, the majority of interns, faculty advisors and internship hosts responded to the surveys. As suggested, we have included the following text at line 132 in the first paragraph of the results section:

      “The response rate for the 123 survey invitations sent to interns and their current research advisors and internship hosts ranged from 61% for research advisors to 73% for hosts, and about 66% for interns (averaging pre and post survey responses). In addition to quantitative surveys, qualitative themes and exemplars were collected from focus groups.”

      (2) With regard to the biased selection of participants, do the authors know how many subjects requested but were not permitted to do internships?

      We too were concerned about trainees who would not be able to secure their PI’s support to participate in an internship.  Accordingly, as part of our program design and evaluation, in the inaugural year of the program our external evaluator, Strategic Evaluations, Inc., administered a survey to graduate students and postdocs who registered for an internship information session or who started, but did not complete the application. Registrants were asked about their decision to complete an application, their experience completing the application if they chose to do so, and the likelihood that they would apply to the program next year. Of the respondents, only 9% indicated that lack of PI support prevented them from participating (n=53 respondents). Hence while we cannot completely rule out PI support as a barrier, only a small percentage of trainees reported this as a barrier despite a robust response rate (43%).  A second line of evidence that there was not a large number of students who were prevented from doing an internship by their research advisor is the high faculty approval rating of the program which was gathered in both year 1 and year 4 of the program (see figure 3). These two independent lines of evidence diminish our concern that faculty advisor resistance was a significant barrier to participation.

      (3) While the authors mention internships in professional degree programs in fields such as law and business, some mention of internship practices in non-biomedical STEM PhD programs such as engineering or computer science would be helpful. Is biomedical science rediscovering lessons learned when it comes to internships?

      Excellent point. We noted that internships are common in non-biomedical STEM masters and PhD programs, but we did not list experiential rotations and internships that are common in nursing, engineering, computer science and other such programs. We agree that many lessons learned from internships in all fields are transferable to the biomedical fields, and we also strongly believe that findings there need to be replicated in the biomedical sciences because of the unique funding model, incentive structure, and apprentice structure of the biomedical training. In response to this critique, we added the following text to the manuscript at line 724:

      “Internships are ubiquitous in many other professional training programs such as law, business, nursing, computer science, and engineering programs (Van Wart, O’Brien et al, 2020).”

      (4) Figure 1 k, l - internships did not appear to change career goals, but are the 76% who agreed pre-internship the same individuals as the 75% who agreed post-internship? What percentage gave discordant responses?

      While our data cannot directly address this question as collected, we surmise that because internships in this program usually occur in the final 12-18 months of training and because there is an emphasis on the internship being a skill-building and not necessarily a career exploration initiative, therefore we were not surprised to see that the internship doesn’t radically alter many trainees’ career plans. One limitation of our study is that career goals were defined by pre-surveys at different timepoints depending on what stage of training an individual (whether control or internship participant) happened to be at during the administration of the baseline survey. We know from previous work that career goals often shift during training (see Roach and Sauermann, 2017 PLOS One, https://doi.org/10.1371/journal.pone.0184130, and Gibbs et al, 2014, PLOS One, https://doi.org/10.1371/journal.pone.0114736), so the point at which career interests are gathered makes a difference in this kind of analysis. Hence, we have expanded our discussion of this limitation to better acknowledge this critique beginning at Line 319.

      “Because of the variable timing between pre-internship career interest surveys among interns and control trainees and securing the first job, future studies could more rigorously evaluate changes in career preferences between pre and post internship with an analysis that considers the time that has elapsed between career interest noted pre-internship vs post internship career placement. “

      Appraisal:

      Overall the authors achieve their aims of describing outcomes of an internship program for graduate career development and offering lessons learned for other institutions seeking to create their own internship programs.

      We thank you for your thorough reading and review of the manuscript.

      Impact:

      The paper will be very useful for other institutions to dispel some of the concerns of research advisers about internships for PhD students (although not necessarily for postdoctoral fellows). In the long run, wider adoption of internships as part of PhD training will depend not only on faculty buy-in but also on the availability of resources and changes to the graduate school funding model so that such programs are not viewed as another "unfunded mandate" in graduate education. Perhaps the industry will be motivated to support internships by the positive outcomes for hosts reported in this paper. Additionally, NIH could allow a certain amount of F, T, or even RPG funds to be used to support internships for purposes of career development. 

      Thank you. We share your hope that the information and data resulting from this study will be valuable to other institutions. Your point about NIH (and other funders, for that matter) allowing trainees to participate in internship experiences while funded by the granting agency is an excellent one. We have found that communication with program officers often garners their support for the intern remaining on a fellowship or training grant during the internship. This allows the internship program to fund additional interns, especially those that are supported by the faculty advisor’s grants.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Two minor points about the comments used from focus groups.

      (i) In figure 5, there is a specific quote about being a reward that is used twice;

      (ii) It seems that there should be some consistency in how these quotes are relayed with respect to gender identification of the trainee. In some cases 's/he' is used, in others 'he' or 'she' is used, and in others 'they' is used.

      We appreciate this suggestion and agree that a non-gendered convention would clearer – accordingly, we have revised all quotes to use “they” to be more consistent. In addition, we have removed the duplicated quote from figure 5, which was originally inserted in two sections because of its applicability to both the “Persisting Challenges” and “Trainees’ abilities and skills were primary drivers of the success of the internship”.

      Reviewer #2 (Recommendations For The Authors):

      (1) The paper is somewhat lengthy. Some redundant material can be eliminated - Lines 366-371 simply restate the data in Table 5. Lines 393-396 restate the data in Figure 3. The text should be reserved for interpreting rather than restating the data in tables and figures.

      Thank you for this feedback and we agree that these sections can be condensed. We have removed some of the redundancy and retained enough for figures and text to each be stand alone for accessibility to the readers.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      We thank the reviewer for the positive and constructive comments. We apologize for the very long delay in submitting this revised manuscript; due to personal circumstances we were not able to do this earlier.

      This manuscript by Martinez-Ara et al investigates how combinations of cis-regulatory elements combine to influence gene expression. Using a clever iteration on massively parallel reporter assays (MPRAs), the authors measure the combinatorial effects of pairs of enhancers on specific promoters. Specifically, they assayed the activity of 59x59 different enhancer-enhancer (E-E) combinations on 8 different promoters in mouse embryonic stem cells. The main claims of the paper are that E-E pairs combine nearly additively, and that supra-additive E-E pairs are rare and often promoter-dependent. The data in this study generally support these claims.

      This paper makes a good contribution to the ongoing discussions about the selectivity of gene regulatory elements. Recent works, such as those by Martinez-Ara et al. and Burgman et al., have indicated limited selectivity between E-P pairs on plasmid-based assays; this paper adds another layer to that by suggesting a similar lack of selectivity between E-E pairs.

      An interesting result in this manuscript is the observation that weak promoters allow more supra-additive E-E interactions than strong promoters (Figure 4b). This nonlinear promoter response to enhancers aligns with the model previously proposed in Hong et al. (from my own group), which posited that core promoter activities are nonlinearly scaled by the genomic environment, and that (similar to the trend observed in Figure 5b) the steepness of the scaling is negatively correlated with promoter strength.

      We now discuss the parallel with the Hong 2022 study (Discussion, lines 307-310).

      My only suggestion for the authors is that they include more plots showing how much the intrinsic strengths of the promoters and enhancers they are working with explain the trends in their data.

      Agreed, see below.

      Specific Suggestions

      Supplementary Figure 4 is presented as evidence for selectivity between single enhancers and promoters. Could the authors inspect the relationship between enhancer/promoter strength and this selectivity? Generating plots similar to Figure 4B and Figure 5B, but for single enhancers, should show if the ability of an enhancer to boost a promoter is inversely correlated to that promoter's intrinsic strength...

      Thank you for the suggestion, we have now repeated the analysis of Figure 5 for EP pairs instead of EEP triplets, and included it as new Supplementary Figure S7. Despite the lower statistical power, the trends are very similar. 

      ...Also, in Supplementary Figure 4, coloring each point by promoter type would clarify if certain promoters (the weak ones) consistently show higher boost indices across all enhancers. If they do not, the authors may want to speculate how single enhancers can show selectivity for promoters while the effect of adding a second enhancer to an existing E-P has little selectivity. An alternate explanation, based solely on the strength of the elements, would be that when the expression of a gene is low the addition of enhancer(s) has large effects, but when the expression of a gene is high (closer to saturation) the addition of enhancer(s) have small effects.

      We now added colour coding for each of the promoters in figure S4. We agree this clarifies the contribution of each promoter to the selectivity of each enhancer and it further confirms the responsiveness trends observed in Figure 5.

      Can anything more be said about the enhancers in E-E-P combinations that exhibit supra-additivity? Specifically, it would be interesting to know if certain enhancers, e.g. strong enhancers or enhancers with certain motifs, are more likely to show supra-additivity with a given promoter.

      Unfortunately, even with the number of enhancers that we tested, we lack statistical power to identify sequence motifs that may favour supra-additivity.

      Reviewer #2 (Public Review):

      We thank the reviewer for the supportive and constructive comments. We apologize for the very long delay in submitting this revised manuscript; due to personal circumstances we were not able to do this earlier.

      Summary

      This work investigates how multiple regulatory elements combine to regulate gene expression. The authors use an episomal reporter assay which measures the transcriptional output of the reporter under the regulation of an enhancer-enhancer-promoter triple. The authors test all combinations of 8 promoters and 59 enhancers in this assay. The main finding is that enhancer pairs generally combine additively on reporter output. The authors also find that the extent to which enhancers increase reporter output is inversely related to the intrinsic strength of the promoter.

      This manuscript presents a compact experiment that investigates an important open question in gene regulation. The results and data will be of interest to researchers studying enhancers. Given that my expertise is in modeling and computation, I will take the experimental results at face value and focus my review on the interpretation of the results and the computational methodology. I find the result of additivity between enhancers to be well supported. The findings on differential responsiveness between promoters are very interesting but the interpretation of such responses as 'non-linear' or 'following a power-law' may be misleading. More broadly, I think a more rigorous description of the mathematical methodology would increase the clarity and accessibility of this manuscript. A major unanswered question is whether the findings in this study apply to enhancers in their native genomic context. Regardless, investigating such questions in an episomal reporter assay is valuable.

      Main comments

      Applicability to native genomic context: The applicability of the results in this paper to enhancers in their native genomic context is unclear. As the authors state in the discussion section, the reporter gene is not integrated into the genome, the spacing between enhancers does not match their native context etc. It is thus unclear whether this experimental design is able to detect the non-additivity between enhancers which is known to be present in the genome. This could be investigated by testing the enhancer-enhancer-promoter tuples for which non-additivity has been observed in the genome (references are given in the introduction) in this assay.

      We appreciate the suggestion, but we chose not to go back to the lab to generate additional data to address this point. Of the cited previous studies, two are comparable to our study because they also used mESCs and included loci that we also studied:  Thomas et al. (2021) and Brosh et al. (2023). We now discuss how the findings of these two studies relate to our observations in the Discussion, lines 336-345.

      Interpretation of promoter responses as non-linear and following a power-law: In Fig 5, the authors demonstrate that enhancer-enhancer pairs boost reporter output more for weak promoters as opposed to strong promoters. I agree the data supports this finding, but I find the interpretation of such data as promoters scaling enhancers according to a power-law (as stated in the abstract) to be misleading. As mentioned on line 297, it is not possible to define an intrinsic measure of enhancer strength, thus the authors assign the base of the power-law to be the average boost index of the enhancer-enhancer pair across the 8 promoters. But this measure incorporates some aspect of a promoter and is not solely a property of enhancers...

      We agree that the power-law conclusion in the abstract was too strong; we have rephrased it as "non-linear".

      ...It would also be useful to know whether the results in Fig 5 apply to only enhancer-enhancer-promoter triples or also to enhancer-promoter pairs.

      We have now added this EP analysis as new Supplemental Figure S7. Although the statistical power is much lower, this shows very similar trends as the EEP analysis. We briefly report this, lines 275-278.

      Enhancer-promoter selectivity: As a follow-up to a previous study (Martinez-Ara et al, Molecular Cell 2022) the authors mention that the data in this study also shows that enhancers show selectivity for certain promoters. The authors mention that both studies use the same statistical methodology and the data in this study is consistent with the data from the 2022 paper. However, I think the statistical methodology in both studies needs further exposition. This section of the review is thus meant to ensure that I understand the author's methodology, to guide the reader in understanding how the authors define 'selectivity', and to probe certain assumptions underlying the methodology.

      My understanding of the approach is as follows: The authors consider an enhancer to be not selective if its 'boost index' is the same across a set of promoters. 'Boost index' is defined to be the ratio of the reporter output with the enhancer and promoter divided by the reporter output with just the promoter. Conceptually, I think that considering the boost index is a reasonable way to quantify selectivity.

      The authors use a frequentist approach to classify each enhancer as selective or not selective. The null hypothesis is that the boost index of the enhancer is equal across a set of promoters. This can be visualized in Fig. 2C where the null hypothesis is that the mean of each vertical distribution is equal. Note that in Figure S4 of this paper (and in Figure 4B of their 2022 paper) the within-group variance is not plotted. Statistical significance is assessed using a Welch F-test. This is a parametric test that assumes that the observations within each vertical distribution in Fig 2C are normally distributed (this test does allow for heteroskedasticity - which means that the variance may differ within each vertical distribution). Does the normality assumption hold? This analysis should be reported. If this assumption does not hold, is the Welch test well calibrated?

      We have tested the normality of all of the single enhancer + promoter combinations that were tested using the welch F-test. 94.1% of the 439 single enhancers + Promoter combinations show normal distributions (at a 1% FDR). We have added this to the methods section of the revised manuscript. Apart from this, non-normality has little to no influence on the Welch F-test performance (https://rips-irsp.com/articles/10.5334/irsp.198). Therefore, the use of the Welch F-test to score enhancer selectivity on these data is valid. Apart from this, we agree that a simple binary classification of selective vs non-selective is not descriptive enough for these kinds of data. We addressed this in our previous publication by exploring the relationship between selectivity and enhancer strength. However, in the objective in this publication was solely to show that this new dataset follows similar selectivity patterns to our previous publication. Furthermore, our analysis on the non-linearity of promoter response is a more quantitative continuation on the analysis on selectivity as this is probably one of the major contributors to enhancer selectivity. This was probably present in our previous paper but could not be analyzed as there were less combinations per promoter.

      For further clarity, we have now highlighted the individual promoters in Figure S4 by colors.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      I found this to be an interesting manuscript and am glad this experiment was conducted. As I wrote in my public review, I think that clarifying the computational methods/ideas would really help. I also think it would be helpful to properly define the terms that are being used. For example, this manuscript uses the terminology cooperativity and synergy. Are these meant to be synonymous with supra-addivity?

      Thank you for this point. The revised manuscript no longer uses the word “cooperativity”. We now use “supra-additivity” when describing our data, and “synergy” as biological interpretation. In the Introduction we now clarify this distinction.

      Comments on enhancer selectivity:

      In the public review, I have given comments on the statistical methodology employed to assess enhancer selectivity. On a more subjective note, I'm not convinced that a frequentist approach to a binary classification of 'selective' vs 'not selective' is that useful here. I think it would be more useful to report an 'effect size' of the extent to which an enhancer is selective and to study the sources of this effect size. I think you've tried to do this in lines 329-339 of the discussion but I think the exposition could be clearer.

      Figure S4B may suggest how to do this. It appears that the distribution of boost indices for a given enhancer is trimodal (this is most obvious for the stronger enhancers on the top of the plot). Is it the case that each mode (for each enhancer) consists of the same set of promoters? I think what is implied by Figure 5B is that the stronger promoters are not boosted as much as the weaker promoters. So does the leftmost mode consist of Ap1m1, the middle mode consist of Klf2/Otx2/Nanog, and the rightmost mode of Sox2/Fgf5/Lefty1/Tbx3? If so, I would recommend emphasizing this in the text/figure and clarifying how this relates to selectivity. It seems that the chain of logic is as follows: (1) We define an enhancer to be selective if its boost indices across a set of promoters are not the same. (2) We generally observe that stronger promoters get boosted less than weaker promoters. (3) Thus selectivity arises due to differences in intrinsic strengths of the promoter. I think this is what is being implied in lines 329-339 of the discussion, but it took me multiple readings to understand this and I'm not convinced the power-law explanation is justified (see public review).

      We have modified this paragraph of the Discussion (now lines 350-359).

      Regarding the power-law: in the Results we state “roughly a power-law function”. We have removed the power-law claim from the abstract, that conclusion as phrased was indeed too firm.

      Reference to Zuin et al

      Lines 323 - 325: A reference is made to the data from Zuin et al "following approximately a power-law". What data in Zuin et al does this statement refer to? I do not believe the authors in Zuin et al claim that the relationship between GFP intensity and enhancer-promoter distance (Figure 1h,i from Zuin et al) follows a power law. It is certainly non-linear, but I have taken a look at this data myself and do not find it follows a power-law. Please either explain this further and rigorously justify the claim or adjust the wording accordingly.

      Good point, in the discussion of Zuin et al we have replaced “power law” with “non-linear decay function”

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #2 (Public Review):

      The authors have addressed the majority of my comments effectively. The new Sis1 experiment provides a clear illustration of a distinctive response to ethanol and heat. This work offers a comprehensive perspective on Hsf1 in stress response from multiple angles. I have two additional comments to improve the paper without re-review:

      (Original point #3) Could the authors clarify the differences between DPY1561 and the original strain used? There appears to be missing statistical analysis for Figure 1E at the bottom.

      DPY1561 is a haploid version of the original heterozygous diploid strain (LRY033). We opted for this strain in the analysis depicted in Figures 1D and 1E since 100% of Hsp104 is BFP-tagged; thus, the signal above background is stronger and the scoring of Hsp104 foci cleaner. The statistical analysis (Mann Whitney test) for the lower graphs in Fig. 1E has been added. We thank the reviewer for pointing this out.

      (Original point #4) In the new Figure 7F, '% transcription' and '% coalescence' are presented. My understanding is that Figures 7D and 7E aim to demonstrate the correlation between HSP104 transcription (a continuous variable) and HSP104-HSP12 coalescence (a binary variable) at the single-cell level. However, averaging the data across cells masks individual variations and potential anti-correlations. The authors could explore statistical methods that handle correlations between a continuous variable and a binary variable. Alternatively, consider converting 'HSP104 transcription' to a binary variable and then performing a chi-square test to assess the association.

      We thank the reviewer for this suggestion. In response, we have made the following changes:

      (1)  Clarified that the data used in this analysis were derived from Fig. 7 – figure supplement 1 in which ‘HSP104 transcription’ was converted to a binary variable.

      (2)  Indicated that the theoretical ceiling for coalescence of these tagged alleles is 25% given their heterozygous state (Figure 7–figure supplement 1D legend).  In the other 75% of cells scored, HSP104-HSP12 coalescence might also be taking place but is not detectable using this strategy. Therefore, it is not possible to elucidate any anti-correlation between HSR transcription and HSR coalescence in this experiment.

      In addition, we attempted to buttress the argument suggested by the Pearson correlation coefficient analysis (Fig. 7F) that a stronger association exists between transcription and gene coalescence in heat-shocked (HS) vs. ethanol stressed (ES) cells. To do so, we used the chi-square test as suggested by the reviewer. However, the results of this test were ambiguous, and we therefore did not include it in the manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      While the manuscript provides an interesting observation of the modes of endosomal fusion and roles of actin dynamics in this process and the conclusions of the study are justified by the data, there are concerns regarding the lack of important descriptions or quantification in some of the analyses and additional analyses are needed to strengthen this study. The major issues are outlined below:

      (1) The authors indicate that Zone 1 is within approximately 1 μm of the apical surface. What are the distances of Zone 2 and Zone 3 from this surface? It would be better if the authors could provide an explanation or hypothesis that explains the early endosomes, late endosomes, and lysosomes are not intermixed but separated along the z-axis.

      Thank you for pointing out this important issue. Following the comments, we have added an explanation about the depth of early endosomes, late endosomes, and lysosomes to the text (lines 123-124, 127-128, and 130-131). We have also created a new figure showing their positions in VE cells (Figure 1–figure supplement 1B).

      Because endosomes go deeper and mature with repeated fusion and enlargement after endocytosis, early endosomes, late endosomes, and lysosomes are aligned along the z-axis, though the separation is not complete. In confocal microscopic observation, endolysosomal vesicles in VE cells are largely separated into different layers because they are huge and occupy a large space, and as a result, do not exist with much overlap. We have added the explanation to the text (lines 121-122).

      (2) The authors compared the size distribution of the late endosomes that underwent fusion with that of the total late endosomes in the observed area 5 min after labeling (Figure 2C). A similar quantification analysis should also be analyzed 15 min after labeling (Figure 3G).

      Thank you for the appropriate request. We have added the data showing the size distribution of the late endosomes that underwent fusion at 15 min after labeling, to Figure 3G.

      (3) While 3D reconstructions of actin filament patterns under normal conditions are presented (Figures 4 E-F), comparable analyses using cells treated with Cytochalasin D, Jasplakinolide, or S3 peptide needs to be performed.

      As requested by the referee, we have performed additional experiments to show 3D reconstructions of actin filaments on late endosomes after pretreatment with cytochalasin D, jasplakinolide, and S3 peptide. We show the data in new figures: Figure 7–figure supplement 1A, Figure 7–figure supplement 2, and Figure 9–figure supplement 1.

      (4) The authors should provide a clear description of how they quantified the fusion frequency. Why does the fusion frequency appear very low? Why do Cytochalasin D and jasplakinolide show different effects on heterotypic fusion?

      Thank you for pointing out this important issue. We have added the description of how the fusion frequency was quantified to the Materials and Methods (lines 643-645). Briefly, we counted the number of membrane fusion events and the number of late endosomes in the 400-s time-lapse images, and then calculated how many times a single late endosome underwent fusion per minute. The apparent fusion frequency is low because it is expressed in terms of frequency per vesicle per minute.

      As for the different effects of cytochalasin D and jasplakinolide on heterotypic fusion, we already discussed this in the manuscript (lines 537-558). In short, actin filaments extending in the apical-to-basal direction are relatively static and late endosomes receive sliding forces along the apical-basal axis by means of myosins (e.g., myosin V and myosin II) in heterotypic fusion. Thus, depolymerization of actin filaments by cytochalasin D treatment reduces heterotypic fusion, and conversely stabilization of actin filaments by jasplakinolide increases heterotypic fusion.

      (5) The authors need to analyze the distribution of actin filaments during homotypic fusion post-Cytochalasin D treatment.

      As requested by the referee, we have performed additional experiments to show the distribution of actin filaments during homotypic fusion of late endosomes after pretreatment with cytochalasin D. We show the data in a new figure: Figure 7–figure supplement 3.

      (6) Clarification is needed on whether overexpressing YFP-Cofilin led to the deterioration of cell functions.

      Thank you for the comments. As the reviewer pointed out, overexpression of cofilin can change cellular functions and actin architectures in cells (Aizawa et al., 1997; Popow-Wozniak et al., Histochem. Cell Biol., 2012, (138) 725-36). Although we did not observe apparent morphological changes of VE cells after YFP-cofilin expression, we cannot exclude the possibility that YFP-cofilin overexpression affected the distribution of actin filaments. Therefore, we have described this possibility in the text (lines 425-426).

      (7) Although the authors report that the S3 peptide does not affect heterotypic fusion, a reduction in average heterotypic fusion frequency post-treatment was detected (Figure 9G). The authors need to perform a statistical analysis of the quantification performed in Figure 9G.

      We apologize for this misleading graph representation. Because S3 peptide treatment did not change the fusion frequency significantly, we simply did not mark statistical significance in the previous graph. To clarify this point, we have added the label “n.s.” (not significant) to Figure 9G.

      (8) The authors need to provide the potential functional significance of apically extended actin filaments in positioning late endosomes in the discussion.

      We observed 3 different types of actin filaments in the apical region of VE cells (Figure 5). First, the actin mesh in zone 1, which does not interact directly with late endosomes, may function as a barrier preventing enlarged late endosomes from flowing backward from zone 2 to zone 1. Second, actin filaments extending from the apical to the basal direction on the surface of late endosomes are necessary for the movement of late endosomes toward lysosomes in a myosin-dependent manner. Third, the radial branched filaments on the surface of late endosomes temporarily polymerize in an Arp2/3-dependent manner and regulate the lateral movement of late endosomes. This actin organization coordinately regulates the position of late endosomes. We have added this explanation to the Discussion (lines 483-491).

      Reviewer #2 (Recommendations For The Authors):

      (1) What is the effect or physiological significance of the transition in fusion models?

      In material transport in cells, explosive fusion that completes membrane fusion quickly is more efficient and physiologically advantageous than slow bridge fusion. On the other hand, larger vesicle size is more effective in membrane trafficking than smaller size because large vesicles can transport a large amount of cargo molecules. However, as our mathematical modeling predicts, an increase in vesicle size leads to bridge fusion and decreases the transportation rate. Actin forces can resolve these conflicting effects because they convert the fusion mode from bridge to explosive in late endosomes in VE cells

      (2) I am confused about how to study heterotypic fusion between late endosomes and lysosomes using only transferrin labeling.

      We are sorry for any confusion this may have caused. Indeed, at first, we discovered that late endosomes shrank and disappeared after labeling of endocytic vesicles with transferrin only (Figure 3A). However, subsequently, we speculated that this disappearance was the result of heterotypic fusion with lysosomes, and to prove this possibility, we developed a double-labeling method in which late endosomes and lysosomes were labeled with 2 different colors (Figure 3B). In short, VE cells were incubated with dextran rhodamine for 20 min and subsequently pulse-labeled with Alexa Fluor 488-labeled transferrin for 5 min: when VE cells were observed, dextran rhodamine was already transported to lysosomes, whereas Alexa Fluor 488-labeled transferrin was still present in late endosomes, enabling the two vesicles to be observed separately.

      Reviewer #3 (Recommendations For The Authors):

      (1) It is concerning that there are several points that are not fully explained regarding microscopic image analysis.

      (a) How were zones 1, 2, and 3 defined and how were the zones determined at each observation? Did the authors determine the zones subjectively based on the approximate size of the vesicles and the passage of time, or statistically by measuring endosomes from images of whole cells? The authors should describe this and also provide the approximate z-directional thickness of each of zones 1, 2, and 3.

      Thank you for pointing out this important issue, which is also raised by Reviewer #1. We initially analyzed the distribution and size of early endosomes, late endosomes, and lysosomes in VE cells by use of vesicle-specific markers (Figure 1B). Thereafter, at each observation, we determined the zones based on the characteristic size of the vesicles and time after labeling of endocytic vesicles. Especially, images of zone 2 and zone 3 were taken by focusing on the z-axis where late endosomes and lysosomes occupied the largest area in the optical slice images, respectively (lines 636-639). As for the z-directional thickness of each zone, we have added a description to the text (lines 123-124, 127-128, and 130-131) and also created a new figure showing their positions in VE cells (Figure 1–figure supplement 1A).

      (b) Regarding "vesicle size" measured from confocal microscopy images: Does "vesicle size" mean surface area or maximum cross-sectional area? In any case, the authors should describe how and what area of the vesicles was measured from the images. The mathematical model used the surface area of the vesicle as a parameter. Better to be consistent.

      Thank you for the important questions. As the reviewer pointed out, the cross-sectional area of endosomes varies depending on the focal plane. To ensure uniformity of the focal plane across different images, we took the images by focusing on the z-axis where late endosomes (zone 2) or lysosomes (zone 3) occupied the largest area in the image. In the focal plane, we measured the size of all intact, unfragmented endosomes. We have now added this explanation to the Method section (lines 636-639).

      (c) The authors showed several time-lapse imaging data without a description of what "0 s" is the starting time of. For example, "0 s" in Figures 2A, B, 3A, and B, may have different meanings. Other data should be carefully examined and described.

      We apologize for the inadequate description. As the reviewer pointed out, each panel has a different meaning of "0s."Therefore, we have added explanation of the meaning of “0s” to the relevant figure legends (Figure 2A, B; Figure 3A, B; Figure 6A, F; Figure 7A, E, F; Figure 8A, Figure 6–figure supplement 1C, Figure 7–figure supplement 1B, Figure 7–figure supplement 3, Figure 7–figure supplement 4).

      (d) The meaning of "fusion time" in Figures 2D and 3F is unclear. Although it was speculated that the authors estimated it from the change in shape of the vesicles, how it was measured should be described.

      We apologize for the inadequate description. To indicate more clearly, we have added an explanation of the "fusion time" to the legend of Figures 2D and 3F (lines 898-899 and line 923, respectively).

      (2) The structure of the paragraph starting on line 158 is inappropriate. The authors state in line 159 that "this disappearance appeared to result from fusion of late endosomes with the underlying lysosomes". However, no hetero-fusion was observed here, only the disappearance of vesicles. The authors should mention that hetero-fusion occurred only after analysis of Figure 3CD.

      This reviewer thinks it is natural to state in this order: first, the disappearance of transferrin-positive vesicles was observed (Figure 3A). Such vesicles became dextran-positive as the transferrin signal began to disappear (Figures 3 B ,C, D). Thus, this is thought to indicate that hetero-fusion has occurred.

      We agree with the reviewer's comment and have rewritten the text following the reviewer's suggestion (lines 163-165, 176-180).

      (3) The mathematical model estimated that the vesicle size of 0.22-1.0 [𝜇𝑚2] is the size to switch the fusion mode. Since this is close to the size of endosomes in general cells, the authors may be able to discuss the generality of the fusion mode theory. It is up to the author to respond to this suggestion or not.

      Thank you for the comments. As our mathematical model depends on the assumption that the osmotic pressure is constant, late endosomes in VE cells, exhibiting a swollen morphology, may have higher osmotic pressure compared with endosomes in other cells and if so, the predicted vesicle size when the fusion mode switches may differ. Thus, we have decided not to mention the relationship between the vesicle size and fusion mode switching.

      (4) In Line 302 the authors mentioned "These results indicated that actin spots on the surface of late endosomes were dynamically regulated, especially in the apical area." However, the t-halves of 11.5s and 18.9s are only slightly different and of the same order, so it would be too much to say that dynamic regulation of actin occurs specifically in the apical region from a difference of this magnitude. The authors should weaken their arguments. It would be good to do a statistical test for significance between the FRAP data.

      Thank you for pointing out this important issue. To highlight the significant difference in the FRAP assay, we have added a new panel showing the statistical analysis of the halftime of recovery of each region of VE cells (Figure 6E). These data indicate that a significance difference in the halftime of recovery (t1/2) between actin spots in the apical and basal regions of zone 2. However, following the reviewer’s comment, we have weakened the description of the FRAP assay results (lines 310-312).

      (5) The discussion section is rather redundant. It could be shortened to be more concise instead of repeating the results.

      Thank you for the comments. We have shortened the Discussion section.

      Minor comments

      In Figure 2C, the statistical test method was not described in the legend.

      Thank you for the comments. We have added the data of the statistical test to the figure legend of Figure 2C (lines 895-896).

      Figure 3G does not look like a normal distribution, so the t-test is inappropriate.

      Thank you for the comments. We have changed the statistical analysis method and used the Mann-Whitney U test. For the same reason, we have changed the analysis method shown in Figure 2C.

      Is Figure 5D the image of zone 1 because it is close to the apical plane? If so, are the IgG-positive structures early endosomes rather than late endosomes? This seems inconsistent with the data in Figure 1.

      Thank you for the comments. The round vesicles observed in this panel are the late endosomes in zone 2. Because most of the internalized fluorescence marker has moved to the late endosomes in zone 2 at this time point (5 min after chasing), early endosomes are not labeled in this image. We have added a dotted line to the x-z axis image (the second top panel) to indicate the depth of the x-y axis image (top panel) in Figure 5D.

      Figure 6B appears to have little or no fluorescence recovery. Is this a typical example? It is also unclear if this is an apical or basal example.

      Thank you for the comments. This image is a typical example. We focused on the dot structures on the surface of late endosomes rather than the fluorescence intensity over the entire photobleached area. To prevent misunderstanding, we have added arrowheads to highlight the actin dot structures that we were analyzing. The FRAP data shown in Figure 6B were obtained at the apical region of zone 2. We have also added this information to the figure legend.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors use methylphenidate (MPH) administration after learning a Pavlovian to instrumental transfer (PIT) task to parse decision-making from instrumental influences. While the main effects were null, individual differences in working memory ability moderated the tendency of MPH to boost cognitive control in order to override PIT-biased instrumental learning. Importantly, this working memory moderator had symmetrical effects in appetite and aversive conditions, and these patterns replicated within each valence condition across different values of gain/loss (Fig S1c), suggesting a reliable effect that is generalized across instances of Pavlovian influence.

      Strengths:

      The idea of using pharmacological challenge after learning but prior to transfer is a novel technique that highlights the influence of catecholamines on the expression of learning under Pavlovian bias, and importantly it dissociated this decision feature from the learning of stimulus-outcome or action-outcome pairings.

      We thank the reviewer for highlighting the timing of the pharmacological intervention as a strength for this study and for the suggested improvements for clarification.

      Weaknesses:

      While the report is largely straightforward and clearly written, some aspects may be edited to improve the clarity for other readers.

      (1) Theoretical clarity. The authors seem to hedge their bets when it comes to placing these findings within a broader theoretical framework.

      Our findings ask for a revision of theories regarding how catecholamines modulate the instantiation of Pavlovian biases of decision making. The reviewer rightly notices that we offer three neuroanatomical routes through which methylphenidate might have acted to elicit these effects. It is important to note, however, that the current study does not provide evidence that can disentangle these different hypotheses. Accordingly, these three neuroanatomical routes raise questions for future research.

      Our findings ask for a revision of theories on how catecholamines are involved in instantiation of Pavlovian biases in decision making. The reviewer rightly notices that we offer three routes to modify current theory to be able to incorporate our findings. Briefly, these routes discuss a (i)modulation by catecholamines a striatal ‘origin’ of Pavlovian biases, (ii) catecholaminergic modulation of Pavlovian-biases through top-down control, primarily relying on prefrontal processes, and (ii) a combination of the two, where catecholamines regulate the balance between these frontal and striatal processes. Given the systemic nature of the pharmacological manipulation, we cannot dissociate between these three accounts.  We believe that discussing these possible explanations of our data actually enriches our discussion and strengthen our recommendation in the ultimate paragraph to use pharmacological neuro_imaging_ studies to arbitrate between these options. In the revision, we will make this clearer.

      Given the systemic nature of the pharmacological manipulation, we cannot dissociate between these three accounts. We believe that discussing these possible explanations enriches our Discussion and strengthens our recommendation in the ultimate paragraph to use pharmacological neuro_imaging_ studies to arbitrate between these options. In the revision, we will make this line of reasoning clearer.

      (2) Analytic clarity: what's c^2?

      C^2 seems a technical pdf conversion error problem: all chi-squares (Χ2) have been converted to C2. This will be corrected in our revision.

      Reviewer #2 (Public review):

      Summary:

      In this study, Geurts et al. investigated the effects of the catecholamine reuptake inhibitor methylphenidate (MPH) on value-based decision-making using a combination of aversive and appetitive Pavlovian to Instrumental Transfer (PIT) in a human cohort. Using an elegant behavioural design they showed a valence- and action-specific effects of Pavlovian cues on instrumental responses. Initial analyses show no effect of MPH on these processes. However the authors performed a more in-depth analysis and demonstrated that MPH actually modulates PIT in action-specific manner depending of individual working memory capacities. The authors interpret that as an effect on cognitive control of Pavlovian biasing of actions and decision-making more than an invigoration of motivational biases.

      Strengths:

      A major strength of this study is its experimental design. The elegant combination of appetitive and aversive Pavlovian learning with approach/avoidance instrumental actions allows to precisely investigate the different modulation of value-based decision making depending on the context and environmental stimuli. Important MPH is only administered after Pavlovian and instrumental learning, restricting the effect on PIT performance only. Finally, the use of a placebo-controlled crossover design allows within-comparisons between PIT effect under placebo and MPH and the investigation of the relationships between working memory abilities, PIT and MPH effects.

      We thank the reviewer for highlighting the experimental design as a strength for this study and the suggested improvements for clarification.

      Weaknesses:

      As authors stated in their discussion, this study is purely correlational and their conclusions could be strengthened by the addition of interesting (but time- and resource-consuming) neuroimaging work.

      We employ a pharmacological intervention within a randomized placebo controlled cross-over design, which allows for causal inferences with respect to the placebo-controlled intervention. Thus, the reported interactions of interest include correlations, but these are causally dependent on our intervention.

      Perhaps the reviewer refers to the implications of our findings for hypotheses regarding neural implementation of Pavlovian bias-generation. Indeed, based on our data we are not able to arbitrate between frontal and striatal accounts, due to the systemic nature of the pharmacological intervention. Indeed, as we discuss, we agree with the reviewer that neuroimaging (in combination with for example brain stimulation) would be a valuable next step to identify the neural correlates to these pharmacological intervention effects, to dissociate between frontal and striatal drives of the effects. In our planned revisions, we will try to clarify this point, as per our reply to reviewer 1.

      The originality of this work compared to their previous published work using the same cohort could also be clarified at different stages of the article, as I initially wondered what was really novel. This point is much clearer in the discussion section.

      As recommended, in our planned revisions, we will bring forward the statements that clarify the originality of the current experiment.

      A point which, in my opinion, really requires clarification is when the working memory performance presented in Figure 2B has been determined. Was it under placebo (as I would guess) or under MPH? If it is the former, it would be also interesting to look at how MPH modulates working memory based on initial abilities.

      We will also clarify that working memory span was assessed for all participants on Day 2 prior to the start of instrumental training (as illustrated in figure 1A). Importantly, this was done prior to ingestion of the drug or placebo (which subjects received after Pavlovian training, which followed the instrumental training). This design also precludes an assessment of the effects of MPH on working memory capacity.

      A final point is that it could be interesting to also discuss these results, not only regarding dopamine signalling, but also including potential effect of MPH on noradrenaline in frontal regions, considering the known role of this system in modulating behavioural flexibility.

      We indeed focus our Discussion more on dopamine than on noradrenaline. Our revision will follow up on the suggestion of the reviewer to include discussion about the effects of MPH on noradrenaline and behavioural flexibility (and the recommendation, in future studies, to use a multi-drug design, incorporating, for example, a session with the drug atomoxetine, which modulates cortical catecholamines, but not striatal dopamine).

      Reviewer #3 (Public review):

      The manuscript by Geurts and colleagues studies the effects of methylphenidate on Pavlovian to instrumental transfer in humans and demonstrates that the effects of the drug depend on the baseline working memory capacity of the participants. The experiment used a well established cognitive task that allows to measure the effects of Pavlovian cues predicting monetary wins and losses on instrumental responding in two different contexts, namely approach and withdraw. By administering the drug after participants went through the instrumental and Pavlovian learning phases of the experiment, the authors limited the effects of the drug to the transfer phase in extinction. This allowed the authors to make inference about the invigorating effects of the cues independently from any learning bias. Moreover, the authors employed a within subject design to study the effect of the drug on 100 participants, which also allows to detect continuous between-subject relationships with covariates such as working memory capacity.

      The study replicates previous findings using this task, namely that appetitive cues promote active responding, and aversive cues promote passive responding in an approach instrumental context, whereas the effect of the cues reverses in a withdraw instrumental context. The results of the methylphenidate manipulation show that the drug decreases the effects of the Pavlovian cues on instrumental responding in participants with low working memory capacity but increases the Pavlovian effects in participants with high working memory capacity. Importantly, in the latter group, methylphenidate increases the invigorating effect of appetitive Pavlovian cues on active approach and aversive Pavlovian cues on active withdrawal as well as the inhibitory effects of aversive Pavlovian cues on active approach and appetitive Pavlovian cues on active withdrawal. These results cannot be explained if catecholamines are just involved in Pavlovian biases by modulating behavioral invigoration driven by the anticipation of reward and punishment in the striatum, as this account can't account for the reversal of the effects of a valence cue on vigor depending on the instrumental context.

      In general, I find the methods of this study very robust and the results very convincing and important. However, I have some concerns:

      We thank the Reviewer for highlighting the robustness of the methods and the importance of the results. We are glad to shortly address the concerns here and will incorporate these in our planned revision of the manuscript.

      I am not convinced that the inclusion of impulsivity scores in the logistic mixed model to analyze the effects of methylphenidate on PIT is warranted. The authors do not show whether inclusion of this covariate is justified in terms of BIC. Moreover, they include this covariate but do not report the effects. Finally, it is possible that impulsivity is correlated with working memory capacity. In that case, multicollinearity may impact the estimation of the coefficient estimates and may inflate the p-values for the correlated covariates. Are the reported results robust when this factor is not included?

      With regard to the inclusion of impulsivity we first like to mention that this inclusion in our analyses was planned a priori and therefore consistently implemented in the other reports resulting from the overarching study (Froböse et al., 2018; Cook et al., 2019; Rostami Kandroodi et al., 2021), especially the study with regard to which the current report is an e-life research advance (Swart et al., 2017). Moreover, we preregistered both working memory span and impulsivity as potential factors (under secondary measures) that could mediate the effects of catecholamines (see https://onderzoekmetmensen.nl/nl/trial/26989). The inclusion of working memory span was based on evidence from PET imaging studies demonstrating a link with dopamine synthesis capacity (Cools et al., 2008; Landau et al, 2009), whereas the inclusion of trait impulsivity was based on evidence from other PET imaging studies showing a link with dopamine (auto)receptor availability (Buckholtz et al., 2010; Kim et al., 2014; Lee et al., 2009; Reeves et al., 2012). Although there was no significant improvement in BIC for the model with impulsivity compared with the model without impulsivity, we feel that we should follow our a priori established analyses.

      We can confirm that impulsivity and working memory were not correlated in this sample (r98\=-0.16, p=0.88), which rules out multicollinearity.

      Most importantly, results are robust to excluding impulsivity scores as evidenced by a significant four-way interaction from the omnibus GLMM without impulsivity (Action Context x Valence x Drug x WM span: X2 = 9.5, p=0.002). We will report these findings in the revised manuscript.

      The authors state that working memory capacity is an established proxy for dopamine synthesis capacity and cite some studies supporting this view. However, the authors omit a recent reference by van den Bosch et al that provides evidence for the absence of links between striatal dopamine synthesis capacity and working memory capacity. The lack of a robust link between working memory capacity and dopamine synthesis capacity in the striatum strengthens the alternative explanations of the results suggested in the discussion.

      We agree with the Reviewer that the lack of a robust link between working memory capacity and dopamine synthesis capacity in the striatum, as measured with [18F]-FDOPA PET imaging is lending support for the proposed hypothesis incorporating a broader perspective on Pavlovian bias generation than the dopaminergic direct/indirect pathway account (although it is possible that the association will hold in a larger sample when synthesis capacity is measured with [18F]-FMT PET imaging, which is sensitive to a different component of the metabolic pathway). We will indeed incorporate in our planned revision the findings from our group reported in van den Bosch et al (2022).

    1. Author response:

      Reviewer #1:

      Summary:

      One enduring mystery involving the evolution of genomes is the remarkable variation they exhibit with respect to size. Much of that variation is due to differences in the number of transposable elements, which often (but not always) correlates with the overall quantity of DNA. Amplification of TEs is nearly always either selectively neutral or negative with respect to host fitness. Given that larger effective population sizes are more efficient at removing these mutations, it has been hypothesized that TE content, and thus overall genome size, may be a function of effective population size. The authors of this manuscript test this hypothesis by using a uniform approach to analysis of several hundred animal genomes, using the ratio of synonymous to nonsynonymous mutations in coding sequence as a measure of the overall strength of purifying selection, which serves as a proxy for effective population size over time. The data convincingly demonstrates that it is unlikely that effective population size has a strong effect on TE content and, by extension, overall genome size (except for birds).

      Strengths:

      Although this ground has been covered before in many other papers, the strength of this analysis is that it is comprehensive and treats all the genomes with the same pipeline, making comparisons more convincing. Although this is a negative result, it is important because it is relatively comprehensive and indicates that there will be no simple, global hypothesis that can explain the observed variation.

      Weaknesses:

      In several places, I think the authors slip between assertions of correlation and assertions of cause-effect relationships not established in the results. 

      Several times in the text we use the expression “effect of dN/dS on…” which might indeed suggest a causal relationship. The phrasing refers to dN/dS being used in the regression as an independent variable that can be able to predict the variation of the dependent variables genome size and TE content. We are going to rephrase these expressions so that correlation is not mistaken with causation.

      In other places, the arguments end up feeling circular, based, I think, on those inferred causal relationships. It was also puzzling why plants (which show vast differences in DNA content) were ignored altogether.

      The analysis focuses on metazoans for two reasons: one practical and one fundamental. The practical reason is computational. Our analysis included TE annotation, phylogenetic estimation and dN/dS estimation, which would have been very difficult with the hundreds, if not thousands, of plant genomes available. If we had included plants, it would have been natural to include fungi as well, to have a complete set of multicellular eukaryotic genomes, adding to the computational burden. The second fundamental reason is that plants show important genome size differences due to more frequent whole genome duplications (polyploidization) than in animals. It is therefore possible that the effect of selection on genome size is different in these two groups, which would have led us to treat them separately, decreasing the interest of this comparison. For these reasons we chose to focus on animals that still provide very wide ranges of genome size and population size well suited to test the impact of drift.

      Reviewer #2:

      Summary:

      The Mutational Hazard Hypothesis (MHH) is a very influential hypothesis in explaining the origins of genomic and other complexity that seem to entail the fixation of costly elements. Despite its influence, very few tests of the hypothesis have been offered, and most of these come with important caveats. This lack of empirical tests largely reflects the challenges of estimating crucial parameters.

      The authors test the central contention of the MHH, namely that genome size follows effective population size (Ne). They martial a lot of genomic and comparative data, test the viability of their surrogates for Ne and genome size, and use correct methods (phylogenetically corrected correlation) to test the hypothesis. Strikingly, they not only find that Ne is not THE major determinant of genome size, as is argued by MHH, but that there is not even a marginally significant effect. This is remarkable, making this an important paper.

      Strengths:

      The hypothesis tested is of great importance.

      The negative finding is of great importance for reevaluating the predictive power of the tested hypothesis.

      The test is straightforward and clear.

      The analysis is a technical tour-de-force, convincingly circumventing a number of challenges of mounting a true test of the hypothesis.

      Weaknesses:

      I note no particular strengths, but I believe the paper could be further strengthened in three major ways.

      (1) The authors should note that the hypothesis that they are testing is larger than the MHH. The MHH hypothesis says that

      (i) low-Ne species have more junk in their genomes and

      (ii) this is because junk tends to be costly because of increased mutation rate to nulls, relative to competing non/less-junky alleles.

      The current results reject not just the compound (i+ii) MHH hypothesis, but in fact any hypothesis that relies on i. This is notably a (much) more important rejection. Indeed, whereas MHH relies on particular constructions of increased mutation rates of varying plausibility, the more general hypothesis i includes any imaginable or proposed cost to the extra sequence (replication costs, background transcription, costs of transposition, ectopic expression of neighboring genes, recombination between homologous elements, misaligning during meiosis, reduced organismal function from nuclear expansion, the list goes on and on). For those who find the MHH dubious on its merits, focusing this paper on the MHH reduces its impact - the larger hypothesis that the small costs of extra sequence dictate the fates of different organisms' genomes is, in my opinion, a much more important and plausible hypothesis, and thus the current rejection is more important than the authors let on.

      The MHH is arguably the most structured and influential theoretical framework proposed to date based on the null assumption (i), therefore setting the paper up with the MHH is somehow inevitable. Because of this, in the manuscript, we mostly discuss the peculiarities of TE biology that can drive the genome away from the MHH expectations, focusing on the mutational aspect. We however agree that the hazard posed by extra DNA is not limited to the gain of function via the mutation process, but can be linked to many other molecular processes as mentioned above. In a revised manuscript, we will make the concept of hazard more comprehensive and further stress that this applies not only to TEs but any nearly-neutral mutation affecting non-coding DNA.

      (2) In addition to the authors' careful logical and mathematical description of their work, they should take more time to show the intuition that arises from their data. In particular, just by looking at Figure 1b one can see what is wrong with the non-phylogenetically-corrected correlations that MHH's supporters use. That figure shows that mammals, many of which have small Ne, have large genomes regardless of their Ne, which suggests that the coincidence of large genomes and frequently small Ne in this lineage is just that, a coincidence, not a causal relationship. Similarly, insects by and large have large Ne, regardless of their genome size. Insects, many of which have large genomes, have large Ne regardless of their genome size, again suggesting that the coincidence of this lineage of generally large Ne and smaller genomes is not causal. Given that these two lineages are abundant on earth in addition to being overrepresented among available genomes (and were even more overrepresented when the foundational MHH papers collected available genomes), it begins to emerge how one can easily end up with a spurious non-phylogenetically corrected correlation: grab a few insects, grab a few mammals, and you get a correlation. Notably, the same holds for lineages not included here but that are highly represented in our databases (and all the more so 20 years ago): yeasts related to S. cerevisiae (generally small genomes and large median Ne despite variation) and angiosperms (generally large genomes (compared to most eukaryotes) and small median Ne despite variation). Pointing these clear points out will help non-specialists to understand why the current analysis is not merely a they-said-them-said case, but offers an explanation for why the current authors' conclusions differ from the MHH's supporters and moreover explain what is wrong with the MHH's supporters' arguments.

      We agree that comparing dispersion of the points from the non-phylogenetically corrected correlation with the results of the phylogenetic contrasts intuitively emphasizes the importance of accounting for species relatedness. Just looking at the clade colors in Figure 2 makes immediately stand out that a simple regression hides phylogenetic structure. We will stress this in the discussion to make the point clear.

      (3) A third way in which the paper is more important than the authors let on is in the striking degree of the failure of MHH here. MHH does not merely claim that Ne is one contributor to genome size among many; it claims that Ne is THE major contributor, which is a much, much stronger claim. That no evidence exists in the current data for even the small claim is a remarkable failure of the actual MHH hypothesis: the possibility is quite remote that Ne is THE major contributor but that one cannot even find a marginally significant correlation in a huge correlation analysis deriving from a lot of challenging bioinformatic work. Thus this is an extremely strong rejection of the MHH. The MHH is extremely influential and yet very challenging to test clearly. Frankly, the authors would be doing the field a disservice if they did not more strongly state the degree of importance of this finding.

      We respectfully disagree with the reviewer that there is currently no evidence for an effect of Ne on genome size evolution. While it is accurate that our large dataset allows us to reject the universality of Ne as the major contributor to genome size variation, this does not exclude the possibility of such an effect in certain contexts. Notably, there are several pieces of evidence that find support for Ne to determine genome size variation and to entail nearly-neutral TE dynamics under certain circumstances, e.g. of particularly strongly contrasted Ne and moderate divergence times (Lefébure et al. 2017; Mérel et al. 2024; Tollis and Boissinot 2013; Ruggiero et al. 2017). The strength of such works is to analyze the short-term dynamics of TEs in response to Ne within groups of species/populations, where the cost posed by extra DNA is likely to be similar. Indeed, the MHH predicts genome size to vary according to the combination of drift and mutation under the nearly-neutral theory of molecular evolution. Our work demonstrates that it is not true universally but does not exclude that it could exist locally. Moreover, defense mechanisms against TEs proliferation are often complex molecular machineries that might or might not evolve according to different constraints among clades. We have detailed these points in the discussion.

      Reviewer #3:

      Summary

      The Mutational Hazard Hypothesis (MHH) suggests that lineages with smaller effective population sizes should accumulate slightly deleterious transposable elements leading to larger genome sizes. Marino and colleagues tested the MHH using a set of 807 vertebrate, mollusc, and insect species. The authors mined repeats de novo and estimated dN/dS for each genome. Then, they used dN/dS and life history traits as reliable proxies for effective population size and tested for correlations between these proxies and repeat content while accounting for phylogenetic nonindependence. The results suggest that overall, lineages with lower effective population sizes do not exhibit increases in repeat content or genome size. This contrasts with expectations from the MHH. The authors speculate that changes in genome size may be driven by lineage-specific host-TE conflicts rather than effective population size.

      Strengths

      The general conclusions of this paper are supported by a powerful dataset of phylogenetically diverse species. The use of C-values rather than assembly size for many species (when available) helps mitigate the challenges associated with the underrepresentation of repetitive regions in short-read-based genome assemblies. As expected, genome size and repeat content are highly correlated across species. Nonetheless, the authors report divergent relationships between genome size and dN/dS and TE content and dN/dS in multiple clades: Insecta, Actinopteri, Aves, and Mammalia. These discrepancies are interesting but could reflect biases associated with the authors' methodology for repeat detection and quantification rather than the true biology.

      Weaknesses

      The authors used dnaPipeTE for repeat quantification. Although dnaPipeTE is a useful tool for estimating TE content when genome assemblies are not available, it exhibits several biases. One of these is that dnaPipeTE seems to consistently underestimate satellite content (compared to repeat masker on assembled genomes; see Goubert et al. 2015). Satellites comprise a significant portion of many animal genomes and are likely significant contributors to differences in genome size. This should have a stronger effect on results in species where satellites comprise a larger proportion of the genome relative to other repeats (e.g. Drosophila virilis, >40% of the genome (Flynn et al. 2020); Triatoma infestans, 25% of the genome (Pita et al. 2017) and many others). For example, the authors report that only 0.46% of the Triatoma infestans genome is "other repeats" (which include simple repeats and satellites). This contrasts with previous reports of {greater than or equal to}25% satellite content in Triatoma infestans (Pita et al. 2017). Similarly, this study's results for "other" repeat content appear to be consistently lower for Drosophila species relative to previous reports (e.g. de Lima & Ruiz-Ruano 2022). The most extreme case of this is for Drosophila albomicans where the authors report 0.06% "other" repeat content when previous reports have suggested that 18%->38% of the genome is composed of satellites (de Lima & Ruiz-Ruano 2022). It is conceivable that occasional drastic underestimates or overestimates for repeat content in some species could have a large effect on coevol results, but a minimal effect on more general trends (e.g. the overall relationship between repeat content and genome size).

      There are indeed some discrepancies between our estimates of low complexity repeats and those from the literature due to the approach used. Hence, occasional underestimates or overestimates of repeat content are possible. As noted, the contribution of “Other” repeats to the overall repeat content is generally very low, meaning an underestimation bias. We thank the reviewer for providing this interesting review. We will emphasize it in the discussion of our revised manuscript.

      Not being able to correctly estimate the quantity of satellites might pose a problem for quantifying the total content of junk DNA. However, the overall repeat content mostly composed of TEs correlates very well with genome size, both in the overall dataset and within clades (with the notable exception of birds) so we are confident that this limitation is not the explanation of our negative results. Moreover, while satellite information might be missing, this is not problematic to test our a priori hypothesis since we focus our attention on TEs, whose proliferation mechanism is very different from that of tandem repeats.

      Finally, divergence from the consensus can be estimated only for TEs. Therefore, recently active elements do not include simple and tandem repeats: yet the results based on recent TE content are very similar to those based on the overall repeat content.

      Another bias of dnaPipeTE is that it does not detect ancient TEs as well as more recently active TEs (Goubert et al. 2015). Thus, the repeat content used for PIC and coevolve analyses here is inherently biased toward more recently inserted TEs. This bias could significantly impact the inference of long-term evolutionary trends.

      Indeed, dnaPipeTE is not good at detecting old TE copies due to the read-based approach, biasing the outcome towards new elements. We agree on TE content being underestimated, especially in those genomes that tend to accumulate TEs rather than getting rid of them. However, the sum of old TEs and recent TEs is extremely well correlated to genome size (Pearson’s correlation: r = 0.87, p-value < 2.2e-16; PIC: slope = 0.22, adj-R2 = 0.42, p-value < 2.2e-16). Our main result therefore does not rely on an accurate estimation of old TEs. In contrast, we hypothesized that recent TEs could be interesting if selection acted on TEs insertion and dynamics rather than on non-coding DNA. Our results demonstrate that this is not the case: it should be noted that in spite of its limits for old TEs, dnaPipeTE is especially fitting for this specific analysis as it is not biased by very repetitive new TE families that are problematic to assemble. We will clearly emphasize the limitation of dnaPipeTE and discuss the consequences on our results in the discussion of the revised manuscript.

      Finally, in a preliminary analysis on the dipteran species, we show that the TE content estimated with dnaPipeTE is generally similar to that estimated from the assembly with earlGrey (Baril et al. 2024) across a good range of genome sizes going from drosophilid-like to mosquito-like (Pearson’s correlation: r = 0.88, p-value = 3.22e-10; see also the corrected Supplementary Figure S2 below). While for these species TEs are probably dominated by recent to moderately recent TEs, Aedes albopictus is an outlier for its genome size and the estimations with the two methods are largely consistent. However, the computation time required to estimate TE content using EarlGrey was significantly longer, with a ~300% increase in computation time, making it a very costly option (a similar issue is applicable to other assembly-based annotation pipelines). Given the rationale presented above, we decided to use dnaPipeTE instead of EarlGrey.

    1. Author response:

      Reviewer #1:

      Strengths:

      Utilization of both human placental samples and multiple mouse models to explore the mechanisms linking inflammatory macrophages and T cells to preeclampsia (PE).<br /> Incorporation of advanced techniques such as CyTOF, scRNA-seq, bulk RNA-seq, and flow cytometry.

      Identification of specific immune cell populations and their roles in PE, including the IGF1-IGF1R ligand-receptor pair in macrophage-mediated Th17 cell differentiation.<br /> Demonstration of the adverse effects of pro-inflammatory macrophages and T cells on pregnancy outcomes through transfer experiments.

      Weaknesses:

      Comment 1. Inconsistent use of uterine and placental cells, which are distinct tissues with different macrophage populations, potentially confounding results.

      Response1: We thank the reviewers' comments. We have done the green fluorescent protein (GFP) pregnant mice-related animal experiment, which was not shown in this manuscript. The wild-type (WT) female mice were mated with either transgenic male mice, genetically modified to express GFP, or with WT male mice, in order to generate either GFP-expressing pups (GFP-pups) or their genetically unmodified counterparts (WT-pups), respectively. Mice were euthanized on day 18.5 of gestation, and the uteri of the pregnant females and the placentas of the offspring were analyzed using flow cytometry. The majority of macrophages in the uterus and placenta are of maternal origin, which was defined by GFP negative. In contrast, fetal-derived macrophages, distinguished by their expression of GFP, represent a mere fraction of the total macrophage population, signifying their inconsequential or restricted presence amidst the broader cellular landscape. We will added the GPF pregnant mice-related data in Figure 4-figure supplement 1 to explain the different macrophage populations in the uterine and placental cells.

      Comment 2. Missing observational data for the initial experiment transferring RUPP-derived macrophages to normal pregnant mice.

      Response 2: We thank the reviewers' comments. In our experiments, PLX3397 or Clodronate Liposomes was used to deplete the macrophages of pregnant mice, and then we injected RUPP-derived pro-inflammatory macrophages and anti-inflammatory macrophages back into PLX3397 or Clodronate Liposomes-treated pregnant mice. And We found that RUPP-derived F480+CD206- pro-inflammatory macrophages induced immune imbalance at the maternal-fetal interface and PE-like symptoms (Figure 4E-4H and Figure 4-figure supplement 1 A-C).

      Comment 3. Unclear mechanisms of anti-macrophage compounds and their effects on placental/fetal macrophages.

      Response 3: We thank the reviewers' comments. PLX3397, the inhibitor of CSF1R, which is needed for macrophage development (Nature. 2023, PMID: 36890231; Cell Mol Immunol. 2022, PMID: 36220994), we have stated that on line 189-191. However, PLX3397 is a small molecule compound that possesses the potential to cross the placental barrier and affect fetal macrophages. We will discuss the impact of this factor on the experiment in the discussion section.

      Comment 4. Difficulty in distinguishing donor cells from recipient cells in murine single-cell data complicates interpretation.

      Response 4: We thank the reviewers' comments. Upon analysis, we observed a notable elevation in the frequency of total macrophages within the CD45+ cell population. Then we subsequently performed macrophage clustering and uncovered a marked increase in the frequency of Cluster 0, implying a potential correlation between Cluster 0 and donor-derived cells. RNA sequencing revealed that the F480+CD206- pro-inflammatory donor macrophages exhibited a Folr2+Ccl7+Ccl8+C1qa+C1qb+C1qc+ phenotype, which is consistent with the phenotype of cluster 0 in macrophages observed in single-cell RNA sequencing (Figure 4D and Figure 5E). Therefore, we believe that the donor cells is cluster 0 in macrophages.

      Comment 5. Limitation of using the LPS model in the final experiments, as it more closely resembles systemic inflammation seen in endotoxemia rather than the specific pathology of PE.

      Response 5: We thank the reviewers' comments. Firstly, our other animal experiments in this manuscript used the Reduction in Uterine Perfusion Pressure (RUPP) mouse model to simulate the pathology of PE. However, the RUPP model requires ligation of the uterine arteries in pregnant mice on day 12.5 of gestation, which hinders T cells returning from the tail vein from reaching the maternal-fetal interface. In addition, this experiment aims to prove that CD4+ T cells are differentiated into memory-like Th17 cells through IGF-1R receptor signalling to affect pregnancy by clearing CD4+ T cells in vivo with an anti-CD4 antibody followed by injecting IGF-1R inhibitor-treated CD4+ T cells. And we proved that injection of RUPP-derived memory-like CD4+ T cells into pregnant rats induces PE-like symptoms (Figure 6). In summary, the application of the LPS model in Figure 8 does not affect the conclusions.

      Reviewer #2:

      Strengths:

      (1) This study combines human and mouse analyses and allows for some amount of mechanistic insight into the role of pro-inflammatory and anti-inflammatory macrophages in the pathogenesis of pre-eclampsia (PE), and their interaction with Th17 cells.

      (2) Importantly, they do this using matched cohorts across normal pregnancy and common PE comorbidities like gestation diabetes (GDM).

      (3) The authors have developed clear translational opportunities from these "big data" studies by moving to pursue potential IGF1-based interventions.

      Weaknesses:

      Comment 1. Clearly the authors generated vast amounts of multi-omic data using CyTOF and single-cell RNA-seq (scRNA-seq), but their central message becomes muddled very quickly. The reader has to do a lot of work to follow the authors' multiple lines of inquiry rather than smoothly following along with their unified rationale. The title description tells fairly little about the substance of the study. The manuscript is very challenging to follow. The paper would benefit from substantial reorganizations and editing for grammatical and spelling errors. For example, RUPP is introduced in Figure 4 but in the text not defined or even talked about what it is until Figure 6. (The figure comparing pro- and anti-inflammatory macrophages does not add much to the manuscript as this is an expected finding).

      Response 1: We thank the reviewers' comments. According to the reviewer's suggestion, we will proceed with making the necessary revisions. Firstly, We will modify the title of the article to be more specific. Then, we will introduce the RUPP mouse model when interpreted Figure 4. Thirdly, we plan to simplify or consolidate the images from Figure5 to Figure7 to make them easier to follow. Finally, We will diligently correct the grammatical and spelling errors in the article. As for the figure comparing pro- and anti-inflammatory macrophages, The Editor requested a more comprehensive description of the macrophage phenotype during the initial submission. As a result, we conducted the transcriptomes of both uterine-derived pro-inflammatory and anti-inflammatory macrophages and conducted a detailed analysis of macrophages in single-cell data.

      Comment 2. The methods lack critical detail about how human placenta samples were processed. The maternal-fetal interface is a highly heterogeneous tissue environment and care must be taken to ensure proper focus on maternal or fetal cells of origin. Lacking this detail in the present manuscript, there are many unanswered questions about the nature of the immune cells analyzed. It is impossible to figure out which part of the placental unit is analyzed for the human or mouse data. Is this the decidua, the placental villi, or the fetal membranes? This is of key importance to the central findings of the manuscript as the immune makeup of these compartments is very different. Or is this analyzed as the entirety of the placenta, which would be a mix of these compartments and significantly less exciting?

      Response 2: We thank the reviewers' comments. Placental villi rather than fetal membranes and decidua were used for CyToF in this study. This detail about how human placenta samples were processed will be added to the Materials and Methods section.

      Comment 3. Similarly, methods lack any detail about the analysis of the CyTOF and scRNAseq data, much more detail needs to be added here. How were these clustered, what was the QC for scRNAseq data, etc? The two small paragraphs lack any detail.

      Response 3: We thank the reviewers' comments. The detail about the analysis of the CyTOF and scRNAseq data will be added in the Materials and Methods section.

      Comment 4. There is also insufficient detail presented about the quantities or proportions of various cell populations. For example, gdT cells represent very small proportions of the CyTOF plots shown in Figures 1B, 1C, & 1E, yet in Figures 2I, 2K, & 2K there are many gdT cells shown in subcluster analysis without a description of how many cells are actually represented, and where they came from. How were biological replicates normalized for fair statistical comparison between groups?

      Response 4: We thank the reviewers' comments. In Figure 1, CD45+ immune cells were clustered into 10 subpopulations, which included gdT cells. While Figure 2 displays the further clustering analysis of CD4+T, CD8+T, and gdT cells, with gdT cells being further subdivided into 22 clusters (Figure 2-figure supplement 1C). The number of biological replicates (samples) is consistent with Figure 1.

      Comment 5. The figures themselves are very tricky to follow. The clusters are numbered rather than identified by what the authors think they are, the numbers are so small, that they are challenging to read. The paper would be significantly improved if the clusters were clearly labeled and identified. All the heatmaps and the abundance of clusters should be in separate supplementary figures.

      Response 5: We thank the reviewers' comments. The t-SNE distributions of the 15 clusters of CD4+ T cells, 18 clusters of CD8+ T cells, and 22 clusters of gdT cells are shown separately in Figure 2A, F, and I. The heatmaps displaying the expression levels of markers in these clusters of CD4+ T cells, CD8+ T cells, and gdT cells are presented in Figure 2-figure supplement 1A, B, and C, respectively. The t-SNE distributions of the 29 clusters of CD11b+ cells are shown in Figure 3A, and the heatmap displaying the expression levels of markers in these clusters is presented in Figure 3B. As for sc-RNA sequencing, the heatmap and UMAP distributions of the 15 clusters of macrophages are shown separately in Figure 5C and 5D. The UMAP distributions and heatmap of the 12 clusters of T/NK cells are shown in Figure 6A and 6B. The UMAP distributions and heatmap of the 9 clusters of T/NK cells are shown in Figure 7A and 7B.

      Comment 6. The authors should take additional care when constructing figures that their biological replicates (and all replicates) are accurately represented. Figure 2H-2K shows N=10 data points for the normal pregnant (NP) samples when clearly their Table 1 and test denote they only studied N=9 normal subjects.

      Response 6: We thank the reviewers' careful checking. During our verification, we found that one sample in the NP group had pregnancy complications other than PE and GMD. The data in Figure 2H-2K was not updated in a timely manner. We will promptly update this data and reanalyze it.

      Comment 7. There is little to no evaluation of regulatory T cells (Tregs) which are well known to undergird maternal tolerance of the fetus, and which are well known to have overlapping developmental trajectory with RORgt+ Th17 cells. We recommend the authors evaluate whether the loss of Treg function, quantity, or quality leaves CD4+ effector T cells more unrestrained in their effect on PE phenotypes. References should include, accordingly: PMCID: PMC6448013 / DOI: 10.3389/fimmu.2019.00478; PMC4700932 / DOI: 10.1126/science.aaa9420.

      Response 7: We thank the reviewers' comments. We have done the Treg-related animal experiment, which was not shown in this manuscript. We will add the Treg-related data in Figure 6. The injection of CD4+ T cells derived from RUPP mouse, characterized by a reduced frequency of Tregs, could induce PE-like symptoms in pregnant mice. Additionally, we will add a necessary discussion about Tregs.

      Comment 8. In discussing gMDSCs in Figure 3, the authors have missed key opportunities to evaluate bona fide Neutrophils. We recommend they conduct FACS or CyTOF staining including CD66b if they have additional tissues or cells available. Please refer to this helpful review article that highlights key points of distinguishing human MDSC from neutrophils: https://doi.org/10.1038/s41577-024-01062-0. This will both help the evaluation of potentially regulatory myeloid cells that may suppress effector T cells as well as aid in understanding at the end of the study if IL-17 produced by CD4+ Th17 cells might recruit neutrophils to the placenta and cause ROS immunopathology and fetal resorption.

      Response 8: We thank the reviewers' comments. Although we do not have additional tissues or cells available to conduct FACS or CyTOF staining, including for CD66b, we plan to utilize CD15 and CD66b antibodies for immunofluorescence staining of placental tissue. Suppressing effector T cells is a signature feature of MDSCs, and T cells may also influence the functions of MDSCs, we will refer to this review and discuss it in the Discussion section of the article.

      Comment 9. Depletion of macrophages using several different methodologies (PLX3397, or clodronate liposomes) should be accompanied by supplementary data showing the efficiency of depletion, especially within tissue compartments of interest (uterine horns, placenta). The clodronate piece is not at all discussed in the main text. Both should be addressed in much more detail.

      Response 9: We thank the reviewers' comments. We already have the additional data on the efficiency ofmacrophage depletion involving PLX3397 and clodronate liposomes, which were not present in this manuscript, and we'll add it to the manuscript. The clodronate piece is mentioned in the main text (Line 197-201), but only briefly described, because the results using clodronate we obtained were similar to those using PLX3397.

      Comment 10. There are many heatmaps and tSNE / UMAP plots with unhelpful labels and no statistical tests applied. Many of these plots (e.g. Figure 7) could be moved to supplemental figures or pared down and combined with existing main figures to help the authors streamline and unify their message.

      Response 10: We thank the reviewers' comments. We plan to simplify or consolidate the images from Figure5 to Figure7 to make them easier to follow.

      Comment 11. There are claims that this study fills a gap that "only one report has provided an overall analysis of immune cells in the human placental villi in the presence and absence of spontaneous labor at term by scRNA-seq (Miller 2022)" (lines 362-364), yet this study itself does not exhaustively study all immune cell subsets...that's a monumental task, even with the two multi-omic methods used in this paper. There are several other datasets that have performed similar analyses and should be referenced.

      Response 11: We thank the reviewers' comments. We will search for more literature and reference additional studies that have conducted similar analyses.

      Comment 12. Inappropriate statistical tests are used in many of the analyses. Figures 1-2 use the Shapiro-Wilk test, which is a test of "goodness of fit", to compare unpaired groups. A Kruskal-Wallis or other nonparametric t-test is much more appropriate. In other instances, there is no mention of statistical tests (Figures 6-7) at all. Appropriate tests should be added throughout.

      We thank the reviewers' comments. As stated in the Statistical Analysis section (lines 601-604), the Kruskal-Wallis test was used to compare the results of experiments with multiple groups. Comparisons between the two groups in Figures 6-7 were conducted using Student's t-test. The aforementioned statistical methods will be included in the figure legends.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Chen et al. identified the role of endocardial id2b expression in cardiac contraction and valve formation through pharmaceutical, genetic, electrophysiology, calcium imaging, and echocardiography analyses. CRISPR/Cas9 generated id2b mutants demonstrated defective AV valve formation, excitation-contraction coupling, reduced endocardial cell proliferation in AV valve, retrograde blood flow, and lethal effects.

      Strengths:

      Their methods, data and analyses broadly support their claims.

      Weaknesses:

      The molecular mechanism is somewhat preliminary.

      We thank the reviewer for the constructive comments. To further elucidate the molecular mechanisms underlying the observed phenotypes, we will conduct the following experiments: (1) perform qRT-PCR to analyze the expression of id2a in hearts isolated from tricane-treated embryos and in id2b-deleted embryos; (2) use RNAscope to detect the expression of id2b in developing embryos; (3) validate the interaction between Id2b and Tcf3b in vivo; and (4) conduct CUT&Tag experiments in developing zebrafish embryos to further validate the Tcf3b binding sites upstream of nrg1.

      Reviewer #2 (Public review):

      Summary:

      Biomechanical forces, such as blood flow, are crucial for organ formation, including heart development. This study by Shuo Chen et al. aims to understand how cardiac cells respond to these forces. They used zebrafish as a model organism due to its unique strengths, such as the ability to survive without heartbeats, and conducted transcriptomic analysis on hearts with impaired contractility. They thereby identified id2b as a gene regulated by blood flow and is crucial for proper heart development, in particular, for the regulation of myocardial contractility and valve formation. Using both in situ hybridization and transgenic fish they showed that id2b is specifically expressed in the endocardium, and its expression is affected by both pharmacological and genetic perturbations of contraction. They further generated a null mutant of id2b to show that loss of id2b results in heart malformation and early lethality in zebrafish. Atrioventricular (AV) and excitation-contraction coupling were also impaired in id2b mutants. Mechanistically, they demonstrate that Id2b interacts with the transcription factor Tcf3b to restrict its activity. When id2b is deleted, the repressor activity of Tcf3b is enhanced, leading to suppression of the expression of nrg1 (neuregulin 1), a key factor for heart development. Importantly, injecting tcf3b morpholino into id2b-/- embryos partially restores the reduced heart rate. Moreover, treatment of zebrafish embryos with the Erbb2 inhibitor AG1478 results in decreased heart rate, in line with a model in which Id2b modulates heart development via the Nrg1/Erbb2 axis. The research identifies id2b as a biomechanical signaling-sensitive gene in endocardial cells that mediates communication between the endocardium and myocardium, which is essential for heart morphogenesis and function.

      Strengths:

      The study provides novel insights into the molecular mechanisms by which biomechanical forces influence heart development and highlights the importance of id2b in this process.

      Weaknesses:

      The claims are in general well supported by experimental evidence, but the following aspects may benefit from further investigation:

      (1) In Figure 1C, the heatmap demonstrates the up-regulated and down-regulated genes upon tricane-induced cardiac arrest. Aside from the down-regulation of id2b expression, it was also evident that id2a expression was up-regulated. As a predicted paralog of id2b, it would be interesting to see whether the up-regulation of id2a in response to tricaine treatment was a compensatory response to the down-regulation of id2b expression.

      As suggested by the reviewer, we will perform qRT-PCR to analyze the expression of id2a in hearts isolated from tricane-treated embryos, as well as in id2b-deleted embryos.

      (2) The study mentioned that id2b is tightly regulated by the flow-sensitive primary cilia-klf2 signaling axis; however aside from showing the reduced expression of id2b in klf2a and klf2b mutants, there was no further evidence to solidify the functional link between id2b and klf2. It would therefore be ideal, in the present study, to demonstrate how Klf2, which is a transcriptional regulator, transduces biomechanical stimuli to Id2b.

      We have examined the expression levels of id2b in both klf2a and klf2b mutants. The whole mount in situ results clearly demonstrate a decrease in id2b signal in both mutants. As noted by the reviewer, klf2 is a transcriptional regulator, suggesting that the regulation of id2b may occur at the transcriptional level. However, dissecting the molecular mechanisms underling the crosstalk between klf2 and id2b is beyond the scope of the present study.

      (3) The authors showed the physical interaction between ectopically expressed FLAG-Id2b and HA-Tcf3b in HEK293T cells. Although the constructs being expressed are of zebrafish origin, it would be nice to show in vivo that the two proteins interact.

      We agree with the reviewer and will perform additional experiments to validate the interaction between Id2b and Tcf3b in vivo. Due to the lack of antibodies targeting these proteins, we will overexpress Flag-id2b and HA-Tcf3b in zebrafish embryos and conduct a co-IP analysis.

      Reviewer #3 (Public review):

      Summary:

      How mechanical forces transmitted by blood flow contribute to normal cardiac development remains incompletely understood. Using the unique advantages of the zebrafish model system, Chen et al make the fundamental discovery that endocardial expression of id2b is induced by blood flow and required for normal atrioventricular canal (AVC) valve development and myocardial contractility by regulating calcium dynamics. Mechanistically, the authors suggest that Id2b binds to Tcf3b in endocardial cells, which relieves Tcf3b-mediated transcriptional repression of Neuregulin 1 (NRG1). Nrg1 then induces expression of the L-type calcium channel component LRRC1. This study significantly advances our understanding of flow-mediated valve formation and myocardial function.

      Strengths:

      Strengths of the study are the significance of the question being addressed, use of the zebrafish model, and data quality (mostly very nice imaging). The text is also well-written and easy to understand.

      Weaknesses:

      Weaknesses include a lack of rigor for key experimental approaches, which led to skepticism surrounding the main findings. Specific issues were the use of morpholinos instead of genetic mutants for the bmp ligands, cilia gene ift88, and tcf3b, lack of an explicit model surrounding BMP versus blood flow induced endocardial id2b expression, use of bar graphs without dots, the artificial nature of assessing the physical interaction of Tcf3b and Id2b in transfected HEK293 cells, and artificial nature of examining the function of the tcf3b binding sites upstream of nrg1.

      We thank the reviewer for the constructive assessments. Our specific responses are as follows:

      (1) As all the morpholinos used in this study, including those targeting bmp ligands, the cilia gene ift88, and tcf3b, have been published and validated using genetic mutants in previous studies, we believe these loss-of-function analyses are sufficient to delineate their role in regulating id2b expression or function.

      (2) To assess the role of BMP versus blood flow in regulating endocardial id2b expression, we plan to perform live imaging in the id2b:GFP knockin line prior to the initiation of the heartbeat, with or without of BMP inhibitors.

      (3) We will revise the data presentation and use bar graphs with individual data points.

      (4) We plan to perform additional Co-IP experiment in zebrafish embryos to assess the interaction between Tcf3b and Id2b.

      (5) To further validate the tcf3b binding sites upstream of nrg1, we will conduct CUT&Tag experiments in developing zebrafish embryos.

    1. Author response:

      Reviewer #1 (Public Review):

      Weakness #1: The authors claim to have identified drivers that label single DANs in Figure 1, but their confocal images in Figure S1 suggest that many of those drivers label additional neurons in the larval brain. It is also not clear why only some of the 57 drivers are displayed in Figure S1.

      As introduced in the results section, we screened 57 driver strains based on previous studies, either they were reported identifying a single (a pair of) dopaminergic neuron (DAN) in larvae or identifying only several DANs in the adult brain indicating the potential of identifying single dopaminergic neuron in larvae. In Figure 1, TH-GAL4 was used to cover all neurons in the DL1 cluster, while R58E02 and R30G08 were well known drivers for pPAM. Fly strains in Figure 1h, k, l, and m were reported as single DAN strains in larvae4, while strains in Figure 1e, f, g were reported identifying only several DANs in adult brains5,6. We examined these strains and only some of them labeled single DANs in 3rd instar larval brains (Figure 1f, g, h, l and m). Among them, only strains in Figure 1f and h labeled single DAN in the brain hemisphere, without labeling other non-DANs. Other strains labeled non-DANs in addition to single DANs (Figure 1g, l and m). Taking ventral nerve cord (VNC) into consideration, strain in Figure 1h also labeled neurons in VNC (Figure S1e), while strain in Figure 1f did not (Figure S1c).

      In summary, the strain in Figure 1f (R76F02AD;R55C10DBD, labeling DAN-c1) is a strain we screened labeling only a single DAN in the 3rd instar larval brains. Others (Figure 1g, h, l, and m) we still describe them as strains labeling single DANs, but they also label one to several non-DANs. In Figure 1, we mainly showed the strains labeling single DANs. The labeling patterns of other screened driver strains were summarized in Table1. Since all brain images of the rest 47 strains are available, we will state in Fig S1 that additional brain images can be provided upon request.

      Weakness #2: Critically, R76F02-AD; R55C10-DBD labels more than one neuron per hemisphere in Figure S1c, and the authors cite Xie et al. (2018) to note that this driver labels two DANs in adult brains. Therefore, the authors cannot argue that the experiments throughout their paper using this driver exclusively target DAN-c1.

      Figure S1c shows single DA neuron in each brain hemisphere. Additional GFP (+) signals were often observed, but not from cell bodies of DANs because they were not stained by a TH antibody. These additional GFP (+) signals were mainly neurites, including axonal terminals, but could be false positive signals or weakly stained non-neuronal cell bodies. This conclusion was based on analysis of a total of 22 larval brains. We will add this in the text or Fig S1 caption. Enlarged insert of GFP (+) signals will be added also to Figure S1c.  

      Weakness #3: Missing from the screen of 57 drivers is the driver MB320C, which typically labels only PPL1-γ1pedc in the adult and should label DAN-c1 in the larva. If MB320C labels DAN-c1 exclusively in the larva, then the authors should repeat their key experiments with MB320C to provide more evidence for DAN-c1 involvement specifically.

      We thank the reviewer for the suggestion. MB320C mainly labels PPL1-y1pedc in the adult brain, with one or two other weakly labeled cells. It will be interesting to investigate the pattern of this driver in 3rd instar larval brains. If it only covers DAN-c1, we can try to knock-down D2R in this strain to check whether it can repeat our results. This will be an interesting fly strain to test, but we believe that it will not be necessary for our current manuscript as DAN-c1 driver is very specific (for details, refer to our response to Reviewer#3). However, this line will be very useful for future experiments.

      Weakness #4: The authors claim that the SS02160 driver used by Eschbach et al. (2020) labels other neurons in addition to DAN-c1. Could the authors use confocal imaging to show how many other neurons SS02160 labels? Given that both Eschbach et al. and Weber et al. (2023) found no evidence that DAN-c1 plays a role in larval aversive learning, it would be informative to see how SS02160 expression compares with the driver the authors use to label DAN-c1.

      We did not have our own images showing DANs in brains of SS02160 driver cross line. However, Extended Data Figure 1 in the paper of Eschbach et al. (2020) shows strongly labeled four neurons on each brain hemisphere9, indicating that this driver is not a strain only labeling one neuron, DAN-c1.

      Weakness #5: The claim that DAN-c1 is both necessary and sufficient in larval aversive learning should be reworded. Such a claim would logically exclude any other neuron or even the training stimuli from being involved in aversive learning (see Yoshihara and Yoshihara (2018) for a detailed discussion of the logic), which is presumably not what the authors intended because they describe the possible roles of other DANs during aversive learning in the discussion.

      We agree that the words ‘necessary’ and ‘sufficient’ are too exclusive for other neurons. As mentioned in the Discussion part, we do think other dopaminergic neurons may also be involved in larval aversive learning. We are going to re-phrase these words by replacing them with more logically appropriate words, such as ‘important’, ‘essential’, or ‘mediating’.

      Weakness #6: Moreover, if DAN-c1 artificial activation conveyed an aversive teaching signal irrespective of the gustatory stimulus, then it should not impair aversive learning after quinine training (Figure 2k). While the authors interpret Figure 2k (and Figure 5) to indicate that artificial activation causes excessive DAN-c1 dopamine release, an alternative explanation is that artificial activation compromises aversive learning by overriding DAN-c1 activity that could be evoked by quinine.

      This is a great point! Yes, we cannot rule out the possibility that artificial activation compromises aversive learning by overriding DAN-c1 activity that could be evoked by quinine. The experimental results with TRPA1 could be caused by depletion of dopamine, or DA inactivation due to prolonged depolarization or adaptation. However, we still think that our hypothesis on the over-excitation of DAN-c1 is more consistent with our experimental results and other published data. Our justification is as follows:

      (1) Associative learning occurs only when the CS and US are paired. In wild type larvae, a specific odor (conditioned stimulus, CS, such as pentyl acetate) depolarizes a subset of Kenyon cells in the mushroom body, while gustatory unconditioned stimulus (US, quinine) induces dopamine release from DAN-c1 to the lower peduncle (LP) compartment in the mushroom body (Figure 7a). Only when the CS and US are paired, calcium influx caused by CS and Gas activated by D1R binding to dopamine will turn on a mushroom body specific version of adenylyl cyclase, rutabaga, which is the co-incidence detector in associative learning (Figure 7d).

      (2) Rutabaga transforms ATP into cAMP, activating PKA signaling pathway and modifying the synaptic strength from mushroom body neurons (MBN, also called Kenyan cells) to the mushroom body output neurons (MBON, Figure 7d). This change in synaptic strength will lead to learned responses when the same odor appears again.

      (3) In our work, we found D2R is expressed in DAN-c1, and knockdown D2R in DAN-c1 impairs larval aversive learning. As D2R reduces cAMP level and neuronal excitability3, we hypothesized that knockdown of D2R in DAN-c1 would remove the inhibition of D2R auto-receptor, and lead to more dopamine (DA) release when US (quinine) was delivered compared to the wild type larvae. The elevated DA release along with calcium influx caused by CS increases the cAMP level in MBN, which leads to the learning deficit (over-excitation, Figure 7b). Mutant larvae with excessive cAMP, dunce, showed aversive learning deficiency, supporting our hypothesis2.

      (4) Our results of TRPA1 can be explained by this over-excitation hypothesis. When DAN-c1 is activated (34C) in distilled water group, the artificial activation mimicked the gustatory activation of quinine. The larvae showed the aversive learning responses towards the odor (Figure 2k DW group). When DAN-c1 is activated (34C) in sucrose group, the artificial activation mimicked the gustatory activation of quinine, so the larvae showed a learning response combining both appetitive and aversive learning (Figure 2k SUC group).

      (5) When DAN-c1 is activated (34C) in quinine group, the artificial activation and the gustatory activation of quinine lead to elevated DA release from DAN-c1. During training, this elevated DA caused over-excitation of MBN, leading to failure of aversive learning (Figure 2k QUI group), which had a similar phenotype compared to larvae with D2R knockdown in DAN-c1.

      (6) Similarly, optogenetic activation of DAN-c1 during aversive training, leads to elevated DA release from DAN-c1 (both gustatory activation of quinine and artificial activation). This would also cause over-excitation of MBN, and lead to failure of aversive learning. Artificial activation in other stages (resting or testing) won’t cause elevated DA release during training, so the aversive learning was not affected (Figure 5b).

      (7) However, when optogenetic activation was applied during training, we did not observe aversive learning responses in the distilled water group, or a reduction in the sucrose group (Figure 5c, Figure 5d). Our explanation is that the optogenetic stimulus we applied is too strong, DAN-c1 has already released elevated DA in both groups. So, the aversive learning in these groups has already been impaired, they just showed the corresponding learning responses to distilled water or sucrose.

      (8) We also applied this over-excitation to activate MBNs. As MBN takes over both appetitive and aversive learnings, over-excitation of MBNs led to deficit in both types of learning, which follows our hypothesis (Figure 6).

      In summary, we hypothesized that DAN-c1 restricts DA release via activation of D2R, which is important for larval aversive learning. D2R knockdown or artificial activation of DAN-c1 during training would induce elevated DA release, leading to over-excitation of MBNs and failure of aversive learning.

      Weakness #7: The authors should not necessarily expect that D2R enhancer driver strains would reflect D2R endogenous expression, since it is known that TH-GAL4 does not label p(PAM) dopaminergic neurons.

      Just like the example of TH-GAL4, it is possible that the D2R driver strains may partially reflect the expression pattern of endogenous D2R in larval brains. When we crossed the D2R driver strains with the GFP-tagged D2R strain, however, we observed co-localization in DM1 and DL2b dopaminergic neurons, as well as in mushroom body neurons (Figure S3 c to h). In addition, D2R knockdown with D2R-miR directly supported that the GFP-tagged D2R strain reflected the expression pattern of endogenous D2R (Figure 4b to d, signals were reduced in DM1). In summary, we think the D2R driver strains supported the expression pattern we observed from the GFP-tagged D2R strain, especially in DM1 DANs.

      Weakness #8: Their observations of GFP-tagged D2R expression could be strengthened with an anti-D2R antibody such as that used by Lam et al., (1999) or Love et al., (2023).

      Love et al., (2023) used the antibody from Draper et al.10. We have tried the same antibody, but we were not able to observe clear signals after staining. Maybe it is not specific for the neurons in the fly larval brain, or our staining protocol did not fit with this antibody.

      Unfortunately, we were not able to find Lam (1999) paper.

      Weakness #9: Finally, the authors could consider the possibility other DANs may also mediate aversive learning via D2R. Knockdown of D2R in DAN-g1 appears to cause a defect in aversive quinine learning compared with its genetic control (Figure S4e). It is unclear why the same genetic control has unexpectedly poor aversive quinine learning after training with propionic acid (Figure S5a). The authors could comment on why RNAi knockdown of D2R in DAN-g1 does not similarly impair aversive quinine learning (Figure S5b).

      We also think that other DANs may be involved in aversive learning. We re-analyzed the learning assay data, seemingly D2R knockdown in DAN-g1 with miR partially affected aversive learning when trained with pentyl acetate (Figure S4e). We are going to build single statistic panels for DAN-g1 and DAN-d1. However, neither larvae with D2R knockdown in DAN-g1 using miR trained with propionic acid (Figure S5a), nor larvae with D2R knockdown in DAN-g1 using RNAi trained with pentyl acetate (Figure S5b) showing aversive learning deficit. We will add paragraphs about this in both Results and Discussion sections.

      Reviewer #2 (Public Review):

      Weakness#1: Is not completely clear how the system DAN-c1, MB neurons and Behavioral performance work. We can be quite sure that DAN-c1;Shits1 were reducing dopamine release and impairing aversive memory (Figure 2h). Similarly, DAN-c1;ChR2 were increasing dopamine release and also impaired aversive memory (Figure 5b). However, is not clear what is happening with DAN-c1;TrpA1 (Figure 2K). In this case the thermos-induction appears to impair the behavioral performance of all three conditions (QUI, DW and SUC) and the behavior is quite distinct from the increase and decrease of dopamine tone (Figure 2h and 5b).

      The study successfully examined the role of D2R in DAN-c1 and MB neurons in olfactory conditioning. The conclusions are well supported by the data, with the exception of the claim that dopamine release from DAN-c1 is sufficient for aversive learning in the absence of unconditional stimulus (Figure 2K). Alternatively, the authors need to provide a better explanation of this point.

      Please refer to our response to Weakness #6 of Public Reviewer #1.

      Reviewer #3 (Public Review):

      Weakness #1: It is a strength of the paper that it analyses the function of dopamine neurons (DANs) at the level of single, identified neurons, and uses tools to address specific dopamine receptors (DopRs), exploiting the unique experimental possibilities available in larval Drosophila as a model system. Indeed, the result of their screening for transgenic drivers covering single or small groups of DANs and their histological characterization provides the community with a very valuable resource. In particular the transgenic driver to cover the DANc1 neuron might turn out useful. However, I wonder in which fraction of the preparations an expression pattern as in Figure 1f/ S1c is observed, and how many preparations the authors have analyzed. Also, given the function of DANs throughout the body, in addition to the expression pattern in the mushroom body region (Figure 1f) and in the central nervous system (Figure S1c) maybe attempts can be made to assess expression from this driver throughout the larval body (same for Dop2R distribution).

      We thank the reviewer for the positive comments and the suggestions. For the strain R76F02AD; R55C10DBD, we examined 22 third instar larval brains expressing GFP or Syt-GFP and Den-mCherry, all of them clearly labeled DAN-c1. Half of them only labeled DAN-c1, the rest have 1 to 5 weak labeled soma without neurites. Barely 1 or 2 strong labeled cells appear. These non-DAN-c1 neurons are seldom dopaminergic neurons. In VNC, 8 out of 12 do not label cells, 3 have 2-4 strong labeled cells. These data supported that R76F02AD;R55C10DBD exclusively labeled DAN-c1 in 3rd instar larval brains.

      For the question about the pattern of R76F02AD; R55C10DBD and the expression pattern of D2R in larval body, it is an interesting question. However, our main focus was on the central nervous system and the learning behaviors in fruit fly larvae, we may investigate this question in the future.

      Weakness #2: A first major weakness is that the main conclusion of the paper, which pertains to associative memory (last sentence of the abstract, and throughout the manuscript), is not justified by their evidence. Why so? Consider the paradigm in Figure 2g, and the data in Figure 2h (22 degrees, the control condition), where the assay and the experimental rationale used throughout the manuscript are introduced. Different groups of larvae are exposed, for 30min, to an odour paired with either i) quinine solution (red bar), ii) distilled water (yellow bar), or iii) sucrose solution (blue bar); in all cases this is followed by a choice test for the odour on one side and a distilled-water blank on the other side of a testing Petri dish. The authors observe that odour preference is low after odour-quinine pairing, intermediate after odour-water pairing and high after odour-sucrose pairing. The differences in odour preference relative to the odour-water case are interpreted as reflecting odour-quinine aversive associations and odour-sucrose appetitive associations, respectively. However, these differences could just as well reflect non-associative effects of the 30-min quinine or sucrose exposure per se (for a classical discussion of such types of issues see Rescorla 1988, Annu Rev Neurosci, or regarding Drosophila Tully 1988, Behav Genetics, or with some reference to the original paper by Honjo & Furukubo-Tokunaga 2005, J Neurosci that the authors reference, also Gerber & Stocker 2007, Chem Sens).<br /> As it stands, therefore, the current 3-group type of comparison does not allow conclusions about associative learning.

      We adopted this single odor larval learning paradigm from Honjo’s papers1,2. In these works, Honjo et al. first designed and performed this single odor paradigm for larval olfactory associative learning. To address the reviewer’s question about the potential non-associative effects of the 30-min quinine or sucrose exposure, we would like to defend it primarily based on results from Honjo et al. (2005 and 2009). They applied the odorant to the larvae after training, only the ones had paired training with both odor and unconditioned stimulus (quinine or sucrose) showed learning responses. Larvae exposed 30 min in only odorant or unconditioned stimulus did not show different response to the odor compared to the naïve group1,2. To validate this paradigm induces associative learning responses, they also tested the paradigm from three aspects:

      (1) The odor responses are associative. Honjo et al. showed only when the odorant paired with unconditioned stimulus would induce corresponding attraction or repulsion of larvae to the odor. Neither odorant alone, unconditioned stimulus alone, nor temporal dissociation of odorant and unconditioned stimulus would induce learning responses.

      (2) The odor responses are odor specific. When applied a second odorant that was not used for training, larvae only showed learning responses to the unconditioned stimulus paired odor. This result ruled out the explanation of a general olfactory suppression and indicates larvae can discriminate and specifically alter the responses to the odor paired with unconditioned stimulus. Although the two-odor reciprocal training is not used, these results can show the association of unconditioned stimulus and the corresponding paired odor.

      (3) Well known learning deficit mutants did not show learned responses in this learning paradigm. Honjo et al. tested mutants (e.g., rut and dnc) showing learning deficits in the adult stage with two odor reciprocal learning paradigm. These mutant larvae also failed to show learning responses tested with the single odor larval learning paradigm.

      (4) In our study, we used two distinct odorants (pentyl acetate and propionic acid), as well as two D2R knockdown strains (UAS-miR and UAS-RNAi for D2R). We obtained similar results for larvae with D2R knockdown in DAN-c1. In addition, our naïve olfactory, naïve gustatory, and locomotion data ruled out the possibilities that the responses were caused by impaired sensory or motor functions. Comparison with the control group (odor paired with distilled water) ruled out the potential effects if habituation existed. All these results supported this single odor learning paradigm is reliable to assess the learning abilities of Drosophila larvae. And the failure of reduction in R.I when larvae with D2R knockdown in DAN-c1 were trained in quinine paired with the odorant is caused by deficit in aversive learning ability. We will add a paragraph to address this in the Discussion part.

      Weakness #3: A second major weakness is apparent when considering the sketch in Figure 2g and the equation defining the response index (R.I.) (line 480). The point is that the larvae that are located in the middle zone are not included in the denominator. This can inflate scores and is not appropriate. That is, suppose from a group of 30 animals (line 471) only 1 chooses the odor side and 29, bedazzled after 30-min quinine or sucrose exposure or otherwise confused by a given opto- or thermogenetic treatment, stay in the middle zone... a P.I. of 1.0 would result.

      It is a good question. We gave 5 min during the testing stage to allow the larvae to wander in the testing plate. Under most conditions, more than half of larvae (>50%) will explore around, and the rest may stay in the middle zone (will not be calculated). We used 25-50 larvae in each learning assay, so finally around 10-30 larvae will locate in two semicircular areas. Indeed, based on our raw data, a R.I. of 1 seldom appears. Most of the R.I.s fall into a region from -0.2 to 0.8. We should admit that the calculation equation of R. I. is not linear, so it would be sharper (change steeply) when it approaching to -1 and 1. However, as most of the values fall into the region from -0.2 to 0.8, we think ‘border effects’ can be neglected if we have enough numbers of larvae in the calculation (10-30).

      Weakness #4: Unless experimentally demonstrated, claims that the thermogenetic effector shibire/ts reduces dopamine release from DANs are questionable. This is because firstly, there might be shibire/ts-insensitive ways of dopamine release, and secondly because shibire/ts may affect co-transmitter release from DANs.

      Shibirets1 gene encodes a thermosensitive mutant of dynamin, expressing this mutant version in target neurons will block neurotransmitter release at the ambient temperature higher than 30C, as it represses vesicle recycling1. It is a widely used tool to examine whether the target neuron is involved in a specific physiological function. We cannot rule out that there might be Shibirets1 insensitive ways of dopamine release exist. However, blocking dopamine release from DAN-c1 with Shibirets1 has already led to learning responses changing (Figure 2h). This result indicated that the dopamine release from DAN-c1 during training is important for larval aversive learning, which has already supported our hypothesis.

      For the second question about the potential co-transmitter release, we think it is a great question. Recently Yamazaki et al. reported co-neurotransmitters in dopaminergic system modulate adult olfactory memories in Drosophila_11, and we cannot rule out the roles of co-released neurotransmitters/neuropeptides in larval learning. Ideally, if we could observe the real time changes of dopamine release from DAN-c1 in wild type and TH knockdown larvae would answer this question. However, live imaging of dopamine release from one dopaminergic neuron is not practical for us at this time. On the other hand, the roles of dopamine receptors in olfactory associative learning support that dopamine is important for _Drosophila learning. D1 receptor, dDA1, has been proven to be involved in both adult and larval appetitive and aversive learning12,13. In our work, D2R in the mushroom body showed important roles in both larval appetitive and aversive learning (Figure 6a). All this evidence reveals the importance of dopamine in Drosophila olfactory associative learning. In addition, there is too much unknow information about the co-release neurotransmitter/neuropeptides, as well as their potential complex ‘interaction/crosstalk’ relations. We believe that investigation of co-released neurotransmitter/neuropeptides is beyond the scope of this study at this time.

      Weakness #5: It is not clear whether the genetic controls when using the Gal4/ UAS system are the homozygous, parental strains (XY-Gal4/ XY-Gal4 and UAS-effector/ UAS-effector), or as is standard in the field the heterozygous driver (XY-Gal4/ wildtype) and effector controls (UAS-effector/ wildtype) (in some cases effector controls appear to be missing, e.g. Figure 4d, Figure S4e, Figure S5c).

      Almost all controls we used were homozygous parental strains. They did not show abnormal behaviors in either learnings or naïve sensory or locomotion assays. The only exception is the control for DAN-c1, the larvae from homozygous R76F02AD; R55C10DBD strain showed much reduced locomotion speed (Figure S6). To prevent this reduced locomotion speed affecting the learning ability, we used heterozygous R76F02AD; R55C10DBD/wildtype as control, which showed normal learning, naïve sensory and locomotion abilities (Figure 4e to i).

      For Figure 4d, it is a column graph to quantify the efficiency of D2R knockdown with miR. Because we need to induce and quantify the knockdown effect in specific DANs (DM1), only TH-GAL4 can be used as the control group, rather than UAS-D2R-miR.

      For the missing control groups in Figure S4e and S5c, we have shown them in other Figures (Figure 4e). We will re-organize the figures to make them easier to understand.

      Weakness #6: As recently suggested by Yamada et al 2024, bioRxiv, high cAMP can lead to synaptic depression (sic). That would call into question the interpretation of low-Dop2R leading to high-cAMP, leading to high-dopamine release, and thus the authors interpretation of the matching effects of low-Dop2R and driving DANs.

      We will read through this paper and try to add it as possible explanations for the learning mechanisms. As we introduced in the Discussion section, the learning mechanism is quite complex, mixing both non-linear neuronal circuits and multiple signaling pathways, in responding to complex environmental learning contexts. We will try to develop a better hypothesis with the best compatibility to accommodate our results with published data.

      Reference

      (1) Honjo, K. & Furukubo-Tokunaga, K. Induction of cAMP response element-binding protein-dependent medium-term memory by appetitive gustatory reinforcement in Drosophila larvae. J Neurosci 25, 7905-7913 (2005). https://doi.org/10.1523/JNEUROSCI.2135-05.2005

      (2) Honjo, K. & Furukubo-Tokunaga, K. Distinctive neuronal networks and biochemical pathways for appetitive and aversive memory in Drosophila larvae. J Neurosci 29, 852-862 (2009). https://doi.org/10.1523/JNEUROSCI.1315-08.2009

      (3) Neve, K. A., Seamans, J. K. & Trantham-Davidson, H. Dopamine receptor signaling. J Recept Signal Transduct Res 24, 165-205 (2004). https://doi.org/10.1081/rrs-200029981

      (4) Saumweber, T. et al. Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila. Nat Commun 9, 1104 (2018). https://doi.org/10.1038/s41467-018-03130-1

      (5) Aso, Y. & Rubin, G. M. Dopaminergic neurons write and update memories with cell-type-specific rules. Elife 5 (2016). https://doi.org/10.7554/eLife.16135

      (6) Xie, T. et al. A Genetic Toolkit for Dissecting Dopamine Circuit Function in Drosophila. Cell Rep 23, 652-665 (2018). https://doi.org/10.1016/j.celrep.2018.03.068

      (7) Hartenstein, V., Cruz, L., Lovick, J. K. & Guo, M. Developmental analysis of the dopamine-containing neurons of the Drosophila brain. J Comp Neurol 525, 363-379 (2017). https://doi.org/10.1002/cne.24069

      (8) Aso, Y. et al. The neuronal architecture of the mushroom body provides a logic for associative learning. Elife 3, e04577 (2014). https://doi.org/10.7554/eLife.04577

      (9) Eschbach, C. et al. Recurrent architecture for adaptive regulation of learning in the insect brain. Nat Neurosci 23, 544-555 (2020). https://doi.org/10.1038/s41593-020-0607-9

      (10) Draper, I., Kurshan, P. T., McBride, E., Jackson, F. R. & Kopin, A. S. Locomotor activity is regulated by D2-like receptors in Drosophila: an anatomic and functional analysis. Dev Neurobiol 67, 378-393 (2007). https://doi.org/10.1002/dneu.20355

      (11) Yamazaki, D., Maeyama, Y. & Tabata, T. Combinatory Actions of Co-transmitters in Dopaminergic Systems Modulate Drosophila Olfactory Memories. J Neurosci 43, 8294-8305 (2023). https://doi.org/10.1523/jneurosci.2152-22.2023

      (12) Selcho, M., Pauls, D., Han, K. A., Stocker, R. F. & Thum, A. S. The role of dopamine in Drosophila larval classical olfactory conditioning. PLoS One 4, e5897 (2009). https://doi.org/10.1371/journal.pone.0005897

      (13) Kim, Y. C., Lee, H. G. & Han, K. A. D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila. J Neurosci 27, 7640-7647 (2007). https://doi.org/10.1523/JNEUROSCI.1167-07.2007

    1. Author Response:

      Thank you very much for your consideration and assessment. We really appreciate the generous comments from the reviewers on our manuscript entitled “BCAS2 promotes primitive hematopoiesis by sequestering β-catenin within the nucleus”. The comments are very helpful for the improvement of our work. We would like to provide the following provisional revision plan to address the public reviews:

      1. To clarify if Bcas2 also promotes primitive myelopoiesis by enhancing nuclear accumulation of β-catenin, bcas2 morpholino will be injected into the Tg(coro1a:EGFP) zebrafish embryos at 1-cell stage, and subsequently the β-catenin distribution in the myeloid cells will be examined. Tg(coro1a:EGFP) is commonly used to track both macrophages and neutrophils.

      2. According to the reviewers’ comments, we will quantify the fluorescence intensity in the cell nucleus and cytoplasm in Figure 3H. Meanwhile, we will adjust the exposure of Figure 5C and Figure 7E, or replaced the figures with high-resolution ones.

      3. Previous studies have reported that β-catenin can bind directly to CRM1 through its central armadillo (ARM) repeats region. β-catenin region containing ARM repeats 10 and the C terminus are essential for its nuclear export (Koike M, et al., The Journal of Biological Chemistry, 2004). In our research, BCAS2 has been demonstrated to bind to the 9-12 ARM repeats of β-catenin. Therefore, it is highly likely that Bcas2 may compete with CRM1 for binding with the nuclear export signal peptide on β-catenin. To further test this possibility, we will transfect HEK293T cells with constructs expressing full-length or truncated forms of β-catenin, and then examine their nuclear distribution. 

      4. To validate if BCAS2 affects CRM1-dependent nuclear export of other classical factors, we plan to knock down or overexpress BCAS2 in HeLa cells, and detect the distribution of ATG1 and CDC37L, which have been identified as CRM1 cargoes.

      5. Considering that the ARM repeats bound by Bcas2 (repeats 9-12) and Tcf (repeats 2-9) might not be mutually exclusive, it is indeed appealing to investigate whether β-catenin can simultaneously interact with Tcf and Bcas2. We will follow review’s suggestion to perform a three-way co-immunoprecipitation assay. Plasmids encoding these three proteins will be co-transfected into cells. Cell lysates will be immunoprecipitated using antibodyspecific to the bait protein (e.g., β-catenin) and eluted proteins will be analyzed using antibodies specific to the other two proteins.

      6. To elucidate that canonical Wnt signaling regulates hematopoietic development by activating expression of cdx1acdx4, and their downstream targets hoxb5a and hoxa9a as previously reported, we intend to examine the expression of cdx4 and hoxa9a in bcas2+/- embryos at 10 ss by performing in situ hybridization.

      7. To further validate whether Wnt signaling is required during endothelial differentiation from angioblasts, wild-type embryos will be subjected to treatment with Wnt inhibitor CCT036477 and the expression of hemangioblast markers npas4lscl, and gata2 and endothelial markers fli1 will be analyzed using in situ hybridization.

      8. In order to clarify whether coiled-coil (CC) domain 1-2 of Bcas2 is sufficient to interact with β-catenin and restore the primitive hematopoietic defect, we will overexpress CC1-2 in Tg(gata1:GFP) embryos injected with bcas2 morpholino, and then investigate the distribution of β-catenin, as well as gata1 expression at 10 ss in these embryos.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Du et al. report 16 new well-preserved specimens of atiopodan arthropods from the Chengjiang biota, which demonstrate both dosal and vental anatomies of a pothential new taxon of atiopodans that are closely related to trolobites. Authors assigned their specimens to Acanthomeridion serratum, and proposed A. anacanthus as a junior subjective synonym of Acanthomeridion serratum. Critially, the presence of ventral plates (interpreted as cephalic liberigenae), together with phylogenic results, lead authors to conclude that the cephalic sutures originated multiple times within the Artiopoda.

      Strengths:

      New specimens are highly qualified and informative. The morphology of dorsal exoskeleton, except for the supposed free cheek, were well illustrated and described in detail, which provide a wealth of information for taxonmic and phylogenic analyses.

      Weaknesses:

      The weaknesses of this work is obvious in a number of aspects. Technically, ventral morphlogy is less well revealed and is poorly illustrated. Additional diagrams are necessary to show the trunk appendages and suture lines. Taxonomically, I am not convinced by authors' placement. The specimens are markedly different from either Acanthomeridion serratum Hou et al. 1989 or A. anacanthus Hou et al. 2017. The ontogenetic description is extremely weak and the morpholical continuity is not established. Geometric and morphomitric analyses might be helpful to resolve the taxonomic and ontogenic uncertainties. I am confused by author's description of free cheek (libragena) and ventral plate. Are they the same object? How do they connect with other parts of cephalic shield, e.g. hypostome and fixgena. Critically, homology of cephalic slits (eye slits, eye notch, doral suture, facial suture) not extensivlely discussed either morphologically or functionally. Finally, authors claimed that phylogenic results support two separate origins rather than a deep origin. However, the results in Figure 4 can be explain a deep homology of cephalic suture in molecular level and multiple co-options within the Atiopoda.

      Comments on the revised version:

      I have seen the extensive revision of the manuscript. The main point "Multiple origins of dorsal ecdysial sutures in atiopoans" is now partially supported by results presented by the authors. I am still unsatisfied with descriptions and interpretations of critical features newly revealed by authors. The following points might be useful for the author to make further revisions.

      (1) The antennae were well illustrated in a couple of specimens, while it was described in a short sentence.

      Some more details of the changing article shape and overall length of antennae has been added to the description.

      (2) There are also imprecise descriptions of features.

      Measurements, dimensions and multiple figures are provided for many features in the text and the supplement includes more figures. In total, 11 figures are provided with details (photographs or measurements) of the material.

      (3) Ontogeny of the cephalon was not described.

      A sentence has been added to the description to note the changing width:length of the cephalon during ontogeny, with a reference to Figure 6.

      (3) The critical head element is the so called "ventral plate". How this element connects with the cephalic shield is not adequately revealed. The authors claimed that the suture is along the cephalic margin. However, the lateral margin of cephalon is not rounded but exhibit two notches (e.g. Fig 3C) . This gives an indication that the supposed ventral plates have a dorsal extension to fit the notches. Alternatively, the "ventral plate" can be interpreted as a small free cheek with a large ventral extension, providing evidence for librigenal hypothesis.

      As noted in the diagnosis for the genus, these notches are interpreted to accommodate the eye stalks. The homology of the ventral plates is discussed at length in the manuscript, and is the focus of the three sets of phylogenetic analyses performed.

      Reviewer #3 (Public Review):

      Summary:

      Well-illustrated new material is documented for Acanthomeridion, a formerly incompletely known Cambrian arthropod. The formerly known facial sutures are proposed be associated with ventral plates that the authors homologise with the free cheeks of trilobites (although also testing alternative homologies). An update of a published phylogenetic dataset permits reconsideration of whether dorsal ecdysial sutures have a single or multiple origins in trilobites and their relatives.

      Strengths:

      Documentation of an ontogenetic series makes a sound case that the proposed diagnostic characters of a second species of Acanthomeridion are variation within a single species. New microtomographic data shed light on appendage morphology that was not formerly known. The new data on ventral plates and their association with the ecdysial sutures are valuable in underpinning homologies with trilobites.

      I think the revision does a satisfactory job of reconciling the data and analyses with the conclusions drawn from them. Referee 1's valid concerns about whether a synonymy of Acanthomeridion anacanthus is justified have been addressed by the addition of a length/width scatterplot in Figure 6. Referee 2's doubts about homology between the librigenae of trilobites and ventral plates of Acanthomeridion have been taken on board by re-running the phylogenetic analyses with a coding for possible homology between the ventral plates and the doublure of olenelloid trilobites. The authors sensibly added more trilobite terminals to the matrix (including Olenellus) and did analyses with and without constraints for olenelloids being a grade at the base of Trilobita. My concerns about counting how many times dorsal sutures evolved on a consensus tree have been addressed (the authors now play it safe and say "multiple" rather than attempting to count them on a bushy topology). The treespace visualisation (Figure 9) is a really good addition to the revised paper.

      Weaknesses:

      The question of how many times dorsal ecdysial sutures evolved in Artiopoda was addressed by Hou et al (2017), who first documented the facial sutures of Acanthomeridion and optimised them onto a phylogeny to infer multiple origins, as well as in a paper led by the lead author in Cladistics in 2019. Du et al. (2019) presented a phylogeny based on an earlier version of the current dataset wherein they discussed how many times sutures evolved or were lost based on their presence in Zhiwenia/Protosutura, Acanthomeridion and Trilobita. The answer here is slightly different (because some topologies unite Acanthomeridion and trilobites). This paper is not a game-changer because these questions have been asked several times over the past seven years, but there are solid, worthy advances made here.

      I'd like to see some of the most significant figures from the Supplementary Information included in the main paper so they will be maximally accessed. The "stick-like" exopods are not best illustrated in the main paper; their best imagery is in Figure S1. Why not move that figure (or at least its non-redundant panels) as well as the reconstruction (Figure S7) to the main paper? The latter summarises the authors' interpretation that a large axe-shaped hypostome appears to be contiguous with ventral plates.

      We have moved these figures from the supplementary information to the main text, and renumbered figures accordingly. Fig S1 has now been split – panels a and b are in the main text (new Fig. 4), with the remainder staying as Fig S1. Fig S7 is now Fig. 8 in the main text.

      The specimens depict evidence for three pairs of post-antennal cephalic appendages but it's a bit hard to picture how they functioned if there's no room between the hypostome and ventral plates. Also, a comment is required on the reconstruction involving all cephalic appendages originating against/under the hypostome rather the first pair being paroral near the posterior end of the hypostome and the rest being post-hypostomal as in trilobites.

      A short comment has been added to the caption.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I have seen the extensive revision of the manuscript. The main point "Multiple origins of dorsal ecdysial sutures in atiopoans" is now partially supported by results presented by the authors. I am still unsatisfied with descriptions and interpretations of critical features newly revealed by authors. The following points might be useful for the author to make further revisions.

      (1) The antennae were well illustrated in a couple of specimens, while it was described in a short sentence.

      (2) There are also imprecise descriptions of features (see my annotations in submitted ms).

      (3) Ontogeny of the cephalon was not described.

      (3) The critical head element is the so called "vental plate". How this element connects with the cephalic shield is not adequately revealed. The authors claimed that the suture is along the cephalic margin. However, the lateral margin of cephalon is not rounded but exhibit two notches (e.g. Fig 3C) . This gives a indication that the supposed ventral plates have a dorsal extension to fit the notches. Alternatively, the "ventral plate" can be interpreted as a small free cheek with a large ventral extension, providing evidence for librigenal hypothesis.

      Reviewer #3 (Recommendations For The Authors):

      The references swap back and forth between journal titles being abbreviated or written out in full. Please standardise this to journal format rather than alternating between two different styles.

      Line 145: Perez-Peris et al. (2021) should be cited as the source for the Anacheirurus appendages.

      Added, thank you.

      Line 310: The El Albani et al (2024) paper on ellipsocephaloid appendages should be noted in connection with an A+4 (rather than A+3) head in trilobites.

      Added.

      Minor or trivial corrections:

      Line 51: move the three citations to follow "arthropods" rather than following "artiopodans", as none of these papers are specifically about Artiopoda.

      Changed thank you

      Caption to Figure 1 and line 100: Acanthomeridion appears in Figure 1 and in the text with no context. Please weave it into the text appropriately.

      Line 136: The data were...

      Corrected

      Line 164: upper case for Morphobank.

      Corrected

      Line 183: spelling of "Village" (not "Vallige").

      Corrected

      Line 197: I suggest using "articles" rather than "podomeres" for the antenna (as you did in line 232).

      Changed thank you

      Line 269: "gnathobasal spine (rather than "spin").

      Changed thank you

      Line 272: "Exopods" is used here but elsewhere "exopodites" is used.

      Exopodites is now used throughout

      Line 359: "can been seen" is awkward and, as evolutionary patterns are inferred rather than "seen", could be reworded as "... loss of the eye slit has been inferred...".

      Reworded as suggested

      Line 422 and 423: As two referees asked in the first round of review, delete "iconic" and "symbolic".

      Deleted as suggested

      Line 467: "librigena-like".

      Corrected

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #3:

      I appreciate the revisions made by the author which address all of my concerns.

      Nevertheless, I have some new questions when I read the paper again. These questions are not necessarily criticisms of the paper, which may reflect the gap in my understanding. Meanwhile, it also reflects the writing might be improved further.

      - Fig. 1:

      I understand that a critical assumption for generating the required result is that the oblique orientation has lower "energy" than the cardinal orientation (Fig. 1G). Meanwhile, I always have a concept that typically the energy is defined as the negative of log probability. If we take the log probability plotted in Fig. 1A, that will generate an energy landscape that is upside down compared with current Fig. 1G. How should I understand this discrepancy?

      As the reviewer pointed out, a higher prior distribution near cardinal orientations causes cardinal attraction in typical Bayesian models, which can correspond to lower energy around these orientations. Additionally, in the context of learning natural statistics, Hebbian plasticity in excitatory connections strengthens recurrent connections and drives attraction toward more prevalent stimuli within neural circuits.

      However, as demonstrated by Wei and Stocker (2015), Bayesian inference model can also produce cardinal repulsion when optimizing encoding efficiency. In our network, this efficient encoding is achieved through heterogeneous lateral connections and inhibitory Hebbian plasticity in the sensory module, resulting in lower energy near oblique orientations. Thus, the shape of prior distribution does not have a direct one-to-one correspondence with the bias pattern or the dynamic energy landscape. 

      - Fig. 3 and its corresponding text.

      I understand and agree the Fig. 3B&C that neurons near cardinal orientations are shaper and denser. But why the stimulus representation around cardinal orientations are sparser compared with the oblique orientation? Isn't more neurons around cardinal orientation implying a less sparser representation?

      Indeed, with sharper tuning curves, having more neurons can result in a sparser representation. Consider an extreme case where each orientation, discretized by 1°, is represented by only one active neuron with a tuning width of 1°. While this would require more neurons to represent overall stimuli compared to cases with wider tuning curves, each stimulus would be represented by fewer neurons, aligning with the traditional concept of sparse coding.

      However, in Fig. 3 and corresponding text, we did not measure the sparseness of active neurons for each orientation. Instead, we used the term ‘sparser representation’ to describe the increased distance between representations of different stimuli near the cardinal orientations. Although this increased distance can be consistent with the traditional concept of sparse coding, to avoid any confusion, we have revised the term ‘sparser representation’ to ‘more dispersed representation’ in the 3rd paragraph in pg. 5 and the 3rd paragraph in pg. 6.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This paper reports a number of somewhat disparate findings on a set of colorectal tumour and infiltrating T-cells. The main finding is a combined machine-learning tool which combines two previous state-of-the-art tools, MHC prediction, and T-cell binding prediction to predict immunogenicity. This is then applied to a small set of neoantigens and there is a small-scale validation of the prediciton at the end.

      Strengths:

      The prediction of immunogenic neoepitopes is an important and unresolved question.

      Weaknesses:

      The paper contains a lot of extraneous material not relevant to the main claim. Conversely, it lacks important detail on the major claim.

      (1) The analysis of T cell repertoire in Figure 2 seems irrelevant to the rest of the paper. As far as I could ascertain, this data is not used further.

      We appreciate the reviewer for their valuable feedback. We concur with the reviewer's observation that the analysis of the TCR repertoire in Figure 2 should be moved to the supplementary section. We have moved Figures 2B to 2F to Supplementary Figure 2.

      However, the analysis of TCR profiles is still presented in Figure 2, as it plays a pivotal role in the process of neoantigen selection. This is because the TCR profiles of eight (out of 28) patients were used for neoantigen prediction. We have added the following sentences to the results section to explain the importance of TCR profiling: “Furthermore, characterizing T cell receptors (TCRs) can complement efforts to predict immunogenicity.” (Results, Lines 311-312, Page 11)

      (2) The key claim of the paper rests on the performance of the ML algorithm combining NETMHC and pmtNET. In turn, this depends on the selection of peptides for training. I am unclear about how the negative peptides were selected. Are they peptides from the same databases as immunogenic petpides but randomised for MHC? It seems as though there will be a lot of overlap between the peptides used for testing the combined algorithm, and the peptides used for training MHCNet and pmtMHC. If this is so, and depending on the choice of negative peptides, it is surely expected that the tools perform better on immunogenic than on non-immunogenic peptides in Figure 3. I don't fully understand panel G, but there seems very little difference between the TCR ranking and the combined. Why does including the TCR ranking have such a deleterious effect on sensitivity?

      We thank the reviewer for their valuable feedback. We believe the reviewer implies 'MHCNet' as NetMHCpan and 'pmtMHC' as pMTnet tools. First, the negative peptides, which have been excluded from PRIME (1), were not randomized with MHC (HLA-I) but were randomized with TCR only. Secondly, the positive peptides selected for our combined algorithms are chosen from many databases such as 10X Genomics, McPAS, VDJdb, IEDB, and TBAdb, while MHCNet uses peptides from the IEDB database and pMTNet uses a totally different dataset from ours for training. Therefore, there is not much overlap between our training data and the training datasets for MHCNet and pMTNet. Thus, the better performance of our tool is not due to overlapping training datasets with these tools or the selection of negative peptides.

      To enhance the clarity of the dataset construction, we have added Supplementary Figure 1, which demonstrates the workflow of peptide collection and the random splitting of data to generate the discovery and validation datasets. Additionally, we have revised the following sentence: "To objectively train and evaluate the model, we separated the dataset mentioned above into two subsets: a discovery dataset (70%) and a validation dataset (30%). These subsets are mutually exclusive and do not overlap.” (Methods, lines 221-223, page 8).

      Initially, the "combine" label in Figure 3G was confusing and potentially misleading when compared to our subsequent approach using a combined machine learning model. In Figure 3G, the "combine" approach simply aggregates the pHLA and pHLA-TCR criteria, whereas our combined machine learning model employs a more sophisticated algorithm to integrate these criteria effectively. The combined analysis in Figure 3G utilizes a basic "AND" algorithm between pHLA and pHLA-TCR criteria, aiming for high sensitivity in HLA binding and high specificity. However, this approach demonstrated lower efficacy in practice, underscoring the necessity for a more refined integration method through machine learning. This was the key point we intended to convey with Figure 3G. To address this issue, we have revised Figure 3G to replace "combined" with "HLA percentile & TCR ranking" to clarify its purpose and minimize confusion.

      (3) The key validation of the model is Figure 5. In 4 patients, the authors report that 6 out 21 neo-antigen peptides give interferon responses > 2 fold above background. Using NETMHC alone (I presume the tool was used to rank peptides according to binding to the respective HLAs in each individual, but this is not clear), identified 2; using the combined tool identified 4. I don't think this is significant by any measure. I don't understand the score shown in panel E but I don't think it alters the underlying statistic.

      Acknowledging the limitations of our study's sample size, we proceeded to further validate our findings with four additional patients to acquire more data. The final results revealed that our combined model identified seven peptides eliciting interferon responses greater than a two-fold increase, compared to only three peptides identified by NetMHCpan (Figure 5)

      In conclusion, the paper demonstrates that combining MHCNET and pmtMHC results in a modest increase in the ability to discriminate 'immunogenic' from 'non-immunogenic' peptide; however, the strength of this claim is difficult to evaluate without more knowledge about the negative peptides. The experimental validation of this approach in the context of CRC is not convincing.

      Reviewer #2 (Public Review):

      Summary:

      This paper introduces a novel approach for improving personalized cancer immunotherapy by integrating TCR profiling with traditional pHLA binding predictions, addressing the need for more precise neoantigen CRC patients. By analyzing TCR repertoires from tumor-infiltrating lymphocytes and applying machine learning algorithms, the authors developed a predictive model that outperforms conventional methods in specificity and sensitivity. The validation of the model through ELISpot assays confirmed its potential in identifying more effective neoantigens, highlighting the significance of combining TCR and pHLA data for advancing personalized immunotherapy strategies.

      Strengths:

      (1) Comprehensive Patient Data Collection: The study meticulously collected and analyzed clinical data from 27 CRC patients, ensuring a robust foundation for research findings. The detailed documentation of patient demographics, cancer stages, and pathology information enhances the study's credibility and potential applicability to broader patient populations.

      (2) The use of machine learning classifiers (RF, LR, XGB) and the combination of pHLA and pHLA-TCR binding predictions significantly enhance the model's accuracy in identifying immunogenic neoantigens, as evidenced by the high AUC values and improved sensitivity, NPV, and PPV.

      (3) The use of experimental validation through ELISpot assays adds a practical dimension to the study, confirming the computational predictions with actual immune responses. The calculation of ranking coverage scores and the comparative analysis between the combined model and the conventional NetMHCpan method demonstrate the superior performance of the combined approach in accurately ranking immunogenic neoantigens.

      (4) The use of experimental validation through ELISpot assays adds a practical dimension to the study, confirming the computational predictions with actual immune responses.

      Weaknesses:

      (1) While multiple advanced tools and algorithms are used, the study could benefit from a more detailed explanation of the rationale behind algorithm choice and parameter settings, ensuring reproducibility and transparency.

      We thank the reviewer for their comment. We have revised the explanation regarding the rationale behind algorithm choice and parameter settings as follows: “We examined three machine learning algorithms - Logistic Regression (LR), Random Forest (RF), and Extreme Gradient Boosting (XGB) - for each feature type (pHLA binding, pHLA-TCR binding), as well as for combined features. Feature selection was tested using a k-fold cross-validation approach on the discovery dataset with 'k' set to 10-fold. This process splits the discovery dataset into 10 equal-sized folds, iteratively using 9 folds for training and 1 fold for validation. Model performance was evaluated using the ‘roc_auc’ (Receiver Operating Characteristic Area Under the Curve) metric, which measures the model's ability to distinguish between positive and negative peptides. The average of these scores provides a robust estimate of the model's performance and generalizability. The model with the highest ‘roc_auc’ average score, XGB, was chosen for all features.” (Method, lines 225-234, page 8).

      (2) While pHLA-TCR binding displayed higher specificity, its lower sensitivity compared to pHLA binding suggests a trade-off between the two measures. Optimizing the balance between sensitivity and specificity could be crucial for the practical application of these predictions in clinical settings.

      We appreciate the reviewer's suggestion. Due to the limited availability of patient blood samples and time constraints for validation, we have chosen to prioritize high specificity and positive predictive value to enhance the selection of neoantigens.

      (3) The experimental validation was performed on a limited number of patients (four), which might affect the generalizability of the findings. Increasing the number of patients for validation could provide a more comprehensive assessment of the model's performance.

      This has been addressed earlier. Here, we restate it as follows: Acknowledging the limitations of our study's sample size, we proceeded to further validate our findings with four additional patients to acquire more data. The final results revealed that our combined model identified seven peptides eliciting interferon responses greater than a two-fold increase, compared to only three peptides identified by NetMHCpan (Figure 5).

      Reviewer #3 (Public Review):

      Summary:

      This study presents a new approach of combining two measurements (pHLA binding and pHLA-TCR binding) in order to refine predictions of which patient mutations are likely presented to and recognized by the immune system. Improving such predictions would play an important role in making personalized anti-cancer vaccinations more effective.

      Strengths:

      The study combines data from pre-existing tools pVACseq and pMTNet and applies them to a CRC patient population, which the authors show may improve the chance of identifying immunogenic, cancer-derived neoepitopes. Making the datasets collected publicly available would expand beyond the current datasets that typically describe caucasian patients.

      Weaknesses:

      It is unclear whether the pNetMHCpan and pMTNet tools used by the authors are entirely independent, as they appear to have been trained on overlapping datasets, which may explain their similar scores. The pHLA-TCR score seems to be driving the effects, but this not discussed in detail.

      The HLA percentile from NetMHCpan and the TCR ranking from pMTNet are independent. NetMHCpan predicts the interaction between peptides and MHC class I, while pMTNet predicts the TCR binding specificity of class I MHCs and peptides.Additionally, we partitioned the dataset mentioned above into two subsets: a discovery dataset (70%) and a validation dataset (30%), ensuring no overlap between the training and testing datasets.

      To enhance the clarity of the dataset construction, we have added Supplementary Figure 1, which demonstrates the workflow of peptide collection and the random splitting of data to generate the discovery and validation datasets. Additionally, we have revised the following sentence: "To objectively train and evaluate the model, we separated the dataset mentioned above into two subsets: a discovery dataset (70%) and a validation dataset (30%). These subsets are mutually exclusive and do not overlap.” (Methods, lines 221-223, page 8). We also included the dataset construction workflow in Supplementary Figure 1.

      Due to sample constraints, the authors were only able to do a limited amount of experimental validation to support their model; this raises questions as to how generalizable the presented results are. It would be desirable to use statistical thresholds to justify cutoffs in ELISPOT data.

      We chose a cutoff of 2 for ELISPOT, following the recommendation of the study by Moodie et al. (2). The study provides standardized cutoffs for defining positive responses in ELISPOT assays. It presents revised criteria based on a comprehensive analysis of data from multiple studies, aiming to improve the precision and consistency of immune response measurements across various applications.

      Some of the TCR repertoire metrics presented in Figure 2 are incorrectly described as independent variables and do not meaningfully contribute to the paper. The TCR repertoires may have benefitted from deeper sequencing coverage, as many TCRs appear to be supported only by a single read.

      We appreciate the reviewer’s feedback. We have moved Figures 2B through 2F to Supplementary Figure 2. We agree with the reviewer that deeper sequencing coverage could potentially benefit the repertoires. However, based on our current sequencing depth, we have observed that many of our samples (14 out of 28) have reached sufficient saturation, as indicated by Figure 2C. The TCR clones selected in our studies are unique molecular identifier (UMI)-collapsed reads, each representing at least three raw reads sharing the same UMI. This approach ensures that the data is robust despite the variability. It is important to note that Tumor-Infiltrating Lymphocytes (TILs) differ across samples, resulting in non-uniform sequencing coverage among them.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      (1) Please open source the raw and processed data, code, and software output (NetMHCpan, pMTnet), which are important to verify the results.

      NetMHCpan and pMTNet are publicly available software tools (3, 4). In our GitHub repository, we have included links to the GitHub repositories for NetMHCpan and pMTNet (https://github.com/QuynhPham1220/Combined-model).

      (2) Comparison with more state-of-the-art neoantigen prediction models could provide a more comprehensive view of the combined model's performance relative to the current field.

      To further evaluate our model, we gathered additional public data and assessed its effectiveness in comparison to other models. We utilized immunogenic peptides from databases such as NEPdb (5), NeoPeptide (6), dbPepneo (7), Tantigen (8), and TSNAdb (9), ensuring there was no overlap with the datasets used for training and validation. For non-immunogenic peptides, we used data from 10X Genomics Chromium Single Cell Immune Profiling (10-13).The findings indicate that the combined model from pMTNet and NetMHCpan outperforms NetTCR tool (14). To address the reviewer's inquiry, we have incorporated these results in Supplementary Table 6.

      (3) While the combined model shows a positive overall rank coverage score, indicating improved ranking accuracy, the scores are relatively low. Further refinement of the model or the inclusion of additional predictive features might enhance the ranking accuracy.

      We appreciate the reviewer’s suggestion. The RankCoverageScore provides an objective evaluation of the rank results derived from the final peptide list generated by the two tools. The combined model achieved a higher RankCoverageScore than pMTNet, indicating its superior ability to identify immunogenic peptides compared to existing in silico tools. In order to provide a more comprehensive assessment, we included an additional four validated samples to recalculate the rank coverage score. The results demonstrate a notable difference between NetMHCpan and the Combined model (-0.37 and 0.04, respectively). We have incorporated these findings into Supplementary Figure 6 to address the reviewer's question. Additionally, we have modified Figure 5E to present a simplified demonstration of the superior performance of the combined model compared to NetMHCpan.

      (4) Collect more public data and fine-tune the model. Then you will get a SOTA model for neoantigen selection. I strongly recommend you write Python scripts and open source.

      We thank the reviewer for their feedback. We have made the raw and processed data, as well as the model, available on GitHub. Additionally, we have gathered more public data and conducted evaluations to assess its efficiency compared to other methods. You can find the repository here: https://github.com/QuynhPham1220/Combined-model.

      Reviewer #3 (Recommendations For The Authors):

      The Methods section seems good, though HLA calling is more accurate using arcasHLA than OptiType. This would be difficult to correct as OptiType is integrated into pVACtools.

      We chose Optitype for its exceptional accuracy, surpassing 99%, in identifying HLA-I alleles from RNA-Seq data. This decision was informed by a recent extensive benchmarking study that evaluated its performance against "gold-standard" HLA genotyping data, as described in the study by Li et al.(15). Furthermore, we have tested two tools using the same RNA-Seq data from FFPE samples. The allele calling accuracy of Optitype was found to be superior to that of Acras-HLA. To address the reviewer's question, we have included these results in Supplementary Table 2, along with the reference to this decision (Method, line 200, page 07).

      I am not sufficiently expert in machine learning to assess this part of the methods.<br /> TCR beta repertoire analysis of biopsy is highly variable; though my expertise lies largely in sequencing using the 10X genomics platform, typically one sees multiple RNAs per cell. Seeing the majority of TCRs supported by only a single read suggests either problems with RNA capture (particularly in this case where the recovered RNA was split to allow both RNAseq and targeted TCR seq) or that the TCR library was not sequenced deeply enough. I'd like to have seen rarefaction plots of TCR repertoire diversity vs the number of reads to ensure that sufficiently deep sequencing was performed.

      We appreciate the suggestions provided by the reviewer. We agree that deeper sequencing coverage could potentially benefit the repertoires. However, based on our current sequencing depth, we have observed that many of our samples (14 out of 28) have reached sufficient saturation, as indicated by Figure 2C. In addition, the TCR clones selected in our studies are unique molecular identifier (UMI)-collapsed reads, each representing at least three raw reads sharing the same UMI. This approach ensures that the data is robust despite variability. It is important to note that Tumor-Infiltrating Lymphocytes (TILs) differ across samples, resulting in non-uniform sequencing coverage among them. We have already added the rarefaction plots of TCR repertoire diversity versus the number of reads in Figure 2C. These have been added to the main text (lines 329-335).

      In order to support the authors' conclusions that MSI-H tumors have fewer TCR clonotypes than MSS tumors (Figure S2a) I would have liked to see Figure 2a annotated so that it was easy to distinguish which patient was in which group, as well as the rarefaction plots suggested above, to be sure that the difference represented a real difference between samples and not technical variance (which might occur due to only 4 samples being in the MSI-H group).

      We thank the reviewer for their recommendation. Indeed, it's worth noting that the number of MSI-H tumors is fewer than the MSS groups, which is consistent with the distribution observed in colorectal cancer, typically around 15%. This distribution pattern aligns with findings from several previous studies, as highlighted in these studies (16, 17). To provide further clarification on this point, we have included rarefaction plots illustrating TCR repertoire diversity versus the number of reads in Supplementary Figure 3 (line 339). Additionally, MSI-H and MSS samples have been appropriately labeled for clarity.

      The authors write: "in accordance with prior investigations, we identified an inverse relationship between TCR clonality and the Shannon index (Supplementary Figure S1)" >> Shannon index is measure of TCR clonality, not an independent variable. The authors may have meant TCR repertoire richness (the absolute number of TCRs), and the Shannon index (a measure of how many unique TCRs are present in the index).

      We thank the reviewer for their comment regarding the correlation between the number of TCRs and the Shannon index. We have revised the figure to illustrate the relationship between the number of TCRs and the Shannon index, and we have relocated it to Figure 2B.

      The authors continue: "As anticipated, we identified only 58 distinct V (Figure 2C) and 13 distinct J segments (Figure 2D), that collectively generated 184,396 clones across the 27 tumor tissue samples, underscoring the conservation of these segments (Figure 2C & D)" >> it is not clear to me what point the authors are making: it is well known that TCR V and J genes are largely shared between Caucasian populations (https://pubmed.ncbi.nlm.nih.gov/10810226/), and though IMGT lists additional forms of these genes, many are quite rare and are typically not included in the reference sequences used by repertoire analysis software. I would clarify the language in this section to avoid the impression that patient repertoires are only using a restricted set of J genes.

      We thank for the reviewer’s feedback. We have revised the sentence as follows: " As anticipated, we identified 59 distinct V segments (Supplementary Figure 2C) and 13 distinct J segments (Supplementary Figure 2D), collectively sharing 185,627 clones across the 28 tumor tissue samples. This underscores the conservation of these segments (Supplementary Figure 2C & D)” (Result, lines 354-356, page 12)

      As a result I would suggest moving Figure 2 with the exception of 2A into the supplementals - I would have been more interested in a plot showing the distribution of TCRs by frequency, i.e. how what proportion of clones are hyperexpanded, moderately expanded etc. This would be a better measure of the likely immune responses.

      We thank the reviewer for their comment. With the exception of Figure 2A, we have relocated Figures 2B through 2F to Supplementary Figure 2.

      The authors write "To accomplish this, we gathered HLA and TCRβ sequences from established datasets containing immunogenic and non-immunogenic peptides (Supplementary Table 3)" >> The authors mean to refer to Table S4.

      We appreciate the reviewer's feedback. Here's the revised sentence: "To accomplish this, we gathered HLA and TCRβ sequences from established datasets containing immunogenic and non-immunogenic pHLA-TCR complexes (Supplementary Table 5)” (lines 368-370).

      The authors write "As anticipated, our analysis revealed a significantly higher prevalence of peptides with robust HLA binding (percentile rank < 2%) among immunogenic peptides in contrast to their non-immunogenic counterparts (Figure 3A & B, p< 0.00001)" >> this is not surprising, as tools such as NetMHCpan are trained on databases of immunogenic peptides, and thus it is likely that these aren't independent measures (in https://academic.oup.com/nar/article/48/W1/W449/5837056 the authors state that "The training data have been vastly extended by accumulating MHC BA and EL data from the public domain. In particular, EL data were extended to include MA data"). In the pMTNet paper it is stated that pMNet encoded pMHC information using "the exact data that were used to train the netMHCpan model" >> While I am not sufficiently expert to review details on machine learning training models, it would seem that the pHLA scores from NetMHCpan and pMTNet may not be independent, which would explain the concordance in scores that the authors describe in Figures 3B and 3D. I would invite the authors to comment on this.

      The HLA percentiles from NetMHCpan and TCR rankings from pMTNet are independent. NetMHCpan predicts the interaction between peptides and MHC class I, while pMTNet predicts the TCR binding specificity of class I MHCs and peptides. NetMHCpan is trained to predict peptide-MHC class I interactions by integrating binding affinity and MS eluted ligand data, using a second output neuron in the NNAlign approach. This setup produces scores for both binding affinity and ligand elution. In contrast, pMTNet predicts TCR binding specificity of class I pMHCs through three steps:

      (1) Training a numeric embedding of pMHCs (class I only) to numerically represent protein sequences of antigens and MHCs.

      (2) Training an embedding of TCR sequences using stacked auto-encoders to numerically encode TCR sequence text strings.

      (3) Creating a deep neural network combining these two embeddings to integrate knowledge from TCRs, antigenic peptide sequences, and MHC alleles. Fine-tuning is employed to finalize the prediction model for TCR-pMHC pairing.

      Therefore, pHLA scores from NetMHCpan and pMTNet are independent. Furthermore, Figures 3B and 3D do not show concordance in scores, as there was no equivalence in the percentage of immunogenic and non-immunogenic peptides in the two groups (≥2 HLA percentile and ≥2 TCR percentile).

      Many of the authors of this paper were also authors of the epiTCR paper, would this not have been a better choice of tool for assessing pHLA-TCR binding than pMTNet?

      When we started this project, EpiTCR had not been completed. Therefore, we chose pMTNet, which had demonstrated good performance and high accuracy at that time. The validated performance of EpiTCR is an ongoing project that will implement immunogenic assays (ELISpot and single-cell sequencing) to assess the prediction and ranking of neoantigens. This study is also mentioned in the discussion: "Moreover, to improve the accuracy and effectiveness of the machine learning model in predicting and ranking neoantigens, we have developed an in-house tool called EpiTCR. This tool will utilize immunogenic assays, such as ELISpot and single-cell sequencing, for validation." (lines 532-535).

      In Figure 3G it would appear that the pHLA-TCR score is driving the interaction, could the authors comment on this?

      The authors sincerely appreciate the reviewer for their valuable feedback. Initially, the "combine" label in Figure 3G was confusing and potentially misleading when compared to our subsequent approach using a combined machine learning model. In Figure 3G, the "combine" approach simply aggregates the pHLA and pHLA-TCR criteria, whereas our combined machine learning model employs a more sophisticated algorithm to integrate these criteria effectively.

      The combined analysis in Figure 3G utilizes a basic "AND" algorithm between pHLA and pHLA-TCR criteria, aiming for high sensitivity in HLA binding and high specificity. However, this approach demonstrated lower efficacy in practice, underscoring the necessity for a more refined integration method through machine learning. This was the key point we intended to convey with Figure 3G. To address this issue, we have revised Figure 3G to replace "combined" with "HLA percentile & TCR ranking" to clarify its purpose and minimize confusion.

      In Figure 4A I would invite the authors to comment on how they chose the sample sizes they did for the discovery and validation datasets: the numbers seem rather random. I would question whether a training dataset in which 20% of the peptides are immunogenic accurately represents the case in patients, where I believe immunogenic peptides are less frequent (as in Figure 5).

      We aimed to maximize the number of experimentally validated immunogenic peptides, including those from viruses, with only a small percentage from tumors available for training. This limitation is inherent in the field. However, our ultimate objective is to develop a tool capable of accurately predicting peptide immunogenicity irrespective of their source. Therefore, the current percentage of immunogenic peptides may not accurately reflect real-world patient cases, but this is not crucial to our development goals.

      For Figure 5C I would invite the authors to consider adding a statistical test to justify the cutoff at 2fold enrichments.

      Thank you for your feedback. Instead of conducting a statistical test, we have implemented standardized cutoffs as defined in the cited study (2). This research introduces refined criteria for identifying positive responses in ELISPOT assays through a comprehensive analysis of data from multiple studies. These criteria aim to improve the accuracy and consistency of immune response measurements across various applications. The reference to this study has been properly incorporated into the manuscript (Method, line 281, page 10).

      Minor points:

      "paired white blood cells" >> use "paired Peripheral Blood Mononuclear Cells".

      We appreciate the reviewer for the feedback. We agree with the reviewer's observation. The sentence has been revised as follows: "Initially, DNA sequencing of tumor tissues and paired Peripheral Blood Mononuclear Cells identifies cancer-associated genomic mutations. RNA sequencing then determines the patient's HLA-I allele profile and the gene expression levels of mutated genes." (Introduction, lines 55-58, page 2).

      "while RNA sequencing determines the patient's HLA-I allele profile and gene expression levels of mutated genes." >> RNA sequencing covers both the mutant and reference form of the gene, allowing assessment of variant allele frequency.

      "the current approach's impact on patient outcomes remains limited due to the scarcity of effective immunogenic neoantigens identified for each patient" >> Some clearer language here would have been preferred as different tumor types have different mutational loads

      We thank the reviewer for their valuable feedback. We agree with the reviewer's observation. The passage has been revised accordingly: “The current approach's impact on patient outcomes remains limited due to the scarcity of mutations in cancer patients that lead to effective immunogenic neoantigens.” (Introduction, lines 62-64, page 3).

      References

      (1) J. Schmidt et al., Prediction of neo-epitope immunogenicity reveals TCR recognition determinants and provides insight into immunoediting. Cell Rep Med 2, 100194 (2021).

      (2) Z. Moodie et al., Response definition criteria for ELISPOT assays revisited. Cancer Immunol Immunother 59, 1489-1501 (2010).

      (3) V. Jurtz et al., NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data. J Immunol 199, 3360-3368 (2017).

      (4) T. Lu et al., Deep learning-based prediction of the T cell receptor-antigen binding specificity. Nat Mach Intell 3, 864-875 (2021).

      (5) J. Xia et al., NEPdb: A Database of T-Cell Experimentally-Validated Neoantigens and Pan-Cancer Predicted Neoepitopes for Cancer Immunotherapy. Front Immunol 12, 644637 (2021).

      (6) W. J. Zhou et al., NeoPeptide: an immunoinformatic database of T-cell-defined neoantigens. Database (Oxford) 2019 (2019).

      (7) X. Tan et al., dbPepNeo: a manually curated database for human tumor neoantigen peptides. Database (Oxford) 2020 (2020).

      (8) G. Zhang, L. Chitkushev, L. R. Olsen, D. B. Keskin, V. Brusic, TANTIGEN 2.0: a knowledge base of tumor T cell antigens and epitopes. BMC Bioinformatics 22, 40 (2021).

      (9) J. Wu et al., TSNAdb: A Database for Tumor-specific Neoantigens from Immunogenomics Data Analysis. Genomics Proteomics Bioinformatics 16, 276-282 (2018).

      (10) https://www.10xgenomics.com/resources/datasets/cd-8-plus-t-cells-of-healthy-donor-1-1-standard-3-0-2.

      (11) https://www.10xgenomics.com/resources/datasets/cd-8-plus-t-cells-of-healthy-donor-2-1-standard-3-0-2.

      (12) https://www.10xgenomics.com/resources/datasets/cd-8-plus-t-cells-of-healthy-donor-3-1-standard-3-0-2.

      (13) https://www.10xgenomics.com/resources/datasets/cd-8-plus-t-cells-of-healthy-donor-4-1-standard-3-0-2.

      (14) A. Montemurro et al., NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRalpha and beta sequence data. Commun Biol 4, 1060 (2021).

      (15) G. Li et al., Splicing neoantigen discovery with SNAF reveals shared targets for cancer immunotherapy. Sci Transl Med 16, eade2886 (2024).

      (16) Z. Gatalica, S. Vranic, J. Xiu, J. Swensen, S. Reddy, High microsatellite instability (MSI-H) colorectal carcinoma: a brief review of predictive biomarkers in the era of personalized medicine. Fam Cancer 15, 405-412 (2016).

      (17) N. Mulet-Margalef et al., Challenges and Therapeutic Opportunities in the dMMR/MSI-H Colorectal Cancer Landscape. Cancers (Basel) 15 (2023).

    1. Author response:

      The following is the authors’ response to the original reviews.

      We would like to thank the reviewers and editor for their helpful comments and suggestions. In response, we have revised the manuscript in two main ways:

      (1) To address the comments about rearranging figures and tables, we added a new Figure 3 that summarizes neurotransmitter assignments across all neuron classes. Our rationale for this change is detailed below.

      (2) To address the comment on clarifying neurotransmitter synthesis versus uptake, we analyzed two additional reporter alleles that tag the monoamine uptake transporters for 5-HT and potentially tyramine. These results are now presented in a new Figure 8 and corresponding sections in the manuscript. Related tables have been updated to include this expression data. Two more authors have been added due to their contributions to these experiments.

      For more detailed changes, please see our responses to the specific reviewer's comments as well as the revised manuscript.

      Public Reviews:

      Reviewer #1 (Public Review): 

      Wang and colleagues conducted a study to determine the neurotransmitter identity of all neurons in C. elegans hermaphrodites and males. They used CRISPR technology to introduce fluorescent gene expression reporters into the genomic loci of NT pathway genes. This approach is expected to better reflect in vivo gene expression compared to other methods like promoter- or fosmid-based transgenes, or available scRNA datasets. The study presents several noteworthy findings, including sexual dimorphisms, patterns of NT co-transmission, neuronal classes that likely use NTs without direct synthesis, and potential identification of unconventional NTs (e.g. betaine releasing neurons). The data is well-described and critically discussed, including a comparison with alternative methods. Although many of the observations and proposals have been previously discussed by the Hobert lab, the current study is particularly valuable due to its comprehensiveness. This NT atlas is the most complete and comprehensive of any nervous system that I am aware of, making it an extremely useful tool for the community. 

      Reviewer #2 (Public Review):

      Summary: 

      Together with the known anatomical connectivity of C. elegans, a neurotransmitter atlas paves the way toward a functional connectivity map. This study refines the expression patterns of key genes for neurotransmission by analyzing the expression patterns from CRISPR-knocked-in GFP reporter strains using the color-coded Neuropal strain to identify neurons. Along with data from previous scRNA sequencing and other reporter strains, examining these expression patterns enhances our understanding of neurotransmitter identity for each neuron in hermaphrodites and the male nervous system. Beyond the known neurotransmitters (GABA, Acetylcholine, Glutamate, dopamine, serotonin, tyramine, octopamine), the atlas also identifies neurons likely using betaine and suggests sets of neurons employing new unknown monoaminergic transmission, or using exclusively peptidergic transmission. 

      Strengths: 

      The use of CRISPR reporter alleles and of the Neuropal strain to assign neurotransmitter usage to each neuron is much more rigorous than previous analysis and reveals intriguing differences between scRNA seq, fosmid reporter, and CRISPR knock-in approaches. Among other mechanisms, these differences between approaches could be attributed to 3'UTR regulatory mechanisms for scRNA vs. knockin or titration of rate-limited negative regulatory mechanisms for fosmid vs. knockin. It would be interesting to discuss this and highlight the occurrences of these potential phenomena for future studies.  

      We recognize that readers of this study may be interested in understanding the differences between the three approaches. Therefore, in the Introduction, we addressed the potential risk of overexpression artifacts associated with multicopy transgenes, such as fosmid-based reporters, which can affect rate-limiting negative regulatory mechanisms. Additionally, in the Discussion, we included a section titled 'Comparing approaches and caveats of expression pattern analysis' to further explore these comparative methods and their associated nuances.

      Weaknesses: 

      For GABAergic transmission, one shortcoming arises from the lack of improved expression pattern by a knockin reporter strain for the GABA recapture symporter snf-11. In its absence, it is difficult to make a final conclusion on GABA recapture vs GABA clearance for all neurons expressing the vesicular GABA transporter neurons (unc-47+) but not expressing the GAD/UNC-25 gene e.g. SIA or R2A neurons. At minima, a comparison of the scRNA seq predictions versus the snf-11 fosmid reporter strain expression pattern would help to better judge the proposed role of each neuron in GABA clearance or recycling. 

      The snf-11 fosmid-based reporter data shows very good overlap with scRNA seq predictions (now included in Supp. Table S1). 

      But there are two much stronger reasons why we did not seek to further the analysis of expression of the snf-11 GABA uptaker:

      (1) Due to available anti-GABA staining data, we do know which neurons have the potential to take up GABA (via SNF-11).

      (2) Focusing on SNF-11 function rather than expression, we can ask which neurons lose anti-GABA staining in snf-11 mutants.

      Both of these types of analyses have been done in an earlier study from our lab (Gendrel et al., 2016, PMID 27740909), which, among other things, investigated GABA uptake mechanisms via SNF-11. Apart from analyzing the expression of a fosmid-based snf-11 reporter, we immunostained worms for GABA in both snf-11 mutant and wild type backgrounds (results summarized in Tables 1 and 2 of Gendrel et al.). Of the neurons that typically stain for GABA (Table 1, Gendrel et al.), two neuron classes (ALA and AVF) lost the staining in snf-11 mutants, suggesting that these neurons likely uptake GABA via SNF-11. Importantly, one of the neurons the reviewer mentioned, R2A, stains for GABA in both wild type and snf-11 mutants, indicating that it likely does not uptake GABA via SNF-11. The other neuron mentioned, SIA, does not stain for GABA in wild type (Table 2, Gendrel et al.), hence not a GABA uptake neuron. In cases like SIA and other neurons, where a neuron does not express unc-25 but does express unc-47 reporters (either fosmid or CRISPR reporter alleles), we speculate that UNC-47 transport another neurotransmitter.

      Considering the complexities of different tagging approaches, like T2A-GFP and SL2-GFP cassettes, in capturing post-translational and 3'UTR regulation is important. The current formulation is simplistic. e.g. after SL2 trans-splicing the GFP RNA lacks the 5' regulatory elements, T2A-GFP self-cleavage has its own issues, and the his-44-GFP reporter protein does certainly have a different post-translational life than vesicular transporters or cytoplasmic enzymes. 

      Yes, agreed, these points are mentioned in the Introduction and discussed in "Comparing approaches and caveats of expression pattern analysis" in the Discussion.

      Do all splicing variants of neurotransmitter-related genes translate into functional proteins? The possibility that some neurons express a non-functional splice variant, leading to his-74-GFP reporter expression without functional neurotransmitter-related protein production is not addressed. 

      We thank the reviewer for bringing up this really interesting point, which we had not considered. First and foremost, with the exception of unc-25 (discussed in the next point), for all other genes that produce multiple splice forms, we made sure to append our tag (at 5’ or 3’ end) such that the expression of all splice forms is captured. The reviewer raises the interesting point that in an alternative splicing scenario, some of the cells that express the primary transcript may “switch” to an inactive form. While we cannot exclude this possibility, we have confirmed by sequence analysis in WormBase that in five of the six cases where there is alternative splicing, the alternatively spliced exon lies outside the conserved, functionally relevant (enzymatic or structural) domain. In one case, unc-25, a shorter isoform is produced that does cut into the functionally relevant domain; however, since all unc-25 reporter allele expression cells are also staining positive for GABA, this may not be an issue. 

      Also, one tagged splice variant of unc-25 is expected to fail to produce a GFP reporter, can this cause trouble? 

      Yes, there is indeed a third splice variant of unc-25 with an alternative C-terminus. To address potential expression of this isoform, we CRISPR-engineered another reporter, unc-25(ot1536[unc-25b.1::t2a::gfp::h2b]), in which the inserted t2a::gfp::h2b sequences are fused to the C-terminus of the alternative splice form, but we did not observe any expression of this reporter. Now included in the manuscript.

      Reviewer #3 (Public Review): 

      Summary: 

      In this paper, Wang et al. provide the most comprehensive description and comparison of the expression of the different genes required to synthesize, transport, and recycle the most common neurotransmitters (Glutamate, Acetylcholine, GABA, Serotonin, Dopamine, Octopamine, and Tyramine) used by hermaphrodite and male C. elegans. This paper will be a seminal reference in the field. Building and contrasting observations from previous studies using fosmid, multicopy reporters, and single-cell sequencing, they now describe CRISPR/Cas-9-engineered reporter strains that, in combination with the multicolor pan-neuronal labeling of all C. elegans neurons (NeuroPAL), allows rigorous elucidation of neurotransmitter expression patterns. These novel reporters also illuminate previously unappreciated aspects of neurotransmitter biology in C. elegans, including sexual dimorphism of expression patterns, cotransmission, and the elucidation of cell-specific pathways that might represent new forms of neurotransmission. 

      Strengths: 

      The authors set out to establish neurotransmitter identities in C. elegans males and hermaphrodites via varying techniques, including integration of previous studies, examination of expression patterns, and generation of endogenous CRISPR-labeled alleles. Their study is comprehensive, detailed, and rigorous, and achieves the aims. It is an excellent reference for the field, particularly those interested in biosynthetic pathways of neurotransmission and their distribution in vivo, in neuronal and non-neuronal cells. 

      Weaknesses: 

      No weaknesses were noted. The authors do a great job linking their characterizations with other studies and techniques, giving credence to their findings. As the authors note, there are sexually dimorphic differences across animals and varying expression patterns of enzymes. While it is unlikely there will be huge differences in the reported patterns across individual animals, it is possible that these expression patterns could vary developmentally, or based on physiological or environmental conditions. It is unclear from the study how many animals were imaged for each condition, and if the authors noted changes across individuals during development (could be further acknowledged in the discussion?)  

      We have updated the Methods section to specify the number of animals used for imaging. We agree with the reviewer that documenting the developmental dynamics of neurotransmitter expression would be interesting. However, except for one gene (tph-1, Fig. S2), we did not analyze the expression during different developmental stages for most genes in this study. Following the reviewer's suggestion, we have included this as a potential future direction in "Conclusions" at the end of the revised manuscript.

      Recommendations for the authors:

      After the consultation session, a common suggestion from the reviewers is to bring the tables more upfront, perhaps even in the form of legible main Figures and in alphabetical order of neurons; since we believe that the study will be in the long-term often used for these data; while the Figures with fluorescent expression patterns could be moved to the supplemental information. 

      We appreciate the reviewers' and editor's acknowledgment of the tables' possibly frequent usage by the field. We have considered carefully how to order the data presentation. We prefer to keep most of the fluorescent figures in the main text because they convey important subtleties that we want the reader to be aware of.

      To address the suggestions to bring key data more upfront, we have added an entirely new figure (Figure 3) before the ensuing data figures that summarized expression patterns of the fluorescent reporters. This new figure (A) summarizes the neurotransmitter use for all neuron classes and (B) illustrates this information within worm schematics, showing the position of neurons in the whole worm. This figure serves as a good overview of neurotransmitter assignments but also specifically refers to the more extensive data and supplementary tables with detailed notes. We believe this solution effectively balances the need for comprehensive information and ease of reference.

      Reviewer #1 (Recommendations for The Authors):

      Suggestions: 

      (1) The study contains up to 10 Figures with gene expression patterns; however, I believe the community will use this paper mostly in the future for its summarizing tables. I wonder if it would be more useful to edit the tables and move them to the main figures while most fluorescent reporter images could be moved to the supplementary part. 

      Yes, as mentioned above, we made new summary table & schematic upfront. We do prefer to keep primary data in main figure body. Please see above (Public Review & Response).

      (2) In the section titled 'Neurotransmitter Synthesis versus Uptake', the author's wording could be more careful. The data rather suggests functions for individual neuronal classes, such as clearance neurons or signaling neurons. However, these functions remain hypotheses until further detailed studies are conducted to test them. 

      These are fair points. We have made several improvements: 

      (1) In the referenced section, we added a sentence at the end of the paragraph on betaine to suggest the importance of future functional studies.

      (2) We analyzed reporter allele expression for two additional genes: the known uptake transporter for 5-HT (mod-5, reporter allele vlc47) and the predicted uptake transporter for tyramine (oct-1, reporter allele syb8870). The results from these experiments are presented in the new Figure 8 and discussed in Results and Discussion correspondingly. We also collaborated with Curtis Loer, who conducted anti-5-HT staining in wild type and mod-5 mutant animals (results shown in Figure 12). These experiments have enhanced our understanding of 5-HT uptake mechanisms and potential tyramine uptake mechanisms.

      (3) At the end of the Conclusions, we emphasized the need for future detailed studies to test the functions of neurotransmitter synthesis and uptake.

      (3) Page 21; add to the discussion: neurons could use mainly electrical synapses for communication. Especially for RMG neurons, this might be the case (in addition to neuropeptide communication). 

      “Main usage” is a difficult term to use. If there were neurons that are clearly devoid of any form of synaptic vesicle (small or DCV; note that RMG has plenty of DCVs), but show robust and reproducible electrical synapses, we would agree that such neurons could primarily be a “coupling” neuron. But this call is very hard to make for any C. elegans neuron (RMG included) and hence we prefer to not add further to an already quite long Discussion section.

      (4) Page 23: I believe that multi-copy promoter-based transgenes (despite array suppression mechanisms) could be potentially more sensitive than single-copy insertion of fluorescent reporters. In our lab, we observed this a couple of times. This could be discussed. 

      We discuss this in "Comparing approaches and caveats of expression pattern analysis" in the Discussion.

      We have also added a third possibility (i.e. technical issues related to neuron-ID) in the revised manuscript.   

      Reviewer #2 (Recommendations For The Authors): 

      Comment during consultation session: As for my feedback on the lack of an SNF-11 reporter strain, exercising more caution in their conclusions would suffice for me. Other comments are simple edits/discussion.  

      Please see above.  

      Several neurotransmitter symporters exist in the C. elegans genome, does any express specifically in the "orphan" UNC-47+ neurons? 

      Yes, good point, we considered this possibility, but of the >10 SLC6-family of neurotransmitter reporters, only the classic, de-orphanized ones that we discuss here in the paper show robust scRNA signals (as discussed in the paper) and none of those give clues about the orphan unc-47(+) neurons.

      Based on UNC-47+ expression the article suggests a "Novel inhibitory neurotransmitter". Why would any new neurotransmitter using UNC-47 be necessarily inhibitory? The presence of one potential glycine-gated anion channel and one GPCR in C. elegans genome sounds poor evidence to suggest a sign of glycine or b-alanine transmission. 

      Yes, agreed, it does not need to be inhibitory. Fixed in Results and Discussion. 

      To help readers the expression of the knocked in GFP in neurons should not be reported as binary in table S1 which leads to a feeling of strong discrepancy between scRNA seq and CRISPR GFP, which is not the case.  

      There might be some misunderstanding regarding the coloring in this table. To clarify, the green-filled Excel cells denote the expression of reporters utilized in prior studies, rather than the CRISPR reporter alleles. Expression of the CRISPR alleles is instead indicated on the left side of the neuron names, marked as "CRISPR+" in green font. For signifying absence of expression, we used "no CRISPR" in red font in the first submission. We have now changed it into "CRISPR-" for greater clarity.

      The variable expression of reporter GFP between individuals for the same neuron is intriguing. It is unclear if this is observed only for dim neurons or can be more of an ON/OFF expression. 

      Variability only occurs for dim expression. We have now clarified this point in Discussion, "Comparing approaches and caveats of expression pattern analysis".

      The multiple occurrences of co-transmission, especially in male neurons, are interesting. It will be interesting in the future to establish whether the neurotransmitters are synaptically segregated or coreleased. As the section on sexual dimorphism of neurotransmitter usage does not discuss novel information coming from this study, it is not very necessary. 

      Agreed. We added this perspective to the Discussion, "Co-transmission of multiple neurotransmitters".  

      In the abstract, dopamine is missing in the main known transmitter.  

      Fixed. Thanks for spotting this.

      Reviewer #3 (Recommendations For The Authors): 

      Great article. Minor suggestions to strengthen presentation: 

      Figure 1B is hard to interpret. There could be more intuitive ways of representing the data and the methodologies that support a given expression pattern. Neurons should also be reordered by alphabetical order rather than expression levels to facilitate finding them.  

      We considered alternative ways of presenting this data, but, regrettably, did not come up with a better approach. To clarify, the primary focus of Fig. 1B is to compare expression of previously reported reporters and scRNA data, which was quite literally the initial impetus for our analysis, i.e. we noted strong scRNA signals that had not previously been supported by transgenic reporter data. For a comprehensive version of the table that includes more details on the expression of CRISPR reporter alleles, please refer to Table S1, which we referenced in the figure legend.   

      GFP-only channel images in Figures 3, 4, 5, and 9 sometimes show dim signals that the authors are highlighting as new findings. We recommend using the inverted grayscale version of that channel since the contrast of dim signals is more noticeable to the human eye rather than when the image is colorized. 

      Good point, we implemented these suggestions in the figures the reviewer mentioned, now re-numbered Figures 4, 5, 6, and 12. For Figure 6 (tph-1, bas-1, and cat-1 expression in hermaphrodites), we used a new cat-1 head image to reflect the newly identified ASI and AVL expression that wasn’t readily visible in the original projection used in the earlier version of this manuscript. We also added grayscale images in Figure 13 to reflect dim tbh-1 expression in IL2 neurons more clearly.

      A plan to integrate this new information into WormAtlas. The C. elegans community is characterized by the open sharing of information on platforms that are user-friendly and accessible. Ideally, the new information would not just 'erase' what was observed before but will describe the new observations and will let the community reach their own conclusions since there is no perfect method and even these CRISPR/Cas9 reporter strains are only proxy for gene expression that subject to post-transcriptional regulation since they depend on T2A and SL2 sequences. 

      We completely agree with the reviewer’s suggestion. We will coordinate with WormAtlas on integrating this new information. 

      In the case of neurons that were removed from using a specific neurotransmitter, like PVQ. What do the authors conclude overall, if it does not use glutamate, are there any new hypotheses to what it could be using?

      Since all neurons express multiple neuropeptides, we hypothesize neurons such as PVQ may be primarily peptidergic. This is included in Discussion, "Neurons devoid of canonical neurotransmitter pathway genes may define neuropeptide-only neurons".  

      In Table S5, the I4 neuron is listed as a variable for eat-4 expression but in Table S1 it says that there was no CRISPR expression detected. Which one is correct? 

      Thanks for spotting this. Table S5 is correct, we saw very dim and variable expression of the eat-4 reporter allele in I4. Table S1 is fixed now.

      Additional discussion points that might be important for the community: 

      CRIPSR strains used here should be deposited in the CGC. 

      Yes, all strains generated in this study have already been deposited to CGC. 

      It would be great to have an additional discussion point on how the neural clusters in CenGEN were defined based on the fosmid reporter expression, so in a way using the defining factor as one that was already defined by it might make results confusing. 

      Neural cluster definition in CeNGEN did not rely on isolated data points but on the combination of many expression reagents, each with its own shortcomings, but in combination providing reliable identification. Since one feedback we have gotten from many readers of our manuscript is that it is already very long as is, we prefer not to dilute the discussion further.

      It would be important to discuss the rate of neurotransmitter genes that have variable expression patterns. Are any of those genes used in NeuroPAL to define specific neuronal classes? This is important to describe as NeuroPAL labeling is being used to define neuronal identity. 

      All the reporters used in NeuroPAL are promoter-based, very robust and do not include the full loci of genes, so they are not directly comparable with the CRISPR reporter alleles in this study. However, we recognize that some expression pattern variability could be confusing. We have discussed this more in the section "Comparing approaches and caveats of expression pattern analysis" in the Discussion.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary: 

      This paper applies methods for segmentation, annotation, and visualization of acoustic analysis to zebra finch song. The paper shows that these methods can be used to predict the stage of song development and to quantify acoustic similarity. The methods are solid and are likely to provide a useful tool for scientists aiming to label large datasets of zebra finch vocalizations. The paper has two main parts: 1) establishing a pipeline/ package for analyzing zebra finch birdsong and 2) a method for measuring song imitation. 

      Strengths: 

      It is useful to see existing methods for syllable segmentation compared to new datasets. 

      It is useful, but not surprising, that these methods can be used to predict developmental stage, which is strongly associated with syllable temporal structure. 

      It is useful to confirm that these methods can identify abnormalities in deafened and isolated songs. 

      Weaknesses: 

      For the first part, the implementation seems to be a wrapper on existing techniques. For instance, the first section talks about syllable segmentation; they made a comparison between whisperseg (Gu et al, 2024), tweetynet (Cohen et al, 2022), and amplitude thresholding. They found that whisperseg performed the best, and they included it in the pipeline. They then used whisperseg to analyze syllable duration distributions and rhythm of birds of different ages and confirmed past findings on this developmental process (e.g. Aronov et al, 2011). Next, based on the segmentation, they assign labels by performing UMAP and HDBScan on the spectrogram (nothing new; that's what people have been doing). Then, based on the labels, they claimed they developed a 'new' visualization - syntax raster ( line 180 ). That was done by Sainburg et. al. 2020 in Figure 12E and also in Cohen et al, 2020 - so the claim to have developed 'a new song syntax visualization' is confusing. The rest of the paper is about analyzing the finch data based on AVN features (which are essentially acoustic features already in the classic literature). 

      First, we would like to thank this reviewer for their kind comments and feedback on this manuscript. It is true that many of the components of this song analysis pipeline are not entirely novel in isolation. Our real contribution here is bringing them together in a way that allows other researchers to seamlessly apply automated syllable segmentation, clustering, and downstream analyses to their data. That said, our approach to training TweetyNet for syllable segmentation is novel. We trained TweetyNet to recognize vocalizations vs. silence across multiple birds, such that it can generalize to new individual birds, whereas Tweetynet had only ever been used to annotate song syllables from birds included in its training set previously. Our validation of TweetyNet and WhisperSeg in combination with UMAP and HDBSCAN clustering is also novel, providing valuable information about how these systems interact, and how reliable the completely automatically generated labels are for downstream analysis. 

      Our syntax raster visualization does resemble Figure 12E in Sainburg et al. 2020, however it differs in a few important ways, which we believe warrant its consideration as a novel visualization method. First, Sainburg et al. represent the labels across bouts in real time; their position along the x axis reflects the time at which each syllable is produced relative to the start of the bout. By contrast, our visualization considers only the index of syllables within a bout (ie. First syllable vs. second syllable etc) without consideration of the true durations of each syllable or the silent gaps between them. This makes it much easier to detect syntax patterns across bouts, as the added variability of syllable timing is removed. Considering only the sequence of syllables rather than their timing also allows us to more easily align bouts according to the first syllable of a motif, further emphasizing the presence or absence of repeating syllable sequences without interference from the more variable introductory notes at the start of a motif. Finally, instead of plotting all bouts in the order in which they were produced, our visualization orders bouts such that bouts with the same sequence of syllables will be plotted together, which again serves to emphasize the most common syllable sequences that the bird produces. These additional processing steps mean that our syntax raster plot has much starker contrast between birds with stereotyped syntax and birds with more variable syntax, as compared to the more minimally processed visualization in Sainburg et al. 2020. There doesn’t appear to be any similar visualizations in Cohen et al. 2020. 

      The second part may be something new, but there are opportunities to improve the benchmarking. It is about the pupil-tutor imitation analysis. They introduce a convolutional neural network that takes triplets as an input (each tripled is essentially 3 images stacked together such that you have (anchor, positive, negative), Anchor is a reference spectrogram from, say finch A; positive means a different spectrogram with the same label as anchor from finch A, and negative means a spectrogram not related to A or different syllable label from A. The network is then trained to produce a low-dimensional embedding by ensuring the embedding distance between anchor and positive is less than anchor and negative by a certain margin. Based on the embedding, they then made use of earth mover distance to quantify the similarity in the syllable distribution among finches. They then compared their approach performance with that of sound analysis pro (SAP) and a variant of SAP. A more natural comparison, which they didn't include, is with the VAE approach by Goffinet et al. In this paper (https://doi.org/10.7554/eLife.67855, Fig 7), they also attempted to perform an analysis on the tutor pupil song. 

      We thank the reviewer for this suggestion, and plan to include a comparison of the triplet loss embedding space to the VAE space for song similarity comparisons in the revised manuscript.

      Reviewer #2 (Public Review):

      Summary: 

      In this work, the authors present a new Python software package, Avian Vocalization Network (AVN) aimed at facilitating the analysis of birdsong, especially the song of the zebra finch, the most common songbird model in neuroscience. The package handles some of the most common (and some more advanced) song analyses, including segmentation, syllable classification, featurization of song, calculation of tutor-pupil similarity, and age prediction, with a view toward making the entire process friendlier to experimentalists working in the field. 

      For many years, Sound Analysis Pro has served as a standard in the songbird field, the first package to extensively automate songbird analysis and facilitate the computation of acoustic features that have helped define the field. More recently, the increasing popularity of Python as a language, along with the emergence of new machine learning methods, has resulted in a number of new software tools, including the vocalpy ecosystem for audio processing, TweetyNet (for segmentation), t-SNE and UMAP (for visualization), and autoencoder-based approaches for embedding. 

      Strengths: 

      The AVN package overlaps several of these earlier efforts, albeit with a focus on more traditional featurization that many experimentalists may find more interpretable than deep learning-based approaches. Among the strengths of the paper are its clarity in explaining the several analyses it facilitates, along with high-quality experiments across multiple public datasets collected from different research groups. As a software package, it is open source, installable via the pip Python package manager, and features high-quality documentation, as well as tutorials. For experimentalists who wish to replicate any of the analyses from the paper, the package is likely to be a useful time saver. 

      Weaknesses: 

      I think the potential limitations of the work are predominantly on the software end, with one or two quibbles about the methods. 

      First, the software: it's important to note that the package is trying to do many things, of which it is likely to do several well and few comprehensively. Rather than a package that presents a number of new analyses or a new analysis framework, it is more a codification of recipes, some of which are reimplementations of existing work (SAP features), some of which are essentially wrappers around other work (interfacing with WhisperSeg segmentations), and some of which are new (similarity scoring). All of this has value, but in my estimation, it has less value as part of a standalone package and potentially much more as part of an ecosystem like vocalpy that is undergoing continuous development and has long-term support. 

      We appreciate this reviewer’s comments and concerns about the structure of the AVN package and its long-term maintenance. We have considered incorporating AVN into the VocalPy ecosystem but have chosen not to for a few key reasons. (1) AVN was designed with ease of use for experimenters with limited coding experience top of mind. VocalPy provides excellent resources for researchers with some familiarity with object-oriented programming to manage and analyze their datasets; however, we believe it may be challenging for users without such experience to adopt VocalPy quickly. AVN’s ‘recipe’ approach, as you put it, is very easily accessible to new users, and allows users with intermediate coding experience to easily navigate the source code to gain a deeper understanding of the methodology. AVN also consistently outputs processed data in familiar formats (tables in .csv files which can be opened in excel), in an effort to make it more accessible to new users, something which would be challenging to reconcile with VocalPy’s emphasis on their `dataset`classes. (2) AVN and VocalPy differ in their underlying goals and philosophies when it comes to flexibility vs. standardization of analysis pipelines. VocalPy is designed to facilitate mixing-and-matching of different spectrogram generation, segmentation, annotation etc. approaches, so that researchers can design and implement their own custom analysis pipelines. This flexibility is useful in many cases. For instance, it could allow researchers who have very different noise filtering and annotation needs, like those working with field recordings versus acoustic chamber recordings, analyze their data using this platform. However, when it comes to comparisons across zebra finch research labs, this flexibility comes at the expense of direct comparison and integration of song features across research groups. This is the context in which AVN is most useful. It presents a single approach to song segmentation, labeling, and featurization that has been shown to generalize well across research groups, and which allows direct comparisons of the resulting features. AVN’s single, extensively validated, standard pipeline approach is fundamentally incompatible with VocalPy’s emphasis on flexibility. We are excited to see how VocalPy continues to evolve in the future and recognize the value that both AVN and VocalPy bring to the songbird research community, each with their own distinct strengths, weaknesses, and ideal use cases. 

      While the code is well-documented, including web-based documentation for both the core package and the GUI, the latter is available only on Windows, which might limit the scope of adoption. 

      We thank the reviewer for their kind words about AVN’s documentation. We recognize that the GUI’s exclusive availability on Windows is a limitation, and we would be happy to collaborate with other researchers and developers in the future to build a Mac compatible version, should the demand present itself. That said, the python package works on all operating systems, so non-Windows users still have the ability to use AVN that way.  

      That is to say, whether AVN is adopted by the field in the medium term will have much more to do with the quality of its maintenance and responsiveness to users than any particular feature, but I believe that many of the analysis recipes that the authors have carefully worked out may find their way into other code and workflows. 

      Second, two notes about new analysis approaches: 

      (1) The authors propose a new means of measuring tutor-pupil similarity based on first learning a latent space of syllables via a self-supervised learning (SSL) scheme and then using the earth mover's distance (EMD) to calculate transport costs between the distributions of tutors' and pupils' syllables. While to my knowledge this exact method has not previously been proposed in birdsong, I suspect it is unlikely to differ substantially from the approach of autoencoding followed by MMD used in the Goffinet et al. paper. That is, SSL, like the autoencoder, is a latent space learning approach, and EMD, like MMD, is an integral probability metric that measures discrepancies between two distributions.

      (Indeed, the two are very closely related: https://stats.stackexchange.com/questions/400180/earth-movers-distance-andmaximum-mean-discrepency.) Without further experiments, it is hard to tell whether these two approaches differ meaningfully. Likewise, while the authors have trained on a large corpus of syllables to define their latent space in a way that generalizes to new birds, it is unclear why such an approach would not work with other latent space learning methods. 

      We recognize the similarities between these approaches, and plan to include a comparison of triplet loss embeddings compared with MMD and VAE embeddings compared with MMD and EMD in the revised manuscript. Thank you for this suggestion.  

      (2) The authors propose a new method for maturity scoring by training a model (a generalized additive model) to predict the age of the bird based on a selected subset of acoustic features. This is distinct from the "predicted age" approach of Brudner, Pearson, and Mooney, which predicts based on a latent representation rather than specific features, and the GAM nicely segregates the contribution of each. As such, this approach may be preferred by many users who appreciate its interpretability. 

      In summary, my view is that this is a nice paper detailing a well-executed piece of software whose future impact will be determined by the degree of support and maintenance it receives from others over the near and medium term. 

      Reviewer #3 (Public Review):

      Summary: 

      The authors invent song and syllable discrimination tasks they use to train deep networks. These networks they then use as a basis for routine song analysis and song evaluation tasks. For the analysis, they consider both data from their own colony and from another colony the network has not seen during training. They validate the analysis scores of the network against expert human annotators, achieving a correlation of 80-90%. 

      Strengths: 

      (1) Robust Validation and Generalizability: The authors demonstrate a good performance of the AVN across various datasets, including individuals exhibiting deviant behavior. This extensive validation underscores the system's usefulness and broad applicability to zebra finch song analysis, establishing it as a potentially valuable tool for researchers in the field. 

      (2) Comprehensive and Standardized Feature Analysis: AVN integrates a comprehensive set of interpretable features commonly used in the study of bird songs. By standardizing the feature extraction method, the AVN facilitates comparative research, allowing for consistent interpretation and comparison of vocal behavior across studies. 

      (3) Automation and Ease of Use. By being fully automated, the method is straightforward to apply and should introduce barely an adoption threshold to other labs. 

      (4) Human experts were recruited to perform extensive annotations (of vocal segments and of song similarity scores). These annotations released as public datasets are potentially very valuable. 

      Weaknesses: 

      (1) Poorly motivated tasks. The approach is poorly motivated and many assumptions come across as arbitrary. For example, the authors implicitly assume that the task of birdsong comparison is best achieved by a system that optimally discriminates between typical, deaf, and isolated songs. Similarly, the authors assume that song development is best tracked using a system that optimally estimates the age of a bird given its song. My issue is that these are fake tasks since clearly, researchers will know whether a bird is an isolated or a deaf bird, and they will also know the age of a bird, so no machine learning is needed to solve these tasks. Yet, the authors imagine that solving these placeholder tasks will somehow help with measuring important aspects of vocal behavior. 

      We appreciate this reviewer’s concerns and apologize for not providing sufficiently clear rationale for the inclusion of our phenotype classifier and age regression models in the original manuscript. These tasks are not intended to be taken as a final, ultimate culmination of the AVN pipeline. Rather, we consider the carefully engineered 55-interpretable feature set to be AVN’s final output, and these analyses serve merely as examples of how that feature set can be applied. That said, each of these models do have valid experimental use cases that we believe are important and would like to bring to the attention of the reviewer.

      For one, we showed how the LDA model that can discriminate between typical, deaf, and isolate birds’ songs not only allows us to evaluate which features are most important for discriminating between these groups, but also allows comparison of the FoxP1 knock-down (FP1 KD) birds to each of these phenotypes. Based on previous work (Garcia-Oscos et al. 2021), we hypothesized that FP1 KD in these birds specifically impaired tutor song memory formation while sparing a bird’s ability to refine their own vocalizations through auditory feedback. Thus, we would expect their songs to resemble those of isolate birds, who lack a tutor song memory, but not to resemble deaf birds who lack a tutor song memory and auditory feedback of their own vocalizations to guide learning. The LDA model allowed us to make this comparison quantitatively for the first time and confirm our hypothesis that FP1 KD birds’ songs are indeed most like isolates’. In the future, as more research groups publish their birds’ AVN feature sets, we hope to be able to make even more fine-grained comparisons between different groups of birds, either using LDA or other similar interpretable classifiers. 

      The age prediction model also has valid real-world use cases. For instance, one might imagine an experimental manipulation that is hypothesized to accelerate or slow song maturation in juvenile birds. This age prediction model could be applied to the AVN feature sets of birds having undergone such a manipulation to determine whether their predicted ages systematically lead or lag their true biological ages, and which song features are most responsible for this difference. We didn’t have access to data for any such birds for inclusion in this paper, but we hope that others in the future will be able to take inspiration from our methodology and use this or a similar age regression model with AVN features in their research. We will revise the original manuscript to make this clearer. 

      Along similar lines, authors assume that a good measure of similarity is one that optimally performs repeated syllable detection (i.e. to discriminate same syllable pairs from different pairs). The authors need to explain why they think these placeholder tasks are good and why no better task can be defined that more closely captures what researchers want to measure. Note: the standard tasks for self-supervised learning are next word or masked word prediction, why are these not used here? 

      There appears to be some misunderstanding regarding our similarity scoring embedding model and our rationale for using it. We will explain it in more depth here and provide some additional explanation in the manuscript. First, we are not training a model to discriminate between same and different syllable pairs. The triplet loss network is trained to embed syllables in an 8-dimensional space such that syllables with the same label are closer together than syllables with different labels. The loss function is related to the relative distance between embeddings of syllables with the same or different labels, not the classification of syllables as same or different. This approach was chosen because it has repeatedly been shown to be a useful data compression step (Schorff et al. 2015, Thakur et al. 2019) before further downstream tasks are applied on its output, particularly in contexts where there is little data per class (syllable label). For example, Schorff et al. 2015 trained a deep convolutional neural network with triplet loss to embed images of human faces from the same individual closer together than images of different individuals in a 128-dimensional space. They then used this model to compute 128-dimensional representations of additional face images, not included in training, which were used for individual facial recognition (this is a same vs. different category classifier), and facial clustering, achieving better performance than the previous state of the art. The triplet loss function results in a model that can generate useful embeddings of previously unseen categories, like new individuals’ faces, or new zebra finches’ syllables, which can then be used in downstream analyses. This meaningful, lower dimensional space allows comparisons of distributions of syllables across birds, as in Brainard and Mets 2008, and Goffinet et al. 2021. 

      Next word and masked word prediction are indeed common self-supervised learning tasks for models working with text data, or other data with meaningful sequential organization. That is not the case for our zebra finch syllables, where every bird’s syllable sequence depends only on its tutor’s sequence, and there is no evidence for strong universal syllable sequencing rules (James et al. 2020). Rather, our embedding model is an example of a computer vision task, as it deals with sets of twodimensional images (spectrograms), not sequences of categorical variables (like text). It is also not, strictly speaking, a self-supervised learning task, as it does require syllable labels to generate the triplets. A common self-supervised approach for dimensionality reduction in a computer vision task such as this one would be to train an autoencoder to compress images to a lower dimensional space, then faithfully reconstruct them from the compressed representation.  This has been done using a variational autoencoder trained on zebra finch syllables in Goffinet et al. 2021. In keeping with the suggestions from reviewers #1 and #2, we plan to include a comparison of our triplet loss model with the Goffinet et al. VAE approach in the revised manuscript.  

      (2) The machine learning methodology lacks rigor. The aims of the machine learning pipeline are extremely vague and keep changing like a moving target. Mainly, the deep networks are trained on some tasks but then authors evaluate their performance on different, disconnected tasks. For example, they train both the birdsong comparison method (L263+) and the song similarity method (L318+) on classification tasks. However, they evaluate the former method (LDA) on classification accuracy, but the latter (8-dim embeddings) using a contrast index. In machine learning, usually, a useful task is first defined, then the system is trained on it and then tested on a held-out dataset. If the sensitivity index is important, why does it not serve as a cost function for training?

      Again, there appears to be some misunderstanding of our similarity scoring methodology. Our similarity scoring model is not trained on a classification task, but rather on an embedding task. It learns to embed spectrograms of syllables in an 8dimensional space such that syllables with the same label are closer together than syllables with different labels. We could report the loss values for this embedding task on our training and validation datasets, but these wouldn’t have any clear relevance to the downstream task of syllable distribution comparison where we are using the model’s embeddings. We report the contrast index as this has direct relevance to the actual application of the model and allows comparisons to other similarity scoring methods, something that the triplet loss values wouldn’t allow. 

      The triplet loss method was chosen because it has been shown to yield useful lowdimensional representations of data, even in cases where there is limited labeled training data (Thakur et al. 2019). While we have one of the largest manually annotated datasets of zebra finch songs, it is still quite small by industry deep learning standards, which is why we chose a method that would perform well given the size of our dataset. Training a model on a contrast index directly would be extremely computationally intensive and require many more pairs of birds with known relationships than we currently have access to. It could be an interesting approach to take in the future, but one that would be unlikely to perform well with a dataset size typical to songbird research. 

      Also, usually, in solid machine learning work, diverse methods are compared against each other to identify their relative strengths. The paper contains almost none of this, e.g. authors examined only one clustering method (HDBSCAN). 

      We did compare multiple methods for syllable segmentation (WhisperSeg,  TweetyNet, and Amplitude thresholding) as this hadn’t been done previously. We chose not to perform extensive comparison of different clustering methods as Sainburg et al. 2020 already did so and we felt no need to reduplicate this effort. We encourage this reviewer to refer to Sainburg et al.’s excellent work for comparisons of multiple clustering methods applied to zebra finch song syllables.  

      (3) Performance issues. The authors want to 'simplify large-scale behavioral analysis' but it seems they want to do that at a high cost. (Gu et al 2023) achieved syllable scores above 0.99 for adults, which is much larger than the average score of 0.88 achieved here (L121). Similarly, the syllable scores in (Cohen et al 2022) are above 94% (their error rates are below 6%, albeit in Bengalese finches, not zebra finches), which is also better than here. Why is the performance of AVN so low? The low scores of AVN argue in favor of some human labeling and training on each bird. 

      Firstly, the syllable error rate scores reported in Cohen et al. 2022 are calculated very differently than the F1 scores we report here and are based on a model trained with data from the same bird as was used in testing, unlike our more general segmentation approach where the model was tested on different birds than were used in testing. Thus, the scores reported in Cohen et al. and the F1 scores that we report cannot be compared. 

      The discrepancy between the F1seg scores reported in Gu et al. 2023 and the segmentation F1 scores that we report are likely due to differences in the underlying datasets. Our UTSW recordings tend to have higher levels of both stationary and nonstationary background noise, which make segmentation more challenging. The recordings from Rockefeller were less contaminated by background noise, and they resulted in slightly higher F1 scores. That said, we believe that the primary factor accounting for this difference in scores with Gu et al. 2023 is the granularity of our ‘ground truth’ syllable segments. In our case, if there was ever any ambiguity as to whether vocal elements should be segmented into two short syllables with a very short gap between them or merged into a single longer syllable, we chose to split them. WhisperSeg had a strong tendency to merge the vocal elements in ambiguous cases such as these. This results in a higher rate of false negative syllable onset detections, reflected in the low recall scores achieved by WhisperSeg (see supplemental figure 2b), but still very high precision scores (supplemental figure 2a). While WhisperSeg did frequently merge these syllables in a way that differed from our ground truth segmentation, it did so consistently, meaning it had little impact on downstream measures of syntax entropy (Fig 3c) or syllable duration entropy (supplemental figure 7a). It is for that reason that, despite a lower F1 score, we still consider AVN’s automatically generated annotations to be sufficiently accurate for downstream analyses. 

      Should researchers require a higher degree of accuracy and precision with their annotations (for example, to detect very subtle changes in song before and after an acute manipulation) and be willing to dedicate the time and resources to manually labeling a subset of recordings from each of their birds, we suggest they turn toward one of the existing tools for supervised song annotation, such as TweetyNet.  

      (4) Texas bias. It is true that comparability across datasets is enhanced when everyone uses the same code. However, the authors' proposal essentially is to replace the bias between labs with a bias towards birds in Texas. The comparison with Rockefeller birds is nice, but it amounts to merely N=1. If birds in Japanese or European labs have evolved different song repertoires, the AVN might not capture the associated song features in these labs well. 

      We appreciate the reviewer’s concern about a bias toward birds from the UTSW colony. However, this paper shows that despite training (for the similarity scoring) and hyperparameter fitting (for the HDBSCAN clustering) on the UTSW birds, AVN performs as well if not better on birds from Rockefeller than from UTSW. To our knowledge, there are no publicly available datasets of annotated zebra finch songs from labs in Europe or in Asia but we would be happy to validate AVN on such datasets, should they become available. Furthermore, there is no evidence to suggest that there is dramatic drift in zebra finch vocal repertoire between continents which would necessitate such additional validation. While we didn’t have manual annotations for this dataset (which would allow validation of our segmentation and labeling methods), we did apply AVN to recordings share with us by the Wada lab in Japan, where visual inspection of the resulting annotations suggested comparable accuracy to the UTSW and Rockefeller datasets.  

      (5) The paper lacks an analysis of the balance between labor requirement, generalizability, and optimal performance. For tasks such as segmentation and labeling, fine-tuning for each new dataset could potentially enhance the model's accuracy and performance without compromising comparability. E.g. How many hours does it take to annotate hundred song motifs? How much would the performance of AVN increase if the network were to be retrained on these? The paper should be written in more neutral terms, letting researchers reach their own conclusions about how much manual labor they want to put into their data. 

      With standardization and ease of use in mind, we designed AVN specifically to perform fully automated syllable annotation and downstream feature calculations. We believe that we have demonstrated in this manuscript that our fully automated approach is sufficiently reliable for downstream analyses across multiple zebra finch colonies. That said, if researchers require an even higher degree of annotation precision and accuracy, they can turn toward one of the existing methods for supervised song annotation, such as TweetyNet. Incorporating human annotations for each bird processed by AVN is likely to improve its performance, but this would require significant changes to AVN’s methodology and is outside the scope of our current efforts.  

      (6) Full automation may not be everyone's wish. For example, given the highly stereotyped zebra finch songs, it is conceivable that some syllables are consistently mis-segmented or misclassified. Researchers may want to be able to correct such errors, which essentially amounts to fine-tuning AVN. Conceivably, researchers may want to retrain a network like the AVN on their own birds, to obtain a more fine-grained discriminative method. 

      Other methods exist for supervised or human-in-the-loop annotation of zebra finch songs, such as TweetyNet and DAN (Alam et al. 2023). We invite researchers who require a higher degree of accuracy than AVN can provide to explore these alternative approaches for song annotation. Incorporating human annotations for each individual bird being analyzed using AVN was never the goal of our pipeline, would require significant changes to AVN’s design, and is outside the scope of this manuscript.  

      (7) The analysis is restricted to song syllables and fails to include calls. No rationale is given for the omission of calls. Also, it is not clear how the analysis deals with repeated syllables in a motif, whether they are treated as two-syllable types or one. 

      It is true that we don’t currently have any dedicated features to describe calls. This could be a useful addition to AVN in the future. 

      What a human expert inspecting a spectrogram would typically call ‘repeated syllables’ in a bout are almost always assigned the same syllable label by the UMAP+HDBSCAN clustering. The syntax analysis module includes features examining the rate of syllable repetitions across syllable types. See https://avn.readthedocs.io/en/latest/syntax_analysis_demo.html#SyllableRepetitions

      (8) It seems not all human annotations have been released and the instruction sets given to experts (how to segment syllables and score songs) are not disclosed. It may well be that the differences in performance between (Gu et al 2023) and (Cohen et al 2022) are due to differences in segmentation tasks, which is why these tasks given to experts need to be clearly spelled out. Also, the downloadable files contain merely labels but no identifier of the expert. The data should be released in such a way that lets other labs adopt their labeling method and cross-check their own labeling accuracy. 

      All human annotations used in this manuscript have indeed been released as part of the accompanying dataset. Syllable annotations are not provided for all pupils and tutors used to validate the similarity scoring, as annotations are not necessary for similarity comparisons. We will expand our description of our annotation guidelines in the methods section of the revised manuscript. All the annotations were generated by one of two annotators. The second annotator always consulted with the first annotator in cases of ambiguous syllable segmentation or labeling, to ensure that they had consistent annotation styles. Unfortunately, we haven’t retained records about which birds were annotated by which of the two annotators, so we cannot share this information along with the dataset. The data is currently available in a format that should allow other research groups to use our annotations either to train their own annotation systems or check the performance of their existing systems on our annotations.  

      (9) The failure modes are not described. What segmentation errors did they encounter, and what syllable classification errors? It is important to describe the errors to be expected when using the method. 

      As we discussed in our response to this reviewer’s point (3), WhisperSeg has a tendency to merge syllables when the gap between them is very short, which explains its lower recall score compared to its precision on our dataset (supplementary figure 2). In rare cases, WhisperSeg also fails to recognize syllables entirely, again impacting its precision score. TweetyNet hardly ever completely ignores syllables, but it does tend to occasionally merge syllables together or over-segment them. Whereas WhisperSeg does this very consistently for the same syllable types within the same bird, TweetyNet merges or splits syllables more inconsistently. This inconsistent merging and splitting has a larger effect on syllable labeling, as manifested in the lower clustering v-measure scores we obtain with TweetyNet compared to WhisperSeg segmentations. TweetyNet also has much lower precision than WhisperSeg, largely because TweetyNet often recognizes background noises (like wing flaps or hopping) as syllables whereas WhisperSeg hardly ever segments nonvocal sounds. 

      Many errors in syllable labeling stem from differences in syllable segmentation. For example, if two syllables with labels ‘a’ and ‘b’ in the manual annotation are sometimes segmented as two syllables, but sometimes merged into a single syllable, the clustering is likely to find 3 different syllable types; one corresponding to ‘a’, one corresponding to ‘b’ and one corresponding to ‘ab’ merged. Because of how we align syllables across segmentation schemes for the v-measure calculation, this will look like syllable ‘b’ always has a consistent cluster label, but syllable ‘a’ can carry two different cluster labels, depending on the segmentation. In certain cases, even in the absence of segmentation errors, a group of syllables bearing the same manual annotation label may be split into 2 or 3 clusters (it is extremely rare for a single manual annotation group to be split into more than 3 clusters). In these cases, it is difficult to conclusively say whether the clustering represents an error, or if it actually captured some meaningful systematic difference between syllables that was missed by the annotator. Finally, sometimes rare syllable types with their own distinct labels in the manual annotation are merged into a single cluster. Most labeling errors can be explained by this kind of merging or splitting of groups relative to the manual annotation, not to occasional mis-classifications of one manual label type as another. 

      For examples of these types of errors, we encourage this reviewer and readers to refer to the example confusion matrices in figure 2f and supplemental figure 4b&e. We will also expand our discussion of these different types of errors in the revised manuscript. 

      (10) Usage of Different Dimensionality Reduction Methods: The pipeline uses two different dimensionality reduction techniques for labeling and similarity comparison - both based on the understanding of the distribution of data in lower-dimensional spaces. However, the reasons for choosing different methods for different tasks are not articulated, nor is there a comparison of their efficacy. 

      We apologize for not making this distinction sufficiently clear in the manuscript and will add additional explanation to the main text to make the reasoning more apparent. We chose to use UMAP for syllable labeling because it is a common embedding methodology to precede hierarchical clustering and has been shown to result in reliable syllable labels for birdsong in the past (Sainburg et al. 2020). However, it is not appropriate for similarity scoring, because comparing EMD scores between birds requires that all the birds’ syllable distributions exist within the same shared embedding space. This can be achieved by using the same triplet loss-trained neural network model to embed syllables from all birds. This cannot be achieved with UMAP because all birds whose scores are being compared would need to be embedded in the same UMAP space, as distances between points cannot be compared across UMAPs. In practice, this would mean that every time a new tutor-pupil pair needs to be scored, their syllables would need to be added to a matrix with all previously compared birds’ syllables, a new UMAP would need to be computed, and new EMD scores between all bird pairs would need to be calculated using their new UMAP embeddings. This is very computationally expensive and quickly becomes unfeasible without dedicated high power computing infrastructure. It also means that similarity scores couldn’t be compared across papers without recomputing everything each time, whereas EMD scores obtained with triplet loss embeddings can be compared, provided they use the same trained model (which we provide as part of AVN) to embed their syllables in a common latent space.  

      (11) Reproducibility: are the measurements reproducible? Systems like UMAP always find a new embedding given some fixed input, so the output tends to fluctuate. 

      There is indeed a stochastic element to UMAP embeddings which will result in different embeddings and therefore different syllable labels across repeated runs with the same input. Anecdotally, we observed that v-measures scores were quite consistent within birds across repeated runs of the UMAP, but we will add an additional supplementary figure to the revised manuscript showing this.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Recommendations for the authors:

      We would like to see the reviewers' critiques be addressed satisfactorily.

      Reviewer #1 (Recommendations For The Authors):

      While the manuscript reads fairly well, there are a number of minor grammatical edits that would improve the reading of this paper.

      To improve the reading, we sent our manuscript out for language polishing using Wiley Editing Services. The changes were labeled in Red color.

      The opening paragraph, while seeking to establish clinical relevance, likely can be removed or tailored.

      We agreed with this concern, the first paragraph was tailored in the revised manuscript.

      Reviewer #2 (Recommendations For The Authors):

      Although the authors provided a substantial amount of data to support the conclusion, there are several important issues to be added to strengthen the study, as highlighted below:

      Figure 2: In this figure, the authors provided evidence that TAK1 phosphorylates PLCE1 at serine 1060. To make the data more convincing, the authors need to perform an in vitro kinase assay to confirm this result. Ideally, the in vitro kinase assay also includes a mutant form of PLCE1-S1060A as a control.

      Thank the referee for this constructive comment. Since we cannot perform experiments with radioactive compounds in our institute, therefore the phosphorylation of PLCE1 at serine 1060 induced by TAK1 cannot be further confirmed by a routine in vitro kinase, in which 32P was used. Instead, we performed TAK1 and PLCE1 pulldown, and incubated these two proteins in a kinase assay buffer. The resulting samples were analyzed by western blot. Our data showed that TAK1 phosphorylates PLCE1 at serine 1060, as evidenced by a strong band for p-PLCE1 S1060 when TAK1 incubated with PLCE1. For the sample contained TAK1 and PLCE1 S1060A, the band density for p-PLCE1 S1060 was largely decreased. Ideally, there should be no band for p-PLCE1 S1060 when TAK1 incubated with PLCE1 S1060A. However, our current data detected p-PLCE1 S1060 in this reaction, although it was decreased as compared to wild type PLCE1. The reason for this is likely due to the presence of endogenous wild type PLCE1 in the TAK1 pull-down samples. These data were presented as Figure S6C in the revised manuscript.

      Figure 4: In this part of the study, the author claimed that TAK1 inhibits PLCE1 enzyme activity. However, they fall short of evidence that this inhibitory effect of TAK1 on PLCE1 enzyme activity is mediated via phosphorylation at S1060.

      Thank the referee for this critical comment. Actually, we measured the effect of TAK1 on mutate PLCE1 activity, which was presented in Figure 4B. The data showed that TAK1 has no inhibitory effect on PLCE1 S1060A enzyme activity. In contract, TAK1 repressed wild type PLCE1 activity (Figure 4A). These data indicate that, at least in part, the inhibitory effect of TAK1 on PLCE1 enzyme activity is mediated via phosphorylation at S1060.

      Figures 6 and 7: Here the authors used ESCC metastasis model in nude mice to establish the role of TAK1 and PLCE1, respectively. However, the effects of TAK1 and PLCE1 are studied separately, and there no link to show that TAK1 inhibits metastasis via activation of PLCE1. Ideally the authors should use the transgenic mice with expression of mutant PLCE1-S1060A to support the conclusion.

      We agreed with this notion that the transgenic mice with expression of mutant PLCE1-S1060A will further strengthen our conclusions. However, due to limited time and resource, we cannot generate such genetic mice. Thank the referee for this insightful and critical comment.

      Reviewer #3 (Recommendations For The Authors):

      (1) Have the authors ever checked the phosphorylation status of endogenous PLCE1 S1060p in the TAK1 overexpression alone ECA-109 cell line? Does it increase? Similarly, in siMap3k7 ECA-109 cells, does endogenous PLCE1 S1060p reduce?

      Thank the referee for these critical comments. During the revision, we examined whether TAK1 overexpression or knockdown affects endogenous p-PLCE1 S1060 in ECA-109 cells. Our data showed that TAK1 overexpression induced an increase in p-PLCE1 S1060, whereas TAK1 knockdown resulted in a decrease in p-PLCE1 S1060. These data were presented in Figure S6A, B.

      (2) The authors show that using TAK1 inhibitors cannot completely abolish all the phosphorylation of PLCE1 S1060 in cells and mice. Does it mean some other potential kinases also target PLCE1 S1060?

      Thank the referee for this insightful comment. As mentioned by the referee, TAK1 inhibitors cannot completely abolish all the phosphorylation of PLCE1 S1060 in cells and mice. Therefore, it is likely that some other potential kinases also target PLCE1 S1060, we added this notion in the Discussion in the revised manuscript.

      (3) PLCE1 S1060A completely bans the migration and invasion regulation function of TAK1 (Figure S10), indicating that PLCE1 S1060 is a very unique downstream target of TAK1 in migration and invasion regulation in the ECA-109 cell line. As a MAP3K, TAK1 was documented to regulate migration and invasion through multiple signal transduction pathways such as IKK, JNK, p38 MAPK, et al. Have the authors ever tried to test the effect of overexpression/knockdown of TAK1 on a few of these pathways in the ECA-109 cell line?

      Thank the referee for these constructive comments. During the revision, we analyzed the effects of TAK1 on IKK, JNK, p38 MAPK, and ERK. Our data showed that TAK1 positively regulates these signal transduction pathways. For example, TAK1 overexpression increased p-IKK, p-JNK, p-P38 MAPK, and p-ERK in ECA-109 cells, whereas TAK1 knockdown decreased these protein levels. Although these pathways are affected by TAK1, with respect to cell migration and invasion, PLCE1 is likely a unique substrate of TAK1 in migration and invasion regulation in ECA-109 cells. We added these contents in the Results section in revised manuscript, and these data were presented in Figure S12A-D.

      (4) Does TAK1 only catalyze the S1060 site on PLCE1 protein?

      Thank the referee for this insightful comment. Currently, we just found TAK1 catalyze the S1060 site on PLCE1 protein, which cannot exclude the possibility that TAK1 also phosphorylates other residues on PLCE1 protein.

      (5) Is there any PLCE1 S1060 point mutation existing in ESCC patients? Does it influence the prognosis of ESCC patients?

      Thank the referee for this critical and constructive comment, which would further strengthen the significance of current study. However, we are facing a shortage of enough patient tumor samples for addressing this very important issue.

      (6) What's the effect of TAK1 inhibitor on mice body weight?

      Thank the referee for this critical comment. Since body weight is an important parameter, we measured mouse body weight during the whole experiments. The results showed that the body weight growth rate is not affected by TAK1 inhibitor, Takinib. These data were included in the revised manuscript as Figure S20A.

      (7) For the control groups of the mouse xenograft tumor model in Figures 6 vs 7, why does the number of metastases behave so differently?

      In Figure 6, the control mice were administered with ECA-109 cells via tail vein injection, mice were then treated with vehicle (saline). As for the control mice in Figure 7, they were administered with ECA-109 cells via tail vein injection. It should be mentioned that these cells were transduced with control lentivirus. Due to these differences, therefore, these two control mice have different number of metastases.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I praise the authors for their impressive work; all my major concerns have been addressed. I believe the revised article is much stronger and will surely raise the interest of a broad readership.

      I list in the following a few minor points that the authors might want to consider when finalizing the work:

      - It might be helpful for the reader to know if EPIC-ATAC can also be used on tissues different from tumors and PBMC/blood, and how (i.e. which reference should they use). 

      We thank the reviewer for this comment. In the discussion, we have clarified this point as follows:

      “Although not tested in this work, the TME marker peaks and profiles could be used on normal tissues where immune cells are expected to be present. In cases where specific cell types are expected in a sample but are not part of our list of reference profiles (e.g., neuronal cells in brain tumors or tissues other than human PBMCs or tumor samples), custom marker peaks and reference profiles can be provided to EPIC-ATAC to perform cell-type deconvolution. To this end, users should select markers that are cell-type specific, which could be identified using pairwise differential analysis performed on ATAC-Seq data from sorted cells from the populations of interest, following the approach developed in this work (Figure 1, see Code availability).”

      - In Fig 2 the numbers are hard to read as they are too close or overlapping.We have updated Figure 2 to avoid the overlap between the numbers.

      - In Fig 5 I see some squared around the sub-panels, but it might be due to the PDF compression. 

      We do not see these squares on the Figure 5 but have seen such squares on Figure 1. We have checked that all the PDF files uploaded on the eLife submission system do not contain the previously mentioned squares.

      - In the Introduction, some "deconvolution concepts" are introduced (e.g. Line 63-65), but not explained/illustrated. It might be helpful to refer to a "didactic" review. 

      We have added two references to these sentences in the introduction:

      “As described in more details elsewhere (Avila Cobos et al., 2018; Sturm et al., 2019), many of these tools model bulk data as a mixture of reference profiles either coming from purified cell populations or inferred from single-cell genomic data for each cell type.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      General Response

      We are grateful for the constructive comments from reviewers and the editor.

      The main point converged on a potential alternative interpretation that top-down modulation to the visual cortex may be contributing to the NC connectivity we observed. For this revision, we address that point with new analysis in Fig. S8 and Fig. 6. These results indicate that top-down modulation does not account for the observed NC connectivity.

      We performed the following analyses.

      (1) In a subset of experiments, we recorded pupil dynamics while the mice were engaged in a passive visual stimulation experiment (Fig. S8A). We found that pupil dynamics, which indicate the arousal state of the animal, explained only 3% of the variance of neural dynamics. This is significantly smaller than the contribution of sensory stimuli and the activity of the surrounding neuronal population (Fig. S8B). In particular, the visual stimulus itself typically accounted for 10-fold more variance than pupil dynamics (Fig. S8C). This suggests that the population neural activity is highly stimulus-driven and that a large portion of functional connectivity is independent of top-down modulation. In addition, after subtracting the neural activity from the pupil-modulated portion, the cross-stimulus stability of the NC was preserved (Fig. S8D).

      We note that the contribution from pupil dynamics to neural activity in this study is smaller than what was observed in an earlier study (Stringer et al. 2019 Science). That can be because mice were in quiet wakefulness in the current study, while mice were in spontaneous locomotion in the earlier study. We discuss this discrepancy in the main text, in the subsection “Functional connectivity is not explained by the arousal state”.

      (2) We performed network simulations with top-down input (Fig. 6F-H). With multidimensional top-down input comparable to the experimental data, recurrent connections within the network are necessary to generate cross-stimulus stable NC connectivity (Fig. 6G). It took increasing the contribution from the top-down input (i.e., to more than 1/3 of the contribution from the stimulus), before the cross-stimulus NC connectivity can be generated by the top-down modulation (Fig. 6H). Thus, this analysis provides further evidence that top-down modulation was not playing a major role in the NC connectivity we observed.

      These new results support our original conclusion that network connectivity is the principal mechanism underlying the stability of functional networks.

      Public Reviews:

      Reviewer #1 (Public Review):

      Using multi-region two-photon calcium imaging, the manuscript meticulously explores the structure of noise correlations (NCs) across the mouse visual cortex and uses this information to make inferences about the organization of communication channels between primary visual cortex (V1) and higher visual areas (HVAs). Using visual responses to grating stimuli, the manuscript identifies 6 tuning groups of visual cortex neurons and finds that NCs are highest among neurons belonging to the same tuning group whether or not they are found in the same cortical area. The NCs depend on the similarity of tuning of the neurons (their signal correlations) but are preserved across different stimulus sets - noise correlations recorded using drifting gratings are highly correlated with those measured using naturalistic videos. Based on these findings, the manuscript concludes that populations of neurons with high NCs constitute discrete communication channels that convey visual signals within and across cortical areas.

      Experiments and analyses are conducted to a high standard and the robustness of noise correlation measurements is carefully validated. However, the interpretation of noise correlation measurements as a proxy from network connectivity is fraught with challenges. While the data clearly indicates the existence of distributed functional ensembles, the notion of communication channels implies the existence of direct anatomical connections between them, which noise correlations cannot measure.

      The traditional view of noise correlations is that they reflect direct connectivity or shared inputs between neurons. While it is valid in a broad sense, noise correlations may reflect shared top-down input as well as local or feedforward connectivity. This is particularly important since mouse cortical neurons are strongly modulated by spontaneous behavior (e.g. Stringer et al, Science, 2019). Therefore, noise correlation between a pair of neurons may reflect whether they are similarly modulated by behavioral state and overt spontaneous behaviors. Consequently, noise correlation alone cannot determine whether neurons belong to discrete communication channels.

      Behavioral modulation can influence the gain of sensory-evoked responses (Niell and Stryker, Neuron, 2010). This can explain why signal correlation is one of the best predictors of noise correlations as reported in the manuscript. A pair of neurons that are similarly gain-modulated by spontaneous behavior (e.g. both active during whisking or locomotion) will have higher noise correlations if they respond to similar stimuli. Top-down modulation by the behavioral state is also consistent with the stability of noise correlations across stimuli. Therefore, it is important to determine to what extent noise correlations can be explained by shared behavioral modulation.

      We thank the reviewer for the constructive and positive feedback on our study.

      The reviewer acknowledged the quality of our experiments and analysis and stated a concern that the noise correlation can be explained by top-down modulation. We have addressed this concern carefully in the revision, please see the General Response above.

      Reviewer #2 (Public Review):

      Summary:

      This groundbreaking study characterizes the structure of activity correlations over a millimeter scale in the mouse cortex with the goal of identifying visual channels, specialized conduits of visual information that show preferential connectivity. Examining the statistical structure of the visual activity of L2/3 neurons, the study finds pairs of neurons located near each other or across distances of hundreds of micrometers with significantly correlated activity in response to visual stimulation. These highly correlated pairs have closely related visual tuning sharing orientation and/or spatial and/or temporal preference as would be expected from dedicated visual channels with specific connectivity.

      Strengths:

      The study presents best-in-class mesoscopic-scale 2-photon recordings from neuronal populations in pairs of visual areas (V1-LM, V1-PM, V1-AL, V1-LI). The study employs diverse visual stimuli that capture some of the specialization and heterogeneity of neuronal tuning in mouse visual areas. The rigorous data quantification takes into consideration functional cell groups as well as other variables that influence trial-to-trial correlations (similarity of tuning, neuronal distance, receptive field overlap). The paper convincingly demonstrates the robustness of the clustering analysis and of the activity correlation measurements. The calcium imaging results convincingly show that noise correlations are correlated across visual stimuli and are strongest within cell classes which could reflect distributed visual channels. A simple simulation is provided that suggests that recurrent connectivity is required for the stimulus invariance of the results. The paper is well-written and conceptually clear. The figures are beautiful and clear. The arguments are well laid out and the claims appear in large part supported by the data and analysis results (but see weaknesses).

      Weaknesses:

      An inherent limitation of the approach is that it cannot reveal which anatomical connectivity patterns are responsible for observed network structure. The modeling results presented, however, suggest interestingly that a simple feedforward architecture may not account for fundamental characteristics of the data. A limitation of the study is the lack of a behavioral task. The paper shows nicely that the correlation structure generalizes across visual stimuli. However, the correlation structure could differ widely when animals are actively responding to visual stimuli. I do think that, because of the complexity involved, a characterization of correlations during a visual task is beyond the scope of the current study.

      An important question that does not seem addressed (but it is addressed indirectly, I could be mistaken) is the extent to which it is possible to obtain reliable measurements of noise correlation from cell pairs that have widely distinct tuning. L2/3 activity in the visual cortex is quite sparse. The cell groups laid out in Figure S2 have very sharp tuning. Cells whose tuning does not overlap may not yield significant trial-to-trial correlations because they do not show significant responses to the same set of stimuli, if at all any time. Could this bias the noise correlation measurements or explain some of the dependence of the observed noise correlations on signal correlations/similarity of tuning? Could the variable overlap in the responses to visual responses explain the dependence of correlations on cell classes and groups?

      With electrophysiology, this issue is less of a problem because many if not most neurons will show some activity in response to suboptimal stimuli. For the present study which uses calcium imaging together with deconvolution, some of the activity may not be visible to the experimenters. The correlation measure is shown to be robust to changes in firing rates due to missing spikes. However, the degree of overlap of responses between cell pairs and their consequences for measures of noise correlations are not explored.

      Beyond that comment, the remaining issues are relatively minor issues related to manuscript text, figures, and statistical analyses. There are typos left in the manuscript. Some of the methodological details and results of statistical testing also seem to be missing. Some of the visuals and analyses chosen to examine the data (e.g., box plots) may not be the most effective in highlighting differences across groups. If addressed, this would make a very strong paper.

      We thank the reviewer for acknowledging the contributions of our study.

      We agree with the reviewer that future studies on behaviorally engaged animals are necessary. Although we also agree with the reviewer that behavior studies are out the scope of the current manuscript, we have included additional analysis and discussion on whether and how top-down input would affect the NC connectivity in the revision. Please see the General Response above.

      Reviewer #3 (Public Review):

      Summary:

      Yu et al harness the capabilities of mesoscopic 2P imaging to record simultaneously from populations of neurons in several visual cortical areas and measure their correlated variability. They first divide neurons into 65 classes depending on their tuning to moving gratings. They found the pairs of neurons of the same tuning class show higher noise correlations (NCs) both within and across cortical areas. Based on these observations and a model they conclude that visual information is broadcast across areas through multiple, discrete channels with little mixing across them.

      NCs can reflect indirect or direct connectivity, or shared afferents between pairs of neurons, potentially providing insight on network organization. While NCs have been comprehensively studied in neuron pairs of the same area, the structure of these correlations across areas is much less known. Thus, the manuscripts present novel insights into the correlation structure of visual responses across multiple areas.

      Strengths:

      The study uses state-of-the art mesoscopic two-photon imaging.

      The measurements of shared variability across multiple areas are novel.

      The results are mostly well presented and many thorough controls for some metrics are included.

      Weaknesses:

      I have concerns that the observed large intra-class/group NCs might not reflect connectivity but shared behaviorally driven multiplicative gain modulations of sensory-evoked responses. In this case, the NC structure might not be due to the presence of discrete, multiple channels broadcasting visual information as concluded. I also find that the claim of multiple discrete broadcasting channels needs more support before discarding the alternative hypothesis that a continuum of tuning similarity explains the large NCs observed in groups of neurons.

      Specifically:

      Major concerns:

      (1) Multiplicative gain modulation underlying correlated noise between similarly tuned neurons

      (1a) The conclusion that visual information is broadcasted in discrete channels across visual areas relies on interpreting NC as reflecting, direct or indirect connectivity between pairs, or common inputs. However, a large fraction of the activity in the mouse visual system is known to reflect spontaneous and instructed movements, including locomotion and face movements, among others. Running activity and face movements are some of the largest contributors to visual cortex activity and exert a multiplicative gain on sensory-evoked responses (Niell et al, Stringer et al, among others). Thus, trial-by-fluctuations of behavioral state would result in gain modulations that, due to their multiplicative nature, would result in more shared variability in cotuned neurons, as multiplication affects neurons that are responding to the stimulus over those that are not responding ( see Lin et al, Neuron 2015 for a similar point).<br /> As behavioral modulations are not considered, this confound affects most of the conclusions of the manuscript, as it would result in larger NCs the more similar the tuning of the neurons is, independently of any connectivity feature. It seems that this alternative hypothesis can explain most of the results without the need for discrete broadcasting channels or any particular network architecture and should be addressed to support its main claims.

      (1b) In Figure 5 the observations are interpreted as evidence for NCs reflecting features of the network architecture, as NCs measured using gratings predicted NC to naturalistic videos. However, it seems from Figure 5 A that signal correlations (SCs) from gratings had non-zero correlations with SCs during naturalistic videos (is this the case?). Thus, neurons that are cotuned to gratings might also tend to be coactivated during the presentation of videos. In this case, they are also expected to be susceptible to shared behaviorally driven fluctuations, independently of any circuit architecture as explained before. This alternative interpretation should be addressed before concluding that these measurements reflect connectivity features.

      We thank the reviewer for acknowledging the contributions of our study.

      The reviewer suggested that gain modulation might be interfering with the interpretation of the NC connectivity. We have addressed this issue in the General Response above.

      Here, we will elaborate on one additional analysis we performed, in case it might be of interest. We carried out multiplicative gain modeling by implementing an established method (Goris et al. 2014 Nat Neurosci) on our dataset. We were able to perform the modeling work successfully. However, we found that it is not a suitable model for explaining the current dataset because the multiplicative gain induced a negative correlation. This seemed odd but can be explained. First, top-down input is not purely multiplicative but rather both additive and multiplicative. Second, the top-down modulation is high dimensional. Third, the firing rate of layer 2/3 mouse visual cortex neurons is lower than the firing rates for non-human primate recordings used in the development of the method (Goris et al. 2014 Nat Neurosci). Thus, we did not pursue the model further. We just mention it here in case the outcome might be of interest to fellow researchers.

      (2) Discrete vs continuous communication channels

      (2a) One of the author's main claims is that the mouse cortical network consists of discrete communication channels. This discreteness is based on an unbiased clustering approach to the tuning of neurons, followed by a manual grouping into six categories in relation to the stimulus space. I believe there are several problems with this claim. First, this clustering approach is inherently trying to group neurons and discretise neural populations. To make the claim that there are 'discrete communication channels' the null hypothesis should be a continuous model. An explicit test in favor of a discrete model is lacking, i.e. are the results better explained using discrete groups vs. when considering only tuning similarity? Second, the fact that 65 classes are recovered (out of 72 conditions) and that manual clustering is necessary to arrive at the six categories is far from convincing that we need to think about categorically different subsets of neurons. That we should think of discrete communication channels is especially surprising in this context as the relevant stimulus parameter axes seem inherently continuous: spatial and temporal frequency. It is hard to motivate the biological need for a discretely organized cortical network to process these continuous input spaces.

      (2b) Consequently, I feel the support for discrete vs continuous selective communication is rather inconclusive. It seems that following the author's claims, it would be important to establish if neurons belong to the same groups, rather than tuning similarity is a defining feature for showing large NCs.

      Thanks for pointing this out so that we can clarify.

      We did not mean to argue that the tuning of neurons is discrete. Our conclusions are not dependent on asserting a particular degree of discreteness. We performed GMM clustering to label neurons with an identity so that we could analyze the NC connectivity structure with a degree of granularity supported by the data. Our analysis suggested that communication happens within a class, rather than through mixed classes. We realized that using the term “discrete” may be confusing. In the revised text we used the term “unmixed” or “non-mixing” instead to emphasize that the communication happens between neurons belonging to the same tuning cluster, or class. 

      However, we do see how the question of discreteness among classes might be interesting to readers. To provide further information, we have included a new Fig. S2 to visualize the GMM classes using t-SNE embedding.

      Finally, as stated in point 1, the larger NCs observed within groups than across groups might be due to the multiplicative gain of state modulations, due to the larger tuning similarity of the neurons within a class or group.

      We have addressed this issue in the General Response above and the response to comment (1).

      Recommendations for the authors:

      Reviewing Editor (Recommendations For The Authors):

      A general recommendation discussed with the reviewers is to make use of behavioural recording to assess whether shared behaviourally driven modulations can explain the observed relation between SC and NC, independently of the network architecture. Alternatively, a simulation or model might also address this point as well as the possibility that the relation of SC and NC might be also independent of network architecture given the sparseness of the sensory responses in L2/3.

      We have addressed this in the General Response above.

      Broadly speaking, inferring network architecture based on NCs is extremely challenging. Consequently, the study could also be substantially improved by reframing the results in terms of distributed co-active ensembles without insinuation of direct anatomical connectivity between them.

      We agree that the inferring network architecture based on NCs is challenging. The current study has revealed some principles of functional networks measured by NCs, and we showed that cross-stimulus NC connectivity provides effective constraints to network modeling. We are explicit about the nature of NCs in the manuscript. For example, in the Abstract, we write “to measure correlated variability (i.e., noise correlations, NCs)”, and in the Introduction, we write “NCs are due to connectivity (direct or indirect connectivity between the neurons, and/or shared input)”. We are following conventions in the field (e.g., Sporns 2016; Cohen and Kohn 2011).

      Notice also that the abstract or title should make clear that the study was made in mice.

      Sorry for the confusion, we now clearly state the study was carried out in mice in the Abstract and Introduction.

      Reviewer #1 (Recommendations For The Authors):

      The manuscript presents a meticulous characterization of noise correlations in the visual cortical network. However, as I outline in the public review, I think the use of noise correlations to infer communication channels is problematic and I urge the authors to carefully consider this terminology. Language such as "strength of connections" (Figure 4D) should be avoided.

      We now state in the figure legend that the plot in Fig. 4D shows the average NC value.

      My general suggestion to the authors, which primarily concerns the interpretation of analyses in Figures 4-6, is to consider the possible impact of shared top-down modulation on noise correlations. If behavioral data was recorded simultaneously (e.g. using cameras to record face and body movements), behavioral modulation should be considered alongside signal correlation as a possible factor influencing NCs.

      We have addressed this issue in the General Response above.

      I may be misunderstanding the analysis in Figure 4C but it appears circular. If the fraction of neurons belonging to a particular tuning group is larger, then the number of in-group high NC pairs will be higher for that group even if high NC pairs are distributed randomly. Can you please clarify? I frankly do not understand the analysis in Figure 4D and it is unclear to me how the analyses in Figure 4C-D address the hypotheses depicted in the cartoons.

      Sorry for the confusion, we have clarified this in the Fig. 4 legend.

      Each HVA has a SFTF bias (Fig. 1E,F; Marshel et al., 2011; Andermann et al., 2011; Vries et al., 2020). Each red marker on the graph in Fig. 4C is a single V1-HVA pair (blue markers are within an area) for a particular SFTF group (Fig. 1). The x-axis indicates the number of high NC pairs in the SFTF group in the V1-HVA pair divided by the total number of high NC pairs per that V1-HVA pair (summed over all SFTF groups). The trend is that for HVAs with a bias towards a particular SFTF group, there are also more high NC pairs in that SFTF group, and thus it is consistent with the model on the right side. This is not circular because it is possible to have a SFTF bias in an HVA and have uniformly low NCs. The reviewer is correct that a random distribution of high NCs could give a similar effect, which is still consistent with the model: that the number of high NC pairs (and not their specific magnitudes) can account for SFTF biases in HVAs.

      To contrast with that model, we tested whether the average NC value for each tuning group varies. That is, can a small number of very high NCs account for SFTF biases in HVAs? That is what is examined in Fig. 4D. We found that the average NC value does not account for the SFTF biases. Thus, the SFTF biases were not related to the modulation in NC (i.e., functional connection strength). 

      I found the discussion section quite odd and did not understand the relevance of the discussion of the coefficient of variation of various quantities to the present manuscript. It would be more useful to discuss the limitations and possible interpretations of noise correlation measurements in more detail.

      We have revised the discussion section to focus on interpreting the results of the current study and comparing them with those of previous studies.

      Figure 3B: please indicate what the different colors mean - I assume it is the same as Figure 3A but it is unclear.

      We added text to the legend for clarification.

      Typos: Page 7: "direct/indirection wiring", Page 11: "pooled over all texted areas"

      We have fixed the typos.

      Reviewer #2 (Recommendations For The Authors):

      The significance of the results feels like it could be articulated better. The main conclusion is that V1 to HVA connections avoid mixing channels and send distinctly tuned information along distinct channels - a more explicit description of what this functional network understanding adds would be useful to the reader.

      Thanks for the suggestion. We have edited the introduction section and the discussion section to make the take-home message more clear.

      Previous studies with anatomical data already indicate distinctly tuned channels - several of which the authors cite - although inconsistently:

      • Kim et al 2018 https://doi.org/10.1016/j.neuron.2018.10.023

      • Glickfeld et al., 2013 (cited)

      • Han et al., 2022 (cited)

      • Han and Bonin 2023 (cited)

      Thanks for the suggestion, we now cite the Kim et al. 2018 paper.

      I think the information you provide is valuable - but the value should be more clearly spelled out - This section from the end of the discussion for example feels like abdicates that responsibility:<br /> "In summary, mesoscale two-photon imaging techniques open up the window of cellular-resolution functional connectivity at the system level. How to make use of the knowledge of functional connectivity remains unclear, given that functional connectivity provides important constraints on population neuron behavior."

      A discussion of how the results relate to previous studies and a section on the limitations of the study seems warranted.

      Thanks for the suggestion, we have extensively edited the discussion section to make the take-home message clear and discuss prior studies and limitations of the present study.

      Details:

      Analyses or simulations showing that the dependency of correlations on similarity of tuning is not an artifact of how the data was acquired is in my mind missing and if that is the case it is crucial that this be addressed.

      At each step of data analysis, we performed control analysis to assess the fidelity of the conclusion. For example, on the spike train inference (Fig. S4), GMM clustering (Fig. S1), and noise correlation analysis (Figs. 2, S5).

      None of the statistical testing seems to use animals as experimental units (instead of neurons). This could over-inflate the significance of the results. Wherever applicable and possible, I would recommend using hierarchical bootstrap for testing or showing that the differences observed are reproducible across animals.

      We analyzed the tuning selectivity of HVAs (Fig. 1F) using experimental units, rather than neurons. It is very difficult to observe all tuning classes in each experiment, so pooling neurons across animals is necessary for much of the analysis. We do take care to avoid overstating statistical results, and we show the data points in most figure to give the reader an impression of the distributions.

      Page 2. "The number of neurons belonged to the six tuning groups combined: V1, 5373; LM, 1316; AL, 656; PM, 491; LI, 334." Yet the total recorded number of neurons is 17,990. How neurons were excluded is mentioned in Methods but it should be stated more explicitly in Results.

      We have added text in the Fig. 1 legend to direct the audience to the Methods section for information on the exclusion / inclusion criteria.

      Figure 1C, left. I don't understand how correlation is the best way to quantify the consistency of class center with a subset of data. Why not use for example as the mean square error. The logic underlying this analysis is not explained in Methods.

      Sorry for the confusion, we have clarified this in the Methods section.

      We measured the consistency of the centers of the Gaussian clusters, which are 45-dimensional vectors in the PC dimensions. We measured the Pearson correlation of Gaussian center vectors independently defined by GMM clustering on random subsets of neurons. We found the center of the Gaussian profile of each class was consistent (Fig. 1C). The same class of different GMMs was identified by matching the center of the class.

      Figure 1E. There are statements in the text about cell groups being more represented in certain visual areas. These differences are not well represented in the box plots. Can't the individual data points be plotted? I have also not found the description and results of statistical testing for these data.

      We have replotted the figure (now Fig. 1F) with dot scatters which show all of the individual experiments.

      Figure 2A, right, since these are paired data, I am not quite sure why only marginal distributions are shown. It would be interesting to know the distributions of correlations that are significant.

      This is only for illustration showing that NCs are measurable and significantly different from zero or shuffled controls. The distribution of NCs is broad and has both positive and negative values. We are not using this for downstream analysis.

      Figure 4A, I wonder if it would not be better to concentrate on significant correlations.

      We focused on large correlation values rather than significant values because we wanted to examine the structure of “strongly connected” neuron pairs. Negative and small correlation values can be significant as well. Focusing on large values would allow us to generate a clear interpretation.  

      Figure 4B, 'Mean strength of connections' which I presume mean correlations is not defined anywhere that I can see.

      I believe the reviewer means Fig. 4D. It means the average NC value. We have edited the figure legend to add clarity.

      Figure 4F, a few words explaining how to understand the correlation matrix in text or captions would be helpful.

      Sorry for the confusion, we have clarified this part in figure legend for Fig. 4F.

      Page 5, right column: Incomplete sentence: "To determine whether it is the number of high NC pairs or the magnitude of the NCs,".

      We have edited this sentence.

      Page 5, right column: "Prior findings from studies of axonal projections from V1 to HVAs indicated that the number of SF-TF-specific boutons -rather than the strength of boutons- contribute to the SF-TF biases among HVAs (Glickfeld et al., 2013)." Glickfeld et al. also reported that boutons with tuning matched to the target area showed stronger peak dF/F responses.

      Thank you. We have revised this part accordingly.

      Page 9, the Discussion and Figure 7 which situates the study results in a broader context is welcome and interesting, but I have the feeling that more words should be spent explaining the figure and conceptual framework to a non-expert audience. I am a bit at a loss about how to read the information in the figure.

      Sorry for the confusion, we have added an explanation about this section (page 10, right column).

      As far as I can see, data availability is not addressed in the manuscript. The data, code to analyze the data and generate the figures, and simulation code should be made available in a permanent public repository. This includes data for visual area mapping, calcium imaging data, and any data accessory to the experiments.

      We have stated in the manuscript that code and data are available upon request. We regularly share data with no conditions (e.g., no entitlement to authorship), and we often do so even prior to publication.

      The sex of the mice should be indicated in Figure T1.

      The sex of the mice was mixed. This is stated in the Methods section.

      Methods:

      Section on statistical testing, computation of explained variance missing, etc. I feel many analyses are not thoroughly described.

      Sorry for the confusion, we have improved our method section.

      Signal correlation (similarity between two neurons' average responses to stimuli) and its relation to noise correlation is not formally defined.

      We have included the definition of signal correlation in the Methods.

      Number of visual stimulation trials is not stated in Methods. Only stated figure caption.

      The number of visual stimulus trials is provided in the last paragraph of the Methods section (Visual Stimuli).

      Fix typos: incorrect spelling, punctuation, and missing symbols (e.g. closing parentheses).

      We have carefully examined the spelling, punctuation, and grammar. We have corrected errors and we hope that none remain.

      Why use intrinsic imaging to locate retinotopic boundaries in mice already expressing GCaMP6s?

      We agree with the reviewer that calcium imaging of visual cortex can be used to identify the visual cortex.

      It is true that areas can be mapped using the GCaMP signals. That is not our preferred approach. Using intrinsic imaging to define the boundary between V1 and HVAs has been a well refined routine in our lab for over a decade. It is part of our standard protocol. One advantage is that the data (from intrinsic signals) is of the same nature every time. This enables us to use the same mapping procedure no matter what reporters mice might be expressing (and the pattern, e.g., patchy or restricted to certain cell types).

      Reviewer #3 (Recommendations For The Authors):

      The possibilty that larger intra-group NCs observed simply reflect a multiplicative gain on cotuned neurons could be addressed using pupil and/or face recordings: Does pupil size or facial motion predict NCs and if factored out, does signal correlation still predict NCs?

      Perhaps a variant of the network model presented in Figure 6 with multiplicative gain could also be tested to investigate these issues.

      We have addressed this issue in general response.

      Here, we will elaborate on one additional analysis we performed, in case it might be of interest. We carried out multiplicative gain modeling by implementing an established method (Goris et al. 2014 Nat Neurosci) on our dataset. We were able to perform the modeling work successfully. However, we found that it is not a suitable model for explaining the current dataset because the multiplicative gain induced a negative correlation. This seemed odd but can be explained. First, top-down input is not purely multiplicative but rather both additive and multiplicative. Second, the top-down modulation is high dimensional. Third, the firing rate of layer 2/3 mouse visual cortex neurons is lower than the firing rates for non-human primate recordings used in the development of the method (Goris et al. 2014 Nat Neurosci). Thus, we did not pursue the model further. We just mention it here in case the outcome might be of interest to fellow researchers.

      Similarly further analyses can be done to strengthen support for the claims that the observed NCs reflect discrete communication channels. A direct test of continuous vs categorical channels would strengthen the conclusions. One possible analysis would be to compare pairs with similar tuning (same SC) belonging to the same or different groups.

      Thanks for pointing this out so that we can clarify.

      We did not mean to argue that the tuning of neurons is discrete. Our conclusions are not dependent on asserting a particular degree of discreteness. We performed GMM clustering to label neurons with an identity so that we could analyze the NC connectivity structure with a degree of granularity supported by the data. Our analysis suggested that communication happens within a class, rather than through mixed classes. We realized that using the term “discrete” may be confusing. In the revised text we used the term “unmixed” or “non-mixing” instead to emphasize that the communication happens between neurons belonging to the same tuning cluster, or class. 

      However, we do see how the question of discreteness among classes might be interesting to readers. To provide further information, we have included a new Fig. S2 to visualize the GMM classes using t-SNE embedding.

      I also found many places where the manuscript needs clarification and /or more methodological details:<br /> • How many times was each of the stimulus conditions repeated? And how many times for the two naturalistic videos? What was the total duration of the experiments?

      The number of visual stimulus trials is provided in the last paragraph of the Methods section entitled Visual Stimuli. About 15 trials were recorded for each drifting grating stimulus, and about 20 trials were recorded for each naturalistic video.

      • Typo: Suit2p should be Suite2p (section Calcium image processing - Methods).

      We have fixed the typo.

      • What do the error bars in Figure 1E represent? Differences in group representation across areas from Figure 1E are mentioned in the text without any statistical testing.

      We have revised the Figure 1E (current Fig. 1F), and we now show all data points.

      • The manuscript would benefit from a comparison of the observed area-specific tuning biases across areas (Figure 1E and others) with the previous literature.

      We have included additional discussion on this in the last paragraph of the section entitled Visual cortical neurons form six tuning groups.

      • Why are inferred spike trains used to calculate NCs? Why can't dF/F be used? Do the results differ when using dF/F to calculate NC? Please clarify in the text.

      We believe inferred spike trains provide better resolution and make it easier to compare with quantitative values from electrical recordings. Notice that NC values computed using dF/F can be much larger than those computed by inferred spike trains. For example, see Smith & Hausser 2010 Nat Neurosci. Supplementary Figure S8.

      • The sentence seems incomplete or unclear: "That is, there are more high NC pairs that are in-group." Explicit vs what?

      We have revised this sentence.

      • Figure 1E is unclear to me. What is being plotted? Please add a color bar with the metric and the units for the matrix (left) and in the tuning curves (right panels). If the Y and X axes represent the different classes from the GMM, why are there more than 65 rows? Why is the matrix not full?

      We have revised this figure. Fig. 1D is the full 65 x 65 matrix. Fig. 1F has small 3x3 matrices mapping the responses to different TF and SF of gratings. We hope the new version is clearer.

      • How are receptive fields defined? How are their long and short axes calculated? How are their limits defined when calculating RF overlap?

      We have added further details in the Methods section entitled “Receptive field analysis”.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This study uses an online cognitive task to assess how reward and effort are integrated in a motivated decision-making task. In particular the authors were looking to explore how neuropsychiatric symptoms, in particular, apathy and anhedonia, and circadian rhythms affect behavior in this task. Amongst many results, they found that choice bias (the degree to which integrated reward and effort affect decisions) is reduced in individuals with greater neuropsychiatric symptoms, and late chronotypes (being an 'evening person').

      Strengths:

      The authors recruited participants to perform the cognitive task both in and out of sync with their chronotypes, allowing for the important insight that individuals with late chronotypes show a more reduced choice bias when tested in the morning.<br /> Overall, this is a well-designed and controlled online experimental study. The modelling approach is robust, with care being taken to both perform and explain to the readers the various tests used to ensure the models allow the authors to sufficiently test their hypotheses.

      Weaknesses:

      This study was not designed to test the interactions of neuropsychiatric symptoms and chronotypes on decision making, and thus can only make preliminary suggestions regarding how symptoms, chronotypes and time-of-assessment interact.

      Reviewer #2 (Public Review):

      Summary:

      The study combines computational modeling of choice behavior with an economic, effort-based decision-making task to assess how willingness to exert physical effort for a reward varies as a function of individual differences in apathy and anhedonia, or depression, as well as chronotype. They find an overall reduction in effort selection that scales with apathy, anhedonia and depression. They also find that later chronotypes are less likely to choose effort than earlier chronotypes and, interestingly, an interaction whereby later chronotypes are especially unwilling to exert effort in the morning versus the evening.

      Strengths:

      This study uses state-of-the-art tools for model fitting and validation and regression methods which rule out multicollinearity among symptom measures and Bayesian methods which estimate effects and uncertainty about those estimates. The replication of results across two different kinds of samples is another strength. Finally, the study provides new information about the effects not only of chronotype but also chronotype by timepoint interactions which are previously unknown in the subfield of effort-based decision-making.

      Weaknesses:

      The study has few weaknesses. The biggest drawback is that it does not provide evidence for the idea that a match between chronotype and delay matters is especially relevant for people with depression or continuous measures like anhedonia and apathy. It is unclear whether disorders further interact with chronotype and time of day to determine a bias against effort. On the other hand, the study does provide evidence that future studies should consider such interactions when examining questions about effort expenditure in psychiatric disorders.

      Reviewer #3 (Public Review):

      Summary:

      In this manuscript, Mehrhof and Nord study a large dataset of participants collected online (n=958 after exclusions) who performed a simple effort-based choice task. They report that the level of effort and reward influence choices in a way that is expected from prior work. They then relate choice preferences to neuropsychiatric syndromes and, in a smaller sample (n<200), to people's circadian preferences, i.e., whether they are a morning-preferring or evening-preferring chronotype. They find relationships between the choice bias (a model parameter capturing the likelihood to accept effort-reward challenges, like an intercept) and anhedonia and apathy, as well as chronotype. People with higher anhedonia and apathy and an evening chronotype are less likely to accept challenges (more negative choice bias). People with an evening chronotype are also more reward sensitive and more likely to accept challenges in the evening, compared to the morning.

      Strengths:

      This is an interesting and well-written manuscript which replicates some known results and introduces a new consideration related to chronotype relationships which have not been explored before. It uses a large sample size and includes analyses related to transdiagnostic as well as diagnostic criteria.

      Weaknesses:

      The authors do not explore how chronotype and depression are related (does one mediate the effect of the other etc). Both variables are included in the same model in the revised article now which is a great improvement, but it also means psychopathology and circadian rhythms are treated as distinct phenomena and their relationship in predicting effort-reward preferences is not examined.

      Recommendations for the authors:

      Reviewer #3 (Recommendations For The Authors):

      Two points in response to changes the authors made:

      (1) "motivational tendency" is in our opinion not an improved phrase over "choice bias". A paper by Jon Roiser calls it "overall bias to accept effortful challenges" (but that's maybe too long?)

      We thank the reviewer for their suggestion of renaming our computational parameter and agree it would be of value to introduce and label this parameter in line with other work, improving consistency across the literature. Hence, we have updated our manuscript and now introduce the parameter as bias to accept effortful challenges for reward and refer to the parameter as acceptance bias thereafter.

      We have updated this nomenclature throughout the manuscript text, figures and supplement.

      (2) The new title "Both neuropsychiatric symptoms and circadian rhythm alter effort-based decision-making" sounds slightly causal (as would be the case in a longitudinal or intervention study). Maybe instead the authors could use "are associated with" or similar?

      We agree with the reviewers that our current title could be interpreted in a causal manner. We have updated our title to now read A common alteration in effort-based decision-making in apathy, anhedonia, and late circadian rhythm.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 Public:

      - The authors should carefully address the potential confounding of not counterbalancing the conditions of the first trial in both interoceptive tasks for the 9-month and 18-month age groups. The results of these groups could indeed be driven by having seen the synchronous trial first. 

      Upon addressing this comment, we noticed an error in our presentation scripts that resulted in a fixed-experimental design for most of the infants. Therefore, it is crucial to investigate the impact of the fixed-experimental design on our results. We have conducted extensive additional analyses comparing data from infants with the inadvertent fixed design to data from infants for whom the randomization was achieved as intended, which can be found in Supplementary Materials A. In summary, we do not find that the fixed order design had a strong impact on the findings, as we do not find that looking behavior differed systematically between different randomization orders, while also looking patterns across ages and tasks indicate that we were able to adequately capture variance associated with these features. Further, we have adapted the interpretation of the results across the manuscript to acknowledge the experimental error and its implications on the interpretation of the results.

      For instance, on pages 30 and 31 we have added the following paragraphs:

      “The data presented in this study holds several limitations. First, due to an error in our experimental scripts we unintentionally used a fixed-order design, in which almost all infants saw the same fixed order of condition (always starting with a synchronous trial), image assigned to condition, and location of the image (left/right) instead of a semi-randomized design. Such a fixed-order design holds several important limitations as visual preferences might be influenced by the experimental design, i.e., the first trial always being synchronous might have influenced a mean group preference. Further, we cannot rule out that mean group preferences were influenced by the stimuli used (as in most cases the same stimuli were used for synchronous/asynchronous trials) or by the location of the image in a given trial (left/right). Still, there is no strong theoretical argument as to why image used or location should have an impact on infants’ preferences. The stimuli were selected to be similar to each other, in order not to evoke a piori preferences. To further illustrate the impact of the fixed order design we have conducted several additional analyses, which can be found in Supplementary Materials A, which do not indicate that there was a strong impact of the fixed-order design. Specifically, we find no evidence for systematic differences between infants tested with the fixed design and infants tested with a randomized design.

      Despite these limitations fixed-order designs also hold advantages, as they are more suitable to investigate individual differences (Dang et al., 2020; Hedge et al., 2018). When each participant is exposed to the same procedure, individual differences are less likely to be attributed to effects of randomization but are more likely to reflect real differences between participants. Also, when considering the impact of the randomization, one must consider our results in relation to earlier studies (Maister et al. 2017, Weijs et al. 2022, Imafuku et al. 2023), some of which used the exact same stimuli as we did (Maister et al., 2017), with fully randomized designs. Results of these studies indicate no looking times differences depending on the stimulus assigned to each condition or systematic preferences for one of the stimuli.”

      - The conclusion that cardiac interoception remains stable across infancy is not fully warranted by the data. Given the small sample size of 18-month-old toddlers included in the final analyses, it might be misleading to state this without including the caveat that the study may be underpowered. In other words, the small sample size could explain the direction of the results for this age group. 

      We agree with the reviewer and explicitly acknowledge this issue now in the discission, p.  23: 

      “However, due to the small sample size at 18 months the results regarding changes and stability of interoceptive sensitivity in the second year of life must be considered speculative and need to be validated in further research.”

      Reviewer #1 (Recommendations For The Authors): 

      Below are some comments that the authors may wish to take into account: 

      - Why did the authors choose to apply different statistical analyses across the dataset (i.e. Bayesian t-test is used with the 3-month-old sample, whereas a paired t-test is used for the 9 and 18-month-olds)? 

      The use of different statistical analyses was driven by the timeline of the project, as we had to update our initial plans. Due to challenges related to the Covid-19 pandemic, it was not possible to recruit 3-month-old babies for out study at the time we started the data collection. Thus, we first collected the 9- and 18-month-olds, and the 3-month-olds later. For the 9- and 18-month-old samples we aimed at directly replicating the approach by Maister et al. (2017). However, for the 3-month-olds we wanted to focus more on classification of the strength of evidence in favor/against an effect, taking the results of the equivalence tests for the 9- and 18-month-olds into account.

      The following parts have been added to the manuscript to clarify our approach:

      Sample (p 33): “The 3-month-old sample was tested after completion of the 9- and 18-monthold samples. Initially, we had planned to start data collection with the 3-month-old sample.

      However, due to the Covid-19 pandemic this was not possible.”

      Statistical analysis (p. 41): “At 3 months we used a Bayesian paired t-test as the data collection was done after having collected the 9- and 18-month-old samples. Our intention in the analysis of the 3-month-old sample was to focus more strongly on strength of evidence in favor of/against an effect instead of a binary classification for/against an effect.”

      - I found the way in which sample sizes are reported a little unclear. This may be due to having the Results section before the Methods section (in line with journal requirements), but it would be helpful if the authors could clarify their sample size from the outset. For example, sample size for the 3-month-olds first says N = 80 (page 9), but then it becomes apparent that N = 53 completed the iBEAT and N = 40 completed the iBREATH. I think for the purpose of explaining the results, it might be more helpful to the reader to only know the final sample size and then specify recruited participants and dropout in the Methods. 

      We have adapted the description of sample sizes in the Results section. We now only refer to the number of infants included in a given analysis when reporting the results of the analysis. In addition, we have added the following clarification for the MEGA analysis (p. 11): “This approach allowed us to include 135 observations for the iBEATs from 125 infants, and 120 observations for the iBREATH from 107 infants. The sample size differs slightly from our preregistered approach given that we used the same preprocessing approach for the MEGAanalysis for all samples. “ 

      In addition, we now refer to the sample of the MEGA-analysis in the abstract, to make the understanding of our approach more intuitive.

      - I think the sentence "Interestingly, we find evidence for a positive relationship between cardiac and respiratory perception in our 18-month-old sample" at page 25 could be deleted given that the small sample size of 18-month-olds suggests this result should be interpreted with caution. The authors already explained this in the earlier paragraph (page 24) and simply re-stating this (weak) effect without further elaborating may not be necessary. 

      We have removed the sentence.

      - In multiple places in the manuscript, the authors hint at the association between interoception and certain social and self-related abilities (e.g. joint attention, mirror self-recognition), however, these are not fully elaborated on. Could the authors elaborate on the relation between mirror self-recognition and respiratory interoception (page 30)? Why would the ability to recognise the self-face be associated with the individual's ability to perceive their breathing pattern? How these two processes may be linked is not immediately obvious. 

      We have rephrased the sentence on page 30 to highlight that the increase in respiratory perception found in our results happens at a similar age as increases in other domains that might be related to interoception. “A hypothesis to be tested in future research is that developmental improvement in respiratory perception might be related to increases in other domains that show links to interoception. For instance, self-perception matures towards the end of the second year of life and has been conceptually related to interoception (Fotopoulou & Tsakiris, 2017; Musculus et al., 2021). Further, gross motor development may be considered in future research, which drastically matures in the first two years of life (WHO Multicentre Growth Reference Study Group, 2006) and has been shown to be related to respiratory function in children with cerebral palsy (Kwon & Lee, 2014).”

      - Aren't the 18-month-old infants effectively 19-month-olds? The mean age is 576.65 days, and the age window of recruitment was between 18 and 20 months. 

      We have added a sentence clarifying how we refer to the infants age ranges. “To stay coherent, we refer to each age group throughout the manuscript with regard to the lower end of the age range in which we included infants (e.g., we tested infants between 9 and 10 months, but refer to them as the 9-month-old group).”

      Reviewer #2 Public:

      Weaknesses: 

      (1) My primary concern is that this study did not counterbalance the conditions of the first trial in both iBEAT and iBREATH tests for the 9-month and 18-month age groups. In these tests, the first trial invariably involved a synchronous stimulus. I believe that the order of trials can significantly influence an infant's looking duration, and this oversight could potentially impact the results, especially where a marked preference for synchronous stimuli was observed among infants. 

      Upon conducting further analyses to address this comment, we noticed an error in our presentation scripts that resulted in the inadvertent use of a fixed-experimental design for most infants. Therefore, we have conducted extensive additional analysis which can be found in Supplementary Materials A. Specifically, we compared data from infants who were tested with the inadvertent fixed design to data from infants for whom the randomization was achieved as intended. Further, we have adapted the interpretation of the results across the manuscript to acknowledge the experimental error and its potential implications for the interpretation of the results.

      (2) The analysis indicated that the study's sample size was too small to effectively assess the effects within each age group. This limitation fundamentally undermines the reliability of the findings. 

      We have added a statement addressing this issue to the limitation section: “The reduced sample size might have impacted the statistical power to detect mean preferences for some age groups. Still, it must be noted that even the smaller sample sizes included were of similar size as used in previous studies on infant interoceptive sensitivity (Imafuku et al., 2023; Maister et al., 2017; Weijs et al., 2023).”

      (3) The authors attribute the infants' preferential-looking behavior solely to the effects of familiarity and novelty. However, the meaning of "familiarity" in relation to external stimuli moving in sync with an infant's heartbeat or breathing is not clearly defined. A deeper exploration of the underlying mechanisms driving this behavior, such as from the perspectives of attention and perception, is necessary. 

      We have adapted the respective paragraph in the discussion to clarify the term familiarity, and to also address that other aspects of attention and perception, might be relevant (p. 25): 

      “In this context familiarity might refer to the infant’s perception of congruence between internal signal and external stimuli which might drive the infant’s attention. Specifically, the synchronous condition should be easier to process due to the intersensory redundancy and predictability between interoceptive and external signals. “

      “However, it is important to consider that other cognitive and attentional mechanisms could also influence these responses.”

      Reviewer #2 (Recommendations For The Authors):  

      Introduction: 

      (1) The relevance of respiration to self-regulation and social interaction was not clearly described. 

      We have rephrased the relevant section to highlight that the increase in respiratory perception found in our results happens at a similar age as increases in other domains that might be related to interoception. “A hypothesis to be tested in future research is that developmental improvement in respiratory perception might be related to increases in other domains that show links to interoception. For instance, self-perception matures towards the end of the second year of life and has been conceptually related to interoception (Fotopoulou & Tsakiris, 2017; Musculus et al., 2021). Further, gross motor development may be considered in future research, which drastically matures in the first two years of life (WHO Multicentre Growth Reference Study Group, 2006) and has been shown to be related to respiratory function in children with cerebral palsy (Kwon & Lee, 2014).”

      (2) In the last line of page 5, it might be more appropriate to use the term "meta-cognitive awareness" instead of "meta-perception," as the latter can refer to a different concept. 

      We have changed the word as recommended. 

      (3) The authors predicted a positive correlation in sensitivity between the cardiac and respiratory domains, despite studies in adults suggesting these are not related. How did the authors arrive at this prediction, and how do they interpret the results showing a correlation only in 18-montholds, the age group closest to adults in this study? 

      We have elaborated on our reasoning for our prediction (p. 7): “Adult cardiac and respiratory interoception paradigms typically use two conceptually different paradigms. Thus, null results in the adult literature might be due to the unique characteristics of those paradigms.”

      Further, we have expanded on this result in the discussion (p. 24): “Still, we find a relationship between cardiac and respiratory signals in the oldest sample tested here, the 18-month-olds, which is closest to adults. Although this effect needs to be interpreted with caution due to the small sample size, this might indicate that using conceptually similar experimental paradigms might be a promising avenue to investigate relationships between different interoceptive modalities in adults.”

      Results: 

      (4) Please provide the descriptive statistics (means and standard deviations of looking time) for each independent condition, especially for the 18-month and 3-month age groups where this information is missing and only differences in looking times between conditions were mentioned. Furthermore, since the asynchronous condition includes both fast and slow stimuli, descriptive statistics for each should be included to help readers determine whether effects are due to synchronicity or stimulus speed. 

      We have added the information on mean and sd of looking times to synch and asynch trials to the results section. Mean looking times to both types of asynchronous trials can be found in supplementary materials C. We have added the information about standard deviations to this part. 

      (5) Regarding the MEGA analysis for iBEATs, where a main effect of condition was found (OR = 1.13, t(1769) = 2.541, p = .011), are these t-value and p-value based on the GLMM analysis, or did the authors conduct a separate t-test? This query arises because the p-value of the main effect differs from that in Table 2. Also, is it conventional to present GLMM results in the manner of Table 2, comparing specific level combinations (i.e., synchronous condition and 3month age group), instead of listing main effects and interactions? 

      Thank you very much for pointing out that the results of the GLMM were not reported as precise as possible, which might lead to confusion over the presented p-values. The main effect of condition refers to a post-hoc comparison using estimated marginal means from the GLMM across all age groups, while Table 2 refers to the main effect of condition for age group 3 months. 

      To make the results more accessible we have restructured parts of the manuscript following your suggestions: In the main manuscript we now focus on the interaction effects for condition and age, as well as the post hoc comparison, while we now report null-full model comparison, and tables for all age groups in the supplements. 

      We have added the following clarifying sentences to the manuscript, p. 12:

      “In reporting these results we focus on whether we found evidence for interactions between age groups, and whether we found evidence for a general effect across age groups. In-depth results and tables can be found in Supplementary Materials C. 

      […]

      Next, we computed post hoc comparisons using estimated marginal means from the MEGAanalysis across all age groups to investigate whether we find indications for a similar effect across ages.”

      (6) I am confused about the results indicating a significant effect of condition for the iBREATH dataset excluding 18-month-olds (Table 5, OR = 1.15, t(1050) = 2.397, p = .017), as the description in Table 5 suggests no statistical significance (p = .070). The decision to exclude the 18-month group seems arbitrary, particularly since the age-by-condition interaction was not significant in the GLMM across all three age groups. 

      Thank you very much for the comment, we have removed the analysis excluding the 18-month-old group

      (7) Regarding the relationship between cardiac and respiratory interoceptive sensitivity, the statement "However, we found a significant interaction between iBEATs scores and age at the 18-month level" (p16) seems unclear. Clarification is needed, as mentioning age interaction at a specific age stage is unusual. A pairwise comparison between 3 and 9 months should also be included. 

      Thank you for pointing out that the results could be presented more clearly! Similar to the other MEGA analyses we have put detailed tables of the results of the beta regression in the supplements and have kept a single table with the most important results in the main manuscript. Further, we have clarified the text passage as follows: “However, we found a significant interaction between the iBEATs scores and age, specifically comparing the 3- and 18-month-old groups (β = 3.13, SE = 1.41, p = .027). This interaction indicates that the relationship between iBEATs and iBREATH scores changes between 3 and 18 months of age.”  Also, we have now included a pairwise comparison between 3- and 9-month-olds. 

      Discussion: 

      (8) In pages 27-28, the authors discuss the results of the specification curve analysis, but there is no explanation for the 7th entry (statistical analysis) in Table 9. This entry seems particularly important. 

      We did not include an explanation for the 7th entry, as the impact of the statistical test used was comparatively less pronounced. However, to acknowledge this result we have added the following sentence to the discussion: “Moreover, the statistical test used (paired t-test vs linear mixed model, Table 9, 7th entry) had a rather small impact on the results. However, given the large number of analyses conducted, this might be related to not being able to precisely formulate the model to fit the complexity of the data for each specification.”

      Methods: 

      (9) What were the colors of the stimuli? 

      We have added the colors of the stimuli to the methods section. Further, the stimuli can be found in the osf project associated with the manuscript.

      (10) The percentage of trials excluded during preprocessing should be stated. Additionally, the number of trials included in the statistical analyses for each condition (including synchronous, fast, and slow) should be detailed separately. 

      We have added information on numbers of trials completed and included in Table 7.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Amason et al. investigated the formation of granulomas in response to Chromobacterium violaceum infection, aiming to uncover the cellular mechanisms governing the granuloma response. They identify spatiotemporal gene expression of chemokines and receptors associated with the formation and clearance of granulomas, with a specific focus on those involved in immune trafficking. By analyzing the presence or absence of chemokine/receptor RNA expression, they infer the importance of immune cells in resolving infection. Despite observing increased expression of neutrophil-recruiting chemokines, treatment with reparixin (an inhibitor of CXCR1 and CXCR2) did not inhibit neutrophil recruitment during infection. Focusing on monocyte trafficking, they found that CCR2 knockout mice infected with C. violaceum were unable to form granulomas, ultimately succumbing to infection.

      The spatial transcriptomics data presented in the figures could be considered a valuable resource if shared, with the potential for improved and clarified analyses. The primary conclusion of the paper, that C. violaceum infection in the liver cannot be contained without macrophages, would benefit from clarification.

      We thank the reviewer for their time and effort in evaluating our manuscript.

      While the spatial transcriptomic data generated in the figures are interesting and valuable, they could benefit from additional information. The manual selection of regions of granulomas for analysis could use additional context - was the rest of the liver not sequenced, or excluded for other reasons? Including a healthy liver in the analysis could serve as a control for any lasting effects at the final time point of 21 days.

      We revised the text in the methods section to include additional information about manual selection of regions. The entire tissue section was sequenced, but using H&E as a guide, we manually selected each representative lesion and a surrounding layer of healthy hepatocytes at each timepoint. We agree that an uninfected control could be useful, however we did not include an uninfected mouse in the experiment because we were most interested in the cells that make up the granuloma, not hepatocytes outside the lesion. Additionally, we find that in the 21 DPI timepoint the surrounding hepatocytes appear to have returned to a homeostatic transcriptional state; at 21 DPI the majority of mice have undetectable CFU burdens.

      Providing more context for the scalebars throughout the spatial analyses, such as whether the data are raw counts or normalized based on the number of reads per spatial spot, would be helpful for interpretation, as changes in expression could signal changes in the numbers of cells or changes in the gene expression of cells.

      The scalebars for the SpatialFeaturePlots display the normalized gene expression values. The data are normalized based on the number of reads per spatial spot, using the sctransform method published in (Hafemeister & Satija, 2019). We agree that the changes in expression could result from changes in cell numbers and/or changes in gene expression on a per cell basis. However, the sctransform method is designed to preserve biological variation while minimizing technical effects observed in transcriptomics platforms. Regardless of the heterogeneity of sequencing depth, it is clear from these plots that gene expression changes dynamically over time and space, which was the focus of our analysis. We have updated the figure legends to clarify scalebar units, and revised the methods section. 

      In Figure 4, qualitative measurements are valuable, but having an idea of the raw data for a few of the pursued chemokines/receptors would aid interpretation

      All of the SpatialFeaturePlots utilized to generate Figure 4 have been included in the manuscript, either in the main figures or in the supplemental figures. For example, the SpatialFeaturePlots of Cxcl4, Cxcl9, and Cxcl10 are all in Figure 4 – figure supplement 1.

      In Figure 4 it would also be beneficial to clarify whether the reported values are across all clusters and consider focusing on clusters with the greatest change in expression.

      Figure 4 summarizes the expression of each gene at each timepoint for the entire selected area, independently of cluster identity. Different clusters do show variability in the relative change in expression. To better show these data, we have included an additional graphic that summarizes the top twenty upregulated genes for each cluster, many of which include chemokines (new Table 4). The average log2FC values for each of these genes can be found in Table 4 – source data 1.   

      Figures 5E and F would benefit from clarification regarding the x-axis units and whether the expression levels are summed across all clusters for each time point

      Figures 5E and 5F display the normalized gene expression values for all spots (independent of cluster identity) at each timepoint. We have updated the figure legend to reflect this clarification.

      Additionally, information on the sequencing depth of the samples would be helpful, particularly as shallow sequencing of RNA can result in poor capture of low-expression transcripts.

      We agree with the reviewer that sequencing depth is an additional factor to take into consideration. We have included an additional supplemental figure (Figure 1 – figure supplement 1A-B) to display raw counts spatially at the various timepoints, and within each cluster.

      Regarding the conclusion of the essentiality of macrophages in granuloma formation, it may be prudent to further investigate the role of macrophages versus CCR2. Consideration of experiments deleting macrophages directly, instead of CCR2, could provide more definitive evidence of the necessity of macrophage migration in containing infections.

      While CCR2 is expressed on a number of other cells besides monocytes, it is well-documented that loss of CCR2 results in accumulation of monocytes in the bone marrow and a significant reduction in the blood-monocyte population. As a result, monocytes are not recruited to the site of infection in numerous prior publications in the field; we confirm this as shown by flow cytometry and IHC. Nonetheless, future studies will aim to rescue Ccr2–/– mice via adoptive transfer of monocytes to further show that monocyte-derived macrophages are essential for defense against infection. We also intend to perform clodronate depletion experiments at various timepoints, however, clodronate will also deplete Kupffer cells and has off-target effects on neutrophils. Overall, the established importance of CCR2 for monocyte egress from the bone marrow and our observation that the macrophage ring fails to form give us sufficient confidence to conclude that monocyte-derived macrophages are essential for this innate granuloma.

      Analyzing total cell counts in the liver after infection could provide insight into whether the decrease in the fraction of macrophages is due to decreased numbers or infiltration of other cell types...

      Our flow data suggest that the decrease in macrophages in Ccr2–/– mice is due to both a decrease in macrophage number and an increase in the infiltration of other cell types (namely neutrophils). To better illustrate this, we now include an additional quantification of the total cell counts in the liver and spleen (new Figure 6 – figure supplement 1), which supports our conclusion that Ccr2–/– mice have a defect in granuloma macrophage numbers. We have also repeated the experiment to reach sufficient numbers to perform statistical analysis (revised Figure 6F–K).

      Reviewer #2 (Public Review):

      Summary:

      In this study, Amason et al employ spatial transcriptomics and intervention studies to probe the spatial and temporal dynamics of chemokines and their receptors and their influence on cellular dynamics in C. violaceum granulomas. As a result of their spatial transcriptomic analysis, the authors narrow in on the contribution of neutrophil- and monocyte-recruiting pathways to host response. This results in the observation that monocyte recruitment is critical for granuloma formation and infection control, while neutrophil recruitment via CXCR2 may be dispensable.

      We thank the reviewer for their thoughtful comments and suggestions.

      Strengths:

      Since C. violaceum is a self-limiting granulomatous infection, it makes an excellent case study for 'successful' granulomatous inflammation. This stands in contrast to chronic, unproductive granulomas that can occur during M. tuberculosis infection, sarcoidosis, and other granulomatous conditions, infectious or otherwise. Given the short duration of C. violaceum infection, this study specifically highlights the importance of innate immune responses in granulomas.

      Another strength of this study is the temporal analysis. This proves to be important when considering the spatial distribution and timing of cellular recruitment. For example, the authors observe that the intensity and distribution of neutrophil- and monocyte-recruiting chemokines vary substantially across infection time and correlate well with their previous study of cellular dynamics in C. violaceum granulomas.

      The intervention studies done in the last part of the paper bolster the relevance of the authors' focus on chemokines. The authors provide important negative data demonstrating the null effect of CXCR1/2 inhibition on neutrophil recruitment during C. violaceum infection. That said, the authors' difficulty with solubilizing reparixin in PBS is an important technical consideration given the negative result...

      We agree with the reviewer, and the limited solubility of reparixin and other chemokine-receptor inhibitors is a major caveat of this study and others in the field. In future studies, there are several other inhibitors that could be used to further assess the role of CXCR1/2.

      On the other hand, monocyte recruitment via CCR2 proves to be indispensable for granuloma formation and infection control. I would hesitate to agree with the authors' interpretation that their data proves macrophages are serving as a physical barrier from the uninvolved liver. It is possible and likely that they are contributing to bacterial control through direct immunological activity and not simply as a structural barrier.

      We agree that macrophages do not form a physical or structural barrier, a word that implies epithelial-like function. Instead, we agree that macrophages mostly act immunologically. We revised the text to remove the term barrier.

      Weaknesses:

      There are several shortcomings that limit the impact of this study. The first is that the cohort size is very limited. While the transcriptomic data is rich, the authors analyze just one tissue from one animal per time point. This assumes that the selected individual will have a representative lesion and prevents any analysis of inter-individual variability.

      Granulomas in other infectious diseases, such as schistosomiasis and tuberculosis, are very heterogeneous, both between and within individuals. It will be difficult to assert how broadly generalizable the transcriptomic features are to other C. violaceum granulomas...

      We thank the reviewers for highlighting this key difference between granulomas in other infectious diseases, and granulomas induced by C. violaceum. Based on many prior experiments, we observe that C. violaceum-induced granulomas are very reproducible between and within individuals (highlighted in our previous publication). As this is a major advantage of this model system, we chose specific timepoints based on key events that consistently occur in the majority of lesions assessed at each timepoint, allowing us to be confident in the selection of representative granulomas. However, it is worth noting that granulomas within an individual mouse are seeded and resolved somewhat asynchronously. This did indeed affect our spatial transcriptomic data, as the 7 DPI timepoint was not histologically representative of a typical 7 DPI granuloma. Therefore, we excluded the 7 DPI timepoint from our analyses.

      Furthermore, this undermines any opportunity for statistical testing of features between time points, limiting the potential value of the temporal data.

      We agree with the reviewer that there is much more characterization and quantification that can be done. As demonstrated by the abundance of spatial and temporal data for the chemokine family alone, the spatial transcriptomics dataset is rich and will likely supply us with many years of analyses and investigations. Our current approach is to use the spatial transcriptomics dataset as a hypothesis-generating tool, followed by in vivo studies that seek to uncover physiological relevance for our observations. In the current paper, the strength of the spatial transcriptomic data for CCL2, CCL7 and their receptor CCR2 prompted us to study Ccr2–/– mice. These mice then prove the relevance of the spatial transcriptomic data. In regard to conclusions about temporal changes in chemokine expression, in this manuscript we do not make conclusions that CCL2 is important at one timepoint but not another. We are characterizing the broad temporal trends of expression in order to cast a broad net to inform future in vivo studies. There is much work for us to do to explore all the induced chemokines and their receptors.

      Another caveat to these data is the limited or incompletely informative data analysis. The authors use Visium in a more targeted manner to interrogate certain chemokines and cytokines. While this is a great biological avenue, it would be beneficial to see more general analyses considering Visum captures the entire transcriptome. Some important questions that are left unanswered from this study are:

      What major genes defined each spatial cluster?...

      The initial characterization of each spatial cluster was performed in Harvest et al., 2023. In brief, we used a mixture of published single-cell sequencing data, histological-based parameters, and ImmGen to define each cluster. We have not re-stated those methods in the current manuscript, but instead reference our prior paper.

      What were the top differentially expressed genes across time points of infection?...

      Though the top differentially expressed genes for each cluster can be informative in some situations, we chose a more targeted approach because of the obvious importance of chemokines. Nonetheless, we have included an additional graphic that summarizes the top twenty upregulated genes for each cluster (new Table 4). The average log2FC values for each of these genes can be found in Table 4 – source data 1.  

      Did the authors choose to focus on chemokines/receptors purely from a hypothesis perspective or did chemokines represent a major signature in the transcriptomic differences across time points?

      We chose to focus on chemokines because of their obvious importance for recruitment of immune cells. They were also among the highest induced genes in the spatial transcriptome (new Table 4).

      In addition to the absence of deep characterization of the spatial transcriptomic data, the study lacks sufficient quantitative analysis to back up the authors' qualitative assessments...

      See above comment regarding statistical comparisons.

      Furthermore, the authors are underutilizing the spatial information provided by Visium with no spatial analysis conducted to quantify the patterning of expression patterns or spatial correlation between factors.

      Several factors make quantification challenging. Lesions grow considerably in size in the first few days of infection, and then shrink in size in the latter days. This makes quantification challenging between timepoints. Radial quantification is also challenging due to the irregular shapes of each granuloma (see comment below for further discussion). Most importantly, the key next experiments are to validate the importance of each chemokine and receptor in vivo. Once we know which ones are the most important, this will justify putting more effort into spatial quantitative analysis and patterning of expression for those chemokines. 

      Impact:

      The author's analysis helps highlight the chemokine profiles of protective, yet host protective granulomas. As the authors comment on in their discussion, these findings have important similarities and differences with other notable granulomatous conditions, such as tuberculosis. Beyond the relevance to C. violaceum infection, these data can help inform studies of other types of granulomas and hone candidate strategies for host-directed therapy strategies.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      The Visium analysis would be strengthened by

      (1) Showing several histology examples of granulomas at each timepoint to help aid the reader in seeing how 'representative' each Visium sample is...

      These histological analyses are performed in our previous manuscript, and indeed were a crucial aspect of the initial characterization of the spatial transcriptomics dataset, which was performed in Harvest et al., 2023. Full liver sections are shown in that paper at each timepoint, and readers can see that the architecture is highly reproducible.

      (2) Validating their results in other tissues, either with Visium or with more targeted assays for their study's key molecules, such as immunohistochemistry or in situ hybridization

      We agree on the importance of validation studies and have plans to perform single-cell RNA sequencing experiments to further enhance resolution. With key genes in mind, we then plan to perform more in vivo studies to assess physiological relevance of upregulated genes in specific cell types.

      At the very least it would be important to validate the expression of CXCL1 and CXCL2 in other tissues and at the protein level, given the importance of those findings

      We think that the reviewer is asking us to validate that CXCL1 and CXCL2 are actually expressed given the negative reparixin data. However, if we do prove that they are expressed, this will not resolve whether they have critical roles in neutrophil recruitment. To prove this, we would need either a better CXCR2 inhibitor or Cxcr2 knockout mice. Therefore, we are saving further exploration for the future. Regarding validating other chemokines, we establish that CCR2 is critical, and we now show by immunofluorescence and ELISA (new Figure 7 – figure supplement 4) that CCL2 is highly expressed in WT mice, and Ccr2–/– mice actually have strongly elevated CCL2 expression at 3 DPI compared to WT mice.

      In Figure 1B, the UMAP here is largely uninformative. To display the clusters, the authors should instead show a heatmap or equivalent visualization of which genes defined each cluster. It would be helpful for the authors to also write out the full name of each cluster before using the abbreviations shown.

      Please see our previous comment about the initial characterization of clusters performed in Harvest et al., 2023, which details the characteristic genes for each cluster. We have written the full names of each cluster in the legend of Figure 1.

      In Figure 1C the authors, use a binary representation of whether a cluster is present or not at a particular time point. However, the spot size is arbitrary, and the colors of the dots are the same as the cluster color code. It is not clear what threshold the authors (or SpatialDimPlots) use to declare a given cluster is present at a given time point. Therefore, this chart does not give any sense of the extent of each cluster's presence at each time. The authors should revisualize these data to display the abundance of each cluster at each timepoint. This could simply be done by adjusting the size of the circle or using a more traditional heatmap.

      We have now updated this graphic to display the extent of a cluster’s presence, with the size of each dot corresponding to the abundance of each cluster.

      In Figures 2 and 3 the authors describe the kinetics of each chemokine by cluster. While the dynamic expression is evident in the images, it is challenging to determine which clusters are driving expression in the absence of cluster annotation in those figures. The authors should support their visual findings with quantification of each factor in each cluster across time points.

      In Figure 5, violin plots are shown for Cxcl1 and Ccl2 that depict gene expression by each cluster. However, because each capture area is approximately 50 µm in diameter, the data do not achieve single-cell resolution and are not as informative as one would hope. Therefore, violin plots for each chemokine were not shown, though we have generated these graphics. We did not add these graphics to the revision because we did not think readers would generally want to see several pages of violin plots in the supplement. As mentioned, we plan to do single-cell RNA sequencing to further assess chemokine expression by each cell type present within the granulomas at key timepoints.

      With respect to the lack of spatial analysis, the authors describe certain transcript signals (ie. peripheral region versus central region of the granuloma) across each lesion. To back up these qualitative assertions, the authors could use line profiles from the center of each granuloma to the outside to plot the variation in expression of each transcript over radial space. This would provide a more direct way to determine the spatial coordination between various transcripts.

      We considered using line profiles to quantify spatial variation within each lesion at each timepoint. However, this was exceptionally challenging due to the asymmetrical nature of some lesions, and the size discrepancy at different timepoints as the granulomas grow (during infection) and shrink (during resolution). When attempting to decide where to draw the line profiles, we determined that this approach did not enhance our analyses beyond using the cluster overlay and H&E to identify and interrogate different clusters.

      The data visualization in Figure 4 seems unnecessarily confusing. The authors put the transcriptomic signal into categories of 'absent', 'low', 'medium', and 'high.' Why not simply use a continuous scale? The data would also benefit from hierarchical clustering of the heatmap rows to highlight chemokines and their receptors with similar expression patterns across time.

      We considered using a continuous scale as suggested by the reviewer. However, we chose not to create a continuous scale because quantitation is challenging due to the size changes in the lesions over time, such that larger lesions have greater inclusion of surrounding hepatocytes as well as necrotic cores, which would dilute the signal if averaged with the active immunologic granuloma zones. Figure 4 was intended to simplify the entirety of the SpatialFeaturePlots in an easy-to-digest manner, to aid in hypothesis generation as we consider the potential function of each chemokine and receptor in this model. We chose to organize each chemokine ligand based on family, maintaining a numerical order to allow Figure 4 to serve as a quick reference for anyone who is interested in a particular chemokine ligand or receptor.

      Do the authors feel confident in the transcriptomic signal coming from regions of necrosis? Given that many of their bright signals are coming from within clusters annotated as necrosis or necrosis-adjacent this raises an important technical consideration. Can the authors use the H&E image to estimate the cellular density (based on nuclear counts) in each region annotated by Visium? Are there any studies supporting the accurate performance of spatial transcriptomic methods in necrosis? Necrosis can be a source of non-specific binding during in situ hybridization assays.

      The reviewer raises a good point. A defining characteristic of the areas of necrosis is the lack of defined cell borders, with faded or absent nuclei. In these regions, it is impossible to estimate cellular density. Given these concerns, we have included an additional figure (new Figure 1 – figure supplement 1A-B) to display raw counts in each cluster across all timepoints. Though regions of necrosis do display lower read quantity compared to other areas, we are still confident in the positive transcriptomic signal coming from adjacent regions because there are plenty of negative examples in which expression is not detected. In other words, temporal and spatial upregulation of key genes is still observed in the tissues, and future experiments will aim to interrogate the physiological relevance of each gene, while validating the spatial transcriptomics data with other methodologies.

      The methods should include a much more detailed description of the tissue preparation and collection for the Visium experiment. The section on the computational analysis of the Visium data is also extremely limited. At a minimum, the authors should include details on how they performed clustering of the Visium regions.

      The detailed description of tissue preparation, computational analysis, and clustering is in our previous manuscript, from which this dataset originates. We can add a direct quote of the methodology if the reviewer requests.

      The cluster labels in Figure 5 A-B are very difficult to see. Furthermore, it would help if the authors displayed the annotated cluster names (ie. Those shown in 5C) instead of their numerical coding for a more direct interpretation of the data.

      We agree and have updated this figure with annotated cluster names.

      The scale bars in Figure 7 are very difficult to see.

      The scale bars in histology images were kept small intentionally so as not to occlude data, and eLife is an online-only, digital media platform which allows readers to sufficiently zoom on high-resolution histology images. We have increased the DPI resolution for histology images to further aid in visualization.

      The information presented in Tables 2 and 3 is greatly appreciated and will really help guide the reader through the analyses.

      We assembled this information for our own learning about chemokines and hope that it is useful for the reader.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      …the degree to which the predictions can vary according to environmental composition remains difficult to quantify, and the work does not address the sensitivity of the modeling predictions beyond a simulated medium containing 33 root exudates. I find this especially important given that relatively few (84 of 243) species were predicted to grow even after cross-feeding, suggesting that a richer medium could lead to different interaction network structures. While the authors do state the importance of environmental composition and have carefully designed an in silico medium, I believe that simulating a broader set of resource pools would add necessary insight into both the predictive power of the models themselves and trophic interactions in the rhizosphere more generally.

      The original analyses were indeed focused on a single well-defined environment supporting the growth of only a subset of the species. We have added a paragraph to the discussion section dealing with the potential limitations of this approach. 

      On line 289 we write:

      "Overall, the successive iterations connected 84 out of 243 native members of the apple rhizosphere GSMM community via trophic exchanges. The inability of the remaining bacteria to grow, despite being part of the native root microbiome, possibly reflects the selectiveness of the root environment, which fully supports the nutritional demands of only part of the soil species, whereas specific compounds that might be essential to other species are less abundant1. It is important to note that the specific exudate profile used here represent a snapshot of the root metabolome as root secretion-profiles are highly dynamic, reflecting both environmental and plant developmental conditions. A possible complementary explanation to the observed selective growth might be the partiality of our simulation platform, which examined only plant-bacteria and bacteria-bacteria interactions while ignoring other critical components of the rhizosphere system such as fungi, archaea, protists and mesofauna, as well as less abundant bacterial species, components all known to metabolically interact2. Finally, the MAG collection, while relatively substantial, represents only part of the microbial community. Accordingly, the iterative growth simulations represent a subset of the overall hierarchical-trophic exchanges in the root environment, necessarily reflecting the partiality of the dataset."

      In addition, we have tried to better explain the advantages of a limited/defined medium to such an analysis. On Line 231 we add:

      "By avoiding the inclusion of non-exudate organic metabolites, the true-to-source rhizosphere environment was designed to reveal the hierarchical directionality of the trophic exchanges in soil, as rich media often mask various trophic interactions taking place in native communities3"

      More generally, beyond the above justification of our specific medium selection, we agree that simulating a broader set of resource pools would contribute to a more comprehensive understanding of the trophic interactions. Therefore, we conducted the analysis in an additional environment, in which cellulose was used as an input. We were able to follow its well-documented degradation via multiple steps, conducted by different community members, to serve as a benchmark to our suggested framework. 

      On line 357 we add:

      "To validate the ability of MCSM to capture trophic dependencies and succession, we further tested whether it can trace the well-documented example of cellulose degradation - a multi-step process conducted by several bacterial strains that go through the conversion of cellulose and its oligosaccharide derivatives into ethanol, acetate and glucose, which are all eventually oxidized to CO24. Here, the simulation followed the trophic interactions in an environment provided with cellulose oligosaccharides (4 and 6 glucose units) on the 1st iteration (Supp. Table 3). The formed trophic successions detected along iterations captured the reported multi-step process (Supp.

      Fig.7)." 

      Finally, we have included additional text regarding the challenge of defining our simulation environment in the Discussion section. 

      On line 532 we add:

      "In the current study, the root environment was represented by a single pool of resources (metabolites). As genuine root environments are highly dynamic and responsive to stimuli, a single environment can represent, at best, a temporary snapshot of the conditions. Conductance of simulations with several sets of resource pools (e.g., representing temporal variations in exudation profile) can add insights regarding their effect on trophic interactions and community dynamics. In parallel, confirming predictions made in various environments will support an iterative process that will strengthen the predictive power of the framework and improve its accuracy as a tool for generating testable hypotheses. Similarly, complementing the genomicsbased approaches used here with additional layers of 'omics information (mainly transcriptomics & metabolomics) can further constrain the solution space, deflate the number of potential metabolic routes and yield more accurate predictions of GSMMs' performances5."

      And we add in Line 520:

      "For these reasons, among others, the framework presented here is not intended to be used as a stand-alone tool for determining microbial function. The framework presented is designed to be used as a platform to generate educated hypotheses regarding bacterial function in a specific environment in conjunction with actual carbon substrates available in the particular ecosystem under study. The hypotheses generated provide a starting point for experimental testing required to gain actual, targeted and feasible applicable insights6,7. While recognizing its limitations, this framework is in fact highly versatile and can be used for the characterization of a variety of microbial communities and environments. Given a set of MAGs derived from a specific environment and environmental metabolomics data, this computational framework provides a generic simulation platform for a wide and diverse range of future applications." 

      Reviewer #2 (Public review):

      There are two main drawback approaches like the one described here, both related only partially to the authors' work yet with great impact in the presented framework. First, the usage of automatic GSMM reconstruction requires great caution. It is indicative of how the semicurated AGORA models are still considered reconstructions and expect the user to parameterize those in a model. In this study, CarveMe was used. CarveMe is a well-known tool with several pros [1]. Yet, several challenges need to be considered when using it [2]. For example, the biomass function used might lead to an overestimation of auxotrophies. Also, as its authors admit in their reply paper, CarveMe does gap fill in a way [3]; models are constructed to ensure no gaps and also secure a minimum growth. However, curation of such a high number of GSMMs is probably not an option. Further, even if FVA is way more useful than FBA for the authors' aim, it does not yet ensure that when a species secretes one compound (let's say metabolite A), the same flux vector, i.e. the same metabolic functioning profile, secretes another compound (metabolite B) at the same time, even if the FVA solution suggests that metabolite B could be secreted in general.

      We thank Reviewer #2 for highlighting this key limitation of our analysis. Below and in the 'recommendations to authors' section we address these concerns. 

      Concerning the first point raised (models' accuracy) we have now clearly acknowledged in the text the limitations of using an automated GSMM reconstruction tool such as CarveMe. More generally, the framework applied here was built in order to meet the challenges of analyzing highthroughput data while acknowledging the inherent potential of introducing inaccuracies. Pros & cons are now discussed. 

      On line 507 we write:

      "Moreover, the use of an automatic GSMM reconstruction tool (CarveMe8), though increasingly used for depicting phenotypic landscapes, is typically less accurate than manual curation of metabolic models9. This approach typically neglects specialized functions involving secondary metabolism10 and introduces additional biases such as the overestimation of auxotrophies11,12. Nevertheless, manual curation is practically non-realistic for hundreds of MAGs, an expected outcome considering the volume of nowadays sequencing projects. As the primary motivation of this framework is the development of a tool capable of transforming high-throughput, low-cost genomic information into testable predictions, the use of automatic metabolic network reconstruction tools was favored, despite their inherent limitations, in pursuit of addressing the necessity of pipelines systematically analyzing metagenomics data." 

      Regarding using FVA solutions, indeed such solutions return all potential metabolic fluxes in GSMMs (ranges of all fluxes satisfying the objective function, which by default is set to biomass increase) in a given environment. However, as indicated by the reviewer, predicted fluxes do not necessarily co-occur (i.e., when a metabolite is secreted another metabolite is not necessarily secreted too), yet, they provide the full set of potential solutions (unlike the single solution provided by FBA). A possible strategy to reduce inflated predictions provided by FVA and further constrain the solution space (reduce the set of metabolic fluxes) can be the incorporation of additional `omics data layers, as for example was done in the work of Zampieri et al5. Such approach could allow for instance limiting active reactions (blocking fluxes) from the network reconstructions if not coming to play in situ, and therefore impose further constraints and narrow the solution space. We now refer in the text to this limitation and to potential routes to overcome it. 

      On line 541 we now write:

      Similarly, complementing the genomics-based approaches done here with additional layers of 'omics information (mainly transcriptomics & metabolomics) can further constrain the solution space, deflate the number of potential metabolic routes and yield more accurate predictions of GSMMs' performances5.  

      Reviewer #3 (Public review):

      When presenting a computational framework, best practices include running it on artificial (synthetic) data where the ground truth is known and therefore the precision and accuracy of the method may be assessed. This is not an optional step, the same way that positive/negative controls in lab experiments are not optional. Without this validation step, the manuscript is severely limited. The authors should ask themselves: what have we done to convince the reader that the framework actually works, at least on our minimal synthetic data? 

      Thank you for this suggestion. To validate the ability of MCSM to capture trophic succession, we conducted an additional analysis testing whether it can track the well documented example of cellulose degradation - a multi-step process conducted by several bacterial strains. This example has been included in the manuscript to serve as a case study (i.e. positive control) for metabolic interactions occurring within the bacterial community (Supp. Fig. 7). 

      On line 357 we add:

      "To validate the ability of MCSM to capture trophic dependencies and succession, we further tested whether it can track the well-documented example of cellulose degradation - a multi-step process conducted by several bacterial strains that go through the conversion of cellulose and its oligosaccharide derivatives into ethanol, acetate and glucose, which are all eventually oxidized to CO24. Here, the simulation followed the trophic interactions in an environment provided with cellulose oligosaccharides (4 and 6 glucose units) on the 1st iteration (Supp. Table 3). The formed trophic successions detected along iterations captured the reported multi-step process (Supp. Fig.

      7)."  

      "Supplementary Figure 7. Application of MCSM over the process of cellulose decomposition as described by Kato et al4. 5-partite network exhibiting the uptake of cellulose oligomers (4 and 6 units of connected D-glucose) by primary decomposers, through secretion of intermediate compounds and their metabolization by secondary decomposers to CO2. Distribution of phyla of primary and secondary decomposers is denoted by pie charts. Though MAGs were not constructed for the original species as in Kato et al., among the primary consumers, species corresponding to the Acidobacteria (Acidobacteriales)13, Actinobacteria14, Bacteriodetes15, Proteobacteria (Xanthomonadales)16 and Verrucobacteria17 groups are found to be capable of degrading cellulose compounds via enzymatic mechanisms."

      More generally, beyond the above addition, the relevance of the framework to the analysis of the data is discussed throughout the analysis (in the original version of the manuscript). We have scrutinized each of our observations in light of current available information and provided a corroborating evidence as well as a few discrepancies for multiple steps in the analysis.  Examples include the following discussions:

      On line 312, we discuss the biological relevance of taxonomic classes classified as primary versus secondary degraders

      "As in the full GSMM data set (Community bar, Fig. 3C), most of the species which grew in the 1st iteration belonged to the phyla Acidobacteriota, Proteobacteria, and Bacteroidota. This result concurred with findings from the work of Zhalnina et al, which reported that bacteria assigned to these phyla are the primary beneficiaries of root exudates18. Species from three out of the 17 phyla that did not grow in the first iteration - Elusimicrobiota, Chlamydiota, and Fibrobacterota, did grow on the 2nd iteration (Fig. 3C). Members of these phyla are known for their specialized metabolic dependencies. Such is the case for example with members of the Elusimicrobiota phylum, which include mostly uncultured species whose nutritional preferences are likely to be selective19.

      At the order level, bacteria classified as Sphingomonadales (class Alphaproteobacteria), a group known to include typical inhabitants of the root environment20, grew in the initial Root environment. In comparison, other root-inhabiting groups including the orders Rhizobiales and Burkholderiales_20, did not grow in the first iteration. _Rhizobiales and Burkholderiales did, however, grow in the second and third iterations, respectively, indicating that in the simulations, the growth of these groups was dependent on exchange metabolites secreted by other community members (Supp. Fig. 4)."

      On line 331, we provide support to the classification of specific metabolites as exchange molecules

      "Overall, 158 organic compounds were secreted throughout the MCSM simulation (from which 12 compounds overlapped with the original exudate medium). These compounds varied in their distribution and were mapped into 12 biochemical categories (Fig. 3D). Whereas plant secretions are a source of various organic compounds, microbial secretions provide a source of multiple vitamins and co-factors not secreted by the plant. Microbial-secreted compounds included siderophores (staphyloferrin, salmochelin, pyoverdine, and enterochelin), vitamins (pyridoxine, pantothenate, and thiamin), and coenzymes (coenzyme A, flavin adenine dinucleotide, and flavin mononucleotide) – all known to be exchange compounds in microbial communities21,22. In addition, microbial secretions included 11 amino acids (arginine, lysine, threonine, alanine, serine, phenylalanine, tyrosine, leucine, glutamate, isoleucine, and methionine), also known as a common exchange currency in microbial communities23. Some microbial-secreted compounds, such as phenols and alkaloids, were reported to be produced by plants as secondary metabolites24,25. Additional information regarding mean uptake and secretion degrees of compounds classified to biochemical groups is found in Supp. Fig. 5."

      On line 432, we provide corroborative support to the classification of exudates as associated with beneficial/non beneficial root communities

      "Notably, the S-classified root exudates included compounds reported to support dysbiosis and ARD progression. For example, the S-classified compounds gallic acid and caffeic acid (3,4-dihidroxy-trans-cinnamate) are phenylpropanoids – phenylalanine intermediate phenolic compounds secreted from plant roots following exposure to replant pathogens26. Though secretion of these compounds is considered a defense response, it is hypothesized that high levels of phenolic compounds can have autotoxic effects, potentially exacerbating ARD. Additionally, it was shown that genes associated with the production of caffeic acid were upregulated in ARD-infected apple roots, relative to those grown in γ-irradiated ARD soil27,28, and that root and soil extracts from replant-diseased trees inhibited apple seedling growth and resulted in increased seedling root production of caffeic acid29."

      On line 446, we provide a supporting evidence to the classification of secreted compounds as associated with beneficial/non beneficial root communities

      "Several secreted compounds classified as healthy exchanges (H) were reported to be potentially associated with beneficial functions. For instance, the compounds L-Sorbose (EX_srb__L_e) and Phenylacetaladehyde (EX_pacald_e), both over-represented in H paths (Fig. 5C), have been shown to inhibit the growth of fungal pathogens associated with replant disease30,31.

      Phenylacetaladehyde has also been reported to have nematicidal qualities32."

      On line 453 we discuss the correspondence of specific exudate uptakes and compound secretions via specific subnetwork motifs (PM) and their literature/experimental evidence 

      "Combining both exudate uptake data and metabolite secretion data, the full H-classified PM path 4-Hydroxybenzoate; GSMM_091; catechol (Fig. 4C; the consumed exudate, the GSMM, and the secreted compound, respectively) provides an exemplary model for how the proposed framework can be used to guide the design of strategies which support specific, advantageous exchanges within the rhizobiome. The root exudate 4-Hydroxybenzoate is metabolized by GSMM_091 (class Verrucomicrobiae, order Pedosphaerales) to catechol. Catechol is a precursor of a number of catecholamines, a group of compounds which was recently shown to increase apple tolerance to ARD symptoms when added to orchard6,33. This analysis (PM; Fig 4C), leads to formulating the testable prediction that 4-Hydroxybenzoate can serve as a selective enhancer of catecholamine synthesizing bacteria associated with reduced ARD symptoms, and therefore serve as a potential source for indigenously produced beneficial compounds."

      Moreover, we perceive our analysis as a strategy for integrating high throughput genomic data into testable predictions allowing narrowing the solution space while acknowledging potential inaccuracies that are inherent to the analysis. We have revised the text in order to clearly acknowledge this limitation.

      On line 497 we write: 

      "The framework we present is currently conceptual."

      On line 520 we write: 

      "For these reasons, among others, the framework presented here is not intended to be used as a stand-alone tool for determining microbial function. The framework presented is designed to be used as a platform to generate educated hypotheses regarding bacterial function in a specific environment in conjunction with actual carbon substrates available in the particular ecosystem under study. The hypotheses generated provide a start point for experimental testing required to gain actual, targeted and feasibly applicable insights6,7."

      On line 532 we add: 

      "In the current study, the root environment was represented by a single pool of resources (metabolites). As genuine root environments are highly dynamic and responsive to stimuli, a single environment can represent, at best, a temporary snapshot of the conditions. Conductance of simulations with several sets of resource pools (e.g., representing temporal variations in exudation profile) can add insights regarding their effect on trophic interactions and community dynamics. In parallel, confirming predictions made in various environments will support an iterative process that will strengthen the predictive power of the framework and improve its accuracy as a tool for generating testable hypotheses. Similarly, complementing the genomicsbased approaches used here with additional layers of 'omics information (mainly transcriptomics & metabolomics) can further constrain the solution space, deflate the number of potential metabolic routes and yield more accurate predictions of GSMMs' performances5."

      Recommendations for the authors:

      Reviewer #1( Recommendations for the authors):

      (1) Line 219: "Feasibility" - this term/concept may be difficult to understand for readers unfamiliar with GSMMs. I would recommend either clarifying or rephrasing, perhaps as "simulations confirmed the existence of a feasible solution space for all the 243 models, as well as their capacity to predict growth in the respective environment."

      Thanks, done. We have modified this section as suggested (line 221). 

      (2) Line 244: How does MCSM fit within/build upon existing frameworks that simulate patterns of niche construction and cross-feeding with constraint-based modeling?

      This is now addressed. On line 250 we write:  

      "Unlike tools designed for modelling microbial interactions34,35, MCSM bypasses the need for defining a community objective function as the growth of each species is simulated individually. Trophic interactions are then inferred by the extent to which compounds secreted by bacteria could support the growth of other community members."

      (3) Figure 4A: While illustrating the general complexity of the predicted trophic interactions, the density of the network makes it very difficult to interpret specific exchanges. Moreover, the naming conventions of the metabolites make it difficult to understand what they represent. I would recommend either restructuring the graph such that the label of each node is legible, or removing the labels altogether.

      Thanks, done. Labels were removed and a zoom-in-window to the exchanges highlighted in Figure 4C were added. Caption was revised to indicate that node colors correspond to differential abundance classification of GSMMs in the different plots (H, S, NA are Healthy, Sick, Not-Associated, respectively).

      Reviewer #2 (Recommendations for the authors):

      CarveMe solves a Mixed Integer Linear Program (MILP) that enforces network connectivity, thus requiring gapless pathways. It's puzzling how to deal with such a great number of GSMMs that is for sure, especially when coming from such an environment as soil and the vast majority of their corresponding MAGs represent most likely novel taxa. One alternative approach for using CarveMe might be to use the rich medium as a medium to gap-fill during the reconstruction. In this case, the gene annotation scores that CarveMe calculates in its initial step, are used to prioritise the reactions selected for gap-filling. This would lead to a new series of challenges but might be a useful comparison with the current GSMMs of the study.

      Though indeed CraveMe includes a gap-filling option, here we have purposely avoided the gapfilling option as we aimed to adhere to genomic content of the corresponding genomes and to avoid masking their metabolic dependencies emerging due to their incompleteness. This is noted in the Methods section, which we revised to emphasize the adherence to the genomic content of the models: 

      On line 615 we now write:

      "All GSMMs were drafted without gap filling in order to adhere to genomic content and to avoid masking metabolic co-dependencies51"

      More generally, we now refer to the limitation of automatic reconstruction in the context of the current analysis. On line 507 we write:

      "Moreover, the use of an automatic GSMM reconstruction tool (CarveMe8), though increasingly used for depicting phenotypic landscapes, is typically less accurate than manual curation of metabolic models9. This approach typically neglects specialized functions involving secondary metabolism10 and introduces additional biases such as the overestimation of auxotrophies11,12. Nevertheless, manual curation is practically non-realistic for hundreds of MAGs, an expected outcome considering the volume of nowadays sequencing projects. As the primary motivation of this framework is the development of a tool capable of transforming high-throughput, low-cost genomic information into testable predictions, the use of automatic, semi-curated, metabolic network reconstruction tools was favored, despite their inherent limitations, in pursuit of developing pipelines for the systematic analysis of metagenomics data."

      Thermodynamically infeasible loops have been a challenge in constraint-based analysis [1].

      However, for the case of FBA and FVA time efficient implementations are already available. Therefore, I would suggest using the loopless flag of the cobrapy package when performing FVA. 

      Also, it would be nice to show/discuss how many exchange reactions each GSMM includes and what is the number of those with at least a non-zero minimum or maximum in the FVA using each of the three media.

      Done. In Supplementary Figure 4, we added a graphic summary of active FVA ranges for each GSMM in the three different environments (exchange reactions, non-zero flux). Additionally, we analyzed a subset of models and compared their regular FVA results vs loopless FVA results.

      On line 217 we write:

      "The number of active exchange fluxes in each medium corresponds with the respective growth performances displaying noticably higher number of potentially active fluxes in the rich environment (also when applying loopless FVA) (Supp. Fig. 4). Overall, Simulations confirmed the existence of a feasible solution space for  all the 243 models as well as their capacity to predict growth in the respective environemnt (Supp. Data 5)."

      "Supplementary Figure 4. FVA performances of GSMMs in different environments (Supp. Fig.

      3; Supp. Data 5). A. Distribution of potentially active exchange reactions (non-zero minimum FVA flux) in the different environments. Solid line inside each violin indicates the interquartile range (IQR). White point in IQR indicates the median value. Whiskers extending from the IQR indicate the range within 1.5 times the IQR from the quartiles. Violin width at a given value represents the density of data points at that value. B. Loopless FVA scores compared to regular FVA for models in the 3 different environments. Bars indicate the count of active fluxes (nonzero minimum FVA flux). Only a subset of models was used for this analysis."

      This brings us to the main challenge of your framework in my opinion: FVA returns the minimum and the maximum a flux may get. However, it does not ensure that when a metabolite is being secreted, another does the same too. That could lead to an overrepresentation of secreted metabolites after each iteration. To my understanding, unbiased methods focusing on metabolite exchanges would be a much better alternative for such questions. Unbiased constraint-based methods are known for requiring essential computational requirements, yet when focusing on specific parts of the models, recent implementations support them. A great showcase of such techniques is presented in [2].

      Indeed, FVA solutions return all potential metabolic fluxes in GSMMs (ranges of all fluxes satisfying the objective function, which by default is set to biomass increase) but they do not ensure that all fluxes actually co-occur (i.e., when a metabolite is secreted necessarily another metabolite is secreted too). However, though FVA solutions do not necessarily ensure cooccurrence regarding secretion and uptake, they provide a broader metabolic picture (the full set of potential solutions), unlike the arbitrary single solution provided by FBA, which is limited in providing information about potential secretions and uptakes in a specific environment. Here, we tried to elucidate the connection between a specific environment (root exudates) and the growth and metabolic capabilities of native bacteria. To the best of our understanding,  unbiased approaches (such as the one displayed in Wedmark et al.36) are not environment dependent but rather calculate all possible metabolic elements and routes within a metabolic network. Therefore, using FVA is well adapted to explore environment-dependent growth. The sensitivity of FVA predicted active fluxes to the environments is now also implied by Sup. Fig. 3B demonstrating the number of potential active fluxes is proportional to growth performances.  In addition, inquiring all possible metabolic routes across a large dataset of hundreds of MAGS, is central to the current analysis, thus the easy implementation of FVA further justifies its use in the current study.

      An alternative strategy to reduce inflated FVA predictions and further constrain the solution space of predicted active fluxes can be the incorporation of additional layers of `omics data, as for example was done in the work of Zampieri et al5. Such approach could allow for instance removing reactions from the network reconstructions if not coming to play in situ, and therefore impose further constraints and narrow down the solution space. Currently, the complexity of the soil community might impede or at least constrain a high coverage recovery of transcriptomic data, though future works utilizing additional layers of `omics data are expected to significantly reduce the number of potential solutions and thus improve the accuracy of GEMs predictions. 

      This is now discussed in the text. In line 541 we write:

      "Similarly, complementing the genomic-based approaches done here, with additional layers of 'omics information (mainly transcriptomics & metabolomics) can further constrain the solution space, deflate the number of potential metabolic routes and yield more accurate predictions of GSMMs' performances5."  

      In case it was the first version of CheckM used, the authors could consider repeating this check with CheckM2. As they state in line 293, Archaea may play an essential role in the community. Yet, among the high-quality MAGs only one corresponded to Archaea. However, that is quite possible to be the case because CheckM underestimates the completeness of archaeal genomes. If CheckM2 suggests that archaeal MAGs could be used, these would probably benefit a lot for the aim of the study.

      The analysis was conducted with the first version of CheckM to assess MAGs quality. In future analyses we will use CheckM2. However, also before MAG recovery, we already know from the work of Beirhu et al., that Archaea species have a very low representation in the metagenomics data used here (Berihu et al., Additional data 2. Supp. fig. 4; "others" group)6, with less than 0.5% of the contigs mapped to archaeal genomes. The overall taxonomic distribution of the high-quality MAGs was compared to the distribution inferred from the non-binned data (contigs) and amplicon sequencing and the three different data sets are very similar (Fig. 2). 

      On line 130 we write:

      "Overall, the taxonomic distribution of the MAG collection corresponded with the profile reported for the same samples using alternative taxonomic classification approaches such as 16S rRNA amplicon sequencing and gene-based taxonomic annotations of the non-binned shotgun contigs

      (Fig. 2B)."

      The visualisation of the network in Figure 4A is hard to follow. An alternative could be a 5partite plot having taxa in columns one, three, and five and compounds in the other two. An alternative visualisation is necessary.

      The full list of the 5 and 3 partite graphs is provided in supplementary data 10 (also noted in the figure legend now). Figure 4 was revised to improve its visualization. Labels were removed and a zoom in to 5 and 3 partite plots were added (PMM and PM subnetworks, respectively). 

      Line 509: If I get the point of the authors right, they refer to the "from shotgun data to GEMs" approach. I would suggest skipping this statement. Here is a recent study implementing this: https://doi.org/10.1016/j.crmeth.2022.100383.

      Thank you for your comment and reference. The intention behind the phrase in line 509 (in previous version) was to refer to going from metagenomics data to GEMs in soil-rhizosphere microbiome while linking environmental inputs (crop-plants exudates metabolomics data) and the agricultural-related metabolic function of bacteria. This phrase has been modified to clearly make a more modest claim while acknowledging other related studies.

      On line 548 we write

      "Where recent studies begin to apply GSMM reconstruction and analysis starting from MAGs5,37 , this work applies the MAGs to GSMMs approach to conduct a large-scale CBM analysis over highquality MAGs derived from a native rhizosphere and explore the complex network of interactions in light of the functioning of the respective agro-ecosystem. "

      Line 820: Reference format is broken.

      Corrected.

      In the caption of Figure 4, please add the meaning of H, S, and NA so it is selfexplanatory.

      Done. In Figure 4 legend we added:

      "Node colors correspond to differential abundance classification of GSMMs in the different plots; H, S, NA are Healthy, Sick, Not-Associated, respectively."

      Reviewer #3 (Recommendations for the authors):

      (1) Figure 4A is unreadable. It is not clear what insight the reader could gain by examining this figure.

      Thanks. Figure was revised. Labels were removed and a zoom-in-window to the exchanges highlighted in Figure 4C were added. Caption was revised to indicate that node colors correspond to differential abundance classification of GSMMs in the different plots (H, S, NA are Healthy, Sick, Not-Associated, respectively).

      (2) In Figure 5, it is not apparent what the units of "prevalence" are, that is, what is the scale. What does 140 mean? How does that compare to 350?

      Thanks. Prevalence in the context of Figure. 5B,C refers to the count of the compounds in each category (significantly affiliated with either healthy or symptomized soils) in sub-network motifs corresponding to this DA classification. We revised the figures (Y axes) and legend to be more specific (B: # of exudates; C: # of secreted compounds).

      "B. Bar plot indicating the number of exudates significantly associated with H or S-classified PM sub-networks (Hypergeometric test; FDR <= 0.05; green: healthy-H, red: sick-S). C. Bar plots indicate the number of secreted compounds in PM sub-networks, which are significantly associated with H-classified (upper, colored green), or S-classified (lower, colored red) (Hypergeometric test; FDR <= 0.05)."

      References

      (1) Buée, M., de Boer, W., Martin, F., van Overbeek, L. & Jurkevitch, E. The rhizosphere zoo: An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321, 189– 212 (2009).

      (2) Bardgett, R. D. & Van Der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).

      (3) Opatovsky, I. et al. Modeling trophic dependencies and exchanges among insects’ bacterial symbionts in a host-simulated environment. BMC Genomics 19, 1–14 (2018).

      (4) Kato, S., Haruta, S., Cui, Z. J., Ishii, M. & Igarashi, Y. Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl. Environ. Microbiol. 71, 7099–7106 (2005).

      (5) Zampieri, G., Campanaro, S., Angione, C. & Treu, L. Metatranscriptomics-guided genomescale metabolic modeling of microbial communities. Cell Reports Methods 3, 100383 (2023).

      (6) Berihu, M. et al. A framework for the targeted recruitment of crop ‑ beneficial soil taxa based on network analysis of metagenomics data. Microbiome 1–21 (2023) doi:10.1186/s40168-022-01438-1.

      (7) Dhakar, K. et al. Modeling-Guided Amendments Lead to Enhanced Biodegradation in Soil. mSystems 7, (2022).

      (8) Machado, D., Andrejev, S., Tramontano, M. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).

      (9) Henry, C. S. et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 28, 977–982 (2010).

      (10) Freilich, S. et al. Competitive and cooperative metabolic interactions in bacterial communities. Nat. Commun. 2, (2011).

      (11) Price, M. Erroneous predictions of auxotrophies by CarveMe. Nat. Ecol. Evol. 7, 194–195 (2023).

      (12) Machado, D. & Patil, K. R. Reply to: Erroneous predictions of auxotrophies by CarveMe. Nat. Ecol. Evol. 7, 196–197 (2023).

      (13) Kulichevskaya, I. S. et al. Acidicapsa borealis gen. nov., sp. nov. and Acidicapsa ligni sp. nov., subdivision 1 Acidobacteria from Sphagnum peat and decaying wood. Int. J. Syst. Evol. Microbiol. 62, 1512–1520 (2012).

      (14) Depart-, M. & Building, L. S. Lignocellulose-degrading actinomycetes. 46, 145–163 (1987).

      (15)Thomas, F., Hehemann, J. H., Rebuffet, E., Czjzek, M. & Michel, G. Environmental and gut Bacteroidetes: The food connection. Front. Microbiol. 2, 1–16 (2011).

      (16) Dow, J. M. & Daniels, M. J. Pathogenicity determinants and global regulation of pathogenicity of Xanthomonas campestris pv. campestris. Curr. Top. Microbiol. Immunol. 192, 29–41 (1994).

      (17) Bergmann, G. T. et al. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol. Biochem. 43, 1450–1455 (2011).

      (18) Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 470–480 (2018).

      (19) Uzun, M. et al. Recovery and genome reconstruction of novel magnetotactic Elusimicrobiota from bog soil. ISME J. 1–11 (2022) doi:10.1038/s41396-022-01339-z.

      (20) Lei, S. et al. Analysis of the community composition and bacterial diversity of the rhizosphere microbiome across different plant taxa. Microbiologyopen 8, 1–10 (2019).

      (21) Ghosh, S. K., Banerjee, S. & Sengupta, C. Bioassay, characterization and estimation of siderophores from some important antagonistic fungi. J. Biopestic. 10, 105–112 (2017).

      (22) Lu, X., Heal, K. R., Ingalls, A. E., Doxey, A. C. & Neufeld, J. D. Metagenomic and chemical characterization of soil cobalamin production. ISME J. 14, 53–66 (2020).

      (23) Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic exchange in synthetic microbial communities. Proc. Natl. Acad. Sci. U. S. A. 111, (2014).

      (24) Justin, K., Edmond, S., Ally, M. & Xin, H. Plant Secondary Metabolites: Biosynthesis, Classification, Function and Pharmacological Properties. J. Pharm. Pharmacol. 2, 377–392 (2014).

      (25) Yang, W. et al. A Genomic Analysis of Bacillus megaterium HT517 Reveals the Genetic Basis of Its Abilities to Promote Growth and Control Disease in Greenhouse Tomato. Genet. Res. (Camb). 2022, (2022).

      (26) Balbín-Suárez, A. et al. Root exposure to apple replant disease soil triggers local defense response and rhizoplane microbiome dysbiosis. FEMS Microbiol. Ecol. 97, 1–14 (2021).

      (27) Weiß, S., Liu, B., Reckwell, D., Beerhues, L. & Winkelmann, T. Impaired defense reactions in apple replant disease-Affected roots of Malus domestica ‘M26’. Tree Physiol. 37, 1672–1685 (2017).

      (28) Weiß, S., Bartsch, M. & Winkelmann, T. Transcriptomic analysis of molecular responses in Malus domestica ‘M26’ roots affected by apple replant disease. Plant Mol. Biol. 94, 303– 318 (2017).

      (29) Sun, N. et al. Effects of Organic Acid Root Exudates of Malus hupehensis Rehd. Derived from Soil and Root Leaching Liquor from Orchards with Apple Replant Disease. Plants 11, (2022).

      (30) Howell, C. R. Seed Treatment with L-Sorbose to Control Damping-Off or Cotton Seedlings by Rhizoctonia solani. Phytopathology 68, 1096 (1978).

      (31) Zou, C. S., Mo, M. H., Gu, Y. Q., Zhou, J. P. & Zhang, K. Q. Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol. Biochem. 39, 2371–2379 (2007).

      (32) Gomes, V. A. et al. Activity of papaya seeds (Carica papaya) against Meloidogyne incognita as a soil biofumigant. J. Pest Sci. (2004). 93, 783–792 (2020).

      (33) Gao, T. et al. Exogenous dopamine and overexpression of the dopamine synthase gene MdTYDC alleviated apple replant disease. Tree Physiol. 41, 1524–1541 (2021).

      (34) Diener, C., Gibbons, S. M. & Resendis-Antonio, O. MICOM: Metagenome-Scale Modeling To Infer Metabolic Interactions in the Gut Microbiota. mSystems 5, (2020).

      (35) Dukovski, I. et al. A metabolic modeling platform for the computation of microbial ecosystems in time and space (COMETS). Nat. Protoc. 16, 5030–5082 (2021).

      (36) Katarina Wedmark, Y., Olav Vik, J. & Øyås, O. A hierarchy of metabolite exchanges in metabolic models of microbial species and communities. bioRxiv 1–19 (2023).

      (37) Zorrilla, F., Buric, F., Patil, K. R. & Zelezniak, A. MetaGEM: Reconstruction of genome scale metabolic models directly from metagenomes. Nucleic Acids Res. 49, (2021).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      It is suggested that for each limb the RG (rhythm generator) can operate in three different regimes: a non-oscillating state-machine regime, and in a flexor driven and a classical half-center oscillatory regime. This means that the field can move away from the old concept that there is only room for the classic half-center organization

      Strengths:

      A major benefit of the present paper is that a bridge was made between various CPG concepts ( "a potential contradiction between the classical half-center and flexor-driven concepts of spinal RG operation"). Another important step forward is the proposal about the neural control of slow gait ("at slow speeds ({less than or equal to} 0.35 m/s), the spinal network operates in a state regime and requires external inputs for phase transitions, which can come from limb sensory feedback and/or volitional inputs (e.g. from the motor cortex").

      Weaknesses:

      Some references are missing

      We thank the Reviewer for the thoughtful and constructive comments. We have added additional text to meet the specific Reviewer’s recommendations and several references suggested by the Reviewer.  

      Reviewer #2 (Public Review):

      Summary:

      The biologically realistic model of the locomotor circuits developed by this group continues to define the state of the art for understanding spinal genesis of locomotion. Here the authors have achieved a new level of analysis of this model to generate surprising and potentially transformative new insights. They show that these circuits can operate in three very distinct states and that, in the intact cord, these states come into successive operation as the speed of locomotion increases. Equally important, they show that in spinal injury the model is "stuck" in the low speed "state machine" behavior.

      Strengths:

      There are many strengths for the simulation results presented here. The model itself has been closely tuned to match a huge range of experimental data and this has a high degree of plausibility. The novel insight presented here, with the three different states, constitutes a truly major advance in the understanding of neural genesis of locomotion in spinal circuits. The authors systematically consider how the states of the model relate to presently available data from animal studies. Equally important, they provide a number of intriguing and testable predictions. It is likely that these insights are the most important achieved in the past 10 years. It is highly likely proposed multi-state behavior will have a transformative effect on this field.

      Weaknesses:

      I have no major weaknesses. A moderate concern is that the authors should consider some basic sensitivity analyses to determine if the 3 state behavior is especially sensitive to any of the major circuit parameters - e.g. connection strengths in the oscillators or?

      We thank the Reviewer for the thoughtful and constructive comments. The sensitivity analysis has been included as Supplemental file.

      Reviewer #3 (Public Review):

      Summary:

      This work probes the control of walking in cats at different speeds and different states (split-belt and regular treadmill walking). Since the time of Sherrington there has been ongoing debate on this issue. The authors provide modeling data showing that they could reproduce data from cats walking on a specialized treadmill allowing for regular and split-belt walking. The data suggest that a non-oscillating state-machine regime best explains slow walking - where phase transitions are handled by external inputs into the spinal network. They then show at higher speeds a flexor-driven and then a classical halfcenter regime dominates. In spinal animals, it appears that a non-oscillating state-machine regime best explains the experimental data. The model is adapted from their previous work, and raises interesting questions regarding the operation of spinal networks, that, at low speeds, challenge assumptions regarding central pattern generator function. This is an interesting study. I have a few issues with the general validity of the treadmill data at low speeds, which I suspect can be clarified by the authors.

      Strengths:

      The study has several strengths. Firstly the detailed model has been well established by the authors and provides details that relate to experimental data such as commissural interneurons (V0c and V0d), along with V3 and V2a interneuron data. Sensory input along with descending drive is also modelled and moreover the model reproduces many experimental data findings. Moreover, the idea that sensory feedback is more crucial at lower speeds, also is confirmed by presynaptic inhibition increasing with descending drive. The inclusion of experimental data from split-belt treadmills, and the ability of the model to reproduce findings here is a definite plus.

      Weaknesses:

      Conceptually, this is a very useful study which provides interesting modeling data regarding the idea that the network can operate in different regimes, especially at lower speeds. The modelling data speaks for itself, but on the other hand, sensory feedback also provides generalized excitation of neurons which in turn project to the CPG. That is they are not considered part of the CPG proper. In these scenarios, it is possible that an appropriate excitatory drive could be provided to the network itself to move it beyond the state-machine state - into an oscillatory state. Did the authors consider that possibility? This is important since work using L-DOPA, for example, in cats or pharmacological activation of isolated spinal cord circuits, shows the CPG capable of producing locomotion without sensory or descending input.

      We thank the Reviewer for the thoughtful and constructive comments. We have added additional texts, references, and discussed the issues raised by the Reviewer. Particularly, in section “Model limitations and future directions” we now admit that afferent feedback can provide some constant level excitation to the RG circuits after spinal transection which can partly compensate for the lack of supraspinal drive and hence affect (shift) the timing of transitions between the considered regimes. We mentioned that this is one of the limitations of the present model. The potential effects of neuroactive drugs, like DOPA, on CPG circuits after spinal transection were left out because they are outside the scope of the present modeling studies.    

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      specific feedback to the authors:

      Nevertheless, there are some minor points, worth considering.

      Link to HUMAN DATA

      Here the authors may be interested to know that human data supports their proposal. This is relevant since there is ample evidence for the operation of spinal CPG's in humans (Duysens and van de Crommert,1998). The present model predicts that the basic output of the CPG remains even at very slow speeds, thus leading to similarity in EMG output. This prediction fits the experimental data (den Otter AR, Geurts AC, Mulder T, Duysens J. Speed related changes in muscle activity from normal to very slow walking speeds. Gait Posture. 2004 Jun;19(3):270-8). To investigate whether the basic CPG output remains basically the same even at very slow speeds (as also predicted by the current model), humans walked slowly on a treadmill (speeds as slow as 0.28 m s−1). Results showed that the phasing of muscle activity remained relatively stable over walking speeds despite substantial changes in its amplitude. Some minor additions were seen, consistent with the increased demands of postural stability. Similar results were obtained in another study: Hof AL, Elzinga H, Grimmius W, Halbertsma JP. Speed dependence of averaged EMG profiles in walking. Gait Posture. 2002 Aug;16(1):78-86. doi:

      10.1016/s0966-6362(01)00206-5. PMID: 12127190.

      These authors wrote: "The finding that the EMG profiles of many muscles at a wide range of speeds can be represented by addition of few basic patterns is consistent with the notion of a central pattern generator (CPG) for human walking". The basic idea is that the same CPG can provide the motor program at slow and fast speeds but that the drive to the CPG differs. This difference is accentuated under some conditions in pathology, such as in Parkinson's Kinesia Paradoxa. It was argued that the paradox is not really a paradox but is explained as the CPGs are driven by different systems at slow and at fast speeds (Duysens J, Nonnekes J. Parkinson's Kinesia Paradoxa Is Not a Paradox. Mov Disord. 2021 May;36(5):1115-1118. doi: 10.1002/mds.28550. Epub 2021 Mar 3. PMID: 33656203.)

      These ideas are well in line with the current proposal ("Based on our predictions, slow (conditionally exploratory) locomotion is not "automatic", but requires volitional (e.g. cortical) signals to trigger stepby-step phase transitions because the spinal network operates in a state-machine regime. In contrast, locomotion at moderate to high speeds (conditionally escape locomotion) occurs automatically under the control of spinal rhythm-generating circuits receiving supraspinal drives that define locomotor speed, unless voluntary modifications or precise stepping are required to navigate complex terrain").

      As mentioned in the present paper, other examples exist from pathology ("...Another important implication of our results relates to the recovery of walking in movement disorders, where the recovered pattern is generally very slow. For example, in people with spinal cord injury, the recovered walking pattern is generally less than 0.1 m/s and completely lacks automaticity 77-79. Based on our predictions, because the spinal locomotor network operates in a state-machine regime at these slow speeds, subjects need volition, additional external drive (e.g., epidural spinal cord stimulation) or to make use of limb sensory feedback by changing their posture to perform phase transitions"). As mentioned above, another example is provided by Parkinson's disease. The authors may also be interested in work on flexible generators in SCI: Danner SM, Hofstoetter US, Freundl B, Binder H, Mayr W, Rattay F, Minassian K. Human spinal locomotor control is based on flexibly organized burst generators. Brain. 2015 Mar;138(Pt 3):577-88. doi: 10.1093/brain/awu372. Epub 2015 Jan 12. PMID: 25582580; PMCID: PMC4408427.

      We thank the reviewer for these additional and interesting insights. We added a new paragraph in the Discussion to bolster the link with human data that includes references suggested by the Reviewer.

      CHAIN OF REFLEXES

      It reads: "... in opposition to the previously prevailing viewpoint of Charles Sherrington 21,22 that locomotion is generated through a chain of reflexes, i.e., critically depends on limb sensory feedback (reviewed in 23)." This is correct but incomplete. The reference cited (23: Stuart, D.G. and Hultborn, H, "Thomas Graham Brown (1882--1965), Anders Lundberg (1920-), and the neural control of stepping," Brain Res. Rev. 59(1), 74-95 (2008)) actually reads: "Despite the above findings, the doctrinaire position in the early 1900s was that the rhythm and pattern of hind limb stepping movements was attributable to sequential hind limb reflexes. According to Graham Brown (1911c) this viewpoint was largely due to the arguments of Sherrington and a Belgian physiologist, Maurice Philippson (1877-1938). Philippson studied stepping movements in chronically maintained spinal dogs, using techniques he had acquired in the Strasbourg laboratory of the distinguished German physiologist, Friedrich Goltz (1834-1902). He also analyzed kinematically moving pictures of dog locomotion, which had been sent to him by the renowned French physiologist, Etienne-Jules Marey (1830-1904). Philippson (1905) certainly presented arguments explaining his perception of how sequential spinal reflexes contributed to the four phases of the step cycle (see Fig. 1 in Clarac, 2008). In retrospect, it is likely that Graham Brown was correct in attributing to Philippson and Sherrington the then-prevailing viewpoint that reflexes controlled spinal stepping. It is puzzling, nonetheless, that far less was said then and even now about Philippson's belief that the spinal control was due to a combination of central and reflex mechanisms (Clarac, 2008),4,5 4 We are indebted to François Clarac for drawing to our attention Philippson's statement on p. 37 of his 1905 article that "Nos expériences prouvent d'une part que la moelle lombaire séparée du reste de l'axe cérébro-spinal est capable de produire les mouvements coordonnés dans les deux types de locomotion, trot et gallop. [Our experiments prove that one side of the spinal cord separated from the cerebro-spinal axis is able to produce coordinated movements in two types of locomotion, trot and gallop]." Then, on p. 39 Philippson (1905) states that "Nous voyons donc, en résumé que la coordination locomotrice est une fonction exclusivement médullaire, soutenue d'une part par des enchainements de réflexes directs et croisés, dont l'excitant est tantot le contact avec le sol, tantot le mouvement même du membre. [In summary, we see that locomotor coordination is an exclusive function of the spinal cord supported by a sequencing of direct and crossed reflexes, which are activated sometimes by contact with the ground and sometimes even by leg movement]. A coté de cette coordination basée sur des excitations périphériques, il y a une coordination centrale provenant des voies d'association intra-médullaires. [In conjunction with this peripherally excited coordination, there is a central coordination arising from intraspinal pathways]." (The English translations have also been kindly supplied by François Clarac.) Clearly, Philippson believed in both a central spinal and a reflex control of stepping! 5 In part 1 of his 1913/1916 review Graham Brown discussed Philippson's 1905 article in much detail (pp. 345-350 in Graham Brown, 1913b). He concludes with the statement that "... Philippson die wesentlichen Factoren des Fortbewegungsaktes in das exterozeptive Nervensystem verlegt. Er nimmt an, dass die zyklischen Bewegungen automatisch durch äussere Reize erhalten werden, welche in sich selbst thythmisch als Folge der Reflexakte welche sie selbst erzeugen, wiederholt werden. [Philippson assigns the important factors of the act of locomotion to the exteroceptive nervous system. He assumes that the cyclic movements are automatically maintained by external stimuli which, by themselves, are rhythmically repeated as a consequence of the reflexive actions that they generate themselves]." (English translation kindly supplied by Wulfila Gronenberg). This interpretation clearly ignores Philippson's emphasis on a central spinal component in the control of stepping....). "

      Hence it is a simplification to give all credits to Sherrington and ignoring the role of Philippson concerning the chain of reflexes idea.

      We again thank the Reviewer for these additional and interesting insights. We added the Philippson (1905) and Clarac (2008) references. The important contribution of Philippson is now indicated.

      GTO Ib feedback

      It reads: "This effect and the role of Ib feedback from extensor afferents has been demonstrated and described in many studies in cats during real and fictive locomotion 2,57-59."

      These citations are appropriate but it is surprising to see that the Hultborn contribution is limited to the Gossard reference while the even more important earlier reference to Conway et al is missing (Conway BA, Hultborn H, Kiehn O. Proprioceptive input resets central locomotor rhythm in the spinal cat. Exp Brain Res. 1987;68(3):643-56. doi: 10.1007/BF00249807. PMID: 3691733).

      Yes, the Conway et al. reference has been added.

      Other species

      The authors may also look at other species. The flexible arrangement of the CPGs, as described in this article, is fully in line with work on other species, showing cpg networks capable to support gait, but also scratching, swimming ..etc (Berkowitz A, Hao ZZ. Partly shared spinal cord networks for locomotion and scratching. Integr Comp Biol. 2011 Dec;51(6):890-902. doi: 10.1093/icb/icr041. Epub 2011 Jun 22. PMID: 21700568. Berkowitz A, Roberts A, Soffe SR. Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles. Front Behav Neurosci. 2010 Jun 28;4:36. doi: 10.3389/fnbeh.2010.00036. PMID: 20631847; PMCID: PMC2903196.)

      Similar ideas about flexible coupling can also be found in: Juvin L, Simmers J, Morin D. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators. J Physiol. 2007 Aug 15;583(Pt 1):115-28. doi: 10.1113/jphysiol.2007.133413. Epub 2007 Jun 14. PMID: 17569737; PMCID: PMC2277226. Or zebrafish: Harris-Warrick RM. Neuromodulation and flexibility in Central Pattern Generator networks. Curr Opin Neurobiol. 2011 Oct;21(5):685-92. doi: 10.1016/j.conb.2011.05.011. Epub 2011 Jun 7. PMID: 21646013; PMCID: PMC3171584.

      We added a sentence in the Discussion along with supporting references.

      Standing

      In the view of the present reviewer, the model could even be extended to standing in humans. It reads: "at slow speeds ({less than or equal to} 0.35 m/s), the spinal network operates in a state regime and requires external inputs"; similarly (personal experience) when going from sit to stand: as soon as weight is over support, extension is initiated and the body raises, as one would expect when the extensor center is activated by reinforcing load feedback, replacing GTO inhibition (Faist M, Hoefer C, Hodapp M, Dietz V, Berger W, Duysens J. In humans Ib facilitation depends on locomotion while suppression of Ib inhibition requires loading. Brain Res. 2006 Mar 3;1076(1):87-92. doi:

      Yes, we agree that the model could be extended to standing and the transition from standing to walking is particularly interesting. However, for this paper, we will keep the focus on locomotion over a range of speeds.

      Reviewer #2 (Recommendations For The Authors):

      The presentation is exceedingly well done and very clear.

      A moderate concern is that the authors do not make use of the capacity of computer simulations for sensitivity analyses. Perhaps these have been previously published? In any case, the question here is whether the 3 state behavior is especially sensitive to excitability of one of the main classes of neurons or a crucial set of connections.

      The sensitivity analysis has been made and included as Supplemental file.

      Minor point. I have but two minor points. A bit more explanation should be provided for the use of the terms "state machine" to describe the lowest speed state. Perhaps this is a term from control theory? In any case, it is not clear why this is term is appropriate for a state in which the oscillator circuits are "stuck" in a constant output form and need to be "pushed" by sensory input.

      Yes, we now provide a definition in the Introduction.

      Minor point: it is of course likely that neuromodulation of multiple types of spinal neurons occurs via inputs that activate G protein coupled receptors. These types of inputs are absent from the model, which is fine, but some sort of brief discussion should be included. One possibility is to note that the circuit achieves transitions between different states without the need for neuromodulatory inputs. This appears to me to be a very interesting and surprising insight.

      In section “Model limitations and future directions” in the Discussion, we now mention that the term “supraspinal drive” in our model is used to represent supraspinal inputs providing both electrical and neuromodulator effects on spinal neurons increasing their excitability, which disappear after spinal transection.” We think that it is so far too early to simulate the exact effects of the descending neuromodulation, since there is almost no data on the effect of different modulators on specific types of spinal interneurons.

      Reviewer #3 (Recommendations For The Authors):

      Minor Comments  

      Page numbers would be useful.

      Abstract

      Following spinal transection, the network can only operate in a state-machine regime. This is a bit strong since it applies to computational data. Clarify this statement.

      We agree. Sentence has been changed to: “Following spinal transection, the model predicts that the spinal network can only operate in the state-machine regime.”

      Introduction

      Intro - "This is somewhat surprising...". It gives the impression that spinal cats are autonomously stable on the belt. They are stabilized by the experimenter.

      The text has been changed to: “This is somewhat surprising because intact and spinal cats rely on different control mechanisms. Intact cats walking freely on a treadmill engage vision for orientation in space and their supraspinal structures process visual information and send inputs to the spinal cord to control locomotion on a treadmill that maintains a fixed position of the animal relative to the external space. Spinal cats, whose position on the treadmill relative to the external space is fixed by an experimenter, can only use sensory feedback from the hindlimbs to adjust locomotion to the treadmill speed.”

      "Cannot consistently perform treadmill locomotion" - likely a context-dependent result. Certainly, cats can do this easily off a treadmill - stalking, for example. Perhaps somewhere, mention that treadmill locomotion is not entirely similar to overground locomotion.

      We completely agree. Stalking is an excellent example showing that during overground locomotion slow movements (and related phase transitions) can be controlled by additional voluntary commands from supraspinal structures, which differs from simple treadmill locomotion, performing out of specific goalor task-dependent contexts. Based on this, we suggest a difference between a relatively slow (exploratory-type, including stalking) and relatively fast (escape-type) overground locomotion. We added the following sentence to the introduction:” This is evidently context dependent and specific for the treadmill locomotion as cats, humans  and other animals can voluntarily decide to perform consistent overground locomotion at slow speeds.”

      The authors introduce the concept of the state machine regime. In my opinion, this could use some more explanation and citations to the literature. Was it a term coined by the authors, or is there literature reinforcing this point?

      This is a computer science and automata theory term that has already been used in descriptions of locomotion (see our references in the 2nd paragraph of Discussion). We added a definition and corresponding references in the Introduction.

      In terms of sensory feedback, particularly group II input, it would be interesting to calculate if the conduction delay to the spinal cord at higher speeds would have a certain cutoff point at which it would no longer be timed effectively for phase transitions. This could reinforce your point.

      This is an interesting proposition but it is unlikely to be a factor over the range of speeds that we investigated (0.1 to 1.0 m/s). Assuming that group II afferents transmit their signals to spinal circuits at a latency of 10-20 ms, this is more than enough time to affect phase transitions, even at the highest speed considered. This might be a factor at very high speeds (e.g. galloping) or in small animals with high stepping frequencies.

      Results.

      The assertion that intact cats are inconsistent in terms of walking at slow speeds needs to be bolstered. For example, if a raised platform were built for a tray of food, would the intact cat consistently walk at slower speeds and eat? I suspect so. By the same token, would they walk slowly during bipedal walking? It is pretty easy to check this. Also, reports from the literature show differential effects of runway versus treadmill gait analysis, specifically when afferent input is removed.

      The Reviewer is correct that raising a platform for a food tray or even having intact cats walk with their hindlimbs only (with forelimbs on a stationary platform) may allow for consistent stepping at slow speeds (0.1 – 0.3 m/s). However, this effectively removes voluntary control of locomotion and makes the pattern more automatic (spinal + limb sensory feedback). These examples provide additional specific contexts, and we have already mentioned (see above) that slow locomotion of intact cat is context dependent. 

      "We believe that intact animals walking on a treadmill..." Citations for this? Certainly, this is not a new point.

      No, this is not new. We changed the sentence and added a reference to the statement: “Intact animals walking on a treadmill use visual cues and supraspinal signals to adjust their speed and maintain a fixed position relative to the external space with reference to Salinas et al. (Salinas, M.M., Wilken, J M, and Dingwell, J B, "How humans use visual optic flow to regulate stepping during walking," Gait. Posture. 57, 15-20, 2017).

      The presentation of the results is somewhat disjointed. The intact data is presented for tied and splitbelt results, but this is not addressed explicitly until figure 4. Would it not be better to create a figure incorporating both intact and modelling data and present the intact data where appropriate?

      We tried to do this initially, but this way required changing the style of the whole paper and we decided against this idea. Therefore, we prefer to keep the presentation of results as it is now. 

      Regarding the role of sensory feedback being especially important at low speeds, it is interesting that egr3+ mice (lacking spindle input) show an inability to walk at high speeds >40 cm/s but can walk at lower speeds (up to 7 cm/s) (Takeoka et al 2014). Similar findings were found with a lesion affecting Group I afferents in general (Takeoka and Arber 2019). Also, Grillner and colleagues show that cats can produce fictive locomotion in the absence of sensory input.

      In the Takeoka experiments it is difficult to assess the effect of removing somatosensory feedback because animals can simply decide to not step at higher speeds to avoid injury. Their mice deprived of somatosensory feedback can walk at slow speeds, likely thanks to voluntary commands, and cannot do so at higher speeds because (1) maybe somatosensory feedback is indeed necessary and/or (2) because they feel threatened because of impaired posture and poor control in general. In other words, they choose to not walk at faster speeds to avoid injury.

      Fictive locomotion by definition is without phasic somatosensory feedback as the animals are curarized or studies are performed in isolated spinal cord preparations. Depending on the preparation, pharmacology or brainstem stimulation is required to evoke fictive locomotion. If animals are deafferented, pharmacology or brainstem stimulation are required to induce fictive locomotion to offset the loss of spinal neuronal excitability provided by primary afferents. At the same time, our preliminary analysis of old fictive locomotion data in the University of Manitoba Spinal Cord center (Drs. Markin and Rybak had an official access to these data base during our collaboration with Dr. David McCrea) has shown that the frequency of stable fictive locomotion in cats usually exceeded 0.6 - 0.7 Hz, which approximately corresponds to the speed above 0.3 - 0.4 m/s. These data and estimation are just approximate; they have not been statistically analyzed and published and hence have not been included in our paper.

      Discussion. The statement that sensory feedback is required for animals to locomote may need to be qualified. Animals need some sensory feedback to locomote is perhaps better. For example, lesion studies by Rossignol in the early 2000s showed that cutaneous feedback from the paw was seemingly quite critical (in spinal cats). Also, see previous comments above.

      We changed this to: “… requires some sensory feedback to locomote, …”

      Figures

      Figure 1C. This figure is somewhat confusing. If intact cats do not walk (arrow), how are the data for swing and stance computed? Also raw traces would be useful to indicate that there is variability. Also, while duration is useful, would you not want to illustrate the co-efficient of variation as well as another way to show that the stepping pattern was inconsistent?

      This is probably a misunderstanding. The left panel of Fig. 1C superimposes data of intact cats from panel A (with speed range from 0.4 m/s to 1.0 m/s) and data from spinal cats from panel B (with speed range from 0.1 m/s and 1.0 m/s). Therefore, the left part of this left panel 1C (with speed range from 0.1 m/s to 0.4 m/s (pointed out by the arrow) corresponds only to spinal cats (not to intact cats). The standard deviations of all measurements are shown. All these figures were reproduced from the previous publications. We did not apply new statistical analysis to these previously published data/figures.

      Figure 4. 'All supraspinal drives (and their suppression of sensory feedback) are eliminated from the schematic shown in A. ' However, it is labelled 'brainstem drives,' which is confusing. Moreover, many of the abbreviations are confusing. Do you need l-SF-E1 in the figure, or could you call it 'Feedback 1' and then refer to l-SF-E1 in the legend? The same goes for βr, etc. Can they move to the legend?

      In the intact model (Fig. 4A), we have supraspinal drives (𝛼𝐿 and 𝛼𝑅, and  𝛾𝐿 and 𝛾𝑅 ), some of which provide presynaptic inhibition of sensory feedback (SF-E1 and SF-E2) as shown in Fig. 4A. In spinaltransected model (Fig. 4B), the above brainstem drives and their effects (presynaptic inhibition) on both feedback types are eliminated (therefore, there is no label “Brainstem drives in Fig. 4B). Also, we do not see a strong reason to change the feedback names, since they are explained in the text.

      I appreciate the detail of these figures, but they are difficult to conceptualize. They are useful in the context of 3C. Perhaps move this figure to supplementary and then show the proposed schematics for the system operating at slow, medium, and fast speeds in a replacement figure?

      We apologize for the resistance, but we would like to keep the current presentation.

      There is a lack of raw data (models or experimental) data reinforcing the figures. I would add these to all figures, which would nicely complement the graphs.

      These raw data can be found in the cited manuscripts. It would be the same figures.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In their paper, Zhan et al. have used Pf genetic data from simulated data and Ghanaian field samples to elucidate a relationship between multiplicity of infection (MOI) (the number of distinct parasite clones in a single host infection) and force of infection (FOI). Specifically, they use sequencing data from the var genes of Pf along with Bayesian modeling to estimate MOI individual infections and use these values along with methods from queueing theory that rely on various assumptions to estimate FOI. They compare these estimates to known FOIs in a simulated scenario and describe the relationship between these estimated FOI values and another commonly used metric of transmission EIR (entomological inoculation rate).

      This approach does fill an important gap in malaria epidemiology, namely estimating the force of infection, which is currently complicated by several factors including superinfection, unknown duration of infection, and highly genetically diverse parasite populations. The authors use a new approach borrowing from other fields of statistics and modeling and make extensive efforts to evaluate their approach under a range of realistic sampling scenarios. However, the write-up would greatly benefit from added clarity both in the description of methods and in the presentation of the results. Without these clarifications, rigorously evaluating whether the author's proposed method of estimating FOI is sound remains difficult. Additionally, there are several limitations that call into question the stated generalizability of this method that should at minimum be further discussed by authors and in some cases require a more thorough evaluation.

      Major comments:

      (1) Description and evaluation of FOI estimation procedure.

      a. The methods section describing the two-moment approximation and accompanying appendix is lacking several important details. Equations on lines 891 and 892 are only a small part of the equations in Choi et al. and do not adequately describe the procedure notably several quantities in those equations are never defined some of them are important to understand the method (e.g. A, S as the main random variables for inter-arrival times and service times, aR and bR which are the known time average quantities, and these also rely on the squared coefficient of variation of the random variable which is also never introduced in the paper). Without going back to the Choi paper to understand these quantities, and to understand the assumptions of this method it was not possible to follow how this works in the paper. At a minimum, all variables used in the equations should be clearly defined. 

      We thank the reviewer for this useful comment. We plan to clarify the method, including all the relevant variables in our revised manuscript. The reviewer is correct in pointing out that there are more sections and equations in Choi et al., including the derivation of an exact expression for the steady-state queue-length distribution and the two-moment approximation for the queue-length distribution. Since only the latter was directly utilized in our work, we included in the first version of our manuscript only material on this section and not the other. We agree with the reviewer on readers benefiting from additional information on the derivation of the exact expression for the steady-state queue-length distribution. Therefore, we will summarize the derivation of this expression in our revised manuscript. Regarding the assumptions of the method we applied, especially those for going from the exact expression to the two-moment approximation, we did describe these in the Materials and Methods of our manuscript. We recognize from this comment that the writing and organization of this information may not have been sufficiently clear. We had separated the information on this method into two parts, with the descriptive summary placed in the Materials and Methods and the equations or mathematical formula placed in the Appendix. This can make it difficult for readers to connect the two parts and remember what was introduced earlier in the Materials and Methods when reading the equations and mathematical details in the Appendix. For our revised manuscript, we plan to cover both parts in the Materials and Methods, and to provide more of the technical details in one place, which will be easier to understand and follow.

      b. Additionally, the description in the main text of how the queueing procedure can be used to describe malaria infections would benefit from a diagram currently as written it's very difficult to follow. 

      We thank the reviewer for this suggestion. We will add a diagram illustrating the connection between the queueing procedure and malaria transmission.

      c. Just observing the box plots of mean and 95% CI on a plot with the FOI estimate (Figures 1, 2, and 10-14) is not sufficient to adequately assess the performance of this estimator. First, it is not clear whether the authors are displaying the bootstrapped 95%CIs or whether they are just showing the distribution of the mean FOI taken over multiple simulations, and then it seems that they are also estimating mean FOI per host on an annual basis. Showing a distribution of those per-host estimates would also be helpful. Second, a more quantitative assessment of the ability of the estimator to recover the truth across simulations (e.g. proportion of simulations where the truth is captured in the 95% CI or something like this) is important in many cases it seems that the estimator is always underestimating the true FOI and may not even contain the true value in the FOI distribution (e.g. Figure 10, Figure 1 under the mid-IRS panel). But it's not possible to conclude one way or the other based on this visualization. This is a major issue since it calls into question whether there is in fact data to support that these methods give good and consistent FOI estimates. 

      There appears to be some confusion on what we display in some key figures. We will clarify this further both here and in the revised text. In Figures 1, 2, and 10-14, we displayed the bootstrapped distributions including the 95% CIs. These figures do not show the distribution of the mean FOI taken over multiple simulations. We estimated mean FOI on an annual basis per host in the following sense. Both of our proposed methods require either a steady-state queue length distribution, or moments of this distribution for FOI inference. However, we only have one realization or observation for each individual host, and we do not have access to either the time-series observation of a single individual’s MOI or many realizations of a single individual’s MOI at the same sampling time. This is typically the case for empirical data, although numerical simulations could circumvent this limitation and generate such output. Nonetheless, we do have a queue length distribution at the population level for both the simulation output and the empirical data, which can be obtained by simply aggregating MOI estimates across all sampled individuals. We use this population-level queue length distribution to represent and approximate the steady-state queue length distribution at the individual level. Such representation or approximation does not consider explicitly any individual heterogeneity due to biology or transmission. The estimated FOI is per host in the sense of representing the FOI experienced by an individual host whose queue length distribution is approximated from the collection of all sampled individuals. The true FOI per host per year in the simulation output is obtained from dividing the total FOI of all hosts per year by the total number of all hosts. Therefore, our estimator, combined with the demographic information on population size, is for the total number of Plasmodium falciparum infections acquired by all individual hosts in the population of interest per year.

      We evaluated the impact of individual heterogeneity on FOI inference by introducing individual heterogeneity into the simulations. With a considerable amount of transmission heterogeneity across individuals (namely 2/3 of the population receiving more than 90% of all bites whereas the remaining 1/3 receives the rest of the bites), our two methods exhibit a similar performance than those of the homogeneous transmission scenarios.

      Concerning the second point, we will add a quantitative assessment of the ability of the estimator to recover the truth across simulations and include this information in the legend of each figure. In particular, we will provide the proportion of simulations where the truth is captured by the entire bootstrap distribution, in addition to some measure of relative deviation, such as the relative difference between the true FOI value and the median of the bootstrap distribution for the estimate. This assessment will be a valuable addition, but please note that the comparisons we have provided in a graphical way do illustrate the ability of the methods to estimate “sensible” values, close to the truth despite multiple sources of errors. “Close” is here relative to the scale of variation of FOI in the field and to the kind of precision that would be useful in an empirical context. From a practical perspective based on the potential range of variation of FOI, the graphical results already illustrate that the estimated distributions would be informative.

      d. Furthermore the authors state in the methods that the choice of mean and variance (and thus second moment) parameters for inter-arrival times are varied widely, however, it's not clear what those ranges are there needs to be a clear table or figure caption showing what combinations of values were tested and which results are produced from them, this is an essential component of the method and it's impossible to fully evaluate its performance without this information. This relates to the issue of selecting the mean and variance values that maximize the likelihood of observing a given distribution of MOI estimates, this is very unclear since no likelihoods have been written down in the methods section of the main text, which likelihood are the authors referring to, is this the probability distribution of the steady state queue length distribution? At other places the authors refer to these quantities as Maximum Likelihood estimators, how do they know they have found the MLE? There are no derivations in the manuscript to support this. The authors should specify the likelihood and include in an appendix an explanation of why their estimation procedure is in fact maximizing this likelihood, preferably with evidence of the shape of the likelihood, and how fine the grid of values they tested is for their mean and variance since this could influence the overall quality of the estimation procedure. 

      We thank the reviewer for pointing out these aspects of the work that can be further clarified. We will specify the ranges for the choice of mean and variance parameters for inter-arrival times as well as the grid of values tested in the corresponding figure caption or in a separate supplementary table. We maximized the likelihood of observing the set of individual MOI estimates in a sampled population given steady queue length distributions (with these distributions based on the two-moment approximation method for different combinations of the mean and variance of inter-arrival times). We will add a section to either the Materials and Methods or the Appendix in our revised manuscript including an explicit formulation of the likelihood.

      We will add example figures on the shape of the likelihood to the Appendix. We will also test how choices of the grid of values influence the overall quality of the estimation procedure. Specifically, we will further refine the grid of values to include more points and examine whether the results of FOI inference are consistent and robust against each other.

      (2) Limitation of FOI estimation procedure.

      a. The authors discuss the importance of the duration of infection to this problem. While I agree that empirically estimating this is not possible, there are other options besides assuming that all 1-5-year-olds have the same duration of infection distribution as naïve adults co-infected with syphilis. E.g. it would be useful to test a wide range of assumed infection duration and assess their impact on the estimation procedure. Furthermore, if the authors are going to stick to the described method for duration of infection, the potentially limited generalizability of this method needs to be further highlighted in both the introduction, and the discussion. In particular, for an estimated mean FOI of about 5 per host per year in the pre-IRS season as estimated in Ghana (Figure 3) it seems that this would not translate to 4-year-old being immune naïve, and certainly this would not necessarily generalize well to a school-aged child population or an adult population. 

      The reviewer is indeed correct about the difficulty of empirically measuring the duration of infection for 1-5-year-olds, and that of further testing whether these 1-5-year-olds exhibit the same distribution for duration of infection as naïve adults co-infected with syphilis. We will nevertheless continue to use the described method for duration of infection, while better acknowledging and discussing the limitations this aspect of the method introduces. We note that the infection duration from the historical clinical data we have relied on, is being used in the malaria modeling community as one of the credible sources for this parameter of untreated natural infections in malaria-naïve individuals in malaria-endemic settings of Africa (e.g. in the agent-based model OpenMalaria, see 1).

      It is important to emphasize that the proposed methods apply to the MOI estimates for naïve or close to naïve patients. They are not suitable for FOI inference for the school-aged children and the adult populations of high-transmission endemic regions, since individuals in these age classes have been infected many times and their duration of infection is significantly shortened by their immunity. To reduce the degree of misspecification in infection duration and take full advantage of our proposed methods, we will emphasize in the revision the need to prioritize in future data collection and sampling efforts the subpopulation class who has received either no infection or a minimum number of infections in the past, and whose immune profile is close to that of naïve adults, for example, infants. This emphasis is aligned with the top priority of all intervention efforts in the short term, which is to monitor and protect the most vulnerable individuals from severe clinical symptoms and death.

      Also, force of infection for naïve hosts is a key basic parameter for epidemiological models of a complex infectious disease such as falciparum malaria, whether for agent-based formulations or equation-based ones. This is because force of infection for non-naïve hosts is typically a function of their immune status and the force of infection of naïve hosts. Thus, knowing the force of infection of naïve hosts can help parameterize and validate these models by reducing degrees of freedom.

      b. The evaluation of the capacity parameter c seems to be quite important and is set at 30, however, the authors only describe trying values of 25 and 30, and claim that this does not impact FOI inference, however it is not clear that this is the case. What happens if the carrying capacity is increased substantially? Alternatively, this would be more convincing if the authors provided a mathematical explanation of why the carrying capacity increase will not influence the FOI inference, but absent that, this should be mentioned and discussed as a limitation. 

      Thank you for this question. We will investigate more values of the parameter c systematically, including substantially higher ones. We note however that this quantity is the carrying capacity of the queuing system, or the maximum number of blood-stage strains that an individual human host can be co-infected with. We do have empirical evidence for the value of the latter being around 20 (2). This observed value provides a lower bound for parameter c. To account for potential under-sampling of strains, we thus tried values of 25 and 30 in the first version of our manuscript.

      In general, this parameter influences the steady-state queue length distribution based on the two-moment approximation, more specifically, the tail of this distribution when the flow of customers/infections is high. Smaller values of parameter c put a lower cap on the maximum value possible for the queue length distribution. The system is more easily “overflowed”, in which case customers (or infections) often find that there is no space available in the queuing system/individual host upon their arrival. These customers (or infections) will not increment the queue length. The parameter c has therefore a small impact for the part of the grid resulting in low flows of customers/infection, for which the system is unlikely to be overflowed. The empirical MOI distribution centers around 4 or 5 with most values well below 10, and only a small fraction of higher values between 15-20 (2). When one increases the value of c, the part of the grid generating very high flows of customers/infections results in queue length distributions with a heavy tail around large MOI values that are not supported by the empirical distribution. We therefore do not expect that substantially higher values for parameter c would change either the relative shape of the likelihood or the MLE.

      Reviewer #2 (Public Review):

      Summary:

      The authors combine a clever use of historical clinical data on infection duration in immunologically naive individuals and queuing theory to infer the force of infection (FOI) from measured multiplicity of infection (MOI) in a sparsely sampled setting. They conduct extensive simulations using agent-based modeling to recapitulate realistic population dynamics and successfully apply their method to recover FOI from measured MOI. They then go on to apply their method to real-world data from Ghana before and after an indoor residual spraying campaign.

      Strengths:

      (1) The use of historical clinical data is very clever in this context. 

      (2) The simulations are very sophisticated with respect to trying to capture realistic population dynamics. 

      (3) The mathematical approach is simple and elegant, and thus easy to understand. 

      Weaknesses: 

      (1) The assumptions of the approach are quite strong and should be made more clear. While the historical clinical data is a unique resource, it would be useful to see how misspecification of the duration of infection distribution would impact the estimates. 

      We thank the reviewer for bringing up the limitation of our proposed methods due to their reliance on a known and fixed duration of infection from historical clinical data. Please see our response to reviewer 1 comment 2a.

      (2) Seeing as how the assumption of the duration of infection distribution is drawn from historical data and not informed by the data on hand, it does not substantially expand beyond MOI. The authors could address this by suggesting avenues for more refined estimates of infection duration. 

      We thank the reviewer for pointing out a potential improvement to the work. We acknowledge that FOI is inferred from MOI, and thus is dependent on the information contained in MOI. FOI reflects risk of infection, is associated with risk of clinical episodes, and can relate local variation in malaria burden to transmission better than other proxy parameters for transmission intensity. It is possible that MOI can be as informative as FOI when one regresses the risk of clinical episodes and local variation in malaria burden with MOI. But MOI by definition is a number and not a rate parameter. FOI for naïve hosts is a key basic parameter for epidemiological models. This is because FOI of non-naïve hosts is typically a function of their immune status and the FOI of naïve hosts. Thus, knowing the FOI of naïve hosts can help parameterize and validate these models by reducing degrees of freedom. In this sense, we believe the transformation from MOI to FOI provides a useful step.

      Given the difficulty of measuring infection duration, estimating infection duration and FOI simultaneously appears to be an attractive alternative, as the referee pointed out. This will require however either cohort studies or more densely sampled cross-sectional surveys due to the heterogeneity in infection duration across a multiplicity of factors. These kinds of studies have not been, and will not be, widely available across geographical locations and time. This work aims to utilize more readily available data, in the form of sparsely sampled single-time-point cross-sectional surveys.

      (3) It is unclear in the example how their bootstrap imputation approach is accounting for measurement error due to antimalarial treatment. They supply two approaches. First, there is no effect on measurement, so the measured MOI is unaffected, which is likely false and I think the authors are in agreement. The second approach instead discards the measurement for malaria-treated individuals and imputes their MOI by drawing from the remaining distribution. This is an extremely strong assumption that the distribution of MOI of the treated is the same as the untreated, which seems unlikely simply out of treatment-seeking behavior. By imputing in this way, the authors will also deflate the variability of their estimates. 

      We thank the reviewer for pointing out aspects of the work that can be further clarified. It is difficult to disentangle the effect of drug treatment on measurement, including infection status, MOI, and duration of infection. Thus, we did not attempt to address this matter explicitly in the original version of our manuscript. Instead, we considered two extreme scenarios which bound reality, well summarized by the reviewer. First, if drug treatment has had no impact on measurement, the MOI of the drug-treated 1-5-year-olds would reflect their true underlying MOI. We can then use their MOI directly for FOI inference. Second, if the drug treatment had a significant impact on measurement, i.e., if it completely changed the infection status, MOI, and duration infection of drug-treated 1-5-year-olds, we would need to either exclude those individuals’ MOI or impute their true underlying MOI. We chose to do the latter in the original version of the manuscript. If those 1-5-year-olds had not received drug treatment, they would have had similar MOI values than those of the non-treated 1-5-year-olds. We can then impute their MOI by sampling from the MOI estimates of non-treated 1-5-year-olds.

      The reviewer is correct in pointing out that this imputation does not add additional information and can potentially deflate the variability of MOI distributions, compared to simply throwing or excluding those drug-treated 1-5-year-olds from the analysis. Thus, we can include in our revision FOI estimates with the drug-treated 1-5-year-olds excluded in the estimation.

      - For similar reasons, their imputation of microscopy-negative individuals is also questionable, as it also assumes the same distributions of MOI for microscopy-positive and negative individuals. 

      We imputed the MOI values of microscopy-negative but PCR-positive 1-5-year-olds by sampling from the microscopy-positive 1-5-year-olds, effectively assuming that both have the same, or similar, MOI distributions. We did so because there is a weak relationship in our Ghana data between the parasitemia level of individual hosts and their MOI (or detected number of var genes, on the basis of which the MOI values themselves were estimated). Parasitemia levels underlie the difference in detection sensitivity of PCR and microscopy.

      We will elaborate on this matter in our revised manuscript and include information from our previous and on-going work on the weak relationship between MOI/the number of var genes detected within an individual host and their parasitemia levels. We will also discuss potential reasons or hypotheses for this pattern.

      Reviewer #3 (Public Review):

      Summary: 

      It has been proposed that the FOI is a method of using parasite genetics to determine changes in transmission in areas with high asymptomatic infection. The manuscript attempts to use queuing theory to convert multiplicity of infection estimates (MOI) into estimates of the force of infection (FOI), which they define as the number of genetically distinct blood-stage strains. They look to validate the method by applying it to simulated results from a previously published agent-based model. They then apply these queuing theory methods to previously published and analysed genetic data from Ghana. They then compare their results to previous estimates of FOI. 

      Strengths: 

      It would be great to be able to infer FOI from cross-sectional surveys which are easier and cheaper than current FOI estimates which require longitudinal studies. This work proposes a method to convert MOI to FOI for cross-sectional studies. They attempt to validate this process using a previously published agent-based model which helps us understand the complexity of parasite population genetics. 

      Weaknesses: 

      (1) I fear that the work could be easily over-interpreted as no true validation was done, as no field estimates of FOI (I think considered true validation) were measured. The authors have developed a method of estimating FOI from MOI which makes a number of biological and structural assumptions. I would not call being able to recreate model results that were generated using a model that makes its own (probably similar) defined set of biological and structural assumptions a validation of what is going on in the field. The authors claim this at times (for example, Line 153 ) and I feel it would be appropriate to differentiate this in the discussion. 

      We thank the reviewer for this comment, although we think there is a mis-understanding on what can and cannot be practically validated in the sense of a “true” measure of FOI that would be free from assumptions for a complex disease such as malaria. We would not want the results to be over-interpreted and will extend the discussion of what we have done to test the methods. We note that for the performance evaluation of statistical methods, the use of simulation output is quite common and often a necessary and important step. In some cases, the simulation output is generated by dynamical models, whereas in others, by purely descriptive ones. All these models make their own assumptions which are necessarily a simplification of reality. The stochastic agent-based model (ABM) of malaria transmission utilized in this work has been shown to reproduce several important patterns observed in empirical data from high-transmission regions, including aspects of strain diversity which are not represented in simpler models.

      In what sense this ABM makes a set of biological and structural assumptions which are “probably similar” to those of the queuing methods we present, is not clear to us. We agree that relying on models whose structural assumptions differ from those of a given method or model to be tested, is the best approach. Our proposed methods for FOI inference based on queuing theory rely on the duration of infection distribution and the MOI distribution among sampled individuals, both of which can be direct outputs from the ABM. But these methods are agnostic on the specific mechanisms or biology underlying the regulation of duration and MOI.

      Another important point raised by this comment is what would be the “true” FOI value against which to validate our methods. Empirical MOI-FOI pairs for FOI measured directly by tracking cohort studies are still lacking. There are potential measurement errors for both MOI and FOI because the polymorphic markers typically used in different cohort studies cannot differentiate hyper-diverse antigenic strains fully and well (5). Also, these cohort studies usually start with drug treatment. Alternative approaches do not provide a measure of true FOI, in the sense of the estimation being free from assumptions. For example, one approach would be to fit epidemiological models to densely sampled/repeated cross-sectional surveys for FOI inference. In this case, no FOI is measured directly and further benchmarked against fitted FOI values. The evaluation of these models is typically based on how well they can capture other epidemiological quantities which are more easily sampled or measured, including prevalence or incidence. This is similar to what is done in this work. We selected the FOI values that maximize the likelihood of observing the given distribution of MOI estimates. Furthermore, we paired our estimated FOI value for the empirical data from Ghana with another independently measured quantity EIR (Entomological Inoculation Rate), typically used in the field as a measure of transmission intensity. We check whether the resulting FOI-EIR point is consistent with the existing set of FOI-EIR pairs and the relationship between these two quantities from previous studies. We acknowledge that as for model fitting approaches for FOI inference, our validation is also indirect for the field data.

      Prompted by the reviewer’s comment, we will discuss this matter in more detail in our revised manuscript, including clarifying further certain basic assumptions of our agent-based model, emphasizing the indirect nature of the validation with the field data and the existing constraints for such validation.

      (2) Another aspect of the paper is adding greater realism to the previous agent-based model, by including assumptions on missing data and under-sampling. This takes prominence in the figures and results section, but I would imagine is generally not as interesting to the less specialised reader. The apparent lack of impact of drug treatment on MOI is interesting and counterintuitive, though it is not really mentioned in the results or discussion sufficiently to allay my confusion. I would have been interested in understanding the relationship between MOI and FOI as generated by your queuing theory method and the model. It isn't clear to me why these more standard results are not presented, as I would imagine they are outputs of the model (though happy to stand corrected - it isn't entirely clear to me what the model is doing in this manuscript alone). 

      We thank the reviewer for this comment. We will add supplementary figures for the MOI distributions generated by the queuing theory method (i.e., the two-moment approximation method) and our agent-based model in our revised manuscript.

      In the first version of our manuscript, we considered two extreme scenarios which bound the reality, instead of simply assuming that drug treatment does not impact the infection status, MOI, and duration of infection. See our response to reviewer 2 point (3). The resulting FOI estimates differ but not substantially across the two extreme scenarios, partially because drug-treated individuals’ MOI distribution is similar to that of non-treated individuals (or the apparent lack of drug treatment on MOI as pointed by the referee). We will consider potentially adding some formal test to quantify the difference between the two MOI distributions and how significant the difference is. We will discuss which of the two extreme scenarios reality is closer to, given the result of the formal test. We will also discuss in our revision possible reasons/hypotheses underlying the impact of drug treatment on MOI from the perspective of the nature, efficiency, and duration of the drugs administrated.

      Regarding the last point of the reviewer, on understanding the relationship between MOI and FOI, we are not fully clear about what was meant. We are also confused about the statement on what the “model is doing in this manuscript alone”. We interpret the overall comment as the reviewer suggesting a better understanding of the relationship between MOI and FOI, either between their distributions, or the moments of their distributions, perhaps by fitting models including simple linear regression models. This approach is in principle possible, but it is not the focus of this work. It will be equally difficult to evaluate the performance of this alternative approach given the lack of MOI-FOI pairs from empirical settings with directly measured FOI values (from large cohort studies). Moreover, the qualitative relationship between the two quantities is intuitive. Higher FOI values should correspond to higher MOI values. Less variable FOI values should correspond to more narrow or concentrated MOI distributions, whereas more variable FOI values should correspond to more spread-out ones. We will discuss this matter in our revised manuscript.

      (3) I would suggest that outside of malaria geneticists, the force of infection is considered to be the entomological inoculation rate, not the number of genetically distinct blood-stage strains. I appreciate that FOI has been used to explain the latter before by others, though the authors could avoid confusion by stating this clearly throughout the manuscript. For example, the abstract says FOI is "the number of new infections acquired by an individual host over a given time interval" which suggests the former, please consider clarifying. 

      We thank the reviewer for this helpful comment as it is fundamental that there is no confusion on the basic definitions. EIR, the entomological inoculation rate, is closely related to the force of infection but is not equal to it. EIR focuses on the rate of arrival of infectious bites and is measured as such by focusing on the mosquito vectors that are infectious and arrive to bite a given host. Not all these bites result in actual infection of the human host. Epidemiological models of malaria transmission clearly make this distinction, as FOI is defined as the rate at which a host acquires infection. This definition comes from more general models for the population dynamics of infectious diseases in general. (For diseases simpler than malaria, with no super-infection, the typical SIR models define the force of infection as the rate at which a susceptible individual becomes infected).  For malaria, force of infection refers to the number of blood-stage new infections acquired by an individual host over a given time interval. This distinction between EIR and FOI is the reason why studies have investigated their relationship, with the nonlinearity of this relationship reflecting the complexity of the underlying biology and how host immunity influences the outcome of an infectious bite.

      We agree however with the referee that there could be some confusion in our definition resulting from the approach we use to estimate the MOI distribution (which provides the basis for estimating FOI). In particular, we rely on the non-existent to very low overlap of var repertoires among individuals with MOI=1, an empirical pattern we have documented extensively in previous work (See 2, 3, and 4). The method of var_coding and its Bayesian formulation rely on the assumption of negligible overlap. We note that other approaches for estimating MOI (and FOI) based on other polymorphic markers, also make this assumption (reviewed in _5). Ultimately, the FOI we seek to estimate is the one defined as specified above and in both the abstract and introduction, consistent with the epidemiological literature. We will include clarification in the introduction and discussion of this point in the revision.

      (4) Line 319 says "Nevertheless, overall, our paired EIR (directly measured by the entomological team in Ghana (Tiedje et al., 2022)) and FOI values are reasonably consistent with the data points from previous studies, suggesting the robustness of our proposed methods". I would agree that the results are consistent, given that there is huge variation in Figure 4 despite the transformed scales, but I would not say this suggests a robustness of the method. 

      We will modify the relevant sentences to use “consistent” instead of “robust”.

      (5) The text is a little difficult to follow at times and sometimes requires multiple reads to understand. Greater precision is needed with the language in a few situations and some of the assumptions made in the modelling process are not referenced, making it unclear whether it is a true representation of the biology. 

      We thank the reviewer for this comment. As also mentioned in the response to reviewer 1’s comments, we will reorganize and rewrite parts of the text in our revision to improve clarity.

      References and Notes

      (1) Maire, N. et al. A model for natural immunity to asexual blood stages of Plasmodium falciparum malaria in endemic areas. Am J Trop Med Hyg., 75(2 Suppl):19-31 (2006).

      (2) Tiedje, K. E. et al. Measuring changes in Plasmodium falciparum census population size in response to sequential malaria control interventions. eLife, 12 (2023).

      (3) Day, K. P. et al. Evidence of strain structure in Plasmodium falciparum var gene repertoires in children from Gabon, West Africa. Proc. Natl. Acad. Sci. U.S.A., 114(20), 4103-4111 (2017).

      (4) Ruybal-Pesántez, S. et al. Population genomics of virulence genes of Plasmodium falciparum in clinical isolates from Uganda. Sci. Rep., 7(11810) (2017).

      (5) Labbé, F. et al. Neutral vs. non-neutral genetic footprints of Plasmodium falciparum multiclonal infections. PLoS Comput Biol 19(1) (2023).

    1. Author response:

      We are grateful to the reviewers and the editorial team for their feedback and thorough revisions of our paper. We also appreciate their acknowledgement that this study represents a significant advancement in the field of reproductive neuroendocrinology and offers insights on the contribution of obesity vs melanocortin signaling in women’s fertility. In the revised version, we will provide a more detailed clarification of the data and methodology and adhere to the reviewers’ suggestions.

      Please find below our answers to specific concerns in the public review:

      Given the fact that mice lacking MC4R in Kiss1 neurons remained fertile despite some reproductive irregularities, the overall tone and some of the conclusions of the manuscript (e.g., from the abstract: "... Mc4r expressed in Kiss1 neurons is required for fertility in females") were overstated. Perhaps this can be described as a contributing pathway, but other mechanisms must also be involved in conveying metabolic information to the reproductive system.

      We will tone down these statements throughout the manuscript to indicate that MC4R in Kiss1 neurons plays a role in the metabolic control of fertility (rather than “…is required for fertility”)

      The mechanistic studies evaluating melanocortin signalling in Kiss1 neurons were all completed in ovariectomised animals (with and without exogenous hormones) that do not experience cyclical hormone changes. Such cyclical changes are fundamental to how these neurons function in vivo and may dynamically alter the way they respond to neuropeptides. Therefore, eliminating this variable makes interpretation difficult.

      Mice lack true follicular and luteal phases and therefore it is impossible to separate estrogen-mediated changes from progesterone-mediated changes (e.g., in a proestrous female). Therefore, we use an ovariectomized female model in which we can generate a LH surge with an E2-replacement regimen [1]. This model enables us to focus on estrogen effects, exclude progesterone effects, and minimize variability. Inclusion of cycling females would make interpretation much more difficult.

      (1) Bosch et al., 2013 Mol & Cell Endo; https://doi.org/10.1016/j.mce.2012.12.021

      Use of the POMC-Cre to target ontogenetic inputs to Kiss1 neurons might have targeted a wider population of cells than intended.

      POMC is transiently expressed during embryonic development in a portion of cells fated to be Kiss1 or NPY/AgRP neurons [1-2]. Therefore, this is a valid concern when crossing with a floxed mouse. However, use of AAVs in adult animals avoids this issue and leads to specific expression in POMC neurons [3]. This POMC-Cre mouse has been used extensively with AAVs to drive specific expression in POMC neurons by other laboratories [4-7]. Therefore, we are confident that our optogenetic studies have narrowly targeted POMC inputs.

      (1) Padilla et al., 2010 Nat Med; https://doi.org/10.1038/nm.2126

      (2) Lam et al., 2017 Mol Metab; https://doi.org/10.1016/j.molmet.2017.02.007

      (3) Stincic et al., 2018 eNeuro; https://doi.org/10.1523/eneuro.0103-18.2018

      (4) Fenselau et al., 2017 Nat Neuro; https://doi.org/10.1038/nn.4442

      (5) Rau & Hentges, 2019 J Neuro; https://doi.org/10.1523/jneurosci.3193-18.2019

      (6) Fortin et al., 2021 Nutrients; https://doi.org/10.3390/nu13051642

      (7) Villa et al., 2024 J Neuro; https://doi.org/10.1523/jneurosci.0222-24.2024

    1. Author Response:

      Reviewer #1 (Public Review):

      [...] The conclusions of the in vitro experiments using cultured hippocampal slices were well supported by the data, but aspects of the in vivo experiments and proteomic studies need additional clarification.

      (1) In contrast to the in vitro experiments in which a γ-secretase inhibitor was used to exclude possible effects of Aβ, this possibility was not examined in in-vivo experiments assessing synapse loss and function (Figure 3) and cognitive function (Figure 4). The absence of plaque formation (Figure 4B) is not sufficient to exclude the possibility that Aβ is involved. The potential involvement of Aβ is an important consideration given the 4-month duration of protein expression in the in vivo studies.

      Response: We appreciate the reviewer for raising this question. While our current data did not exclude the potential involvement of Aβ-induced toxicity in the synaptic and cognitive dysfunction observed in mice overexpressing β-CTF, addressing this directly remains challenging. Treatment with γ-secretase inhibitors could potentially shed light on this issue. However, treatments with γ-secretase inhibitors are known to lead to brain dysfunction by itself likely due to its blockade of the γ-cleavage of other essential molecules, such as Notch[1, 2]. As a result, this approach is unlikely to provide a definitive answer, which also prevents us from pursuing it further in vivo. We hope the reviewer understands this limitation and agrees to a discussion of this issue in the revised manuscript instead.

      (2) The possibility that the results of the proteomic studies conducted in primary cultured hippocampal neurons depend in part on Aβ was also not taken into consideration.

      Response: We thank the reviewer for raising this interesting question. In the revised manuscript, we plan to address this experimentally by using a γ-secretase inhibitor to investigate the potential contribution of Aβ in this study.

      Likely impact of the work on the field, and the utility of the methods and data to the community:

      The authors' use of sparse expression to examine the role of β-CTF on spine loss could be a useful general tool for examining synapses in brain tissue.

      Response: We thank the reviewer for these comments. Indeed, it is a very robust assay and we would like to share this method with the scientific community as soon as possible.

      Additional context that might help readers interpret or understand the significance of the work:

      The discovery of BACE1 stimulated an international effort to develop BACE1 inhibitors to treat Alzheimer's disease. BACE1 inhibitors block the formation of β-CTF which, in turn, prevents the formation of Aβ and other fragments. Unfortunately, BACE1 inhibitors not only did not improve cognition in patients with Alzheimer's disease, they appeared to worsen it, suggesting that producing β-CTF actually facilitates learning and memory. Therefore, it seems unlikely that the disruptive effects of β-CTF on endosomes plays a significant role in human disease. Insights from the authors that shed further light on this issue would be welcome.

      Response: We would like to express our gratitude to the reviewer for raising this interesting question. It remains puzzling why BACE1 inhibition has failed to yield benefits in AD patients, while amyloid clearance via Aβ antibodies has been shown to slow disease progression. One possible explanation is that pharmacological inhibition of BACE1 may not be as effective as genetic removal. Indeed, genetic depletion of BACE1 leads to the clearance of existing amyloid plaques[3], whereas its pharmacological inhibition slows plaque growth and prevents the formation of new plaques but does not stop the growth of the existing ones[4]. We think the negative results of BACE1 inhibitors in clinical trials may not be sufficient to rule out the potential contribution of β-CTF to AD pathogenesis. Given that cognitive function continues to deteriorate rapidly in plaque-free patients after 1.5 years of treatment with Aβ antibodies in phase three clinical studies[5], it is important to consider the possible role of other Aβ-related fragments, such as β-CTF. We will include some further discussion in the revised manuscript.

      Reviewer #2 (Public Review):

      Summary:

      In this study, the authors investigate the potential role of other cleavage products of amyloid precursor protein (APP) in neurodegeneration. They combine in vitro and in vivo experiments, revealing that β-CTF, a product cleaved by BACE1, promotes synaptic loss independently of Aβ. Furthermore, they suggest that β-CTF may interact with Rab5, leading to endosomal dysfunction and contributing to the loss of synaptic proteins.

      Response: We would like to thank the reviewer for his/her insightful suggestions. We have addressed the specific comments in following sections.

      Weaknesses:

      Most experiments were conducted in vitro using overexpressed β-CTF. Additionally, the study does not elucidate the mechanisms by which β-CTF disrupts endosomal function and induces synaptic degeneration.

      Response: We would like to thank the reviewer for this insightful comment. While a significant portion of our experiments were conducted in vitro, the main findings were also confirmed in vivo (Figures 3 and 4). Repeating all the experiments in vivo would be challenging and may not be necessary. Regarding the use of overexpressed β-CTF, we acknowledge that this is a common issue in neurodegenerative disease studies. These diseases progress slowly over many years, sometimes even decades in patients. To model this progression in cell or mouse models within a time frame feasible for research, overexpression of certain proteins is often required. While not ideal, it is sometimes unavoidable. Since β-CTF levels are elevated in AD patients[6], its overexpression is a reasonable approach to investigate its potential effects.

      We did not further investigate the mechanisms by which β-CTF disrupted endosomal function because our preliminary results align with previous findings. Kim et al. demonstrated that β-CTF recruits APPL1 (a Rab5 effector) via the YENPTY motif to Rab5 endosomes, where it stabilizes active GTP-Rab5, leading to pathologically accelerated endocytosis, endosome swelling and selectively impaired transport of Rab5 endosomes[6]. In our manuscript, we observed that co-expression of Rab5S34N with β-CTF effectively mitigated β-CTF-induced spine loss in hippocampal slice cultures (Figures 6I-J), indicating that Rab5 overactivation-induced endosomal dysfunction contributed to β-CTF-induced spine loss, which was consistent with their conclusions.

      Reviewer #3 (Public Review):

      Summary:

      Most previous studies have focused on the contributions of Abeta and amyloid plaques in the neuronal degeneration associated with Alzheimer's disease, especially in the context of impaired synaptic transmission and plasticity which underlies the impaired cognitive functions, a hallmark in AD. But processes independent of Abeta and plaques are much less explored, and to some extent, the contributions of these processes are less well understood. Luo et all addressed this important question with an array of approaches, and their findings generally support the contribution of beta-CTF-dependent but non-Abeta-dependent process to the impaired synaptic properties in the neurons. Interestingly, the above process appears to operate in a cell-autonomous manner. This cell-autonomous effect of beta-CTF as reported here may facilitate our understanding of some potentially important cellular processes related to neurodegeneration. Although these findings are valuable, it is key to understand the probability of this process occurring in a more natural condition, such as when this process occurs in many neurons at the same time. This will put the authors' findings into a context for a better understanding of their contribution to either physiological or pathological processes, such as Alzheimer's. The experiments and results using the cell system are quite solid, but the in vivo results are incomplete and hence less convincing (see below). The mechanistic analysis is interesting but primitive and does not add much more weight to the significance. Hence, further efforts from the authors are required to clarify and solidify their results, in order to provide a complete picture and support for the authors' conclusions.

      Response: We would like to thank the reviewer for the constructive suggestions. We have addressed the specific comments in following sections.

      Strengths:

      (1) The authors have addressed an interesting and potentially important question

      (2) The analysis using the cell system is solid and provides strong support for the authors' major conclusions. This analysis has used various technical approaches to support the authors' conclusions from different aspects and most of these results are consistent with each other.

      Response: We would like to thank the reviewer for these comments.

      Weaknesses:

      (1) The relevance of the authors' major findings to the pathology, especially the Abeta-dependent processes is less clear, and hence the importance of these findings may be limited.

      Response: We would like to thank the reviewer for pointing this out. Phase 3 clinical trial data for Aβ antibodies show that cognitive function continues to decline rapidly, even in plaque-free patients, after 1.5 years of treatment[5]. This suggests that plaque-independent mechanisms may drive AD progression. Therefore, it is crucial to consider the potential contributions of other Aβ species or related fragments, such as alternative forms of Aβ and β-CTF. While it is too early to definitively predict how β-CTF contributes to AD progression, it is notable that β-CTF, rather than Aβ, induced synaptic deficits in mice, which recapitulates a key pathological feature of AD. Ultimately, the true role of β-CTF in AD pathogenesis can only be confirmed through clinical studies.

      (2) In vivo analysis is incomplete, with certain caveats in the experimental procedures and some of the results need to be further explored to confirm the findings.

      Response: We would like to thank the reviewer for this suggestion. We plan to correct these caveats in the revised manuscript.

      (3) The mechanistic analysis is rather primitive and does not add further significance.

      Response: We would like to thank the reviewer for this comment. We did not delve further into the underlying mechanisms because our analysis indicates that Rab5 dysfunction underlies β-CTF-induced endosomal dysfunction, which is consistent with another study and has been addressed in detail there[6]. We hope the reviewer could understand that our focus in this paper is on how β-CTF triggers synaptic deficits, which is why we did not investigate the mechanisms of β-CTF-induced endosomal dysfunction further.

      References:

      1. GüNER G, LICHTENTHALER S F. The substrate repertoire of γ-secretase/presenilin [J]. Seminars in cell & developmental biology, 2020, 105: 27-42.
      2. DOODY R S, RAMAN R, FARLOW M, et al. A phase 3 trial of semagacestat for treatment of Alzheimer's disease [J]. The New England journal of medicine, 2013, 369(4): 341-50.
      3. HU X, DAS B, HOU H, et al. BACE1 deletion in the adult mouse reverses preformed amyloid deposition and improves cognitive functions [J]. The Journal of experimental medicine, 2018, 215(3): 927-40.
      4. PETERS F, SALIHOGLU H, RODRIGUES E, et al. BACE1 inhibition more effectively suppresses initiation than progression of β-amyloid pathology [J]. Acta Neuropathol, 2018, 135(5): 695-710.
      5. SIMS J R, ZIMMER J A, EVANS C D, et al. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial [J]. Jama, 2023, 330(6): 512-27.
      6. KIM S, SATO Y, MOHAN P S, et al. Evidence that the rab5 effector APPL1 mediates APP-βCTF-induced dysfunction of endosomes in Down syndrome and Alzheimer's disease [J]. Molecular psychiatry, 2016, 21(5): 707-16.
    1. Author Response

      eLife assessment

      Tilk and colleagues present a computational analysis of tumor transcriptomes to investigate the hypothesis that the large number of somatic mutations in some tumors is detrimental such that these detrimental effects are mitigated by an up-regulation by pathways and mechanisms that prevent protein misfolding. The authors address this question by fitting a model that explains the log expression of a gene as a linear function of the log number of mutations in the tumor and show that specific categories of genes (proteasome, chaperones, ...) tend to be upregulated in tumors with a large number of somatic mutations. Some of the associations presented could arise through confounding, but overall the authors present solid evidence that mutational load is associated with higher expression of genes involved in mitigation of protein misfolding – an important finding with general implications for our understanding of cancer evolution.

      We thank the reviewers for these kind words. The summary statement and public review highlight our work in understanding how human tumors phenotypically respond to mutational load by assessing changes in gene expression. This work provides a mechanistic underpinning to our previous finding that the accumulation of passenger mutations in tumors creates a substantial cost because even substantially damaging passenger mutations can fix in non-recombining clonal tumor lineages. At the same time, we believe the summary statement and the public review do not mention a key remaining part of our paper that validates our findings and establishes causal connections between protein misfolding due to coding passenger mutations and tumor fitness. Specifically, we replicate and cross-validate our findings in human tumors by examining expression responses in an independent dataset of cancer cell lines (CCLE), where we demonstrate similar expression responses to an accumulation of mutations, indicating generic, cell intrinsic responses. We then establish a causal link by demonstrating that mitigation of protein misfolding through protein degradation and re-folding is necessary for high mutational load cancer cells to maintain viability through perturbation experiments via shRNA known-down and treatment with targeted agents. These analyses and results are important because they show that the adaptive responses we observe are evidence of a generic, cell intrinsic phenomenon that cannot be explained by organismal effects, such as aging, changes in the immune system or microenvironment. 

      Joint Public Review:

      Tilk and colleagues present a computational investigation of tumor transcriptomes to investigate the hypothesis that the large number of somatic mutations in some tumors is detrimental and that these detrimental effects are mitigated by an up-regulation by pathways and mechanisms that prevent protein misfolding.

      The authors address this question by fitting a model that explains the log expression of a gene as a linear function of the log number of mutations in the tumor and additional effects for tumor homogeneity and type. This analysis identified a large number of genes (5000) that are more highly expressed at high mutational load at a FDR of 0.05. These genes are enriched in many core categories, most prominently in the proteasome, translation, and mitochondral translation. The authors then proceed to investigate specific categories of upregulated genes further.

      The individual reviews, and the discussion among the reviewers, raised several issues that could potentially undermine or weaken some of the findings presented in this paper.

      1) Systematic differences in expression of some genes from one tumor class to another might generate spurious associations with mutational load (ML), which would affect the results presented in Figs 1 and 3. The case of a causal link between ML and over-expression of genes that mitigate deleterious effects of misfolding would be stronger if these results were replicated within single cancer types with many samples with different ML (similar to how Fig S6 relates to Fig 3). A related concern might be an association between increased variance of expression and ML. The compositional nature of expression data could generate trends like the ones shown in Fig. 2 with changing variance.

      We agree with the reviewers that possible confounders should be considered since TCGA data is heterogeneous. In this paper, we investigated possible confounders such as multicollinearity with different mutational types (SNVs and CNVs), controlled for expression responses within cancer types in the GLMM, and used the jackknifing procedure to ensure that no one cancer type dominates the signal. However, in principle unknown hidden confounders could remain, which is why a large part of our paper was focused on validating these effects in an independent dataset (CCLE) where many other covariates are not relevant (immune system, donor variability, stage, age, sex, etc.). Importantly, we also used data from perturbation screens that are completely orthogonal to expression responses in CCLE to get at a cause and effect. 

      Our reasoning for using all of the data in Figure 1 while controlling for differences due to cancer type in the GLMM was to maximize the variation in mutational load across all of the samples in this dataset to identify what genes increase in expression as mutational load increases over 5 orders of magnitude. As noted here, we also already further validated that the signal we observe in Figure 1 is still robust for our gene sets of interest within cancer types in Supplemental Figure 6.

      2) Fig 4, Fig S5 and Fig S8 show results for the regression coefficient of expression on ML after leaving out one cancer at a time. All of us initially read this as results for 'one cancer at a time', rather than 'leave-one-out'. These figures are used to argue that the results are not driven by specific cancer types. However, this analysis would not reveal if the signal was driven by a (small) subset of cancer types. To justify claims like "significant negative relationship between mutational load and cell viability across almost all cancer types", one needs to analyze individual cancer types. Results for specific genes, rather than broad groups would also help interpret these results.

      Our reasoning for grouping together genes in Figure 4 was because the shRNA screen was done on a single gene at a time, and we were interested in measuring the joint effect on viability after knocking down all of the genes in a given complex. 

      Given that the expression responses in Figure 3 already validate within cancer types in TCGA in Supplemental Figure 6, we believe that it’s very unlikely that the signal we observe is driven by individual cancer types or smaller groups of cancer types. In addition, we did not perform a within cancer analysis in CCLE for Figure 4, because not all available cancer types in CCLE were profiled evenly in the shRNA screen (Total < 300). The vast majority of cancer types in CCLE for the shRNA screen (23/26) have sample sizes <20 within each group that we believe are unlikely to lead to meaningful results that are not driven by noise.

      3) You use different model architecture for the TCGA and CCLE analysis because you suspect that the sample size imbalance in the latter might mean that a GLMM can not capture the different variance components accurately. Did you test this? Could you downsample to avoid this? Cancer type is likely a strong confounder of ML.

      That was indeed our reasoning, that within group sample sizes in CCLE are too low to robustly estimate variance within cancer types. Given that many cancer types have <20 samples within each group, we don’t think that evenly downsampling would enable us to get an estimate not driven by noise. As noted above, our approach to control for this was to perform a jackknifing procedure that eliminates a single cancer type at a time and re-estimates the effect. 

      4) In the splicing analysis (Fig 2 and Fig S4), you report a 10% variation in splicing for a 100-fold variation in ML. This weak trend is replicated in very similar ways for many different types of alternative splicing events. It is not clear why different events (exon skipping, intron retention, etc) should respond in the same way to ML. A weak but homogeneous effect like the one shown here might result from some common confounder (see point 1). Similarly, it is not clear why with increasing intron retention PSI threshold the fraction of under-expressed transcripts would decrease and not increase.

      We agree that the effects of all the different alternative splicing effects are complex. Our focus was on intron retention, which is known to occur in cancer (Lindeboom, et. al 2016, Nature Genetics), and our analysis is consistent with the idea that damaging passenger mutations can shift cellular phenotypic states that require the use of many different mechanisms to mitigate protein misfolding.

      For Figure S4, as the PSI threshold for calling an alternative splicing event increases, fewer samples are called as having an intron retention event in the gene. This uniformly decreases the numerator across all the mutational load bins, so that when the threshold is increased the fraction of under-expressed transcripts with intron retention events is lower.

    1. Author Response

      We thank the reviewers for their positive comments and constructive feedback following their thorough reading of the manuscript. In this provisional reply we will briefly address the reviewer’s comments and suggestions point by point. In the forthcoming revised manuscript, we will more thoroughly address the reviewer’s comments and provide additional supporting data.

      (1) The expression 'randomly clustered networks' needs to be explained in more detail given that in its current form risks to indicate that the network might be randomly organized (i.e., not organized). In particular, a clustered network with future functionality based on its current clustering is not random but rather pre-configured into those clusters. What the authors likely meant to say, while using the said expression in the title and text, is that clustering is not induced by an experience in the environment, which will only be later mapped using those clusters. While this organization might indeed appear as randomly clustered when referenced to a future novel experience, it might be non-random when referenced to the prior (unaccounted) activity of the network. Related to this, network organization based on similar yet distinct experiences (e.g., on parallel linear tracks as in Liu, Sibille, Dragoi, Neuron 2021) could explain/configure, in part, the hippocampal CA1 network organization that would appear otherwise 'randomly clustered' when referenced to a future novel experience.

      As suggested by the reviewer, we will revise the text to clarify that the random clustering is random with respect to any future, novel environment. The cause of clustering could be prior experiences (e.g. Bourjaily M & Miller P, Front. Comput. Neurosci. 5:37, 2011) or developmental programming (e.g. Perin R, Berger TK, & Markram H, Proc. Natl. Acad. Sci. USA 108:5419, 2011).

      (2) The authors should elaborate more on how the said 'randomly clustered networks' generate beyond chance-level preplay. Specifically, why was there preplay stronger than the time-bin shuffle? There are at least two potential explanations:

      (2.1) When the activation of clusters lasts for several decoding time bins, temporal shuffle breaks the continuity of one cluster's activation, thus leading to less sequential decoding results. In that case, the preplay might mainly outperform the shuffle when there are fewer clusters activating in a PBE. For example, activation of two clusters must be sequential (either A to B or B to A), while time bin shuffle could lead to non-sequential activations such as a-b-a-b-a-b where a and b are components of A and B;

      (2.2) There is a preferred connection between clusters based on the size of overlap across clusters. For example, if pair A-B and B-C have stronger overlap than A-C, then cluster sequences A-B-C and C-B-A are more likely to occur than others (such as A-C-B) across brain states. In that case, authors should present the distribution of overlap across clusters, and whether the sequences during run and sleep match the magnitude of overlap. During run simulation in the model, as clusters randomly receive a weak location cue bias, the activation sequence might not exactly match the overlap of clusters due to the external drive. In that case, the strength of location cue bias (4% in the current setup) could change the balance between the internal drive and external drive of the representation. How does that parameter influence the preplay incidence or quality?

      Based on our finding that preplay occurs only in networks that sustain cluster activity over multiple decoding time bins (Figure 5d-e), our understanding of the model’s function is consistent with the reviewers first explanation. We will provide additional analysis in the forthcoming revised manuscript in order to directly test the first explanation and will also test the intriguing possibility that the reviewer’s second suggestion contributes to above-chance preplay.

      (3) The manuscript is focused on presenting that a randomly clustered network can generate preplay and place maps with properties similar to experimental observations. An equally interesting question is how preplay supports spatial coding. If preplay is an intrinsic dynamic feature of this network, then it would be good to study whether this network outperforms other networks (randomly connected or ring lattice) in terms of spatial coding (encoding speed, encoding capacity, tuning stability, tuning quality, etc.)

      We agree that this is an interesting future direction, but we see it as outside the scope of the current work. There are two interesting avenues of future work: 1) Our current model does not include any plasticity mechanisms, but a future model could study the effects of synaptic plasticity during preplay on long-term network dynamics, and 2) Our current model does not include alternative approaches to constructing the recurrent network, but future studies could systematically compare the spatial coding properties of alternative types of recurrent networks.

      (4) The manuscript mentions the small-world connectivity several times, but the concept still appears too abstract and how the small-world index (SWI) contributes to place fields or preplay is not sufficiently discussed.

      For a more general audience in the field of neuroscience, it would be helpful to include example graphs with high and low SWI. For example, you can show a ring lattice graph and indicate that there are long paths between points at opposite sides of the ring; show randomly connected graphs indicating there are no local clustered structures, and show clustered graphs with several hubs establishing long-range connections to reduce pair-wise distance.

      How this SWI contributes to preplay is also not clear. Figure 6 showed preplay is correlated with SWI, but maybe the correlation is caused by both of them being correlated with cluster participation. The balance between cluster overlap and cluster isolation is well discussed. In the Discussion, the authors mention "...Such a balance in cluster overlap produces networks with small-world characteristics (Watts and Strogatz, 1998) as quantified by a small-world index..." (Lines 560-561). I believe the statement is not entirely appropriate, a network similar to ring lattice can still have the balance of cluster isolation and cluster overlap, while it will have small SWI due to a long path across some node pairs. Both cluster structure and long-range connection could contribute to SWI. The authors only discuss the necessity of cluster structure, but why is the long-range connection important should also be discussed. I guess long-range connection could make the network more flexible (clusters are closer to each other) and thus increase the potential repertoire.

      We agree that the manuscript would benefit from a more concrete explanation of the small-world index. We will revise the text and add illustrative figures.

      We note that while our most successful clustered networks are indeed those with small-world characteristics, there are other ways of producing small-world networks which may not show good place fields or preplay. We will test another type of small-world network if time permits.

      Our discussion of “cluster overlap” is specific to our type of small-world network in which there is no pre-determined spatial dimension (unlike the ring network of Watts and Strogatz). Therefore, because clusters map randomly to location once a particular spatial context is imposed, the random overlap between clusters produces long-range connections in that context (and any other context) so one can think of the amount of overlap between clusters as representing the number of long-range connections in a Watts-Strogatz model, except, we wish to iterate, such models involve a spatial topology within the network, which we do not include.

      (5) What drives PBE during sleep? Seems like the main difference between sleep and run states is the magnitude of excitatory and inhibitory inputs controlled by scaling factors. If there are bursts (PBE) in sleep, do you also observe those during run? Does the network automatically generate PBE in a regime of strong excitation and weak inhibition (neural bifurcation)?

      During sleep simulations, the PBEs are spontaneously generated by the recurrent connections in the network. The constant-rate Poisson inputs drive low-rate stochastic spiking in the recurrent network, which then randomly generates population events when there is sufficient internal activity to transiently drive additional spiking within the network.

      During run simulations, the spatially-tuned inputs drive greater activity in a subset of the cells at a given point on the track, which in turn suppress the other excitatory cells through the feedback inhibition.

      (6) Is the concept of 'cluster' similar to 'assemblies', as in Peyrache et al, 2010; Farooq et al, 2019? Does a classic assembly analysis during run reveal cluster structures?

      Yes, we are highly confident that the clusters in our network would correspond to the functional assemblies that have been studied through assembly analysis and will present the relevant data in a revision.

      (7) Can the capacity of the clustered network to express preplay for multiple distinct future experiences be estimated in relation to current network activity, as in Dragoi and Tonegawa, PNAS 2013?

      We agree this is an interesting opportunity to compare the results of our model to what has been previously found experimentally and will test this if time permits.

      Reviewer # 2

      Weaknesses:

      My main critiques of the paper relate to the form of the input to the network.

      First, because the input is the same across trials (i.e. all traversals are the same duration/velocity), there is no ability to distinguish a representation of space from a representation of time elapsed since the beginning of the trial. The authors should test what happens e.g. with traversals in which the animal travels at different speeds, and in which the animal's speed is not constant across the entire track, and then confirm that the resulting tuning curves are a better representation of position or duration.

      We agree that this is an important question, and we plan to run further simulations where we test the effects of varying the simulated speed. We will present results in the resubmission.

      Second, it's unclear how much the results depend on the choice of a one-dimensional environment with ramping input. While this is an elegant idealization that allows the authors to explore the representation and replay properties of their model, it is a strong and highly non-physiological constraint. The authors should verify that their results do not depend on this idealization. Specifically, I would suggest the authors also test the spatial coding properties of their network in 2-dimensional environments, and with different kinds of input that have a range of degrees of spatial tuning and physiological plausibility. A method for systematically producing input with varying degrees of spatial tuning in both 1D and 2D environments has been previously used in (Fang et al 2023, eLife, see Figures 4 and 5), which could be readily adapted for the current study; and behaviorally plausible trajectories in 2D can be produced using the RatInABox package (George et al 2022, bioRxiv), which can also generate e.g. grid cell-like activity that could be used as physiologically plausible input to the network.

      We agree that testing the robustness of our results to different models of feedforward input is important and we plan to do this in our revised manuscript for the linear track and W-track.

      Testing the model in a 2D environment is an interesting future direction, but we see it as outside the scope of the current work. To our knowledge there are no experimental findings of preplay in 2D environments, but this presents an interesting opportunity for future modeling studies.

      Finally, I was left wondering how the cells' spatial tuning relates to their cluster membership, and how the capacity of the network (number of different environments/locations that can be represented) relates to the number of clusters. It seems that if clusters of cells tend to code for nearby locations in the environment (as predicted by the results of Figure 5), then the number of encodable locations would be limited (by the number of clusters). Further, there should be a strong tendency for cells in the same cluster to encode overlapping locations in different environments, which is not seen in experimental data.

      Thank you for making this important point and giving us the opportunity to clarify. We do find that subsets of cells with identical cluster membership have correlated place fields, but as we show in Figure 7b the network place map as a whole shows low remapping correlations across environments, which is consistent with experimental data (Hampson RE et al, Hippocampus 6:281, 1996; Pavlides C, et al, Neurobiol Learn Mem 161:122, 2019). Our model includes a relatively small number of cells and clusters compared to CA3, and with a more realistic number of clusters, the level of correlation across network place maps should reduce even further in our model network. The reason for a low level of correlation is because cluster membership is combinatorial, whereby cells that share membership in one cluster can also belong to separate/distinct other clusters, rendering their activity less correlated than might be anticipated. In our revised manuscript we will address this point more carefully and cite the relevant experimental support.

      Reviewer # 3

      Weaknesses:

      To generate place cell-like activity during a simulated traversal of a linear environment, the authors drive the network with a combination of linearly increasing/decreasing synaptic inputs, mimicking border cell-like inputs. These inputs presumably stem from the entorhinal cortex (though this is not discussed). The authors do not explore how the model would behave when these inputs are replaced by or combined with grid cell inputs which would be more physiologically realistic.

      We chose the linearly varying spatial inputs as the minimal model of providing spatial input to the network so that we could focus on the dynamics of the recurrent connections. We agree our results will be strengthened by testing alternative types of border-like input so will present such additional results in our revised version. However, given that a sub-goal of our model was to show that place fields could arise in locations at which no neurons receive a peak in external input, whereas combining input from multiple grid cells produces peaked place-field like input, adding grid cell input (and the many other types of potential hippocampal input) is beyond the scope of the paper.

      Even though the authors claim that no spatially-tuned information is needed for the model to generate place cells, there is a small location-cue bias added to the cells, depending on the cluster(s) they belong to. Even though this input is relatively weak, it could potentially be driving the sequential activation of clusters and therefore the preplays and place cells. In that case, the claim for non-spatially tuned inputs seems weak. This detail is hidden in the Methods section and not discussed further. How does the model behave without this added bias input?

      First, we apologize for a lack of clarity if we have caused confusion about the type of inputs (linear and cluster-dependent as we had attempted to portray prominently in Figure 1, where it is described in the caption, l. 156-157, and Results, l. 189-190 & l. 497-499, as well as in the Methods, l. 671-683) and if we implied an absence of spatially-tuned information in the network. In the revision we will clarify that for reliable place fields to appear, the network must receive spatial information and that one point of our paper is that the information need not arrive as peaks of external input already resembling place cells or grid cells. We chose linearly ramping boundary inputs as the minimally place-field like stimulus (that still contains spatial information) but in our revision we will include alternatives. We should note that during sleep, when “preplay” occurs, there is no such spatial bias (which is why preplay can equally correlate with place field sequences in any context). In the revision, we will update Figure 1 to show more clearly the cluster-dependent linearly ramping input received by some specific cells with both similar and different place fields.

      Unlike excitation, inhibition is modeled in a very uniform way (uniform connection probability with all E cells, no I-I connections, no border-cell inputs). This goes against a long literature on the precise coordination of multiple inhibitory subnetworks, with different interneuron subtypes playing different roles (e.g. output-suppressing perisomatic inhibition vs input-gating dendritic inhibition). Even though no model is meant to capture every detail of a real neuronal circuit, expanding on the role of inhibition in this clustered architecture would greatly strengthen this work.

      This is an interesting future direction, but we see it as outside the scope of our current work. While inhibitory microcircuits are certainly important physiologically, we focus here on a minimal model that produces the desired place cell activity and preplay, as measured in excitatory cells.

      For the modeling insights to be physiologically plausible, it is important to show that CA3 connectivity (which the model mimics) shares the proposed small-world architecture. The authors discuss the existence of this architecture in various brain regions but not in CA3, which is traditionally thought of and modeled as a random or fully connected recurrent excitatory network. A thorough discussion of CA3 connectivity would strengthen this work.

      We agree this is an important point that is missing, and we will revise the text to specifically address CA3 connectivity (Guzman et al., Science 353 (6304), 1117-1123 2016) and the small-world structure therein due to the presence of “assemblies”.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study provides valuable insights into how chromatin-bound PfMORC controls gene expression in the asexual blood stage of Plasmodium falciparum. By interacting with key nuclear proteins, PfMORC appears to affect expression of genes relating to host invasion and subtelomeric var genes. Correlating transcriptomic data with in vivo chromatin insights, the study provides solid evidence for the central role of PfMORC in epigenetic transcriptional regulation through modulation of chromatin compaction.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The study provides valuable insights into the role of PfMORC in Plasmodium's epigenetic regulation, backed by a comprehensive methodological approach. The overarching goal was to understand the role of PfMORC in epigenetic regulation during asexual blood stage development, particularly its interactions with ApiAP2 TFs and its potential involvement in the regulation of genes vital for Plasmodium virulence. To achieve this, they conducted various analyses. These include a proteomic analysis to identify nuclear proteins interacting with PfMORC, a study to determine the genome-wide localization of PfMORC at multiple developmental stages, and a transcriptomic analysis in PfMORCHA-glmS knockdown parasites. Taken together, this study suggests that PfMORC is involved in chromatin assemblies that contribute to the epigenetic modulation of transcription during the asexual blood stage development.

      Strengths:

      The study employed a multi-faceted approach, combining proteomic, genomic, and transcriptomic analyses, providing a holistic view of PfMORC's role. The proteomic analysis successfully identified several nuclear proteins that may interact with PfMORC. The genome-wide localization offered valuable insights into PfMORC's function, especially its predominant recruitment to subtelomeric regions. The results align with previous findings on PfMORC's interaction with ApiAP2 TFs. Notably, the authors meticulously contextualized their findings with prior research, including pre-prints, adding credibility to their work.

      Weaknesses:

      While the study identifies potential interacting partners and loci of binding, direct functional outcomes of these interactions remain an inference. The authors heavily rely on past research for some of their claims. While it strengthens some assertions, it might indicate a lack of direct evidence in the current study for particular aspects. The declaration that PfMORC may serve as an attractive drug target is substantial. While the data suggests its involvement in essential processes, further studies are required to validate its feasibility as a drug target.

      Reviewer #2 (Public Review):

      Summary:

      This is a paper entitled "Plasmodium falciparum MORC protein modulates gene expression through interaction with heterochromatin" describes the role of PfMORC during the intra-erythrocytic cycle of Plasmodium falciparum. Garcia et al. investigated the PfMORC-interacting proteins and PfMORC genomic distribution in trophozoites and schizonts. They also examined the transcriptome of the parasites after partial knockdown of the transcript.

      Strengths:

      This study is a significant advance in the knowledge of the role of PfMORC in heterochromatin assembly. It provides an in-depth analysis of the PfMORC genomic localization and its correlation with other chromatin marks and ApiAP2 transcription factor binding.

      Weaknesses:

      However, most of the conclusions are based on the function of interacting proteins and the genomic localization of the protein. The authors did not investigate the direct effects of PfMORC depletion on heterochromatin marks. Furthermore, the results of the transcriptomic analysis are puzzling as 50% of the transcripts are downregulated, a phenotype not expected for a heterochromatin marker.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Suggestions for improved or additional experiments, data, or analyses.

      • Figure 1A and Table 1: the authors should incorporate a volcano plot in their proteomic results presentation. This graphical representation can provide a more intuitive grasp of the most relevant proteins associated with PfMORC in terms of both their abundance and significance. It will aid in swiftly pinpointing proteins with the most notable differential associations. This will complement the comprehensive overview provided by the authors, referencing past research where PfMORC was detailed.

      We thank the reviewer for the suggestion. We agree with the reviewer that the volcano plot we now provide does indeed bring comprehensive information on associations between PfMORC and other cellular proteins. The volcano plot presented in the revised manuscript as Figure 1A, was generated using the normalized MS/MS counts from the anti-GFP and 3D7 (control) proteomics datasets (n=3). The potential PfMORC interacting proteins were determined using the fold changes and p-values between the two datasets, as provided in Table 1.

      Several protein interactors were strongly supported by statistical analysis (p-value), while others showed weaker p-value due to variability between replicates. Indeed, the total number of proteins identified in the three replicates, shown in the Venn diagram (Supplemental Figure 1D), exhibits a good overlap between the replicates but a lower number of identified proteins in the GFP-E1 sample. This variability was observed also in the statistical analysis. Indeed, by analyzing the GFP/3D7 ratios, some proteins have a significant difference in abundance (fold change greater than 1.5x) in one of the groups but do not meet the statistical threshold. For more clarity, we have included the -log p-value for the proteins listed in Table 1.

      Overall, these results demonstrate that many ApiAP2 proteins and several chromatin-associated factors interact with PfMORC.

      • Given the plethora of proteins detected in the PfMORC eluate, it raises the question of how many are genuine MORC interactors versus those that are merely nearby molecules acting adjacently. These might incidentally end up in the immunoprecipitate due to unintended interactions with DNA or chromatin. While the M&M section mentions that the beads were thoroughly washed, there is no specification about the washing buffer or its stringency (i.e., salinity level). At higher salinities, one could isolate core complexes of interactors associated with DNA or even RNA carryover.

      We apologize for this omission and have now added the buffer composition used to wash the beads. This section now reads "To perform the co-immunoprecipitation we followed the manufacturer protocol (ChromoTek, gta-20). Samples were lysed in modified RIPA buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 0.5% sodium deoxycholate, 1% Nonidet P-40, 10 µg/ml aprotinin, 10 µg/ml leupeptin, 10 µg/ml, 1 mM phenylmethylsulfonyl fluoride, benzamidine) for 30 min on ice. The lysate was precleared with 50 µl of protein A/G-Agarose beads at 4°C for 1 h and clarified by centrifugation at 10,000 × g for 10 min. The precleared lysate was incubated overnight with an anti-GFP antibody using anti-GFP-Trap-A beads (ChromoTek, gta-20). The magnetic beads were then pelleted using a magnet (Invitrogen) and washed 3 times with wash buffer (10 mM Tris/Cl pH 7.5, 150 mM NaCl, 0.05 % Nonidet™ P40 Substitute, 0.5 mM EDTA)."

      We used the same salt concentration for immunoprecipitation as was used in the lysis buffer to minimize the binding of non-specific proteins. The wash buffer composition is updated in the revised manuscript. The immunoprecipitations were done in biological triplicates to ensure reproducibility and statistical support. A number of proteins are common across all three replicates. We also used wild-type parasites (non-GFP) as a negative control to eliminate non-specific hits, and we used a log2-fold change ≥1.5 relative to wild type parasites as our cutoff between the comparison groups.

      We believe that these conditions provide the stringency required to identify high confidence PfMORC interacting proteins, although this still leaves a possibility for additional lower affinity interactions. Future studies will certainly follow up candidate interaction partners to better define this complex. However, the complexity of the complex resembles that reported previously in Toxoplasma gondii (Farhat et al. 2020, Nat Microbiol) as well another report on the PfMORC complexes: https://elifesciences.org/reviewed-prepri nts/92499

      • The authors demonstrate that PfMORC creates distinct peaks in and around HP1-bound areas (Figure 2F), hinting at a specific role for PfMORC in heterochromatin compaction, boundary definition, and gene silencing. This pattern is clearly depicted in an example in Figure 2F. It would be beneficial to know if this enrichment profile is replicated elsewhere and, if so, it would be worthwhile to quantify it.

      This is an excellent point. Yes, this pattern is seen across the entire genome, where PfMORC is apposed to PfHP1-bound heterochromatic regions. As indicated in the manuscript, we have quantified this effect genome-wide; however, since we already display compiled data for Chromosome 2 (at both chromosome ends) pertaining to the position of PfMORC relative to PfHP1 we do not feel it is essential to provide such a figure for the entire genome as it does not alter the central message of our manuscript. Figure 2F is representative of the genome-wide distribution of PfMORC relative to PfHP1. The raw genome-wide data are available in Supplementary Information for further inspection of specific loci on other chromosomes.

      Recommendations for improving the writing and presentation.

      MAIN TEXT

      Panel e, referenced both in the main text and legend, is missing from Figure 4. This missing panel represents a significant finding of the study, highlighting according to the authors a low correlation between ChIP-seq gene targets and RNA-seq DEGs. This observation implies that PfMORC's global occupancy is more aligned with shaping chromatin architecture than directly regulating specific gene targets. In light of this, the authors should rephrase parts of their manuscript (including abstract and title) to avoid suggesting that PfMORC acts primarily (directly) as a gene regulator, emphasizing instead its role in influencing the topological structure of chromosomes.

      We have modified the title as suggested by the reviewer to more accurately reflect that PfMORC modulates chromatin architecture rather than acting as a direct regulator of specific genes. Our new title is: A Plasmodium falciparum MORC protein complex modulates epigenetic control of gene expression through interaction with heterochromatin

      We apologize for the omission of Figure 4e, which is now included in the revised manuscript. We found PfMORC occupancy on all chromosomes at subtelomeric regions, which are known to harbor genes related to immune evasion and antigenic variation (including most of the var genes). This study is also in agreement with Bryant et al. (PMID 32816370) which reported PfMORC occupancy along with PfISW1 at var gene promoters. PfMORC has also been identified in complexes with various ApiAP2 proteins in a proteome-wide study (Hillier et al. Cell Rep, PMID 31390575), as well as in immunoprecipitations of PfAP2-G2 (Singh et al., Mol Micro, PMID 33368818) and PfAP2-P (Subudhi et al., Nat Microbiol, PMID 37884813). The recent study by Subudhi et al. reports that PfAP2-P is involved in the regulation of var gene expression, antigenic variation, trophozoite development and parasite egress. It is therefore possible that PfMORC may have different effects on transcriptional regulation through interactions with different ApiAP2 transcription factors. Our comparison of PfMORC with known ApiAP2 protein occupancy reveals a high level of overlap, indicating that PfMORC may affect gene expression in various ways throughout the asexual cycle. Additionally, Hillier et al. show that PfMORC interaction is not limited to ApiAP2 but also implicates several other chromatin remodellers, which is consistent with our own results. We do not imply direct regulation of transcription via PfMORC in our manuscript. To the contrary, we suggest that it interacts with heterochromatin and thereby plays a role in the epigenetic control of asexual blood stage transcriptional regulation which is also clarified in the revised abstract.

      Another limitation of differential gene expression was use of the glmS ribozyme system, which resulted in only 50% depletion of the PfMORC transcript. There may still be enough PfMORC to rescue the gene expression we could not detect correctly. Therefore, it is challenging to interpret the function of PfMORC in only chromatin architecture but not in gene expression.

      If we believe that PfMORC in Plasmodium isn't mainly adjusting gene expression, the authors' suggestion that MORC is targeted by some AP2s becomes puzzling. How do we make sense of these different ideas? The authors need to clarify this to maintain consistency in their findings.

      Based on our data, we hypothesize that PfMORC acts as an accessory protein for ApiAP2 transcription factors. In a number of studies, including ours and the concurrent publication in eLife (https://elifesciences.org/reviewed-preprints/92499), PfMORC co-IPed with several ApiAP2 proteins, suggest it has multiple functions. In our previous study we showed that PfMORC expression is highest in mid and late asexual stages. A comparison of the PfMORC occupancy with 6 ApiAP2 (having different expression profile) suggest plasticity in PfMORC function. We have revised our discussion to make this hypothesis more transparent for the readers.

      The authors should cite Farhat et al. 2020 (Extended Data Fig. 1a), as it similarly identified 3 different ELM2-containing proteins in Toxoplasma MORC-associated complexes. This previous work provides context and supports the observations made with PfMORC in this study.

      Thank you for the suggestion and pointing out this omission. We have indeed cited the work of the Farhat group in the original manuscript and have now included this additional reference to corroborate the text and provide further support to our conclusions.

      Minor corrections to the text and figures.

      • Panel e is missing from Figure 4.

      As mentioned above Panel e is now included in Figure 4.

      • The captions are very minimally detailed. An effort must be made to better describe the panels as well as which statistical tests were used. As it stands, this is not really up to standard.

      We have elaborated the captions with more detailed descriptions, and we now provide additional information where further clarification was necessary.

      Reviewer #2 (Recommendations For The Authors):

      • The study lacks a direct correlation between the inferred function of PfMORC and the heterochromatin state of the genome after its depletion. It would be interesting to perform chip-seq on known heterochromatin markers such as H3K9me3, HP1 or H3K36me2/3 to measure the consequences of PfMORC depletion on global heterochromatin and its boundaries.

      While the proposed experiments are certainly interesting, they are beyond the scope of this study. The current manuscript is focused on PfMORC occupancy, its interacting partners, and its impact on differential gene regulation after PfMORC depletion in asexual parasites. Nonetheless, we did in fact compared the PfMORC occupancy with that of various heterochromatin markers (H2A.Z, H3K9ac, H3K4me3, H3K27ac, H3K18ac, H3K9me3, H3K36me2/3, H4K20me3, and H3K4me1) at 30hpi and 4hpi time points. These data are presented in Supplemental Figure 9. We did not find any significant colocalization, but documented the presence of PMORC in H3K36me2 depleted regions.

      • The PfMORC depletion was performed using a glms-based genetic system and the reviewer did not find any quantification of the depletion level at 24h or 36h. This is particularly important as the authors present RNA-seq data at these time points.

      We would like to clarify that RNA-seq was performed on 32hpi parasites after approximately 48 h treatment with 2.5 mM GlcN. At the trophozoite and schizont stage, PfMORC expression is high, which is why we selected these time points for RNA-seq (32hpi) and ChIP-seq (30hpi and 40hpi). PfMORC protein expression after GlcN treatment is analyzed in our previous paper (Singh et al., Sci Rep, PMID 33479315), where treatment with 2.5 mM GlcN leads to 50% reduction in PfMORC transcript at 32hpi. This is referenced in the Results section; we decided not to repeat the same experiment in the current manuscript.

      • The authors performed a thorough analysis of the correlations between ApiAP2 binding, histone modification and genomic localization of PfMORC (their chip-seq data). However, they found an inverse relationship between H3K36me2, a known histone repressive mark, and PfMORC genomic localization. This is particularly surprising when PfMORC itself is presented as a heterochromatin marker. The wording of this data is confusing in the results section (lines 257-258) and never discussed further. This important data should at least be discussed to make sense of this apparent contradiction.

      H3K36me2 indeed acts as a global repressive mark in P. falciparum. However, our hypothesis implies that PfMORC not only overlaps with H3K36me2 depleted region, but also interacts with other epigenetic regulators. Therefore, we propose that PfMORC is part of chromatin remodeling complexes involved in heterochromatin dynamics. Moreover, we did not see any overlap between several other heterochromatin markers, suggesting it has a unique binding preference not shared with other heterochromatin markers. Based on this study and parallel work submitted by Chahine et al. (https://elifesciences.org/reviewed-preprints/92499#abstract), it is evident that PfMORC is crucial for gene regulation and chromatin structure maintenance as shown in other organisms. Currently, we do not know what the apparent mutual exclusion between H3K36me2 and PfMORC implies mechanistically or how PfMORC interaction with heterochromatin aids in chromatin integrity. In Arabidopsis thaliana, MORC binding leads to chromatin compaction and reduces DNA accessibility to transcription factors, thereby repressing gene expression. In P. falciparum, overlap in the binding region of PfMORC with different transcription factors suggests several possibilities that require further investigation. Since there is only one gene encoding a PfMORC protein in P. falciparum, it is possible that PfMORC function is not limited to chromatin integrity, but it may also function to modulate gene expression at different stages. To fully explore the function of PfMORC will require investigating the functional role of the other interacting partners we and others have identified.

      We have modified the result section per the reviewer's suggestion, and we now also discuss this finding in more detail in the discussion section.

      • The ChIP-seq data are central to this manuscript. However, the presentation of this data in Figure 2A suggests that it is very noisy (particularly for Chr1). It would be of interest to present the called peaks together with the normalized data so that the reader can assess the quality of the ChIP-seq data.

      Our results clearly demonstrate the enrichment of PfMORC in sub-telomeric regions and internal heterochromatic islands. These results are consistent across all of our replicates taken at two independent time points of parasite asexual blood stage development and correlate well with the results of Le Roch: https://elifesciences.org/reviewed-preprints/92499. The raw data files have been provided and can be re-analyzed by any user.

      • The RNA-seq data showed that only a few genes are affected after 24 h of PfMORC depletion. Furthermore, there is an equal number of up- and down-regulated genes. It is not clear why depletion of a heterochromatin marker would induce down-regulation of genes. How these data relate to the partial depletion of PfMORC is not discussed.

      We would like to clarify that RNA-seq experiment was performed at 32hpi after GlcN following knockdown as previously described (Singh et al., Sci Rep, PMID 33479315). Briefly, synchronous, early trophozoites stage (24hpi) PfMORCglmS-HA parasites were treated with 2.5 mM GlcN until they reached the trophozoite stage (32 hpi) in the next cycle. These parasites were then collected for analysis by RNA-seq. We did not detect a substantial log-fold change at this point because only 50% of the transcripts were depleted in the glmS-based PfMORC knockdown system. However, we have seen a distinctive pattern of up (60) and down (103) regulated DEGs that are comprised of egress-related genes or surface antigens. We believe that PfMORC interacts with different ApiAP2 proteins, as shown in Figure 3A, and consequently exhibits multiple functions. This finding has now been corroborated in several other recent studies (See response to Reviewer 1 above).

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Thank you for all your recommendations to improve the manuscript. We took them into account and tried to integrate them as much as possible in the paper. I understand that the main issue is the lack of genetic lineage tracing. Unfortunately, I am no longer in a position to perform experiments and as a consequence, we cannot bring these data. However, we previously performed several experiments that attest the ductal origin of the beta cells. As a reminder, we used experiment setting where beta cell regeneration occur from the ducts in the pancreatic tail; we used a genetic approach to over-express CaN specifically in the ducts at the level of the pancreas ; and we investigate the function of CaN under Notch repression, known to trigger beta cell formation from the ducts. Altogether, our data underline the contribution of the ductal cells. In addition, as recommended by the editors, we showed that while the proportion of ductal cells EdU+ increase Figure 5 C-D, the number of ductal cells remain constant  Figure 5A supplemental. We integrate a paragraph in the discussion to remind all these points in the manuscript.  

      We thank you greatly for your time and consideration for this work.

    1. Author Response:

      The reviewers suggested that we determine whether the functions of TopAI, YjhQ, and/or YjhP are connected to antibiotic susceptibility. 

      We fully agree with the reviewers that the function of TopAI/YjhQ/YjhP is an important topic. Our preliminary studies (not included in the paper) failed to identify a function connected to antibiotic susceptibility, although these studies were far from exhaustive. There are many environmental stressors that can stall ribosomes, making it challenging to find the functionally relevant stressor(s). We feel that further work on this topic is outside the scope of this manuscript.

      The reviewers suggested that the SHAPE data are inconsistent with our conclusions about translation of toiL.

      We believe the SHAPE data are consistent with our model, although we acknowledge that interpretation of base reactivity is somewhat subjective. We will address the reviewers’ comments on this topic in more detail in our full response.

      The reviewers suggested that published Ribo-Seq data are inconsistent with our data showing that toiL start codon/Shine-Dalgarno mutations have no effect on expression of luciferase reporters in the absence of antibiotics. 

      Our assays with these mutations looked at expression of topAI, not toiL. Our model predicts that mutations that prevent toiL translation will not induce expression of the downstream genes. We did not look at the effect of these mutations on expression of toiL itself.

      The reviewers suggested we use RNA-seq to complement the Ribo-seq data for cells grown +/- tetracycline (Figure 5).

      In principle, RNA-seq data would allow us to determine whether tetracycline specifically induces translation of topAI, as opposed to only increasing the RNA level. We did not generate RNA-seq data because prior work from other groups suggests that topAI is too weakly expressed to accurately measure translation efficiency in non-inducing conditions. However, the major conclusion from Figure 5 is that tetracycline stalls ribosomes at start codons, including the start codon of toiL.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review):

      Summary:

      The question of whether eyespots mimic eyes has certainly been around for a very long time and led to a good deal of debate and contention. This isn't purely an issue of how eyespots work either, but more widely an example of the potential pitfalls of adopting 'just-so-stories' in biology before conducting the appropriate experiments. Recent years have seen a range of studies testing eye mimicry, often purporting to find evidence for or against it, and not always entirely objectively. Thus, the current study is very welcome, rigorously analysing the findings across a suite of papers based on evidence/effect sizes in a meta-analysis.

      Strengths:

      The work is very well conducted, robust, objective, and makes a range of valuable contributions and conclusions, with an extensive use of literature for the research. I have no issues with the analysis undertaken, just some minor comments on the manuscript. The results and conclusions are compelling. It's probably fair to say that the topic needs more experiments to really reach firm conclusions but the authors do a good job of acknowledging this and highlighting where that future work would be best placed.

      Weaknesses:

      There are few weaknesses in this work, just some minor amendments to the text for clarity and information.

      We greatly appreciate Reviewer 1’s positive comments on our manuscript. We also revised our manuscript text and a figure in accordance with Reviewer 1’s recommendations.

      Reviewer #2 (Public Review):

      Many prey animals have eyespot-like markings (called eyespots) which have been shown in experiments to hinder predation. However, why eyespots are effective against predation has been debated. The authors attempt to use a meta-analytical approach to address the issue of whether eye-mimicry or conspicuousness makes eyespots effective against predation. They state that their results support the importance of conspicuousness. However, I am not convinced by this.

      There have been many experimental studies that have weighed in on the debate. Experiments have included manipulating target eyespot properties to make them more or less conspicuous, or to make them more or less similar to eyes. Each study has used its own set of protocols. Experiments have been done indoors with a single predator species, and outdoors where, presumably, a large number of predator species predated upon targets. The targets (i.e, prey with eyespot-like markings) have varied from simple triangular paper pieces with circles printed on them to real lepidopteran wings. Some studies have suggested that conspicuousness is important and eye-mimicry is ineffective, while other studies have suggested that more eye-like targets are better protected. Therefore, there is no consensus across experiments on the eye-mimicry versus conspicuousness debate.

      The authors enter the picture with their meta-analysis. The manuscript is well-written and easy to follow. The meta-analysis appears well-carried out, statistically. Their results suggest that conspicuousness is effective, while eye-mimicry is not. I am not convinced that their meta-analysis provides strong enough evidence for this conclusion. The studies that are part of the meta-analysis are varied in terms of protocols, and no single protocol is necessarily better than another. Support for conspicuousness has come primarily from one research group (as acknowledged by the authors), based on a particular set of protocols.

      Furthermore, although conspicuousness is amenable to being quantified, for e.g., using contrast or size of stimuli, assessment of 'similarity to eyes' is inherently subjective. Therefore, manipulation of 'similarity to eyes' in some studies may have been subtle enough that there was no effect.

      There are a few experiments that have indeed supported eye-mimicry. The results from experiments so far suggest that both eye-mimicry and conspicuousness are effective, possibly depending on the predator(s). Importantly, conspicuousness can benefit from eye-mimicry, while eye-mimicry can benefit from conspicuousness.

      Therefore, I argue that generalizing based on a meta-analysis of a small number of studies that conspicuousness is more important than eye-mimicry is not justified. To summarize, I am not convinced that the current study rules out the importance of eye-mimicry in the evolution of eyespots, although I agree with the authors that conspicuousness is important.

      We understand Reviewer 2’s concerns and have addressed them by adding some sentences in the discussion part (L506- 508, L538-L540). In addition, our findings, which were guided by current knowledge, support the conspicuousness hypothesis, but we acknowledge the two hypotheses are not mutually exclusive (L110-112). We also do not reject the eye mimicry hypothesis. As we have demonstrated, there are still several gaps in the current literature and our understanding (L501-553). Our aim is for this research to stimulate further studies on this intriguing topic and to foster more fruitful discussions.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Minor comments

      Lines 59/60: "it is possible that eyespots do not involve mimicry of eyes..."

      The sentence was revised (L59). To enhance readability, we have integrated Reviewer 1's suggestions by simplifying the relevant section instead of using the suggested sentence.

      Line 61: not necessarily aposematism. They might work simply through neophobia, unfamiliarity, etc even without unprofitability

      We changed the text in line with the comment from Reviewer 1 (L61-63).

      Lines 62/63 - this is a little hard to follow because I think you really mean both studies of real lepidopterans as well as artificial targets. Need to explain a bit more clearly.

      We provided an additional explanation of our included primary study type (L64-65).

      Lines 93/94 - not quite that they have nothing to do with predator avoidance, but more that any subjective resemblance to eyes is coincidental, or simply as a result of those marking properties being more effective through conspicuousness in their own right.

      Line 94 - similarly, not just aposematism. You explain the possible reasons above on l92 as also being neophobia, etc.

      We agreed with Reviewer 1’s comments and added more explanations about the conspicuousness hypothesis (L96-97). We have also rewritten the sentences that could be misleading to readers (L428).

      Line 96 - this is perhaps a bit misleading as it seems to conflate mechanism and function. The eye mimicry vs conspicuousness debate is largely about how the so-called 'intimidation' function of eyespots works. That is, how eyespots prevent predators from attacking. The deflection hypothesis is a second function of eyespots, which might also work via consciousness or eye mimicry (e.g. if predators try to peck at 'eyes') but has been less central to the mimicry debate.

      The explanations and suggestions from Reviewer 1 are very helpful. We revised this part of our manuscript (L103-108) and Figure 1 and its legend to make it clearer that the eyespot hypothesis and the conspicuousness hypothesis explain anti-predator functions from a different perspective than the deflection hypothesis.

      There is a third function of eyespots too, that being as mate selection traits. Note that Figure 1 should also be altered to reflect these points.

      We wanted to focus on explaining why eyespot patterns can contribute to prey survival. Therefore, we did not state that eyespot patterns function as mate selection traits in this paragraph. Alternatively, we have already mentioned this in the Discussion part (L455-L465) and rewrote it more clearly (L456).

      Were there enough studies on non-avian predators to analyse in any way? 

      We found a few studies on non-avian predators (e.g. fish, invertebrates, or reptiles), but not enough to conduct a meta-analysis.

      Line 171/72 - why? Can you explain, please.

      The reason we excluded studies that used bright or contrasting patterns as control stimuli in our meta-analysis is to ensure comparability across primary studies. We added an explanation in the text (L180-181).

      Line 177 - can you clarify this?

      Without control stimuli, it is challenging to accurately assess the effect of eyespots or other conspicuous patterns on predation avoidance. Control stimuli allow for a comparison of the effect of eyespots or patterns. We added a more detailed explanation to clarify here (L186-188).

      Line 309 - presumably you mean 33 papers, each of which may have multiple experiments? I might have missed it, but how many individual experiments in total? 

      There were 164 individual experiments. We have now added that information in the manuscript (L320).

      Line 320 - paper shaped in a triangle mostly?

      We cannot say that most artificial prey were triangular. After excluding the caterpillar type, 57.4% were triangular, while the remaining 43.6% were rectangular (Figure 2b).

      Line 406: Stevens.

      We fixed this name, thank you (L417).

      Discussion - nice, balanced and thorough. Much of the work done has been in Northern Europe where eyespot species are less common. Perhaps things may differ in areas where eyespots are more prevalent.

      We appreciate Reviewer 1’s kind words and comments. We agree with your comments and reflected them in our manuscript (L542-545).

      Line 477 - True, and predators often have forward-facing eyes making it likely both would often be seen, but a pair of eyes may not be absolutely crucial to avoidance since sometimes a prey animal may only see one eye of a predator (e.g. if the other is occluded, or only one side of the head is visible).

      We were grateful for Reviewer 1's comment. We added a sentence noting that the eyespots do not necessarily have to be in pairs to resemble eyes (L490-L492).

    1. Author Response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this study, Bonnifet et al. profile the presence of L1 ORF1p in the mouse and human brain. They claim that ORF1p is expressed in the human and mouse brain at a steady state and that there is an age-dependent increase in expression. This is a timely report as two recent papers have extensively documented the presence of full-length L1 transcripts in the mouse and human brain (PMID: 38773348 & PMID: 37910626). Thus, the finding that L1 ORF1p is consistently expressed in the brain is not surprising, but important to document.  

      Thank you for recognizing the importance of this study. The two cited papers have indeed reported the presence of full-length transcripts in the mouse and human brain. However, the first (PMID: 38773348) report has shown evidence of flL1 RNA and ORF1 protein expression in the mouse hippocampus (but not elsewhere) and the second (PMID: 37910626) shows full-length LINE-1 RNA expression and H3K4me3-ChIP data in the frontal and temporal lobe of the human brain, but not protein expression.  

      Strengths:

      Several parts of this manuscript appear to be well done and include the necessary controls. In particular, the evidence for steady-state expression of ORF1p in the mouse brain appears robust. 

      Weaknesses: 

      Several parts of the manuscript appear to be more preliminary and need further experiments to validate their claims. In particular, the data suggesting expression of L1 ORF1p in the human brain and the data suggesting increased expression in the aged brain need further validation. Detailed comments: 

      (1) The expression of ORF1p in the human brain shown in Figure 1j is not convincing. Why are there two strong bands in the WB? How can the authors be sure that this signal represents ORF1p expression and not nonspecific labelling? Additional validations and controls are needed to verify the specificity of this signal. 

      We have validated the antibody (Abcam 245249 - https://www.abcam.com/en-us/products/primary-antibodies/line-1-orf1p-antibody-epr22227-6-ab245249), which we use for Western blotting experiments like in Fig1j), by several means. We have done immunoprecipitations (IPs) and co-immunoprecipitations (co-IPs) followed by quantitative mass spectrometry (LC-MS/MS). We efficiently detect ORF1p in IPs (Western blot) and by quantitative mass spectrometry (5 independent samples per IP-ORF1p and IP-IgG: ORF1p/IgG ratio: 40.86; adj p-value 8.7e-07; human neurons in culture). We also did co-IPs followed by Western blot using two different antibodies, the Millipore or the Abcam antibody to immunoprecipitate and the Abcam antibody for Western blotting (the Millipore AB does not work well on WB in our hands) which consistently showed a double band indicating that both bands are ORF1p-derived. We can provide this data to the revised manuscript, although some of it (the MS data) is subject of another study in preparation. Abcam also reports a double band, and they suspect that the lower band is a truncated form (see the link to their website above). ORF1p Western blots done by other labs with different antibodies have detected a second band in human samples

      (1) Sato, S. et al. LINE-1 ORF1p as a candidate biomarker in high grade serous ovarian carcinoma. Sci Rep 13, 1537 (2023) in Figure 1D

      (2) McKerrow, W. et al. LINE-1 expression in cancer correlates with p53 mutation, copy number alteration, and S phase checkpoint. Proc. Natl. Acad. Sci. U.S.A. 119, e2115999119 (2022)) showing a Western blot of an inducible LINE-1 (ORFeus) detected by the MABC1152 ORF1p antibody from Millipore Sigma in Figure 7 3) in a publication in eLife (Walter et al. eLife 2016;5:e11418. DOI: 10.7554/eLife.11418) in mouse ES cells with an antibody made in-house from another lab (gift) – Figure 2B

      The lower band might thus be a truncated form of ORF1p or a degradation product which appears to be shared by mouse and human ORF1p. We will mention this in the revised version of the paper. In addition, we have used the very well characterized antibody from Millipore (https://www.merckmillipore.com/CH/en/product/Anti-LINE-1-ORF1p-Antibody-clone-4H1,MM_NF-MABC1152?ReferrerURL=https%3A%2F%2Fwww.google.com%2F) for immunostainings and detect ORF1p staining in human neurons in the very same brain regions (Fig 2H) including the cerebellum (selectively in Purkinje cells as in mice in Fig1B panel 10: human images not shown). 

      Altogether, based on our experimental validations and evidence from the literature, we are very confident that it is ORF1p that we detect on the blots. 

      (2) The data shown in Figure 2g are not convincing. How can the authors be sure that this signal represents ORF1p expression and not non-specific labelling? Extensive additional validations and  controls are needed to verify the specificity of this signal.

      Figure 2g shows a Western blot using an extensively used and well characterized ORF1p antibody from abcam (mouse ORF1p - (https://www.abcam.com/en-us/products/primary-antibodies/line-1-orf1p-antibody-epr21844108-ab216324; cited in at least 11 publications) after FACS-sorting of neurons (NeuN+) of the mouse brain. We have validated this ORF1p antibody ourselves in IPs (see Fig 6A) and co-IP followed by mass spectrometry (LC/MS-MS; see Fig 6, where we detect ORF1p exclusively in the 5 independent ORF1p-IP samples and not at all in 5 independent IgG-IP control samples, see Suppl Table 2). This together makes us very confident that we are looking at a specific ORF1p signal. Please note that in the IP of ORF1p shown in Fig6A, there is a double band as well, strongly suggesting that the lower band might be a truncated or processed form of ORF1p. As stated above, this double band has been detected in other studies (Walter et al. eLife 2016;5:e11418. DOI: 10.7554/eLife.11418) in mouse ES cells using an in-house generated antibody against mouse ORF1p. Thus, with either commercial or in-house generated antibodies in some mouse and human samples, there is a double band corresponding to full-length ORF1p and a truncated or processed version of it.

      We noticed that we have not added the references of the primary antibodies used in Western blot experiments in the manuscript, which will be corrected in the revised version.  

      (3) The data showing a reduction in ORF1p expression in the aged mouse brain is confusing and maybe even misleading. Although there is an increase in the intensity of the ORF1p signal in ORF1p+ cells, the data clearly shows that fewer cells express ORF1p in the aged brain. If these changes indicate an overall loss or gain of ORF1p, expression in the aged brain is not resolved. Thus, conclusions should be more carefully phrased in this section. It is important to show the quantification of NeuN+ and NeuN- cells in young vs aged (not only the proportions as shown in Figure 3b) to determine if the difference in the number of ORF1p+ cells is due to loss of neurons or perhaps a sampling issue. More so, it would be essential to perform WB and/or proteomics experiments to complement the IHC data for the aged mouse samples. 

      The data presented in Fig3 C-I show a modest but widespread and reproducible increase in expression of ORF1p per cell. What decreases is the proportion of ORF1p+/NeuN+ cells (Fig3A, B), indicating that fewer cells might express ORF1p in the brain. However, the proportion or number/mm2 of ORF1p+ cells overall does not decrease significantly, neither does the proportion or number/mm2 of NeuN+ cells (data will be added to the revision). We show data of the % of NeuN+ and NeuN- cells in the ventral midbrain (Suppl Fig3C, quantified on confocal images)) which indeed indicates that in this region, there are less neurons in the aged mouse brain compared to the young. There might thus be a very regional decrease in neurons with age in the midbrain motor region. We will, however, as suggested, plot the number of NeuN+ and NeuN- cells per mm2 for the whole brain as well as the different regions in young vs aged to compare actual cell numbers per volume. While it is true that we cannot say that there is an overall loss or gain of ORF1p expression in the aged mouse brain, we believe that this is not of the highest importance as what most likely matters biologically in the context of aging is the quantity of ORF1p per cell (and possibly full-length LINE-1 RNA and ORF2p) and not “per brain”. 

      We also plan on doing Western blots on mouse brain tissues from young and aged individuals, however, we might run into limits regarding tissue availability of aged mice. 

      (4) The transcriptomic data presented in Figure 4 and Figure 5 are not convincing. Quantification of transposon expression on short read sequencing has important limitations. Longer reads and complementary approaches are needed to study the expression of evolutionarily young L1s (see PMID: 38773348 & PMID: 37910626 for examples of the current state of the art). Given the read length and the unstranded sequencing approach, I would at least ask the authors to add genome browser tracks of the upregulated loci so that we can properly assess the clarity of the results. I would also suggest adding the mappability profile of the elements in question. In addition, since this manuscript focuses on ORF1p, it would be essential to document changes in protein levels (and not just transcripts) in the ageing human brain. 

      We agree that there are limitations to the analysis of TEs with short read sequencing and we will add more text on this aspect in a revised version. The approaches shown in PMID: 38773348 & PMID: 37910626 or even a combination of them, would be ideal of course. However, here we reanalyzed a unique existing dataset (Dong et al, Nature Neuroscience, 2018; http://dx.doi.org/10.1038/s41593-018-0223-0), which contains RNA-seq data of human post-mortem dopaminergic neurons in a relatively high number of brain-healthy individuals of a wide age range including some “young” individuals which is rare in post-mortem studies. Such data is unfortunately not available with long read sequencing or any other more appropriate approach yet. Limitations are evident, but all limitations will apply equally to both groups of individuals that we compare. We will add genome browser tracks of the differentially expressed elements. The general mappability profile of the full-length LINE-1 “UIDs” is shown in Suppl Fig 6A. We will color-highlight the specific elements in this graph and will add genome browser data for these elements in a revised version. 

      We will not be able to document changes in protein levels in aged human dopaminergic neurons as we do not have access to this material. We have tried to obtain human substantia nigra tissues but were not able to get sufficient amounts to do laser-capture microdissection or FACS analyses, especially of young individuals. There are still important limitations to tissue availability, especially of regions of interest like the substantia nigra pars compacta affected in Parkinson’s disease.

      (5) More information is needed on RNAseq of microdissections of dopaminergic neurons from 'healthy' postmortem samples of different ages. No further information on these samples is provided. I would suggest adding a table with the clinical information of these samples (especially age, sex, and cause of death). The authors should also discuss whether this experiment has sufficient power. The human ageing cohort seems very small to me. 

      This is a re-analysis of a published dataset (Dong et al, Nat Neurosci, 2018; doi:10.1038/s41593-018-0223-0), available through dbgap (phs001556.v1.p1). In this original article, the criteria for inclusion as a brain-healthy control were as follows:

      “…Subjects… were without clinicopathological diagnosis of a neurodegenerative disease meeting the following stringent inclusion and exclusion criteria. Inclusion criteria: (i) absence of clinical or neuropathological diagnosis of a neurodegenerative disease, for example, PD according to the UKPDBB criteria47, Alzheimer’s disease according to NIA-Reagan criteria48, or dementia with Lewy bodies by revised consensus criteria49; for the purpose of this analysis incidental Lewy body cases (not meeting clinicopathological diagnostic criteria for PD or other neurodegenerative disease) were accepted for inclusion; (ii) PMI ≤ 48 h; (iii) RIN50 ≥ 6.0 by Agilent Bioanalyzer (good RNA integrity); and (iv) visible ribosomal peaks on the electropherogram. Exclusion criteria were: (i) a primary intracerebral event as the cause of death; (2) brain tumor (except incidental meningiomas); (3) systemic disorders likely to cause chronic brain damage.”

      We do not have access to the cause of death, but we will add available metadata to the manuscript.

      We will perform a post-hoc power analysis and add the result to the revision. 

      (6) The findings in this manuscript apply to both human and mouse brains. However, the landscape of the evolutionarily young L1 subfamilies between these two species is very different and should be part of the discussion. For example, the regulatory sequences that drive L1 expression are quite different in human and mouse L1s. This should be discussed. 

      Indeed, they are very different. We will add this to the discussion.  

      (7) On page 3 the authors write: "generally accepted that TE activation can be both, a cause and consequence of aging". This statement does not reflect the current state of the field. On the contrary, this is still an area of extensive investigation and many of the findings supporting this hypothesis need to be confirmed in independent studies. This statement should be revised to reflect this reality. 

      We agree, this is overstated, we will change this sentence accordingly.  

      Reviewer #2 (Public Review):

      Summary: 

      Bonnifet et al. sought to characterize the expression pattern of L1 ORF1p expression across the entire mouse brain, in young and aged animals, and to corroborate their characterization with Western blotting for L1 ORF1p and L1 RNA expression data from human samples. They also queried L1 ORF1p interacting partners in the mouse brain by IP-MS. 

      Strengths: 

      A major strength of the study is the use of two approaches: a deep-learning detection method to distinguish neuronal vs. non-neuronal cells and ORF1p+ cells vs. ORF1p- cells across large-scale images encompassing multiple brain regions mapped by comparison to the Allen Brain Atlas, and confocal imaging to give higher resolution on specific brain regions. These results are also corroborated by Western blotting on six mouse brain regions. Extension of their analysis to post-mortem human samples, to the extent possible, is another strength of the paper. The identification of novel ORF1p interactors in the brain is also a strength in that it provides a novel dataset for future studies. 

      Thank you for highlighting the strength of our study. 

      Weaknesses: 

      The main weakness of the study is that cell type specificity of ORF1p expression was not examined beyond neuron (NeuN+) vs non-neuron (NeuN-). Indeed, a recent study (Bodea et al. 2024, Nature Neuroscience) found that ORF1p expression is characteristic of parvalbumin-positive interneurons, and it would be very interesting to query whether other neuronal subtypes in different brain regions are distinguished by ORF1p expression. 

      We agree that this point is important to address. We do provide indications for this in the manuscript. For instance, we detect staining in mouse and human Purkinje cells of the cerebellum in accordance with data from Takahashi et al, Neuron, 2022; DOI: 10.1016/j.neuron.2022.08.011. We also know from previous work, that in the mouse ventral midbrain, dopaminergic neurons (TH+/NeuN+) express ORF1p and that these neurons express higher levels of ORF1p than adjacent non-dopaminergic neurons (TH-/NeuN+; Blaudin de Thé et al, EMBO J, 2018). Others have shown evidence of full-length L1 RNA expression in both excitatory and inhibitory neurons but much less expression in non-neuronal cells (Garza et al, SciAdv, 2023). In sum, although this has not been investigated systematically brain-wide, it does not seem as if ORF1p expression is restricted to PV cells overall. We will deepen the discussion of this aspect in the revised manuscript. To address this question experimentally, we will try to perform ORF1p stainings on different brain regions together with PV stainings and add this data to a revised version, if possible.  

      The data suggesting that ORF1p expression is increased in aged mouse brains is intriguing, although it seems to be based upon modestly (up to 27%, dependent on brain region) higher intensity of ORF1p staining rather than a higher proportion of ORF1+ neurons. Indeed, the proportion of NeuN+/Orf1p+ cells actually decreased in aged animals. It is difficult to interpret the significance and validity of the increase in intensity, as Hoechst staining of DNA, rather than immunostaining for a protein known to be stably expressed in young and aged neurons, was used as a control for staining intensity. 

      It would have been indeed interesting to have another marker than DNA as a control. However, this requires a protein that is indeed stably expressed throughout the brain and throughout age. We are not aware of a protein for which this has been established. DNA staining with Hoechst does control for technical artefacts. We have whole-brain imaging data for the protein Rbfox3 (NeuN) which we used as a marker for cell identity. If this protein turns out to be stable, we could add this data to a revised version. 

      The main weakness of the IP-MS portion of the study is that none of the interactors were individually validated or subjected to follow-up analyses. The list of interactors was compared to previously published datasets, but not to ORF1p interactors in any other mouse tissue. 

      As stated in the manuscript, the list of previously published datasets does include a mouse dataset with ORF1p interacting proteins in mouse spermatocytes (please see line 434-435: “ORF1p interactors found in mouse spermatocytes were also present in our analysis including CNOT10, CNOT11, PRKRA and FXR2 among others (Suppl_Table4).”) -> De Luca, C., Gupta, A. & Bortvin, A. Retrotransposon LINE-1 bodies in the cytoplasm of piRNA-deficient mouse spermatocytes: Ribonucleoproteins overcoming the integrated stress response. PLoS Genet 19, e1010797 (2023)). We indeed did not validate any interactors for several reasons (economic reasons and time constraints (post-doc leaving)). However, we feel that the significant overlap with previously published interactors highlights the validity of our data and we anticipate that this list of ORF1p protein interactors in the mouse brain will be of further use for the community.  

      The authors achieved the goals of broadly characterizing ORF1p expression across different regions of the mouse brain, and identifying putative ORF1p interactors in the mouse brain. However, findings from both parts of the study are somewhat superficial in depth. 

      This provides a useful dataset to the field, which likely will be used to justify and support numerous future studies into L1 activity in the aging mammalian brain and in neurodegenerative disease. Similarly, the list of ORF1p interacting proteins in the brain will likely be taken up and studied in greater depth. 

      Reviewer #3 (Public Review):

      The question about whether L1 exhibits normal/homeostatic expression in the brain (and in general) is interesting and important. L1 is thought to be repressed in most somatic cells (with the exception of some stem/progenitor compartments). However, to our knowledge, this has not been authoritatively / systematically examined and the literature is still developing with respect to this topic. The full gamut of biological and pathobiological roles of L1 remains to be shown and elucidated and this area has garnered rapidly increasing interest, year-by-year. With respect to the brain, L1 (and repeat sequences in general) have been linked with neurodegeneration, and this is thought to be an aging-related consequence or contributor (or both) of inflammation. This study provides an impressive and apparently comprehensive imaging analysis of differential L1 ORF1p expression in mouse brain (with some supporting analysis of the human brain), compatible with a narrative of non-pathological expression of retrotransposition-competent L1 sequences. We believe this will encourage and support further research into the functional roles of L1 in normal brain function and how this may give way to pathological consequences in concert with aging. However, we have concerns with conclusions drawn, in some cases regardless of the lack of statistical support from the data. We note a lack of clarity about how the 3rd party pre-trained machine learning models perform on the authors' imaging data (validation/monitoring tests are not reported), as well as issues (among others) with the particular implementation of co-immunoprecipitation (ORF1p is not among the highly enriched proteins and apparently does not reach statistical significance for the comparison) - neither of which may be sufficiently rigorous.  

      Thank you for your comments on our manuscript. 

      In a revised version and a more in-depth response, we will address the concerns about the machine learning paradigm. Concerning the co-IP-MS, we can confirm that ORF1p is among the highly enriched proteins as it was not found in the IgG control (in 5 independent samples), only in the ORF1p-IP (in 5 out of 5 independent samples). This is what the infinite sign in Suppl Table 2 indicates and this is why there is no p-value assigned as infinite/0 doesn’t allow to calculate a p-value. We will make this clearer in a revised version of the manuscript.

    1. Author response:

      Thank you for the reviewers’ thoughtful comments and suggestions! We greatly appreciate the feedback and are committed to address all the points raised by the reviewers to strengthen our manuscript.

      We plan to conduct additional local structural analyses to better demonstrate our observations of PROTAC-induced LYS-GLY interactions and lysine associability. Specifically, we will add more in-depth analysis such as computing dihedral entropies and Root Mean Square Fluctuation (RMSF) of nearby side chains and integrating various structural alignments to provide better visualization and understanding of the local structural arrangements. We plan to extend and add simulations when needed. We will review the latest available crystal and cryo-EM structures. If new structures are available, we will incorporate them into our revised analysis and discussion.

      In the revision, additional figures will be included to offer a more comprehensive assessment of local conformational changes. We will also ensure that explanations of technical terminology are clear to non-expert readers and will address the grammatical and terminology errors highlighted by the reviewers. We will refine our language to more accurately describe the focus on structural dynamics in our study.

    1. Author Response:

      We would like to thank the reviewers for their constructive feedback and for acknowledging that our approach offers a simple yet powerful framework with the potential to serve as a comprehensive and intuitive tool for analyzing functional activity and connectivity.

      In response to the reviewers’ recommendations, we will aim to improve and clarify the following aspects of our work in an upcoming revision:

      Scope and limitations of the “fcHNN projection” (R#1 and R#2):

      Both reviewers have correctly noted that the interpretability and explanatory power of the simplistic, two-dimensional fcHNN-based projection is limited. In the revised manuscript, we will clarify that, indeed, attractors are in a close mathematical relationship with the principal components of the raw data (i.e., the eigenvectors of the connectome) within our framework. The fcHNN-projection was introduced solely to establish a link between the proposed framework and concepts with which the reader may be more familiar.

      We will enhance the presentation and discussion of our results to emphasize that – as the reviewers also kindly pointed out - the value of our approach lies in modelling how different facets of brain activity dynamically emerge from a common space of functional (ghost) attractors, rather than studying in the static attractor patterns themselves.

      Motivations and Rationale for Using the Functional Connectome (R#2):

      We agree with Reviewer #2 that a deeper mechanistic explanatory power could be achieved by modeling structure-function coupling, and that our framework is well-suited for this challenge. In our revision, we will highlight this as one of the promising future applications of our framework. We will, furthermore, clarify that the scope of the present work was deliberately restricted to functional connectivity to demonstrate that our framework also allows us to “bypass” the significant challenge of structure-function coupling. This enables us to focus on understanding the origins of canonical resting-state networks, the dynamic responses of the system to perturbations and the complex relationship between task-induced activity and resting-state connectivity, without first solving the structure-function coupling problem.

      Additionally, we will mathematically justify the use of linear measures of the functional connectome to reconstruct the underlying non-linear dynamic system, thereby clearly delineating which results can and cannot be considered circular when starting from the functional connectome.

      Improvements in Overall Clarity of Presentation (R#1):

      In line with the above points and in general, we will strive to enhance the overall clarity of the presentation of our results, including figures, wording, and statistical analysis.

    1. Author response:

      Reviewer #2 (Public Review):

      In this manuscript, Kafri and colleagues assess the contribution of protein degradation to the cell size-dependent accumulation of total protein. This is an interesting line of research that has not previously been explored. Most of the focus on the size-dependence of protein accumulation has been on the synthesis part of the equation. As cells get too big, the efficiency of cell growth (mass accumulation per unit mass) decreases. It is argued that this is not due to the loss of the efficiency in protein synthesis, but rather is due to the increased protein degradation in larger cells. It is an interesting hypothesis, that might well be true, but there are some issues with key aspects of the data and other supporting data are quite indirect. More work needs to be done to support the central claims.

      We thank the reviewer for appreciating the work is interesting and previously unexplored.

      The major issue is that the data supporting the proportional increase in protein synthesis with cell size need to be strengthened. Protein synthesis is measured by the amount of a methionine analog that is incorporated in a fixed amount of time. Fig. 2 then plots this amount as a function of cell size, which is presumably measured using a total protein dye (this information is not included; incidentally the axis labels should note what the measurement is 'total protein' or 'forward scatter' rather than the more ambiguous 'cell size'). In any case, something is wrong with the cell size measurements in Figure 2 because many cells basically have almost negligible size (near 0) while others have sizes up to 5 or 6 arbitrary units. It makes no sense that there should be a 10-fold or even 100-fold range in cell sizes. For this reason, I can't interpret the data in Figure 2, which is unfortunate since that is a crucial figure for the authors' argument.

      The data supporting higher rates of protein degradation per unit mass in large cells suffers from a similar problem as Figure 3E has the same issue as Figure 2 with too many tiny 'cells'.

      Yes, the reviewer is correct that we are using a total protein dye (Alexa fluorophore-conjugated succinimidyl ester, abbreviated as SE) to measure cell size. We have included details regarding the methods of cell size (total protein content) measurement in both the Methods (line 463-466) and Results (line 100-102) sections.

      Regarding the reviewer’s concern on the cell size range, we apologize for the confusion the figures may have caused. These cell size measurements are within reasonable range and not 10-fold or 100-fold. Please refer to our detailed response above to essential point #1.

      Moreover, the reliance on cycloheximide to treat cells and measure reduction in mass isn't ideal since shutting off all protein synthesis is a pretty drastic perturbation. It would have been better to shut off synthesis of a specific protein and measure its degradation in large and small cells while keeping the cells otherwise intact.

      We acknowledge that relying on cycloheximide to measure changes in mass has limitations, as acute inhibition in protein synthesis is a significant perturbation. Ideally, we would measure the degradation of specific proteins in large and small cells while keeping the rest of the cellular processes intact. However, this presents considerable technological challenges. While our evidence clearly shows increased protein degradation and compensatory growth slowdown in large cells, we have not yet identified the specific proteins/genes being targeted. Implementing the reviewer's suggestion would require first screening for a suitable protein/gene to serve as a reporter for compensatory degradation. A significant proteomics screen may allow identification of potential targets, but further validation would necessitate substantial effort, including the generation and validation of a reporter system. We agree that this is a valuable experiment to pursue, but it will likely be part of a follow-up study focused on characterizing the specific protein targets and E3 ligases involved in these processes. In the revised manuscript, we discuss these open questions and future directions in line 380-410.

      Reviewer #3 (Public Review):

      The authors report a previously undocumented role for UPS-mediated protein turnover in size control in human cells. The study builds on previous observations made by the Kafri group that large cells undergo size compensation by reducing their rate of growth. In particular, recent published work by Ginzberg et al showed that CDK2 inhibition is accompanied by long term size compensation in the form of reduced cell growth whereas CDK6 inhibition is not. The authors investigate the basis for this effect and demonstrate in both unperturbed and perturbed growth/division contexts, using both fixed cells and time lapse microscopy, that the rate of protein synthesis increases proportionately in large cells that undergo size compensation even though mass accumulation is attenuated. The authors show that this effect appears to be mediated by increased proteasomal activity, as demonstrated by proteasome-dependent K48-ubiquitin chain turnover. Intriguingly, this degradation-mediated size compensation mechanism appears to be most active at the G1/S transition, the primary point at which size control operates. The experiments are well controlled, and the conclusions of the study are in general well supported by the data. The authors present an interesting set of discussion points that relate their observations to size control mechanisms in dividing and non-dividing cells. While specific mechanisms are not pursued, this study nevertheless adds an important new insight into the still unsolved problem of size control.

      We thank the reviewer for appreciating the novelty of the work.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This paper conducted a GWAS meta-analysis for COVID-19 hospitalization among admixed American populations. The authors identified four genome-wide significant associations, including two novel loci (BAZ2B and DDIAS), and an additional risk locus near CREBBP using cross-ancestry meta-analysis. They utilized multiple strategies to prioritize risk variants and target genes. Finally, they constructed and assessed a polygenic risk score model with 49 variants associated with critical COVID-19 conditions.

      Strengths:

      Given that most of the previous studies were done in European ancestries, this study provides unique findings about the genetics of COVID-19 in admixed American populations. The GWAS data would be a valuable resource for the community. The authors conducted comprehensive analyses using multiple different strategies, including Bayesian fine mapping, colocalization, TWAS, etc., to prioritize risk variants and target genes. The polygenic risk score (PGS) result demonstrated the ability of the cross-population

      PGS model for COVID-19 risk stratification.

      Thank you very much for the positive comments and the willingness to revise this manuscript.

      Weaknesses:

      (1) One of the major limitations of this study is that the GWAS sample size is relatively small, which limits its power.

      (2) The fine mapping section is unclear and there is a lack of information. The authors assumed one causal signal per locus, and only provided credible sets, but did not provide posterior inclusion probabilities (PIP) for the variants to be causal.

      (3) Colocalization and TWAS used eQTL data from GTEx data, which are mainly from European ancestries. It is unclear how much impact the ancestry mismatch would have on the result. The readers should be cautious when interpreting the results and designing follow-up studies.

      We agree with that the sample size is relatively small. Despite that, it was sufficient to reveal novel risk loci supporting the robustness of the main findings. We have indicated this limitation at the end of the discussion section.

      Thank you for rising this point. As suggested, we have also used SuSIE, which allows to assume more than one causal signal per locus. However, in this case the results were not different from those obtained with the original Bayesian colocalization performed with corrcoverage. Regarding the PIP, at the fine mapping stage we are inclined to put more weight on the functional annotations of the variants in the credible set than on the statistical contributions to the signal. This is the reason why we prefer not to put weight on the PIP of the variants but prioritize variants that were enriched functional annotations.

      This is a good point regarding the lack of diversity in GTEx data. We have also used data from AMR populations (GALA II-SAGE models), although it was only available for blood tissue. Regarding the ancestry mismatch between datasets, several studies have attempted to explore the impact. Gay et al. (PMID: 32912333) studied local ancestry effects on eQTLs from the GTEx consortium and concluded that adjustment of eQTLs by local ancestry only yields modest improvement over using global ancestry (as done in GTEx). Moreover, the colocalization results between adjusting by Local Ancestry and Global Ancestry were not significantly different. Besides, Mogil et al. (PMID: 30096133) observed that genes with higher heritability share genetic architecture between populations. Nevertheless, both studies have evidenced decreased power and poorer predictive performances regarding gene expression because of reduced diversity in eQTL analyses. As consequence of the ancestry mismatch, we now warn the readers that this may compromise signal detection (Discussion, lines 531-533). 

      Reviewer #2 (Public Review):

      This is a genome-wide association study of COVID-19 in individuals of admixed American ancestry (AMR) recruited from Brazil, Colombia, Ecuador, Mexico, Paraguay, and Spain. After quality control and admixture analysis, a total of 3,512 individuals were interrogated for 10,671,028 genetic variants (genotyped + imputed). The genetic association results for these cohorts were meta-analyzed with the results from The Host Genetics Initiative (HGI), involving 3,077 cases and 66,686 controls. The authors found two novel genetic loci associated with COVID-19 at 2q24.2 (rs13003835) and 11q14.1 (rs77599934), and other two independent signals at 3p21.31 (rs35731912) and 6p21.1 (rs2477820) already reported as associated with COVID-19 in previous GWASs. Additional meta-analysis with other HGI studies also suggested risk variants near CREBBP, ZBTB7A, and CASC20 genes.

      Strengths:

      These findings rely on state-of-the-art methods in the field of Statistical Genomics and help to address the issue of a low number of GWASs in non-European populations, ultimately contributing to reducing health inequalities across the globe.

      Thank you very much for the positive comments and the willingness to revise this manuscript.

      Weaknesses:

      There is no replication cohort, as acknowledged by the authors (page 29, line 587), and no experimental validation to assess the biological effect of putative causal variants/genes. Thus, the study provides good evidence of association, rather than causation, between the genetic variants and COVID-19. Lastly, I consider it crucial to report the results for the SCOURGE Latin American GWAS, in addition to its meta-analysis with HGI results, since HGI data has a different phenotype scheme (Hospitalized COVID vs Population) compared to SCOURGE (Hospitalized COVID vs Non-hospitalized COVID).

      We essentially agree with the reviewer in that one of the main limitations of the study is the lack of a replication stage because of the use of all available datasets on a one-stage analysis. To contribute to the interpretation of the findings in the absence of a replication stage, we now assessed the replicability of the novel loci using the Meta-Analysis Model-based Assessment of replicability (MAMBA) approach (PMID: 33785739) and included the posterior probabilities of replication in Table 2. We also explored further the potential replicability of signals in other populations. We agree that the results should be interpreted in terms of associations given the lack of functional validation of main findings, so we have slightly modified the discussion.

      As suggested, the SCOURGE Latin American GWAS summary is now accessible by direct request to the Consortium GitHub repository (https://github.com/CIBERER/Scourge-COVID19) (lines 797-799). We have also included the results from the SCOURGE GWAS analysis for the replication of the 40 lead variants in the Supplementary Table 12. Results from the SCOURGE GWAS for the lead variants in the AMR meta-analysis with HGI were already included in the Supplementary Table 2. As note, we have not been able to conduct the meta-analysis with the same hospitalization scheme as in the HGI study since the population-specific results for those analyses were not publicly released. However, sensitivity analyses included within the supplementary material from the COVID-19 Host Genetics Initiative (2021) stated that there were no significant differences in effects (Odds Ratios) between analyses using population controls or just non-hospitalized COVID-19 patients.

      Reviewer #3 (Public Review):

      Summary:

      In the context of the SCOURGE consortium's research, the authors conduct a GWAS meta-analysis on 4,702 hospitalized individuals of admixed American descent suffering from COVID-19. This study identified four significant genetic associations, including two loci initially discovered in Latin American cohorts. Furthermore, a trans-ethnic meta-analysis highlighted an additional novel risk locus in the CREBBP gene, underscoring the critical role of genetic diversity in understanding the pathogenesis of COVID-19.

      Strengths:

      (1) The study identified two novel severe COVID-19 loci (BAZ2B and DDIAS) by the largest GWAS meta-analysis for COVID-19 hospitalization in admixed Americans.

      (2) With a trans-ethnic meta-analysis, an additional risk locus near CREBBP was identified.

      Thank you very much for the positive comments and the willingness to revise this manuscript.

      Weaknesses:

      (1) The GWAS power is limited due to the relatively small number of cases.

      (2) There is no replication study for the novel severe COVID-19 loci, which may lead to false positive findings.

      We agree with that the sample size is relatively small. Despite that, it was sufficient to reveal novel risk loci supporting the robustness of the main findings. We have indicated this limitation at the end of the discussion section.

      Regarding the lack of a replication study, we now assessed the replicability of the novel loci using the Meta-Analysis Model-based Assessment of replicability (MAMBA) approach (PMID: 33785739). We have included the posterior probabilities of replication in Table 2.

      (3) Significant differences exist in the ages between cases and controls, which could potentially introduce biased confounders. I'm curious about how the authors treated age as a covariate. For instance, did they use ten-year intervals? This needs clarification for reproducibility.

      Thank you for rising this point. Age was included as a continuous variable. This has been now indicated in line 667 (within Material and Methods).

      (4)"Those in the top PGS decile exhibited a 5.90-fold (95% CI=3.29-10.60, p=2.79x10-9) greater risk compared to individuals in the lowest decile". I would recommend comparing with the 40-60% PGS decile rather than the lowest decile, as the lowest PGS decile does not represent 'normal controls'.

      Thank you. In the revised version, the PGS categories was compared following the recommendation (lines 461-463).

      (5) In the field of PGS, it's common to require an independent dataset for training and testing the PGS model. Here, there seems to be an overfitting issue due to using the same subjects for both training and testing the variants.

      We are sorry for the misunderstanding. In fact, we have followed the standard to avoid overfitting of the PGS model and have used different training and testing datasets. The training data (GWAS) was the HGI-B2 ALL meta-analysis, in which our AMR GWAS was not included. The PRS model was then tested in the SCOURGE AMR cohort. However, it is true that we did test the combination of the PRS adding the new discovered variants in the SCOURGE cohort. To avoid potential overfitting by adding the new loci, we have excluded from the manuscript the results on which we included the newly discovered variants.

      (6) The variants selected for the PGS appear arbitrary and may not leverage the GWAS findings without an independent training dataset.

      Again, we are sorry for the misunderstanding. The PGS model was built with 43 variants associated with hospitalization or severity within the HGI v7 results and 7 which were discovered by the GenOMICC consortium in their latest study and were not in the latest HGI release. The variants are included within the Supplementary Table 14, but we have now annotated the discovery GWAS.

      (7) The TWAS models were predominantly trained on European samples, and there is no replication study for the findings as well.

      This is a good point regarding the lack of diversity in GTEx data. We have also used data from AMR populations (GALA II-SAGE models), although it was only available for blood tissue. Regarding the ancestry mismatch between datasets, several studies have attempted to explore the impact. Gay et al. (PMID: 32912333) studied local ancestry effects on eQTLs from the GTEx consortium and concluded that adjustment of eQTLs by local ancestry only yields modest improvement over using global ancestry (as done in GTEx). Moreover, the colocalization results between adjusting by Local Ancestry and Global Ancestry were not significantly different. Besides, Mogil et al. (PMID: 30096133) observed that genes with higher heritability share genetic architecture between populations. Nevertheless, both studies have evidenced decreased power and poorer predictive performances regarding gene expression because of reduced diversity in eQTL analyses. As consequence of the ancestry mismatch, we now warn the readers that this may compromise signal detection (Discussion, lines 531-533). 

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The authors mentioned the fine mapping method did not converge for the locus in chr 11. I would consider trying a different fine-mapping method (such as SuSiE or FINEMAP). It would be helpful to provide posterior inclusion probabilities (PIP) for the variants in fine mapping results and plot the PIP values in the regional association plots.

      As suggested, we have also used SuSIE, which allows to assume more than one causal signal per locus. However, in this case the results were not different from those obtained with the original Bayesian colocalization performed with corrcoverage. SuSIE’s fine-mapping for chromosome 11 prioritized a single variant, which is likely due to the rare frequency. Thus, we have maintained the fine-mapping as it was originally indicated in the previous version of the manuscript but have now included the credible set in Supplementary Table 6.

      Regarding the PIP, at the fine mapping stage we are inclined to put more weight on the functional annotations of the variants in the credible set than on the statistical contributions to the signal. This is the reason why we prefer not to put weight on the PIP of the variants but prioritize variants that were enriched functional annotations.

      (2) Please provide more detailed information about the VEP and V2G analysis and how to interpret those results. My understanding of V2G is that it includes different sources of information (such as molecular QTLs and chromatin interactions from different tissues/cell types, etc.). It is unclear what sources of information and weight settings were used in the V2G model.

      Thank you for rising this point. As suggested, we have clarified the basis for VEP and V2G and the interpretation (lines 732-743).

      (3) The authors identified multiple genes with different strategies, e.g. FUMA, V2G, COLOC, TWAS, etc. How many genes were found/supported by evidence provided by multiple methods? It could be helpful to have a table summarizing the risk genes found by different strategies, and the evidence supporting the genes. e.g. which genes are found by which methods, and the biological functions of the genes, etc.

      Thank you for rising this point. As suggested, we now added a new figure (Figure 5) to summarize the findings with the multiple methods used.

      (4) It would be helpful to make the code/scripts available for reproducibility.

      As suggested, the SCOURGE Latin American GWAS summary and the analysis scripts (https://github.com/CIBERER/Scourge-COVID19/tree/main/scripts/novel-risk-hosp-AMR-2024) are now accessible in the Consortium GitHub repository (https://github.com/CIBERER/Scourge-COVID19) (lines 806-807).

      (5) The fonts in some of the figures (e.g. Figure 2) are hard to read.

      Thank you. We have now included the figures as SVG files.

      Reviewer #2 (Recommendations For The Authors):

      - The abstract lacks a conclusion sentence.

      Thank you. As suggested, we have included two additional sentences with broad conclusions from the study. We preferred to avoid relying on conclusions related to known or new biological links of the prioritized genes given the lack of functional validation of main findings.

      - Regarding the association analysis (page 27, line 677), I wonder if some of the 10 principal components (PCs) are capturing information about the recruitment areas (countries). It may be relevant to test for multicollinearity among these variables.

      Since we acknowledge that some of the categories might be correlated with a certain PC but not all of them do, we have calculated GVIF values for the main variables to assess the categorical variable as a single entity. The scaled GVIF^1(1/2*Df)) value for the categorical variable is 1.52. Thus, if we square this value, we obtain 2.31, which can be then used for applying usual rule-of-thumb for VIF values.

      - Still on the topic of association analysis, did the authors adjust the logistic model for comorbidities variables from Table 1? Given these comorbidities also have a genetic component and their distribution differs between non-hospitalized vs hospitalized, I am concerned that comorbidities might be confounding the association between genetic variants and COVID.

      We did not adjust by comorbidities since HGI studies were not adjusted either and we aimed to be as aligned as possible with HGI. However, as suggested, we have now tested the association between each of the comorbidities in Table 1 and each of the variants in Table 2, using the comorbidities as dependent variables and adjusting for the main covariables (age, sex, PCs and country of recruitment). None of the variants were significantly associated to the comorbidities (line 333).

      - If I understood correctly, the 49 genetic variants used to develop the polygenic risk score model (PRS) were based on the HGI total sample size (data release 7), which is predominantly of European ancestry. I am concerned about the prediction accuracy in the AMR population (PRS transferability issue).

      We have explored literature in search of other PRS to compare the associated OR in our cohort with ORs calculated in European populations. Horowitz et al. (2022) reported an OR of 1.38 for the top 10% with respect to hospitalization risk in European individuals using a GRS with 12 variants.

      We acknowledge that this might be an issue and is now explained in discussion of the revised version (lines 561-568). However, as this is the first time a PRS for COVID-19 is applied to a relatively large AMR cohort, we believe that this analysis will be of value for further analyses regarding PRS transferability, providing a source for comparison in further studies.    

      - On page 23, line 579, the authors acknowledge their "GWAS is underpowered". This sentence requires a sample/power calculation, otherwise, I suggest using "is likely underpowered".

      Thanks for the input. We have modified the sentence as suggested.

      Reviewer #3 (Recommendations For The Authors):

      I wonder if the authors have an approximate date when the GWAS summary statistic will be available. I reviewed some manuscripts in the past, and the authors claimed they would deposit the data soon, but in fact it would not happen until 2 years later.

      The summary statistics are already available from the SCOURGE Consortium repository https://github.com/CIBERER/Scourge-COVID19 (lines 806-807).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations for the Authors):

      Major 

      (a) In the study the authors focus on the RALF1 peptide. But according to expression data and the study from Abarca et al., 2021, RALF1 is not the only peptide expressed in the root and also having an impact in root growth effect. Similarly, looking at the primary sequence from RALF1 it does not differ much chemically from other RALFs such as RALF33, RALF23, RALF22, etc. So, does the cell wall pectin methylation status also have an impact on the effect of other RALFs on root growth or is that specific of RALF1? 

      (b) In addition, is the internalization of FER depending only on RALF1 upon the methylation status of cell wall pectins? Or can other RALFs cause a similar effect potentially?

      (c) The authors propose that RALF1 associates with deesterifed pectin, through electrostatic interactions. To do that they perform Biolayer interferometry assays using a buffer with pH 7.4. Is that a relevant pH at the cell wall? Is possible that the authors thought that this may not change the charges of R and K residues, however, it will affect the overall charge of the peptide given the fact that it contains quite some N and Q in the exposed surface. The authors may want to consider that.

      (d) Moreover, the authors do not use their peptide RALF1KR, suggested as a peptide not binding OGs, as a control in their OG binding assays. That biochemical experiment should also be included to validate their results and conclusions.

      We thank reviewer #1 for these comments. In this work, we focused on RALF1 but the majority of AtRALF peptides, when applied exogenously as synthetic peptides, induce RALF1like effects in Arabidopsis (Abarca et al., 2021; PMID: 34608971). Moreover, all RALF peptides display clusters of R and K residues and are negatively charged (Abarca et al., 2021; PMID: 34608971). In comparison to RALF1, we now also use RALF34 because it was suggested to interact also via the Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) THESEUS1 (THE1). Notably, RALF34 also induced the internalization of FER-GFP. Moreover, the interference with PME also disrupted this activity of RALF34. Therefore, we assume that other RALF peptides display the same or similar signalling modalities. Nevertheless, it remains to be addressed if all RALF family members require PME activity. 

      We appreciated these comments and incorporated this aspect in the revised version of the manuscript. The pH was chosen for technical reasons associated with the used BLI buffer. As requested, we also included the RALF1-KR peptide in our OG binding assays. Under these conditions, the mutated peptides were not able to interact with the OGs anymore. Accordingly, we conclude that the K and R residues in RALF1 are crucial for its binding to demethylesterified OGs.  

      (e) Another important aspect is regarding their design RALF1KR mutant and its effect in planta. The authors report the following: "RALF1-KR peptides are not bioactive, because they did neither affect root growth, nor cell wall integrity, nor did they induce the ligand-induced endocytosis of FER in epidermal root cells (Figure 5D-I). These findings suggest that the positively charged residues in RALF1 are essential for its activity in roots." According to the structure published by Xiao at el. 2019, the R in the alpha helix from RALF peptides (YISYQSLKR... in RALF1 seq) is directly involved in the interaction with LLGs. So, a mutation in that R may impair the interaction of RALF1 with LLG and therefore the complex formation with FER. So, it is well possible that the effect that the authors are seeing on FER signaling and endocytosis, using this peptide variant, may not be due to the impaired capacity of the peptide to bind deesterified pectin but to not be able to be sensed by the membrane complex directly. To verify that the authors should test, either biochemically or by CoIP in planta, that their RALF1KR variant can still be perceived by the LLG-FER complex. 

      We agree with reviewer #1 and do not doubt that the positive charges in RALF1 likely interact with several entities. The respective sites were also covered in Liu et al., 2024 (Cell). It would be interesting to understand how the charge-dependent interaction with pectin modulates the RALF binding to the LLG-FER complex, but these experiments are beyond the scope of this manuscript. We confirmed that the negative charges in RALF1 are essential for OG binding as well as for its bioactivity. We however do not rule out that they bear additional structural functions beyond pectin binding. We clarified this aspect in the revised version. It is conceivable that the pectin and receptor complex binding of RALF1 is molecularly and mechanistically related. 

      (f) The authors propose in this study that this effect of RALF1-pectin mode of action on FER is independent from LRXs. That is a very interesting observation which also aligns with similar observations from other independent studies (Moussu et al., 2020; Schoenaers et al. Nat Plants, 2024; Franck et al., 2018). However, that seems to be in conflict with the previous mode of action that the authors had described in Dunser et al., 2019. In that last study the authors had described that FER constitutively interacts with LRX proteins in a direct way to sense cell wall changes. In my view the authors do not critically elaborate to explain these two contradicting results, which are key to understand the mode of action they are describing. This relevant aspect should be addressed more in depth by the authors in their discussion.

      Thank you for the comment. We do not see that our findings contradict our previous work (from Dünser et al., 2019). There we concluded that LRX and FER directly interact to sense cell wall characteristics. However, the loss of LRX function abolished the cell wall sensing mechanism, but the respective loss-of-function and dominant negative lines were still able to detect RALF peptides. We hence proposed that the LRX/FER function is at least partially independent of the FER function in RALF perception. This is in agreement with our current study where we conclude again that FER shows LRX-dependent but also -independent modes of action. 

      Minor

      (g) In the introduction (first page), the authors write the following sentence: "RALF peptides are involved in multiple physiological and developmental processes, ranging from organ growth and pollen tube guidance to modulation of immune responses (Stegmann et al., 2017; Abarca et al., 2021)". RALFs are not involved in pollen tube guidance but pollen tube growth.

      So, that should be changed in the Introduction sentence. Also, in addition, the authors could cite additional references here to support the sentence such as Mecchia et al., 2017 or Ge et al. , 2017, in addition. 

      Thank you for pointing this out and we apologize for our flaw. We corrected the statement in the revised version of the manuscript and added the citations as requested.

      (h) The new study of Schoenaers et al. Nat Plants, 2024 should now be included in the revised version.

      Thank you. We implemented this reference in the revised manuscript.

      Reviewer #2 (Public Review):

      The genetic material used by the authors to strengthen the connection of RALF signalling and

      PME activity might not be as suitable as an acute inhibition of PME activity.  The PMEI3ox line generated by Peaucelle et al., 2008 is alcohol-inducible. Was expression of the PMEI induced during the experiments? As ethanol inducible systems can be rather leaky, it would not be surprising if PME activity would be reduced even without induction, but maybe this would warrant testing whether PMEI3 is actually overexpressed and/or whether PME activity is decreased. On a similar note, the PMEI5ox plants do not appear to show the typical phenotype described for this line. I personally don't think these lines are necessary to support the study. Short-term interference with PME activity (such as with EGCG) might be more meaningful than life-long PMEI overexpression, in light of the numerous feedback pathways and their associated potential secondary effects. This might also explain why EGCG leads to an increase in pH, as one would expect from decreased PME activity, while PMEI expression (caveats from above apply) apparently does not (Fig 3A-D).

      We agree with reviewer #2. The PMEI3ox line from Peaucelle et al., 2008 is ethanolinducible, but we observed a strong phenotype (at seedling and adult stage) without ethanol induction. We performed all experiments (root growth assays and confocal observations) with as well as without induction using ethanol, leading to similar results. We concluded from that, that the line is either leaky or that overexpression of PMEI3 is already induced upon seed sterilisation with ethanol. Accordingly, we did not intend to use the lines as acute inhibition of PME but rather used the lines to genetically confirm our data derived from acute pharmacological inhibition. We do show in Figure 1G that the levels of de-methylesterified pectin is decreased in the PMEI3ox mutant compared to WT seedlings. It is exactly this alteration that we are exploiting to assess the necessity of charged pectin for RALF1 signalling. Since the apoplastic pH in the PMEI3ox line is not altered compared to WT, we can conclude that the observed effect on RALF1 signalling is entirely due to the altered pectin charge.

      We would like to note that the PMEI5ox line indeed shows the reported root-bending phenotype when grown on plates. We started to perform RALF application assays in liquid medium, because EGCG does not show activity on MS plates. Moreover, it allows us to perform the assays with low amounts of synthetic peptides. The seedling images in our root growth assay might be hence misleading since the assay was done in liquid MS medium and the seedlings were carefully straightened on MS plates before imaging. This transfer makes it difficult to observe the root-bending or -curling phenotype, which is typical for PMEI5ox. 

      At least at first sight, the observation that OGs are able to titrate RALF from pectin binding seems at odds with the idea of cooperative binding with low affinity, leading to high avidity oligomers. Perhaps the can provide a speculative conceptual model of these interactions?

      We added a high concentration of OGs in the media and observed a strong repression of RALF1 activity at the root surface. We assume the OGs form oligomers with RALF peptides in the media, preventing them from penetrating the roots.

      I could not find a description of the OG treatment/titration experiments, but I think it would be important to understand how these were performed with respect to OG concentration, timing of the application, etc.

      Thank you for pointing this out. The description of the OG RALF titration is added in the methods section.

      Reviewer #2 (Recommendations for the Authors):

      Page 3: „and can bind to extracellular pectin" Liu et al, 2024 should maybe also be cited here. 

      Amended.

      I am not so sure about the use of "conceptualizing" in the last sentence of the abstract and elsewhere in the manuscript.

      I would suggest adding a few sentences that describe and differentiate what this study and other recently published works (e.g. Dünser, Liu, Mossou, Lin) have revealed about the pectin association of RALFs, LRXs, and FER to help the non-expert reader to navigate this increasingly complex area. May also be worth mentioning that the previously described pectin sensing function of FER is physically separated from the RALF binding domain (Gronnier et al., 2022)

      Thank you for your constructive comments. We followed your suggestions and further improved the discussion in the revised version of our manuscript.

      Reviewer #3 (Recommendations for the Authors): 

      (1) The authors claim that pectin is something like an extracellular signaling scaffold. In other fields, signalling scaffold refers to proteins that tether the signalling components and regulate/are involved in the signal transduction. Here, pectin is a cell wall structural component whose molecular status is sensed and perceived rather than a functional signaling component. To me, it is FERONIA to be called a signalling scaffold in this case. However, this is my view, and the authors may present their concept. 

      RALF peptides as well as FERONIA bind to de-methylesterified pectin, which is essential for its signalling output. Albeit not being a protein, we propose that pectin functions like a scaffold tethering both signalling components and thereby enabling signalling. FERONIA has been indeed also proposed to function as a scaffold when tethering other signalling components.

      (2) I have no problem with authors using the more general term pectin instead of homogalacturonan throughout the text. Still, authors should, at some point in the text, specify that by pectin, they mean homogalacturonan; the authors did not analyze other pectic types on binding. 

      We followed your suggestion.

      (3) The authors show that RALF1 binds to OGs with a high avidity. Given the fact that OGs released from homogalacturonan upon pathogen infection are Damage-Associated Molecular Patterns (DAMPs), this opens the possibility that this particular activity of RALF1 might actually function in modulation of immune response. I suggest that authors should not exclude this possibility. 

      We fully agree to this possibility for FER-dependent signalling.

      (4) Are there any indications that a similar mechanism can be extrapolated to other FERONIA homologs, such as THESEUS or HERCULES? Although it is not essential to comment, I think this could enrich the discussion.

      This is a highly interesting research question, which we may follow up in our upcoming studies. RALF34, which is considered a ligand for THESEUS, also induced FER internalization, which was also sensitive to PME inhibition. While this requires further investigation, this finding hints at a common mechanism for FER- and THE-dependent RALF peptides.

      (5) I suggest using the model scheme currently in the supplement as a main figure to provide an immediate accessible summary of the findings.

      Thank you for the suggestion to add the summary scheme in the main figures. We followed your suggestion.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      In this manuscript by Wu et al., the authors present the high resolution cryoEM structures of the WT Kv1.2 voltagegated potassium channel. Along with this structure the authors have solved several structures of mutants or experimental conditions relevant to the slow inactivation process that these channels undergo and which is not yet completely understood. 

      One of the main findings is the determination of the structure of a mutant (W366F) that is thought to correspond to the slow inactivated state. These experiments confirm results in similar mutants in different channels from Kv1.2 that indicate that inactivation is associated with an enlarged selectivity filter. 

      Another interesting structure is the complex of Kv1.2 with the pore blocking toxin Dendrotoxin 1. The results shown in the revised version indicate that the mechanism of block is similar to that of related blocking-toxins, in which a lysine residue penetrates in the pore. Surprisingly, in these new structures, the bound toxin results in a pore with empty external potassium binding sites. 

      The quality of the structural data presented in this revised manuscript is very high and allows for unambiguous assignment of side chains. The conclusions are supported by the data. This is an important contribution that should further our understanding of voltage-dependent potassium channel gating. In the revised version, the authors have addressed my previous specific comments, which are appended below. 

      (1) In the main text's reference to Figure 2d residues W18' and S22' are mentioned but are not labeled in the insets. 

      This has been fixed: line 229, p. 9.

      (2) On page 8 there is a discussion of how the two remaining K+ ions in binding sites S3 and S4 prevent permeation K+ in molecular dynamics. However, in Shaker, inactivated W434F channels can sporadically allow K+ permeation with normal single-channel conductance but very reduced open times and open probability at not very high voltages. 

      This is noted in the discussion Lines 497-500, p. 18

      (3) The structures of WT in the absence of K+ shows a narrower selectivity filter, however Figure 4 does not convey this finding. In fact, the structure in Figure 4B is constructed in such an angle that it looks as if the carbonyl distances are increased, perhaps this should be fixed. Also, it is not clear how the distances between carbonyls given in the text on page 12 are measured. Is it between adjacent or kitty-corner subunits? 

      We have changed Fig. 4B to show the same view as in Fig. 4A. In the legend we explain that opposing subunits are shown. We no longer give distances, in view of the lack of detectable carbonyl densities.

      (4) It would be really interesting to know the authors opinion on the driving forces behind slow inactivation. For example, potassium flux seems to be necessary for channels to inactivate, which might indicate a local conformational change is the trigger for the main twisting events proposed here. 

      We address this in the Discussion, line 506-523, pp. 18-19.

      Reviewer #2 (Public Review)

      Cryo_EM structures of the Kv1.2 channel in the open, inactivated, toxin complex and in Na+ are reported. The structures of the open and inactivated channels are merely confirmatory of previous reports. The structures of the dendrotoxin bound Kv1.2 and the channel in Na+ are new findings that will of interest to the general channel community. 

      Review of the resubmission: 

      I thank the authors for making the changes in their manuscript as suggested in the previous review. The changes in the figures and the additions to the text do improve the manuscript. The new findings from a further analysis of the toxin channel complex are welcome information on the mode of the binding of dendrotoxin. 

      A few minor concerns: 

      (1) Line 93-96, 352: I am not sure as to what is it the authors are referring to when they say NaK2P. It is either NaK or NaK2K. I don't think that it has been shown in the reference suggested that either of these channels change conformation based on the K+ concentration. Please check if there is a mistake and that the Nichols et. al. reference is what is being referred to. 

      Thank you for noticing the error. We meant NaK2K and we have changed this throughout.

      (2) Line 365: In the study by Cabral et. al., Rb+ ions were observed by crystallography in the S1, S3 and S4 site, not the S2 site. Please correct. 

      Thank you. We have re-written this section, lines 364-381, pp. 13-14.

      Reviewer #3 (Public Review): 

      Wu et al. present cryo-EM structures of the potassium channel Kv1.2 in open, C-type inactivated, toxin-blocked and presumably sodium-bound states at 3.2 Å, 2.5 Å, 2.8 Å, and 2.9 Å. The work builds on a large body of structural work on Kv1.2 and related voltage-gated potassium channels. The manuscript presents a plethora of structural work, and the authors are commended on the breadth of the studies. The structural studies are well-executed. Although the findings are mostly confirmatory, they do add to the body of work on this and related channels. Notably, the authors present structures of DTx-bound Kv1.2 and of Kv1.2 in a low concentration of potassium (which may contain sodium ions bound within the selectivity filter). These two structures add considerable new information. The DTx structure has been markedly improved in the revised version and the authors arrive at well-founded conclusions regarding its mechanism of block. Regarding the Na+ structure, the authors claim that the structure with sodium has "zero" potassium - I caution them to make this claim. It is likely that some K+ persists in their sample and that some of the density in the "zero potassium" structure may be due to K+ rather than Na+. This can be clarified by revisions to the text and discussion. I do not think that any additional experiments are needed. Overall, the manuscript is well-written, a nice addition to the field, and a crowning achievement for the Sigworth lab. 

      Most of this reviewer's initial comments have been addressed in the revised manuscript. Some comments remain that could be addressed by revisions of the text. 

      Specific comments on the revised version: 

      Quotations indicate text in the manuscript. 

      (1) "While the VSD helices in Kv1.2s and the inactivated Kv1.2s-W17'F superimpose very well at the top (including the S4-S5 interface described above), there is a general twist of the helix bundle that yields an overall rotation of about 3o at the bottom of the VSD." 

      Comment: This seemed a bit confusing. I assume the authors aligned the complete structures - the differences they indicate seem to be slight VSD repositioning relative to the pore rather than differences between the VSD conformations themselves. The authors may wish to clarify. As they point out in the subsequent paragraph, the VSDs are known to be loosely associated with the pore. 

      We aligned the VSDs alone, and it is a twist of the VSD helix bundle.

      This is now clarified in lines 269-273, p. 10.

      (2) Comment: The modeling of DTx into the density is a major improvement in the revision. Figure 3 displays some interactions between the toxin and Kv1.2 - additional side views of the toxin and the channel might allow the reader to appreciate the interactions more fully. The overall fit of the toxin structure into the density is somewhat difficult to assess from the figure. (The authors might consider using ChimeraX to display density and model in this figure.) 

      We have added new panels, and stereo pairs, to Figure 3.

      (3) "We obtained the structure of Kv1.2s in a zero K+ solution, with all potassium replaced with sodium, and were surprised to find that it is little changed from the K+ bound structure, with an essentially identical selectivity filter conformation (Figure 4B and Figure 4-figure supplement 1)." 

      Comment: It should be noted in the manuscript that K+ and Na+ ions cannot be distinguished by the cryo-EM studies - the densities are indistinguishable. The authors are inferring that the observed density corresponds to Na+ because the protein was exchanged from K+ into Na+ on a gel filtration (SEC) column. It is likely that a small amount of K+ remains in the protein sample following SEC. I caution the authors to claim that there is zero K+ in solution without measuring the K+ content of the protein sample. Additionally, it should be considered that K+ may be present in the blotting paper used for cryo-EM grid preparation (our laboratory has noted, for example, a substantial amount of Ca2+ in blotting paper). The affinity of Kv1.2 for K+ has not been determined, to my knowledge - the authors note in the Discussion that the Shaker channel has "tight" binding for K+. It seems possible that some portion of the density in the selectivity filter could be due to residual K+. This caveat should be clearly stated in the main text and discussion. More extensive exchange into Na+, such as performing the entire protein purification in NaCl, or by dialysis (as performed for obtaining the structure of KcsA in low K+ by Y. Zhou et al. & Mackinnon 2001), would provide more convincing removal of K+, but I suspect that the Kv1.2 protein would not have sufficient biochemical stability without K+ to endure this treatment. One might argue that reduced biochemical stability in NaCl could be an indication that there was a meaningful amount of K+ in the final sample used for cryo-EM (or in the particles that were selected to yield the final high-resolution structure).

      We now explain in the Methods section, in more detail the steps taken to avoid any residual Na+ contamination during purification, lines 683-687, pp. 24-25. We have changed the text to point out that the ion species cannot be distinguished in the maps, and note results in NaK2K and KcsA (lines 368-381, pp. 13-14).

      We note that the same procedures to remove K+ were used for the Kv1.2sW17’F structure (line 385, p. 14). We qualify the ion replacement to say that Na+ replaces “essentially” all K+ (line 607, p. 21).

      (4) Referring to the structure obtained in NaCl: "The ion occupancy is also similar, and we presume that Kv1.2 is a conducting channel in sodium solution." 

      Comment: Stating that "Kv1.2 is a conducting channel in sodium solution" and implying that conduction of Na+ is achieved by an analogous distribution of ion binding sites as observed for K+ are strong statements to make - and not justified by the experiments provided. Electrophysiology would be required to demonstrate that the channel conducts sodium in the absence of K+. More complete ionic exchange, better control of the ionic conditions (Na+ vs K+), and affinity measurements for K+ would be needed to determine the distribution of Na+ in the filter (as mentioned above). At minimum, the authors should revise and clarify what the intended meaning of the statement "we presume that Kv1.2 is a conducting channel in sodium solution". As mentioned above, it seems possible/likely that a portion of the density in the filter may be due to K+. 

      We now present a more detailed argument (lines 376 to 381, pp. 13-14.)

      Recommendations for the authors: 

      Reviewing Editor: 

      After consultation, the reviewers agree that, although the authors have answered most of the comments raised in the previous review, there remains a concern about the structure obtained in the presence if Na. Given that Kv1.2 is more reluctant to slow inactivation, the conducting structure in Na+ could be due to this fact or that it really has higher affinity for K+ than Na+. In the presence of even a small contamination by K+, this ion could thus occupy the selectivity filter, resulting in an open conformation. The authors should clearly state the steps taken to ensure no contamination by K+. It is also possible that indeed the open structure occurs even in the presence of Na+ in the selectivity filter. This should be also discussed, given that this has been observed in other potassium channel structures. 

      Reviewer #1 (Recommendations For The Authors): 

      In this revised version of the manuscript, the authors have adequately addressed my previous points and improved the clarity and readability of the manuscript. This is a compelling work that shows inactivated structures if the Kv1.2 potassium channel, especially interesting is a structure in the absence of extracellular potassium ions, that can help understand how a reduction in the availability of these ions speed up entrance into the inactivated state in these ion channels. 

      I would just recommend that in the absence of functional data (current recordings) when potassium is removed, the authors just use caution in ascribing this structure to an inactivated state. Also, it should be mentioned that the observed ion densities observed in the pore cannot unambiguously be identified as sodium ions. 

      Reviewer #3 (Recommendations For The Authors): 

      (1)  "The nearby Leu9 is also important as its substitution by alanine also decreases affinity 1000-fold, but we observe no contacts between this residue and residues of the Kv1.2s channel." 

      Comment: It seems early in the text to mention the potential interaction of Leu9 to the channel structure. The authors may wish to discuss Leu9 later in the manuscript - a figure showing the location of Leu9 would strengthen the statement. Any hypothesis on why mutation of it has such a profound effect? 

      Add a figure panel showing Leu9 position.

      We have rewritten the text as suggested, and have identified Leu9 in several panels of Fig. 3.

      (2)  "The X-ray structure of a-DTX (Figure 3A)" 

      Comment: The authors may wish to cite a reference to this X-ray structure. 

      We now cite Skarzynski (1992) on line 321, p. 12.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors assess the accuracy of short variant calling (SNPs and indels) in bacterial genomes using Oxford Nanopore reads generated on R10.4 flow cells from a very similar genome (99.5% ANI), examining the impact of variant caller choice (three traditional variant callers: bcftools, freebayes, and longshot, and three deep learning based variant callers: clair3, deep variant, and nano caller), base calling model (fast, hac and sup) and read depth (using both simplex and duplex reads).

      Strengths:

      Given the stated goal (analysis of variant calling for reads drawn from genomes very similar to the reference), the analysis is largely complete and results are compelling. The authors make the code and data used in their analysis available for re-use using current best practices (a computational workflow and data archived in INSDC databases or Zenodo as appropriate).

      Weaknesses:

      While the medaka variant caller is now deprecated for diploid calling, it is still widely used for haploid variant calling and should at least be mentioned (even if the mention is only to explain its exclusion from the analysis). 

      We have now added Medaka haploid caller to the benchmark. It performs quite well overall (better than the traditional methods), but not as good as Clair3 or DeepVariant.

      Appraisal:

      The experiments the authors engaged in are well structured and the results are convincing. I expect that these results will be incorporated into "best practice" bacterial variant calling workflows in the future. 

      Thank you for the positive appraisal.

      Reviewer #2 (Public Review):

      Summary:

      Hall et al describe the superiority of ONT sequencing and deep learning-based variant callers to deliver higher SNP and Indel accuracy compared to previous gold-standard Illumina short-read sequencing. Furthermore, they provide recommendations for read sequencing depth and computational requirements when performing variant calling.

      Strengths:

      The study describes compelling data showing ONT superiority when using deep learning-based variant callers, such as Clair3, compared to Illumina sequencing. This challenges the paradigm that Illumina sequencing is the gold standard for variant calling in bacterial genomes. The authors provide evidence that homopolymeric regions, a systematic and problematic issue with ONT data, are no longer a concern in ONT sequencing.

      Weaknesses:

      (1) The inclusion of a larger number of reference genomes would have strengthened the study to accommodate larger variability (a limitation mentioned by the authors). 

      Our strategic selection of 14 genomes—spanning a variety of bacterial genera and species, diverse GC content, and both gram-negative and gram-positive species (including M. tuberculosis, which is neither)—was designed to robustly address potential variability in our results. Moreover, all our genome assemblies underwent rigorous manual inspection as the quality of the true genome sequences is the foundation this research is built upon. Given this, the fundamental conclusions regarding the accuracy of variant calls would likely remain unchanged with the addition of more genomes.  However, we do acknowledge that a substantially larger sample size, which is beyond the scope of this study, would enable more fine-grained analysis of species differences in error rates.

      (2) In Figure 2, there are clearly one or two samples that perform worse than others in all combinations (are always below the box plots). No information about species-specific variant calls is provided by the authors but one would like to know if those are recurrently associated with one or two species. Species-specific recommendations could also help the scientific community to choose the best sequencing/variant calling approaches.

      Thank you for highlighting this observation. The precision, recall, and F1 scores for each sample and condition can be found in Supplementary Table S4.

      Upon investigation of the outliers in Figure 2 we discovered three things. First, there was a parameter in Longshot we were using that automatically capped coverage and lead to a number of false negatives, leading to its outlier. This has now been rectified and the figure is updated accordingly. Second, the outlier in the simplex sup SNP panel (top left) was the same E. coli sample for most variant callers (though Medaka had no issues). The reasoning for this was a variant dense repetitive region. We have added an in-depth explanation of this, along with figures illustrating the issue in Supplementary Section S2, with a brief statement in the main text. Third, the outlier in the duplex sup SNP panel (top right) is due to a very low (duplex) depth sample. This has also been added briefly to the main text and fully in Section S2.

      We have now included a species-segregated version of Figure 2 (Suppl. Figures S5-7) for Clair3 with the sup model (best performer) for a clearer interpretation of how each species performs.

      (3) The authors support that a read depth of 10x is sufficient to achieve variant calls that match or exceed Illumina sequencing. However, the standard here should be the optimal discriminatory power for clinical and public health utility (namely outbreak analysis). In such scenarios, the highest discriminatory power is always desirable and as such an F1 score, Recall and Precision that is as close to 100% as possible should be maintained (which changes the minimum read sequencing depth to at least 25x, which is the inflection point).

      We agree that the highest discriminatory power is always desirable for clinical or public health applications. In which case, 25x is probably a better minimum recommendation. However, we are also aware that there are resource-limited settings where parity with Illumina is sufficient. In these cases, 10x depth from ONT would provide enough data.

      The manuscript previously emphasised the latter scenario, but we have revised the text (Discussion) to clearly recommend 25x depth as a conservative aim in settings where resources are not a constraint, ensuring the highest possible discriminatory power.

      (4) The sequencing of the samples was not performed with the same Illumina and ONT method/equipment, which could have introduced specific equipment/preparation artefacts that were not considered in the study. See for example https://academic.oup.com/nargab/article/3/1/lqab019/6193612.

      To our knowledge, there is no evidence that sequencing on different ONT machines or barcoding kits leads to a difference in read characteristics or accuracy. To ensure consistency and minimise potential variability, we used the same ONT flowcells for all samples and performed basecalling on the same Nvidia A100 GPU. We have updated the methods to emphasise this.

      For Illumina and ONT, the exact machines and kits used for each sample have been added as supplementary table S9 We have also added a short paragraph about possible Illumina error rate differences in the ‘Limitations’ section of the Discussion.

      The third limitation is that Illumina sequencing was performed on different models: three samples on the NextSeq 500 and the rest on the NextSeq 2000. While differences in error rates exist between Illumina instruments, no specific assessment has been made between these NextSeq models [42]. However, the absolute differences in error rates are minor and unlikely to impact our study significantly. This is particularly relevant since Illumina's lower F1 score compared to ONT was due to missed calls rather than erroneous ones.

      In summary, while there may be specific equipment or preparation artifacts to consider, we took steps to minimise these effects and maintain consistency across our sequencing methods.

      Reviewer #3 (Public Review):

      Hall et al. benchmarked different variant calling methods on Nanopore reads of bacterial samples and compared the performance of Nanopore to short reads produced with Illumina sequencing. To establish a common ground for comparison, the authors first generated a variant truth set for each sample and then projected this set to the reference sequence of the sample to obtain a mutated reference. Subsequently, Hall et al. called SNPs and small indels using commonly used deep learning and conventional variant callers and compared the precision and accuracy from reads produced with simplex and duplex Nanopore sequencing to Illumina data. The authors did not investigate large structural variation, which is a major limitation of the current manuscript. It will be very interesting to see a follow-up study covering this much more challenging type of variation. 

      We fully agree that investigating structural variations (SVs) would be a very interesting and important follow-up. Identifying and generating ground truth SVs is a nontrivial task and we feel it deserves its own space and study. We hope to explore this in the future.

      In their comprehensive comparison of SNPs and small indels, the authors observed superior performance of deep learning over conventional variant callers when Nanopore reads were basecalled with the most accurate (but also computationally very expensive) model, even exceeding Illumina in some cases. Not surprisingly, Nanopore underperformed compared to Illumina when basecalled with the fastest (but computationally much less demanding) method with the lowest accuracy. The authors then investigated the surprisingly higher performance of Nanopore data in some cases and identified lower recall with Illumina short read data, particularly from repetitive regions and regions with high variant density, as the driver. Combining the most accurate Nanopore basecalling method with a deep learning variant caller resulted in low error rates in homopolymer regions, similar to Illumina data. This is remarkable, as homopolymer regions are (or, were) traditionally challenging for Nanopore sequencing.

      Lastly, Hall et al. provided useful information on the required Nanopore read depth, which is surprisingly low, and the computational resources for variant calling with deep learning callers. With that, the authors established a new state-of-the-art for Nanopore-only variant, calling on bacterial sequencing data. Most likely these findings will be transferred to other organisms as well or at least provide a proof-of-concept that can be built upon.

      As the authors mention multiple times throughout the manuscript, Nanopore can provide sequencing data in nearly real-time and in remote regions, therefore opening up a ton of new possibilities, for example for infectious disease surveillance.

      However, the high-performing variant calling method as established in this study requires the computationally very expensive sup and/or duplex Nanopore basecalling, whereas the least computationally demanding method underperforms. Here, the manuscript would greatly benefit from extending the last section on computational requirements, as the authors determine the resources for the variant calling but do not cover the entire picture. This could even be misleading for less experienced researchers who want to perform bacterial sequencing at high performance but with low resources. The authors mention it in the discussion but do not make clear enough that the described computational resources are probably largely insufficient to perform the high-accuracy basecalling required. 

      We have provided runtime benchmarks for basecalling in Supplementary Figure S23 and detailed these times in Supplementary Table S7. In addition, we state in the Results section (P9 L239-241) “Though we do note that if the person performing the variant calling has received the raw (pod5) ONT data, basecalling also needs to be accounted for, as depending on how much sequencing was done, this step can also be resource-intensive.”

      Even with super-accuracy basecalling considered, our analysis shows that variant calling remains the most resource-intensive step for Clair3, DeepVariant, FreeBayes, Medaka, and NanoCaller. Therefore, the statement “the described computational resources are probably largely insufficient to perform the high-accuracy basecalling required”, is incorrect. However, we have made this more prominent in the Results and Discussion.

      In the results section we added the underlined section:

      “… FreeBayes had the largest runtime variation, with a maximum of 597s/Mbp, equating to 2.75 days for the same genome. In contrast, basecalling with a single GPU using the super-accuracy model required a median runtime of 0.77s/Mbp, or just over 5 minutes for a 4Mbp genome at 100x depth. …”

      In the discussion we have added the following statement:

      “Basecalling is generally faster than variant calling, assuming GPU access, which is likely considered when acquiring ONT-related equipment.”

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      The colour choices in Figure 3 and Figure 4 c made the illustrations somewhat difficult to read. More substantially, a deeper investigation of the causes of non-homopolymeric-related mistaken indel calls would be useful. 

      We have updated Figure 3 so that each line has a different style to aid in discriminating between colours. The colour scheme for Figure 4c has also been updated.

      In terms of non-homopolymeric false positive (FP) indel calls, we did an investigation of these for Clair3 and DeepVariant on the simplex sup data as these are the two best performing variant callers and deal the best with homopolymers. For Clair3, there were eight FPs across all samples. Five of these were homopolymers. The remaining three occurred within one or two bases of another insertion which inserted a similar sequence to the FP. For DeepVariant, it was much the same story, with 8/11 FP indels being in homopolymers, and the remaining three being within one or two bases of another insertion with a similar sequence. We have added a couple of sentences to the results explaining this finding.

      Reviewer #2 (Recommendations For The Authors):

      The paper is well-written and provides evidence for the conclusions. Some issues should be addressed.

      Include a section in the Results describing species-specific observations, namely if some samples had recurrently lower SNP and INDEL F1 scores (as observed in Figure 2). 

      Please see our response in your second point in the ‘Weaknesses’ section of the public review.

      Please provide more details on how the samples were sequenced. Section "Sequencing" in the methods is confusing and not clear enough to be reproduced (provide a supplementary table/figure with the workflow for each sample). Add information about how many samples were multiplexed in each run and what was the output achieved in each.

      We have now added a Supplementary Table S9 which outlines which instruments, kits, and multiplexing strategies were used for each sample. In addition, the raw pod5 data that we make available has been segregated by sample, so knowledge of the multiplexing strategy is not necessary for someone attempting to reproduce our results.

      The authors acknowledge that structural variation was not evaluated in this manuscript. Since ONT sequencing is often used to reconstruct the sequence of plasmids for outbreak/epidemiology analysis, perhaps they could undertake this analysis on a plasmids dataset (which suffers from constant structural variation).

      As noted in our response to Reviewer 3’s public review, we fully agree that investigating structural variations (SVs) would be a very interesting and important follow-up. Identifying and generating ground truth SVs is a nontrivial task and we feel it deserves its own space and study. We hope to explore this in the future.

      Reviewer #3 (Recommendations For The Authors):

      The manuscript is well organized. However, some sections are a bit long and would benefit from being more concise.

      Thank you for your valuable feedback and for acknowledging the organisation of our manuscript. We appreciate your suggestion regarding the length of certain sections. We have gone back through and made the manuscript more concise.

      Figure 1: Is the Qscore really the same as identity? Isn't the determination of identity only possible after alignment? 

      When we say Qscore we are referring to the Phred-scaled version of the read identity, which is alignment based, not the Qscores of the individual bases in the FASTQ file. We have updated the text and figure legend to make this clearer. “The Qscore is the logarithmic transformation of the read identity,  , where 𝑃 is the read identity.”. We also now explicitly state that read identity is alignment-based.

      Abbreviations/terms mentioned but not introduced: <br /> - kmers, P2L57

      - ANI, P3L93 

      We have updated the text to better introduce these terms.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      My main point of concern is the precision of dissection. The authors distinguish cells isolated from the tailbud and different areas in the PSM. They suggest that the cell-autonomous timer is initiated, as cells exit the tailbud.

      This is also relevant for the comparison of single cells isolated from the embryo and cells within the embryo. The dissection will always be less precise and cells within the PSM4 region could contain tailbud cells (as also indicated in Figure 1A), while in the analysis of live imaging data cells can be selected more precisely based on their location. This could therefore contribute to the difference in noise between isolated single cells and cells in the embryo. This could also explain why there are "on average more peaks" in isolated cells (p. 6, l. 7).

      This aspect should be considered in the interpretation of the data and mentioned at least in the discussion. (It does not contradict their finding that more anterior cells oscillate less often and differentiate earlier than more posterior ones.)

      Reviewer #1 rightly points out that selecting cells in a timelapse is more precise than manual dissection. Manual dissection is inherently variable but we believe in general it is not a major source of noise in our experiments. To control for this, we compared the results of 11 manual dissections of the posterior quarter of the PSM (PSM4) with those of the pooled PSM4 data. In general, we did not see large differences in the distributions of peak number or arrest timing that would markedly increase the variability of the pooled data above that of the individual dissections (Figure 1 – supplement figure 7). We have edited the text in the Results to highlight this control experiment (page 6, lines 13-17).

      It is of course possible that we picked up adjacent TB cells when dissecting PSM4, however the reviewer’s assertion that inclusion of TB cells “could also explain why there are "on average more peaks" in isolated cells” is incorrect. Later in the paper we show that cells from the TB have almost identical distributions to PSM4 (mean ± SD, PSM4 4.36 ± 1.44; TB 4.26 ± 1.35; Figure 4 _ supplement 1). Thus, inadvertent inclusion of TB cells while dissecting would in fact not increase the number of peaks.

      Here, the authors focus on the question of how cells differentiate. The reverse question is not addressed at all. How do cells maintain their oscillatory state in the tailbud? One possibility is that cells need external signals to maintain that as indicated in Hubaud et al. 2014. In this regard, the definition of tailbud is also very vague. What is the role of neuromesodermal progenitors? The proposal that the timer is started when cells exit the tailbud is at this point a correlation and there is no functional proof, as long as we do not understand how cells maintain the tailbud state. These are points that should be considered in the discussion.

      The reviewer asks “How do cells maintain their oscillatory state in the tailbud?”. This is a very interesting question, but as recognized by the reviewer, beyond the scope of our current paper.

      We now further emphasize the point “One possibility is that cells need external signals to maintain … as indicated in Hubaud et al. 2014” in the Discussion and added a reference to the review Hubaud and Pourquié 2014 (Signalling dynamics in vertebrate segmentation. Nat Rev Mol Cell Biol 15, 709–721 (2014). https://doi.org/10.1038/nrm3891) (page 18, lines 19-22).

      To clarify the definition of the TB, we have stated more clearly in the results (page 15, lines 8-12) that we defined TB cells as all cells posterior to the notochord (minus skin) and analyzed those that survived

      >5 hours post-dissociation, did not divide, and showed transient Her1-YFP dynamics.

      The reviewer asks: What is the role of neuromesodermal progenitors? In responding to this, we refer to Attardi et al., 2018 (Neuromesodermal progenitors are a conserved source of spinal cord with divergent growth dynamics. Development. 2018 Nov 9;145(21):dev166728. doi: 10.1242/dev.166728).

      Around the stage of dissection in zebrafish in our work, there is a small remaining group of cells characterized as NMPs (Sox2 +, Tbxta+ expression) in the dorsal-posterior wall of the TB. These NMPs rarely divide and are not thought to act as a bipotential pool of progenitors for the elongating axis, as is the case in amniotes, rather contributing to the developing spinal cord. How this particular group of cells behaves in culture is unclear as we did not subdivide the TB tissue before culturing. It would be possible to specifically investigate these NMPs regarding a role in TB oscillations, but given the results of Attardi et al., 2018 (small number of cells, low bipotentiality), we argue that it would not be significant for the conclusions of the current work. To indicate this, we included a sentence and a citation of this paper in the results towards the beginning of the section on the tail bud (page 15, lines 8-12).

      The authors observe that the number of oscillations in single cells ex vivo is more variable than in the embryo. This is presumably due to synchronization between neighbouring cells via Notch signalling in the embryo. Would it be possible to add low doses of Notch inhibitor to interfere with efficient synchronization, while at the same time keeping single cell oscillations high enough to be able to quantify them?

      It is a formal possibility that Delta-Notch signaling may have some impact on the variability in the number of oscillations. However, we argue that the significant amount of cell tracking work required to carry out the suggested experiments would not be justified, considering what has been previously shown in the literature. If Delta-Notch signaling was a major factor controlling the variability of the intrinsic program that we describe, then we would expect that in Delta-Notch mutants the anterior- posterior limits of cyclic gene expression in the PSM would extend beyond those seen in wildtype embryos. Specifically, we might expect to see her1 expression extending more anteriorly in mutants to account for the dramatic increase in the number of cells that have 5, 6, 7 and 8 cycles in culture (Fig. 1E versus Fig. 1I). However, as shown in Holley et al., 2002 (Fig. 5A, B; her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development. 2002 Mar;129(5):1175-83. doi: 10.1242/dev.129.5.1175), the anterior limit of her1 expression in the PSM in DeltaD mutants (aei) is not different to WT. Thus, Delta-Notch signaling may exert a limited control over the number of oscillations, but likely not in excess of one cycle difference.

      In the same direction, it would be interesting to test if variation is decreased, when the number of isolated cells is increased, i.e. if cells are cultured in groups of 2, 3 or 4 cells, for instance.

      This is a great proposal – however the culture setup used here is a wide-field system that doesn’t allow us to accurately follow more than one cell at a time. Cells that adhere to each other tend to crawl over each other, blurring their identity in Z. This is also why we excluded dividing cells in culture from the analysis. Experiments carried out with a customized optical setup will be needed to investigate this in the future.

      It seems that the initiation of Mesp2 expression is rather reproducible and less noisy (+/- 2 oscillation cycles), while the number of oscillations varies considerably (and the number of cells continuing to oscillate after Mesp2 expression is too low to account for that). How can the authors explain this apparent discrepancy?

      The observed tight linkage of the Mesp onset and Her1 arrest argue for a single timing mechanism that is upstream of both gene expression events; indeed, this is one of the key implications of the paper. However, the infrequent dissociation of these events observed in FGF-treated cells suggests that more than one timing pathway could be involved, although there are other interpretations. We’ve added more discussion in the text on one vs multi-timers (page 17, lines 19-23 – page 18, line 1 - 8)., see next point.

      The observation that some cells continue oscillating despite the upregulation of Mesp2 should be discussed further and potential mechanism described, such as incomplete differentiation.

      This is an infrequent (5 out of 54 cells) and interesting feature of PSM4 cells in the presence of FGF. We imagine that this disassociation of clock arrest from mesp on-set timing could be the result of alterations in the thresholds in the sensing mechanisms controlling these two processes. Alternatively - as reviewer 2 argues - it might reflect multiple timing mechanisms at work. We have added a discussion of these alternative interpretations (page 17, lines 19-23 – page 18, line 1 - 8).

      Fig. 3 supplement 3 B missing

      It’s there in the BioRxiv downloadable PDF and full text – but seems to not be included when previewing the PDF. Thanks for the heads up.

      Reviewer #2 (Public Review):

      The authors demonstrate convincingly the potential of single mesodermal cells, removed from zebrafish embryos, to show cell-autonomous oscillatory signaling dynamics and differentiation. Their main conclusion is that a cell-autonomous timer operates in these cells and that additional external signals are integrated to tune cellular dynamics. Combined, this is underlying the precision required for proper embryonic segmentation, in vivo. I think this work stands out for its very thorough, quantitative, single-cell real-time imaging approach, both in vitro and also in vivo. A very significant progress and investment in method development, at the level of the imaging setup and also image analysis, was required to achieve this highly demanding task. This work provides new insight into the biology underlying embryo axis segmentation.

      The work is very well presented and accessible. I think most of the conclusions are well supported. Here a my comments and suggestions:

      The authors state that "We compare their cell-autonomous oscillatory and arrest dynamics to those we observe in the embryo at cellular resolution, finding remarkable agreement."

      I think this statement needs to be better placed in context. In absolute terms, the period of oscillations and the timing of differentiation are actually very different in vitro, compared to in vitro. While oscillations have a period of ~30 minutes in vivo, oscillations take twice as long in vitro. Likewise, while the last oscillation is seen after 143 minutes in vivo, the timing of differentiation is very significantly prolonged, i.e.more than doubled, to 373min in vitro (Supplementary Figure 1-9). I understand what the authors mean with 'remarkable agreement', but this statement is at the risk of being misleading. I think the in vitro to in vivo differences (in absolute time scales) needs to be stated more explicitly. In fact, the drastic change in absolute timescales, while preserving the relative ones, i.e. the number of oscillations a cell is showing before onset of differentiation remains relatively invariant, is a remarkable finding that I think merits more consideration (see below).

      We have changed the text in the abstract (page 1, line 28) to clarify that the agreement is in the relative slowing, intensity increases and peak numbers.

      One timer vs. many timers

      The authors show that the oscillation clock slowing down and the timing of differentiation, i.e. the time it takes to activate the gene mesp, are in principle dissociable processes. In physiological conditions, these are however linked. We are hence dealing with several processes, each controlled in time (and thereby space). Rather than suggesting the presence of ‘a timer’, I think the presence of multiple timing mechanisms would reflect the phenomenology better. I would hence suggest separating the questions more consistently, for instance into the following three:

      a.  what underlies the slowing down of oscillations?

      b.  what controls the timing of onset of differentiation?

      c.  and finally, how are these processes linked?

      Currently, these are discussed somewhat interchangeably, for instance here: “Other models posit that the slowing of Her oscillations arise due to an increase of time-delays in the negative feedback loop of the core clock circuit (Yabe, Uriu, and Takada 2023; Ay et al. 2014), suggesting that factors influencing the duration of pre-mRNA splicing, translation, or nuclear transport may be relevant. Whatever the identity, our results indicate the timer ought to exert control over differentiation independent of the clock.”(page 14). In the first part, the slowing down of oscillations is discussed and then the authors conclude on 'the timer', which however is the one timing differentiation, not the slowing down. I think this could be somewhat misleading.

      To help distinguish the clock’s slowing & arrest from differentiation, we have clarified the text in how we describe our experiments using her1-/-; her7-/- cells (page 10, lines 9-20).

      From this and previous studies, we learn/know that without clock oscillations, the onset of differentiation still occurs. For instance in clock mutant embryos (mouse, zebrafish), mesp onset is still occurring, albeit slightly delayed and not in a periodic but smooth progression. This timing of differentiation can occur without a clock and it is this timer the authors refer to "Whatever the identity, our results indicate the timer ought to exert control over differentiation independent of the clock." (page 14). This 'timer' is related to what has been previously termed 'the wavefront' in the classic Clock and Wavefront model from 1976, i.e. a "timing gradient' and smooth progression of cellular change. The experimental evidence showing it is cell-autonomous by the time it has been laid down,, using single cell measurements, is an important finding, and I would suggest to connect it more clearly to the concept of a wavefront, as per model from 1976.

      We have been explicit about the connection to the clock & wavefront in the discussion (page 17, line 12-17).

      Regarding question a., clearly, the timer for the slowing down of oscillations is operating in single cells, an important finding of this study. It is remarkable to note in this context that while the overall, absolute timescale of slowing down is entirely changed by going from in vivo to in vitro, the relative slowing down of oscillations, per cycle, is very much comparable, both in vivo and in vivo.

      We have now pointed out the relative nature of this phenomenon in the abstract, page 1, line 28.

      To me, while this study does not address the nature of this timer directly, the findings imply that the cell-autonomous timer that controls slowing down is, in fact, linked to the oscillations themselves. We have previously discussed such a timer, i.e. a 'self-referential oscillator' mechanism (in mouse embryos, see Lauschke et al., 2013) and it seems the new exciting findings shown here in zebrafish provide important additional evidence in this direction. I would suggest commenting on this potential conceptual link, especially for those readers interested to see general patterns.

      While we posit that the timer provides positional info to the clock to slow oscillations and instruct its arrest – we do not believe that “the findings imply that the cell-autonomous timer that controls slowing down is, in fact, linked to [i.e., governed by] the oscillations themselves.”. As we show, in her1-/-; her7-/- embryos lacking oscillations, the timing / positional information across the PSM still exists as read-out by Mesp expression. Is this different positional information than that used by the clock? – possibly – but given the tight linkage between Mesp onset and the timing/positioning of clock arrest, both cell-autonomously and in the embryo, we argue that the simplest explanation is that the timing/positional information used by the clock and differentiation are the same. Please see page 10, lines 9-20, as well as the discussion (page 17, lines 19-23; page 18. Lines 1-8 ).

      We agree that the timer must communicate to the clock– but this does not mean it is dependent on the clock for positional information.

      Regarding question c., i.e. how the two timing mechanisms are functionally linked, I think concluding that "Whatever the identity, our results indicate the timer ought to exert control over differentiation independent of the clock." (page 14), might be a bit of an oversimplification. It is correct that the timer of differentiation is operating without a clock, however, physiologically, the link to the clock (and hence the dependence of the timescale of clock slowing down), is also evident. As the author states, without clock input, the precision of when and where differentiation occurs is impacted. I would hence emphasize the need to answer question c., more clearly, not to give the impression that the timing of differentiation does not integrate the clock, which above statement could be interpreted to say.

      As far as we can tell, we do not state that “without clock input, the precision of when and where differentiation occurs is impacted”, and we certainly do not want to give this impression. In contrast, as mentioned above, the her1-/-; her7-/- mutant embryo studies indicate that the lack of a clock signal does not change the differentiation timing, i.e. it does not integrate the clock. Of course, in the formation of a real somite in the embryo, the clock’s input might be expected to cause a given cell to differentiate a little earlier or later so as to be coordinated with its neighbors, for example, along a boundary. But this magnitude of timing difference is within one clock cycle at most, and does not match the large variation seen in the cultured cells that spans over many clock cycles.

      A very interesting finding presented here is that in some rare examples, the arrest of oscillations and onset of differentiation (i.e. mesp) can become dissociated. Again, this shows we deal here with interacting, but independent modules. Just as a comment, there is an interesting medaka mutant, called doppelkorn (Elmasri et al. 2004), which shows a reminiscent phenotype "the Medaka dpk mutant shows an expansion of the her7 expression domain, with apparently normal mesp expression levels in the anterior PSM.". The authors might want to refer to this potential in vivo analogue to their single cell phenotype.

      Thank you, we had forgotten this result. Although we do not agree that this result necessarily means there are two interacting modules, we have included a citation to the paper, along with a discussion of alternative explanations for the dissociation (page 18, lines 2-14).

      One strength of the presented in vitro system is that it enables precise control and experimental perturbations. A very informative set of experiments would be to test the dependence of the cell-autonomous timing mechanisms (plural) seen in isolated cells on ongoing signalling cues, for instance via Fgf and Wnt signaling. The inhibition of these pathways with well-characterised inhibitors, in single cells, would provide important additional insight into the nature of the timing mechanisms, their dependence on signaling and potentially even into how these timers are functionally interdependent.

      We agree and in future experiments we are taking advantage of this in vitro system to directly investigate the effect of signaling cues on the intrinsic timing mechanism.

    1. Author Response:

      Reviewer #1 (Public Review):

      Summary:

      The authors aimed to identify potential biomarkers for acute myocardial infarction (AMI) through blood metabolomics and fecal microbiome analysis. They found that long chain fatty acids (LCFAs) could serve as biomarkers for AMI and demonstrated a correlation between LCFAs and the gut microbiome. Additionally, in silico molecular docking and in vitro thrombogenic assays showed that these LCFAs can induce platelet aggregation.

      Strengths:

      The study utilized a comprehensive approach combining blood metabolomics and fecal microbiome analysis.

      The findings suggest a novel use of LCFAs as biomarkers for AMI.

      The correlation between LCFAs and the gut microbiome is a significant contribution to understanding the interplay between gut health and heart disease.

      The use of in silico and in vitro assays provides mechanistic insights into how LCFAs may influence platelet aggregation.

      Weaknesses:

      The evidence is incomplete as it does not definitively prove that gut dysbiosis contributes to fatty acid dysmetabolism.

      We appreciate this reviewer’s insightful comment regarding the causal relationship between gut dysbiosis and fatty acid dysmetabolism. We acknowledge that our study primarily demonstrates a strong association rather than causation. While establishing causality was beyond the scope of the current study, we recognize the importance of addressing this point. In our revised manuscript, we will emphasize the observational nature of our findings and discuss the need for future research, including longitudinal studies and interventional trials, to explore the causal links between gut dysbiosis and fatty acid dysmetabolism. We believe that this clarification strengthens the interpretation of our results and aligns with the reviewer's concern.

      The study primarily shows an association between the gut microbiome and fatty acid metabolism without establishing causation.

      We agree with the reviewer that our study presents an association rather than definitive proof of causation between the gut microbiome and fatty acid metabolism. To address this, we plan to expand the discussion section to more clearly outline the limitations of our study in establishing causality. We will also propose future research directions, such as the use of animal models and longitudinal human studies, which could help elucidate the causal pathways. By clarifying this aspect, we aim to provide a more balanced perspective on our findings.

      Reviewer #2 (Public Review):

      Summary:

      Fan et al. investigated the relationship between early acute myocardial infarction (eAMI) and disturbances in the gut microbiome using metabolomics and metagenomics analyses. They studied 30 eAMI patients and 26 healthy controls, finding elevated levels of long-chain fatty acids (LCFA) in the plasma of eAMI patients.

      Strengths:

      The research attributed a substantial portion of LCFA variance in eAMI to changes in the gut microbiome, as indicated by omics analyses. Computational profiling of gut bacteria suggested structural variations linked to LCFA variance. The authors also conducted molecular docking simulations and platelet assays, revealing that eAMI-associated LCFAs may enhance platelet aggregation.

      Weaknesses:

      The results should be validated using different assays, and animal models should be considered to explore the mechanisms of action.

      We appreciate the reviewer’s suggestion to validate our findings using additional assays and animal models. We agree that further validation is crucial to confirm the robustness of our results and to explore the underlying mechanisms in greater detail. While our current study focused on human subjects and in vitro assays to establish initial findings, we acknowledge that additional experimental approaches are necessary. In the revised manuscript, we plan to include a discussion on the potential use of different assays (e.g., advanced metabolomics techniques, multi-omics integration) and animal models to validate and expand upon our findings. Moreover, we are planning to undertake these experiments in future studies to build upon the foundational work presented here.

      We believe that our revised responses and the planned manuscript revisions will address the reviewers’ concerns effectively. We are confident that these changes will enhance the overall contribution of our study to the field. Thank you again for your valuable feedback.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      O'Leary and colleagues present data identifying several procedures that alter discrimination between novel and familiar objects, including time, environmental enrichment, Rac-1, context reexposure, and brief reminders of the familiar object. This is complimented with an engram approach to quantify cells that are active during learning to examine how their activation is impacted following each of the above procedures at test. With this behavioral data, authors apply a modeling approach to understand the factors that contribute to good and poor object memory recall.

      We thank the Reviewer for summarizing the scope and depth of our manuscript, and indeed for recognizing our efforts. We engage below with the Reviewer’s specific criticisms.

      Strengths:

      Authors systematically test several factors that contribute to poor discrimination between novel and familiar objects. These results are extremely interesting and outline essential boundaries of incidental, nonaversive memory.<br /> These results are further supported by engram-focused approaches to examine engram cells that are reactivated in states with poor and good object recognition recall.

      We thank the Reviewer for these positive comments.

      Weaknesses:

      For the environmental enrichment, authors seem to suggest objects in the homecage are similar to (or reminiscent of) the familiar object. Thus, the effect of improved memory may not be related to enrichment per se as much as it may be related to the preservation of an object's memory through multiple retrievals, not the enriching experiences of the environment itself. This would be consistent with the brief retrieval figure. Authors should include a more thorough discussion of this.

      This is one of the main issues highlighted by the Editor and the Reviewers. We agree that these results dove-tail with the reminder experiments. We have included additional discussion, see line 510-546.

      Authors should justify the marginally increased number of engram cells in the non-enrichment group that did not show object discrimination at test, especially relative to other figures. More specific cell counting criteria may be helpful for this. For example, was the DG region counted for engram and cfos cells or only a subsection?

      There was a marginal, but non-significant increase in the number of labelled cells within the standard housed mice in Figure 3f. The cell counting criteria was the same across experimental groups and conditions, where the entire dorsal and ventral blade of the dorsal DG was counted for each animal. This non-statistically significant variance may be due to surgical and viral spread difference between mice. We have clarified this in the manuscript, see line 229-232.

      It is unclear why the authors chose a reactivation time point of 1hr prior to testing. While this may be outside of the effective time window for pharmacological interference with reconsolidation for most compounds, it is not necessarily outside of the structural and functional neuronal changes accompanied by reconsolidation-related manipulations.

      A control experiment was performed to demonstrated that a brief reminder exposure of 5 mins on its own was insufficient to induce new learning that formed a lasting memory (Supplementary Figure S4a). Mice given only a brief acquisition period of 5 mins, exhibited no preference for the novel object when tested 1 hour after training, suggesting the absence of a lasting object memory (Supplementary Figure S4b & c). We therefore used the 1-hour time point for the brief reminder experiment in Figure 4a. We have clarified this within the manuscript and supplementary data see line 258-264.

      Figure 5: Levels of exploration at test are inconsistent between manipulations. This is problematic, as context-only reexposures seem to increase exploration for objects overall in a manner that I'm unsure resembles 'forgetting'. Instead, cross-group comparisons would likely reveal increased exploration time for familiar and novel objects. While I understand 'forgetting' may be accompanied by greater exploration towards objects, this is inconsistent across and within the same figure. Further, this effect is within the period of time that rodents should show intact recognition. Instead, context-only exposures may form a competing (empty context) memory for the familiar object in that particular context.

      The Reviewer raises an important question, and we agree with the Reviewer that there should be caution and qualification around interpreting these results as “forgetting”. Indeed, for the context-only rexposures, cross-group comparisons show increased exploration time for familiar and novel objects. As the mice exhibit relatively high exploration of both the novel and familiar objects. An alternative explanation would be that the mice have not truly forgotten the familiar object, but rather as the mouse has not seen the familiar object in the last 6 context only sessions, its reappearance makes it somewhat novel again. Therefore, this change in the object’s reappearance triggers the animal’s curiosity, and in turn drives exploration by the animal. In addition, the context-only exposures may form a competing memory for the familiar object in that particular context. We have highlighted this in the results and also included greater discussion. See lines 306-315.

      I am concerned at the interpretation that a memory is 'forgotten' across figures, especially considering the brief reminder experiments. Typically, if a reminder session can trigger the original memory or there is rapid reacquisition, then this implies there is some savings for the original content of the memory. For instance, multiple context retrievals in the absence of an object reminder may be more consistent with procedures that create a distinct memory and subsequently recruit a distinct engram.

      These findings raise an important question regarding the interpretation of ‘forgetting’. If a reminder trial or experience can trigger the original memory, or there is rapid reacquisition, then this would suggest there is a degree of savings for the original memory content (85, 86). Previous work has emphasized retrieval deficits as a key characteristic of memory impairment, supporting the idea that memory recall or accessibility may be driven by learning feedback from the environment (7, 8, 14–18). Within our behavioral paradigm, a lack of memory expression would still constitute forgetting due to the loss of learned behavioral response in the presence of natural retrieval cues. The changes in memory expression may therefore underlie the adaptive nature of forgetting. This is consistent with the idea that the engram is intact and available, but not accessible. Here we studied natural forgetting, and our data showing memory retrieval following optogenetic reactivation demonstrates that the original engram persists at a cellular level, otherwise activation of those cells would no longer trigger memory recall. We also agree with the reviewer that multiple context retrievals may indeed lead to the formation of a second distinct engram that competes with the original. Recent work suggests that retroactive interference emerges from the interplay of multiple engrams competing for accessibility (18). We have added clarification and included extra discission of this interpretation. See lines 589-598.

      Authors state that spine density decreases over time. While that may be generally true, there is no evidence that mature mushroom spines are altered or that this is consistent across figures. Additionally, it's unclear if spine volume is consistently reduced in reactivated and non-reactivated engram cells across groups. This would provide evidence that there is a functionally distinct aspect of engram cells that is altered consistently in procedures resulting in poor recognition memory (e.g. increased spine density relative to spine density of non-reactivated engram cells and non-engram cells)

      We thank the Reviewer for their helpful comments on explaining our engram dendritic spine data. We agree with the Reviewer that an analysis of the changes in spine type, as well as the difference between engram and non-engram spines as well and reactivation and non-reactivated engram spines would be interesting and may help to further illuminate the morphological changes of forgetting and memory retrieval. Indeed, future analysis could determine if spine density is reduced in reactivated and non-reactivated engram cells or indeed across engram non-engram cells within different learning conditions. This avenue of investigation could determine if there is a functionally distinct aspect of engram cells that are altered following forgetting (67). However, such analysis is beyond the scope of this study. We have highlighted this limitation and included its discussion. See lines 493-499.

      Authors should discuss how the enrichment-neurogenesis results here are compatible with other neurogenesis work that supports forgetting.

      We validated the effectiveness of the enrichment paradigm to enhance neural plasticity by measuring adult hippocampal neurogenesis. The hippocampus has been identified as one of the only regions where postnatal neurogenesis continues throughout life (75). Levels of adult hippocampal neurogenesis do not remain constant throughout life and can be altered by experience (41–43, 57).  In addition, adult born neurons have been shown to contribute to the process of forgetting (74, 78, 79). Although the contribution of adult born neurons to cognition and the memory engram is not fully understood (80, 81). Mishra et al, showed that immature neurons were actively recruited into the engram following a hippocampal-dependent task (67). Moreover, increasing the level of neurogenesis rescued memory deficits by restoring engram activity (67). Augmenting neurogenesis further rescued the deficits in spine density in both immature and mature engram neurons in a mouse model of Alzheimer’s disease (67). Whether neurogenesis alters spine density on differentially for reactivated or non-reactivation engrams cells remains to be investigated (67, 68). This avenue of research would help to illuminate the morphological changes following forgetting and provide evidence if there is a functionally distinct aspect of engram cells that is altered in forgetting (67, 68). Our engram labelling strategy which utilized c-fos-tTA transgenic mice combined with an AAV9-TRE-ChR2-eYFP virus does not necessarily label sufficient immature neurons. Future work could utilize a different engram preparation, such as a genetic labelling strategy (TRAP2) or using a different immediate early gene promoter such as Arc to investigate the contribution of new-born neurons to the engram ensemble. We have added additional discussion of how our work fits with previous literature investigating neurogenesis and forgetting. See lines 547-565.

      Reviewer #2 (Public Review):

      Summary:

      The manuscript examines an important question about how an inaccessible, natural forgotten memory can be retrieved through engram ensemble reactivation. It uses a variety of strategies including optogenetics, behavioral and pharmacological interventions to modulate engram accessibility. The data characterize the time course of natural forgetting using an object recognition task, in which animals can retrieve 1 day and 1 week after learning, but not 2 weeks later. Forgetting is correlated with lower levels of cell reactivation (c-fos expression during learning compared to retrieval) and reduction in spine density and volume in the engram cells. Artificial activation of the original engram was sufficient to induce recall of the forgotten object memory while artificial inhibition of the engram cells precluded memory retrieval. Mice housed in an enriched environment had a slower rate of forgetting, and a brief reminder before the retrieval session promoted retrieval of a forgotten memory. Repeated reintroduction to the training context in the absence of objects accelerated forgetting. Additionally, activation of Rac1-mediated plasticity mechanisms enhanced forgetting, while its inhibition prolonged memory retrieval. The authors also reproduce the behavioral findings using a computational model inspired by Rescorla-Wagner model. In essence, the model proposes that forgetting is a form of adaptive learning that can be updated based on prediction error rules in which engram relevancy is altered in response to environmental feedback.

      We thank the Reviewer for summarizing the scope and depth of our manuscript, and for recognizing our efforts. We engage below the Reviewer’s specific criticisms of our interpretations.

      Strengths:

      (1) The data presented in the current paper are consistent with the authors claim that seemingly forgotten engrams sometimes remain accessible. This suggests that retrieval deficits can lead to memory impairments rather than a loss of the original engram (at least in some cases).

      We thank the Reviewer for their positive summary.

      (2) The experimental procedures and statistics are appropriate, and the behavioral effects appear to be very robust. Several key effects are replicated multiple times in the manuscript.

      We thank the Reviewer for their positive comments.

      Weaknesses:

      (1) My major issue with the paper is the forgetting model proposed in Figure 7. Prior work has shown that neutral stimuli become associated in a manner similar to conditioned and unconditioned stimuli. As a result, the Rescorla-Wagner model can be used to describe this learning (Todd & Homes, 2022). In the current experiments, the neutral context will become associated with the unpredicted objects during training (due to a positive prediction error). Consequently, the context will activate a memory for the objects during the test, which should facilitate performance. Conversely, any manipulation that degrades the association between the context and object should disrupt performance. An example of this can be found in Figure 5A. Exposing the mice to the context in the absence of the objects should violate their expectations and create a negative prediction error. According to the Rescorla-Wagner model, this error will create an inhibitory association between the context and the objects, which should make it harder for the former to activate a memory of the latter (Rescorla & Wagner, 1972). As a result, performance should be impaired, and this is what the authors find. However, if the cells encoding the context and objects were inhibited during the context-alone sessions (Figure 5D) then no prediction error should occur, and inhibitory associations would not be formed. As a result, performance should be intact, which is what the authors observe.

      What about forgetting of the objects that occurs over time? Bouton and others have demonstrated that retrieval failure is often due to contextual changes that occur with the passage of time (Bouton, 1993; Rosas & Bouton, 1997, Bouton, Nelson & Rosas, 1999). That is, both internal (e.g. state of the animal) and external (e.g. testing room, chambers, experimenter) contextual cues change over time. This shift makes it difficult for the context to activate memories with which it was once associated (in the current paper, objects). To overcome this deficit, one can simply re-expose animals to the original context, which facilitates memory retrieval (Bouton, 1993). In Figure 2D, the authors do something similar. They activate the engram cells encoding the original context and objects, which enhances retrieval.

      Therefore, the forgetting effects presented in the current paper can be explained by changes in the context and the associations it has formed with the objects (excitatory or inhibitory). The results are perfectly predicted by the Rescorla-Wagner model and the context-change findings of Bouton and others. As a result, the authors do not need to propose the existence of a new "forgetting" variable that is driven by negative prediction errors. This does not add anything novel to the paper as it is not necessary to explain the data (Figures 7 and 8).

      We thank the reviewer for clearly explaining their concern about our model. We are very sorry that we did not sufficiently explain that our model is, in fact, based on the classic Rescorla-Wagner model. The key equation of the model that updates “engram strength”  is equivalent to the canonical Rescorla-Wagner model that is commonly used in research on reinforcement learning and decision-making (105). One potential minor difference is that we crucially assume different learning rates for positive and negative prediction errors. However, this variant of the Rescorla-Wagner model is common in the computational literature and is generally not regarded as a qualitatively different kind of model. In fact, it allows us to capture that establishing an object-context association (after a positive prediction error) is faster than the forgetting process (through negative errors).

      The other equations that are explained in detail in the Methods are necessary to simulate exploration behavior and render the model suitable for model fitting. Concerning exploration behavior, we use the softmax function, which is commonly used in combination with the Rescorla-Wager model, in order to translate the learned quantity (in our case, engram strength) into behavior (here exploration). The other equations are necessary to fit the model to the data (learning rate α and behavioral variability in exploration behavior).

      Therefore, we fully agree with the reviewer that the Rescorla-Wagner can explain our empirical results, in particular by assuming that the different manipulations affect the strength of object-context associations, which, in turn, governs forgetting as behaviorally observed. 

      In our previous version of the manuscript, we only referred to the Rescorla-Wagner model directly in the Methods. But to make this important point clearer, we now refer to the origin of the model multiple times in the Results section as well. See lines 81, 386-393.

      We also agree with the reviewer that the learning/forgetting process can be described in terms of changes in object-context associations (e.g., inhibitory associations after a negative prediction error). Therefore, we now explicitly refer to the relationship between updated object-context associations and forgetting and highlight that we believe that stronger associations signal higher engram “relevancy”. See lines 386-393.

      We have extended Figure 7 (new panels a and b), where we illustrate the idea that (a) object-context associations govern forgetting and (b) show the key Rescorla-Wagner equation, including a simple explanation of the main terms (engram strength, prediction error, and learning rate). Finally, we have also extended our discussion of the model, where we now directly state that the Rescorla-Wagner model captures the key results of our experiments. See lines 573-580.

      In order to further support a link between our empirical data and computational modeling, we also added extra experiments that showed the modulation of engram cells within the dentate gyrus can regulate these object-context associations. See Supplementary Figure 12a-f and lines 401-404.

      To summarize our reply, we agree with the reviewer’s comment and hope that we have clarified the direct relationship to the Rescorla-Wagner model.

      (2) I also have an issue with the conclusions drawn from the enriched environment experiment (Figure 3). The authors hypothesize that this manipulation alleviates forgetting because "Experiencing extra toys and objects during environmental enrichment that are reminiscent of the previously learned familiar object might help maintain or nudge mice to infer a higher engram relevancy that is more robust against forgetting.". This statement is completely speculative. A much simpler explanation (based on the existing literature) is that enrichment enhances synaptic plasticity, spine growth, etc., which in turn reduces forgetting. If the authors want to make their claim, then they need to test it experimentally. For example, the enriched environment could be filled with objects that are similar or dissimilar to those used in the memory experiments. If their hypothesis is correct, only the similar condition should prevent forgetting.

      We thank the Reviewer for this alternative perspective on our findings. First of all, we agree that this statement is speculative. The effects of enrichment on neural plasticity are well established and it likely contributes to the enhanced memory recall. It is important to emphasize that this process of updating is not necessarily separate from enrichment-induced plasticity at an implementational level, but part of the learning experience within an environment containing multiple objects. The enrichment or, more generally, experience, may therefore enhance memory through the modification of activity of specific engram ensembles. The idea of enrichment facilitating memory updating is consistent with the results obtained by the reminder experiments and further supported by our analysis with the Rescorla-Wagner computational model, where experience updates the accessibility of existing memories, possibly through reactivation of the original engram ensemble.

      We would like to further clarify that our explanation concerns the algorithmic level, in contrast to the neural level. Based on the computational analyses using the Rescorla-Wagner model and in line with the reviewer’s previous comment on the model, we believe that forgetting is governed by the strength of object-context associations (or engram relevancy). Our interpretation is that stronger associations signal that the memory or engram representation is important ("relevant") and should not be forgotten. Accordingly, due to a vast majority of experiences with extra cage objects in the enriched environment, mice might generally learn that such objects are common in their environment and potentially relevant in the future (i.e., the object-context association is strong, preventing forgetting). Our speculation of these results is to help unify our empirical data with the computational model.

      We believe that the Reviewer's alternative explanation in terms of synaptic plasticity, spine growth is not mutually exclusive with the modelling work. It is possible that the computational mechanisms that we explore based on the Rescorla-Wagner model are neuronally related to the biological mechanisms that the reviewer suggests at the implementational level. Therefore, ultimately, the two perspectives might even complement each other. We have included additional discussion to clarify this point. See lines 510-546.

      (3) It is well-known that updating can both weaken or strengthen memory. The authors suggest that memory is updated when animals are exposed to the context in the absence of the objects. If the engram is artificially inhibited (opto) during context-only re-exposures, memory cannot be updated. To further support this updating idea, it would be good to run experiments that investigate whether multiple short re-exposures to the training context (in the presence of the objects or during optogenetic activation of the engram) could prevent forgetting. It would also be good to know the levels of neuronal reactivation during multiple re-exposures to the context in the absence versus context in the presence of the objects.

      We thank the Reviewer for their comments. We agree that additional experiments would be helpful to further support the idea of updating. We have performed additional experiments to test the idea that multiple short re-exposures to the training context, in the presence of objects prevents forgetting. In this paradigm, mice were repeatedly exposed to the original object pair (Supplementary Figure S5a). The results indicate that repeated reminder trials facilitate object memory recall (Supplementary Figure 5b&c). These data indicated that subsequent object reminders over time facilitates the transition of a forgotten memory to an accessible memory. See Supplementary Figure S5 and Lines 279-287.

      (4) There are a number of studies that show boundary conditions for memory destabilization/reconsolidation. Is there any evidence that similar boundary conditions exist to make an inaccessible engram accessible?

      The Reviewer asks an interesting question about boundary conditions and engram accessibility. Boundary conditions could indeed affect the degree of destabilization and reconsolidation, the salience or strength of the memory, as well as the timing of retrieval cues. Future models could focus on understanding the specific boundary conditions in which a memory becomes retrievable and the degree to which it is sufficiently destabilized and liable for updating and forgetting. We have included additional discussion on the potential role of boundary conditions for engram accessibility. See lines 661-666.

      (5) More details about how the quantification of immunohistochemistry (c-fos, BrdU, DAPI) was performed should be provided (which software and parameters were used to consider a fos positive neurons, for example).

      We have added additional information for the parameters of quantification of immunohistochemistry. See lines 796-809.

      (6) Duration of the enrichment environment was not detailed.

      We have highlighted the details for the environmental enrichment duration. See lines 756.

      Reviewer #3 (Public Review):

      Summary:

      The manuscript by Ryan and colleagues uses a well-established object recognition task to examine memory retrieval and forgetting. They show that memory retrieval requires activation of the acquisition engram in the dentate gyrus and failure to do so leads to forgetting. Using a variety of clever behavioural methods, the authors show that memories can be maintained and retrieval slowed when animals are reared in environmental enrichment and that normally retrieved memories can be forgotten if exposed to the environment in which the expected objects are no longer presented. Using a series of neural methods, the authors also show that activation or inhibition of the acquisition engram is key to memory expression and that forgetting is due to Rac1.

      We thank the Reviewer for summarizing the scope and depth of our manuscript, and indeed for recognizing our efforts. We engage below the Reviewer’s specific criticisms of our interpretations.

      Strengths:

      This is an exemplary examination of different conditions that affect successful retrieval vs forgetting of object memory. Furthermore, the computational modelling that captures in a formal way how certain parameters may influence memory provides an important and testable approach to understanding forgetting.

      The use of the Rescorla-Wagner model in the context of object recognition and the idea of relevance being captured in negative prediction error are novel (but see below).

      The use of gain and loss of function approaches are a considerable strength and the dissociable effects on behaviour eliminate the possibility of extraneous variables such as light artifacts as potential explanations for the effects.

      We thank the Reviewer for their positive comments.

      Weaknesses:

      Knowing what process (object retrieval vs familiarity) governed the behavioural effect in the present investigation would have been of even greater significance.

      The Reviewer touches on an important issue of the object recognition task. Understanding how experience alters object familiarity versus object retrieval and its impact on learning would help to develop better models of object memory and forgetting. We have added additional discussion. See lines 666-669.

      The impact of the paper is somewhat limited by the use of only one sex.

      We agree that using only male mice limits the impact of the paper. Indeed, the field of behavioural neuroscience is moving to include sex as a variable. Future experiments should include both male and female mice.

      While relevance is an interesting concept that has been operationalized in the paper, it is unclear how distinct it is from extinction. Specifically, in the case where the animals are exposed to the context in the absence of the object, the paper currently expresses this as a process of relevance - the objects are no longer relevant in that context. Another way to think about this is in terms of extinction - the association between the context and the objects is reduced results in a disrupted ability of the context to activate the object engram.

      We thank the reviewer for their insightful comment on the connection between engram relevance and memory extinction. Lacagnina et al., demonstrated that extinction training suppressed the reactivation of a fear engram, while activating a second putative extinction ensemble (59). In another study, these extinction engram cells and reward cells were shown to be functionally interchangeable (92). Moreover, in a study conducted by Lay et al., the balance between extinction and acquisition was disrupted by inhibiting the extinction recruited neurons in the BLA and CN (93). These results suggested that decision making after extinction can be governed by a balance between acquisition and extinction specific ensembles (93). Together, this may suggest that in the present study, when mice are repeatedly exposed to the training context, the association between the context and the objects is reduced, resulting in a disrupted ability of the context to activate the object engram. Therefore, memory relevance and extinction may operate similarly to effect engram accessibility, and in essence ‘forgetting’ of object memories may be due to neurobiological mechanisms similar to that of extinction learning (4). We have included additional discussion on the link between our results and the extinction literature. See lines 642-654.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Additional measures that may help interpretation of and clarify data are:

      A minute-by-minute analysis for training and testing may provide insight about the learning rate and testing temporal dynamics that may shed light substantially on differential levels of exploration. This should be applied across figures and would support conclusions from models in Figures 7-8 as well.

      Locomotion/distance travelled measures.

      We have included additional analysis for a minute-by-minute analysis of training and testing of the object memory test at 24 hr, 2 weeks as well as under the standard housing and enrichment conditions. The results further support the initial finding that novel object recognition is increased in mice that recall the object at 24 hr. Similarly, mice housed in the enriched housing initially explore the novel object more compared to the familiar object. See Supplementary Figure 1 and 2, as well as lines 103-105 and 211-213.

      The appropriate control for the context exposure figure would be to expose to a novel context in one group and the acquisition/testing context for the other.

      We agree with the reviewer that an additional control of a novel context would further support our findings. Indeed, this line of investigate may dove-tail with the other reviewer comments on the role of competing engrams and interference. Future work could investigate the degree to which novel contexts and multiple memories can affect the rate of forgetting through engram updating. We have included additional discussion. See lines 643 and 655. However, in our experience it is necessary to pre-expose mice to different contexts before object exposure (e.g. Autore et al ’23), in order to form discriminate object/context associations. Establishing such a paradigm for this study would be at odds with the established paradigms and schedules in this current study. Moreover, the possibility that the effect of object displacement on forgetting requires the familiar context, or not, does not impact the main conclusions of this study. However, we agree that it is a point for expansion in the future.

      A control virus+light group vs simply a no-light condition.

      For optogenetic experiments. Control mice underwent the same surgery procedure with virus and optic fibre implantation. However, no light was delivered to excite or inhibit the respective opsin. Previous papers have shown laser light delivered to tissue expressing an AAV-TRE-EYFP lacking an light-opsin does cause cellular excitation. We have clarified this in the text. See lines 726-729.

      Reviewer #2 (Recommendations For The Authors):

      Minor details:

      (1) In the pharmacological modification of Rac 1, please specify what percentage of DMSO was used to dissolve Rac1 inhibitor and correct the typo 'DSMO'

      Rac1 inhibitor (Ehop016) was reconstituted and prepared in PBS with 1% Tween-80, 1% DMSO and 30% PEG. We have clarified this in the text and corrected the typo, thank you. See lines 767.

      (2) In the penultimate paragraph there is a typo 'predication error'

      This is now corrected. Thankyou.

      Reviewer #3 (Recommendations For The Authors):

      I was unable to find information on what the No Light group consisted of. Was there a control virus infused, were the animals implanted with optical fibres (in the presence or absence of a virus), were they surgical controls, etc?

      For optogenetic experiments. No Light Control mice underwent the same surgery procedure with virus and optic fibre implantation. However, no light was delivered to excite or inhibit the respective opsin. We have clarified this in the text. See lines 726-729.

      The discussion lacked specificity in places. For example, the idea of eluding to 'other variables' is somewhat vague (p. 21, middle paragraph). Some examples of what other variables could be relevant would be helpful in capturing what direction or relevance the model may have going forward.

      We have expanded the discussion of other variables which might impact engram relevance and how the model might be developed moving forward. These may include, boundary conditions of destabilization and reconsolidation, the salience or strength of the memory as well as the timing of retrieval cues or updating experience. Future models could focus on understanding the specific boundary conditions in which a memory becomes retrievable and the degree to which it is sufficiently destabilized and liable for updating and forgetting. The role of perceptual learning on memory retrieval and forgetting may also be an avenue of future investigation. Understanding how experience alters object familiarity versus object retrieval and its impact on learning would also help to develop better models of object memory and forgetting. In the current study, only male mice were utilized. Therefore, future work could also include sex as a variable to fully elucidate the impact of experience on the processes of forgetting. See lines 642-669.

      In the same paragraph (p. 21, middle paragraph) there is mention of multiple engrams and how they can compete. The authors reference Autore et al (2023), but I thought Lacagina did this really beautifully also in an experimental setting. This idea is also expressed in Lay et al. (2022). So additional references would further strengthen the authors argument here.

      We thank the reviewer for the additional references for discussing engram competition. We have included these papers in the discission. See lines 642-654.

      Relatedly, environmental enrichment was considered in terms of object relevance. I wonder if the authors may want to consider thinking about their results in terms of effects on perceptual learning.

      Indeed, perceptual learning maybe playing a role in environmental enrichment. We have included additional discussion. See lines 666-669.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Using the UK Biobank, this study assessed the value of nuclear magnetic resonance measured metabolites as predictors of progression to diabetes. The authors identified a panel of 9 circulating metabolites that improved the ability in risk prediction of progression from prediabetes to diabetes. In general, this is a well-performed study, and the findings may provide a new approach to identifying those at high risk of developing diabetes. I have some comments that may improve the importance of this study.

      We deeply appreciate the reviewer's invaluable time dedicated to the review of this manuscript and the insightful comments to enhance its overall quality.

      (1) It is unclear why the authors only considered the top 20 variables in the metabolite selection and why they did not set a wider threshold.

      Thank you for the comment. We set the top 20 variables in the metabolite selection balancing the performance of the final diabetes risk prediction model and the clinical applicability due to measurement costs. We have added this explanation in the “Methods” section.

      “We chose the intersection set of the top 20 most important variables selected by the three machine learning models, after balancing the performance of the final diabetes risk prediction model and the clinical applicability associated with measurement costs of metabolites.”

      (2) The methods section would benefit from a more detailed exposition of how parameter tuning was conducted and the range of parameters explored during the training of the RSF model.

      According to the reviewer’s suggestion, we have added a more detailed description of parameters tunning and the range of parameters explored during the training of the RSF model in the “Method S3” section in the Supplementary material.

      “The RSF model was fitted using the “randomForestSRC” package and the grid search method was used for hyperparameter tuning. Specifically, the grid search method was used to tune hyperparameters among the RSF model, through minimizing out-of-sample or out-of-bag error1. Each tree in the RSF is constructed from a random sample of the data, typically a bootstrap sample or 63.2% of the sample size (as in the present study). Consequently, not all observations are used to construct each tree. The observations that are not used in the construction of a tree are referred to as out-of-bag observations. In an RSF model, each tree is built from a different sample of the original data, so each observation is “out-of-bag” for some of the trees. The prediction for an observation can then be obtained using only those trees for which the observation was not used for the construction. A classification for each observation is obtained in this way and the error rate can be estimated from these predictions. The resulting error rate is referred to as the out-of-bag error. Through calculating the out-of-bag error in each iteration, the best hyperparameters were finally determined.

      The hyperparameters to be tuned and range of grid search in the present study were below: number of trees (50-1000, by 50), number of variables to possibly split at each node (3-6, by 1), and minimum size of terminal node (1-20, by 1)2.”

      (3) It is hard to understand the meaning of the decision curve analysis and the clinical implications behind the net benefit, which are required to clarify the application values of models.

      Thank you for the comment. We have added more description and discussion about the decision curve analysis in the “Methods” and “Discussion” sections.

      “Furthermore, we used decision curve analysis (DCA) to assess the clinical usefulness of prediction model-based guidance for prediabetes management, which calculates a clinical “net benefit” for one or more prediction models in comparison to default strategies of treating all or no patients3.”

      “Most importantly, a model with good discrimination does not necessarily have high clinical value. Hence, DCA was used to compare the clinical utility of the model before and after adding the metabolites, and this showed a higher net benefit for the latter than the basic model, suggesting the addition of the metabolites increased the clinical value of prediction, i.e., the potential benefit of guiding management in individuals with prediabetes3,4. These results provided novel evidence supporting the value of metabolic biomarkers in risk prediction and stratification for the progression from prediabetes to diabetes.”

      (4) Notably, the NMR platform utilized within the UK Biobank primarily focused on lipid species. This limitation should be discussed in the manuscript to provide context for interpreting the results and acknowledge the potential bias from the measuring platform.

      Thank you for the comment. We acknowledged this limitation that NMR platform within the UK Biobank primarily focused on lipid species and the potential bias from the measuring platform and have added this in “Discussion” section.

      “Third, the Nightingale metabolomics platform primarily focused on lipids and lipoprotein sub-fractions, and thus the predictive value of other metabolites in the progression from prediabetes to diabetes warranted further research using an untargeted metabolomics approach.”

      (5) The manuscript should explain the potential influence of non-fasting status on the findings, particularly concerning lipoprotein particles and composition. There should be a detailed discussion of how non-fasting status may impact the measurement and the findings.

      According to the reviewer’s suggestion, we have added more details to explain the potential influence of non-fasting status on our findings in the “Discussion” section.

      “Additionally, the use of non-fasting blood samples might increase inter-individual variation in metabolic biomarker concentrations, however, fasting duration has been reported to account for only a small proportion of variation in plasma metabolic biomarker concentrations5. Therefore, we believe the impact of non-fasting samples on our findings would be minor.”

      (6) Cross-platform standardization is an issue in metabolism, and further descriptions of quality control are recommended.

      Thank you for the comment. We have added more description of quality control in the “Method S1” section in the Supplementary material.

      “Metabolic biomarker profiling by Nightingale Health’s NMR platform provides consistent results over time and across spectrometers. Furthermore, the sample preparation is minimal in the Nightingale Health’s metabolic biomarker platform, circumventing all extraction steps. These aspects result in highly repeatable biomarker measurements. Pre-specified quality metrics were agreed between UK Biobank and Nightingale Health to ensure consistent results across the samples, and pilot measurements were conducted. Nightingale Health performed real-time monitoring of the measurement consistency within and between spectrometers throughout the UK Biobank samples. Two control samples provided by Nightingale Health were included in each 96-well plate for tracking the consistency across multiple spectrometers. Furthermore, two blind duplicate samples provided by the UK Biobank were included in each well plate, with the position information unlocked only after results delivery. Coefficient of variation (CV) targets across the metabolic biomarker profile were pre-specified for both Nightingale Health’s internal control samples and UK Biobank’s blind duplicates. The targets were met for each consecutively measured batch of ~25,000 samples. For the majority of the metabolic biomarkers, the CVs were below 5% (https://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=3000). Further, the distributions of measured biomarkers from 5 sample batches indicated absence of batch effects (https://biobank.ctsu.ox.ac.uk/ukb/ukb/docs/nmrm_app1).”

      Reviewer #2 (Public Review):<br /> Deciphering the metabolic alterations characterizing the prediabetes-diabetes spectrum could provide early time windows for targeted preventive measures to extend precision medicine while avoiding disproportionate healthcare costs. The authors identified a panel of 9 circulating metabolites combined with basic clinical variables that significantly improved the prediction from prediabetes to diabetes. These findings provided insights into the integration of these metabolites into clinical and public health practice. However, the interpretation of these findings should take account of the following limitations.

      We appreciate the reviewer’s positive comments and encouragement.

      (1) First, the causal relationship between identified metabolites and diabetes or prediabetes deserves to be further examined particularly when the prediabetic status was partially defined. Some metabolites might be the results of prediabetes rather than the casual factors for progression to diabetes.

      Thank you for your insightful comments. We agree with you that the panel of metabolites in this study might not be the causal factor for progression from prediabetes to diabetes, which needs further validation in experimental studies. We have added this limitation in the “Discussion” section.

      “Fifth, we could not draw any conclusion about the causality between the identified metabolites and the risk for progression to diabetes due to the observational nature, which remained to be validated in further experimental studies.”

      (2) The blood samples were taken at random (not all in a non-fasting state) and so the findings were subjected to greater variability. This should be discussed in the limitations.

      According to the reviewer’s suggestion, we have added more details to explain the potential influence of non-fasting status on our findings in the “Discussion” section.

      “Additionally, the use of non-fasting blood samples might increase inter-individual variation in metabolic biomarker concentrations, however, fasting duration has been reported to account for only a small proportion of variation in plasma metabolic biomarker concentrations5. Therefore, we believe the impact of non-fasting samples on our findings would be minor.”

      (3) The strength of NMR in metabolic profiling compared to other techniques (i.e., mass spectrometry [MS], another commonly used metabolic profiling method) could be added in the Discussion section.

      According to the reviewer’s suggestion, we have added the strength of NMR in metabolic profiling compared to other techniques in the “Discussion” section.

      “Circulating metabolites were quantified via NMR-based metabolome profiling within the UK Biobank, which offers metabolite qualification with relatively lower costs and better reproducibility6.”

      (4) Fourth, the applied platform focuses mostly on lipid species which may be a limitation as well.

      Thank you for the comment. We acknowledged this limitation that NMR platform within the UK Biobank primarily focused on lipid species and the potential bias from the measuring platform and have added this in the “Discussion” section.

      “Third, the Nightingale metabolomics platform primarily focused on lipids and lipoprotein sub-fractions, and thus the predictive value of other metabolites in the progression from prediabetes to diabetes warranted further research using an untargeted metabolomics approach.”

      (5) It is a very large group with pre-diabetes, but the results only apply to prediabetes and not to the general population. This should be clear, although the authors have also validated the predictive value of these metabolites in the general population.

      Thank you for the comment. We agree with you that the results only apply to prediabetes and not to the general population, though they also showed potential predictive value among participants with normoglycemia. We have accordingly modified the relevant expressions in the “Conclusion” section to restrict these findings to participants with prediabetes.

      “In this large prospective study among individuals with prediabetes, we detected a panel of circulating metabolites that were associated with an increased risk of progressing to diabetes.”

      Recommendations for the Authors:

      Thank you for providing the valuable feedback and the time you have dedicated to our work.

      (1) In the first paragraph of the Discussion section, please include the specific names of the metabolites selected from machine learning methods.

      Thank you for your comment and we have added accordingly in the first paragraph of the “Discussion” section.

      “More importantly, our findings suggested that adding the selected metabolites (i.e., cholesteryl esters in large HDL, cholesteryl esters in medium VLDL, triglycerides in very large VLDL, average diameter for LDL particles, triglycerides in IDL, glycine, tyrosine, glucose, and docosahexaenoic acid) could significantly improve the risk prediction of progression from prediabetes to diabetes beyond the conventional clinical variables.”

      (2) To enhance the readability and simplicity of the paper, the description of covariate collection in the methods section should be streamlined, with detailed information provided in the supplementary materials.

      Thank you for your suggestion and we have moved details about covariates collection to the “Supplementary method S2” to enhance the readability and simplicity of the paper.

      “Information on covariates was collected through a self-completed touchscreen questionnaire or verbal interview at baseline, including age, sex, ethnicity, Townsend deprivation index, household income, education, employment status, smoking status, moderate alcohol, physical activity, healthy diet score, healthy sleep score, family history of diabetes, history of cardiovascular disease (CVD), history of hypertension, history of dyslipidemia, history of chronic lung diseases (CLD), and history of cancer.

      Physical measurements included systolic (SBP) and diastolic blood pressure (DBP), height, weight, waist circumference (WC), and hip circumference (HC). Body mass index (BMI) was calculated as weight in kilograms divided by the square of height in meters (kg/m²). Missing covariates were imputed by the median value for continuous variables and a missing indicator for categorical variables. More details about covariates collection can be found in Method S2.”

      3. Title for Table 2, using Cox proportional hazards prediction models is not common. You may consider the title "Performance of Cox proportional hazards regression models in prediction of progression of prediabetes to diabetes".

      Thank you for your suggestion and we have revised it accordingly.

      4. Figure 3, did the authors consider competing risk to compute cumulative incidence function?

      Thank you for your comment. We did not consider competing risk from death when plotting the cumulative hazard curves. However, following your suggestion, we have included an additional cumulative hazard plot after considering the competing

      References

      (1) Janitza S, Hornung R. On the overestimation of random forest's out-of-bag error. PLoS One. 2018;13(8):e0201904.

      (2) Tian D, Yan HJ, Huang H, et al. Machine Learning-Based Prognostic Model for Patients After Lung Transplantation. JAMA Netw Open. 2023;6(5):e2312022.

      (3) Vickers AJ, van Calster B, Steyerberg EW. A simple, step-by-step guide to interpreting decision curve analysis. Diagn Progn Res. 2019;3:18.

      (4) Li J, Xi F, Yu W, Sun C, Wang X. Real-Time Prediction of Sepsis in Critical Trauma Patients: Machine Learning-Based Modeling Study. JMIR Form Res. 2023;7:e42452.

      (5) Li-Gao R, Hughes DA, le Cessie S, et al. Assessment of reproducibility and biological variability of fasting and postprandial plasma metabolite concentrations using 1H NMR spectroscopy. PLoS One. 2019;14(6):e0218549.

      (6) Geng T-T, Chen J-X, Lu Q, et al. Nuclear Magnetic Resonance–Based Metabolomics and Risk of CKD. American Journal of Kidney Diseases. 2023.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review):

      Summary:

      The study of human intelligence has been the focus of cognitive neuroscience research, and finding some objective behavioral or neural indicators of intelligence has been an ongoing problem for scientists for many years. Melnick et al, 2013 found for the first time that the phenomenon of spatial suppression in motion perception predicts an individual's IQ score. This is because IQ is likely associated with the ability to suppress irrelevant information. In this study, a high-resolution MRS approach was used to test this theory. In this paper, the phenomenon of spatial suppression in motion perception was found to be correlated with the visuo-spatial subtest of gF, while both variables were also correlated with the GABA concentration of MT+ in the human brain. In addition, there was no significant relationship with the excitatory transmitter Glu. At the same time, SI was also associated with MT+ and several frontal cortex FCs.

      Strengths:

      (1) 7T high-resolution MRS is used.

      (2) This study combines the behavioral tests, MRS, and fMRI.

      Weaknesses:

      Major:

      In Melnick (2013) IQ scores were measured by the full set of WAIS-III, including all subtests. However, this study only used visual spatial domain of gF. I wonder why only the visuo-spatial subtest was used not the full WAIS-III? I am wondering whether other subtests were conducted and, if so, please include the results as well to have comprehensive comparisons with Melnick (2013).

      We thank the reviewer for pointing this out. The decision was informed by Melnick’s findings which indicated high correlations between Surround suppression (SI) and the Verbal Comprehension, Perceptual Reasoning, Working Memory, and Processing Speed Indexes, with correlation coefficients of 0.69, 0.47, 0.49, and 0.50, respectively. It is well-established that the hMT+ region of the brain is a sensory cortex involved in visual perception processing (3D perception). Furthermore, motion surround suppression (SI), a specific function of hMT+, aligns closely with this region's activities. Given this context, the Perception Reasoning sub-ability was deemed to have the clearest mechanism for further exploration. Consequently, we selected the most representative subtest of Perception Reasoning—the Block Design Test—which primarily assesses 3D visual intelligence.” For further clarification, due to these reasons, we conducted only the visuo-spatial subtest.

      Minor:

      Comments:

      In the first revised version, we addressed the following recommendations in the 'Author response' file titled 'Recommendation for the authors.' It seems our response may not have reached you successfully. We would like to share and expand upon our response here:

      (1) Table 1 and Table supplementary 1-3 contain many correlation results. But what are the main points of these values? Which values do the authors want to highlight? Why are only p-values shown with significance symbols in Table supplementary 2??

      (1.1) What are the main points of these values?

      Thank reviewer for pointing this out. These correlations represent the relationship between behavior task (SI/BDT) and resting-state functional connectivity. It indicates that left hMT+ is involved in the efficient information integration network when it comes to BDT task. In addition, left hMT+’s surround suppression is involved in several hMT+ - frontal connectivity. Furthermore, the overlap regions between two task indicates the underlying mechanism.

      (1.2) Which values do the authors want to highlight?

      Table 1 and Table Supplementary 1-3 present the preliminary analysis results for Table 2 and Table Supplementary 4-6. So, we generally report all value. Conversely, in the Table 2 and Table Supplementary 4-6, we highlight the value which support our main conclusion.

      (1.3) Why are only p-values shown with significance symbols in Table Supplementary 2?

      Thank you for pointing this out, it is a mistake. We have revised it and delete the significance symbols.

      (2) Line 27, it is unclear to me what is "the canonical theory".

      We thank reviewer for pointing this out. We have revised “the canonical theory" to “the prevailing opinion” (line 27)

      (3) Throughout the paper, the authors use "MT+", I would suggest using "hMT+" to indicate the human MT complex, and to be consistent with the human fMRI literature.

      We thank reviewer for pointing this out. We have revised them.

      (4) At the beginning of the results section, I suggest including the total number of subjects. It is confusing what "31/36 in MT+, and 28/36 in V1" means.

      We thank reviewer for pointing this out. We have included the total number of subjects in the beginning of result section. (line 110, line 128)

      (5) Line 138, "This finding supports the hypothesis that motion perception is associated with neural activity in MT+ area". This sentence is strange because it is a well-established finding in numerous human fMRI papers. I think the authors should be more specific about what this finding implies.

      We thank reviewer for pointing this out. We have revised it to:” This finding is in line with prior results, which indicates that motion perception is associated with neural activity in hMT+ area, but not in EVC (primarily in V1)” (lines 156-158)

      (6) There are no unit labels for all x- and y-axies in Figure 1. I only see the unit for Conc is mmol per kg wet weight.

      We thank reviewer for pointing this out. Figure 1 is a schematic and workflow chart, so labels for x- and y-axes are not needed. I believe this confusion might pertain to Figure 3. In Figures 3a and 3b, the MRS spectrum does not have a standard y-axis unit as it varies based on the individual physical conditions of the scanner; it is widely accepted that no y-axis unit is used. While the x-axis unit is ppm, which indicate the chemical shift of different metabolites. In Figure 3c, the BDT represents IQ scores, which do not have a standard unit. Similarly, in Figures 3d and 3e, the Suppression Index does not have a standard unit.

      (7) Although the correlations are not significant in Figure Supplement 2&3, please also include the correlation line, 95% confidence interval, and report the r values and p values (i.e., similar format as in Figure 1C).

      We thank reviewer for pointing this out. We have revised them and include the correlation line, 95% confidence interval, r values and p values.

      (8) There is no need to separate different correlation figures into Figure Supplementary 1-4. They can be combined into the same figure.

      We thank reviewer for the suggestion. However, each correlation figure in the supplementary figures has its own specific topic and conclusion. Please notes that in the revised version, we have added a figure showing the EVC (primarily in V1) MRS scanning ROI as Supplementary Figure 1. Therefore, the figures the reviewer is concerned about are Supplementary Figure 2-5. The correlation figures in Supplementary Figure 2 indicate that GABA in EVC (primarily in V1) does not show any correlation with BDT and SI, illustrating that inhibition in EVC (primarily in V1) is unrelated to both 3D visuo-spatial intelligence and motion suppression processing. The correlations in Supplementary Figure 3 indicate that the excitation mechanism, represented by Glutamate concentration, does not contribute to 3D visuo-spatial intelligence in either hMT+ or EVC (primarily in V1). Supplementary Figure 4 validates our MRS measurements. Supplementary Figure 5 addresses potential concerns regarding the impact of outliers on correlation significance. Even after excluding two “outliers” from Figures 3d and 3e, the correlation results remain stable.

      (9) Line 213, as far as I know, the study (Melnick et al., 2013) is a psychophysical study and did not provide evidence that the spatial suppression effect is associated with MT+.

      We thank reviewer for pointing this out. It was a mistake to use this reference, and we have revised it accordingly. (line 242)

      (10) At the beginning of the results, I suggest providing more details about the motion discrimination tasks and the measurement of the BDT.

      We thank reviewer for pointing this out. We have included some brief description of task in the beginning of result section. (lines 116-120)

      (11) Please include the absolute duration thresholds of the small and large sizes of all subjects in Figure 1.

      We thank reviewer for the suggestion. We have included these results in Figure 3.

      (12) Figure 5 is too small. The items in plot a and b can be barely visible.

      We thank reviewer for pointing this out. We increase the size and resolution of the Figure.

      Reviewer #3 (Public Review):

      (1) Throughout the manuscript, hMT+ connectivity with the frontal cortex has been treated as an a priori hypothesis/space. However, there is no such motivation or background literature mentioned in the Introduction. Can the authors clarify the necessity of functional connectivity? In other words, can BOLD activity of hMT+ in the localizer task substitute for functional connectivity between hMT+ and the frontal cortex?

      (1.1) Throughout the manuscript, hMT+ connectivity with the frontal cortex has been treated as an a priori hypothesis/space. However, there is no such motivation or background literature mentioned in the Introduction. Can the authors clarify the necessity of functional connectivity?

      We thank reviewer for pointing this out. We offered additional motivation and background literature in the introduction: “Frontal cortex is usually recognized as the cognitive core region (Duncan et al., 2000; Gray et al., 2003). Strong connectivity between the cognitive regions suggests a mechanism for large-scale information exchange and integration in the brain (Barbey, 2018; Cole et al., 2012).  Therefore, the potential conjunctive coding may overlap with the inhibition and/or excitation mechanism of hMT+. Taken together, we hypothesized that 3D visuo-spatial intelligence (as measured by BDT) might be predicted by the inhibitory and/or excitation mechanisms in hMT+ and the integrative functions connecting hMT+ with frontal cortex (Figure 1a).” (lines 67-74). Additionally, we have included a whole-brain analysis for validation. Functional connectivity reveals the information exchange relationships across regions, enhancing our understanding of how hMT+ and the frontal cortex collaborate when solving visual-spatial intelligence tasks.

      (1.2) In other words, can BOLD activity of hMT+ in the localizer task substitute for functional connectivity between hMT+ and the frontal cortex?

      We thank the reviewer for this question. The localizer task was used solely for defining the hMT+ MRS scanning area. Functional connectivity was measured using resting-state fMRI. Research has shown that resting-state functional connectivity between the frontal cortex and other ROIs can further reveal the neural mechanisms underlying intelligence tasks (Song et al., 2008).

      (2) There is an obvious mismatch between the in-text description and the content of the figure:<br /> "In contrast, there was no correlation between BDT and GABA levels in V1 voxels (figure supplement 1a). Further, we show that SI significantly correlates with GABA levels in hMT+ voxels (r = 0.44, P = 0.01, n = 31, Figure 3d). In contrast, no significant correlation between SI and GABA concentrations in V1 voxels was observed (figure supplement 1b)."

      We thank reviewer for pointing this out. We have revised it. The revised version is :” In contrast, there was no correlation between BDT and GABA levels in V1 voxels (figure supplement 2a). Further, we show that SI significantly correlates with GABA levels in hMT+ voxels (r = 0.44, P = 0.01, n = 31, Figure 3d). In contrast, no significant correlation between SI and GABA concentrations in V1 voxels was observed (figure supplement 2b).” (lines 151-156)

      (3) The authors' response to my previous round of review indicated that the "V1 ROIs" covered a substantial amount of V3 (32%). Therefore, it would no longer be appropriate to call these "V1 ROIs". I'd suggest renaming them as "Early Visual Cortex (EVC) ROIs" to be more accurate. Can the authors justify why choosing the left hemisphere for visual intelligence task, which is typically believed to be right lateralized?

      (3.1) The authors' response to my previous round of review indicated that the "V1 ROIs" covered a substantial amount of V3 (32%). Therefore, it would no longer be appropriate to call these "V1 ROIs". I'd suggest renaming them as "Early Visual Cortex (EVC) ROIs" to be more accurate.

      We thank the reviewer for pointing this out. We have revised our description of the MRS scanning ROIs to Early Visual Cortex (EVC). Since the majority of our EVC ROIs are in V1 (around 70%) and almost no V2 was included, we decided to mark the EVC ROIs with the explanation "primarily in V1" for better clarification. This terminology has been widely used to better emphasize the V1-based experimental design.

      (3.2) Can the authors justify why choosing the left hemisphere for visual intelligence task, which is typically believed to be right lateralized?

      We thank the reviewer for pointing this out. The use of the left MT/V5 as a target was motivated by studies demonstrating that left MT+/V5 TMS is more effective at causing perceptual effects (Tadin et al., 2011). Therefore, we chose to use the left hMT+ as our MRS ROI and maintain consistency across different models' ROIs. Additionally, our results support the notion that the visual intelligence task is right lateralized in the frontal cortex. At the resting-fMRI level, we found that significant ROIs, where functional connectivity is highly correlated with BDT scores, are in the right frontal cortex (Figure 5a, b).

      (4) "Small threshold" and "large threshold" are neither standard descriptions, and it is unclear what "small threshold" refers to in the following figure caption. Additionally, the unit (ms) is confusing. Does it refer to timing?<br /> "(f) Peason's correlation showing significant negative correlations between BDT and small threshold."

      Thank you for pointing this out; we agree with your suggestion. We have revised the terms “small threshold” and “large threshold” to “duration threshold of small grating” and “duration threshold of large grating”, respectively. The unit (ms) refers to timing. The details are described in the methods section: “The duration was adaptively adjusted in each trial, and duration thresholds were estimated using a staircase procedure. Thresholds for large and small gratings were obtained from a 160-trial block that contained four interleaved 3-down/1-up staircases. For each participant, we computed the correct rate for different stimulus durations separately for each stimulus size. These values were then fitted to a cumulative Gaussian function, and the duration threshold corresponding to the 75% correct point on the psychometric function was estimated for each stimulus size”.

      (5) In the response letter, the authors mentioned incorporating the neural efficiency hypothesis in the Introduction, but the revised Introduction does not contain such information.

      We thank the reviewer for pointing this out. In our revised version, the second paragraph of the introduction addresses the neural efficiency hypothesis: “The “neuro-efficiency” hypothesis is one explanation for individual differences in gF (Haier et al., 1988). This hypothesis puts forward that the human brain’s ability to suppress irrelevant information leads to more efficient cognitive processing. Correspondingly, using a well-known visual motion paradigm (center-surround antagonism) (Liu et al., 2016; Tadin et al., 2003), Melnick et al found a strong link between suppression index (SI) of motion perception and the scores of the block design test (BDT, a subtest of the Wechsler Adult Intelligence Scale (WAIS), which measures the visuo-spatial component (3D domain) of gF (Melnick et al., 2013). Motion surround suppression (SI), a specific function of human extrastriate cortical region, middle temporal complex (hMT+), aligns closely with this region's activities (Gautama & Van Hulle, 2001). Furthermore, hMT+ is a sensory cortex involved in visual perception processing (3D domain) (Cumming & DeAngelis, 2001). These findings suggest that hMT+ potentially plays a significant role in 3D visuo-spatial intelligence by facilitating the efficient processing of 3D visual information and suppressing irrelevant information. However, more evidence is needed to uncover how the hMT+ functions as a core region for 3D visuo-spatial intelligence.” (lines 51-66)

      Recommendations for the authors:

      Reviewer #1 (Recommendations for The Authors):

      In the Code availability, it states that "this paper does not report original code". It seems weird because at least the code to reproduce the figures from the data should be provided.

      Thank you for pointing this out. Almost all figures were created using software such as DPABI, BrainNet, and GraphPad Prism 9.5, which are manually operated and do not require code adjustments. However, for the MRS fitting curve, we can provide our MATLAB code for redrawing the MRS fitting. The code has been uploaded to GitHub.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this work, Qiu and colleagues examined the effects of preovulatory (i.e., proestrous or late follicular phase) levels of circulating estradiol on multiple calcium and potassium channel conductances in arcuate nucleus kisspeptin neurons. Although these cells are strongly linked to a role as the "GnRH pulse generator," the goal here was to examine the physiological properties of these cells in a hormonal milieu mimicking late proestrus, the time of the preovulatory GnRH-LH surge. Computational modeling is used to manipulate multiple conductances simultaneously and support a role for certain calcium channels in facilitating a switch in firing mode from tonic to bursting. CRISPR knockdown of the TRPC5 channel reduced overall excitability, but this was only examined in cells from ovariectomized mice without estradiol treatment. The patch clamp experiments are comprehensive and overall solid but a direct demonstration of the role of these conductances in being necessary for surge generation (or at least having a direct physiological consequence on surge properties) is lacking, substantially reducing the impact of the findings.

      Strengths:

      (1) Examination of multiple types of calcium and potassium currents, both through electrophysiology and molecular biology.

      (2) Focus on arcuate kisspeptin neurons during the surge is relatively conceptually novel as the anteroventral periventricular nucleus (AVPV) kisspeptin neurons have received much more attention as the "surge generator" population.

      (3) The modeling studies allow for direct examination of manipulation of single and multiple conductances, whereas the electrophysiology studies necessarily require examination of each current in isolation. The construction of an arcuate kisspeptin neuron model promises to be of value to the reproductive neuroendocrinology field.

      We thank the reviewer for recognizing our comprehensive examination of Kiss-ARH neurons through electrophysiological, molecular and computational modeling of their activity during the preovulatory surge, which as the reviewer pointed out is “conceptually novel.”  We  have bolstered our argument that Kiss1-ARH neurons transition from synchronized firing to burst firing with the E2-mediated regulation of channel expression with the addition of new experiments. We have addressed the recommendations as follows:

      Weaknesses:

      (1) The novelty of some of the experiments needs to be clarified. This reviewer's understanding is that prior experiments largely used a different OVX+E2 treatment paradigm mimicking periods of low estradiol levels, whereas the present work used a "high E2" treatment model. However, Figures 10C and D are repeated from a previous publication by the same group, according to the figure legend. Findings from "high" vs. "low" E2 treatment regimens should be labeled and clearly separated in the text. It would also help to have direct comparisons between results from low E2 and high E2 treatment conditions.

      We have revised Figures 10C and 10D to include new findings (only) on Tac2 and Vglut2 expression in OVX and E2-treated Kiss1ARH.  Most importantly, our E2 treatment regime is clearly stated in the Methods and is exactly the same that was used previously (Qiu, eLife 2016 and Qiu, eLife 2018) for the induction of the LH surge in OVX mice (Bosch, Molecular and Cellular Endocrinology 2013) .

      (2) In multiple places, links are made between the changes in conductances and the transition from peptidergic to glutamatergic neurotransmission. However, this relationship is never directly assessed. The data that come closest are the qPCR results showing reduced Tac2 and increased Vglut2 mRNA, but in the figure legend, it appears that these results are from a prior publication using a different E2 treatment regimen.

      In the revised Figure 1, we have now included a clear depiction of the transition from synchronized firing driven by NKB signaling in OVX females to burst firing driven by glutamate in E2-treated females. All of the qPCR results in the revised manuscript are new.  We have used the same E2 treatment paradigm as previously published (Qiu, eLife 2018).

      (3) Similarly, no recordings of arcuate-AVPV glutamatergic transmission are made so the statements that Kiss1ARH neurons facilitate the GnRH surge via this connection are still only conjecture and not supported by the present experiments.

      Using a horizontal hypothalamic slice preparation, we have shown that Kiss1-ARH neurons excite GnRH neurons via Kiss1ARH glutaminergic input to Kiss1AvPV/Pen neurons (summarized in Fig. 12, Qiu, eLife 2016). We did not think that it was necessary to repeat these experiments for the current manuscript.

      (4) Figure 1 is not described in the Results section and is only tenuously connected to the statement in the introduction in which it is cited. The relevance of panels C and D is not clear. In this regard, much is made of the burst firing pattern that arises after E2 treatment in the model, but this burst firing pattern is not demonstrated directly in the slice electrophysiology examples.

      We have extensively revised Figure 1 to include new whole-cell, current clamp recordings that document burst firing  in  E2-treated, OVX females, which is now cited in the Results.

      (5) In Figure 3, it would be preferable to see the raw values for R1 and R2 in each cell, to confirm that all cells were starting from a similar baseline. In addition, it is unclear why the data for TTA-P2 is not shown, or how many cells were recorded to provide this finding.

      Before initiating photo-stimulation for each Kiss1-ARH neuron, we adjust the resting membrane potential to -70 mV, as noted  in each panel in Figure 3, through current injections. We have now included new findings on the effects of the T-channel blocker TTA-P2 on slow EPSP in the revised Figure 3. The number of cells tested with each calcium channel blocker is depicted in each of the bar graphs summarizing the effects of the blockers (Figure 3E).

      (6) In Figure 5, panel C lists 11 cells in the E2 condition but panel E lists data from 37 cells. The reason for this discrepancy is not clear.

      In Figure 5D, we measured the L-, N-, P/Q and R channel currents after pretreatment with TTA-P2 to block the T-type current, whereas in Figure 5C, we measured the total current without TTA-P2.

      (7) In all histogram figures, it would be preferable to have the data for individual cells superimposed on the mean and SEM.

      In the revised Figures we have included the individual data points for the individual neurons and animals (qPCR). 

      (8) The CRISPR experiments were only performed in OVX mice, substantially limiting interpretation with respect to potential roles for TRPC5 in shaping arcuate kisspeptin neuron function during the preovulatory surge.

      The TRPC5 channels are most  important for generating slow EPSPs when expression of NKB is high in the OVX state. Conversely, the glutamatergic response becomes more significant when the expression of NKB and TRPC5 channel are muted in the E2-treated state. Therefore, the CRISPR experiments were specifically conducted in OVX mice to maximize the effects.

      (9) Furthermore, there are no demonstrations that the CRISPR manipulations impair or alter the LH surge.

      In this manuscript, our focus is on the cellular electrophysiological activity of the Kiss1ARH neurons in OVX and E2-treated OVX females. Exploration of CRISPR manipulations related to the LH surge is certainly slated for future  experiments, but these in vivo experiments are  beyond the scope of these comprehensive cellular electrophysiological and molecular studies.

      (10) The time of day of slice preparation and recording needs to be specified in the Methods.

      We have provided the times of slice preparation and recordings in the revised Methods and Materials.

      Reviewer #2 (Public Review):

      Summary:

      Kisspeptin neurons of the arcuate nucleus (ARC) are thought to be responsible for the pulsatile GnRH secretory pattern and to mediate feedback regulation of GnRH secretion by estradiol (E2). Evidence in the literature, including the work of the authors, indicates that ARC kisspeptin coordinate their activity through reciprocal synaptic interactions and the release of glutamate and of neuropeptide neurokinin B (NKB), which they co-express. The authors show here that E2 regulates the expression of genes encoding different voltage-dependent calcium channels, calcium-dependent potassium channels, and canonical transient receptor potential (TRPC5) channels and of the corresponding ionic currents in ARC kisspeptin neurons. Using computer simulations of the electrical activity of ARC kisspeptin neurons, the authors also provide evidence of what these changes translate into in terms of these cells' firing patterns. The experiments reveal that E2 upregulates various voltage-gated calcium currents as well as 2 subtypes of calcium-dependent potassium currents while decreasing TRPC5 expression (an ion channel downstream of NKB receptor activation), the slow excitatory synaptic potentials (slow EPSP) elicited in ARC kisspeptin neurons by NKB release and expression of the G protein-associated inward-rectifying potassium channel (GIRK). Based on these results, and on those of computer simulations, the authors propose that E2 promotes a functional transition of ARC kisspeptin neurons from neuropeptide-mediated sustained firing that supports coordinated activity for pulsatile GnRH secretion to a less intense firing in glutamatergic burst-like firing pattern that could favor glutamate release from ARC kisspeptin. The authors suggest that the latter might be important for the generation of the preovulatory surge in females.

      Strengths:

      The authors combined multiple approaches in vitro and in silico to gain insights into the impact of E2 on the electrical activity of ARC kisspeptin neurons. These include patch-clamp electrophysiology combined with selective optogenetic stimulation of ARC kisspeptin neurons, reverse transcriptase quantitative PCR, pharmacology, and CRIPR-Cas9-mediated knockdown of the Trpc5 gene. The addition of computer simulations for understanding the impact of E2 on the electrical activity of ARC kisspeptin cells is also a strength.

      The authors add interesting information on the complement of ionic currents in ARC kisspeptin neurons and on their regulation by E2 to what was already known in the literature. Pharmacological and electrophysiological experiments appear of the highest standards. Robust statistical analyses are provided throughout, although some experiments (illustrated in Figures 7 and 8) do have rather low sample numbers.

      The impact of E2 on calcium and potassium currents is compelling. Likewise, the results of Trpc5 gene knockdown do provide good evidence that the TRPC5 channel plays a key role in mediating the NKB-mediated slow EPSP. Surprisingly, this also revealed an unsuspected role for this channel in regulating the membrane potential and excitability of ARC kisspeptin neurons.

      We thank the reviewer for recognizing that the “pharmacological and electrophysiological experiments appear of the highest standards” and “the addition of the computer modeling for understanding the impact of E2 on the electrical activity of ARC kisspeptin cells is also a strength.  However, we agree with the reviewer that we needed to provide a direct demonstration of “burst-like” firing of Kiss1-ARH neurons, which we have provided in Figure 1. We have addressed the other recommendations as follows:

      Weaknesses:

      The manuscript also has weaknesses that obscure some of the conclusions drawn by the authors.

      One has to do with the fact that "burst-like" firing that the authors postulate ARC kisspeptin neurons transition to after E2 replacement is only seen in computer simulations, and not in slice patch-clamp recordings. A more direct demonstration of the existence of this firing pattern, and of its prominence over neuropeptide-dependent sustained firing under conditions of high E2 would make a more convincing case for the authors' hypothesis.

      We have provided  a more direct demonstration of the existence of this firing pattern in the whole-cell current clamp experiments in the revised Figure 1.

      In addition, and quite importantly, the authors compare here two conditions, OVX versus OVX replaced with high E2, that may not reflect the physiological conditions (the diestrous [low E2] and proestrous [high E2] stages of the estrous cycle) under which the proposed transition between neuropeptide-dependent sustained firing and less intense burst firing might take place. This is an important caveat to keep in mind when interpreting the authors' findings. Indeed, that E2 alters certain ionic currents when added back to OVX females, does not mean that the magnitude of these ionic currents will vary during the estrous cycle.

      We have published that the magnitude of the slow EPSP, which is TRPC5 channel mediated, varies throughout the estrous cycle with the slow EPSP reaching a maximal amplitude during diestrus, which was significantly reduced during proestrus,  similar to that found in OVX compared to E2-treated, OVX females (Figure 2, Qiu, eLife 2016).  Moreover, TRPC5 channel mRNA expression,  similar to the peptides, is downregulated by an E2 treatment (Figure 10 this manuscript) that mimics proestrus levels of the steroid (Bosch et al., Mol Cell Endocrinology 2013). Furthermore, the magnitude of ionic currents is directly proportional to the number of ion channels expressed in the plasma membrane, which we have found correlates with mRNA expression. Therefore, it is likely that the magnitude of these ionic currents will vary during the estrous cycle.

      Lastly, the results of some of the pharmacological and genetic experiments may be difficult to interpret as presented. For example, in Figure 3, although it is possible that blockade of individual calcium channel subtypes suppresses the slow EPSP through decreased calcium entry at the somato-dendritic compartment to sustain TRPC5 activation and the slow depolarization (as the authors imply), a reasonable alternative interpretation would be that at least some of the effects on the amplitude of the slow EPSP result from suppression of presynaptic calcium influx and, thus, decreased neurotransmitter and neuropeptide secretion. Along the same lines, in Figure 12, one possible interpretation of the observed smaller slow EPSPs seen in mice with mutant TRPC5 could be that at least some of the effect is due to decreased neurotransmitter and neuropeptide release due to the decreased excitability associated with TRPC5 knockdown.

      The reviewer raises a good point, but our previous findings clearly demonstrated that chelating intracellular calcium with BAPTA in whole-cell current clamp recordings abolishes the slow EPSP and persistent firing (Qiu et al., J. Neurosci 2021), which we have noted is the  rationale for dissecting out the contribution of T, R, N, L and P/Q calcium channels to the slow EPSP in our current studies.  The revised Figure 3 also includes the effects of T-channel blocker.

      However, to further bolster the argument for the post-synaptic contribution of the calcium channels to the slow EPSP  and eliminate the potential presynaptic effects of the calcium channel blockers on the postsynaptic slow EPSP amplitude, which may result from reduced presynaptic calcium influx and subsequently decreased neurotransmitter release, we have utilized an additional strategy. Specifically, we have measured the response to the externally administered TACR3 agonist senktide under conditions in which the extracellular calcium influx, as well as neurotransmitter and neuropeptide release, are blocked (revised Figure 3).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The use of optogenetics in Figure 3 to trigger the slow EPSP could be better clarified in the text.

      We have clarified in the Methods the optogenetic protocol for generating the slow EPSP, which we have published previously (Qiu et al., eLife 2016; eLife 2018, J. Neurosci 2021).

      (2) The citation for Figure 4C in the text does not match what is shown in the figure.

      Figure 4C has been removed in the revised manuscript.

      (3) Figure 5 - it would be clearer to have panel D labeled as "model results" or similar to distinguish it from the slice recording data.

      Panel D has been labeled as "Model results”.

      (4) The text in lines 191-197 in the Results may be better suited to the Discussion.

      We have modified the text in order to present the new findings without the discussion points.

      (5) It is somewhat confusing to have figure panels cited out of order in the main text (e.g., 7H before 7G and 8H before 8G).

      We have edited the text to report the findings in the proper order of the panels in Figures 7 and 8.

      Reviewer #2 (Recommendations For The Authors):

      - The observations that E2 treatment of OVX mice has an effect on the magnitude of a number of ionic currents does not necessarily mean that these changes will be seen during the estrous cycle, in response to fluctuations in circulating E2 concentrations. Experiments comparing either different estrous cycle stages or OVX mice treated with low or high E2 would be required to gain insight into this question. As such, the relevance of the authors' findings (however interesting these are as they stand) to any potential physiological endocrine/reproductive state transition is questionable, in the reviewer's opinion. The authors should acknowledge this important caveat and moderate the interpretations of their findings and the conclusions of their manuscript accordingly.

      We have published that the magnitude of the slow EPSP, which is TRPC5 channel mediated, varies throughout the estrous cycle with the slow EPSP being large during diestrus and significantly reduced during proestrus,  similar to that found in OVX compared to E2-treated, OVX females (Figure 2, Qiu, eLife 2016).  Moreover, TRPC5 channel mRNA expression,  similar to the peptides, is downregulated by an E2 treatment (Figure 10 this manuscript) that mimics proestrus levels of the steroid (Bosch et al., Mol Cell Endocrinology 2013). Furthermore, the magnitude of ionic currents is directly proportional to the number of ion channels expressed in the plasma membrane, which we have found correlates with mRNA expression. Therefore, it is likely that the magnitude of these ionic currents will vary during the estrous cycle.

      - The bursting firing pattern that the authors refer to and postulate will favor glutamate release under high E2 conditions is only seen in the computer simulations, not in patch-clamp recordings in brain slices (see also comment below). This substantially weakens some of the conclusions of the manuscript. Unless the authors can convincingly demonstrate a change in ARC kisspeptin firing pattern in response to increasing E2 using electrophysiology, these conclusions should be moderated.

      We now include examples of burst firing activity under E2-treatment conditions in Figure 1 and have included summary figure (pie chart) documenting that a significant percentage of cells exhibit this activity with E2 treatment.  

      Other comments:

      - Title: "E2 elicits distinct firing patterns" is not shown in this work. As such, the title needs to be revised.

      We now show these distinct firing patterns in Figure 1, so we think the wording in the title is an accurate reflection of our findings. 

      - Abstract: some of the interpretations are overstated, in the reviewer's opinion.

      Line 23, "... elevating the whole-cell calcium current and contributing to high-frequency firing" should be moderated, as what is shown by the authors is that blockade of calcium channel subtypes suppresses the slow EPSP and associated firing, the frequency of which is not reported (see also a later comment).

      We now include examples of burst firing activity under E2-treatment conditions in Figure 1 and have modified the abstract to state “high frequency burst firing.”

      Lines 26-28, that "mathematical modeling confirmed the importance of TRPC5 channels for initiating and sustaining synchronous firing, while GIRK channels, activated by Dyn binding to kappa opioid receptors, were responsible for repolarization" is simply not what the simulations show, in the reviewer's opinion. Indeed, there is no consideration of synchronous activity in the model, which simulates the firing of a single ARC kisspeptin neuron. Further, the model shows that TRPC5 can contribute to overall excitability (firing in response to current injection, Figure 12G) and that increasing TRPC5 conductance increases firing in response to NKB while this is decreased by adding GIRK conductance to the model (Figure 13A). Therefore, considerations of the importance of TRPC5 channels in initiating synchronous firing and the role of Dyn A-induced GIRK activity should not be included in the interpretations of the mathematical simulations.

      The significance of synchronization lies in the fact that when neuronal networks synchronize, the behavior of each neuron within the network becomes identical. In such scenarios, the firing of a single neuron mirrors the activity of the entire neuronal network. Consequently, our model simulations, based on a single-cell neuronal model, can be utilized to make reliable inferences about synchronized neuronal activity.

      Lines 31-33 (also lines 92-95), that "the transition to burst firing with high, preovulatory levels of E2 facilitates the GnRH surge through its glutamatergic synaptic connection to preoptic Kiss1 neurons" is not supported by the experiments (physiologic or computational) described in the manuscript, and is, therefore, only speculative. These statements should be removed throughout the manuscript.

      Previously, we (Qiu et al., (eLife 2016) documented a direct glutamatergic projection from Kiss1-ARH neurons to Kiss1-AVPV/PeN neurons.  Moreover, Lin et al. (Frontiers Endocrinology 2021) demonstrated that low frequency stimulation of Kiss1-ARH:ChR2 neurons, that is known to only release glutamate, boosts the LH surge, and in a follow-up paper the O’Byrne lab blocked this stimulation with ionotropic glutamate antagonists (Shen et al., Frontiers in Endocrinology 2022).  We have included these references in the Introduction and Discussion, but we did not think that it was necessary to cite these papers in the Abstract.  However, we have re-worded this final statement in the Abstract to: “the transition to burst firing with high, preovulatory levels of E2 would facilitate the GnRH surge….” 

      - Introduction: the usefulness of Figure 1 is questionable. From reading the figure legend, it is the reviewer's understanding that panels A and B are published elsewhere (there is no description of methods or results in the manuscript). Further, panels C and D are meant to illustrate that ARC kisspeptin neurons display different types of firing in OVX vs E2-treated OVX mice. The legend to C indicates that the trace illustrates "synchronous firing" but shows one cell (how can this be claimed as synchronous?) - the legend to D indicates that the trace "demonstrates" burst firing in ARC kisspeptin neurons. This part of the figure is, in the reviewer's opinion, misleading because these are only two examples (no quantifications or replicates are provided) obtained by stimulating firing in two different endocrine conditions by two different agonists. The "demonstration" of differential firing patterns would require a thorough examination of firing patterns in response to current injections (as in Figure 12 E-F) or in response to the two agonists, under the different hormonal conditions.

      Figure 1 has now been completely revised to include new data documenting the different firing patterns.  The methods detailing these experiments can be found in the Material and Methods section.

      The introduction presents a rather incomplete picture of what is known regarding how ARC kisspeptin neurons might coordinate their activity to drive episodic GnRH secretion, and it omits published work showing that blockade of glutamate receptors (in particular AMPA receptors) decreases ARC kisspeptin neuron coordinated activity in the brain slices and in vivo and suppresses pulsatile GnRH/LH secretion in mice.

      If we are not mistaken, the reviewer is referring to fiber photometry recordings of GCaMP activity, which we cite in the Discussion.  However, for the Introduction we tried to “set the stage” for our studies on measuring the individual channels underlying the different firing patterns and how they are regulated by E2.

      The introduction is also quite long with extensive descriptions of previous work by the authors and in other brain areas that would be better suited for the discussion.

      Again, we are trying to rationalize why we focused on particular ion channels based on the literature.

      - Results: lines 129-132 should be moderated, as whether calcium channels increase excitability or facilitate TRPC5 channel opening has not been directly assessed here.

      High frequency optogenetic stimulation of Kiss1-ARH neurons and NKB through its cognate receptor (TACR3) activates TRPC 5 channels (Qiu et al., eLife 2016; J. Neurosci 2021). BAPTA prevents the opening of TRPC5 channels and abrogates the slow EPSP following high frequency stimulation.  Figure 3 documents that inhibition of voltage-activated calcium channels attenuates the slow EPSP, which results in a decrease in excitability.

      Lines 145-146, one limitation of this experiment is that blockade of calcium channel subtypes will not only affect calcium entry and subsequent actions of calcium on TRPC5 channels but also impair the release of neurotransmitters and neuropeptides from kisspeptin neurons. The interpretation that "calcium channels contribute to maintaining the sustained depolarization underlying the slow EPSP" needs, therefore, to be moderated as it is not possible to extract the direct contribution of calcium channels to the activation of TRPC5 channels from these experiments.

      We cited our previous findings documenting that chelating intracellular calcium with BAPTA abolishes the slow EPSP and persistent firing (Qiu et al., J Neurosci 2021).  However, to eliminate the potential effects of calcium channel blockers on the slow EPSP amplitude, which may result from reduced presynaptic calcium influx and subsequently decreased neurotransmitter and neuropeptide secretion, we adopted a different strategy by comparing responses between Senktide and Cd2+ plus Senktide. Our findings revealed that the non-selective Ca2+ channel blocker Cd2+ significantly inhibited Senk-induced inward current (Figures 3F-H).

      Panel C should be removed from Figure 4, as it is published elsewhere.

      Figure 4C has been removed.

      Lines 168-169, "...E2 treatment led to a significant increase in the peak calcium current density in Kiss1ARH neurons, which was recapitulated as predicted by our computational modeling..." How did the model "predict" this increase in calcium current density? As no information is provided in the methods or supplementary information as to how the effect of E2 was integrated into the model, the authors will need to provide additional narration in the text to explain this statement. The "T-channel inflection" referred to in the figure legend will also need to be explained. Lastly, in Figure 5C, the current density unit should be pA/pF. 

      We have added text in the supplementary information to explain how we used the qPCR and electrophysiological data to inform the model regarding the effect that E2 has on the various ionic currents and noted in the Figure 13 legend that the increase/decrease in the conductances is physiologically mediated by E2. We have eliminated the T-channel inflection point (Figure 5D) and corrected the current density label (Figure 5C).

      Lines 198-199, please clarify "E2 does not modulate calcium channel kinetics directly but rather alters the mRNA expression to increase the conductance".

      We have clarified that “that long-term E2 treatment does not modulate calcium channel kinetics but rather alters the mRNA expression to increase the calcium channel conductance” by referring to the specific figures (i.e., Figures 4, 6) in a previous sentence.

      Figures 7 and 8 titles do not accurately reflect the contents: there is nothing about repolarization in the experiments illustrated in Figure 7 or Figure 8. The sample sizes (3 to 4 cells) are also quite small for these experiments.

      We have modified the Figure titles per the reviewer’s comments and increased the cell numbers.

      The title of Figure 9 also does not fully reflect the figure's contents. Although panel G does suggest that the M current contributes to regulating the membrane potential, the reviewer's reading of this figure panel is that the fractional contribution of the M current does not vary during a short burst of action potentials. The suggestion that "KCNQ channels play a key role in repolarizing Kiss1ARH neurons following burst firing" (line 272) and the statement that "our modeling predicted that M-current contributed to the repolarization following burst firing" (line 273) should be revised accordingly.

      The point is that the M-current contributes, albeit a small fraction, to the repolarization during burst firing.

      Line 288, please indicate what figure informs this statement.

      We have revised the statement since the modeling (Figure 13) comes later in the Results.

      Line 311-313, this sentence only superficially describes the simulation, in the reviewer's opinion. Does the model inform on how TRPC5 channels/currents do that? The supplementary information indicates that there is a tone of extracellular neurokinin B embedded in the model. This is important information that should be clearly stated in the manuscript. The authors should also consider discussing the influence of this neurokinin B tone on the contribution of TRPC5 to cell excitability. As a neurokinin B tone in the extracellular space will likely alter the firing of kisspeptin neurons in the model, readers will likely need more information about all this.

      In our current ramp simulations of the model (Fig 12 G&H) there is no involvement of neurokinin B (i.e., the NKB parameter  is set to zero), and the effect on the rheobase is solely due to the decrease of the TRPC5 conductance.  In the model, TRPC5 channels are activated by intracellular calcium levels and are therefore contributing to cell excitability even in the absence of extracellular NKB. The NKB tone is used for the simulations presented in Figure 13 where we vary the TRPC5 conductance under saturating levels of extracellular NKB.

      Lines 316-318 also read as quite superficial. More explanations of what is illustrated in Figure 13 are needed. In particular, it is unclear from the methods and supplementary information what the different ratios of conductances in OVX+E2 vs in OVX are and how they were varied in the model. Furthermore, it is unclear to the reviewer how the outcome of these simulations matches the authors' postulate that E2 enables a transition to a burst firing pattern that favors glutamate release. Looking at simulated firing in Figure 13B, E2 (by increasing calcium conductances) would tend to enable high-frequency firing within bursts (nearing 50 Hz by eye) and high burst rates (approximately 4 bursts per second), which the reviewer would argue might be expected to cause significant neuropeptide release in addition to that of glutamate.

      We have added to the text: “Furthermore, the burst firing of the OVX+E2 parameterized model was supported by elevated h- and Ca 2+-currents (Figure 13B) as well as by the high conductance of Ca2+ channels relative to the conductance of TRPC5 channels (Figure 13C).” We have also provided in the Supplemental Information (Table of Model Parameters) the specific conductances in the OVX and OVX+E2 state and how they are varied to produce the model simulations.

      Granted the high frequency firing during a burst could release peptide, but in the E2-treated, OVX females the expression of the peptides are at “rock bottom.”  Therefore, the sustained high frequency firing during the slow EPSP in the OVX state would generate maximum peptide release.

      In Figure 13C, the reviewer is unclear on the ranges of TRPC5 conductances shown. The in vitro experiments suggest that E2 suppresses Trpc5 gene expression and might suppress TRPC5 currents. The ratio of gTRPC5(OVX+E2)/gTRPC5(OVX) should, thus, be <1.0. This is not represented in the parameter space provided, making the interpretation of this simulation difficult. Please clarify what the effect of decreasing gTRPC5 will be on firing patterns in the model.

      Thank you for pointing this typographical error.  The ratio should be gTRPC5 (OVX)/TRPC5(OVX + E2) for the X-axis.

      - Discussion: many statements and conclusions are overreaching and need to be revised; for example lines 320-322, 329-330, 335-338, 369, 371-373, 391-394, 463-464, and 489-494;

      We have tempered these statements, so they are not “overreaching.”

      Lines 489-494: the authors should integrate published observations that i) ablation of ARC kisspeptin neurons results in increased LH surges in mice and rats and that ii) optogenetic stimulation of ARC kisspeptin fibers in the POA is only effective at increasing LH secretion in a surge-like manner when done at high frequencies (20 Hz), in their discussion of the role of ARC kisspeptin neurons and their firing patterns in the preovulatory surge.

      We have included the paper from the O’Byrne lab (Shen et al. Frontiers in Endocrinology 2022) in the Discussion. However, the Mittleman-Smith paper (Endocrinology, 2016) ablating KNDy neurons using NK3-saporin not only targeted KNDy neurons but other arcuate neurons that express NK3 receptors.  Therefore, we have not cited it in the Discussion.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      An online database called MRAD has been developed to identify the risk or protective factors for AD.

      Strengths:

      This study is a very intriguing study of great clinical and scientific significance that provided a thorough and comprehensive evaluation with regard to risk or protective factors for AD. It also provided physicians and scientists with a very convenient, free as well as user-friendly tool for further scientific investigation.

      We thank the reviewer for the conclusion and positive comments.

      Weaknesses:

      (1) Comment: The paper mentions that the MRAD database currently contains data only from European populations, with no mention of data from other populations or ethnicities. Given potential differences in Alzheimer's Disease (AD) across different populations, the limitations of the data should be emphasized in the discussion, along with plans to expand the database to include data from more racial and geographic regions.

      Thank you for your valuable comment. Further information regarding the limitations of populations is provided in the Conclusions section (page 19).

      The newly added text describing the limitations of populations is as follows:

      “However, in this study, since the GWAS datasets for both the exposure and the outcome traits (AD) selected were obtained from the public database (MRC IEU OpenGWAS), where the GWAS datasets for AD are only of European population, and since we use the TwoSampleMR, which requires that the populations for the exposure trait and the outcome trait be the same to satisfy the requirement for a control variable, this study currently has certain limitations in terms of population. We initiated a Mendelian randomization study on AD at clinical hospitals in China and are currently in the sample collection stage to address the limitations. In the future, we will integrate data from more populations and keep updating new progresses in AD research to explore its potential differences in different populations.”

      (2) Comment: Sufficient information should be provided to clarify the data sources, sample selection, and quality control methods used in the MRAD database. Readers may expect more detailed information about the data to ensure data reliability, representativeness, and research applicability.

      Thank you for your helpful suggestion. We appreciate you taking time and making effort in reviewing our manuscript and thank you for your insightful comments. We agree that adding more details is essential to make the manuscript more reliability, representativeness, and research applicability.

      The newly added text describing more detailed information about the data is as follows:

      (1) Sufficient information about data sources and sample selection (in the Data sources section of Methods section, page 8):

      “Exposure traits

      Inclusion criteria: datasets of the European population.

      Exclusion criteria: (i) eQTL-related datasets; (ii) AD-related datasets.

      “In this study, the GWAS datasets selected were derived from 42,335 GWAS datasets in the public database (MRC IEU OpenGWAS, https://gwas.mrcieu.ac.uk/). Based on the above inclusion and exclusion criteria, 19,942 eQTL-related datasets were excluded first, leaving 22,393 GWAS datasets. Next, the datasets with the European population were selected, and 18,117 GWAS datasets were obtained. Finally, 20 AD-related datasets were excluded; 18,097 GWAS datasets were obtained at the end as the exposure traits of this study (See Table S1 for basic information).

      Outcome traits

      Inclusion criteria: (i) datasets of patients with AD with complete information and clear data sources; (ii) datasets of the European population.

      Exclusion criteria: (i) Number of SNPs <1 million; (ii) datasets with unspecified sex; (iii) datasets with a family history of AD; (iv) datasets with dementia.

      Based on the above criteria, 16 GWAS datasets of outcome traits were selected from the MRC IEU OpenGWAS database, comprising datasets of AD from Alzheimer Disease Genetics Consortium (ADGC), Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE), The European Alzheimer’s Disease Initiative (EADI), and Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer’s Disease Consortium (GERAD/PERADES) 2019 (ieu-b-2); AD from Benjamin Woolf 2022 (ieu-b-5067); AD from International Genomics of Alzheimer's Project (IGAP) 2013 (ieu-a-297) as the datasets of main outcome traits for AD, as well as 13 datasets from FinnGen biobank 2021 corresponding to various AD subtypes, referred to as AD-finn subtypes. (as shown in Figure 2).”

      (2) Sufficient information about quality control methods (in the Statistical models for causal effect inference section of Methods section, page 9-10:

      “A random-effects IVW model was used in this study as the major analysis method to uncover potential risk or protective factors for AD. The random-effects IVW model as the gold standard for MR studies, its principle is to calculate the inverse of the variance of each IV as its weight, assuming all IVs are valid. The regression does not include an intercept term, and the final result is the weighted average of the effect estimates from all IVs [34]. This model indicates that the true effect values may vary across different studies due to both sampling error and the heterogeneity of the true effect. The weight of each study is jointly determined by its inverse variance and the estimated heterogeneity variance. Thus, as long as there is no pleiotropy, even when there is significant heterogeneity (p < 0.05), this method remains the best MR model.

      To assess the robustness of the IVW results, sensitivity analysis was performed using six additional models: (i) MR-Egger: MR-Egger’s biggest difference from IVW is that it considers the intercept term during regression to evaluate bias caused by horizontal pleiotropy. The intercept represents the magnitude of horizontal pleiotropy, with a value close to 0 indicating minimal pleiotropy. The primary purpose is to detect and correct for horizontal pleiotropy. Thus, when significant horizontal pleiotropy is observed (p < 0.05), this method is preferred [35,36]. (ii) Weighted median: The weighted median method is a technique for evaluating causal relationships using a majority of genetic variants (SNPs). If at least 50% of the SNPs are valid IVs, the median of the causal estimates will tend toward the true causal effect. This method provides an unbiased estimate (i.e., the “majority validity” assumption) [37]. (iii) Simple mode: Involves comparing the frequencies or proportions of genotypes or phenotypes between control and experimental groups. Moreover, it can illustrate whether the observed differences in genotypes or phenotypes between the two groups are statistically significant. (iv) Weighted mode: The weighted mode method is a technique for combining multiple Mendelian randomization estimates. This method assigns weights to the causal effect estimates of different genetic variants on the trait and then takes the weighted mode as the final estimate of the causal effect. In genetic variant estimates, the method can decrease bias caused by outliers. (v) Maximum likelihood: This method is used when it is known that a random sample follows a particular probability distribution; however, the specific parameters of that distribution remain unknown, and it involves conducting multiple experiments, observing the results, and using those results to infer the approximate values of the parameters [38]. (vi) Penalized weighted median: An enhanced version of the weighted median estimate that provides a consistent estimate of the causal effect. (vii) Heterogeneity and horizontal pleiotropy assessment use the heterogeneity tests [39] and Egger intercept tests [40], respectively.”

      (3) Comment: While the authors mention that the MRAD database offers interactive visualization interfaces, the paper lacks detailed information on how to interpret and understand these visual results. Guidelines on effectively using these visualization tools to help researchers better comprehend the data are essential.

      Thank you very much for your feedback, as we believe that our manuscript has been improved substantially as a result of your input.  Owing to space constraints, the MRAD database user guide is included in the Supplementary Material. Meanwhile, for better understanding, the subheading of the relevant content in the Supplementary Material has been revised to “MRAD User Guide” (see Supplementary Material for details, page 11). Furthermore, considering user-friendliness, the user guide has been integrated into the database and can be accessed directly from the homepage by clicking on the “User Guide” module.

      (4) Comment: In the conclusion section of the paper, it is advisable to explicitly emphasize the practical applications and potential clinical significance of the MRAD database. The paper should articulate how MRAD can contribute to the early identification, diagnosis, prevention, and treatment of AD and its potential societal and clinical value more clearly.

      Thank you for pointing this out. In the Discussion section of the revised manuscript, we have now added how MRAD can contribute to the early identification, diagnosis, prevention, and treatment of AD and its potential societal as well as clinical value. And we reorganized the structure of Discussion section to make the text easier to understand, which could be helpful to further clarify the significance of MRAD. (page 15)

      The newly added text describing the practical applications and potential clinical significance of the MRAD database is as follows:

      “(i) The current methods for identifying AD mainly rely on assessment scales, cerebrospinal fluid (CSF) examinations, and brain PET/MRI. However, assessment scales can be biased by factors such as the anxiety and nervousness of the subjects. CSF examinations require an invasive lumbar puncture, leading to low patient acceptance. PET/MRI scans are expensive and have limited equipment accessibility. These limitations restrict early AD identification. Thus, there is a pressing clinical need for readily available, time- and cost-effective, and accurate detection methods. In this study, the Medical laboratory science and Molecular trait used could be less expensive, faster to detect, easier to operate, and more accessible for widespread adoption. They hold great value for early AD identification and have the potential to become crucial tools for identifying AD in the future. (ii) Imaging acts as a powerful assistive tool for diagnosing Alzheimer’s disease. Traditional imaging examinations mainly depict changes in the brain’s macroscopic structure, while research on microstructural changes in disease-related areas is relatively limited. Studies have demonstrated that microstructural neurodegenerative processes are extensive and pronounced during AD progression. Our study results cover traditional macroscopic neuroimaging results and reveal numerous potential causal relationships between brain microstructure and AD. The combination of macroscopic and microstructural insights will provide more valuable information for clinical diagnosis. (iii) Clarifying patient’s disease, past history, and family history can aid in preventing AD at an early stage, and prevention of AD could be attained through monitoring anthropometric indicators, improving gut microbiota, and adjusting lifestyle traits. (iv) Currently, the development of new drugs for AD is mainly underscored by Aβ, Tau, and other inhibitors. Since 2000, global pharmaceutical companies have invested hundreds of billions of dollars in the development of new drugs for AD, and these drugs have not yielded successful results. AD drug development has thus been perceived as having the highest failure rate of all drug research, reaching 99.6%. Hence, further research on molecular traits to find new targets and develop new drugs for these targets will provide new pathways for AD treatment.”

      (5) Comment: Grammar and Spelling Errors: There are several spelling and grammar errors in the paper. Referring to a scientific editing service is recommended.

      We appreciate your comments and suggestions for improving our manuscript. We have now used a professional editing service offered by Taylor and Francis to revise the grammar and language, and we have obtained a certificate of proof, which is attached. Thank you for recognizing our research, we have tried our best to improve the quality of this paper to ensure that it meets the high standards required for publication in of journal elife.

      Reviewer #2 (Public Review):

      Summary:

      This MR study by Zhao et al. provides a comprehensive hypothesis-free approach to identifying risk and protective factors causal to Alzheimer's Disease (AD).

      Strengths:

      The study employs a comprehensive, hypothesis-free approach, which is novel over traditional hypothesis-driven studies. Also, causal associations between risk/protective factors and AD were addressed using genetic instruments and analysis.

      We greatly appreciate the positive feedback regarding the overall quality of our work.

      Major comments:

      (1) Comment: The authors used the inverse-variance weighted (IVW) model as the primary method and other MR methods (MR-Egger, weighted mean, etc.) for sensitivity analysis. However, each method has its own assumption, and IVW is only robust when pleiotropy and heterogeneity are not severe. Rather than using IVW imprudently across all associations, it would be more appropriate to choose the best MR method for each association based on heterogeneity/Egger intercept tests. This customized approach, based on tests of MR assumption violations, yields more stable and reliable results. For reference, please follow up on work by Milad et al. (EHJ - "Plasma lipids and risk of aortic valve stenosis: a Mendelian randomization study"). This study selected the best MR model for each association based on pleiotropy and heterogeneity tests. Given the large number of tests in this work, I suggest initially screening significant signals using IVW, as done, and then validating the results using multiple MR methods for those signals. It is common for MR estimates from different methods to vary significantly (with some being statistically significant and others not), and in such cases, the MR estimates from the best-fitted model should be trusted and highlighted.

      Thank you for your professional comments. We agree that our description of the Statistical models for causal effect inference was not specific enough. Therefore, we have included a new text describing more details about each method’s assumption and supplied a predefined approach to select the best statistical estimation from these methods in the Statistical models for causal effect inference section of Methods section (page 9-10). However, we would like to clarify our analysis method. In this study, the main analysis method used is the IVW random effects model instead of the IVW fixed effects model. The IVW random effects model indicates that the true effect values of different studies may vary, including both sampling error and heterogeneity of the true effect. The weight of each study is jointly determined by its inverse variance and the estimated heterogeneity variance. Thus, as long as there is no pleiotropy, even when there is significant heterogeneity (p < 0.05), this method is still the best MR model. We would like to thank you again for your feedback, as we believe that our manuscript has been improved substantially as a result of your input.

      The newly added text describing more details about each method’s assumption and the customized best-fitted model is as follows:

      “Statistical models for causal effect inference

      A random-effects IVW model was used in this study as the major analysis method to uncover potential risk or protective factors for AD. The random-effects IVW model as the gold standard for MR studies, its principle is to calculate the inverse of the variance of each IV as its weight, assuming all IVs are valid. The regression does not include an intercept term, and the final result is the weighted average of the effect estimates from all IVs [34]. This model indicates that the true effect values may vary across different studies due to both sampling error and the heterogeneity of the true effect. The weight of each study is jointly determined by its inverse variance and the estimated heterogeneity variance. Thus, as long as there is no pleiotropy, even when there is significant heterogeneity (p < 0.05), this method remains the best MR model.

      To assess the robustness of the IVW results, sensitivity analysis was performed using six additional models: (i) MR-Egger: MR-Egger’s biggest difference from IVW is that it considers the intercept term during regression to evaluate bias caused by horizontal pleiotropy. The intercept represents the magnitude of horizontal pleiotropy, with a value close to 0 indicating minimal pleiotropy. The primary purpose is to detect and correct for horizontal pleiotropy. Thus, when significant horizontal pleiotropy is observed (p < 0.05), this method is preferred [35,36]. (ii) Weighted median: The weighted median method is a technique for evaluating causal relationships using a majority of genetic variants (SNPs). If at least 50% of the SNPs are valid IVs, the median of the causal estimates will tend toward the true causal effect. This method provides an unbiased estimate (i.e., the “majority validity” assumption) [37]. (iii) Simple mode: Involves comparing the frequencies or proportions of genotypes or phenotypes between control and experimental groups. Moreover, it can illustrate whether the observed differences in genotypes or phenotypes between the two groups are statistically significant. (iv) Weighted mode: The weighted mode method is a technique for combining multiple Mendelian randomization estimates. This method assigns weights to the causal effect estimates of different genetic variants on the trait and then takes the weighted mode as the final estimate of the causal effect. In genetic variant estimates, the method can decrease bias caused by outliers. (v) Maximum likelihood: This method is used when it is known that a random sample follows a particular probability distribution; however, the specific parameters of that distribution remain unknown, and it involves conducting multiple experiments, observing the results, and using those results to infer the approximate values of the parameters [38]. (vi) Penalized weighted median: An enhanced version of the weighted median estimate that provides a consistent estimate of the causal effect. (vii) Heterogeneity and horizontal pleiotropy assessment use the heterogeneity tests [39] and Egger intercept tests [40], respectively.”

      (2) Comment: Lines 157-160 mentioned "But to date, AD has been reported as hypothesis-driven MR study based on a single factor, ignoring the potential role of a huge number of other risk factors. Also, due to the high degree of heterogeneity present in AD subtypes, which have different biological and genetic characteristics. Thus, the previous studies cannot offer a systematic and complete viewpoint.". This statement overlooks a similar study published in Molecular Psychiatry ("A Phenome-wide Association and Mendelian Randomization Study for Alzheimer's Disease: A Prospective Cohort Study of 502,493"), which rigorously assessed the effects of 4171 factors spanning 10 different categories on AD using observational analysis and MR. The authors should revise their statement on the novelty of their study type throughout the manuscript and discuss how their work differs from and potentially strengthens previous studies.

      Thank you for directing us to this literature. We have read this article carefully. This study shares some similarities with our study but there are significant differences with regards to sample sources and research fields. The study, as mentioned by the reviewer, used the UKB database as its sample source, and analyzed the association between 10 categories (comprising 4,171 factors) and AD, which were sociodemographic, physical measures, lifestyle and environment, health conditions, mental health, medications and operations, cognitive function, sex-specific factors, employment, and early-life factors. However, the study revealed they are restricted by the available variables from the UKB database, which lead to variables such as air pollution, blood glucose measures and so on were not included. Conversely, our study used samples from the MRC IEU OpenGWAS database, the largest open GWAS database globally. Furthermore, our research focus differs, as we primarily investigate the causal relationship between the following 10 categories (comprising 18,097 traits) and AD, which were Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. Most importantly, we have established a database encompassing all MR analysis results, allowing researchers and clinicians worldwide to conveniently and rapidly retrieve AD-associated risk factors via an online open integrated platform (MRAD, https://gwasmrad.com/mrad/).We have now added a new text in the Background section (page 6-7) describing the differences and potential strengthens towards previous studies.

      The newly added text describing the differences and novelty towards previous studies is as follows:

      “Chen et al. [30] used MR analysis to reveal the causal relationship between AD and factors including sociodemographic and early life status. However, the study revealed they are restricted by the available variables from the UKB database, which lead to variables such as air pollution, blood glucose measures and so on were not included. And also, due to the high degree of heterogeneity present in AD subtypes, which have different biological and genetic characteristics. Thus, the previous studies cannot offer a systematic and complete viewpoint. Our study uses the MRC IEU OpenGWAS database as the sample source for MR analysis to address the aforementioned limitations. The MRC IEU OpenGWAS database, the largest open GWAS database globally, has compiled 42,335 GWAS summary datasets from sources such as the UK Biobank, FinnGen Biobank, and Biobank Japan. Analyzing large-scale datasets will break new ground for MR research on AD.

      MR requires a combination of background knowledge in biology, computer science, software studies, and statistics, which often leads to a dilemma where biologists are not well-versed in computer and statistical fields, while computer science experts struggle to adopt a medical biology mindset. Consequently, the vast majority of available GWAS data have not been effectively utilized through MR. Therefore, the construction of a multi-level data platform specifically for AD based on MR analysis of massive GWAS data is of great strategic significance, and it will facilitate researchers and clinicians worldwide to conveniently and rapidly obtain risk factors that are causally associated with AD.”

      Reference:

      [30] Chen SD, Zhang W, Li YZ, et al. (2023). A Phenome-wide Association and Mendelian Randomization Study for Alzheimer's Disease: A Prospective Cohort Study of 502,493 Participants From the UK Biobank. Biol Psychiatry. 1;93(9):790-801.

      (3) Comment: Given the large number of tests, the multiple testing issue is concerning. To mitigate potential false positives, I recommend employing the Bonferroni threshold or FDR. The authors should only interpret exposures that are significant at the Bonferroni threshold.

      We sincerely appreciate the reviewer's feedback. Thank you for pointing this out. We have added the results of the Bonferroni correction to the Statistical models for the causal effect inference section of the Methods section (page 10) in response to the reviewer's feedback.

      The newly added text describing Bonferroni threshold is as follows:

      “The above analyses were performed using the TwoSampleMR[41] package in the R (version 4.1.2) software. Association of exposures with outcomes was assessed using odds ratio (OR) and 95% confidence interval (95% CI), with OR > 1 indicating a positive association (risk factor) and 0 < OR < 1 indicating a negative association (protective factor). Differences with a two-sided p < .05 were considered statistically significant. Furthermore, owing to the relatively large number of exposure and outcome traits included in this study, the multiple testing correction method Bonferroni correction was added to identify significant hits, threshold for Bonferroni-corrected was 0.05 divided by 289,552 tests (p <1.727e-07).”

      (4) Comment: In the discussion, the authors should interpret or highlight exposures that remain significant after multiple testing corrections.

      Thank you for your valuable comment. In response to reviewer feedback, we have put extra emphasis on the exposures that remained significant after multiple testing corrections in the Discussion section (page 17). We thank you again for your feedback, as we believe that our manuscript has been improved substantially as a result of your input.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Comment: In this study, the authors used the inverse-variance weighted (IVW) model as the major analysis method to perform Mendelian randomization analysis to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. An online database called MRAD has been thereby developed with the assistance of Shiny package. This study is a very intriguing study of great clinical and scientific significance that provided a thorough and comprehensive evaluation with regard to risk or protective factors for AD. It also provided physicians and scientists with a very convenient, free as well as user-friendly tool for further scientific investigation.

      I believe this manuscript is great research that is worth publishing with all the comments from the Public Review resolved.

      We thank the reviewer for taking the time to read and provide valuable feedback on our manuscript, which allowed us to improve the overall quality of our research. All the comments from the Public Review have been rechecked, and appropriate changes have been made in accordance with the reviewers’ suggestions. Point-by-point responses to all the comments from the Public Review can be found in the above. If there are any further issues, please do not hesitate to let us know, so that we can ensure that our manuscript meets the high standards required for publication.

      Reviewer #2 (Recommendations For The Authors):

      (1) Comment: In the middle lower left section of the graphical abstract, the overlapping positive (N=63) and overlapping negative (N=16) do not sum to the overlapping number (N=80). Could you clarify if any have both positive and negative effects? Additionally, the font size inside the circular elements is too small to read.

      We thank you for raising this issue. We have clarified this in the MRAD utility data mining section of Results section (page 12): A total of 63 exposure traits (risk factors) were positively associated with all the three main outcome traits, while 16 exposure traits (protective factors) were negatively associated with the three main outcome traits, with Ulcerative colitis (ebi-a-GCST000964) being negatively associated with the AD outcome traits of ieu-b-2 and ieu-a-297, and positively associated with the AD outcome traits of ieu-b-5067. Additionally, we apologize for the small, unreadable fonts in the graphical abstract figure. In response to reviewer feedback, we have increased the font size within the figure and enhanced the resolution to improve image readability (page 3).

      (2) Comment: The x-axis label ("Alzheimer's disease outcome") should be more descriptive. If published GWAS results are used, indicate this as XXX et al. (2022). Also, specify the AD outcome for each category (e.g., AD, early-onset AD, late-onset AD). The y-axis labels should also be clarified; remove identification codes and retain only the exposure names. Apply the same improvements to Figures 2-8.

      We appreciate your comments and suggestions for improving our manuscript.

      (i) In response to reviewer feedback, information of published GWAS such as authors and year of publication have now been added to the x-axis labels, as demonstrated in Figure 4 (page 31).

      (ii) The outcome IDs are unique. We used these IDs to represent the AD information on the x-axis to maintain a clean and clear figure. The corresponding details for each ID are explained in the Outcome traits section of the Methods section (page 8, as shown in Figure 2). AD_EO refers to early-onset AD, and AD_LO refers to late-onset AD, which are also specified in the Abbreviations (page 4).

      (iii) We sincerely appreciate the reviewers’ meticulous feedback. While exposure IDs in this study are unique, exposure names are not. A single exposure name may correspond to multiple IDs, each with a potentially different source of information (e.g., author, year, population sample). We believe obtaining consistent results across multiple IDs further strengthens the reliability of our conclusions. Hence, for better clarity of specific exposure information, the exposure IDs have been retained.

      (3) Comment: The results across Figures 1-8 are repetitive and not very informative. Consider other visualizations to condense the information into one or two figures. I would recommend using a Manhattan plot or PheWAS plot concept to effectively display many test results at once. Please display the Bonferroni threshold in the plot as a horizontal line to show which exposures are meaningful after adjusting multiple comparisons.

      We appreciate this helpful suggestion. We have now condensed Figures 1–8 into a single figure (as shown in Figure 4). Additionally, we have now displayed the Bonferroni correction results in the sensitivity analysis results figures (as shown in Figure 5, Figure S1-S7).

      (4) Comment: Consider placing Figure S1 as Figure 1, condensing Figures 1-8 into Figures 2 and 3, and placing the circular diagrams from Figure S6 as Figure 4.

      We appreciate this valuable suggestion. The sequence of the figures has been adjusted.

      (5) Comment: Create a main table summarizing robust and consistent exposures for AD that are significant at the Bonferroni threshold for readers. For each exposure, please include estimates from IVW, MR-Egger, weighted median, simple mode, weighted mode, maximum likelihood, and penalized weighted median, along with heterogeneity and horizontal pleiotropy tests. I would also highlight or bold estimates from the best-fit model/MR method to help readers identify the most reliable estimates when estimates from multiple methods are heterogeneous.

      We appreciate this helpful suggestion. Owing to the excessive amount of information in the table, we have uploaded the table covering the aforementioned information according to the reviewer’s suggestion as supplementary materials (See Table S2). (i) The corresponding id.exposure that pass the Bonferroni threshold are reflected in red font. (ii) Furthermore, according to the customized best-fitted model (as mentioned in the Statistical models for causal effect inference section of Methods section), when there is no pleiotropy or when pleiotropy is not applicable (less than 3 SNPs), random-effects IVW model is the best model. These corresponding id.exposure are shown in red font with a yellow highlight. (iii) Moreover, according to the customized best-fitted model, when there is pleiotropy, MR-Egger is the best model. These corresponding id.exposure are shown in red font with a green highlight.

      (6) Comment: Figures S4-S10: These figures are screenshots of web browsers and may not be worth showing. Consider using tools like Adobe AI or R ggplot to create more refined visualizations that are specific to the research question and improve the message of this work.

      Thank you very much for your valuable suggestion in reviewing our manuscript. In this study, Figures S4-S10 are screenshots related to the user guide. We sincerely appreciate the reviewer’s feedback and have revised the subheading of this section to MRAD User Guide to clarify its purpose. Demonstrating both text and figures in this section, we aim to help users understand ways to operate MRAD more intuitively and easily.

      (7) Comment: Additionally, please show upfront or highlight results from MR analyses based on R packages, as the author mentioned in the method section. Somehow it's difficult to find results from MR-Egger, weighted median, simple mode, weighted mode, maximum likelihood, and penalized weighted median, along with heterogeneity and horizontal pleiotropy tests in the supplementary materials. Apologies if I missed them. Please ensure these results are clearly presented.

      We appreciate your comments and suggestions for improving our manuscript. Thank you for pointing this out. We have added the results of the sensitivity analysis based on R packages (as shown in Figure 5, Figure S1-S7, and Table S2).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      I am not convinced how this study relates to HIV individual HFpEF, and the study design does not seem to be well thought out. 

      This is an important point and we have modified the manuscript as mentioned below in our responses.

      The connectivity of the study experiments is loose, and data analysis and conclusions are broadly overstated and misinterpreted.

      We have modified the manuscript thoroughly so the data are interpret properly, and the conclusions are stated logically. 

      For example the study lacks any measure of diastolic contractile function, and even if performed, the relevance of TNFa treatments to cells in vitro in these immature cell contexts would remain unclear. There is surprisingly no reported molecular analyses of potential mechanisms of the calcium transient changes. The study falls short in molecular detail and instead relies on drug treatments and responses that are hard to interpret with dosages that are not well justified and treatments that are numerous. Unclear what changes in calcium transients mean functionally without a comprehensive assessment of CM biomechanical contraction and relaxation measurements, and this would also require parallel molecular investigations of potential targets of any phenotypes observed.

      As mentioned above, we have modified the manuscript so the data are interpret properly, and the conclusions are stated logically. In terms of mechanisms for the observed phenomenon, we agree that this was not the focus of studies, however, we have provided a paragraph in the discussion that covers this topic. Although Decay and downstroke time were utilized as surrogates of cardiomyocyte relaxation, direct biomechanical characterization of contraction was not conducted in this study. While cytosolic calcium concentration is a predominant factor to regulate the cell’s relaxation (Reference 52 in the manuscript), there are several mechanisms to modify the relationship, including the transition of sarcomere protein isoforms to pathogenic ones (Reference 53 in the manuscript) and the stimulation of β-adrenergic receptor on cardiomyocytes (Reference 54 in the manuscript). Since hiPSC-CMs utilized for each study is from iPS cells derived from a single donor, we believe that the patterns of sarcomere protein expression and the regulation of β-adrenergic receptor pathway should be consistent among samples, supporting their effects should be minimum in our system. We also did not elucidate molecular mechanisms underlying prolonged decay time induced by TNF-α and IFN-γ in this study. Lee et al. reported that 25 ng/ml TNFa treatment induced a longer decay portion of the calcium transient and a decreased sarcoplasmic ATPase (SERCA) expression in rabbit cardiomyocytes from pulmonary vein (Reference 55 in the manuscript), suggesting our observation in iPS-CM is also through decreased expression of SERCA though further studies remain conducted.

      Calcium transient data need to be better illustrated such as with representative peak tracings. The data overall is with too few samples, particularly given the inherent heterogeneity of iPSCM studies. The iPS-CM system as a model for diastolic dysfunction remains unestablished.

      We have now prepared several representative curves of calcium transient and their derivatives in Figure 4 D and E, H and I, and in Figure 1-figure supplement 1B. In terms of the way to collect Ca-transient data, each dot in the bar graphs represents the average of signals obtained from one well of the 96-well plates. About 75K cells were seeded in one well, and we believe that the number of cells integrated in the analyses should be sufficient for the statistical analyses. We modified our manuscript as this system does not quantifying diastolic function directly, but represents Ca measurements that indicate cardiomyocyte relaxation.

      There are unclear dose choices for the various ART drugs tested, as well as the other drugs tested such as SGLT2i. Besides the observation that SLC5A2 (SGLT2 target) is not established to be expressed in adult mammalian cardiomyocytes. 

      Thank you for the comment. The dose ranges of ART drugs were chosen to extend to 10fold above the IC50 concentrations and reflects the upper range of circulating drug concentration in patients receiving these medications (Reference 36-39 in the manuscript). For SGLT2 inhibitor concentration, we referred to a paper utilizing 1-10 μM dapagliflozin (PMID: 35818731). We conducted a preliminary study to test the effect of 1 and 10 μM of dapagliflozin on the Ca-transient of iPS-CMs, and we found that 1 μM of the drug treatment did not cause changes in Ca-transient. Marfella et al. reported that SLC5A2 (SGLT2) expresses in cardiomyocytes under diabetic condition (PMID 36096423). Since diabetes is associated with low grade systemic inflammation, HIV patients might also express SGLT2 in cardiomyocytes. Taken together, we believe that the dosages of the drugs used in our studies are relevant to the clinical therapeutical usages of the drugs.

      HIV plasma samples were not tested for cytokine levels, but this could be done to assess the validity of the final experiments. It is unclear what is being tested with these experiments. 

      This is a good point and we agree with the reviewer. However, we had limited amount of the patient serum and could not perform a comprehensive analysis of these samples. Nevertheless, we have added a section in the Discussion section providing some clinical relevance of our findings based on the papers that have assessed cytokine levels in the serum of HIV patients.

      The choice of serum controls from a second institution (UCSF) opens up concerns over batch effects unrelated to differences in diastolic dysfunction. However, there were no differences with the Northwestern samples. It is unclear why this data is included as it does not add to the impact of the study. 

      In our study, we utilized two sets of HIV patient serum samples from different institutions, supporting that our results can be reproduced. We believe that these results significantly augmented the rigor of our findings.

      There are concerns about the quality of the iPS-CMs since there is no cell imaging or molecular analyses. Figure 5 Supplement 1 images are of low quality and low resolution to assess cell quality. Overall the iPS-CM QC data is extremely sparse 

      We have now added the representative images of iPS-CMs to Figure 1- figure supplement 1A. Our group has used hiPS-CMs extensively in the past (PMID: 26439715). We also updated Fig 5 Supplement 1 with images with better resolution and added Fig 5 Supplement 2 with magnified images. 

      Reviewer2 (Public Review):

      However, there are some topics that are not well-connected, and the rationale and hypothesis are not clearly defined beforehand, such as mitochondrial membrane potential, mitochondrial ROS, and angiogenic potential. 

      We modified the manuscript so the rationale and hypothesis of the study is clearly stated. 

      As the hiPSC cardiomyocytes are treated with various reagents to measure diastolic dysfunction, it is important to confirm whether the treatment time and dose used were sufficient to exert a functional effect. Dose and time-dependent experiments are essential, or at least sufficient citations should be provided for selecting the dose for IFN and TNF. 

      We used previous publications for the dosages of the drugs used in our paper (1-4). 

      After IFN and TNF treatment, determining the expression levels of molecular markers of DD/HFpEF is crucial. Again, if sufficient evidence is available, it can be cited. 

      We have included a section in the discussion to address this issue. Briefly, Lee et al. reported that 25 ng/ml TNFa induces a longer decay of calcium transient and a decrease in sarcoplasmic ATPase (SERCA) expression in rabbit cardiomyocytes from pulmonary vein (PMID 17383682). The prolonged Cadecay time in hiPS-CM with the drug administration may be due to a decrease in SERCA expression and impaired Ca-uptake into sarcoplasmic reticulum.

      The Methods section describes TMRE colocalization and immunofluorescence, but no images are provided.

      We have performed immunofluorescence of hiPSC-CM with TMRE for the quantification of mitochondrial membrane potential (MMP). 

      The concentration of TNF and IFN in patients is critical, which was acknowledged and discussed as a limitation of the study by the authors. Authors should consider this aspect, and if not feasible, clinical reports should be cited to provide a rough estimation of their concentration. 

      Thank you for this comment. A new section detailing the points brought up by the Reviewer is now added to discussion.

      Recommendation for the authors:

      Reviewer #1 (Recommendation for the authors):

      I suggest a more comprehensive analysis of diastolic function including biomechanical studies of contraction and diastolic function. I suggest increasing the sample #'s, getting a better characterziation of the cardiomyocytes, their expression profiles, and maturation state. The team should dig more deeply into potential molecular mechanisms of the calcium transient changes. Are there changes in SERCA or other SR factors' phosphorylation state or other molecular explanations for the observed changes? I would remove the serum treatment experiments as they distract since they didn't show differences. These are a few of the suggestions I would have for the team.

      Our system for measurement of Ca-transient unfortunately does not allow to obtain data on the cellular biomechanical property. We modified the manuscript so the results are not overstated and that the interpretation is correct. Since each dot in bar-graphs for Ca-transient data represents the average of signals generated from 75 K cells, we believe that the number of cells analyzed was sufficient for the analyses. Although it is not conclusive, previous reports suggested induction of SERCA2A expression by TNF-α treatment in isolated cardiomyocytes, suggesting that the mechanism underlying the prolonged calcium decay time in our model may be due to changes in SERCA levels. We included the data from human serum samples from HIV patients since they provide a platform to assess the effects of HIV patient serum on. We believe that these data convey a significant progress understanding the process of myocardial dysfunction in HIV patients.

      References

      Amirayan-Chevillard, N., Tissot-Dupont, H., Capo, C., Brunet, C., Dignat-George, F., Obadia, Y., Gallais, H., and Mege, J. L. (2000) Impact of highly active anti-retroviral therapy (HAART) on cytokine production and monocyte subsets in HIV-infected patients. Clinical and experimental immunology 120, 107-112

      Fraietta, J. A., Mueller, Y. M., Yang, G., Boesteanu, A. C., Gracias, D. T., Do, D. H., Hope, J. L., Kathuria, N., McGettigan, S. E., Lewis, M. G., Giavedoni, L. D., Jacobson, J. M., and Katsikis, P. D. (2013) Type I interferon upregulates Bak and contributes to T cell loss during human immunodeficiency virus (HIV) infection. PLoS Pathog 9, e1003658

      Lau, S. L., Yuen, M. L., Kou, C. Y., Au, K. W., Zhou, J., and Tsui, S. K. (2012) Interferons induce the expression of IFITM1 and IFITM3 and suppress the proliferation of rat neonatal cardiomyocytes. Journal of cellular biochemistry 113, 841-847

      Stone, S. F., Price, P., Keane, N. M., Murray, R. J., and French, M. A. (2002) Levels of IL-6 and soluble IL-6 receptor are increased in HIV patients with a history of immune restoration disease after HAART. HIV Med 3, 21-27

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Major comments: 

      My main concern about the manuscript is the extent of both clinical and statistical heterogeneity, which complicates the interpretation of the results. I don't understand some of the antibiotic comparisons that are included in the systematic review. For instance the study by Paul et al (50), where vancomycin (as monotherapy) is compared to co-trimoxazole (as combination therapy). Emergence (or selection) of co-trimoxazole in S. aureus is in itself much more common than vancomycin resistance. It is logical and expected to have more resistance in the co-trimoxazole group compared to the vancomycin group, however, this difference is due to the drug itself and not due to co-trimoxazole being a combination therapy. It is therefore unfair to attribute the difference in resistance to combination therapy. Another example is the study by Walsh (71) where rifampin + novobiocin is compared to rifampin + co-trimoxazole. There is more emergence of resistance in the rifampin + co-trimoxazole group but this could be attributed to novobiocin being a different type of antibiotic than co-trimoxazole instead of the difference being attributed to combination therapy. To improve interpretation and reduce heterogeneity my suggestion would be to limit the primary analyses to regimens where the antibiotics compared are the same but in one group one or more antibiotic(s) are added (i.e. A versus A+B). The other analyses are problematic in their interpretation and should be clearly labeled as secondary and their interpretation discussed. 

      Thank you for raising these important points and highlighting the need for clarification. We understand that the reviewer has concerns regarding the following points:

      (1) The structure of presenting our analyses, i.e. main analyses and sub-group analyses and their corresponding discussion and interpretation

      Our primary interest was whether combining antibiotics has an overarching effect on resistance and to identify factors that explain potential differences of the effect of combining antibiotic across pathogens/drugs. Therefore, pooling all studies, and thereby all combinations of antibiotics, is one of our main analyses. The decision to pool all studies that compare a lower number of antibiotics to a higher number of antibiotics was hence predefined in our previously published study protocol (PROSPERO CRD42020187257).

      We indeed, find that heterogeneity is high in our statistical analyses. As planned in our study protocol, we did perform several prespecified sub-group analyses and added additional ones. We now emphasize that several sub-group analyses were performed to investigate heterogeneity (L 119ff): “The overall pooled estimates are based on studies that focus on various clinical conditions/pathogens and compare different antibiotics treatments. To explore the impact of these and other potential sources of heterogeneity on the resistance estimates we performed various sub-group analyses and metaregression.” 

      The performed sub-group analyses specifically focused on specific pathogens/clinical conditions (figure 3) or explored heterogeneity due to different antibiotics in comparator arms – as suggested by the reviewer (figure 3B, SI section 6). We find that the heterogeneity remains high even if only resistances to antibiotics common to both arms are considered (SI section 6.1.8). With this analysis we excluded comparisons of different antibiotics (e.g., A vs B+C), such as those between vancomycin and cotrimoxazole named by the reviewer. While we aimed to explore heterogeneity and investigate potential factors affecting the effect of combining antibiotic on resistance, limitations arose due to limited evidence and the nature of data provided by the identified studies. Therefore, interpretability remains also limited for the subgroup analyses, which we highlight in the discussion. (L 186 ff: We accounted for many sources of heterogeneity using stratification and meta-regression, but analyses were limited by missing information and sparse data.) Further, specific subgroup analyses are discussed in more detail in the SI.

      (2) Difference in resistance development due to the type of the antibiotics or due to combination therapy?

      The reviewer raises an important point, which we also try to make: future studies should be systematically designed to compare antibiotic combination therapy, i.e. identical antibiotics in treatment arms should be used, except for additional antibiotics used in both treatment arms. We already mentioned this point in our discussion but highlight this now by emphasizing how many studies did not have identical antibiotics in their treatment arms. We write in L194ff: “19 (45%) of our included studies compared treatment arms with no antibiotics in common, and 22 studies (52%) had more than one antibiotic not identical in the treatment arms (table 1). To better evaluate the effect of combination therapy, especially more RCTs would be needed where the basic antibiotic treatment is consistent across both treatment arms, i.e. the antibiotics used in both treatment arms should be identical, except for the additional antibiotic added in the comparator arm (table 1).”

      Furthermore, we investigated the importance of the type of antibiotics with several subgroup analyses (e.g. SI sections 6.1.8 and 6.1.10). We now further highlight the concern of the type of antibiotics in the result section of the main manuscript, where we discuss the sub-group analysis with no common antibiotics in the treatment arms 131 ff: “Furthermore, a lower number of antibiotics performed better than a higher number if the compared treatment arms had no antibiotics in common (pooled OR 4.73, 95% CI 2.14 – 10.42; I2\=37%, SI table S3), which could be due to different potencies or resistance prevalences of antibiotics as discussed in SI (SI section 6.1.10).” As mentioned above we also perform sub-group analyses, where only resistances of antibiotics common to both arms are considered (SI section 6.1.8). However, as discussed in the corresponding sections, the systematic assessment of antibiotic combination therapy remains challenging as not all resistances against antibiotics used in the arms were systematically measured and reported. Furthermore, the power of these sub-group analyses is naturally a concern, as they include fewer studies. 

      Another concern is about the definition of acquisition of resistance, which is unclear to me. If for example meropenem is administered and the follow-up cultures show Enterococcus species (which is intrinsically resistant to meropenem), does this constitute acquisition of resistance? If so, it would be misleading to determine this as an acquisition of resistance, as many people are colonized with Enterococci and selection of Enterococci under therapy is very common. If this is not considered as the acquisition of resistance please include how the acquisition of resistance is defined per included study. Table S1 is not sufficiently clear because it often only contains how susceptibility testing was done but not which antibiotics were tested and how a strain was classified as resistant or susceptible. 

      Thank you for pointing out this potential ambiguity. The definition of acquisition of resistance reads now (L 275 ff): “A patient was considered to have acquired resistance if, at the follow-up culture, a resistant bacterium (as defined by the study authors) was detected that was not present in the baseline culture.” We also changed the definition accordingly in the abstract (L 36 ff). We hope that the definition of acquisition is now clearer. Our definition of “acquisition of resistance” is agnostic to bacterial species and hence intrinsically resistant species, as the example raised by the reviewer, can be included if they were only detected during the follow-up culture by the studies. Generally, it was not always clear from the studies, which pathogens were screened for and whether the selection of intrinsically resistant bacteria was reported or not. Therefore, we rely on the studies' specifications of resistant and non-resistant without further distinction from our side, i.e. classifying data into intrinsic and non-intrinsic resistance. Overall, the outcome “acquisition of resistance” can be interpreted as a risk assessment for having any resistant bacterium during or after treatment. In contrast, the outcome “emergence of resistance” is more rigorous, demanding the same species to be detected as more resistant during or after treatment.

      The information, which antibiotic susceptibility tests were performed in each individual study can be found in the main text in table 1. However, we agree that this information should be better linked and highlighted again in table S1. We therefore now refer to table 1 in the table description of table S1. L134 ff.: “See table 1 in the main text for which antibiotics the antibiotics tested and reported extractable resistance data”. Furthermore, we added the breakpoints for resistant and susceptible classification if specifically stated in the main text of the study. However, we did not do further research into old guidelines, manufactures manuals or study protocols in case the breakpoints are not specifically stated in the main text as the main goal of this table, in our opinion, is to show a justification, why the studies could be considered for a resistance outcome. We therefore decided against further breakpoint investigations for studies, where the breakpoint is not specifically stated in the main text. 

      Line 85: "Even though within-patient antibiotic resistance development is rare, it may contribute to the emergence and spread of resistance." 

      Depending on the bug-drug combination, there is great variation in the propensity to develop within-patient antibiotic resistance. For example: within-patient development of ciprofloxacin resistance in Pseudomonas is fairly common while within-patient development of methicillin resistance in S. aureus is rare. Based on these differences, large clinical heterogeneity is expected and it is questionable where these studies should be pooled. 

      We agree that our formulation neglects differences in prevalence of within-host resistance emergence depending on bug-drug combinations. We changed our statement in L 86 to: “Within-patient antibiotic resistance development, even if rare, may contribute to the emergence and spread of resistance.”

      Line 114: "The overall pooled OR for acquisition of resistance comparing a lower number of antibiotics versus a higher one was 1.23 (95% CI 0.68 - 2.25), with substantial heterogeneity between studies (I2=77.4%)" 

      What consequential measures did the authors take after determining this high heterogeneity? Did they explore the source of this large heterogeneity? Considering this large heterogeneity, do the authors consider it appropriate to pool these studies?

      Thank you for highlighting this lack of clarity. As mentioned above, we now highlight that we performed several subgroup analyses to investigate heterogeneity. (L 116ff): “The overall pooled estimates are based on studies that focus on various clinical conditions/pathogens and compare different antibiotics treatments. To explore the impact of these and other potential sources of heterogeneity on the resistance estimates we performed various subgroup analyses and meta-regression.” Nevertheless, these analyses faced limitations due to the scarcity of evidence and often still showed a high amount of heterogeneity. Given the lack of appropriate evidence, it is hard to identify the source of heterogeneity. The decision to pool all studies was pre-specified in our previously published study protocol (PROSPERO CRD42020187257) and was motivated by the question whether there is a general effect of combination therapy on resistance development or identify factors that explain potential differences of the effect of combination therapy across bug-drug combinations. Therefore, we think that the presentation of the overall pooled estimate is appropriate, as it was predefined, and potential heterogeneity is furthermore explored in the subgroup analyses. 

      Reviewer #1 (Recommendations For The Authors): 

      I want to congratulate the investigators for the rigorous approach followed and the - in my opinion - correct interpretation of the data and analysis. The disappointing outcome is independent of the quality of the approach used. Yet, the consequences of that outcome are rather limited, and will not be surprising for - at least - some in the field of antibiotic resistance. 

      Thank you for your positive and differentiated feedback.

      Reviewer #2 (Recommendations For The Authors): 

      Line 93: "The screening of the citations of the 41 studies identified one additional eligible study, for a total of 42 studies". 

      Why was this study missed in the search strategy? 

      What is the definition of "quasi-RCTs"? Why were these included in the analysis? 

      Thank you for pointing out this lack of clarity. The additional study, which was found through screening the references of included studies, was not identified with our search strategy as neither the abstract nor database specific identifiers provided any indications that resistance was measured in this study. We added an explanation in the supplementary materials L 792 ff. and refer to this explanation in the main manuscript (L 95). 

      Quasi-randomized trials are trials that use allocation methods, which are not considered truly random. We added this specification in L 95. It now reads: “….two quasi-RCTs, where the allocation method used is not truly random” and in L 252 ff: “Studies were classified as quasi-RCTs if the allocation of participants to study arms was not truly random.” For instance, the study Macnab et al. (1994) assigned patients alternately to the treatment arms. Quasi-randomized controlled trials can lead to biases and especially old studies are more likely to have used quasi-random allocation methods. This can also be seen in our study, where the two quasi-randomized controlled trials were published in 1994 and 1997. The bias is considered in the risk of bias assessment and in our conducted sensitivity analysis regarding the impact of risk of bias on our estimates (supplementary information sections 3.0 and 4.2). Furthermore, one of the two previous conducted meta-analyses comparing beta-lactam monotherapy to beta-lactam and aminoglycoside, which assessed resistance development also included quasi-randomized controlled trials Paul et al 2014. Overall, while designing the study, we decided to include quasi-randomized controlled trials to increase statistical power as we expected that limited statistical power might be a concern and decided to assess potential biases in the risk of bias assessment.  

      Line 100: "Consequently, most studies did not have the statistical power to detect a large effect on within-patient resistance development (figure 2 B, SI p 14).". 

      Small studies actually have more power to detect large effects while smaller power to detect small effects. Please rephrase. 

      Thank you for pointing out this lack of clarity. We rephrased the sentence in order to emphasize our point that the studies are underpowered even if we assume in our power analysis a large effect on resistance development between treatment arms. In this context “the small” studies include too few patients to detect a large difference in resistance development. As resistance development is a rare event, generally studies have to include a larger number of patients to estimate the effect of intervention. We rephrased the sentence in L 101ff to: “Consequently, most studies did not have the statistical power to detect differences in within-patient resistance development even if we assume that the effect on resistance development is large between treatment arms.”

      Line 108: "... and prophylaxis for blood cancer patients with four studies (10%) respectively.". 

      I would suggest using the medical term hematological malignancy patients. 

      Thank you for the suggestion, we changed it as suggested to hematological malignancy patients, also accordingly in the figures, and table 1.

      Line 117: "Since the results for the two resistance outcomes are comparable, our focus in the following is on the acquisition of resistance". 

      The first OR is 1.23 and the second is 0.74, why do you consider these outcomes as comparable? 

      Thank you for pointing out our unprecise formulation. Due to the lack of power the exact estimates need to be interpreted with care. Here, we wanted to make the point that qualitatively the results of both outcomes do not differ in the sense that our analysis shows no substantial difference between a higher and a lower number of antibiotics. We rephrased the sentence to be more precise (L 123ff): “The results for the two resistance outcomes are qualitatively comparable in the sense that individual estimates may differ, but show similar absence of evidence to support either the benefit, harm or equivalence of treating with a higher number of antibiotics. Therefore, our …”. More detailed discussion about differences in estimates can be found in the SI, when the estimates of emergence of resistance are presented (e.g. SI section 2.1).

      Line 123: "Furthermore, a lower number of antibiotics performed better than a higher number if the compared treatment arms had no antibiotics in common (pooled OR 4.73, 95% CI 2.14 - 10.42; I 2 =37%, SI p 7).". 

      How do you explain this? What does this mean? 

      We now added a more detailed explanation in the supplement (L 376ff.): “The result that if the treatment arms had no antibiotics in common a lower number of antibiotics performed better than a higher number of antibiotics could be due to different potencies of antibiotics or resistance prevalences. Further, there could be a bias to combine less potent antibiotics or antibiotics with higher resistance prevalence to ensure treatment efficacy, which couldlead to higher chances to detect resistances in the treatment arm with higher number of antibiotics, e.g. by selecting pre-existing resistance due to antibiotic treatment (see also section 6.1.9).” We furthermore already specifically mention this point in the main manuscript and refer then to the detailed explanation in the SI (L134 ff, “which could be due to different potencies or resistance prevalences of antibiotics as discussed in SI (SI section 6.1.10)”)

      Overall, we want to point out that these results need to be interpreted with caution as overall the statistical power is limited to confidently estimate the difference in effect of a higher and lower number of antibiotics.

      Line 125: ". In contrast, when restricting the analysis to studies with at least one common antibiotic in the treatment arms are pooled there was little evidence of a difference (pooled OR 0.55, 95% CI 0.28 - 1.07". 

      The difference was not statistically significant but there does seem to be an indication of a difference, please rephrase. 

      We rephrased the sentence to (L135 ff.): “In contrast, when restricting the analysis to studies with at least one common antibiotic in the treatment arms we found no evidence of a difference, only a weak indication that a higher number of antibiotics performs better (pooled OR 0.55, 95% CI 0.28 – 1.07; I2 \=74%, figure 3B).” 

      Line 190: "Similarly, today, relevant cohort studies could be analysed collaboratively using various modern statistical methods to address confounding by indication and other biases (66, 67)". 

      However, residual confounding by indication is likely. Please also mention the disadvantages of observational studies compared to RCTs. 

      We now highlight that causal inference with observational data comes with its own challenges and stress that randomized controlled trials are still considered the gold standard. L 204ff now reads: “However, even with appropriate causal inference methods, residual confounding cannot be excluded when using observational data (67). Therefore, will remain the gold standard to estimate causal relationships.”

      Line 230: "Gram-negative bacteria have an outer membrane, which is absent in grampositive bacteria for instance, therefore intrinsic resistance against antibiotics can be observed in gram-negative bacteria (11)". 

      Intrinsic resistance is not unique for Gram-negative bacteria but also exists for Grampositive bacteria. 

      We agree with the reviewer that intrinsic resistance is not unique to gram-negative bacteria and refined our writing. We additionally added that differences between gram-negative and gram-positive bacteria are not only to be expected due to differing intrinsic resistances but also due to potential differences in the mechanistic interactions of antibiotics, i.e., synergy or antagonism. The paragraph reads now (SI L289): “The gram status of a bacterium may potentially determine how effective an antibiotic, or an antibiotic combination is. Differences between gram-negative and gram-positive bacteria such as distinct bacterial surface organisation can lead to specific intrinsic resistances of gram-negative and grampositive bacteria against antibiotics (55). These structural differences can lead to varying effects of antibiotic combinations between gram-negative and gram-positive bacteria (56).”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Line 127. Provide a few more words describing the voltage protocol. To the uninitiated, panels A and B will be difficult to understand. "The large negative step is used to first close all channels, then probe the activation function with a series of depolarizing steps to re-open them and obtain the max conductance from the peak tail current at -36 mV. "

      We have revised the text as suggested (revision lines 127 to Line 131): “From a holding potential within the gK,L activation range (here –74 mV), the cell is hyperpolarized to –124 mV, negative to EK and the activation range, producing a large inward current through open gK,L channels that rapidly decays as the channels deactivate. We use the large transient inward current as a hallmark of gK,L. The hyperpolarization closes all channels, and then the activation function is probed with a series of depolarizing steps, obtaining the max conductance from the peak tail current at –44 mV (Fig. 1A).”

      Incidentally, why does the peak tail current decay? 

      We added this text to the figure legend to explain this: “For steps positive to the midpoint voltage, tail currents are very large. As a result, K+ accumulation in the calyceal cleft reduces driving force on K+, causing currents to decay rapidly, as seen in A (Lim et al., 2011).”

      The decay of the peak tail current is a feature of gK,L (large K+ conductance) and the large enclosed synaptic cleft (which concentrates K+ that effluxes from the HC). See Govindaraju et al. (2023) and Lim et al. (2011) for modeling and experiments around this phenomenon.

      Line 217-218. For some reason, I stumbled over this wording. Perhaps rearrange as "In type II HCs absence of Kv1.8 significantly increased Rin and tauRC. There was no effect on Vrest because the conductances to which Kv1.8 contributes, gA and gDR activate positive to the resting potential. (so which K conductances establish Vrest???). 

      We kept our original wording because we wanted to discuss the baseline (Vrest) before describing responses to current injection.

      Vrest is presumably maintained by ATP-dependent Na/K exchangers (ATP1a1), HCN, Kir, and mechanotransduction currents. Repolarization is achieved by delayed rectifier and A-type K+ conductances in type II HCs.

      Figure 4, panel C - provides absolute membrane potential for voltage responses. Presumably, these were the most 'ringy' responses. Were they obtained at similar Vm in all cells (i.e., comparisons of Q values in lines 229-230). 

      We added the absolute membrane potential scale. Type II HC protocols all started with 0 pA current injection at baseline, so they were at their natural Vrest, which did not differ by genotype or zone. Consistent with Q depending on expression of conductances that activate positive to Vrest, Q did not co-vary with Vrest (Pearson’s correlation coefficient = 0.08, p = 0.47, n= 85).

      Lines 254. Staining is non-specific? Rather than non-selective? 

      Yes, thanks - Corrected (Line 264).

      Figure 6. Do you have a negative control image for Kv1.4 immuno? Is it surprising that this label is all over the cell, but Kv1.8 is restricted to the synaptic pole? 

      We don’t have a null-animal control because this immunoreactivity was done in rat. While the cuticular plate staining was most likely nonspecific because we see that with many different antibodies, it’s harder to judge the background staining in the hair cell body layer. After feedback from the reviewers, we decided to pull the KV1.4 immunostaining from the paper because of the lack of null control, high background, and inability to reproduce these results in mouse tissue. In our hands, in mouse tissue, both mouse and rabbit anti-KV1.4 antibodies failed to localize to the hair cell membrane. Further optimization or another method could improve that, but for now the single-cell expression data (McInturff et al., 2018) remain the strongest evidence for KV1.4 expression in murine type II hair cells.

      Lines 400-404. Whew, this is pretty cryptic. Expand a bit? 

      We simplified this paragraph (revision lines 411-413): “We speculate that gA and gDR(KV1.8) have different subunit composition: gA may include heteromers of KV1.8 with other subunits that confer rapid inactivation, while gDR(KV1.8) may comprise homomeric KV1.8 channels, given that they do not have N-type inactivation .”

      Line 428. 'importantly different ion channels'. I think I understand what is meant but perhaps say a bit more. 

      Revised (Line 438): “biophysically distinct and functionally different ion channels”.

      Random thought. In addition to impacting Rin and TauRC, do you think the more negative Vrest might also provide a selective advantage by increasing the driving force on K entry from endolymph? 

      When the calyx is perfectly intact, gK,L is predicted to make Vrest less negative than the values we report in our paper, where we have disturbed the calyx to access the hair cell (–80, Govindaraju et al., 2023, vs. –87 mV, here). By enhancing K+ accumulation in the calyceal cleft, the intact calyx shifts EK—and Vrest—positively (Lim et al., 2011), so the effect on driving force may not be as drastic as what you are thinking.

      Reviewer #2 (Recommendations For The Authors):

      (1) Introduction: wouldn't the small initial paragraph stating the main conclusion of the study fit better at the end of the background section, instead of at the beginning? 

      Thank you for this idea, we have tried that and settled on this direct approach to let people know in advance what the goals of the paper are.

      (2) Pg.4: The following sentence is rather confusing "Between P5 and P10, we detected no evidence of a non-gK,L KV1.8-dependent.....". Also, Suppl. Fig 1A seems to show that between P5 and P10 hair cells can display a potassium current having either a hyperpolarised or depolarised Vhalf. Thus, I am not sure I understand the above statement. 

      Thank you for pointing out unclear wording. We used the more common “delayed rectifier” term in our revision (Lines 144-147): “Between P5 and P10, some type I HCs have not yet acquired the physiologically defined conductance, gK,L.. N effects of KV1.8 deletion were seen in the delayed rectifier currents of immature type I HCs (Suppl. Fig. 1B), showing that they are not immature forms of the Kv1.8-dependent gK,L channels. ”

      (3) For the reduced Cm of hair cells from Kv1.8 knockout mice, could another reason be simply the immature state of the hair cells (i.e. lack of normal growth), rather than less channels in the membrane? 

      There were no other signs to suggest immaturity or abnormal growth in KV1.8–/– hair cells or mice. Importantly, type II HCs did not show the same Cm effect.

      We further discussed the capacitance effect in lines 160-167: “Cm scales with surface area, but soma sizes were unchanged by deletion of KV1.8 (Suppl. Table 2). Instead, Cm may be higher in KV1.8+/+ cells because of gK,L for two reasons. First, highly expressed trans-membrane proteins (see discussion of gK,L channel density in Chen and Eatock, 2000) can affect membrane thickness (Mitra et al., 2004), which is inversely proportional to specific Cm. Second, gK,L could contaminate estimations of capacitive current, which is calculated from the decay time constant of transient current evoked by small voltage steps outside the operating range of any ion channels. gK,L has such a negative operating range that, even for Vm negative to –90 mV, some gK,L channels are voltage-sensitive and could add to capacitive current.”

      (4) Methods: The electrophysiological part states that "For most recordings, we used .....". However, it is not clear what has been used for the other recordings.

      Thanks for catching this error, a holdover from an earlier ms. version.  We have deleted “For most recordings” (revision line 466).

      Also, please provide the sign for the calculated 4 mV liquid junction potential. 

      Done (revision line 476).

      Reviewer #3 (Recommendations For The Authors): 

      (1) Some of the data in panels in Fig. 1 are hard to match up. The voltage protocols shown in A and B show steps from hyperpolarized values to -71mV (A) and -32 mV (B). However, the value from A doesn't seem to correspond with the activation curve in C.

      Thank you for catching this.  We accidentally showed the control I-X curve from a different cell than that in A. We now show the G-V relation for the cell in A.

      Also the Vhalf in D for -/- animals is ~-38 mV, which is similar to the most positive step shown in the protocol.

      The most positive step in Figure 1B is actually –25 mV. The uneven tick labels might have been confusing, so we re-labeled them to be more conventional.

      Were type I cells stepped to more positive potentials to test for the presence of voltage-activated currents at greater depolarizations? This is needed to support the statement on lines 147-148. 

      We added “no additional K+ conductance activated up to +40 mV” (revision line 149-150).  Our standard voltage-clamp protocol iterates up to ~+40 mV in KV1.8–/– hair cells, but in Figure 1 we only showed steps up to –25 mV because K+ accumulation in the synaptic cleft with the calyx distorts the current waveform even for the small residual conductances of the knockouts. KV1.8–/– hair cells have a main KV conductance with a Vhalf of ~–38 mV, as shown in Figure 1, and we did not see an additional KV conductance that activated with a more positive Vhalf up to +40 mV.

      (2) Line 151 states "While the cells of Kv1.8-/- appeared healthy..." how were epithelia assessed for health? Hair cells arise from support cells and it would be interesting to know if Kv1.8 absence influences supporting cells or neurons. 

      We added our criteria for cell health to lines 477-479: “KV1.8–/– hair cells appeared healthy in that cells had resting potentials negative to –50 mV, cells lasted a long time (20-30 minutes) in ruptured patch recordings, membranes were not fragile, and extensive blebbing was not seen.”

      Supporting cells were not routinely investigated. We characterized calyx electrical activity (passive membrane properties, voltage-gated currents, firing pattern) and didn’t detect differences between +/+, +/–, and –/– recordings (data not shown). KV1.8 was not detected in neural tissue (Lee et al., 2013). 

      (3) Several different K+ channel subtypes were found to contribute to inner hair cell K+ conductances (Dierich et al. 2020) but few additional K+ channel subtypes are considered here in vestibular hair cells. Further comments on calcium-activated conductances (lines 310-317) would be helpful since apamin-sensitive SK conductances are reported in type II hair cells (Poppi et al. 2018) and large iberiotoxin-sensitive BK conductances in type I hair cells (Contini et al. 2020). Were iberiotoxin effects studied at a range of voltages and might calcium-dependent conductances contribute to the enhanced resonance responses shown in Fig. 4? 

      We refer you to lines 310-317 in the original ms (lines 322-329 in the revised ms), where we explain possible reasons for not observing IK(Ca) in this study.

      (4) Similar to GK,L erg (Kv11) channels show significant Cs+-permeability. Were experiments using Cs+ and/or Kv11 antagonists performed to test for Kv11? 

      No. Hurley et al. (2006) used Kv11 antagonists to reveal Kv11 currents in rat utricular type I hair cells with perforated patch, which were also detected in rats with single-cell RT-PCR (Hurley et al. 2006) and in mice with single-cell RNAseq (McInturff et al., 2018).  They likely contribute to hair cell currents, alongside Kv7, Kv1.8, HCN1, and Kir. 

      (5) Mechanosensitive ("MET") channels in hair cells are mentioned on lines 234 and 472 (towards the end of the Discussion), but a sentence or two describing the sensory function of hair cells in terms of MET channels and K+ fluxes would help in the Introduction too. 

      Following this suggestion we have expanded the introduction with the following lines  (78-87): “Hair cells are known for their large outwardly rectifying K+ conductances, which repolarize membrane voltage following a mechanically evoked perturbation and in some cases contribute to sharp electrical tuning of the hair cell membrane.  Because gK,L is unusually large and unusually negatively activated, it strongly attenuates and speeds up the receptor potentials of type I HCs (Correia et al., 1996; Rüsch and Eatock, 1996b). In addition, gK,L augments a novel non-quantal transmission from type I hair cell to afferent calyx by providing open channels for K+ flow into the synaptic cleft (Contini et al., 2012, 2017, 2020; Govindaraju et al., 2023), increasing the speed and linearity of the transmitted signal (Songer and Eatock, 2013).”

      (6) Lines 258-260 state that GKL does not inactivate, but previous literature has documented a slow type of inactivation in mouse crista and utricle type I hair cells (Lim et al. 2011, Rusch and Eatock 1996) which should be considered. 

      Lim et al. (2011) concluded that K+ accumulation in the synaptic cleft can explain much of the apparent inactivation of gK,L. In our paper, we were referring to fast, N-type inactivation. We changed that line to be more specific; new revision lines 269-271: “KV1.8, like most KV1 subunits, does not show fast inactivation as a heterologously expressed homomer (Lang et al., 2000; Ranjan et al., 2019; Dierich et al., 2020), nor do the KV1.8-dependent channels in type I HCs, as we show, and in cochlear inner hair cells (Dierich et al., 2020).”

      (7) Lines 320-321 Zonal differences in inward rectifier conductances were reported previously in bird hair cells (Masetto and Correia 1997) and should be referenced here.

      Zonal differences were reported by Masetto and Correia for type II but not type I avian hair cells, which is why we emphasize that we found a zonal difference in I-H in type I hair cells. We added two citations to direct readers to type II hair cell results (lines 333-334): “The gK,L knockout allowed identification of zonal differences in IH and IKir in type I HCs, previously examined in type II HCs (Masetto and Correia, 1997; Levin and Holt, 2012).”

      Also, Horwitz et al. (2011) showed HCN channels in utricles are needed for normal balance function, so please include this reference (see line 171). 

      Done (line 184).

      (8) Fig 6A. Shows Kv1.4 staining in rat utricle but procedures for rat experiments are not described. These should be added. Also, indicate striola or extrastriola regions (if known). 

      We removed KV1.4 immunostaining from the paper, see above.

      (9) Table 6, ZD7288 is listed -was this reagent used in experiments to block Gh? If not please omit. 

      ZD7288 was used to block gH to produce a clean h-infinity curve in Figure 6, which is described in the legend.

      (10) In supplementary Fig. 5A make clear if the currents are from XE991 subtraction. Also, is the G-V data for single cell or multiple cells in B? It appears to be from 1 cell but ages P11-505 are given in legend. 

      The G-V curve in B is from XE991 subtraction, and average parameters in the figure caption are for all the KV1.8–/–  striolar type I hair cells where we observed this double Boltzmann tail G-V curve. I added detail to the figure caption to explain this better.

      (11) Supplementary Fig. 6A claims a fast activation of inward rectifier K+ channels in type II but not type I cells-not clear what exactly is measured here.

      We use “fast inward rectifier” to indicate the inward current that increases within the first 20 ms after hyperpolarization from rest (IKir, characterized in Levin & Holt, 2012) in contrast to HCN channels, which open over ~100 ms. We added panel C to show that the activation of IKir is visible in type II hair cells but not in the knockout type I hair cells that lack gK,L. IKir was a reliable cue to distinguish type I and type II hair cells in the knockout.

      For our actual measurements in Fig 6B, we quantified the current flowing after 250 ms at –124 mV because we did not pharmacologically separate IKir and IH.

      Could the XE991-sensitive current be activated and contributing?

      The XE991-sensitive current could decay (rapidly) at the onset of the hyperpolarizing step, but was not contributing to our measurement of IKir­ and IH, made after 250 ms at –124 mV, at which point any low-voltage-activated (LVA) outward rectifiers have deactivated. Additionally, the LVA XE991-sensitive currents were rare (only detected in some striolar type I hair cells) and when present did not compete with fast IKir, which is only found in type II hair cells.

      Also, did the inward rectifier conductances sustain any outward conductance at more depolarized voltage steps? 

      For the KV1.8-null mice specifically, we cannot answer the question because we did not use specific blocking agents for inward rectifiers.  However, we expect that there would only be sustained outward IR currents at voltages between EK and ~-60 mV: the foot of IKir’s I-V relation according to published data from mouse utricular hair cells – e.g., Holt and Eatock 1995, Rusch and Eatock 1996, Rusch et al. 1998, Horwitz et al., 2011, etc.  Thus, any such current would be unlikely to contaminate the residual outward rectifiers in Kv1.8-null animals, which activate positive to ~-60 mV. 

      (I-HCN is also not a problem, because it could only be outward positive to its reversal potential at ~-40 mV, which is significantly positive to its voltage activation range.)

    1. Author response:

      (1) Reviewer 1 suggested that we repeat the analyses in additional ROIs in the prefrontal cortex (PFC). We appreciate this suggestion and believe it will contribute to a comprehensive understanding of the current findings. These results will be included in the revision.

      (2) Reviewer 1 suggested that we also examine results in motor-related ROIs to rule out influences from response planning. We would like to note that our experimental design makes it unlikely that response planning would have influenced our results, as participants were unable to plan their motor responses in advance due to randomized response mapping on a trial-by-trial basis. Nevertheless, we agree with the reviewer that showing results from motor-related ROIs is important, and will include these results in the revision.

      (3) Reviewer 1 raised a question about the effect size of the results across different ROIs. In our manuscript, we tried to avoid direct comparisons of representational strength across ROIs, by focusing on the differences in representational strength between conditions within the same ROI. Nevertheless, we agree that clarifying this issue is important, which we will address in the revision.

      (4) Reviewer 2 raised a concern about the similarity between the RNN and fMRI results. We acknowledge that the complexity of our results makes it challenging to replicate all fMRI findings within a single RNN (e.g., simulating three brain regions in a single network with distinct result patterns). Nonetheless, the current RNNs effectively captured our key fMRI findings, including increased stimulus representation in frontal cortex as well as the tradeoff in category representation with varying levels of flexible control. Reviewer 2 also made several suggestions in tweaking the RNN structure and in choosing alternative analysis methods. We are happy to carry out these points as we think they could potentially increase the alignment between the two modalities.

    1. Author response:

      We are grateful to the reviewers and editors for their insightful comments. All recognized that, while mutation recurrences have been used for inferring cancer drivers, our approach has the rigor of quantitative analysis. We would like to add that, without rigorously ruling out mutational hotspots, most CDNs have not been accepted as driver mutations.

      This paper develops the theory stating that (i) recurrent point mutations are true Cancer Driving Nucleotides (CDNs); and (ii) non-recurrent mutations are unlikely to be CDNs. The reviewers question that, with the theory, we still have not discovered new driving mutations. This is done in the companion paper. Table 3 shows that, averaged across cancer types, the conventional method would identify 45 CDGs while the CDN method tallies 258 CDGs. The power of the CDN method in identifying new driver genes is evident.

      The second question is "By this theory, will we be able discover most CDNs when the sample size increases from ~ 1000 to 10,000?" This is a question of forecast and can be partially answered using GENIE data. Fig. 7 of this study shows that, when n increases from ~ 1000 to ~ 9,000, the numbers of discovered CDNs increase by 3 – 5 fold, most of which come from the two-hit class, as expected.

      Fig. 7 also addresses the queries whether we have used datasets other than TCGA. We indeed have used all public data, including GENIE, ICGC and other integrated resources such as COSMIC. For the main study, we rely on TCGA because it is unbiased for estimating the probability of CDN occurrences. In many datasets, the numerators are given but the denominators are not (the number of patients with the mutation / the total number of patients surveyed). 

      The third question is about mutation recurrences among cancer types. As stated by one reviewer, "different cancer types have unique mutational landscapes". While this is true when the analysis is done at the whole-gene level, one gets a different picture at the nucleotide level where the resolution is much higher. The pan-cancer trend of point mutations is evident in Fig. 4 of the companion paper.

      Again, we heartily appreciate the criticisms and suggestions of the reviewers and editors!

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      [...] Overall the manuscript is well written, and the successful generation of the new endogenous Cac tags (Td-Tomato, Halo) and CaBeta, stj, and stolid genes with V5 tags will be powerful reagents for the field to enable new studies on calcium channels in synaptic structure, function, and plasticity. There are also some interesting, though not entirely unexpected, findings regarding how Brp and homeostatic plasticity modulate calcium channel abundance. However, a major concern is that the conclusions about how "molecular and organization diversity generate functional synaptic heterogeneity" are not really supported by the data presented in this study. In particular, the key fact that frames this study is that Cac levels are similar at Ib and Is active zones, but that Pr is higher at Is over Ib (which was previously known). While Pr can be influenced by myriad processes, the authors should have first assessed presynaptic calcium influx - if they had, they would have better framed the key questions in this study. As the authors reference from previous studies, calcium influx is at least two-fold higher per active zone at Is over Ib, and the authors likely know that this difference is more than sufficient to explain the difference in Pr at Is over Ib. Hence, there is no reason to invoke differences in "molecular and organization diversity" to explain the difference in Pr, and the authors offer no data to support that the differences in active zone structure at Is vs Ib are necessary for the differences in Pr. Indeed, the real question the authors should have investigated is why there are such differences in presynaptic calcium influx at Is over Ib despite having similar levels/abundance of Cac. This seems the real question, and is all that is needed to explain the Pr differences shown in Fig. 1. The other changes in active zone structure and organization at Is vs Ib may very well contribute to additional differences in Pr, but the authors have not shown this in the present study, and rely on other studies (such as calcium-SV coupling at Is vs Ib) to support an argument that is not necessitated by their data. At the end of this manuscript, the authors have found an interesting possibility that Stj levels are reduced at Is vs Ib, that might perhaps contribute to the difference in calcium influx. However, at present this remains speculative.

      Overall, the authors have generated powerful reagents for the field to study calcium channels and how they are regulated, but draw conclusions about active zone structure and organization contributing to functional heterogeneity that are not strongly supported by the data presented.

      Reviewer 1 raises an interesting question that we agree will form the basis of important studies. Here, we set out to address a different question, which we will work to better frame. While we and others had previously found a strong correlation between calcium channel abundance and synaptic release probability (Pr (Akbergenova et al., 2018; Gratz et al., 2019; Holderith et al., 2012; Nakamura et al., 2015; Sheng et al., 2012)), more recent studies found that calcium channel abundance does not necessarily predict synaptic strength (Aldahabi et al., 2022; Rebola et al., 2019). Our study explores this paradox and presents findings that provide an explanation: calcium channel abundance predicts Pr among individual synapses of either low-Pr type-Ib or high-Pr type-Is inputs where modulating channel number tunes synaptic strength, but does not predict Pr between the two inputs, indicating an inputspecific role for calcium channel abundance in promoting synaptic strength. Thus, we propose that calcium channel abundance predictably modulates synaptic strength among individual synapses of a single input or synapse subtype, which share similar molecular and spatial organization, but not between distinct inputs where the underlying organization of active zones differs. Consistently, in the mouse, calcium channel abundance correlates strongly with release probability specifically when assessed among homogeneous populations of connections (Aldahabi et al., 2022; Holderith et al., 2012; Nakamura et al., 2015; Rebola et al., 2019; Sheng et al., 2012).

      As Reviewer 1 notes, the two-fold difference in calcium influx at type-Is synapses is certainly an important difference underlying three-fold higher Pr. However, growing evidence indicates that calcium influx alone, like calcium channel abundance, does not reliably predict synaptic strength between inputs. For example, Rebola et al. (2019) compared cerebellar synapses formed by granule and stellate cells and found that lower Pr granule synapses exhibit both higher calcium channel abundance and calcium influx. In another example, Aldahabi et al. (2023) demonstrate that even when calcium influx is greater at high-Pr synapses, it does not necessarily explain differences in synaptic strength between inputs. Studying excitatory hippocampal CA1 synapses onto distinct interneuronal targets, they found that raising calcium entry at low-Pr inputs to high-Pr synapse levels is not sufficient to increase synaptic strength to high-Pr synapse levels. Similarly, at the Drosophila NMJ, the finding that type-Ib synapses exhibit loose calcium channel-synaptic vesicle coupling whereas type-Is synapses exhibit tight coupling suggests factors beyond calcium influx also contribute to differences in Pr between the two inputs (He et al., 2023). Consistently, a two-fold increase in external calcium does not induce a three-fold increase in release at low-Pr type-Ib synapses (He et al., 2023). Thus, upon finding that calcium channel abundance is similar at type-Ib and -Is synapses, we focused on identifying differences beyond calcium channel abundance and calcium influx that might contribute their distinct synaptic strengths. We agree that these studies, ours included, cannot definitively determine the contribution of identified organizational differences to distinct release probabilities because it is not currently possible to specifically alter subsynaptic organization, and will ensure that our language is tempered accordingly. However, in addition to the studies cited above and our findings, recent work demonstrating that homeostatic potentiation of neurotransmitter release is accompanied by greater spatial compaction of multiple active zone proteins (Dannhauser et al., 2022; Mrestani et al., 2021) and decreased calcium channel mobility (Ghelani et al., 2023) provide support for the interpretation that subsynaptic organization is a key parameter for modulating Pr.

      Reviewer #2 (Public Review):

      The authors aim to investigate how voltage-gated calcium channel number, organization, and subunit composition lead to changes in synaptic activity at tonic and phasic motor neuron terminals, or type Is and Ib motor neurons in Drosophila. These neuron subtypes generate widely different physiological outputs, and many investigations have sought to understand the molecular underpinnings responsible for these differences. Additionally, these authors explore not only static differences that exist during the third-instar larval stage of development but also use a pharmacological approach to induce homeostatic plasticity to explore how these neuronal subtypes dynamically change the structural composition and organization of key synaptic proteins contributing to physiological plasticity. The Drosophila neuromuscular junction (NMJ) is glutamatergic, the main excitatory neurotransmitter in the human brain, so these findings not only expand our understanding of the molecular and physiological mechanisms responsible for differences in motor neuron subtype activity but also contribute to our understanding of how the human brain and nervous system functions.

      The authors employ state-of-the-art tools and techniques such as single-molecule localization microscopy 3D STORM and create several novel transgenic animals using CRISPR to expand the molecular tools available for exploration of synaptic biology that will be of wide interest to the field. Additionally, the authors use a robust set of experimental approaches from active zone level resolution functional imaging from live preparations to electrophysiology and immunohistochemical analyses to explore and test their hypotheses. All data appear to be robustly acquired and analyzed using appropriate methodology. The authors make important advancements to our understanding of how the different motor neuron subtypes, phasic and tonic-like, exhibit widely varying electrical output despite the neuromuscular junctions having similar ultrastructural composition in the proteins of interest, voltage gated calcium channel cacophony (cac) and the scaffold protein Bruchpilot (brp). The authors reveal the ratio of brp:cac appears to be a critical determinant of release probability (Pr), and in particular, the packing density of VGCCs and availability of brp. Importantly, the authors demonstrate a brp-dependent increase in VGCC density following acute philanthotoxin perfusion (glutamate receptor inhibitor). This VGCC increase appears to be largely responsible for the presynaptic homeostatic plasticity (PHP) observable at the Drosophila NMJ. Lastly, the authors created several novel CRISPRtagged transgenic lines to visualize the spatial localization of VGCC subunits in Drosophila. Two of these lines, CaBV5-C and stjV5-N, express in motor neurons and in the nervous system, localize at the NMJ, and most strikingly, strongly correlate with Pr at tonic and phasic-like terminals.

      (1) The few limitations in this study could be addressed with some commentary, a few minor follow-up analyses, or experiments. The authors use a postsynaptically expressed calcium indicator (mhcGal4>UAS -GCaMP) to calculate Pr, yet do not explore the contribution that glutamate receptors, or other postsynaptic contributors (e.g. components of the postsynaptic density, PSD) may contribute. A previous publication exploring tonic vs phasic-like activity at the drosophila NMJ revealed a dynamic role for GluRII (Aponte-Santiago et al, 2020). Could the speed of GluR accumulation account for differences between neuron subtypes?

      We did observe that GCaMP signals are higher at type Is synapses, where synapses tend to form later but GluRs accumulate more rapidly upon innervation (Aponte-Santiago et al., 2020). However, because we are using our GCaMP indicator as a plus/minus readout of synaptic vesicle release at mature synapses, we do not expect differences in GluR accumulation to have a significant effect on our measures. Consistently, the difference in Pr we observe between type-Ib and -Is inputs (Fig. 1C) is similar to that previously reported (He et al., 2023; Lu et al., 2016; Newman et al., 2022).

      (2) The observation that calcium channel density and brp:cac ratio as a critical determinant of Pr is an important one. However, it is surprising that this was not observed in previous investigations of cac intensity (of which there are many). Is this purely a technical limitation of other investigations, or are other possibilities feasible? Additionally, regarding VGCC-SV coupling, the authors conclude that this packing density increases their proximity to SVs and contributes to the steeper relationship between VGCCs and Pr at phasic type Is. Is it possible that brp or other AZ components could account for these differences. The authors possess the tools to address this directly by labeling vesicles with JanellaFluor646; a stronger signal should be present at Is boutons. Additionally, many different studies have used transmission electron microscopy to explore SVs location to AZs (t-bars) at the Drosophila NMJ.

      To date, the molecular underpinnings of heterogeneity in synaptic strength have primarily been investigated among individual type-Ib synapses. However, a recent study investigating differences between type-Ib and -Is synapses also found that the Cac:Brp ratio is higher at type-Is synapses (He et al., 2023).

      At this point, we do not know which active zone components are responsible for the organizational (Figs. 1, 2) and coupling (now demonstrated by He et al., 2023) differences between type-Ib and -Is synapses or what establishes the differences in active zone protein levels we observe (Figs. 3,6), although Brp likely plays a local role. We find that Brp is required for dynamically regulating calcium channel levels during homeostatic plasticity and plays distinct roles at type-Ib and -Is synapses (Figs. 3, 4). Brp regulates a number of proteins critical for the distribution of docked synaptic vesicles near T bars of type Ib active zones, including Unc13 (Bohme et al., 2016). Extending these studies to type-Is synapses will be of great interest.

      (3) In reference to the contradictory observations that VGCC intensity does not always correlate with, or determine Pr. Previous investigations have also observed other AZ proteins or interactors (e.g. synaptotagmin mutants) critically control release, even when the correlation between cac and release remains constant while Pr dramatically precipitates.

      This is an important point as a number of molecular and organizational differences between high- and low-Pr synapses certainly contribute to baseline functional differences. The other proteins we (Figs. 3,6) and others (Dannhauser et al., 2022; Ehmann et al., 2014; He et al., 2023; Jetti et al., 2023; Mrestani et al., 2021; Newman et al., 2022) have investigated are less abundant and/or more densely organized at type-Is synapses. Investigating additional active zone proteins, including synaptic proteins, and determining how these factors combine to yield increased synaptic strength are important next steps.

      (4) To confirm the observations that lower brp levels results in a significantly higher cac:brp ratio at phasic-like synapses by organizing VGCCs; this argument could be made stronger by analyzing their existing data. By selecting a population of AZs in Ib boutons that endogenously express normal cac and lower brp levels, the Pr from these should be higher than those from within that population, but comparable to Is Pr. I believe the authors should also be able to correlate the cac:brp ratio with Pr from their data set generally; to determine if a strong correlation exists beyond their observation for cac correlation.

      We do not have simultaneous measures of Pr and Cac and Brp abundance. However, our findings suggest that distinct Cac:Brp ratios at type Ib and Is inputs reflect underlying organizational differences that contribute to distinct release probabilities between the two synaptic subtypes. In contrast, within either synaptic subtype, release probability is positively correlated with both Cac and Brp levels. Thus, the mechanisms driving functional differences between synaptic subtypes are distinct from those driving functional heterogeneity within a subtype, so we do not expect Cac:Brp ratio to correlate with Pr among individual type-Ib synapses. We will work to clarify this point in the revised text.

      (5) For the philanthotoxin induced changes in cac and brp localization underlying PHP, why do the authors not show cac accumulation after PhTx on live dissected preparations (i.e. in real time)? This also be an excellent opportunity to validate their brp:cac theory. Do the authors observe a dynamic change in brp:cac after 1, or 5 minutes; do Is boutons potentiate stronger due to proportional increases in cac and brp? Also regarding PhTx-induced PHP, their observations that stj and α2δ-3 are more abundant at Is synapses, suggests that they may also play a role in PhTx induced changes in cac. If either/both are overexpressed during PhTx, brp should increase while cac remains constant. These accessory proteins may determine cac incorporation at AZs.

      As we have previously followed Cac accumulation in live dissected preparations and found that levels increase proportionally across individual synapses (Gratz et al., 2019), we did not attempt to repeat these challenging experiments at smaller type-Is synapses. We will reanalyze our data to investigate Cac:Brp ratio at individual active zones post PhTx. However, as noted above, we do not expect changes in the Cac:Brp ratio to correlate with Pr among individual synapses of single inputs as this measure reflects organization differences between inputs and PhTx induces an increase in the abundance of both proteins at both inputs.

      Determining the effect of PhTx on Stj levels at type-Ib and -Is active zones is an excellent idea and might provide insight into how lower Stj levels correlate with higher Pr at type-Is synapses. While prior studies have demonstrated critical roles for Stj in regulating Cac accumulation during development and in promoting presynaptic homeostatic potentiation (Cunningham et al., 2022; Dickman et al., 2008; Kurshan et al., 2009; Ly et al., 2008; Wang et al., 2016), its regulation during PHP has not been investigated.

      Taken together this study generates important data-driven, conceptional, and theoretical advancements in our understanding of the molecular underpinnings of different motor neurons, and our understanding of synaptic biology generally. The data are robust, thoroughly analyzed, appropriately depicted. This study not only generates novel findings but also generated novel molecular tools which will aid future investigations and investigators progress in this field.

      References

      Akbergenova, Y., K.L. Cunningham, Y.V. Zhang, S. Weiss, and J.T. Littleton. 2018. Characterization of developmental and molecular factors underlying release heterogeneity at Drosophila synapses. eLife. 7.

      Aldahabi, M., F. Balint, N. Holderith, A. Lorincz, M. Reva, and Z. Nusser. 2022. Different priming states of synaptic vesicles underlie distinct release probabilities at hippocampal excitatory synapses. Neuron. 110:4144-4161 e4147.

      Aponte-Santiago, N.A., K.G. Ormerod, Y. Akbergenova, and J.T. Littleton. 2020. Synaptic Plasticity Induced by Differential Manipulation of Tonic and Phasic Motoneurons in Drosophila. The Journal of neuroscience : the official journal of the Society for Neuroscience. 40:6270-6288.

      Bohme, M.A., C. Beis, S. Reddy-Alla, E. Reynolds, M.M. Mampell, A.T. Grasskamp, J. Lutzkendorf, D.D. Bergeron, J.H. Driller, H. Babikir, F. Gottfert, I.M. Robinson, C.J. O'Kane, S.W. Hell, M.C. Wahl, U. Stelzl, B. Loll, A.M. Walter, and S.J. Sigrist. 2016. Active zone scaffolds differentially accumulate Unc13 isoforms to tune Ca(2+) channel-vesicle coupling. Nature neuroscience. 19:1311-1320.

      Cunningham, K.L., C.W. Sauvola, S. Tavana, and J.T. Littleton. 2022. Regulation of presynaptic Ca(2+) channel abundance at active zones through a balance of delivery and turnover. Elife. 11.

      Dannhauser, S., A. Mrestani, F. Gundelach, M. Pauli, F. Komma, P. Kollmannsberger, M. Sauer, M. Heckmann, and M.M. Paul. 2022. Endogenous tagging of Unc-13 reveals nanoscale reorganization at active zones during presynaptic homeostatic potentiation. Front Cell Neurosci. 16:1074304.

      Dickman, D.K., P.T. Kurshan, and T.L. Schwarz. 2008. Mutations in a Drosophila alpha2delta voltage gated calcium channel subunit reveal a crucial synaptic function. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28:31-38.

      Ehmann, N., S. Van De Linde, A. Alon, D. Ljaschenko, X.Z. Keung, T. Holm, A. Rings, A. Diantonio, S. Hallermann, U. Ashery, M. Heckmann, M. Sauer, and R.J. Kittel. 2014. Quantitative super-resolution imaging of Bruchpilot distinguishes active zone

      states. Nature Communications. 5.

      Ghelani, T., M. Escher, U. Thomas, K. Esch, J. Lützkendorf, H. Depner, M. Maglione, P. Parutto, S. Gratz, T. Matkovic-Rachid, S. Ryglewski, A.M. Walter, D. Holcman, K. O‘Connor Giles, M. Heine, and S.J. Sigrist. 2023. Interactive nanocluster compaction of the ELKS scaffold and Cacophony Ca<sup>2+</sup> channels drives sustained active zone potentiation. Science Advances. 9:eade7804.

      Gratz, S.J., P. Goel, J.J. Bruckner, R.X. Hernandez, K. Khateeb, G.T. Macleod, D. Dickman, and K.M. O'Connor-Giles. 2019. Endogenous tagging reveals differential regulation of Ca<sup>2+</sup> channels at single AZs during presynaptic homeostatic potentiation and depression. The Journal of Neuroscience:3068-3018.

      He, K., Y. Han, X. Li, R.X. Hernandez, D.V. Riboul, T. Feghhi, K.A. Justs, O. Mahneva, S. Perry, G.T. Macleod, and D. Dickman. 2023. Physiologic and Nanoscale Distinctions Define Glutamatergic Synapses in Tonic vs Phasic Neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 43:4598-4611.

      Holderith, N., A. Lorincz, G. Katona, B. Rózsa, A. Kulik, M. Watanabe, and Z. Nusser. 2012. Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nature neuroscience. 15:988-997.

      Jetti, S.K., A.B. Crane, Y. Akbergenova, N.A. Aponte-Santiago, K.L. Cunningham, C.A. Whittaker, and J.T. Littleton. 2023. Molecular Logic of Synaptic Diversity Between Drosophila Tonic and Phasic Motoneurons. bioRxiv:2023.2001.2017.524447.

      Kurshan, P.T., A. Oztan, and T.L. Schwarz. 2009. Presynaptic alpha2delta-3 is required for synaptic morphogenesis independent of its Ca2+-channel functions. Nature neuroscience. 12:1415-1423.

      Lu, Z., A.K. Chouhan, J.A. Borycz, Z. Lu, A.J. Rossano, K.L. Brain, Y. Zhou, I.A. Meinertzhagen, and G.T. Macleod. 2016. High-Probability Neurotransmitter Release Sites Represent an Energy-Efficient Design. Current biology : CB. 26:2562-2571.

      Ly , C.V., C.-K. Yao , P. Verstreken , T. Ohyama , and H.J. Bellen 2008. straightjacket is required for the synaptic stabilization of cacophony, a voltage-gated calcium channel α1 subunit. Journal of Cell Biology. 181:157-170.

      Mrestani, A., M. Pauli, P. Kollmannsberger, F. Repp, R.J. Kittel, J. Eilers, S. Doose, M. Sauer, A.-L. Sirén, M. Heckmann, and M.M. Paul. 2021. Active zone compaction correlates with presynaptic homeostatic potentiation. Cell Reports. 37:109770.

      Nakamura, Y., H. Harada, N. Kamasawa, K. Matsui, Jason S. Rothman, R. Shigemoto, R.A. Silver, David A. DiGregorio, and T. Takahashi. 2015. Nanoscale Distribution of Presynaptic Ca2+ Channels and Its Impact on Vesicular Release during Development. Neuron. 85:145-158.

      Newman, Z.L., D. Bakshinskaya, R. Schultz, S.J. Kenny, S. Moon, K. Aghi, C. Stanley, N. Marnani, R. Li, J. Bleier, K. Xu, and E.Y. Isacoff. 2022. Determinants of synapse diversity revealed by superresolution quantal transmission and active zone imaging. Nature Communications. 13:229.

      Rebola, N., M. Reva, T. Kirizs, M. Szoboszlay, A. Lőrincz, G. Moneron, Z. Nusser, and D.A. Digregorio. 2019. Distinct Nanoscale Calcium Channel and Synaptic Vesicle Topographies Contribute to the Diversity of Synaptic Function. Neuron. 104:693-710.e699.

      Sheng, J., L. He, H. Zheng, L. Xue, F. Luo, W. Shin, T. Sun, T. Kuner, D.T. Yue, and L.-G. Wu. 2012. Calcium-channel number critically influences synaptic strength and plasticity at the active zone. Nature neuroscience. 15:998-1006.

      Wang, T., R.T. Jones, J.M. Whippen, and G.W. Davis. 2016. alpha2delta-3 Is Required for Rapid Transsynaptic Homeostatic Signaling. Cell Rep. 16:2875-2888.

      Reviewer #1 (Recommendations For The Authors): 

      Major points: 

      (1) A central question regarding VGCC differences at Is vs Ib active zones is why is calcium influx higher at Is active zones compared to Ib. Ideally, the authors would have started this study by showing correlations between Cac abundance, presynaptic calcium influx, and Pr at Is vs Ib active zones. If they had, they would likely find that Cac abundance scales with calcium influx and Pr within Is vs Ib, but that calcium influx is over two-fold enhanced at Is over Ib when normalized to the same Cac abundance. This is more than sufficient to explain the Pr differences, so the rest of the study should have focused on revealing why influx is different at Is over Ib despite an apparently similar level of Cac abundance. Then the examination of CaBeta, Stj, etc could have been used to help explain this conundrum. 

      A lesson might be gleaned in how to structure this narrative from the Rebola 2019 study, which the authors cite and discuss at length. Similar to the current study, that paper started with two synapses ("strong" vs "weak") and sought to explain why they were so different in synaptic strength. First, they examined presynaptic calcium influx, and surprisingly found that the strong synapse had reduced calcium influx compared to the weak. Then the rest of the paper sought to explain why synaptic strength (Pr) was higher at the strong synapse despite reduced calcium influx. The authors do not use this logical flow and narrative in the present study, despite the focus being on how Cav2 channels contribute to strong vs weak synapses - and the primary function of Cav2 channels is to pass calcium at active zones to drive vesicle fusion. 

      Although the authors did not show that presynaptic calcium influx is higher at Is vs Ib active zones in the current manuscript, other studies have previously established that calcium influx is two-fold higher at Is active zones vs Ib (as the authors cite). Rather than focusing so much on Pr at Is vs Ib active zones, which as the authors know can be influenced by myriad differences, it seems the more relevant parameter to study is simply to address presynaptic calcium influx at Is vs Ib, which is the primary function of Cac. Put more simply, if Cac levels are the same at Is vs Ib active zones, why is calcium influx at least two-fold higher at Is? 

      It would therefore seem crucial for the authors to determine presynaptic calcium influx levels (ideally at individual AZs) to really understand how Cac intensity levels correlate with calcium influx. The authors instead map Pr at individual AZs, but as the authors know there are many variables that influence whether a SV releases in addition to calcium influx. There are a number of options for this kind of imaging in Drosophila, including genetically encoded calcium indicators targeted to active zones. But since several studies have previously established that influx is higher at Is active zones over Ib, this may not be necessary. That being said, there is a lot of value in quantitatively analyzing Cac/Stj/CaBeta abundance, calcium influx, and Pr together at individual active zones.

      We appreciate the perspective that we could have focused on why Ca2+ influx is 2x greater at type Is active zones, which we agree is an important and interesting question. However, growing evidence indicates that Ca2+ influx alone, like Ca2+ channel abundance, does not reliably predict synaptic strength between inputs. So, here we focused instead on how other differences between synapses influence Pr and contribute to synaptic heterogeneity between and/or among synapses formed by strong and weak inputs. We have changed our title and framing to better reflect this focus. 

      As Reviewer 1 notes, Rebola et al. (2019) found that lower Pr granule synapses exhibit higher Ca2+ influx (and Ca2+ channel abundance). In another example, Aldahabi et al. (2022) demonstrated that even when Ca2+ influx is greater at high-Pr synapses, it does not necessarily explain differences in synaptic strength as raising Ca2+ entry at low-Pr synapses to high-Pr synapse levels was not sufficient to increase synaptic strength to high-Pr input levels. Similar findings have been reported at tonic and phasic synapses of the Crayfish NMJ (Msghina, 1999).

      Several lines of evidence argue that factors beyond Ca2+ influx also play important roles in establishing distinct release properties at the Drosophila NMJ. A recent study using using a botulinum transgene to isolate type Ib and Is synapses for electrophysiological analysis found that increasing external [Ca2+] from physiological levels (1.8 mM) to 3 mM or even 6 mM does not result in a 3-fold increase in EPSCs or quantal content at type Ib synapses despite the prediction that the increase would be even greater given the power dependence of release on between Ca2+ concentration (He et al., 2023). The authors further found that type Ib synapses are more sensitive than type Is synapses to the slow Ca2+ chelator EGTA, indicating looser Ca2+ channel-SV coupling. 

      Consistently, we find that although VGCC levels are similar at the two inputs, their density is greater at type Is active zones (Figs. 1 and 2). Our findings also reveal additional molecular differences that may contribute to the observed differences in neurotransmitter release properties between the two inputs, including lower levels of the active zone protein Brp (Fig 3) and the auxiliary subunit α2δ-3/Stj (Fig. 6) at high Pr type Is inputs. In contrast, levels of each of these proteins positively correlate with synaptic strength among active zones of a single input, whether low- or high-Pr (Figs. 1, 3, 6). Similarly, levels of each of these proteins increase during homeostatic potentiation of neurotransmitter release (Figs. 4 and 7). Thus, we propose that two broad mechanisms contribute to synaptic diversity in the nervous system: (1) spatial organization and relative molecular content establish distinct average basal release probabilities that differ between inputs and (2) among individual synapses of distinct inputs, coordinated modulation of Ca2+ channel and active zone protein abundance independently tunes Pr. These intersecting mechanisms provide a framework for understanding the extensive and dynamic synaptic diversity observed across nervous systems.

      (2) In addition to key points made above, it seems the authors should at least consider (if not experimentally test) what other differences might contribute to the higher calcium influx at Is over Ib:  

      - Distinct splice isoforms of Cac (and/or Stj/Cabeta): The recent RNAseq analysis of gene expression at Is vs Ib motor neurons from Troy Littleton's group may inform this consideration? 

      - Stj reduction at Is: Do channel studies in heterologous systems give any insight into VGCC channel function with and without a2d-3? Do Cav2 channels without a2d pass more calcium? This would then offer an obvious solution to the key conundrum underlying this study. 

      These are excellent questions that we are actively pursuing. While there is no evidence of differentially expressed splice isoforms of Stj or Ca-β in the recent RNA-seq data from Jetti et al., 2023, subtle changes in Cac isoform usage were observed that may contribute to differences in Ca2+ influx. In heterologous systems, α2δ expression generally increases Ca2+ channel membrane insertion and  Ca2+ currents. However, in vivo α2δ’s can also mediate extracellular interactions that may modulate channel function. We address these points in greater detail in the revised discussion.  

      (3) Assess Stj and CaBeta levels at AZs after PhTx: The successful generation of endogenously tagged Stj and CaBeta enables some relatively easy experiments that would be of interest, similar to what the authors present for Cac. Does Brp similarly control Stj and CaBeta at Is vs Ib compared to what they show for Cac? In addition, does homeostatic plasticity similarly change Stj and CaBeta at Is vs Ib compared to what the authors have shown for Cac? i.e., do they both similarly increase in intensity, by the same amount, as Cac? 

      We agree and have included an analysis of α2δ-3/Stj levels following PhTx exposure (Fig. 7A-C). We have also investigated the regulation of Stj during chronic presynaptic homeostatic potentiation (Fig. 7D-F). In both cases, StjV5-N levels significantly increase at type Ib and Is active zones, consistent with our finding that among AZs of either type Ib or Is inputs, Stj levels correlate with Cac abundance and, thus, Pr. Together with our and others’ findings, this suggests that coordinated increases Ca2+ channel, auxiliary subunit,  and active zone protein abundance positively tunes synaptic strength at diverse synaptic subtypes.

      Minor points: 

      (1) Including line numbers would make reviewing/commenting easier. 

      We apologize for this oversight and have added line numbers to the revised manuscript.

      (2) Fig. 2I: It is not apparent what the mean cluster density is between Ib vs Is (as it is in Fig. 2F-H graphs). The mean and error bars should be included in 2I as it is in 2G. Same with Fig. 3C. 

      Thank you for pointing this out. We have added error bars to the paired analysis in 2I as well as in 3C and 1C.

      (3) Fig. 4 - it might make more sense to normalize Brp and Cac intensity as a percentage of baseline (PhTx at Is or Ib) rather than normalizing everything to control Ib. 

      We have revised the graphs as suggested in Figure 4 and throughout.

      (4) Page 5 bottom - REFS missing after Fig. 1E. 

      Thank you for catching this. We have fixed it.

      Reviewer #2 (Recommendations For The Authors): 

      This reader found differentiating between low Pr sites (deep purple) and cac measurements (black) difficult in Fig 1B. You may consider depicting this differently. 

      Thank you for this feedback. We have changed the color scheme to improve readability.

      I found it difficult to discern the difference between experiments Fig 1E and Fig 1J. Why are individual dots distributed differently? 

      The individual data points are the same as in 1E and 1F, but we have removed the individual NMJ dimensionality to combine all Is and Ib data points together along with best fit lines for comparison of their slopes. We have added text to the revised manuscript to clarify this.

      Results section, second paragraph, add references, remove 'REF': We next investigated the correlation between Pr and VGCC levels and found that at type Is inputs, single-AZ Cac intensity positively correlates with Pr (Fig. 1E; REFS). 

      Thank you. We have corrected this error.

    1. Author response:

      Reviewer #1 (Public Review):

      Greter et al. provide an interesting and creative use of lactulose as a "microbial metabolism" inducer, combined with tracking of H2 and other fermentation end products. The topic is timely and will likely be of broad interest to researchers studying nutrition, circadian rhythm, and gut microbiota. However, a couple of moderate to major concerns were noted that may impact the interpretation of the current data:

      (1)  Much of the data relies on housing gnotobiotic mice in metabolic cages, but I couldn't find any details of methods to assess contamination during multiple days of housing outside of gnotobiotic isolators/cages. Given the complexity of the metabolic cage system used, sterility would likely be incredibly challenging to achieve. More details needed to be included about how potential contamination of the mice was assessed, ideally with 16S rRNA gene sequencing data of the endpoint samples and/or qPCR for total colonization levels relative to the more targeted data shown.

      We thank the reviewer for pointing out that we have not made the experimental setup clear in the text. One of the unique features of our metabolic cage setup is that the mice do not need to be housed outside gnotobiotic isolators, but that the whole system is placed inside an isolator. We have developed and published this system recently (Hoces et al, PLOS Biol 2022), including extensive testing for sterility/gnotobiosis. We will improve clarity in a revised version.

      Given that 16S sequencing of germ-free mice will typically produce false positive reads, we used Blautia pseudococcoides as an indicator strain for contaminations. This strain is present in our SPF mouse colony, forms spores that are highly resilient to decontamination measures, and has been the most likely contaminant in our gnotobiotic system. We have checked for presence of this strain in the cecum content of all our animals at the end of each experiment, and only included experiments which had a B. pseudococcoides signal below threshold level.

      (2)  The language could be softened to provide a more nuanced discussion of the results. While lactulose does seem to induce microbial metabolism it also could have direct effects on the host due to its osmotic activity or other off-target effects. Thus, it seems more precise to just refer to lactulose specifically in the figure titles and relevant text. Additionally, the degree to which lactulose "disrupts the diurnal rhythm" isn't clear from the data shown, especially given that the markers of circadian rhythm rapidly recover from the perturbation. It is probably more precise to instead state that lactulose transiently induces fermentation during the light phase or something to that effect. The discussion could also be expanded to address what methods are available or could be developed to build upon the concepts here; for example, the use of genetic inducers of metabolism which may avoid the more complex responses to lactulose.

      The point about language is well taken. We tried to make the argument that what we call disruption of the diurnal rhythm is acute, meaning that it is not disrupting the rhythm "chronically" (i.e., for longer), but that it recovers rapidly from this transient disruption. Given the confusion this wording is causing we are rephrasing this in a new version of the manuscript.

      We also appreciate the mention of concepts from our study that can be built on in future studies, and we will add a paragraph on potential further research.

      Despite these concerns, this was still an intriguing and valuable addition to the growing literature on the interface of the microbiome and circadian fields.

      We thank the reviewer for all their encouraging and constructive remarks!

      Reviewer #2 (Public Review):

      Summary:

      The authors aimed to investigate how microbial metabolites, such as hydrogen and short-chain fatty acids (SCFAs), influence feeding behavior and circadian gene expression in mice.

      Specifically, they sought to understand these effects in different microbial environments, including a reduced community model (EAM), germ-free mice, and SPF mice. The study was designed to explore the broader relationship between the gut microbiome and host circadian rhythms, an area that is not well understood. Through their experiments, the authors hoped to elucidate how microbial metabolism could impact circadian clock genes and feeding patterns, potentially revealing new mechanisms of gut microbiome-host interactions.

      Strengths:

      The manuscript presents a well-executed investigation into the complex relationship between microbial metabolites and circadian rhythms, with a particular focus on feeding behavior and gene expression in different mouse models. One of the major strengths of the work lies in its innovative use of a reduced community model (EAM) to isolate and examine the effects of specific microbial metabolites, which provides valuable insights into how these metabolites might influence host behavior and circadian regulation. The study also contributes to the broader understanding of the gut microbiome's role in circadian biology, an area that remains poorly understood. The experiments are thoughtfully designed, with a clear rationale that ties together the gut microbiome, metabolic products, and host physiological responses. The authors successfully highlight an intriguing paradox: the significant influence of microbial metabolites in the EAM model versus the lack of effect in germ-free and SPF mice, which adds depth to the ongoing exploration of microbial-host interactions. Despite some methodological concerns, the manuscript offers compelling data and opens up new avenues for research in the field of microbiome and circadian biology.

      We thank the reviewer for their encouraging remarks, specifically on the surprising findings that microbial metabolism seems to affect circadian clock gene expression and behavior differently in EAM and SPF mice.

      Weaknesses:

      The manuscript, while providing valuable insights, has several methodological weaknesses that impact the overall strength of the findings. First, the process for stool collection lacks clarity, raising concerns about potential biases, such as the risk of coprophagia, which could affect the dry-to-wet weight ratio analysis and compromise the validity of these measurements.

      We thank the reviewer for pointing out that our description of the specific methods used for collecting feces were presented in a somewhat confusing manner. In short, dry and wet fecal weights were determined based on fecal pellets that were freshly produced and directly collected from restrained mice. To determine total fecal output over time, we collected all fecal pellets produced in a 5 hour window in a cage, determined their dry weight, and then used the water content determined for fresh feces to calculate wet weight. Using this method, we cannot account for potential differences in coprophagia between the groups. However, this is not likely to affect the dry-to-wet ratio of fecal output in our results.

      Additionally, the use of the term "circadian" in some contexts appears inaccurate, as "diurnal" might be more appropriate, especially given the uncertainty regarding whether the observed microbiome fluctuations are truly circadian.

      Similarly to our answer to reviewer 1 above, we appreciate this remark about imprecise language and have addressed this issue in the text. Indeed, we do not think the microbiota fluctuations are truly circadian, but likely a result of the entrainment through the host's food intake.

      Another significant issue is the unexpected absence of an osmotic effect of lactulose in EAM mice, which contradicts the known properties of lactulose as an osmotic laxative. This finding requires further verification, including the use of a positive control, to ensure it is not artifactual.

      This is a good point. We have used this lactulose dosage specifically to induce microbial metabolism without causing osmotic diarrhea, and went to some lengths do demonstrate this. In response to this comment (and one by reviewer 3 below about transit time), we are planning an experiment that will use a higher lactulose dose as a positive control.

      The presentation of qRT-PCR data as log2-fold changes, with a mean denominator, could introduce bias by artificially reducing variability, potentially leading to spurious findings or increased risk of Type I error. This approach may explain the unexpected activation of both the positive and negative limbs of the circadian clock.

      While we agree that our description of the qpcr method used for measuring circadian clock gene expression was lacking detail, we do not see how log2-fold changes (as opposed to, e.g., fold change) would lead to an increased risk of Type 1 error. We did not use a mean denominator for analyzing the data but used the house-keeping data for the same sample as denominator for the respective circadian clock genes. This will be described more clearly in a revised methods section.

      Moreover, the lack of detailed information on the primers and housekeeping genes used in the experiments is concerning, particularly given the importance of using non-circadian housekeeping genes for accurate normalization.

      We apologize for this omission, it seems like the resource table got lost in the submission, leading to missing information. It will be included in the revised manuscript.

      The methods for measuring metabolic hormones, such as GLP-1 and GIP, are also not adequately described. If DPP-IV/protease inhibitor tubes were not used, the data could be unreliable due to the rapid degradation of these hormones by circulating proteases.

      We thank the reviewer for spotting this mistake. We will add details of how GLP-1 and GIP were measured to the methods section. While we did not use DPP-IV/protease inhibitor tubes, we added the inhibitors to the syringes when sampling blood, leading to the same effect.

      Finally, the manuscript does not address the collection of hormone levels during both fasting and fed phases, a critical aspect for interpreting the metabolic impact of microbial metabolites.

      We agree that it will be interesting to measure hormone levels also in the fed phase, and we will include this data in a revised version of the manuscript. Even with that data, a more thorough examination of hormone levels over the diurnal cycle, as suggested by reviewer 3, might be relevant for a full-scale follow-up. Given our data, we of course cannot exclude that there may be time-point-specific differences and therefore have softened the language around this conclusion to state that hormone levels are not acutely changed after a lactulose intervention “at the time-points examined”.

      These methodological concerns collectively weaken the robustness of the study's results and warrant careful reconsideration and clarification by the authors.

      Because of these weaknesses, the authors have partially achieved their aims by providing novel insights into the relationship between microbial metabolites and host circadian rhythms. The data do suggest that microbial metabolites can significantly influence feeding behavior and circadian gene expression in specific contexts. However, the unexpected absence of an osmotic effect of lactulose, the potential biases introduced by the log2-fold change normalization in qRT- PCR data, and the lack of clarity in critical methodological details weaken the overall conclusions. While the study provides valuable contributions to understanding the gut microbiome's role in circadian biology, the methodological weaknesses prevent a full endorsement of the authors' conclusions. Addressing these issues would be necessary to strengthen the support for their findings and fully achieve the study's aims.

      We thank the reviewer again for their careful and critical reading of our work, and for their constructive input. We hope that many of the concerns will be addressed by providing more methodological detail and additional experimental data in the revised version of our manuscript.

      Despite the methodological concerns raised, this work has the potential to make a significant impact on the field of circadian biology and microbiome research. The study's exploration of the interaction between microbial metabolites and host circadian rhythms in different microbial environments opens new avenues for understanding the complex interplay between the gut microbiome and host physiology. This research contributes to the growing body of evidence that microbial metabolites play a crucial role in regulating host behaviors and physiological processes, including feeding and circadian gene expression.

      We thank the reviewer for their encouraging remarks!

      Reviewer #3 (Public Review):

      Summary:

      In the manuscript by Greter, et al., entitled "Acute targeted induction of gut-microbial metabolism affects host clock genes and nocturnal feeding" the authors are attempting to demonstrate that an acute exposure to a non-nutritive disaccharide (lactulose) promotes microbial metabolism that feeds back onto the host to impact circadian networks. The premise of the study is interesting and the authors have performed several thoughtful experiments to dissect these relationships, providing valuable insights for the field. However, the work presented does not necessarily support some of the conclusions that are drawn. For instance, lactulose is administered during the fasting period to mimic the impact of a feeding bout on the gut microbiota, but it would be important to perform this treatment during the fed state as well to show that the effects on food intake, etc. do not occur.

      This is a good point, and we will include an experiment addressing this in a revised version of the manuscript.

      To truly draw the conclusion that the current outcomes are directly connected to and mediated via an impact on the host circadian clock, it would be ideal to perform these studies in a circadian gene knock-out animal (i.e., Cry1 or Cry2 KO mice, or perhaps Bmal-VilCre tissue- specific KO mice). If the effects are lost in these animals, this would more concretely connect the current findings to the circadian clock gene network.

      We agree that these would be interesting experiments to follow up on the question how the observed effects are actuated by host functions. However, they would require a large amount of preparatory work (including rederiving the KO mice to get them germ-free in our gnotobiotic facility), we argue that they are beyond the scope of this study.

      Despite these reservations, the work is promising.

      We thank the reviewer for their encouraging assessment.

      Strengths:

      Attempting to disentangle nutrient acquisition from microbial fermentation and its impact on diurnal dynamics of gut microbes on host circadian rhythms is an important step for providing insights into these host-microbe interactions.

      The authors utilize a novel approach in leveraging lactulose coupled with germ-free animals and metabolic cages fitted with detectors that can measure microbial byproducts of fermentation, particularly hydrogen, in real-time.

      The authors consider several interesting aspects of lactulose delivery, including how it shifts osmotic balance as well as provides calculations that attempt to explain the caloric contribution of fermentation to the animal in the context of reduced food intake. This provides interesting fundamental insights into the role of microbial outputs on host metabolism.

      Thank you!

      Weaknesses:

      While the authors have done a large amount of work to examine the osmotic vs. metabolic influence of lactulose delivery, the authors have not accounted for the enlarged cecum and increased cecal surface area in germ-free mice. The authors could consider an additional control of cecectomy in germ-free mice.

      We thank the reviewer for pointing out the potential effect of the anatomical differences of germ- free and conventionally colonized mice. We agree that when comparing germ-free mice to SPF mice, the enlarged cecum area in germ-free animals could lead to differences in water release or uptake. However, this is not the case in the gnotobiotic mice colonized with our minimal microbiota, which have comparable cecum sizes to germ-free mice, and thus comparing water transport over the cecum wall between those groups can be done without correcting for cecal surface areas. We will add information on cecum sizes in the different experimental groups to a revised version of the manuscript.

      The authors have examined GI hormones as one possible mechanism for how food intake is altered by microbial fermentation of lactulose. However, the authors measure PYY and GLP-1 only at a single time point, stating that there are no differences between groups. Given the goal of the studies is to tie these findings back into circadian rhythms, it would be important to show if the diurnal patterns of these GI hormones are altered.

      We fully agree that a deeper investigation of the diurnal fluctuations of hormone levels would be an interesting next step in studying whether perturbations in food intake can disturb these rhythms. Doing this for the whole rhythm would really require a full second study. For a revised version of this manuscript, we will add a second time-point of hormone measurements (during the fed phase) to this study. In addition, we will soften the statements made around these data to point out just that hormone level fluctuations could not be detected during specific time points after lactulose treatment, and therefore do not seem to explain the imminent behavioral changes.

      Considerations of other factors, such as conjugated vs. deconjugated bile acids, microbial bile salt hydrolase activity, and bile acid resorption, might be an important consideration for how lactulose elicits more influence on ileal circadian clock genes relative to cecum and colon.

      We absolutely agree that investigation of microbial bile acid modification and their metabolism by the host would be an interesting topic for a follow-up study.

      Measurements of GI transit time (both whole gut and regional) would be an important for consideration for how lactulose might be impacting the ileum vs. cecum vs. colon.

      This is also an interesting point, and we will add an assessment of transit time to a revised version of the manuscript.

    1. Author response:

      General comment:

      "This important study examined neuronal activity in the dentate nucleus of the cerebellum when monkeys performed a difficult perceptual decision-making task. The authors provide convincing evidence that the cerebellum represents sensory, motor, and behavioral outcome signals that are sent to the attentional system, but further analysis focusing on the disparity of performance between animals would improve the quality of the paper. This paper is of great general interest in that it shows the involvement of the cerebellum in cognitive processes at the neuronal level."

      We thank you for these general comments, and we agree with all of them. 

      Public Reviews (Reviewer #1):

      Summary:

      Recordings were made from the dentate nucleus of two monkeys during a decision-making task. Correlates of stimulus position and stimulus information were found to varying degrees in the neuronal activities. 

      We agree with this summary.

      Strengths:

      A difficult decision-making task was examined in two monkeys.

      We agree with this statement.

      Weaknesses:

      One of the monkeys did not fully learn the task. The manuscript lacked a coherent hypothesis to be tested, and no attempt was made to consider the possibility that this part of the brain may have little to do with the task that was being studied. 

      We understand these comments. It is correct that one of the monkeys did not fully learn the task, but it should be noted that both monkeys learned significantly above chance level, and we therefore find the recordings of both monkeys useful. We tested the hypothesis that neurons of the nucleus dentate can dynamically modulate their activity during a visual attention task, comprising not only sensorimotor but also cognitive attentional components. We agree that this hypothesis should be spelled out more explicitly in the introduction, which we will do in the revised version. We also appreciate the comment of this Reviewer that in our original submission we did not show our attempt to consider the possibility that this part of the brain may have little to do with the task that was being studied. We in fact did consider this possibility in that we applied muscimol to the dentate nucleus in one of the monkeys. The data of this one successful experiment show that the behaviour was reversibly affected in line with our hypothesis. Given that this only concerned one of the monkeys, we preferred not to present these data in the article. However, as the Reviewer correctly points out that this question remains hanging in the air, we will show them in our formal rebuttal letter. Please note that we decided to focus at the end of our research project on the tracing experiments, showing in both monkeys the connections of the dentate nucleus with the regions that are involved in attention. As a result, both monkeys have been sacrificed and we cannot expand upon our muscimol experiments anymore (which would have been useful indeed).

      Last but not least, given the comments of the Reviewers, we will also add a Supplementary figure to Figure 2, in which we will present the data for both monkeys separately and provide our interpretation. This may help to strengthen our conclusions. 

      Public Reviews (Reviewer #2):

      The authors trained monkeys to discriminate peripheral visual cues and associate them with planning future saccades of an indicated direction. At the same time, the authors recorded single-unit neural activity in the cerebellar dentate nucleus. They demonstrated that substantial fractions of DN cells exhibited sustained modulation of spike rates spanning task epochs and carrying information about stimulus, response, and trial outcome. Finally, tracer injections demonstrated this region of the DN projects to a large number of targets including several known to interconnect the visual attention network. The data compellingly demonstrate the authors' central claims, and the analyses are well-suited to support the conclusions. Importantly, the study demonstrates that DN cells convey many motor and nonmotor variables related to task execution, event sequencing, visual attention, and arguably decision-making/working memory.

      We thank the Reviewer for this positive and constructive feedback.

    1. Author response:

      We would like to thank the reviewers for their time and for their kind comments about our work. We expect that their comments will help us to improve the manuscript and so will plan the following experiments/revisions to address some of their comments:

      Reviewer 1 (Public Review):

      (1) The cutoffs the authors used to define "conditionally essential" mutants are not reported. The results also lack validation for lethality using a titratable system. It would be ideal to validate several genes in each dataset to determine cutoffs (i.e. 5-fold decrease in insertion mutants) for conditional lethality. It was not done (or described) here.

      We will report the cutoffs used when we generate the revised manuscript. Our experiments identified hundreds of lethal combinations and we have six datasets, validation of several genes from each would require generation of at least 20 depletion strains and subsequent testing of each. Validation using a depletion system would therefore be a significant undertaking and is typically not the standard when using these approaches. However, should time permit then we will attempt a subset of these experiments.

      (2) Also, two mutations that both make the cells sick could provide an additive effect (i.e. dapF and BamB), which doesn't necessarily mean the pathways are linked. The authors should revise their wording. They have not shown genetic linkage in some cases.

      We will revise the text to address this.

      (3) Mutations throughout the manuscript are not complemented. It would be ideal to add complementation data to show the gene-phenotype relationship is specific.

      We thank the reviewers for highlighting this and will complete the complementation experiments.

      (4) Also, I would argue the term "conditionally essential genes" should be replaced with "synthetically lethal". Strains were compared in the same conditions but with different genetic backgrounds.

      We take the reviewers point and will revise the text accordingly.

      Reviewer 2 (Public Review):

      Weaknesses:

      (1) An important control in any genetic interaction study is to do complementation tests to demonstrate that the phenotype observed is indeed due to the missing gene under analysis. Although the Keio library was designed to avoid polar effects, it is impossible to predict other undesirable effects of the deletions (hitting of a non-annotated sRNA or RNA stability effects, for example). Thus, before one can safely conclude that a proposed genetic interaction is real, complementation tests should be carried out. This seems particularly important in the case of a new and surprising interaction, such as that between bamB and DNA replication and repair genes.

      We thank the reviewers for highlighting this and will complete the complementation experiments.

      (2) Why not include the suppressor interactions in the work? There are probably plenty, and in principle, they should be as informative as the conditional essential (or synthetic lethal) ones. The only one highlighted in the paper is that between bamB and diaA, since it nicely fits with the synthetic lethal effects with initiation inhibitors seqA and hda. Even if the authors cannot make sense of the suppressor interactions, their inclusion in the paper should make the dataset richer and more valuable to the community.

      These data are available in supplementary table 1. However, we appreciate this is not obvious and so will make a new supplementary table and include a brief description of the data for the revised paper.

      (3) The enrichment analysis in Figure 2B deserves some clarification. What is the meaning of gene ratio? How can single genes of a pathway yield an enrichment signal? Why weren´t seqA and hda included in the DNA replication class in 2B?

      We apologise for the confusion caused and will include a description of the analysis in the methods section.

      (4) The writing puts too much emphasis on demonstrating that bam lipoproteins and chaperones are specialized instead of fully redundant. However, I have the impression this is a long-settled conclusion in the field, as the manuscript itself describes at several points when reviewing the literature.

      We will revise the text to reduce this emphasis.

      Reviewer #3 (Public Review):

      In this work, Bryant, et al. investigate genetic interactions between non-essential members of the outer membrane protein biogenesis pathway and other genes in the genome using a transposon-directed insertion sequencing (TraDIS) approach in E. coli K-12. The authors identify interactions with other components of the envelope including LPS, peptidoglycan, and enterobacterial common antigen biogenesis, and they tie these interactions to specific members of the outer membrane biogenesis pathway. Although many of these interactions are known and have been previously investigated in the field, the study provides several synthetic phenotypes that could be useful for further investigations.

      The strengths of the paper include their unbiased, TraDIS approach, and follow up on the interactions they observe. The interactions with genes of unknown function also are of interest as they may suggest experiments to find the functions of these genes. The largest weakness of this paper is the use of a gene deletion allele for bamB that is known to be polar leading to decreased expression of an essential gene. This largely invalidates all results related to DNA replication. In addition, it is a weakness that the paper does not adequately address its place in the field through discussion of existing results on the interactions they investigate.

      We appreciate the reviewers’ comments and concerns about the bamB allele, and we will address these concerns by completing complementation experiments for the CRISPRi depletion experiments and the run-out assays. However, despite the statement that it is known to be polar, several previous studies have also used the bamB Keio library strain. Many of these studies transfer the allele to a clean background and use the derivative in which the cassette has been removed as we have done here (Cox et al., 2017, Gunasinghe et al., 2018, Psonis et al., 2019, Storek et al., 2019, Ranava et al. 2021, Steenhuis et al., 2021, Thewasano et al., 2023). Therefore, we feel somewhat justified in our choice of strain.

      We are unable to find a reference for the Keio bamB strain causing polar effects and would have appreciated the reviewers’ guidance here. However, we believe the concern about polar effects stems from the observations of Ruiz et al., (2005), in which it was observed that a yfgL::ISE1 allele causes polar effects. This was hypothesised to be due to the ORF contained within the IS being transcribed in the opposite orientation to yfgL and the downstream der gene. They subsequently observed that a strain carrying a Tn5KAN-I-SceI insertion in yfgL (yfgL::kan) did not cause polar effects and this was hypothesised to be due to the kan cassette being co-oriented with yfgL. In addition, Charlson et al., 2006 generated a yfgL deletion by replacing the majority of the gene with a kan cassette in a manner similar to that of the Keio library that was subsequently flipped out. This study also found no evidence of polar effects on der. In theory, the strain used here, and in previous studies by other groups, should provide minimal disruption to transcription through generation of a mini-gene from the original bamB sequence to maintain operon expression. This is in contrast to the disruption caused by the yfgL::ISE1 allele.

      While we do appreciate the concern, several pieces of evidence lend themselves to counter the statement that our strain choice largely invalidates the results. The der GTPase is essential, hence the concern about polar effects leading to the bamB phenotypes we see. However, depletion of der leads to cold sensitivity, whereas we find that the bamB strain used here actually performs better in colder temperatures. In addition, the der depletion is sensitive to doxycycline, whereas the bamB mutant has increased fitness in this condition (Fig 1) (Bharat and Brown, 2015, Hwang and Inouye, 2008). Hence, should the mutation lead to decreased expression of der then we would expect the bamB strain to phenocopy the der depletion, which it does not. Regardless of this information, we will still address these concerns by completing complementation experiments.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Weakness 1. Enhancing Reproducibility and Robustness: To enhance the reproducibility and robustness of the findings, it would be valuable for the authors to provide specific numbers of animals used in each experiment. Explicitly stating the penetrance of the rod-like neurocranial shape in dact1/2-/- animals would provide a clearer understanding of the consistency of this phenotype. 

      In Fig. 3 and Fig. 4 animal numbers were added to the figure and figure legend (line 1111). In Fig. 5 animal numbers were added to the figure. We now state that dact1/2-/- animals exhibit the rod-like neurocranial shape that is completely penetrant (Line 260). 

      Weakness 2. Strengthening Single-Cell Data Interpretation: To further validate the single-cell data and strengthen the interpretation of the gene expression patterns, I recommend the following: 

      -Provide a more thorough explanation of the rationale for comparing dact1/2 double mutants with gpc4 mutants.

      -Employ genotyping techniques after embryo collection to ensure the accuracy of animal selection based on phenotype and address the potential for contamination of wild-type "delayed" animals.

      -Supplement the single-cell data with secondary validation using RNA in situ or immunohistochemistry techniques. 

      An explanation of our rationale was added to the results section (Lines 391403) and a summary schematic was added to Figure 6 (panel A).

      Genotyping of the embryos was not possible but quality control analysis by considering the top 2000 most variable genes across the dataset showed good clustering by genotype, indicating the reproducibility of individuals in each group (See Supplemental Fig. 4).

      The gene expression profiles obtained in our single-cell data analysis for gpc4, dact1, and dact2 correlate closely with our in situ hybridization analyses. Further, our data is consistent with published zebrafish single-cell data. We validated our finding of increased capn8 expression in dact1/2 mutants by in situ hybridization. Therefore we are confident in the robustness of our single-cell data.  

      Weakness 3. Directly Investigating Non-Cell-Autonomous Effects: To directly assess the proposed non-cell-autonomous role of dact1/2, I suggest conducting transplantation experiments to examine the ability of ectodermal/neural crest cells from dact1/2 double mutants to form wild-type-like neurocranium.  

      The reviewer’s suggestion is an excellent experiment and something to consider for future work. Cell transplant experiments between animals of specific genotypes are challenging and require large numbers. It is not possible to determine the genotype of the donor and recipient embryos at the early timepoint of 1,000 cell stage where the transplants would have to be done in the zebrafish. So that each transplant will have to be carried out blind to genotype from a dact1+/-; dact2+/- or dact1-/-; dact2+/- intercross and then both animals have to be genotyped at a subsequent time point, and the phenotype of the transplant recipient be analyzed. While possible, this is a monumental undertaking and beyond the scope of the current study.

      Weakness 4. Further Elucidating Calpain 8's Role: To strengthen the evidence supporting the critical role of Calpain 8, I recommend conducting overexpression experiments using a sensitized background to enhance the statistical significance of the findings. 

      We thank the reviewer for their suggestion and have now performed capn8 overexpression experiments in embryos generated from dact1/2 double heterozygous breeding. We found a statistically significant effect of capn8 overexpression in the dact1+/-,dact2+/- fish (Lines 462-464 and Fig. 8C,D). 

      Minor Comments:  

      Comment: Creating the manuscript without numbered pages, lines, or figures makes orientation and referencing harder.  

      Revised

      Comment: Authors are inconsistent in the use of font and adverbs, which requires extra effort from the reader. ("wntIIf2 vs wnt11f2 vs wnt11f2l"; "dact1/2-/- vs dact1/dact2 -/-"; "whole-mount vs wholemount vs whole mount").  

      Revised throughout.

      Comment: Multiple sentences in the "Results" belong to the "Materials and Methods" or the "Discussion" section. 

      We have worked to ensure that sentences are within the appropriate sections of the manuscript.

      Comment: Abstract:

      "wnt11f2l" should be "wnt11f2"  

      Revised (Line 24).

      Comment: Main text:

      Page 5 - citation Waxman, Hocking et al. 2004 is used 3x without interruption any other citation. 

      Revised (Line 112).

      Page 9 - "dsh" mutant is mentioned once in the whole manuscript - is this a mistake?

      Revised, Rewritten (Line 196).

      Page 10 - Fig 2B does not show ISH.

      Revised (Line 229).

      Page 11 - "kyn" mutant is mentioned here for the first time but defined on page 15.

      Revised (Line 245). Now first described on page 4.

      Page 14 - "cranial CNN" should be CNCC.

      Revised. (Line 334)

      Page 16 - dact1/dact2/gpc4: Fig. 5C is used but it should be Fig 5E.

      Revised. (Line 381)

      Page 18 - dact1/2-/- or dact1-/-, dact2-/-. 

      Revised. (Line 428)

      Comment: Methods:

      Page 24 - ZIRC () "dot" is missing. ChopChop ")" is missing. "located near the 5' end of the gene" - In the Supplementary Figure 1 looks like in the middle of the gene.

      Revised. (Lines 600, 609, 611, respectively).

      Page 25 - WISH -not used in the main text.

      Revised. (Line 346).

      Page 26 - 4% (v/v) formaldehyde; at 4C - 4{degree sign}C; 50% (v/v) ethanol; 3% (w/v) methylcellulose.

      Revised. (Lines 659, 660, 662).

      Page 27 - 0.1% (w/v) BSA. 

      Revised. (Line 668).

      Comment: Discussion:

      The overall discussion requires more references and additional hypotheses. On page 20, when mentioning 'as single mutants develop normally,' does this refer to the entire animals or solely the craniofacial domain? Are these mutants viable? If they are, it's crucial to discuss this phenomenon in relation to prior morpholino studies and genetic compensation.

      Observing how the authors interpret previously documented changes in nodal and shh signaling would be beneficial. While Smad1 is discussed, what about other downstream genes? Is shh signaling altered in the dact1/2 double mutants? 

      We have revised the Discussion to include more references (Lines 473, 476, 483, 488, 491, 499, 501, 502, 510, 515, 529, 557, 558) and additional hypotheses (Lines 503-505, 511-519, 522-525). We have added more specific information regarding the single mutants (Lines 270-275, 480-493, Fig. S3). We have added discussion of other downstream genes, including smad1 (Lines 561-572) and shh (Lines 572-580).

      Comment: Figures:

      Appreciating differences between specimens when eyes were or were not removed is quite hard.

      Yes this was an unfortunate oversight, however, the key phenotype is the EP shown in the dissections.

      Fig 1. - wntIIf2 vs wnt11f2? C - Thisse 2001 - correct is Thisse et al. 2001.

      Revised typo in Fig 1. (And Line 1083).

      Fig 1E: These plots are hard to understand without previous and detailed knowledge. Authors should include at least some demarcations for the cephalic mesoderm, neural ectoderm, mesenchyme, and muscle. Missing color code.

      We have moved this data to supplementary figure S1 and have added labels of the relevant cell types and have added the color code.

      Comment:- Fig 2 - In the legend for C - "wildtype and dact2-/- mutant" and "dact1/2 mutant"; in the picture is dact1-/-, dact2-/-.

      Revised (Line 1105).

      Fig 2 - B - it is a mistake in 6th condition dact1: 2x +/+, heterozygote (+/-) is missing.

      Revised Figure 2B.

      Fig 4. - Typo in the legend: dact1/"t"2-/- .

      Revised. (Line 1127).

      Fig 8C - In my view, when the condition gfp mRNA says "0/197, " none of the animals show this phenotype. I assume the authors wanted to say that all the animals show this phenotype; therefore, "197/197" should be used.

      We have removed this data from the figure as there were concerns by the reviewers regarding reproducibility. 

      Fig S1 - Missing legend for the 28 + 250, 380 + 387 peaks? RT-qPCR - is not mentioned in the Materials and Methods. In D - ratio of 25% (legend), but 35% (graph).

      Revised.(Line 1203, Line 625, Line 1213, respectively).

      Fig S2 - The word "identified" - 2x in one sentence. 

      Revised. (Line 1230).

      Reviewer #2 (Public Review):

      Weakness(1) While the qualitative data show altered morphologies in each mutant, quantifications of these phenotypes are lacking in several instances, making it difficult to gauge reproducibility and penetrance, as well as to assess the novel ANC forms described in certain mutants.  

      In Fig. 3 and Fig. 4 animal numbers were added to the figure legend. In Fig. 5 animal numbers were added to the figure to demonstrate reproducibility. We now state that dact1/2-/- animals exhibit the rod-like neurocranial shape that is completely penetrant (Line 260). As the altered morphologies that we report are qualitatively significant from wildtype we did not find it necessary to make quantitative measurements. For experiments in which it was necessary to in-cross triple heterozygotes (Fig 3, Fig. 5), we dissected and visually analyzed the ANC of at least 3 compound mutant individuals. At least one individual was dissected for the previously published or described genotypes/phenotypes (i.e. wt, wntllf2-/-, dact1/2-/-, gpc4-/-, wls/-). We realize quantitative measurements may identify subtle differences between genotypes. However, the sheer number of embryos needed to generate these relatively rare combinatorial genotypes and the amount of genotyping required prevented quantitative analyses. 

      Weakness 2) Germline mutations limit the authors' ability to study a gene's spatiotemporal functional requirement. They therefore cannot concretely attribute nor separate early-stage phenotypes (during gastrulation) to/from late-stage phenotypes (ANC morphological changes). 

      We agree that we cannot concretely attribute nor separate early and latestage phenotypes. Conditional mutants to provide temporal or cell-specific analysis are beyond the scope of this work. Here we speculate based on evidence obtained by comparing and contrasting embryos with grossly similar early phenotypes and divergent late-stage phenotypes. We believe our findings contribute to the existing body of literature on zebrafish mutants with both early convergent extension defects and craniofacial abnormalities.   

      Weakness (3) Given that dact1/2 can regulate both canonical and non-canonical wnt signaling, this study did not specifically test which of these pathways is altered in the dact1/2 mutants, and it is currently unclear whether disrupted canonical wnt signaling contributes to the craniofacial phenotypes, even though these phenotypes are typical non-canonical wnt phenotypes. 

      Previous literature has attributed canonical wnt, non-canonical wnt, and nonwnt functions to dact, and each of these likely contributes to the dact mutant phenotype (Lines 87-89). We performed cursory analyses of tcf/lef:gfp expression in the dact mutants and did not find evidence to support further analysis of canonical wnt signaling in these fish. Single-cell RNAseq did not identify differential expression of any canonical or non-canonical wnt genes in the dact1/2 mutants.

      Further research is needed to parse out the intracellular roles of dact1 and dact2 in response to wnt and tgf-beta signaling. Here we find that dact may also have a role in calcium signaling, and further experiments are needed to elaborate this role.      

      Weakness (4) The use of single-cell RNA sequencing unveiled genes and processes that are uniquely altered in the dact1/2 mutants, but not in the gpc4 mutants during gastrulation. However, how these changes lead to the manifested ANC phenotype later during craniofacial development remains unclear. The authors showed that calpain 8 is significantly upregulated in the mutant, but the fact that only 1 out of 142 calpainoverexpressing animals phenocopied dact1/2 mutants indicates the complexity of the system. 

      To further test whether capn8 overexpression may contribute to the ANC phenotype we performed overexpression experiments in the resultant embryos of dact1/dact2 double het incross. We found the addition of capn8 caused a small but statistically significant occurrence of the mutant phenotype in dact1/2 double heterozygotes (Fig.8D). We agree with the reviewer that our results indicate a complex system of dysregulation that leads to the mutant phenotype. We hypothesize that a combination of gene dysregulation may be required to recapitulate the mutant ANC phenotype. Further, as capn8 activity is regulated by calcium levels, overexpression of the mRNA alone likely has a small effect on the manifestation of the phenotype. 

      Weakness (5) Craniofacial phenotypes observed in this study are attributed to convergent extension defects but convergent extension cell movement itself was not directly examined, leaving open if changes in other cellular processes, such as cell differentiation, proliferation, or oriented division, could cause distinct phenotypes between different mutants. 

      Although convergent extension cell movements were not directly examined, our phenotypic analyses of the dact1/2 mutant are consistent with previous literature where axis extension anomalies were attributed to defects in convergent extension (Waxman 2004, Xing 2018, Topczewski 2001). We do not attribute the axis defect to differentiation differences as in situ analyses of established cell type markers show the existence of these cells, only displaced relative to wildtype (Figure 1). We agree that we cannot rule out a role for differences in apoptosis or proliferation however, we did not detect transcriptional differences in dact1/2 mutants that would indicate this in the single-cell RNAseq dataset. Defects in directed division are possible, but alone would not explain that dact1/2 mutant phenotype, particularly the widened dorsal axis (Figure 1).

      Major comments:  

      Comment (1) The author examined and showed convergent extension phenotype (CE) during body axis elongation in dact1/dact2-/- homozygous mutants. Given that dact2-/- single mutants also displayed shortened axis, the authors should either explain why they didn't analyze CE in dact2-/- (perhaps because that has been looked at in previously published dact2 morphants?) or additionally show whether CE phenotypes are present in dact1 and dact2 single mutants.  

      The authors should quantify the CE phenotype in both dact2-/- single mutants and dact1/dact2-/- double mutants, and examine whether the CE phenotypes are exacerbated in the double mutants, which may lend support to the authors' idea that dact1 can contribute to CE. The authors stated in the discussion that they "posit that dact1 expression in the mesoderm is required for dorsal CE during gastrulation through its role in noncanonical Wnt/PCP signaling". However, no evidence was presented in the paper to show that dact1 influences CE during body axis elongation.  

      Because any axis shortening in shortening in dact2-/- single mutants was overcome during the course of development and at 5 dpf there was no noticeable phenotype, we did not analyze the single mutants further.  

      We have added data to demonstrate the resulting phenotype of each combinatorial genotype to provide a more clear and detailed description of the single and compound mutants (Fig. S3). 

      Our hypothesis that dact1 may contribute to convergent extension is based on its apparent ability to compensate (either directly or indirectly) for dact2 loss in the dact2-/- single mutant. 

      Comment (2) Except in Fig. 2, I could not find n numbers given in other experiments. It is therefore unclear if these mutant phenotypes were fully or partially penetrant. In general, there is also a lack of quantifications to help support the qualitative results. For example, in Fig. 4, n numbers should be given and cell movements and/or contributions to the ANC should be quantified to statistically demonstrate that the second stream of CNCC failed to contribute to the ANC.  

      Similarly, while the fan-shaped and the rod-shaped ANCs are very distinct, the various rod-shaped ANCs need to be quantified (e.g. morphometry or measurements of morphological features) in order for the authors to claim that these are "novel ANC forms", such as in the dact1/2-/-, gpc4/dact1/2-/-, and wls/dact1/2-/- mutants (Fig. 5).  

      We have added n numbers for each experiment and stated that the rod-like phenotype of the dact1/2-/- mutant was fully penetrant. 

      Regarding CNCC experiments, we repeated the analysis on 3 individual controls and mutants and did not find evidence that CNCC migration was directly affected in the dact1/2 mutant. Rather, differences in ANC development are likely secondary to defects in floor plate and eye field morphometry. Therefore we did not do any further analyses of the CNCCs.

      Regarding figure 5, we have added n numbers. We dissected and analyzed a minimum of three triple mutants (dact1/2-/-,gpc4-/- and dact1/2-/-,wls-/-) and numerous dact1/s double mutants and found that the triple mutant ANC phenotype was consistent and recognizably different enough from the dact1/2-/-, or gpc4 or wls single mutant that morphometry measurements were not needed. Further, the triple mutant phenotype (narrow and shortened) appears to be a simple combination of dact1/2 (narrow) and gpc4/wls (shortened) phenotypes. As we did not find evidence of genetic epistasis, we did not analyze the novel ANC forms further.

      Comment (3): The authors have attributed the ANC phenotypes in dact1/2-/- to CE defects and altered noncanonical wnt signaling. However, no evidence was presented to support either. The authors can perhaps utilize diI labelling, photoconversionmediated lineage tracing, or live imaging to study cell movement in the ANC and compare that with the cell movement change in the gpc4-/- , and gpc4/dact1/2-/- mutants in order to first establish that dact1/2 affect CE and then examine how dact1/2 mutations can modulate the CE phenotypes in gpc4-/- mutants.  

      Concurrently, given that dact1 and dact2 can affect (perhaps differentially) both canonical and non-canonical wnt signaling, the authors are encouraged to also test whether canonical wnt signaling is affected in the ANC or surrounding tissues, or at minimum, discuss the potential role/contribution of canonical wnt signaling in this context.  

      Given the substantial body of research on the role of noncanonical wnt signaling and planar cell polarity pathway on convergent extension during axis formation (reviewed by Yang and Mlodzik 2015, Roszko et al., 2009) and the resulting phenotypes of various zebrafish mutants (i.e. Xing 2018, Topczewski 2001), including previous research on dact1 and 2 morphants (Waxman 2004), we did not find it necessary to analyze CE cell movements directly.  

      Our finding that CNCC migration was not defective in the dact1/2 mutants and the knowledge that various zebrafish mutants with anterior patterning defects (slb, smo, cyc) have a similar craniofacial abnormality led us to conclude that the rod-like ANC in the dact1/2 mutant was secondary to an early patterning defect (abnormal eye field morphology). Therefore, testing dact1/2 and convergent extension or wnt signaling in the ANC itself was not an aim of this paper.  

      Comment (4) The authors also have not ruled out other possibilities that could cause the dact1/2-/- ANC phenotype. For example, increased cell death or reduced proliferation in the ANC may result in the phenotype, and changes in cell fate specification or differentiation in the second CNCC stream may also result in their inability to contribute to the ANC. 

      We agree that we cannot rule out whether cell death or proliferation is different in the dact1/2 mutant ANC. However, because we do not find the second CNCC stream within the ANC, this is the most likely explanation for the abnormal ANC shape. Because the first stream of CNCC are able to populate the ANC and differentiate normally, it is most likely that the inability of the second stream to populate the ANC is due to steric hindrance imposed by the abnormal cranial/eye field morphology. These hypotheses would need to be tested, ideally with an inducible dact1/2 mutant, however, this is beyond the scope of this paper.     

      Comment (5) The last paragraph of the section "Genetic interaction of dact1/2 with Wnt regulators..." misuses terms and conflates phenotypes observed. For instance, the authors wrote "dact2 haploinsuffciency in the context of dact1-/-; gpc4-/- double mutant produced ANC in the opposite phenotypic spectrum of ANC morphology, appearing similar to the gpc4-/- mutant phenotype". However, if heterozygous dact2 is not modulating phenotypes in this genetic background, its function is not "haploinsuffcient". The authors then said, "These results show that dact1 and dact2 do not have redundant function during craniofacial morphogenesis, and that dact2 function is more indispensable than dact1". However this statement should be confined to the context of modulating gpc4 phenotypes, which is not clearly stated. 

      Revised (Lines 380, 382).   

      Comment (6) For the scRNA-seq analysis, the authors should show the population distribution in the UMAP for the 3 genotypes, even if there are no obvious changes. The authors are encouraged, although not required, to perform pseudotime or RNA velocity analysis to determine if differentiation trajectories are changed in the NC populations, in light of what they found in Fig. 4. The authors can also check the expression of reporter genes downstream of certain pathways, e.g. axin2 in canonical wnt signaling, to query if these signaling activities are changed (also related to point #3 above). 

      We have added population distribution data for the 3 genotypes to Supplemental Figure 4. Although RNA velocity analysis would be an interesting additional analysis, we would hypothesize that the NC population is not driving the differences in phenotype. Rather these are likely changes in the anterior neural plate and mesoderm. 

      Comment (7) While the phenotypic difference between gpc4-/- and dact1/2-/- are in the ANC at a later stage, ssRNA-seq was performed using younger embryos. The authors should better explain the rationale and discuss how transcriptomic differences in these younger embryos can explain later phenotypes. Importantly, dact1, dact2, and capn8 expression were not shown in and around the ANC during its development and this information is crucial for interpreting some of the results shown in this paper. For example, if dact1 and dact2 are expressed during ANC development, they may have specific functions during that stage. Alternatively, if dact1 and dact2 are not expressed when the second stream CNCCs are found to be outside the ANC, then the ANC phenotype may be due to dact1/2's functions at an earlier time point. The author's statement in the discussion that "embryonic fields determined during gastrulation effect the CNCC ability to contribute to the craniofacial skeleton" is currently speculative. 

      We have reworded our rationale and hypothesis to increase clarity (Lines 391-405). We believe that the ANC phenotype of the dact1/2 mutants is secondary to defective CE and anterior axis lengthening, as has been reported for the slb mutant (Heisenberg 1997, 2000). We utilized the gpc4 mutant as a foil to the dact1/2 mutant, as the gpc4 mutant has defective CE and axis extension without the same craniofacial phenotype.

      We have added dact1 and dact2 WISH of 24 and 48 hpf (Fig1. D,E) to show expression during ANC development. 

      Comment (8) The functional testing of capn8 did not yield a result that would suggest a strong effect, as only 1 in 142 animals phenocopied dact1/2. Therefore, while the result is interesting, the authors should tone down its importance. Alternatively, the authors can try knocking down capn8 in the dact1/2 mutants to test how that affects the CE phenotype during axis elongation, as well as ANC morphogenesis. 

      As overexpression of capn8 in wildtype animals did not result in a significant phenotype, we tested capn8 overexpression in compound dact1/2 mutants as these have a sensitized background. We found a small but statistically significant effect of exogenous capn8 in dact1+/-,dact2+/- animals. While the effect is not what one would expect comparing to Mendelian genetic ratios, the rod-like ANC phenotype is an extreme craniofacial dysmorphology not observed in wildtype or mRNA injected embryos hence significant. The experiment is limited by the available technology of over-expressing mRNA broadly without temporal or cell specificity control. It is possible that if capn8 over-expression was restricted to specific cells (floor plate, notochord or mesoderm) and at the optimal time period during gastrulation/segmentation that the aberrant ANC phenotype would be more robust. We agree with the reviewer that although the finding of a new role for capn8 during development is interesting, its importance in the context of dact should be toned down and we have altered the manuscript accordingly (Lines 455-467).  

      Comment (9) A difference between the two images in Fig. 8B is hard to distinguish.

      Consider showing flat-mount images. 

      We have added flat-mount images to Fig. 8B

      Minor comments:

      Comment (1) wnt11f2 is spelled incorrectly in a couple of places, e.g. "wnt11f2l" in the abstract and "wntllf2" in the discussion. 

      Revised throughout.

      Comment (2) For Fig. 1D, the white dact1 and yellow dact2 are hard to distinguish in the merged image. Consider changing one of their colors to a different one and only merge dact1 and dact2 without irf6 to better show their complementarity.  

      We agree with the reviewer that the expression patterns of dact1 and dact2 are difficult to distinguish in the merged image. We have added outlines of the cartilage elements to the images to facilitate comparisons of dact1 and dact2 expression (Fig 1F). 

      Comment (3) For Fig. 1E, please label the clusters mentioned in the text so readers can better compare expressions in these cell populations.  

      We have moved this data to supplementary figure S1 and have added labels.

      Comment (4) The citing and labelling of certain figures can be more specific. For example, Fig. S1A, B, and Fig. S1C should be used instead of just Fig. S1 (under the section titled dact1 and dact2 contribute to axis extension...". Similarly, Fig. 4 can be better labeled with alphabets and cited at the relevant places in the text.  

      We have modified the labeling of the figures according to the reviewer’s suggestion (Fig S2 (previously S1), Fig4) and have added reference to these labels in the text (Lines 202, 204, 212, 328, 334, 336). 

      Comment (5) For Fig. 2B, the (+/+,-/-) on x-axis should be (+/-,-/-).  

      Revised in Figure 2B.

      Comment (6) Several figures are incorrectly cited. Fig. 2C is not cited, and the "Fig. 2C" and "Fig. 2D" cited in the text should be "Fig. 2D" and "Fig. 2E" respectively. Similarly, Fig. 5C and D are not cited in the text and the cited Fig. 5C should be 5E. The VC images in Fig. 5 are not talked about in the text. Finally, Fig. 7C was also not mentioned in the text.  

      We have corrected the labeling and have added descriptions of each panel in the Results (Fig.2 Line 231, 237, 242, Fig 5 Line 373, 381, Fig 7 line 431). 

      Comment (7) In the main text, it is indicated that zebrafish at 3ss were used for ssRNAseq, but in the figure legend, it says 4ss. 

      Revised (Line 682)

      Comment (8) No error bars in Fig. S1B and the difference between the black and grey shades in Fig. S1D is not explained.  

      Error bars are not included in the graphs of qPCR results (now Fig S2C) as these are results of a pool of 8 embryos performed one time. We have added a legend to explain the gray vs. black bars (now Fig S2E). 

      Reviewer #3 (Public Review):  

      Weaknesses: The hypotheses are very poorly defined and misinterpret key previous findings surrounding the roles of wnt11 and gpc4, which results in a very confusing manuscript. Many of the results are not novel and focus on secondary defects. The most novel result of overexpressing calpain8 in dact1/2 mutants is preliminary and not convincing.  

      We apologize for not presenting the question more clearly. The Introduction was revised with particular attention to distinguish this work using genetic germline mutants from prior morpholino studies. Please refer to pages 4-5, lines 106-121.

      Weakness 1) One major problem throughout the paper is that the authors misrepresent the fact that wnt11f2 and gpc4 act in different cell populations at different times. Gastrulation defects in these mutants are not similar: wnt11 is required for anterior mesoderm CE during gastrulation but not during subsequent craniofacial development while gpc4 is required for posterior mesoderm CE and later craniofacial cartilage morphogenesis (LeClair et al., 2009). Overall, the non-overlapping functions of wnt11 and gpc4, both temporally and spatially, suggest that they are not part of the same pathway.  

      We have reworded the text to add clarity. While the loss of wnt11 versus the loss of gpc4 may affect different cell populations, the overall effect is a shortened body axis. We stressed that it is this similar impaired axis elongation phenotype but discrepant ANC morphology phenotypes in the opposite ends of the ANC morphologic spectrum that is very interesting and leads us to investigate dact1/2 in the genetic contexts of wnt11f2 and gpc4.  Pls refer to page 4, lines 73-84. Further, the reviewer’s comment that wnt11 and gpc4 are spatially and temporally distinct is untested. We think the reviewer’s claim of gpc4 acting in the posterior mesoderm refers to its requirement in the tailbud (Marlow 2004). However this does not exclude gpc4 from acting elsewhere as well. Further experiments would be necessary. Both wnt11f2 and gpc4 regulate non-canonical wnt signaling and are coexpressed during some points of gastrulation and CF development (Gupta et al., 2013; Sisson 2015). This data supports the possibility of overlapping roles. 

      Weakness 2) There are also serious problems surrounding attempts to relate single-cell data with the other data in the manuscript and many claims that lack validation. For example, in Fig 1 it is entirely unclear how the Daniocell scRNA-seq data have been used to compare dact1/2 with wnt11f2 or gpc4. With no labeling in panel 1E of this figure these comparisons are impossible to follow. Similarly, the comparisons between dact1/2 and gpc4 in scRNA-seq data in Fig. 6 as well as the choices of DEGs in dact1/2 or gpc4 mutants in Fig. 7 seem arbitrary and do not make a convincing case for any specific developmental hypothesis. Are dact1 and gpc4 or dact2 and wnt11 coexpressed in individual cells? Eyeballing similarity is not acceptable.  

      We have moved the previously published Daniocell data to Figure S1 and have added labeling. These data are meant to complement and support the WISH results and demonstrate the utility of using available public Daniocell data. Please recommend how we can do this better or recommend how we can remediate this work with specific comment. 

      Regarding our own scRNA-seq data, we have added rationale (line 391-403) and details of the results to increase clarity (Lines 419-436). We have added a panel to Figure 6 (panel A) to help illustrate or rationale for comparing dact1/2 to gpc4 mutants to wt. The DEGs displayed in Fig.7A are the top 50 most differentially expressed genes between dact1/2 mutants and WT (Figure 7 legend, line 422-424).   

      We have looked at our scRNA-seq gene expression results for our clusters of interest (lateral plate mesoderm, paraxial mesoderm, and ectoderm). We find dact1, dact2, and gpc4 co-expression within these clusters. Knowing whether these genes are coexpressed within the same individual cell would require going back and analyzing the raw expression data. We do not find this to be necessary to support our conclusions. The expression pattern of wnt11f2 is irrelevant here.   

      Weakness 3) Many of the results in the paper are not novel and either confirm previous findings, particularly Waxman et al (2004), or even contradict them without good evidence. The authors should make sure that dact2 loss-of-function is not compensated for by an increase in dact1 transcription or vice versa. Testing genetic interactions, including investigating the expression of wnt11f2 in dact1/2 mutants, dact1/2 expression in wnt11f2 mutants, or the ability of dact1/2 to rescue wnt11f2 loss of function would give this work a more novel, mechanistic angle.

      We clarified here that the prior work carried out by Waxman using morppholinos, while acceptable at the time in 2004, does not meet the rigor of developmental studies today which is to generate germline mutants. The reviewer’s acceptance of the prior work at face value fails to take the limitation of prior work into account. Further, the prior paper from Waxman et al did not analyze craniofacial morphology other than eyeballing the shape of the head and eyes. Please compare the Waxman paper and this work figure for figure and the additional detail of this study should be clear. Again, this is by no means any criticism of prior work as the prior study suffered from the technological limitations of 2004, just as this study also is the best we can do using the tools we have today. Any discrepancies in results are likely due to differences in morpholino versus genetic disruption and most reviewers would favor the phenotype analysis from the germline genetic context. We have addressed these concerns as objectively as we can in the text (Lines 482-493). The fact that dact1/2 double mutants display a craniofacial phenotype while the single mutants do not, suggests compensation (Lines 503-505), but not necessarily at the mRNA expression level (Fig. S2C). 

      This paper tests genetic interaction through phenotyping the wntll/dact1/dact2 mutant.

      Our results support the previous literature that dact1/2 act downstream of wnt11 signaling. There is no evidence of cross-regulation of gene expression. We do not expect that changes in wnt11 or dact would result in expression changes in the others.

      RNA-seq of the dact1/2 mutants did not show changes in wnt11 gene expression. Unless dact1 and/or dact2 mRNA are under expressed in the wnt11 mutant, we would not expect a rescue experiment to be informative. And as wnt11 is not a focus of this paper, we have not performed the experiment.  

      Weakness 4) The identification of calpain 8 overexpression in Dact1/2 mutants is interesting, but getting 1/142 phenotypes from mRNA injections does not meet reproducibility standards.

      As the occurrence of the mutant phenotype in wildtype animals with exogenous capn8 expression was below what would meet reproducibility standards, we performed an additional experiment where capn8 was overexpressed in embryos resulting from dact1/dact2 double heterozygotes incross (Fig. 8). We reasoned that an effect of capn8 overexpression may be more robust on a sensitized background. We found a statistically significant effect of capn8 in dact1/2 double heterozygotes, though the occurrence was still relatively rare (6/80). These data suggest dysregulation of capn8 contributes to the mutant ANC phenotype, though there are likely other factors involved. 

      Comment: The manuscript title is not representative of the findings of this study.  

      We revised the title to strictly describe that we generated and carried out genetic analysis in loss of function compound mutants (Genetic requirement) and that we found capn8 was important which modified this requirement.

      Introduction: p.4:

      Comment: Anterior neurocranium (ANC) - it has to be stated that this refers to the combined ethmoid plate and trabecular cartilages. 

      Thank you, we agree that the ANC and ethmoid plate terminology has been confusing in the literature and we should endeavor to more clearly describe that the phenotypes in question are all in the ethmoid plate and the trabeculae are not affected. ANC has been replaced with ethmoid plate (EP) throughout the manuscript and figures. We also describe that all the observed phenotypes affect the ethmoid plate and not the trabeculae, (pages 13, Lines 265-267).

      Comment: Transverse dimension is incorrect terminology - replace with medio-lateral.

      Revised (Lines 69, 74).

      Comment: Improper way of explaining the relationship between mutant and gene..."Another mutant knypek, later identified as gpc4..." a better  way to explain this would be that the knypek mutation was found to be a non-sense mutation in the gpc4 gene.  

      Revised (Line 71)

      Comment: "...the gpc4 mutant formed an ANC that is wider in the transverse dimension than the wildtype, in the opposite end of the ANC phenotypic spectrum compared to wnt11f2...These observations beg the question how defects in early patterning and convergent extension of the embryo may be associated with later craniofacial morphogenesis."

      This statement is broadly representative of the general failure to distinguish primary from secondary defects in this manuscript. Focusing on secondary defects may be useful to understand the etiology of a human disease, but it is misleading to focus on secondary defects when studying gene function. The rod-like ethmoid of slb mutant results from a CE defect of anterior mesoderm during gastrulation(Heisenberg et al. 1997, 2000), while the wide ethmoid plate of kny mutants results from CE defects of cartilage precursors (Rochard et al., 2016). Based on this evidence, wnt11f2 and gpc4 act in different cell populations at different times.  

      It is true that the slb mutant craniofacial phenotype has been stated as secondary to the CE defect during gastrulation and the kny phenotype as primary to chondrocyte CE defects in the ethmoid, however the direct experimental evidence to conclude only primary or only secondary effects does not yet exist. There is no experiment to our knowledge where wnt11f2 was found to not affect ethmoid chondrocytes directly. Likewise, there is no experiment having demonstrated that dysregulated CE in gpc4 mutants does not contribute to a secondary abnormality in the ethmoid. 

      Here, we are analyzing the CE and craniofacial phenotypes of the dact1/2 mutants without any assumptions about primary or secondary effects and without drawing any conclusions about wnt11f2 or gpc4 cellular mechanisms.     

      Comment: "The observation that wnt11f2 and gpc4 mutants share similar gastrulation and axis extension phenotypes but contrasting ANC morphologies supports a hypothesis that convergent extension mechanisms regulated by these Wnt pathway genes are specific to the temporal and spatial context during embryogenesis."

      This sentence is quite vague and potentially misleading. The gastrulation defects of these 2 mutants are not similar - wnt11 is required for anterior mesoderm CE during gastrulation and has not been shown to be active during subsequent craniofacial development while gpc4 is required for posterior mesoderm CE and craniofacial cartilage morphogenesis (LeClair et al., 2009). Here again, the non-spatially overlapping functions of wnt11 and gpc4 suggest that are not part of the same pathway.  

      Though the cells displaying defective CE in wnt11f2 and gpc4 mutants are different, the effects on the body axis are similar. The dact1/2 showed a similar axis extension defect (grossly) to these mutants. Our aim with the scRNA-seq experiment was to determine which cells and gene programs are disrupted in dact1/2 mutants. We found that some cell types and programs were disrupted similarly in dact1/2 mutants and gpc4 mutants, while other cells and programs were specific to dact1/2 versus gpc4 mutants. We can speculate that these that were specific to dact1/2 versus gpc4 may be attributed to CE in the anterior mesoderm, as is the case for wnt11. 

      p.5

      Comment: "We examined the connection between convergent extension governing gastrulation, body axis segmentation, and craniofacial morphogenesis." A statement focused on the mechanistic findings of this paper would be welcome here, instead of a claim for a "connection" that is vague and hard to find in the manuscript.  

      We have rewritten this statement (Line 125).

      p.7 Results:

      Comment: It is unclear why Farrel et al., 2018 and Lange et al., 2023 are appropriate references for WISH. Please justify or edit.  

      This was a mistake and has been edited (Page 9).

      Comment: " Further, dact gene expression was distinct from wnt11f2." This statement is inaccurate in light of the data shown in Fig1A and the following statements - please edit to reflect the partially overlapping expression patterns.  

      We have edited to clarify (Lines 142-143).

      p.8

      Comment: "...we examined dact1 and 2 expression in the developing orofacial tissues. We found that at 72hpf..." - expression at 72hpf is not relevant to craniofacial morphogenesis, which takes place between 48h-60hpf (Kimmel et al., 1998; Rochard et al., 2016; Le Pabic et al., 2014).  

      We have included images and discussion of dact1 and dact2 expression at earlier time points that are important to craniofacial development (Lines 160-171)(Fig 1D,E). 

      Comment: "This is in line with our prior finding of decreased dact2 expression in irf6 null embryos". - This statement is too vague. How are th.e two observations "in line".  

      We have removed this statement from the manuscript.

      Comment: Incomplete sentence (no verb) - "The differences in expression pattern between dact1 and dact2...".  

      Revised (Line 172).

      Comment: "During embryogenesis..." - Please label the named structures in Fig.1E.

      Please be more precise with the described expression time. Also, it would be useful to integrate the scRNAseq data with the WISH data to create an overall picture instead of treating each dataset separately.  

      We have moved the previously published Daniocell data to supplementary figure S1 and have labeled the key cell types. 

      p.9

      Comment: "The specificity of the gene disruption was demonstrated by phenotypic rescue with the injection of dact1 or dact2 mRNA (Fig. S1)." - please describe what is considered a phenotypic rescue.

      -The body axis reduction of dact mutants needs to be documented in a figure. Head pictures are not sufficient. Is the head alone affected, or both the head and trunk/tail? Fig.2E suggests that both head and trunk/tail are affected - please include a live embryos picture at a later stage.  

      We have added a description of how phenotypic rescue was determined (Line 208). We have added a figure with representative images of the whole body of dact1/2 mutants. Measurements of body length found a shortening in dact1/2 double mutants versus wildtype, however differences were not found to be significantly different by ANOVA (Fig. 3C, Fig. S3, Line 270-275).

      p. 11

      Comment: "These dact1-/-;dact2-/- CE phenotypes were similar to findings in other Wnt mutants, such as slb and kny (Heisenberg, Tada et al., 2000; Topczewski, Sepich et al., 2001)." The similarity between slb and kny phenotypes should be mentioned with caution as CE defects affect different regions in these 2 mutants. It is misleading to combine them into one phenotype category as wnt11 and gpc4 are most likely not acting in the same pathway based on these spatially distinct phenotypes.  

      Here we are referring to the grossly similar axis extension defects in slb and kny mutants. We refer to these mutants to illustrate that dact1 and or 2 deficiency could affect axis extension through diverse mechanisms. We have added text for clarity (Lines 249-252).  

      Comment: "No craniofacial phenotype was observed in dact1 or dact2 single mutants. However, in-crossing to generate [...] compound homozygotes resulted in dramatic craniofacial deformity."

      This result is intriguing in light of (1) the similar craniofacial phenotype previously reported by Waxman et al (2004) using morpholino- based knock-down of dact2, and the phenomenon of genetic compensation demonstrated by Jakutis and Stainier 2001 (https://doi.org/10.1146/annurev-genet-071719-020342). The authors should make sure that dact2 loss-of-function is not compensated for by an increase in dact1 transcription, as such compensation could lead to inaccurate conclusions if ignored.  

      We agree with the reviewer that genetic compensation of dact2 by dact1 likely explains the different result found in the dact2 morphant versus CRISPR mutant. We found increased dact1 mRNA expression in the dact2-/- mutant (Fig S2X) however a more thorough examination is required to draw a conclusion. Interestingly, we found that in wildtype embryos dact1 and dact2 expression patterns are distinct though with some overlap. It would be informative to investigate whether the dact1 expression pattern changes in dact2-/- mutants to account for dact2 loss.   

      Comment: "Lineage tracing of NCC movements in dact1/2 mutants reveals ANC composition" - the title is misleading - ANC composition was previously investigated by lineage tracing (Eberhardt et al., 2006; Wada et al., 2005).  

      This has been reworded (Line 292)

      p.13

      Comment: There is no frontonasal prominence in zebrafish.  

      This is true, texts have been changed to frontal prominence.  (Lines 293,

      299, 320)

      Comment: The rationale for investigating NC migration in mutants where there is a gastrula-stage failure of head mesoderm convergent extension is unclear. The whole head is deformed even before neural crest cells migrate as the eye field does not get split in two (Heisenberg et al., 1997; 2000), suggesting that the rod-like ethmoid plate is a secondary defect of this gastrula-stage defect. In addition, neural crest migration and cartilage morphogenesis are different processes, with clear temporal and spatial distinctions.  

      We carried out the lineage tracing experiment to determine which NC streams contributed to the aberrantly shaped EP, whether the anteromost NC stream frontal prominence, the second NC stream of maxillary prominence, or both.  We found that the anteromost NCC did contribute to the rod-like EP, which is different from when hedgehod signaling is disrupted,  So while it is possible that the gastrula-effect head mesoderm CE caused a secondary effect on NC migration, how the anterior NC stream and second NC stream are affected differently between dact1/2 and shh pathway is interesting.  We added discussion of this observation to the manuscript (page 23, Lines 514-520). 

      p. 14-16

      Comment: Based on the heavy suspicion that the rod-like ethmoid plate of the dact1/2 mutant results from a gastrulation defect, not a primary defect in later craniofacial morphogenesis, the prospect of crossing dact1/2 mutants with other wnt-pathway mutants for which craniofacial defects result from craniofacial morphogenetic defects is at the very least unlikely to generate any useful mechanistic information, and at most very likely to generate lots of confusion. Both predictions seem to take form here.  

      However, the ethmoid plate phenotype observed in the gpc4-/-; dact1+/-; dact2-/- mutants (Fig. 5E) does suggest that gpc4 may interact with dact1/2 during gastrulation, but that is the case only if dact1+/-; dact2-/- mutants do not have an ethmoid cartilage defect, which I could not find in the manuscript. Please clarify.  

      The perspective that the rod-like EP of the dact1/2 is due to gastrulation defect is being examined here. Why would other mutants such as wnt11f2 and gpc4 that have gastrulation CE defects have very different EP morphology, whether primary or secondary NCC effect?  Further dact1 and dact2 were reported as modifiers of Wnt signaling, so it is logical to genetically test the relationship between dact1, dact2, wnt11f2, gpc4 and wls. The experiment had to be done to investigate how these genetic combinations impact EP morphology. This study found that combined loss of dact1, dact2 and wls or gpc4 yielded new EP morphology different than those previously observed in either dact1/2, wls, gpc4, or any other mutant is important, suggesting that there are distinct roles for each of these genes contributing to facial morphology, that is not explained by CE defect alone.   

      Comment: I encourage the authors to explore ways to test whether the rod-like ethmoid of dact1/2 mutants is more than a secondary effect of the CE failure of the head mesoderm during gastrulation. Without this evidence, the phenotypes of dact1/2 -gpc4 or - wls are not going to convince us that these factors actually interact.  

      Actually, we find our results to support the hypothesis that the ethmoid of the dact1/2 mutants is a secondary effect of defective gastrulation and anterior extension of the body axis. However, our findings suggest (by contrasting to another mutant with impaired CE during gastrulation) that this CE defect alone cannot explain the dysmorphic ethmoid plate. Our single-cell RNA seq results and the discovery of dysregulated capn8 expression and proteolytic processes presents new wnt-regulated mechanisms for axis extension.    

      p. 20 Discussion

      Comment: "Here we show that dact1 and dact2 are required for axis extension during gastrulation and show a new example of CE defects during gastrulation associated with craniofacial defects."

      Waxman et al. (2004) previously showed that dact2 is involved in CE during gastrulation.

      Heisenberg et al. (1997, 2000), previously showed with the slb mutant how a CE defect during gastrulation causes a craniofacial defect.  

      The Waxman paper using morpholino to disrupt dact2 is produced limited analysis of CE and no analysis of craniofacial morphogenesis. We generated genetic mutants here to validate the earlier morpholino results and to analyze the craniofacial phenotype in detail. We have removed the word “new” to make the statement more clear (Line 475).

      Comment: "Our data supports the hypothesis that CE gastrulation defects are not causal to the craniofacial defect of medially displaced eyes and midfacial hypoplasia and that an additional morphological process is disrupted."

      It is unclear to me how the authors reached this conclusion. I find the view that medially displaced eyes and midfacial hypoplasia are secondary to the CE gastrulation defects unchallenged by the data presented. 

      This statement was removed and the discussion was reworded.

      Comment: The discussion should include a detailed comparison of this study's findings with those of zebrafish morpholino studies.  

      We have added more discussion to compare ours to the previous morpholino findings (Lines 476-484).

      Comment: The discussion should try to reconcile the different expression patterns of dact1 and dact2, and the functional redundancy suggested by the absence of phenotype of single mutants. Genetic compensation should be considered (and perhaps tested).  

      The different expression patterns of dact1 and dact2 along with our finding that dact1 and dact2 genetic deficiency differently affect the gpc4 mutant phenotype suggest that dact1 and dact2 are not functionally redundant during normal development. This is in line with the previously published data showing different phenotypes of dact1 or dact2 knockdown. However, our results that genetic ablation of both dact1 and dact2 are required for a mutant phenotype suggests that these genes can compensate upon loss of the other. This would suggest then that the expression pattern of dact1 would be changed in the dact2 mutant and visa versa. We find that this line of investigation would be interesting in future studies. We have addressed this in the Discussion (Lines 485498).

      Comment: "Based on the data...Conversely, we propose...ascribed to wnt11f2 "

      Functional data always prevail overexpression data for inferring functional requirements.  

      This is true.

      p.21

      Comment: "Our results underscore the crucial roles of dact1 and dact2 in embryonic development, specifically in the connection between CE during gastrulation and ultimate craniofacial development."

      How is this novel in light of previous studies, especially by Waxman et al. (2004) and Heisenberg et al. (1997, 2000). In this study, the authors fail to present compelling evidence that craniofacial defects are not secondary to the early gastrulation defects resulting from dact1/2 mutations.  p. 22

      We have not claimed that the craniofacial defects are not secondary to the gastrulation defects. In fact, we state that there is a “connection”. Further, we do not claim that this is the first or only such finding. We believe our findings have validated the previous dact morpholino experiments and have contributed to the body of literature concerning wnt signaling during embryogenesis. 

      Comment: The section on Smad1 discusses a result not reported in the results section. Any data discussed in the discussion section needs to be reported first in the results section.  

      We have added a comment on the differential expression of smad1 to the results section (Lines 446-448).

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment:

      This important study reports the deep evolutionary conservation of a core genetic program regulating spermatogenesis in flies, mice, and humans. The data presented are supportive of the main conclusion and generally convincing. This work will be of interest to evolutionary and reproductive biologists.

      The Authors would like to thank the Senior Editor and the two Reviewers for their positive assessment of our work, as well as for the helpful suggestions. Collectively, these suggestions provided insight that was instrumental in shaping the final version of the manuscript (see below for our point-by-point comments). The Authors believe that the refinements introduced to the final document clearly translate into an improved version of our work. Hence, we would like to thank all those involved in the peer review process for their encouraging words and constructive criticism.

      Public Reviews: 

      Reviewer #1 (Public Review):

      Summary: 

      By combining an analysis of the evolutionary age of the genes expressed in male germ cells, a study of genes associated with spermatocyte protein-protein interaction networks and functional experiments in Drosophila, Brattig-Correia and colleagues provide evidence for an ancient origin of the genetic program underlying metazoan spermatogenesis. This leads to identifying a relatively small core set of functional interactions between deeply conserved gene expression regulators, whose impairment is then shown to be associated with cases of human male infertility.

      Strengths: 

      In my opinion, the work is important for three different reasons. First, it shows that, even though reproductive genes can evolve rapidly and male germ cells display a significant level of transcriptional noise, it is still possible to obtain convincing evidence that a conserved core of functionally interacting genes lies at the basis of the male germ transcriptome. Second, it reports an experimental strategy that could also be applied to gene networks involved in different biological problems. Third, the authors make a compelling case that, due to its effects on human spermatogenesis, disruption of the male germ cell orthoBackbone can be exploited to identify new genetic causes of infertility.

      We thank the Reviewer for their positive assessment. Indeed, it was our main objective to convincingly demonstrate these three points.

      Weaknesses: 

      The main strength of the general approach followed by the authors is, inevitably, also a weakness. This is because a study rooted in comparative biology is unlikely to identify newly emerged genes that may adopt key roles in processes such as species-specific gamete recognition. Additionally, using a TPM >1 threshold for protein-coding transcripts may exclude genes, such as those encoding proteins required for gamete fusion, which are thought to be expressed at a very low level. Although these considerations raise the possibility that the chosen approach may miss information that, depending on the species, could be potentially highly functionally important, this by no means reduces its value in identifying genes belonging to the conserved genetic program of spermatogenesis.

      The Authors acknowledge the points raised by the Reviewer as inevitable trade-offs of the focus of our study (to uncover the deeply conserved genetic basis of spermatogenesis). Certainly, our pipeline could, in the future, be adapted to look for newly emerged genes or to employ different minimum expression cut-offs. To this end, we made all computational data and custom scripts easily available to the community. We would, nevertheless, kindly emphasize the challenge associated with the use of less restrictive TPM cut-offs, given the substantial level of transcriptional noise associated with this cell type. An abridged version of this discussion can be found in lines 512-515 of the manuscript.

      Reviewer #2 (Public Review):

      Summary: 

      This is a tour de force study that aims to understand the genetic basis of male germ cell development across three animal species (human, mouse, and flies) by performing a genetic program conservation analysis (using phylostratigraphy and network science) with a special emphasis on genes that peak or decline during mitosis-to-meiosis. This analysis, in agreement with previous findings, reveals that several genes active during and before meiosis are deeply conserved across species, suggesting ancient regulatory mechanisms. To identify critical genes in germ cell development, the investigators integrated clinical genetics data, performing gene knockdown and knockout experiments in both mice and flies. Specifically, over 900 conserved genes were investigated in flies, with three of these genes further studied in mice. Of the 900 genes in flies, ~250 RNAi knockdowns had fertility phenotypes. The fertility phenotypes for the fly data can be viewed using the following browser link:https://pages.igc.pt/meionav. The scope of target gene validation is impressive. Below are a few minor comments.

      We thank the Reviewer for their positive appraisal of our work.

      (1) In Supplemental Figure 2, it is notable that enterocyte transcriptomes are predominantly composed of younger genes, contrasting with the genetic age profile observed in brain and muscle cells. This difference is an intriguing observation and it would be curious to hear the author's comments.

      Indeed, this is an intriguing observation for which we can only provide a speculative answer. Enterocytes are specialized to absorb nutrients, hence their genetic program is finely tuned to maximize uptake under specific dietary conditions. In this regard, we can posit that variations in nutrient preference/availability in the course of each species’ evolutionary history (associated with habitat, environmental and/or behavioral changes) may have exerted a selective pressure for the emergence of new genes that could provide enterocytes with more efficient uptake capabilities under new circumstances. The application of evolutionary thinking to the rapidly expanding field of nutrigenomics could shed light on this possibility.

      (2) Regarding the document, the figures provided only include supplemental data; none of the main text figures are in the full PDF. 

      We thank the Reviewer for this helpful comment. We will ensure that the three main figures are correctly formatted in the final version of the manuscript.

      (3) Lastly, it would be great to section and stain mouse testis to classify the different stages of arrest during meiosis for each of the mouse mutants in order to compare more precisely to flies.

      We agree with the Reviewer that adding more mouse data would further improve what can already be considered an extensive body of experimental work. Given the costs associated with the generation of such data (in terms of resources and otherwise), the Authors believe such a study would be best suited to a follow-up manuscript.

      This paper serves as a vital resource, emphasizing that only through the analysis of hundreds of genes can we prioritize essential genes for germ cell development. its remarkable that about 60% of conserved genes have no apparent phenotype during germ cell development.

      Once again, we thank the Reviewer for their positive assessment of our work. Clarifying the degree of functional redundancy in an essential biological process such as male gametogenesis represents an exciting (and experimentally complex) future challenge.

      Strengths:

      The high-throughput screening was conducted on a conserved network of 920 genes expressed during the mitosis-to-meiosis transition. Approximately 250 of these genes were associated with fertility phenotypes. Notably, mutations in 5 of the 250 genes have been identified in human male infertility patients. Furthermore, 3 of these genes were modeled in mice, where they were also linked to infertility.

      This study establishes a crucial groundwork for future investigations into germ cell development genes, aiming to delineate their essential roles and functions.

      The Authors thank the Reviewer for emphasizing the potential usefulness of our results to the community, as that was one of the main motivations behind this project.

      Weaknesses: 

      The fertility phenotyping in this study is limited, yet dissecting the mechanistic roles of these proteins falls beyond its scope. Nevertheless, this work serves as an invaluable resource for further exploration of specific genes of interest.

      Please see the previous point.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      Although the manuscript already includes a significant amount of data, there are two aspects that the authors may consider exploring: 

      (1) I understand that the choice of species whose gene expression was analyzed in the study was largely influenced by the quality of the corresponding genome annotations. However, since in evolutionary terms humans and mice are much closer to each other than Drosophila (as also shown in Figure 1c and Supplementary Figure 1), I found the statement "three evolutionarily distant gonochoric species" partially questionable. Have the authors considered adding an additional established animal model, such as for example zebrafish, to provide further coverage of the evolutionary space? Or, alternatively, could a posteriori analysis of the transcriptome of such an additional species be used to cross-validate their findings? The authors touch upon this point in the Discussion, but I wonder if they actually tried something in this direction, or simply decided that the currently available expression data from other organisms was too poor to be used for this purpose.

      We thank the Reviewer for bringing up this point, as it echoes one of our main concerns in terms of our approach (as discussed in lines 487-492). Indeed, when we were designing our study, we extensively discussed whether zebrafish and C. elegans datasets should be included, as high-quality expression and phenotypical data were available for both species. We ended up not including them for one main reason: the sexual system of these species deviates from that of humans, mice and fruit flies (all gonochoric species). More specifically, C. elegans are hermaphrodites and although zebrafish is a gonochoric species at the adult stage, they start their lifecycle as juvenile hermaphrodites (they first develop juvenile ovaries that later degenerate into a testis in males). Since it is largely unknown to what extent the transcriptome of male germ cells from these species deviates from the gonochoric program (by retaining oogenesis-related characteristics, for example), we decided to avoid possible confounding effects by excluding the two species. Undoubtedly, as more transcriptomic data from non-model organisms become available, these (and other) questions can be extensively revisited as our pipeline was designed to easily accommodate new data.

      (2) Although the use of the STRING database is a sensible choice given the general purpose of this work, in my experience the reliability of its individual interactions can vary significantly. I wonder if the authors have considered exploiting AlphaFold-Multimer as a parallel approach to estimate what proportion of the 79 functional interactions that they identified may reflect direct protein-protein contacts.

      We thank the Reviewer for this question and suggestion, as we were also concerned about STRING's reliability for individual interactions. For that
reason, we only utilized protein-protein interactions with a STRING combined confidence score ≥0.5
(corresponding to the estimated likelihood of a given association being
true), as described in more detail in the "Protein-protein interaction
(PPI) network construction" subsection. In addition, to make sure we were not biasing results towards conserved genes (which could arguably be overrepresented in STRING) we pursued a random rewiring test of degree
centrality and page rank, as detailed in section "Deeply conserved genes
are central components of the male germ cell transcriptome". We very much like the suggestion of using AlphaFold-Multimer to estimate the proportion of
direct protein-protein contacts for the 79 core interactions, but given
the already quite complex analytical pipeline of the present work, we will leave such analysis for a follow-up study. The final version of the manuscript now contains a reference to such an approach (lines 499-502).

      Finally, probably because my primary focus is not on gene regulation, I must say that I found the manuscript somewhat heavy to read. The integration of various data types and analyses, while enriching, also complicates the ability to clearly recall the main conclusions of each result section by the time one reaches the summary at the beginning of the Discussion. Given the relative brevity of the latter, expanding it to both reiterate what these conclusions are and illustrate how all the components converge to support the central message of the study would, in my opinion, benefit a general readership.  

      We thank the Reviewer for their fresh perspective on our document and for this most welcome suggestion. The final version of the manuscript now includes a longer discussion, containing an initial paragraph (lines 467-479) that summarizes our main findings and how they converge into a coherent body of work.

      Additionally, on a minor note, I suggest that the concept of phylostratigraphy be briefly explained when first mentioned in the Introduction, rather than later in the manuscript. This early clarification would aid comprehension for readers unfamiliar with the term. 

      To safeguard the flow of the manuscript, we have slightly tweaked the introduction section to avoid the use of highly specific terminology (such as phylostratigraphy) this early in the text. We replaced it with “comparison of genome sequences” (line 85). Phylostratigraphy is later explained in full detail in the corresponding section of the manuscript. We thank the Reviewer for this helpful suggestion.

      Reviewer #2 (Recommendations For The Authors): 

      Major concern - the absence of main text figures.

      We thank the Reviewer for this helpful comment. We will ensure that the three main figures are correctly formatted in the final version of the manuscript.

      Typos throughout - this will need your attention. 

      The Authors thank the Reviewer for the thorough and attentive assessment of our work. We have carefully revised the text to ensure a pleasant reading experience free of typographical errors.

    1. Author response:

      We want to thank the reviewers for their constructive feedback.

      General

      The recall values of our method range between 78.6% for all urine cases to 83.3% for feces (and not between 70-80%, as stated by reviewer #2), with a mean precision of 85.6%. This is rather similar to other machine learning-based methods commonly used for the analysis of complicated behavioral readouts. For example, in the paper presenting DeepSqueak for analysis of mouse ultrasonic vocalizations (Coffey et al. DeepSqueak: a deep learning-based system for detection and analysis of ultrasonic vocalizations. Neuropsychopharmacol. 44, 859–868 (2019). https://doi.org/10.1038/s41386-018-0303-6), the recall values reported for both DeepSqueak, Mupet and Ultravox (Fig. 2c, f) are very similar to our method.

      We have analyzed and reported all the types of errors made by our methods, which are mostly technical. For example, depositions that overlap the mouse blob for too long till getting cold will be associated with the mouse and therefore will not be detected (“miss” events). These technical errors are not supposed to create a bias for a specific biological condition and, hence, shouldn’t interfere with the use of our method. A video showing all of the mistakes made by our algorithm on the test set was submitted (Figure 2-video 1).

      Below we will to relate to specific points and describe our plan to revise the manuscript accordingly.

      Detection accuracy

      a. It should be noted that when large urine spots are considered, our algorithm got 100% correct classification (Figure 2, supplement 1, panel b). However, small urine deposits are very similar to feces in their appearance in the thermal picture. In fact,  if the feces are not shifted, discrimination can be quite challenging even for human annotators. To demonstrate the accuracy of the proposed method relative to human annotators, we plan to compare its results with the accuracy of a second human annotator.

      b. As part of the revision, we plan to test general machine learning-based object detectors such as faster-RCNN or YOLO (as suggested by Reviewer 2) and compare them with our method.

      c. To check if our method may introduce bias to the results, we plan to check if the errors are distributed evenly across time, space, and genders.

      Design choices

      (A) The preliminary detection algorithm has several significant parameters. These are:

      a. Minimal temperature rise for detection: 1.1°C rise during 5 sec.

      b. Size limits of the detection: 2 - 900 pixels.

      c. Minimal cooldown during 40 sec: 1.1°C and at least half the rise.

      d. Minimal time between detections in the same location: 30 sec.

      We chose to use low thresholds for the preliminary detection to allow detection of very small urinations and to minimize the number of “miss” events, relying on the classifier to robustly reject false alarms. Indeed, we achieved a low rate of miss events: 5 miss events for the entire test set (1 miss event per ~90 minutes of video). We attribute these 5 “miss” events to partial occlusion of the detection by the mouse.

      To adjust the preliminary detection parameters to a new environment, one will need to calibrate these parameters in their own setup. Mainly, the size of the detection depends on the resolution of the video, and the cooldown rate might be affected by the material of the floor, as well as the room temperature.

      We plan to explore the robustness of these parameters in our setup and report the influence on the accuracy of the preliminary algorithm.

      (B) We chose to feed the classifier with 71 seconds of videos (11 seconds before the event and 60 seconds after it) as we wanted the classifier to be able to capture the moment of the deposition, the cooldown process, as well as urine smearing or feces shifting which might give an additional clue for the classification. In the revised paper we plan to report accuracy when using a shorter video for classification.

      Generability

      a. In the revised version, we plan to report the accuracy of the method used on a different strain of mice (C57), with a different arena color (white arena instead of black).

      Statistics

      a. In the revised paper, we will explain why we chose each time window for analysis. Also, we will report statistics for different time windows, as suggested by Reviewer 3.

      b. Unlike reviewer #2, we don’t think that the small difference in recall rate between urine and feces (78.6% vs. 83.3%, respectively) creates a bias between them. Moreover, we don’t compare the urine rate to the feces rate.

      c. In the revised manuscript we will explicitly report the precision scores, although they also appear in our manuscript in Fig. 2- Supplement 1b.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer 1:

      • Although ROC AUC is a widely used metric. Other metrics such as precision, recall, sensitivity, and specificity are not reported in this work. The last two metrics would help readers understand the model’s potential implications in the context of clinical research.

      In response to this comment and related ones by Reviewer 2, we have overhauled how we evaluate our models. In the revised version, we have removed Micro ROC-AUC, as this evaluation metric is hard to interpret in the recommender system setting. Instead, the updated version fully focuses on two metrics: ROC-AUC and Precision at 1 of the negative class, both computed per spectrum and then averaged (equivalent to the instance-wise metrics in the previous version of the manuscript). We believe these metrics best reflect the use-case of AMR recommenders. In addition, we have kept (drug-)macro ROC-AUC as a complementary evaluation metric. As the ROC-AUC can be decomposed into sensitivity and specificity (at different prediction probability thresholds), we have added a ROC curve where sensitivity and specificity are indicated in Figure 8 (Appendices).

      • The authors did not hypothesize or describe in any way what an acceptable performance of their recommender system should be in order to be adopted by clinicians.

      In Section 4.3, we have extended our experiments to include a baseline that represents a “simulated expert”. In short, given a species, an expert can already make some best guesses as to what drugs will be effective or not. To simulate this, we count resistance frequencies per species and per drug in the training set, and use this as predictions of a “simulated expert”.

      We now mention in our manuscript that any performance above this level results in a real-world information gain for clinical diagnostic labs.

      • Related to the previous comment, this work would strongly benefit from the inclusion of 1-2 real-life applications of their method that could showcase the benefits of their strategy for designing antibiotic treatment in a clinical setting.

      While we think this would be valuable to try out, we are an in silico research lab, and the study we propose is an initial proof-of-concept focusing on the methodology. Because of this, we feel a real-life application of the model is out-of-scope for the present study.

      • The authors do not offer information about the model features associated with resistance. This information may offer insights about mechanisms of antimicrobial resistance and how conserved they are across species.

      In general, MALDI-TOF mass spectra are somewhat hard to interpret. Because of a limited body of work analyzing resistance mechanisms with MALDI-TOF MS, it is hard to link peaks back to specific pathways. For this reason, we have chosen to forego such an analysis. After all, as far as we know, typical MALDI-TOF MS manufacturers’ software for bacterial identification also does not provide interpretability results or insights into peaks, but merely gives an identification and confidence score.

      However, we do feel that the whole topic revolving around “the degree of biological insight a data modality might give versus actual performance and usability” merits further discussion. We have ultimately decided not to include a segment in our discussion section as it is hard to discuss this matter concisely.

      • Comparison of AUC values across models lacks information regarding statistical significance. Without this information it is hard for a reader to figure out which differences are marginal and which ones are meaningful (for example, it is unclear if a difference in average AUC of 0.02 is significant). This applied to Figure 2, Figure 3, and Table 2 (and the associated supplementary figures).

      To make trends a bit more clear and easier to discern, in our revised manuscript, all models are run for 5 replicates (as opposed to 3 in the previous version).

      There is an ongoing debate in the ML community whether statistical tests are useful for comparing machine learning models. A simple argument against them is that model runs are typically not independent from each other, as they are all trained on the same data. The assumptions of traditional statistical tests are therefore violated (t-test, Wilcoxon test, etc.). With such tests statistical significance of the smallest differences can simply be achieved by increasing the number of replicates (i.e. training the same models more times).

      More complicated but more appropriate statistical tests also exist, such as the 5x2 cross-validated t-test of Dietterich: “Approximate statistical tests for comparing supervised classification learning algorithms”, Neural computation 1998. However, these tests are typically not considered in deep learning, because only 10% of the data can be used for training, which is practically not desirable. The Friedman test of Demšar "On the appropriateness of statistical tests in machine learning." Workshop on Evaluation Methods for Machine Learning in conjunction with ICML. 2008., in combination with posthoc pairwise tests, is still frequently used in machine learning, but that test is only applicable in studies where many datasets are tested.

      For those reasons, most deep learning papers that only analyse a few datasets typically do not consider any statistical tests. For the same reasons, we are also not convinced of the added value of statistical tests in our study.

      • One key claim of this work was that their single recommender system outperformed specialist (single species-antibiotic) models. However, in its current status, it is not possible to determine that in fact that is the case (see comment above). Moreover, comparisons to species-level models (that combine all data and antibiotic susceptibility profiles for a given species) would help to illustrate the putative advantages of the dual branch neural network model over species-based models. This analysis will also inform the species (and perhaps datasets) for which specialist models would be useful to consider.

      We thank the reviewer for this excellent suggestion. In our new manuscript, we have dedicated an entire section of experiments to testing such species-specific recommender models (Section 4.2). We find that species-specific recommender systems generally outperform the models trained globally across all species. As a result, our manuscript has been majorly reworked.

      • Taking into account that the clustering of spectra embeddings seemed to be species-driven (Figure 4), one may hypothesize that there is limited transfer of information between species, and therefore the neural network model may be working as an ensemble of species models. Thus, this work would deeply benefit from a comparison between the authors' general model and an ensemble model in which the species is first identified and then the relevant species recommender is applied. If authors had identified cases to illustrate how data from one species positively influence the results for another species, they should include some of those examples.

      See the answer to the remark above.

      • The authors should check that all abbreviations are properly introduced in the text so readers understand exactly what they mean. For example, the Prec@1 metric is a little confusing.

      See the answer to a remark above for how we have overhauled our evaluation metrics in the revised version. In addition, in the revised version, we have bundled our explanations on evaluation metrics together in Section 3.2. We feel that having these explanations in a separate section will improve overall comprehensibility of the manuscript.

      • The authors should include information about statistical significance in figures and tables that compare performance across models.

      See answer above.

      • An extra panel showing species labels would help readers understand Figure 11.

      We have tried to play around with including species labels in these plots, but could not make it work without overcrowding the figure. Instead, we have added a reminder in the caption that readers should refer back to an earlier figure for species labels.

      • The authors initially stated that molecular structure information is not informative. However, in a second analysis, the authors stated that molecular structures are useful for less common drugs. Please explain in more detail with specific examples what you mean.

      In the previous version of our manuscript, we found that one-hot embedding-based models were superior to structure-based drug embedders for general performance. The latter however, delivered better transfer learning performance.

      In our new experiments however, we perform early stopping on “spectrum-macro” ROC-AUC (as opposed to micro ROC-AUC in the previous version). As a consequence, our results are different. In the new version of our manuscript, Morgan Fingerprints-based drug embedders generally outperform others both “in general” and for transfer learning. Hence, our previously conflicting statements are not applicable to our new results.

      • The authors may want to consider adding a few sentences that summarize the 'Related work' section into the introduction, and converting the 'Related work' section into an appendix.

      While we acknowledge that such a section is uncommon in biology, in machine learning research, a “related work” section is very common. As this research lies on the intersection of the two, we have decided to keep the section as such.

      Reviewer 2:

      • Are the specialist models re-trained on the whole set of spectra? It was shown by Weis et al. that pooling spectra from different species hinders performance. It would then be better to compare directly to the models developed by Weis et al, using their splitting logic since it could be that the decay in performance from specialists comes from the pooling. See the section "Species-stratified learning yields superior predictions" in https://doi.org/10.1038/s41591-021-01619-9.

      We train our “specialist” (or now-called “species-drug classifiers”) just as described in Weis et al.: All labels for a drug are taken, and then subsetted for a single species. We have clarified this a bit better in our new manuscript. The text now reads:

      “Previous studies have studied AMR prediction in specific species-drug combinations. For this reason, it is useful to compare how the dual-branch setup weighs up against training separate models for separate species and drugs. In Weis et al. (2020b), for example, binary AMR classifiers are trained for the following three combinations: (1) E. coli with Ceftriaxone, (2) K. pneumoniae with Ceftriaxone, and (3) S. aureus with Oxacillin. Here, such "species-drug-specific classifiers" are trained for the 200 most-common combinations of species and drugs in the training dataset.

      • Going back to Weis et al. a high variance in performance between species/drug pairs was observed. The metrics in Table 2 do not offer any measurement of variance or statistical testing. Indeed, some values are quite close e.g. Macro AUROC of Specialist MLP-XL vs One-hot M.

      See our answer to a remark of Reviewer 1 for our viewpoint on statistical significance testing in machine learning.

      • Since this is a recommendation task, why were no recommendation system metrics used, e.g. mAP@K, mRR, and so (apart from precision@1 for the negative class)? Additionally, since there is a high label imbalance in this task (~80% negatives) a simple model would achieve a very high precision@1.

      See the answer to a remark above for how we have overhauled our evaluation metrics in the revised version. In addition, in choosing our metrics, we wanted metrics that are both (1) appropriate (i.e. recommender system metrics), but also (2) easy to interpret for clinicians. For this reason, we have not included metrics such as mAP@K or mRR. We feel that “spectrum-macro” ROC-AUC and precision@1 cover a sufficiently broad evaluation set of metrics but are easy enough to interpret.

      • A highly similar approach was recently published (https://doi.org/10.1093/bioinformatics/btad717). Since it is quite close to the publication date of this paper, it could be discussed as concurrent work.

      We thank the reviewer for bringing our attention to this study. We have added a paragraph in our revised version discussing this paper as concurrent work.

      • It is difficult to observe a general trend from Figure 2. A statistical test would be advised here.

      See our answer to a remark of Reviewer 1 for our viewpoint on statistical significance testing in machine learning.

      • Figure 5. UMAPs generally don't lead to robust quantitative conclusions. However, the analysis of the embedding space is indeed interesting. Here I would recommend some quantitative measures directly using embedding distances to accompany the UMAP visualizations. E.g. clustering coefficients, distribution of pairwise distances, etc.

      In accordance with this recommendation, we have computed many statistics on the MALDI-TOF spectra embedding spaces. However, we could not come up with any statistic that illuminated us more than the visualization itself. For this reason, we have kept this section as is, and let the figure speak for itself.

      • Weis et al. also perform a transfer learning analysis. How does the transfer learning capacity of the proposed models differ from those in Weis et al?

      Weis et al. perform experiments towards “transferability”, not actual transfer learning. In essence, they use a model trained on data from one diagnostic lab towards prediction on data from another. However, they do not conduct experiments to learn how much data such a pre-trained classifier needs to fine-tune it for adequate performance on the new diagnostic lab, as we do. The end of Section 4.4 discusses how our proposed models specifically shine in transfer learning. The paragraph reads:

      “Lowering the amount of data required is paramount to expedite the uptake of AMR models in clinical diagnostics. The transfer learning qualities of dual-branch models may be ascribed to multiple properties. First of all, since different hospitals use much of the same drugs, transferred drug embedders allow for expressively representing drugs out of the box. Secondly, owing to multi-task learning, even with a limited number of spectra, a considerable fine-tuning dataset may be obtained, as all available data is "thrown on one pile".”

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Recommendations for the authors):

      In the revision the authors addressed all the points from this reviewer and most from other reviewers. The method is now described practically and in detail. The only thing this reviewer still misses is number of subtomograms for each structure. How many subtomograms did the authors extract by Dynamo from how many rootlets? How many out of them were valid in K-mean classification and used for sub-averages? Was the subaverage used for training by TomoSeg or each subtomograms belonging to the class? By clarifying it, this work will be referred by those who would take the same approach for other biological structures. 

      We now added the particle numbers of all structures to the corresponding text, figure legends and methods and elaborate on this below. We also clarify how we trained the TomoSeg network.

      Particle numbers:

      We extracted 591,453 subtomograms from 14 tomograms. This initial set was rigorously cleaned with Zcleaning, reducing it to 358,863 particles. Further cross-correlation and cluster cleaning yielded a final set of 180,252 particles. 

      This refined set was used for the structures presented in Figures 3E, F and S5A, B, as well as for the classification shown in Figure S5C. Of the classified particles, 34,490 particles contributed to classaverage 5 in Figure 3G and S5D, E. The detailed particle distribution of this classification is added as a supplementary table: 

      We further clarified the numbers in the results, method, and supplementary material section:

      Results:

      Page 7: “Figure 3. … (E) The initial average after alignment of 180,252 particles with a wide spherical alignment mask. (F) The initial average of particles aligned with a narrower cylindrical mask. (G) A class average of 34,490 particles, aligned and classified with a narrow mask.”

      Page 7/8: “We manually defined the D1-bands as surfaces in Dynamo (Castaño-Díez et al, 2017) and then approximated the number of filaments per surface area. We extracted 591,453 subtomograms from 14 tomograms, approximately four times as many subtomograms as the expected number of filaments. This initial set was rigorously cleaned to discard particles that did not have a filament in their center or had distorted striations, reducing it to 358,863 particles. Further cross-correlation and cluster cleaning yielded a final set of 180,252 particles.”

      Page 8: “We directly unbinned the data to a pixel size of 5.55 Å/pixel and used the rigorously cleaned set of 180,252 particles.”

      Page 8: “The resulting class averages contained a twist along the filament length in classes 2, 3 and 4 and most prominently in class 5. These four classes contain 72.29% of the particles, highlighting the prevalence of the twist-feature (Fig S5C, Table S2). Class 5 contained 19.27% of the data, i.e. 34,490 particles, and revealed the twist is formed by a filament of 2 nm thick by 5 nm wide with a helical groove along its length (Fig 3G).”

      Methods: 

      Page 13: “Surface triangulation was set to result in 591,453 extraction coordinates approximately 4 times the number of expected filaments.”

      Page 13: “Particles with no filament in their center, or particles that originated from regions in the rootlet with distorted striations (at the edge of a grid hole) were discarded, resulting in a particle set of 358,863 particles. Cluster- and careful per-tomogram cross-correlation cleaning were applied to remove particle duplicates, remaining particles with no filaments, and particles with disordered D-bands. This resulted in a final cleaned particle dataset of 180,252 particles.”

      Page 13: “For the final subtomogram class-average that contained the twist, the cleaned particle dataset motl with 180,252 particles was converted to a STAR file compatible with RELION 4.0 Alpha (Zivanov et al, 2022).”

      Supplementary material: 

      Page 17: “Table S1. Particle distribution of RELION 4.0 Alpha classification with alignment.”

      Page 22: “Figure S5: (C) Class averages of a classification with alignment of particles from Fig S5A. Their particle distribution is shown in Table S2.”

      For the initial classification, to identify a homogeneous subset, we used the original set of 591,453 picked particles (Fig S5A). The class distribution for this set is added as a supplementary table.

      We further clarified this in the results, methods and supplementary material:

      Results:

      Page 8: “To ask if there were any recurring arrangements of neighboring filaments in the data that could allow us to average a homogeneous subset, we resorted to classification of the original set of 591,453 particles (Fig S5A, Table S1).”

      Methods:

      Page 13: “Prior to classification in subTOM, alignments with limited X/Y/Z shifts and increasingly finer in-plane rotations were performed on the original dataset with 591,453 particles.”

      Supplementary material:

      Page 17: “Table S2. Particle distribution of subTOM classification for particle heterogeneity.”

      Page 22: “Figure S5: … The surfaces of a cross-section through the filament classes are shown in orange. The particle distribution is provided in Table S1. (B) …”

      TomoSeg network training

      The subtomograms and the class averages presented at the end of the manuscript were not used as input for training the TomoSeg network. TomoSeg training requires positive and negative sets of segmented 2D regions of interest within tomogram slices. These areas were selected and segmented within the Eman2 TomoSeg GUI, iteratively increasing the size of the training sets until satisfactory performance was achieved. 

      We have clarified the TomoSeg training process in the methods section to avoid confusion:

      Methods: 

      Page 13: “The tomograms were then preprocessed in EMAN2.2 for training of the TomoSeg CNN (Chen et al, 2017). Here, the features (filaments, D-bands, A-bands, gold fiducials, actin, membranes, membrane-associated densities and ice contaminations) were individually trained for each tomogram. This involved manually tracing a training set of 10-20 positive and 100-150 negative boxed areas per feature. We iteratively expanded and curated the training set until the segmentations were accurate, as recommended in the software manuals. Segmented maps were allowed to compete for the assignment of pixels in the tomograms, cleaned up in Amira (Thermo Fisher Scientific) and converted to object files.”

    1. Author response:

      We are grateful to the reviewers and editors for their insightful comments. All recognized that, while mutation recurrences have been used for inferring cancer drivers, our approach has the rigor of quantitative analysis. We would like to add that, without rigorously ruling out mutational hotspots, most CDNs have not been accepted as driver mutations.

      This paper develops the theory stating that i) recurrent point mutations are true Cancer Driving Nucleotides (CDNs); and ii) non-recurrent mutations are unlikely to be CDNs. The reviewers question that, with the theory, we still have not discovered new driving mutations. This is done in the companion paper. Table 3 shows that, averaged across cancer types, the conventional method would identify 45 CDGs while the CDN method tallies 258 CDGs. The power of the CDN method in identifying new driver genes is evident.

      The second question is "By this theory, will we be able discover most CDNs when the sample size increases from ~ 1000 to 10,000?"  This is a question of forecast and can be partially answered using GENIE data. Fig. 7 of this study shows that, when n increases from ~ 1000 to ~ 9,000, the numbers of discovered CDNs increase by 3 – 5 fold, most of which come from the two-hit class, as expected.

      Fig. 7 also addresses the queries whether we have used datasets other than TCGA. We indeed have used all public data, including GENIE, ICGC and other integrated resources such as COSMIC. For the main study, we rely on TCGA because it is unbiased for estimating the probability of CDN occurrences. In many datasets, the numerators are given but the denominators are not (the number of patients with the mutation / the total number of patients surveyed). 

      The third question is about mutation recurrences among cancer types. As stated by one reviewer, "different cancer types have unique mutational landscapes". While this is true when the analysis is done at the whole-gene level, one gets a different picture at the nucleotide level where the resolution is much higher. The pan-cancer trend of point mutations is evident in Fig. 4 of the companion paper.

      Again, we heartily appreciate the criticisms and suggestions of the reviewers and editors!

    1. Author response:

      We are grateful for the reviewers' acknowledgment of the originality of our manuscript and its potential importance in cancer treatment. We appreciate the reviewers' critiques on certain conclusions and thank them for their thorough feedback on the manuscript. In the revised version, we will provide a more detailed clarification of the previous data and methods, bolster the existing data, and present additional evidence in support of our hypothesis. Please find below our replies to particular concerns.

      In brief, to address the comments from Reviewer 1, we will make the following revisions in the manuscript:

      (1) To discuss the issues regarding the specificity of ATP5⍺ CAT-tailing, we will provide new patient-derived cell lines and tumor samples and investigate the CAT-tail modifications of nuclear genome-encoded mitochondrial proteins and changes in RQC proteins within them. We will endeavor to explore the nature of NEMF modifications in GSC cells (Fig. S1A).

      (2) To enhance the quality of image data, we will substitute some images (such as Fig. 1E and 3A) with higher quality images.

      (3) To further understand the influence of NEMF on cancer, the effects of NEMF overexpression in GSC cells will be evaluated through testing (e.g., Fig. 3D).

      (4) To further explore changes in apoptosis, we will employ additional methods to detect apoptosis, including Annexin-PI FACS assays, caspase cleavage analysis, assessing BAX-BCL2 ratios, and monitoring cytochrome c release.

      (5) To further confirm the effectiveness of the CAT-tailing-mitochondria mechanism in in vivo tumor models, we will utilize a Drosophila model to study the impact of the RQC pathway and CAT-tailing mechanism on tumor proliferation in vivo. The overactivation of the Notch signaling pathway in Drosophila can stimulate malignant proliferation of neural stem cells (NSCs) through both canonical (c-Myc mediated pathway) and non-canonical (PINK1-mitochondrial-mTORC2 pathway) pathways, leading to the development of a tumor-like phenotype in the larval brain. A recent publication in PNAS Nexus (Khaket et al., PNAS Nexus, 2024) discusses the impact of the RQC pathway on c-Myc. It is possible for us to analyze the alterations in CAT-tailing on mitochondrial proteins and mitochondrial membrane potential in this Notch model and study how the RQC pathway regulates them. Moreover, tumor implantation experiments will be carried out using immunodeficient mice. Our goal is to conduct a comparative analysis of the growth of control and NEMF KD glioblastoma cell lines in animal models, alongside performing essential biochemical analyses.

      Reference:

      Khaket, T. P., et al. (2024). Ribosome stalling during c-myc translation presents actionable cancer cell vulnerability. PNAS nexus, 3(8), pgae321.

      To address the comments from Reviewer 2, we will make the following revisions in the manuscript:

      (1) The concerns raised by the reviewer regarding the authenticity of the ATP5a CAT-tail modification are duly noted. Critical control experiments will be incorporated into our study, including NEMF knockout (or NFACT domain mutants) and cycloheximide treatment, alongside other methodologies. The results of these experiments will include placements such as Fig. 1B, 1C, S3A, and S3B to improve comprehension of the CAT-tail modification on ATP5⍺.

      (2) We thank the reviewer for reminding us to consider the differences between the artificial tail and the endogenous CAT-tail. A recently published study (Khan et al., 2024) provides a thorough analysis of the components of the CAT-tail. Our approach to addressing this issue involves emphasizing the use of the artificial CAT-tail sequence and adopting a more measured tone in the revised version. Additionally, we will induce the endogenous ATP5⍺-CAT-tail by express ATP5⍺-K20-non-stop in cells to validate their function in glioblastoma cells.

      (3) Moreover, we aim to examine the impact of different amino acid compositions in the ATP5⍺ c-terminus extension, such as the poly (Gly-Ser) repeats noted by the reviewer, on both mitochondrial function and glioblastoma biology in our revision. By comparing the results obtained from ATP5⍺-CAT-tails with different compositions, it is anticipated that more definitive conclusions can be drawn.

      (4) Additional minor revisions will be implemented to the text in accordance with the feedback given by the reviewer.

      Reference:

      Khan, D., Vinayak, A. A., Sitron, C. S., & Brandman, O. (2024). Mechanochemical forces regulate the composition and function of CAT tails. bioRxiv, 2024-08.

  3. Aug 2024
    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1:

      Summary:

      The current manuscript uses electron spin resonance spectroscopy to understand how the dynamic behavior and conformational heterogeneity of the LPS transport system change during substrate transport and in response to the membrane, bound nucleotide (or transition state analog), and accessory subunits. The study builds on prior structural studies to expand our molecular understanding of this highly significant bacterial transport system. 

      Strengths 

      This series of well-designed and well-executed experiments provides new mechanistic insights into the dynamic behavior of the LPS transport system. Notable new insights provided by this study include its indication of the spatial organization of the LptC domain, which was poorly resolved in structures, and how the LptC domain modulates the dynamic behavior of the gate through which lipids access the binding site. In addition, a mass spectrometry approach designed to examine LPS binding at different stages in the nucleotide-dependent conformational cycle provides insight into the order of operations of LPS binding and transport. 

      We thank the reviewer for the very positive comments and highlighting the important findings from our study.

      Reviewer #2 (Public Review):

      Lipopolysaccharide (LPS) is a major component of the outer membrane of Gram-negative bacteria and plays a critical role in bacterial virulence. The LPS export mechanism is a potential target for new antibiotics. Inhibiting this process can render bacteria more susceptible to the host immune system or other antibacterial agents. Given the rise of antibiotic-resistant bacteria, novel targets are urgently needed. The seven LPS transport (Lpt) proteins, A-G, move LPS from the inner to the outer membrane. This study investigated the conformational changes in the LptB2FG-LptC complex using site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy, revealing how ATP binding and hydrolysis affect the LptF βjellyroll domain and lateral gates. The findings highlight the role of LptC in regulating LPS entry, ensuring efficient and unidirectional transport across the periplasm. 

      The β-jellyrolls are not fully resolved in the vanadate-trapped structure of LptB2FG and LptB2FGC. Therefore, the current study provides valuable information on the functional dynamics of these periplasmic domains, their interactions, and their roles in the unidirectional transport of LPS. Additionally, the dynamic perspective of the lateral gates in LptFG in the presence and absence of LptC is another strength of this study. Moreover, at least in detergent samples, more comprehensive intermediates of the ATP turnover cycle are studied than in the available structures, providing crucial missing mechanistic details. 

      We thank the reviewer for highlighting our major findings!

      Other major strengths of the study include high-quality DEER distance measurements in both detergent and proteoliposomes, the latter providing valuable dynamics information in the lipid environment. However, lipid composition is not mentioned. The proteoliposome study is crucial since the previous structural study (Li, Orlando & Liao 2019) was done in rather small-diameter nanodiscs, which might affect the overall dynamics of the complex. It would have been beneficial if the investigators had reconstituted the complex in lipid nanodiscs with the same composition as proteoliposomes. The mixed lipid/detergent micelles provide an alternative. It seems the ATPase activity of the protein complex is much lower in detergent compared with lipid nanodiscs (Li, Orlando & Liao 2019). In the current study, ATPase activity in proteoliposomes is not provided. Also, the reviewer assumes cysteine-less (CL) constructs of the complex components were utilized. The ATPase assay on CL complex is not presented. Additionally, from previous structural studies and the mass spectrometry data presented here, LPS co-purifies and is already bound to the complex, thus the Apo state may represent the LPS-bound state without nucleotides. 

      The liposomes are made from E. coli polar lipid extract, which we added to the Materials and Methods part now. We could not yet perform the investigations in nanodiscs, which is one of our aims for future. The ATPase activity is lower in micelles and the reviewer is correct in that we did not perform/compare ATPase activity in proteoliposomes. The data denoted as wild-type (WT, Figure S4) corresponds to the cysteine-less (CL) variant, which is now corrected in the supporting information. As the reviewer commented, the mass spectrometry data reveal bound LPS in the apo-state. However, as seen from our results, ADP-Mg2+ state is similar to the apo state, thus in the cellular environment LPS may bind to this state as well.

      The selection of sites to probe lateral gate 2, which forms the main LPS entry site, may pose an issue. Although the authors provide justification based on the available structures, one site (position 325 in LptF) is located on a flexible loop, and position 52 in LptG is on the neighboring transmembrane helix, separated by a potentially flexible loop from the gating TM1. These labeling sites could exhibit significant local dynamics, resulting in a broader distribution of distances and potentially masking the gating-related conformational changes. 

      Position 52 in LptG is located at the beginning of the neighboring transmembrane helix. As we have discussed in the manuscript, position 325 in LptF is located on a short loop connected to TM5. In the structures, this loop shows a very similar orientation (Figure S6). Further, the observed heterogeneity for the lateral gate-2 is considerably modulated into distinct conformation(s) upon LptC binding (Figure 6D-E). This would not be the case if this loop possesses any independent flexibility. Confirming these observations, the room temperature continuous wave ESR spectra revealed the least flexibility for this spin pair (Figure S5, S7). In view of the reasons and observations detailed above, we conclude that the local flexibility at the labelled sites might not make any significant contribution for the broad distribution observed at this gate in LptB2FG (Figure 4). 

      Reviewer #3 (Public Review):

      Summary: 

      The manuscript by Dajka and co-workers reports the application of a biophysical approach to analyse the dynamics of the LptB2FG-C ABC transporter, involved in LPS transport across the cell envelope in Escherichia coli. LptB2FG-C belongs to a new class of ABC transporters (type VI) and is essential and conserved in several Gram-negative pathogens. Since LPS is the major component of the outer membrane of the Gram-negative cell and is responsible for the low permeability of this membrane to several antibiotics, a deep understanding of the mechanism and function of the LptB2FG-C transporter is crucial for the development of new drugs targeting Gram-negative pathogens. 

      Several structural studies have been published so far on the LptB2FG-C transporter, disclosing important aspects of the transport mechanism; nevertheless, lack of resolution of some regions of the individual proteins as well as the dynamic nature of the transport mechanism per se (e.g. the insertion and removal of the TM helix of LptC from the TMDs of the transporter during the LPS transport cycle) has greatly limited the understanding of the mechanism that couples ATP binding and hydrolysis with LPS transport. This knowledge gap could be filled by applying an approach that allows the analysis of dynamic processes. The DEER/PELDOR technique applied in this work fits well with this requirement. 

      Strengths: 

      In this study, the authors provide some new pieces of information on the LptB2FG-C function and the role of LptC in the transporter. Notably, they show that: 

      - There is high heterogeneity in the conformational states of the entry gate of LPS in the transporter (gate-2) that are reduced by the insertion of LptC, and the heterogeneity observed is not altered by ATP binding or hydrolysis (as expected since LPS entry is ATP-independent). 

      - ATP binding induces an allosteric opening of LptF β-jellyroll domain that allows for LPS passage to the β-jellyroll of LptC, which is stably associated with the β-jellyroll of LptF throughout the cycle. 

      - The β-jellyroll of LptG is highly flexible, indicating an involvement in the LPS transport cycle. 

      The manuscript is timely and overall clear. 

      We thank the reviewer for the positive comments and highlighting our findings and the strength of DEER/PELDOR spectroscopy for characterizing the dynamics aspect of the LPS transport system.

      Weaknesses:

      I list my concerns below and provide suggestions that, in my opinion, should be addressed to reinforce the findings of this study. 

      (1) Protein complex controls: the authors assess the ATPase activity of the spin-labelled variants of their protein complexes to rule out the possibility that engineering the proteins to enable spin labelling could affect their functionality (Figure S4). It has been reported that the association of LptC to LptB2FG complex inhibits its ATPase activity. However, in the ATPase assay data shown in Figure S4, the inhibitory effect of the LptC TM is not visible (please compare LptB2FG F-A45C G-I335C and F-L325C G-A52C with and without LptC). This can lead to suspect that the regulatory function of LptC is missing in the LptC-containing complexes used in this work. I suggest the authors include wt LptB2FGC in the assay to compare the ATPase activity of this complex with wt LptB2FG. The published inhibitory effect of TM LptC has been observed in proteoliposomes. Since it is not clear from the paper if the ATPase assay in Figure 4 has been conducted in DDM or proteoliposomes, the lack of inhibitory effect could be due to the assay conditions. A comparative test could answer this question. 

      We could not observe the inhibitory effect of LptC on the ATPase activity of LptB2FG. As the reviewer pointed out, the primary reason is that we performed the assays in detergent micelles and not in proteoliposomes. For this reason, a comparison of the activity between (cysteine-less) LptB2FG and LptB2FG-C as the reviewer suggested would not be informative. As this information is not directly relevant for our current interpretations, we plan to perform those experiments in liposomes in the near future.

      (2) Figure 2: NBD closure upon ATP binding to LptB2FG is convincingly demonstrated both in DDM micelles and proteoliposomes, validating the experimental system. However, since under physiological conditions, ATP binding should take place before the displacement of the TM of LptC (Wilson and Ruiz, Mol microbiol 2022), I suggest the authors carry out the experiments with LptC-containing complexes to investigate conformational changes (if any) that are triggered when ATP binding occurs before the TM displacement.  

      We thank the reviewer for the suggestion. These experiments are in our to do list and would be performed in the near future.

      (3) Proteoliposomes: in the experiments shown in Figures 3 and 4, unlike those in Figure 2, measurements in proteoliposomes give different results from the experiments in DDM, showing higher heterogeneity. Could this be related to the presence (or absence) of LPS in liposomes? It is not mentioned in the materials and methods section whether LPS is present. Could the authors please discuss this? 

      We thank the reviewer for bringing out this interesting point. The liposomes are made from E. coli polar lipid extract. In the polar lipid extract, phosphatidylethanolamine (PE) is the predominant lipid component with minor amounts of phosphatidylglycerol (PG) and cardiolipin. Thus, the differences in the heterogeneity we observed in proteoliposomes might not be due to the presence of LPS. We added a short description on this aspect in the ‘Discussion’ part.

      (4) The authors show large conformational heterogeneity in gate-2 (using the spin-labelled pair F-L325R1-G-A52R1) and suggest that deviation from the corresponding simulations could be due to the need for enhanced dynamics to allow for gate interaction with LPS or LptC. The effect of LptC is probed in the experiments shown in Figure 6, but I suggest the authors add LPS to the complexes to evaluate the possible stabilizing effect of LPS on the conformations shown in Figure 4. 

      This indeed is an important experiment, which we plan to do in the near future.

      (5) Figure 6: the measurement of lateral gate 1 and 2 dynamics in the LptC-containing complexes clearly supports the hypothesis, proposed based on the available structures, that TM LptC dissociates from LptB2FG upon ATP binding. However, direct evidence of this movement is still missing. Would it be possible to monitor the dynamics of the TM LptC by directly labelling this protein domain? This would give a conclusive demonstration of the displacement during the ATPase cycle. 

      Yes, it should be possible to label LptC and monitor its position with respect to LptF or LptG. These experiments are in progress in our laboratory. 

      (6) LPS release assay: Figure 6 panels H-I-J show the MS spectra relative to LPS-bound and free proteins obtained from wt LptB2FG upon ATP binding and ATP hydrolysis conditions. From these spectra the authors conclude that LPS is completely released only upon ATP hydrolysis. However, the current model predicts that LPS release into the Lpt bridge made by LptC-A-D is triggered by ATP binding. For this reason, I suggest the authors assess LPS release also from the LptB2FGC complex where, in the absence of LptA, LPS would be expected to be mostly retained by the complex under the same conditions. 

      These indeed are exciting experiments. LPS binding and release by LptB2FGC is in progress in our laboratories.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Page 2 typo: apo-sate should be apo-state 

      Thank you! We corrected the typo.

      Can the authors clarify whether LPS is co-purified with the protein? Does it remain bound throughout the liposome reconstitution process? 

      Our mass spectrometry data show that LPS is co-purified with LptB2FG in micelles. However, we cannot yet verify the presence of bound LPS after reconstitution into proteoliposomes. We added a sentence in the last paragraph before Discussion as ‘Thus, LPS is co-purified with LptB2FG in micelles.’

      Reviewer #2 (Recommendations for The Authors): 

      Several points require clarification: 

      (1) The reviewer would have benefited from access to the raw DEER traces. For instance, in Figure 4, the change in the raw data appears subtle. The differences between the Apo and vanadate-trapped states in b-DDM might be related to a lower signal-to-noise ratio in the Apo state. 

      We would be happy to share the raw DEER data upon request. The analysis is performed with the primary data, which also takes into account of the noise level for the calculating the confidence interval. Therefore, the distances with the 95% confidence interval are reliable to the extent as they are presented.  

      (2) The panel labels in Figures 2-4 do not match the legends. 

      Thank you! We corrected them.

      (3) In Figure 2G, the authors state, "Overall, the ATP-induced closure as observed in micelles (and the structures) is maintained in the native-like lipid bilayers for the NBDs." This statement is technically incorrect since the vanadate-trapped state is not equivalent to the ATP+EDTA "ATP binding" state, which was not tested in proteoliposomes (PLS). The authors should have tested this condition for a few mutants in proteoliposomes. They should revise the manuscript to reflect this or provide evidence that the ATP+EDTA state is similar to the vanadate-trapped state in PLS. 

      We corrected the sentence as ‘Overall, the nucleotide-induced closure as observed in micelles (and the structures) is maintained in the native-like lipid bilayers for the NBDs.’

      (4) The mutant F-L325R1_G-A52R1 is not optimal for probing gate 2. Specifically, position 325 in LptF is highly flexible, as indicated by the very broad distance distributions in Figure 4, and may hinder probing the associated conformational changes in this gate. Comparing the cryo-EM structures of this loop under different conditions (Figure S6) does not provide solid evidence for the lack of flexibility. 

      Position 52 in LptG is located at the beginning of the neighboring transmembrane helix. As we have discussed in the manuscript, position 325 in LptF is located on a short loop connected to TM5. In the structures, this loop shows a very similar orientation (Figure S6). Further, the observed heterogeneity for the lateral gate-2 is considerably modulated into distinct conformation(s) upon LptC binding (Figure 6D-E). This would not be the case if this loop possesses any independent flexibility. Confirming these observations, the room temperature continuous wave ESR spectra revealed the least flexibility for this spin pair (Figure S5, S7). In view of the reasons and observations detailed above, we conclude that the local flexibility of the labelled sites might not make any significant contribution for the broad distribution observed at this gate in LptB2FG (Figure 4). 

      (5) Regarding Figure 4B, the authors state, "In the vanadate-trapped and ATP samples, the major population is centered at 2 nm (which corresponds to the simulation on the vanadate trapped structure)". While the shift to shorter distances aligns with the structures, the average distance from the simulation is around 3 nm and does not correspond closely to the DEER distances of 2 nm. 

      Thank you for noting this point. We corrected the sentence as ‘In the vanadate-trapped and ATP samples, the major population is centred at 2 nm (which is closer to the simulation on the vanadate-trapped structure).’

      (6) Regarding Figure 4D, the authors state, "Unlike the lateral gate-1 (and the NBDs), ADP-Mg2+ also induced a similar shift in the distance distribution." The reviewer believes that even without interaction with LptC, an equilibrium exists between two states in gate-2, and ATP binding or vanadate-trapping shifts the equilibrium to a shorter-distance population. Additionally, if the signal-to-noise ratio of the Apo state were similar to that of the ADP-Mg2+ state, similar distance distributions would have been observed for the Apo state. 

      We thank the reviewer for bringing out this excellent point. We thoroughly modified the corresponding section as ‘ADP-Mg2+ also gave a broad distribution comparable to the apo-state. Thus, in the apo-state this gate appears to exist in an equilibrium between the two conformations observed from the corresponding structures. ATP binding or vanadate-trapping shifts the equilibrium towards the collapsed conformation.’

      (7) Defining the conformational dynamics of the b-jellyroll domains is one of the major strengths of this study. The LptF and LptG b-jellyroll domains exhibit high flexibility in detergent micelles. Unfortunately, none of the experiments were repeated in proteoliposomes to determine if this flexibility persists in a lipid environment. 

      As it is conceivable, it is truly beyond the scope of the current study to repeat all the measurements in liposomes. Currently we are extending those investigations to liposomes and would be able to provide more insights in the near future.

      (8) Regarding Figure 6G, the authors claim, "Distances corresponding to the apo state are present possibly due to an incomplete vanadate trapping for this sample." It is unlikely that vanadate trapping would be incomplete for just one sample. A repeat experiment is recommended. 

      We will update on this point is due time.

      (9) Regarding the structural dynamics of the lateral gates, detergent micelles, and liposomes are vastly different environments. It is challenging to reach a consensus model based on data mostly derived from detergent micelles and only a few from proteoliposomes. 

      The observations in PLS are qualitatively similar to the micellar sample for the investigated positions (please see the first paragraph in “Discussion”). Further, our observations are in agreement with previous structural and biochemical data and further extent the mechanism in a coherent manner. 

      Reviewer #3 (Recommendations For The Authors):

      Minor comments 

      (1) Figure legends: There are several mismatches between panel nomenclature and the corresponding descriptions in the legends. Please check the correspondence between panel identification and descriptions throughout the manuscript (for example, F-G and H-J in Figure 2; and I and H in Figure 3). 

      Thank you! We corrected them.

      - Figure 6 legend: asterisk is in panel D and not C. 

      Corrected

      - Panels E and F are not mentioned. Moreover, the spectra for vanadate trapped conformation of LptF219-LptC104 have not been given a letter. 

      Corrected

      - A description of the different colors in the "Distance r" axis should be added to figure 2, 3, and 4 legends. 

      Corrected

      - Please indicate the meaning of the black arrows in figure legends. 

      Corrected

      (2) To improve data comprehension by the readers, the authors should indicate the relative spinlabelled pairs on the top of Figure 2, 3, and 4, as done for Figures 5 and 6. 

      Done

      (3) Reference 56 is cited incorrectly in the reference list and refers to a study employing reconstituted LptB2FG complexes rather than isolated β-jellyroll domains. 

      Corrected

      (4) Figure 3: How do the authors explain the evidence that ATP binding influences gate 1 conformational flexibility only in DDM micelles with respect of PLS? Is this something related to the release of LPS from the complex in different environments? 

      We do not know whether this difference is related to LPS release. Therefore, we generally interpreted as an effect of the membrane environment.

      (5) The initial sentence of the discussion looks somewhat incomplete, please correct it. 

      Done

      (6) To improve the readability of the paper, it could be useful to better focus the topic of the headings of the result paragraphs concerning the analysis of the individual lateral gates (for example, by indicating the name of the gate in the headings).

      Done

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this study, the authors used a stopped-flow method to investigate the kinetics of substrate translocation through the channel in hexameric ClpB, an ATP-dependent bacterial protein disaggregase. They engineered a series of polypeptides with the N-terminal RepA ClpB-targeting sequence followed by a variable number of folded titin domains. The authors detected translocation of the substrate polypeptides by observing the enhancement of fluorescence from a probe located at the substrate's C-terminus. The total time of the substrates' translocation correlated with their lengths, which allowed the authors to determine the number of residues translocated by ClpB per unit time.

      Strengths:

      This study confirms a previously proposed model of processive translocation of polypeptides through the channel in ClpB. The novelty of this work is in the clever design of a series of kinetic experiments with an engineered substrate that includes stably folded domains. This approach produced a quantitative description of the reaction rates and kinetic step sizes. Another valuable aspect is that the method can be used for other translocases from the AAA+ family to characterize their mechanism of substrate processing.

      Weaknesses:

      The main limitation of the study is in using a single non-physiological substrate of ClpB, which does not replicate the physical properties of the aggregated cellular proteins and includes a non-physiological ClpB-targeting sequence. Another limitation is in the use of ATPgammaS to stimulate the substrate processing. It is not clear how relevant the results are to the ClpB function in living cells with ATP as the source of energy, a multitude of various aggregated substrates without targeting sequences that need ClpB's assistance, and in the presence of the co-chaperones.

      Indeed, we agree that our RepA-Titinx substrates are not aggregates but are model, soluble, substrates used to reveal information about enzyme catalyzed protein unfolding and translocation.  Our substrates are similar to RepA-GFP and GFP-SsrA used by multiple labs including Wickner, Horwich, Sauer, Baker, Shorter, Bukua, to name only a few.  The fact that “this is what everyone does” does not make the substrates physiological or the most ideal. However, this is the technology we currently have until we and others develop something better. In the meantime, we contend that  the results presented here do advance our knowledge on enzyme catalyzed protein unfolding

      Part of what this manuscript seeks to accomplish is presenting the development of a single-turnover experiment that reports on processive protein unfolding by AAA+ molecular motors, in this case, ClpB.  Importantly, we are treating translocation on an unfolded polypeptide chain and protein unfolding of stably folded proteins as two distinct reactions catalyzed by ClpB. If these functions are used to disrupt protein aggregates, in vivo, then this remains to be seen.

      We contend that processive ClpB catalyzed protein unfolding has not been rigorously demonstrated prior to our results presented here.  Avellaneda et al mechanically unfolded their substrate before loading ClpB (Avellaneda, Franke, Sunderlikova et al. 2020).  Thus, their experiment represents valuable observations reflecting polypeptide translocation on a pre-unfolded protein.  Our previous work using single-turnover stopped-flow experiments employed unstructured synthetic polypeptides and therefore reflects polypeptide translocation and not protein unfolding (Li, Weaver, Lin et al. 2015).  Weibezahn et al used unstructured substrates in their study with ClpB (BAP/ClpP), and thus their results represent translocation of a pre-unfolded polypeptide and not enzyme catalyzed protein unfolding (Weibezahn, Tessarz, Schlieker et al. 2004). 

      Many studies have reported the use of  GFP with tags or RepA-GFP and used the loss of GFP fluorescence to conclude protein unfolding.  However, such results do not reveal if ClpB processively and fully translocates the substrate through its axial channel.  One cannot rule out, even when trapping with “GroEL trap”, the possibility that ClpB only needs to disrupt some of the fold in GFP before cooperative unfolding occurs leading to loss of fluorescence.  Once the cooperative collapse of the structure occurs and fluorescence is lost it has not been shown that ClpB will continue to translocate on the newly unfolded chain or dissociate. In fact, the Bukau group showed that folded YFP remained intact after luciferase was unfolded (Haslberger, Zdanowicz, Brand et al. 2008).  Our approach, reported here, yields signal upon arrival of the motor at the c-terminus or within the PIFE distance thus we can be certain that the motor does arrive at the c-terminus after unfolding up to three tandem repeats of the Titin I27 domain.

      ATPgS is a non-physiological nucleotide analog.  However, ClpB has been shown to exhibit curious behavior in its presence that we and others, as the reviewer acknowledges, do not fully understand (Doyle, Shorter, Zolkiewski et al. 2007).  Some of the experiments reported here are seeking to better understand that fact.  Here we have shown that ATPgS alone will support processive protein unfolding. With this assay in hand, we are now seeking to go forward and address many of the points raised by this reviewer. 

      The authors do not attempt to correlate the kinetic step sizes detected during substrate translocation and unfolding with the substrate's structure, which should be possible, given how extensively the stability and unfolding of the titin I27 domain were studied before. Also, since the substrate contains up to three I27 domains separated with unstructured linkers, it is not clear why all the translocation steps are assumed to occur with the same rate constant.

      We assume that all protein unfolding steps occur with the same rate constant, ku.  We conclude that we are not detecting the translocation rate constant, kt, as our results support a model where kt is much faster than ku.  We do think it makes sense that the same slow step occurs between each cycle of protein unfolding.

      We have added a discussion relating our observations to mechanical unfolding of tandem repeats of Titin I27 from AFM experiments  (Oberhauser, Hansma, Carrion-Vazquez and Fernandez 2001). Most interestingly, they report unfolding of Titin I27 in 22 nm steps.  Using 0.34 nm per amino acids this yields ~65 amino acids per unfolding step, which is comparable to our kinetic step-size of 57 – 58 amino acids per step.

      Some conclusions presented in the manuscript are speculative:

      The notion that the emission from Alexa Fluor 555 is enhanced when ClpB approaches the substrate's C-terminus needs to be supported experimentally. Also, evidence that ATPgammaS without ATP can provide sufficient energy for substrate translocation and unfolding is missing in the paper.

      In our previous work we have used fluorescently labeled 50 amino acid peptides as substrates to examine ClpB binding (Li, Lin and Lucius 2015, Li, Weaver, Lin et al. 2015).  In that work we have used fluorescein, which exhibits quenching upon ClpB binding.  We have added a control experiment where we have attached alexa fluor 555 to the 50 amino acid substrate so we can be assured the ClpB binds close to the fluorophore.  As seen in supplemental Fig. 1 A  upon titration with ClpB, in the presence of ATPγS, we observe an increase in fluorescence from AF555, consistent with PIFE.  Supplemental Fig. 1 B shows the relative fluorescence enhancement at the peak max increases up to ~ 0.2 or a 20 % increase in fluorescence, due to PIFE, upon ClpB binding.   

      Further, peak time is our hypothesized measure of ClpB’s arrival at the dye. Our results indicate that the peak time linearly increases as a function of an increase in the number of folded TitinI27 repeats in the substrates which also supports the PIFE hypothesis. Finally, others have shown that AF555 exhibits PIFE and we have added those references.

      The evidence that ATPγS alone can support translocation is shown in Fig. 2 and supplemental Figure 1.  Fig. 2 and supplemental Figure 1 are two different mixing strategies where we use only ATPgS and no ATP at all.  In both cases the time courses are consistent with processive protein unfolding by ClpB with only ATPγS.

      Reviewer #2 (Public Review):

      Summary:

      The current work by Banwait et al. reports a fluorescence-based single turnover method based on protein-induced fluorescence enhancement (PIFE) to show that ClpB is a processive motor. The paper is a crucial finding as there has been ambiguity on whether ClpB is a processive or non-processive motor. Optical tweezers-based single-molecule studies have shown that ClpB is a processive motor, whereas previous studies from the same group hypothesized it to be a non-processive motor. As co-chaperones are needed for the motor activity of the ClpB, to isolate the activity of ClpB, they have used a 1:1 ratio ATP and ATPgS, where the enzyme is active even in the absence of its co-chaperones, as previously observed. A sequential mixing stop-flow protocol was developed, and the unfolding and translocation of RepA-TitinX, X = 1,2,3 repeats was monitored by measuring the fluorescence intensity with the time of Alexa F555 which was labelled at the C-terminal Cysteine. The observations were a lag time, followed by a gradual increase in fluorescence due to PIFE, and then a decrease in fluorescence plausibly due to the dissociation from the substrate allowing it to refold. The authors observed that the peak time depends on the substrate length, indicating the processive nature of ClpB. In addition, the lag and peak times depend on the pre-incubation time with ATPgS, indicating that the enzyme translocates on the substrates even with just ATPgS without the addition of ATP, which is plausible due to the slow hydrolysis of ATPgS. From the plot of substrate length vs peak time, the authors calculated the rate of unfolding and translocation to be ~0.1 aas-1 in the presence of ~1 mM ATPgS and increases to 1 aas-1 in the presence of 1:1 ATP and ATPgS. The authors have further performed experiments at 3:1 ATP and ATPgS concentrations and observed ~5 times increase in the translocation rates as expected due to faster hydrolysis of ATP by ClpB and reconfirming that processivity is majorly ATP driven. Further, the authors model their results to multiple sequential unfolding steps, determining the rate of unfolding and the number of amino acids unfolded during each step. Overall, the study uses a novel method to reconfirm the processive nature of ClpB.

      Strengths:

      (1) Previous studies on understanding the processivity of ClpB have primarily focused on unfolded or disordered proteins; this study paves new insights into our understanding of the processing of folded proteins by ClpB. They have cleverly used RepA as a recognition sequence to understand the unfolding of titin-I27 folded domains.

      (2) The method developed can be applied to many disaggregating enzymes and has broader significance.

      (3) The data from various experiments are consistent with each other, indicating the reproducibility of the data. For example, the rate of translocation in the presence of ATPgS, ~0.1 aas-1 from the single mixing experiment and double mixing experiment are very similar.

      (4) The study convincingly shows that ClpB is a processive motor, which has long been debated, describing its activity in the presence of only ATPgS and a mixture of ATP and ATPgS.

      (5) The discussion part has been written in a way that describes many previous experiments from various groups supporting the processive nature of the enzyme and supports their current study.

      Weaknesses:

      (1) The authors model that the enzyme unfolds the protein sequentially around 60 aa each time through multiple steps and translocates rapidly. This contradicts our knowledge of protein unfolding, which is generally cooperative, particularly for titinI27, which is reported to unfold cooperatively or utmost through one intermediate during enzymatic unfolding by ClpX and ClpA.

      We do not think this represents a contradiction.  In fact, our observations are in good agreement with mechanical unfolding of tandem repeats of Titin I27 using AFM experiments (Oberhauser, Hansma, Carrion-Vazquez and Fernandez 2001).  They showed that tandem repeats of TitinI27 unfolded in steps of ~22 nm.  Dividing 22 nm by 0.34 nm/Amino Acid gives ~65 amino acids per unfolding event.  This implies that, under force, ~65 amino acids of folded structure unfolds in a single step.  This number is in excellent agreement with our kinetic step-size of 65 AA/step. 

      Importantly, the experiments cited by the reviewer on ClpA and ClpX are actually with ClpAP and ClpXP.  We assert that this is an important distinction as we have shown that ClpA employs a different mechanism than ClpAP (Rajendar and Lucius 2010, Miller, Lin, Li and Lucius 2013, Miller and Lucius 2014).  Thus, ClpA and ClpAP should be treated as different enzymes but, without question, ClpB and ClpA are different enzymes.

      (2) It is also important to note that the unfolding of titinI27 from the N-terminus (as done in this study) has been reported to be very fast and cannot be the rate-limiting step as reported earlier(Olivares et al, PNAS, 2017). This contradicts the current model where unfolding is the rate-limiting step, and the translocation is assumed to be many orders faster than unfolding.

      Most importantly, the Olivares paper is examining ClpXP and ClpAP catalyzed protein unfolding and translocation and not ClpB.  These are different enzymes.  Additionally, we have shown that ClpAP and ClpA translocate unfolded polypeptides with different rates, rate constants, and kinetic step-sizes indicating that ClpP allosterically impacts the mechanism employed by ClpA to the extent that even ClpA and ClpAP should be considered different enzymes (Rajendar and Lucius 2010, Miller, Lin, Li and Lucius 2013).  We would further assert that there is no reason to assume ClpAP and ClpXP would catalyze protein unfolding using the same mechanism as ClpB as we do not think it should be assumed ClpA and ClpX use the same mechanism as ClpAP and ClpXP, respectively. 

      The Olivares et al paper reports a dwell time preceding protein unfolding of ~0.9 and ~0.8 s for ClpXP and ClpAP, respectively.   The inverse of this can be taken as the rate constant for protein unfolding and would yield a rate constant of ~1.2 s-1, which is in good agreement with our observed rate constant of 0.9 – 4.3 s-1 depending on the ATP:ATPγS mixing ratio.  For ClpB, we propose that the slow unfolding is then followed by rapid translocation on the unfolded chain where translocation by ClpB must be much faster than for ClpAP and ClpXP.  We think this is a reasonable interpretation of our results and not a contradiction of the results in Olivares et al. Moreover, this is completely consistent with the mechanistic differences that we have reported, using the same single-turnover stopped flow approach on the same unfolded polypeptide chains with ClpB, ClpA, and ClpAP (Rajendar and Lucius 2010, Miller, Lin, Li and Lucius 2013, Miller and Lucius 2014, Li, Weaver, Lin et al. 2015).

      (3) The model assumes the same time constant for all the unfolding steps irrespective of the secondary structural interactions.

      Yes, we contend that this is a good assumption because it represents repetition of protein unfolding catalyzed by ClpB upon encountering the same repeating structural elements, i.e. Beta sheets. 

      (4) Unlike other single-molecule optical tweezer-based assays, the study cannot distinguish the unfolding and translocation events and assumes that unfolding is the rate-limiting step.

      Although we cannot, directly, distinguish between protein unfolding and translocation we have logically concluded that protein unfolding is likely rate limiting. This is because the large kinetic step-size represents the collapse of ~60 amino acids of structure between two rate-limiting steps, which we interpret to represent cooperative protein unfolding induced by ClpB.  It is not an assumption it is our current best interpretation of the observations that we are now seeking to further test. 

      Reviewer #3 (Public Review):

      Summary:

      The authors have devised an elegant stopped-flow fluorescence approach to probe the mechanism of action of the Hsp100 protein unfoldase ClpB on an unfolded substrate (RepA) coupled to 1-3 repeats of a folded titin domain. They provide useful new insight into the kinetics of ClpB action. The results support their conclusions for the model setup used.

      Strengths:

      The stopped-flow fluorescence method with a variable delay after mixing the reactants is informative, as is the use of variable numbers of folded domains to probe the unfolding steps.

      Weaknesses:

      The setup does not reflect the physiological setting for ClpB action. A mixture of ATP and ATPgammaS is used to activate ClpB without the need for its co-chaperones, Hsp70. Hsp40 and an Hsp70 nucleotide exchange factor. This nucleotide strategy was discovered by Doyle et al (2007) but the mechanism of action is not fully understood. Other authors have used different approaches. As mentioned by the authors, Weibezahn et al used a construct coupled to the ClpA protease to demonstrate translocation. Avellaneda et al used a mutant (Y503D) in the coiled-coil regulatory domain to bypass the Hsp70 system. These differences complicate comparisons of rates and step sizes with previous work. It is unclear which results, if any, reflect the in vivo action of ClpB on the disassembly of aggregates.

      We agree with the reviewer, there are several strategies that have been employed to bypass the need for Hsp70/40 or KJE to simplify in vitro experiments.  Here we have developed a first of its kind transient state kinetics approach that can be used to examine processive protein unfolding.  We now seek to go forward with examining the mechanisms of hyperactive mutants, like Y503D, and add the co-chaperones so that we can address the limitations articulated by the reviewer.   In fact we already began adding DnaK to the reaction and found that DnaK induced ClpB to release the polypeptide chain (Durie, Duran and Lucius 2018).  However, the sequential mixing strategy developed here was needed to go forward with examining the impact of co-chaperones. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Line 1: I recommend changing the title of the paper to remove the terms that are not clearly defined in the text: "robust" and "processive". What are the Authors' criteria for describing a molecular machine as "robust" vs. "not robust"? A definition of processivity is given in equation 2, but its value for ClpB is not reported in the text, and the criteria for classifying a machine as "processive" vs. "non-processive" are not included. Besides, the Authors have previously reported that ClpB is non-processive (Biochem. J., 2015), so it is now clear that a more nuanced terminology should be applied to this protein. Also, Escherichia coli should be fully spelled out in the title.

      The title has been changed.  We have removed “robust” as we agree with the reviewer, there is no way to quantify “robust”.  However, we have kept “processive” and have added to the discussion a calculation of processivity since we can quantify processivity.  Importantly, the unstructured substrates used in our previous studies represent translocation and not protein unfolding.  here, on folded substrates, we detect rate-limiting protein unfolding followed by rapid translocation.  Thus, we report a lower bound on protein unfolding processivity of 362 amino acids. 

      Line 20: The comment about mitochondrial SKD3 should be removed. SKD3, like ClpB, belongs to the AAA+ family, and it is simply a coincidence that the original study that discovered SKD3 termed it an Hsp100 homolog. The similarity between SKD3 and ClpB is limited to the AAA+ module, so there are many other metazoan ATPases, besides SKD3, that could be called homologs of ClpB, including mitochondrial ClpX, ER-localized torsins, p97, etc.

      Removed.

      Lines 133-139. Contrary to what the authors state, it is not clear that the "lag-phase" becomes significantly shorter for subsequent mixing experiments (Figure 1E) perhaps except for the last one (2070 s). It is clear, however, that the emission enhancement becomes stronger for later mixes. This effect should be discussed and explained, as it suggests that the pre-equilibrations shorter than ~2000 sec do not produce saturation of ClpB binding to the substrate.

      We have added supplemental figure 2, which represents a zoom into the lag region.  This better illustrates what we were seeing but did not clearly show to the reader.  In addition, we address all three changes in the time courses, i.e. extend of lag, change in peak position, and the change in peak height. 

      Line 175. The hydrolysis rate of ATPgammaS in the presence of ClpB should be measured and compared to the hydrolysis rate with ATP/ATPgammaS to check if the ratio of those rates agrees with the ratio of the translocation rates. These experiments should be performed with and without the RepA-titin substrate, which could reveal an important linkage between the ATPase engine and substrate translocation. These experiments are essential to support the claim of substrate translocation and unfolding with ATPgammaS as the sole energy source.

      The time courses shown in figure 2 and supplemental Figure 1 are collected with only ATPgS and no ATP.  The time courses show a clear increase in lag and appearance of a peak with increasing number of tandem repeats of titin domains.  We do not see an alternate explanation for this observation other than ATPγS supports ClpB catalyzed protein unfolding and translocation.  What is the reviewers alternate explanation for these observations?

      We agree with the reviewer that the linkage of ATP hydrolysis to protein unfolding and translocation is essential and we are seeking to acquire this knowledge.  However, a simple comparison of the ratio of rates is not adequate. We contend that a complete mechanistic study of ATP turnover by ClpB is required to properly address this linkage and such a study is too substantial to be included here but is currently underway. 

      All that said, the statement on line 175 was removed since we do not report any ATPase measurements in this paper.

      Line 199: It is an over-simplification to state that "1:1 mix of ATP to ATPgammaS replaces the need for co-chaperones". This sentence should be corrected or removed. The ClpB co-chaperones (DnaK, DnaJ, GrpE) play a major role in targeting ClpB to its aggregated substrates in cells and in regulating the ClpB activity through interactions with its middle domain. ATPgammaS does not replace the co-chaperones; it is a chemical probe that modifies the mechanism of ClpB in a way that is not entirely understood.

      We agree with the reviewer.  The sentence has been modified to point out that the mix of ATP and ATPγS activates ClpB.

      Figure 3B, Supplementary Figure 5A. The solid lines from the model fit cannot be distinguished from the data points. Please modify the figures' format to clearly show the fits and the data points.

      Done.

      Lines 326, 329. It is not clear why the authors mention a lack of covalent modification of substrates by ClpB. AAA+ ATPases do not produce covalent modifications of their substrates.

      The issue of covalent modification was presented in the introduction lines 55 – 60 pointing out that much of what we have learned about protein unfolding and translocation catalyzed by ClpA and ClpX is from the observations of proteolytic degradation catalyzed by the associated protease ClpP.  However, this approach is not possible for ClpB/Hsp104 as these motors do not associate with a protease unless they have been artificially engineered to do so. 

      Lines 396-399. I am puzzled why the authors try to correlate the size of the detected kinetic step with the length of the ClpB channel instead of the size characteristics of the substrate.

      We are attempting to discuss/rationalize the observed large kinetic step-size which, in part, is defined by the structural properties of the enzyme as well as the size characteristics of the substrate.  We have attempted to clarify this and better discuss the properties of the substrate as well as ClpB.

      As I mentioned in the Public Review, it is essential to demonstrate that the emission increase used as the only readout of the ClpB position along the substrate is indeed caused by the proximity of ClpB to the fluorophore. One way to accomplish that would be to place the fluorophore upstream from the first I27 domain and determine if the "lag phase" in the emission enhancement disappears.

      Alexa Fluor 555 is well established to exhibit PIFE.  However, as in the response to the public review, we have included an appropriate control showing this in supplemental Fig. 1.

      Finally, the authors repetitively place their results in opposition to the study of Weibezahn et al. published in 2004 which first demonstrated substrate translocation by engineering a peptidase-associated variant of ClpB. It should be noted that the field of protein disaggregases has moved since the time of that publication from the initial "from-start-to-end" translocation model to a more nuanced picture of partial translocation of polypeptide loops with possible substrate slipping through the ClpB channel and a dynamic assembly of ClpB hexamers with possible subunit exchange, all of which may affect the kinetics in a complex way. However, the present study confirmed the "start-to-end" translocation model, albeit for a non-physiological ClpB substrate, and that is the take-home message, which should be included in the text.

      It is not clear to us that the field has “moved on” since Weibezahn et al 2004.  Their engineered construct that they term “BAP” with ClpP is still used in the field despite us reporting that proteolytic degradation is observed in the absence of ATP with that system  (Li, Weaver, Lin et al. 2015) and should, therefore, not be used to conclude processive energy driven translocation. The “partial translocation” by ClpB is also grounded in observations of partial degradation catalyzed by ClpP with BAP from the same group (Haslberger, Zdanowicz, Brand et al. 2008). It is not clear to us that the idea of subunit exchange leading to the possibility of assembly around internal sequences is being considered.  We do agree that this is an important mechanistic possibility that needs further interrogation. We agree with the reviewer, all these factors are confounding and lead to a more nuanced view of the mechanism.

      All that said, we have removed some of the opposition in the discussion.

      Reviewer #2 (Recommendations For The Authors):

      (1) It is assumed that the lag phase will be much longer than the phase in which we see a gradual increase in fluorescence, as the effect of PIFE is significant only when the enzyme is very close to the fluorophore. Particularly for RepA-titin3, the enzyme has to translocate many tens of nm before it is closer to the C-terminus fluorophore. However, in all cases, the lag time is lower or similar to the gradual increase phase (for example, Figure 3B). Could the authors explain this?

      The extent of the lag, or time zero until the signal starts to increase, is interpreted to indicate the time the motor moves from it’s initial binding site until it gets close enough to the fluorophore that PIFE starts to occur.  In our analysis we apply signal change to the last intermediate and dissociation or release of unfolded RepA-TitinX.  The increase in PIFE is not “all or nothing”.  Rather, it is starting to increase gradually.  Further, because these are ensemble measurements, and each molecule will exhibit variability in rate there is increased breadth of the peak due to ensemble averaging. 

      (2) Although the reason for differences in the peak position (for example, Figure 1E, 2B) is apparent, the reason for variations in the relative intensities has to be given or speculated.

      We have addressed the reason for the different peak heights in the revised manuscript.  It is the consequence of the fact that each substrate has slightly different fluorescent labeling efficiencies.  Thus, for each sample there is a mix of labeled and unlabeled substrates both of which will bind to ClpB but the unlabeled ClpB bound substrates do not contribute to the fluorescence signal, but will represent a binding competitor.  Thus, for low labeling efficiency there is a lower concentration of ClpB bound to fluorescent RepA-Titinx and for higher labeling efficiency there is higher concentration of ClpB bound to RepA-Titinx leading to an increased peak height.  RepA-Titin2 has the highest labeling efficiency and thus the largest peak height.

      Reviewer #3 (Recommendations For The Authors):

      The authors should make it clear that they and previous authors have used different constructs or conditions to bypass the physiological regulation of ClpB action by Hsp70 and its co-factors as mentioned above. In particular, the construct used by Avellaneda et al should be explained when they challenge the findings of those authors.

      Minor points:

      The lines fitting the experimental points are difficult or impossible to see in Figures 2B, 3B, and s5B.

      Fixed

      Typo bottom of p6 - "averge"

      Fixed

      Avellaneda, M. J., K. B. Franke, V. Sunderlikova, B. Bukau, A. Mogk and S. J. Tans (2020). "Processive extrusion of polypeptide loops by a Hsp100 disaggregase." Nature.

      Doyle, S. M., J. Shorter, M. Zolkiewski, J. R. Hoskins, S. Lindquist and S. Wickner (2007). "Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity." Nature structural & molecular biology 14(2): 114-122.

      Durie, C. L., E. C. Duran and A. L. Lucius (2018). "Escherichia coli DnaK Allosterically Modulates ClpB between High- and Low-Peptide Affinity States." Biochemistry 57(26): 3665-3675.

      Haslberger, T., A. Zdanowicz, I. Brand, J. Kirstein, K. Turgay, A. Mogk and B. Bukau (2008). "Protein disaggregation by the AAA+ chaperone ClpB involves partial threading of looped polypeptide segments." Nat Struct Mol Biol 15(6): 641-650.

      Li, T., J. Lin and A. L. Lucius (2015). "Examination of polypeptide substrate specificity for Escherichia coli ClpB." Proteins 83(1): 117-134.

      Li, T., C. L. Weaver, J. Lin, E. C. Duran, J. M. Miller and A. L. Lucius (2015). "Escherichia coli ClpB is a non-processive polypeptide translocase." Biochem J 470(1): 39-52.

      Miller, J. M., J. Lin, T. Li and A. L. Lucius (2013). "E. coli ClpA Catalyzed Polypeptide Translocation is Allosterically Controlled by the Protease ClpP." Journal of Molecular Biology 425(15): 2795-2812.

      Miller, J. M. and A. L. Lucius (2014). "ATP-gamma-S Competes with ATP for Binding at Domain 1 but not Domain 2 during ClpA Catalyzed Polypeptide Translocation." Biophys Chem 185: 58-69.

      Oberhauser, A. F., P. K. Hansma, M. Carrion-Vazquez and J. M. Fernandez (2001). "Stepwise unfolding of titin under force-clamp atomic force microscopy." Proc Natl Acad Sci U S A 98(2): 468-472.

      Rajendar, B. and A. L. Lucius (2010). "Molecular mechanism of polypeptide translocation catalyzed by the Escherichia coli ClpA protein translocase." J Mol Biol 399(5): 665-679.

      Weibezahn, J., P. Tessarz, C. Schlieker, R. Zahn, Z. Maglica, S. Lee, H. Zentgraf, E. U. Weber-Ban, D. A. Dougan, F. T. Tsai, A. Mogk and B. Bukau (2004). "Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB." Cell 119(5): 653-665.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We would like to thank the reviewers and editor for their helpful comments. We have addressed their concerns as detailed below.

      It would have been nice to have included a bona-fide SIRT2 target as a control throughout the study.

      We agree that including a bona-fide SIRT2 target as a control is important for validating our results. Previous data from our work has shown that SIRT2 demyristoylates ARF6. Thus, we have included a blot in Figure S15 demonstrating that SIRT2 knockdown results in increased myristoylation of ARF6. This serves as a control to confirm the activity and role of SIRT2 in our study.

      Did the authors also consider investigating SIRT1 in their assays? SIRT1 activates ACSS2 while SIRT2 leads to degradation of ACSS2. They should at least discuss these seemingly opposing roles of SIRT1 and SIRT2 in the regulation of ACSS2 and acetate metabolism in more depth particularly as it concerns situations (i.e., diseases, pathologies) where either SIRT1, SIRT2, or both sirtuins, are active. This would enhance the significance of the findings to the broader research community.

      The study by Hallows et al. showed increased SIRT1 deacetylate K661 of ACSS2 and increase its catalytic activity. Subsequently, a follow-up investigation unveiled the role of the circadian clock in modulating intracellular acetyl-CoA levels through SIRT1-catalyzed K661 deacetylation of. Conversely, our research elucidates a contrasting mechanism wherein SIRT2 inhibits ACSS2 by deacetylating K271 under conditions of nutrient stress. The dual regulation of ACSS2 by SIRT1 through the circadian clock and SIRT2 under nutrient stress underscores the intricate and multifaceted nature of regulatory mechanisms involved in lipid metabolism. These findings underscore the versatility of lysine acetylation in modulating cellular metabolic pathways.

      Collectively, these studies contribute to a better understanding of how SIRT1 and SIRT2 regulate ACSS2 activity in various metabolic contexts, thereby enhancing our knowledge of acetate metabolism and its implications in health and disease.

      We have included such discussion of the manuscript.

      In Figure 3, the authors should consider immunoblotting for endogenous ACSS2 throughout the differentiation and lipogenesis study since the total ACSS2 levels is the crucial aspect to affecting acetate-dependent promotion of lipogenesis in adipocytes, and to confirm TM-dependent stabilization of ACSS2 in that assay.

      We have updated Figure 3 to include immunoblotting for endogenous ACSS2 levels. Additionally, we have confirmed the TM-dependent stabilization of ACSS2, which is now shown in Figure S12.

      Do the authors have any data proving the K271 mutants of ACSS2 are still functional? Or that K271 ACSS2 protein is folded correctly?

      To assess the functionality of the mutants, we isolated Flag-tagged wildtype, K271R, and K271Q ACSS2 proteins from SIRT2 knockdown HEK293T cells. Subsequently, we examined acetyl-CoA formation from acetate and CoA using high-performance liquid chromatography (HPLC). Our findings indicate that while the wildtype ACSS2 exhibits slightly higher activity compared to the K271R and K271Q mutants, but all variants remain functional (Figure S13).

      Nearly all experiments are performed in a single cell line. Authors should test whether SIRT2 regulates ACSS2 acetylation in at least 1 or 2 more cell lines. Does SIRT2 regulate ACSS2 acetylation in 3T3-L1 preadipocytes?

      Experiments showing that endogenous ACSS2 levels change in EBSS and nutrient-deprived media were repeated in A549 cells (Figure S5). However, due to the poor transfection efficiency of A549 cells, we were unable to obtain acetylation data. Similarly, conducting acetylation experiments in 3T3-L1 preadipocytes is challenging due to poor transfection efficiency.

      The article does not explicitly address whether the absence of amino acids impacts the acetylation and subsequent degradation of ACSS2 by activating SIRT2. If so, one would expect the level of ACSS2 acetylation or ACSS2 expression under amino acid deprivation to be lower than that under normal conditions, as depicted in Fig. 1C and Fig. S3.

      The experiments shown in Fig. 1C and Fig. S3 were using overexpressed Flag-tagged ACSS2 and we actually adjust the amount of DNA used to have similar Flag-ACSS2 levels.

      To address the comment raised by the reviewer, we added Figure S14, which shows that endogenous ACSS2 acetylation is decreased under amino acid deprivation in SIRT2 control KD cells, indicating that the absence of amino acids impacts ACSS2 acetylation. The decreased expression of ACSS2 under amino acid deprivation is also addressed in Figure S6.

      Several reviewers noted discrepancies between what is occurring to basal levels of ACSS2 vs in SIRT2 KD conditions. Fig. 2H shows higher basal level of acetylated ACSS2 in K271R mutant compared to wildtype (input may be an issue). If Fig. 2H is a critical piece of data, authors are recommended to show this using FLAP-IP & then Ac-K.

      The increased stability of the K271R mutant compared to the wildtype (WT) results in higher protein levels, which results in the different input levels. However, this does not affect the conclusion that K271 is the acetylation site as the quantification result shows that K271R mutant has lower acetylation level and is not regulated by SIRT2 (Figure S16).

      Regarding the basal levels of ACSS2 in control and SIRT2 KD conditions, it was because the experiments in question were using overexpressed Flag-tagged ACSS2 and we actually adjust the amount of DNA used to have similar Flag-ACSS2 levels. To address the concern, we monitored endogenous ACSS2 protein and acetylation levels and the results are shown in Figure S14.

      Also, in Fig 2I there is no difference in basal ubiquitination between WT and K271R mutant. Related, based on model you would expect that overexpression of ACSS2-K271R mutant compared to wildtype would be at higher levels. In many figures authors do not see this (Fig. 2I, 3A, 3B). This needs to be explained.

      This is related to some previous comments. In these experiments, we actually adjusted the DNA used in the transfection to obtain equal protein levels so that we can quantify other things (acetylation or ubiquitination levels). As stated in the manuscript regarding Figures 3A and 3B, "To ensure comparable expression levels at the beginning, we adjusted the amount of transfected DNA for both wild-type and the K271R mutant ACSS2." This approach allowed us to accurately compare the ubiquitination status between the wildtype and K271R mutant ACSS2 variants.

      Data showing role of ACSS2-K271 mutant in lipid accumulation requires clarification. Based on model overexpression of ACSS2-K271 mutant should by itself cause increased lipid accumulation compared to wildtype.

      This is indeed the case and we have added this in the revised manuscript “Consistent with our above observation that ACSS2 K271R mutant is more stable than the WT, expressing the K271R mutant lead to more lipid droplets than expressing the WT ACSS2 (Figure S12).”

      Loading controls are notably absent at certain instances, such as IPs in Fig. 1A, 1C, and the IP in Fig. 2H. Such controls are required to interpret potential changes in acetylation.

      For this experiment, we employed an approach where we overexpressed Flag-tagged wild-type (WT) and mutant forms of ACSS2. We conducted an immunoprecipitation (IP) targeting acetyl-lysine residues to enrich lysine-acetylated proteins, followed by immunoblotting for the Flag tag to specifically detect ACSS2 acetylation levels. To ensure the reliability of our results, we included a Flag blot to confirm equal expression levels of ectopically expressed ACSS2 across our samples before IP. Given the nature of our experimental design and the specific aim of investigating ACSS2 acetylation, we believe that additional loading controls beyond the input Flag blot are not required for the interpretation of our results. The inclusion of the input Flag blot serves as a control for protein expression levels, which is crucial for accurate assessment of ACSS2 acetylation status.

      While CHX treatment is known to inhibit protein synthesis, it appears contradictory that CHX treatment in Fig. 2C seemingly leads to ACSS2 accumulation in SIRT2 knockdown HEK293T cells. This discrepancy requires clarification.

      We conducted quantitative analysis of the immunoblot with replicates to ensure the reliability of our findings. Our analysis indicates that the protein level of ACSS2 remains relatively stable over the time course of CHX treatment. The observed slight increase at the 8-hour time point can be attributed to inherent experimental variability, as evidenced by the presence of large error bars in the graph. We have included a graph in Figure S7 to show that there is no significant change in the level of ACSS2 in the SIRT2 HEK293T cells.

      In Fig. 2F-H, the authors argue that SIRT2 deacetylates ACSS2 to facilitate its ubiquitination and subsequent proteasomal degradation. However, these results are depicted under normal conditions, whereas findings in Fig. 1 suggest that SIRT2 deacetylates ACSS2 exclusively under nutrient stress. An explanation for this inconsistency is warranted.

      These experiments were done in amino acid deprived (EBSS) media. We have corrected this in the manuscript.

      Line 160 authors conclude "amino acid limitation..deacetylates K271"..but this was not directly demonstrated. Authors should add this data or change conclusion.

      Addressed in response to some of the comments above.

      Figures 1A and 1B, acetylation quantification, not clear if it is relative to the Flag tag or actin.

      Acetylation quantification is relative to Flag tag. This is clarified in the figure legend.

      Methods section lacking details & not well referenced (how did authors express wildtype & mutant in 3T3-L1 cells?) 

      ACSS2 wildtype and K271R mutant Flag-tagged expression plasmids were transfected into ACSS2 knockdown 3T3-L1 cells using PEI transfection reagent following the manufacturer’s protocol. The pCMV-Tag4a empty vector was used as the negative control. Differentiation of 3T3L1 cell lines were done according to manufacturer’s protocol (DIF001-1KT, Sigma Aldrich) 24 hours after transfection. This has been included in the methods.

      In Figure 3A, is the actin blot from the same immunoblots above it? Reviewers recommend the authors upload original immunoblot.

      This experiment was repeated, and the blot has been replaced.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      The manuscript reports useful findings by resolving the crystal structure of Sedoheptulose-1,7-Bisphosphatase (SBPase) from the green algae Chlamydomonas reinhardtii, which is involved in the Calvin cycle. The data presented are solid based on validated methodologies, which help in understanding the structure and function of this enzyme.

      We thank the editors for this positive assessment.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this study, Le Moigne and coworkers shed light on the structural details of the Sedoheptulose-1,7-Bisphosphatase (SBPase) from the green algae Chlamydomonas reinhardtii. The SBPase is part of the Calvin cycle and catalyzes the dephosphorylation of sedoheptulose-1,7-bisphosphate (SBP), which is a crucial step in the regeneration of ribulose-1,5-bisphosphate (RuBP), the substrate for Rubisco. The authors determine the crystal structure of the CrSBPase in an oxidized state. Based on this structure, potential active site residues and sites of post-translational modifications are identified. Furthermore, the authors determine the CrSBPase structure in a reduced state revealing the disruption of a disulfide bond in close proximity to the dimer interface. The authors then use molecular dynamics (MD) to gain insights into the redox-controlled dynamics of the CrSBPase and investigate the oligomerization of the protein using small-angle X-ray scattering (SAXS) and size-exclusion chromatography. Despite the difference in oligomerization, disruption of this disulfide bond did not impact the activity of CrSBPase, suggesting additional thiol-dependent regulatory mechanisms modulating the activity of the CrSBPase.

      We thank reviewer 1 for his/her careful reading of our manuscript.

      The authors provide interesting new findings on a redox-mechanism that modulates the oligomeric behavior of the SBPase, however without investigating this potential mechanism in more detail. The conclusions of this manuscript are mostly supported by the data, but they should be more carefully evaluated in respect to what is known from other systems as e.g. the moss Physcomitrella patens. This is especially of interest, as SBPase was previously reported to be dimeric, whereas for FBPase a dimer/tetramer equilibrium has been observed.

      We thank reviewer 1 for his/her comments on the novel or confirmatory character of our structure-function analysis onCrSBPase. We address the questions of oligomeric states later in this response.

      (1) Given that PpSBPase has been already characterized in detail, the authors should provide a more rigorous comparison to the existing data on SBPases. This includes a more conclusive structural comparison but also the enzymatic assays should be compared to the findings from P. patens. Do the authors observe differences between the moss and the chlorophyte systems, maybe even in regard to the oligomerization of the SBPase?

      Indeed, a previous study conducted by one of the authors of the current manuscript (Stéphane D. Lemaire) and collaborators determined the structure and regulatory properties of SBPase from the moss Physcomitrella patens (Gütle et al. 2018 https://doi.org/10.1073/pnas.1606241113). We added a clearer reference to this earlier work. The differences that we observed regarding the oligomeric states of SBPase from Chlamydomonas reinhardtii principally stem from our analytical method in vitro through size-exclusion chromatography, in comparison with crystal packing analysis in the reference study. We detailed PpSBPase/CrSBPase oligoimeric state comparison in the paragraph 'Oligomeric states of CrSBPase'. Besides, the asymmetric unit of our CrSBPase crystal structure is also a homodimer, similarly to PpSBPase, and we suggest that PpSBPase is also likely to adopt several oligomeric states in vitro. If this were confirmed by experiments, SBPase in several organisms would behave analogously to FBPase regarding the dimer/tetramer equilibrium.

      In paragraph 'Crystal structure of CrSBPase' we added a comparison by alignment of our CrSBPase crystal structure to the previously reported _Pp_SBPase crystal structure, stating that with RMSD=0.478 Å the proteins are essentially identical.

      In paragraph 'CrSBPase enzymatic activity' we compared the value we obtained for enzyme specific activity to those previously published on other SBPase from Chlamydomonas or the land plant Spinacia oleracea, highlighting the similarity of results in three different systems and teams (Seuter et al. 2002 https://doi.org/10.1023/A:1019297521424 and Tamoi et al. 2005 DOI: 10.1271/bbb.69.848).

      (2) The authors should include the control experiments (untreated SBPase) and the assays performed with mutant versions of the SBPase, which are currently only mentioned in the text or not shown at all.

      We add supplementary figure 14 in order to illustrate that since SBPase C115S or C120S mutants are still activated by reducing agent, the disulfide bridge between cysteines 115 and 120 is not the single control over SBPase activity but rather a control over the oligomeric exchange of the enzyme indirectly contributing to redox activation of the active site.

      (3) The representation of the structure in figures (especially Figures 1 and 3) should be adjusted to match the author's statements. In Figure 1, the angle from which the structure is displayed changes over the entire figure making it difficult to follow especially as a non-structural biologist. Furthermore, important aspects of the structure mentioned in the text are not labeled and should be highlighted, by e.g. a close-up. Same holds true for Figure 3 that currently mostly shows redundant information.

      We thank reviewer 1 for his/her advise on how to improve Figure 1. We drew new images for the complete figure, hopefully providing more consistent and clearer visual support to our text. For simplicity, protein is now always represented centered around its active site in the same orientation. We represent co-crystallized water in all projections as a guide to the eye.

      Figure 3 and supplementary figure 3 were switched in order to better represent the experimental evidence provided by the resolution of SBPase structure under reducing conditions, i.e., the increase in local disorder around C115-C120 pair of cysteines in the 113-130 stretch forming a redox-conditionally dynamic loop and β-hairpin motif.

      (4) The authors state that mutation of C115 and C120 to serine destabilize the dimer formation, while more tetramer and monomer is formed. As the tetramer is essentially a dimer of dimers, the authors should elaborate how this might work mechanistically. In my opinion, dimer formation is a prerequisite for tetramer formation and the two mutations rather stabilize the tetramer instead of destabilizing the dimer.

      Time-dependent dynamic character of SBPase oligomer exchange is not resolved by the current study because we essentially combined size-exclusion chromatography (SEC) and X-ray crystallography to define quaternary structures at equilibrium. Overall, homodimer is the dominant state of wild-type SBPase by abundance in the purified recombinant form and by forming the constitutive asymmetric unit in all crystal packings. Dimer is indeed present in the tetramer state, a dimer of dimers, as pertinently stated by reviewer 1.

      This being recognized, we tried to explain the systematic co-elution of the principal dimeric form with an additional species of smaller size on SEC (supplementary figure 1, right-side shoulder of the peak), at the apparent mass of a monomer. When solving the crystal structures of SBPase we realized that the dimer interface is contributed by residues 113-130 forming a loop and β-hairpin motif. Notably, in this loop cysteine 115 (C115) maps at bonding distance of 3.9 Å of side chain of arginine 220 (R220) from dimer partner subunit. In loop 113-120, cysteine pair C115 and C120 are subject to redox switching between disulfide (closed) and dithiol (open) conformations, as shown in our structures 7B2O and 7ZUV, respectively. Given that the reduction of C115-C120 disulfide bridge correlates with a higher flexibility of this motif that contributes to dimer interface (figure S3), we hypothesized that reduction of SBPase would destabilize dimer state to the benefit of transitory monomer state, and indeed point mutagenesis of C115S or C120S caused a large modification of oligomer equilibrium in favour of the monomer (figure S1C).

      Mechanistically, we suggest two scenarios for the tetramer formation: either monomers first interact as in the crystallographic dimer before pairing such dimers into tetramers (as proposed by reviewer 1), or monomers start tetramerization by favoring the alternative subunit interface (figure 5B, between cyan and magenta chains) before stabilizing the crystallographic homodimer interface. In this latter case, monomerization would be necessary to efficiently re-arrange SBPase dimers into tetramers.

      In physiological conditions the re-arrangement switch would be controlled by C115-C120 reduction through ferredoxin-thioredoxin redox cascade. Structural studies in dynamic conditions like native mass spectroscopy/photometry would be necessary to solve this speculation unambiguously although at this stage of our investigation there seem little doubt to us that C115-C120 disulfide-dithiol exchange is essential to control a dimer/monomer balance in first instance.

      Reviewer #2 (Public Review):

      The central theme of the manuscript is to report on the structure of SBPase - an enzyme central to the photosynthetic Calvin-Benson-Bassham cycle. The authors claim that the structure is first of its kind from a chlorophyte Chlamydomonas reinhardtii, a model unicellular green microalga. The authors use a number of methods like protein expression, purification, enzymatic assays, SAXS, molecular dynamics simulations and xray crystallography to resolve a 3.09 A crystal structure of the oxidized and partially reduced state. The results are supported by the claims made in the manuscript. One of the main weakness of the work is the lack of wider discussion presented in the manuscript. While the structure is the first from a chlorophyte, it is not unique. Several structures of SBPase are available. As the manuscript currently reads, the wider context of SBPase structures available and comparisons between them is missing from the manuscript. Another important point is that the reported structure of crSBPase is 0.453A away from the alphafold model. Though fleetingly mentioned in the methods section, it should be discussed to place it in the wider context.

      We thank reviewer 2 for his/her assessment of our manuscript. In response to his/her suggestion to better compare our SBPase structure from the model microalga Chlamydomonas reinhardtii to that of the ortholog from Physcomitrium patens previously reported by an author of this manuscript (Stéphane D. Lemaire) and collaborators (Gütle et al. 2018), we wish to point out that paragraph 3 of the introduction was dedicated to this reference along with a mention to related Thermosynechococcus elongatus dual function fructose-1,6-bisphosphatase sedoheptulose-1,7-bisphosphatase (F/SBPase). We nevertheless follow his/her suggestion to better detail comparison between chloroplastic SBPase structures in the first result section 'Crystal structure of CrSBPase', consistently with response 1 to reviewer 1 (see above).

      Regarding the integration of AlphaFold (AF) computational models in a general discussion about SBPase molecular structure, we wish to point out that our initial 7B2O crystallographic model of CrSBPase was deposited in PDB on 2020-11-27 before AlphaFold2 was available for the scientific community (Jumper et al. publication date is 15 July 2021).

      AF2 entry AF-P46284-F1-model_v4 from AlphaFold Protein Structure Database aligns with our crystal structure 7B2O chain E with RMSD = 0.434 Å, showing excellent agreement between experiment and prediction at the level of protein main chain. It must still be pointed out that it is the AF2 model which is at 0.434 Å away from the experiment, and not the opposite. Exceptions of alignments are in local differences in several loops conformations and in the length of secondary structure elements. Many amino acid residues side chains adopt distinct orientations between the computational model and the experimental structure.

      AF3 was recently communicated (Abramson et al. 2024) along with its online prediction server hosted at https://golgi.sandbox.google.com. CrSBPase model from AF3 align to our crystal structure 7B2O chain A with RMSD = 0.489 Å showing again their strong similarity and with a smaller discrepancy between AF2 and AF3 of RMSD = 0.216 Å. The only significant deviations between 7B2O and AF3 are in the orientation of several side chains and notably on the conformation of region 114-131 that contain the redox sensor motif.

      We added the last two paragraphs to the revised version of the manuscript, after the results section presenting our crystallographic work.

      Recommendations for the authors:

      We made all recommended modifications as detail below.

      Reviewer #1 (Recommendations For The Authors):

      I have outlined a number of minor points below.

      We addressed all minor points listed.

      Line 220: The asymmetric unit only contains three dimers. The dimer of dimer or tetramer can only be reconstituted by displaying the symmetry mates.

      We corrected our sentence for 'The asymmetric unit is composed of six polypeptide chains packing as three dimers'.

      I also suggest that the authors separate the description of the asymmetric unit content from the modeled water molecules and rephrase e.g. „..and four water molecules could be modeled."

      We rephrased as suggested.

      I appreciate that the authors uploaded the structure in advance of this article, which allowed to evaluate the quality of the structure. Although this does not add valuable information, I have identified several unmodeled blobs, which possibly also account for waters.

      Unmodeled blobs were tentatively assigned to water but had to be removed during later refinements. We used Coot Validate tools 'Unmodelled blobs' and 'Check/Delete water' to progress towards the current optimal refinement statistics. We admit that the resolution of the crystallographic dataset (3.09 Å) is limiting to reliably model mobile or less resolved elements like water molecules. Overall, we estimate that the functional elements of the structure are modeled to the best of our knowledge and with minimal subjectivity.

      Line 222: Please write 309 instead of spelling the number.

      We corrected for 309 instead of spelling the number.

      Line 223: The structure representation in Figure 1A/B has to be improved. The authors might consider labeling the two domains & color them in two colors instead of the rainbow color coding. Furthermore, the 90{degree sign} rotation does not add much information. Here, turning the model in a different direction that allows to see the central b-sheet of domain 2 might be better suited. Furthermore, instead of describing b-strands first, followed by a-helices, I suggest describing which secondary structure elements form the two domains.

      We improved Figure 1A as suggested while keeping Figure 2B with 90° rotation as rainbow color gradient in order to display with clarity the secondary structure content and connectivity. The orientation was tilted to better display the central β-sheet. This new version of Figure 1A/B should facilitate the text description of SBPase architecture that we amended as suggested.

      Line 229: The information on A113-120 should be depicted in a closeup in Figure 1A.

      We made a close-up view of sequence 113-120 as added figures 1C-D and modified the rest of the figure and legend accordingly.

      Line 234: Please provide an r.m.s.d here.

      We now provide r.m.s.d. for all structural alignments.

      Line 242: Please introduce the domain labeling in Fig 1C to make it easier to track the exact region within SBP here. Is the residue numbering according to SBP or the human FBP?

      Modified version of figure 1 now shows SBPase in the same orientation for panels A, E, F, G, H for simplicity. Domains labeling is indicated in panel A with NTD/CTD distinct colors as suggested. We explicited the position of W401 on all panels as a guide to the eye. We indicated in figure legend that residue numbering is according to Chlamydomonas SBPase Uniprot entry P46284.

      Line 244: Is Figure 1D in the same orientation as C? I suggest making the surface transparent and showing the cartoon below, which will allow to easier see the solvent accessibility of the residues. Also, clearly label W401 (although it's the only water shown/modeled in this region).

      We modified figure 1 to show all equivalent panels (ie. A-E-F-G-H) with the same orientation. In this new form we think that solvent accessibility and the relative position of significant residues is easier to interpret for the reader. W401 is consistently labeled throughout figure 1 panels.

      Line 263: Please provide a close-up of the C222 and C231 including measured distance. It's clearly not visible from this view. It might even be helpful to provide close-ups of all cysteine residues that are mentioned in the text.

      In the modified version of figure 1 we estimate that C222 and C231 are more easily visible. We added a close-up view of C22-C231 environment in a new supplementary figure 2. Since we do not explore further the functional relevance of this redox pair we chose not include C222-C231 close-up view in main figure 1. We added legends and modified supplementary figures numbering accordingly.

      Line 276: As already mentioned earlier, none of the panels in Figure 1 provide a close-up of this loop. This should be added.

      This loop is now displayed as a close-up view in panels C and D of main figure 1.

      Line 284: It is difficult to follow the relative positions of the potential modification sites if the model is always depicted from a different angle in Figure 1. The authors might want to change this across Figure 1 or show the rotation angle.

      This problem was addressed in the revised figure 1, panels A-E-F-G-H are in the same orientation now. Panel B was kept at a rotation of 90° with corresponding annotation.

      Line 290: Please label W401. Also stick to one nomenclature (W or H20).

      We labeled W401 and kept nomenclature consistent throughout the manuscript.

      For comparative reasons, a full kinetic measurement (determination of Km and kcat) of the SBPase would also be helpful here.

      We resolved to avoid a full kinetic measurement of CrSBPase because we could neither identify a reliable chemical provider nor synthesize ourselves the physiological substrate sedoheptulose-1,7-bisphosphate (SBP) and only characterized the reaction with fructose-1,6-bisphosphate. However, in the revised form of the manuscript we added in main text paragraph 'CrSBPase enzymatic activity' the kinetic constants from the previous reference study conducted on spinach SBPase (Cadet and Meunier, Biochem. J. 1988) with KMSBP\=0.05 mM and kcatSBP\=81 sec-1 of fully active enzyme with SBP as a substrate. For comparison, the authors of this study report that activity of SBPase on FBP is in the same range but lower, with KMFBP\=0.38 mM and kcatFBP\=21 sec-1. We also added a comparison of specific activities of our CrSBPase and spinach SBPase in the main text, showing that our enzyme behaves as previously reported ortholog from land plant.

      Line 303: How much MgSO4 was used for the experiment shown in Figure 2A?

      10 mM of MgS04 was used for experiment shown in Figure 2A. We added this information in the figure legend. We also added in the legend that 10 mM DTT is present in the experiment of Figure 2B and that 10 mM of MgSO4 and 1 mM of DTT are present in the experiment of Figure 2C.

      Line 321: In my opinion it is not necessary to show the regions of all molecules here. I was rather expecting a superposition of the two structures (oxidized and reduced) with a close-up of the respective disulfide in the two states.

      We agree that the initial version of Figure 3 panels showing side-by-side all conformational variants of the redox motif appear redundant. We switched initial Figure 3 to supplementary data and replaced it with the crystallographic b-factor mapping of the redox motif, in the variable conditions resolved by the crystals. We would like to stress that all these conformations were experimentally determined through X-ray crystallography, whether of the crystal of pure inactive enzyme that proved to be oxidized on the redox motif, or of the equivalent crystals submitted to activating treatment by the chemical reductant TCEP. As an attempt to clarification we added visual boxes to better appreciate this reduction-induced conformational plasticity that we interpreted as a local conditional disorder.

      Line 331: Could the authors provide movies of the MD simulation? Otherwise, interpretation of the MD simulation results might be difficult for non-experts.

      We added two movies of 20-µsec MD simulations as supplementary data to help non-expert readers.

      Line 343: It might be helpful to label the structure elements in Figure 4 accordingly (e.g. residues, etc.)

      We added secondary structure labeling in Figure 4.

      Line 381: Should be changed to Figure 5A.

      We changed reference to figure 6 that is a renumbering of figure 5 with changes included from suggestions below. Figure 6 now includes chromatograms of recombinant SBPase in panel A and chromatogram and western blot analysis of Chlamydomonas extracts in panel B.

      Line 383: See above, figure 5B. Which structure is shown in the figure? 7zuv or 7b2o? Maybe include both structures in the figure in a side-by-side view. The authors might also want to include the SEC chromatograms in the main figure. Especially the purification from Chlamydomonas is helpful to estimate whether post-translational modifications have an impact on the oligomerization. This should also be mentioned in the text.

      7b2o and 7zuv are illustrated side-by-side in panels A and B of figure 5. This was indicated in the figure legend, we now added the information on the figure. As suggested above we included chromatograms initially presented as supplementary material in a new main figure 6, panel A for recombinant proteins and panel B for proteins extracted from Chlamydomonas. Initial figures 5D-E, showing surface conservation of the dimeric SBPase, is moved to supplementary figure 5.

      Line 385: I don't find the cultivation of Chlamydomonas in the method section. It should be added.

      We added a methods paragraph dedicated to « Cultivation of Chlamydomonas for native SBPase analysis ».

      Line 390-392: This information is not really helpful. Concentrated purified proteins might precipitate after a week storage without physiologically relevant effects being the reason.

      We agree that the observation of a precipitate building up in vitro after a week of storage bears no particular physiological implications. We rather intended to report that an aggregated form of purified protein can be turned to droplets under the redox conditions that activate the enzyme. We reformulated these lines for clarification.

      Line 397: I would appreciate having the SEC-chromatograms of the mutants also in the main figure.

      Size-exclusion chromatograms that were initially in supplementary figures are now shown in main text figure 6 panel A, with the profiles WT and mutants aligned.

      Line 402: Where are these data shown? They should be included in Figure 5.

      We added a figure to present these data, not shown in the initial version of the manuscript. We preferred to place it as supplementary material because C115S and C120S mutant catalytic activity is essentially the same as WT and do not reveal a direct mechanistic effect of C115-C120 reduction over the catalytic pocket.

      Line 427: Did the authors look into a possible cooperativity of their SBPase?

      We did not observe direct positive cooperativity that could be ascribed to allostery in our enzymatic assays. It was previously reported for spinach SBPase that SBP saturation functions were hyperbolic with no evidence of homotropic interactions in the enzyme oligomer (Cadet and Meunier Biochem J. 1988 253, 249-254). The authors of this kinetic study however present a clear sigmoid response of SBPase to Mg2+ concentration, suggestive of an activating cross-talk between active sites in the oligomer. We consider this hypothesis of interest and wish we could further investigate allosteric conformational changes when SBP physiological substrate would be available.

      Line 428-434: I don't really understand how the proteome mapping fits in here. Do the authors speculate that SBPase is recruited by some of the identified enzymes or directly interacts with them or that rather the spatial distribution optimizes the reaction kinetics?

      We indeed want to correlate our in vitro observations of CrSBPase conditions of activity to those recently published by the group of Dr. Martin Jonikas in a physiological, in vivo setup of Chlamydomonas reinhardtii (Wang, Patena et al. Cell 2023 186, 3499–3518). We have no experimental evidence demonstrating the first suggestion that SBPase is recruited or directly interacts with partner enzymes but we privilege the second suggestion that local spatial distribution in the chloroplast stroma optimizes enzyme reaction kinetic thanks to Calvin-Benson-Bassham enzymes proximity. We rephrased these lines to clarify our hypothesis and express its speculative character.

      Reviewer #2 (Recommendations For The Authors):

      To make the manuscript stronger, the authors are recommended to do the following:

      We followed given recommendations.

      (1) include a wider discussion on the other SBPase structures that are available. A detailed comparison should be made between the oxidized and reduced structures present in the PDB with the structures that are being reported in the manuscript.

      Consistently with reviewer #1 suggestion, and as detailed in response to public review above, we followed the recommendation to better report previous structural studies of SBPase in the results section. We also added comparisons with computational models from AlphaFold2 and AlphaFold3.

      (2) The authors mention co-operativity between the subunits. With excellent sampling from molecular dynamics simulations, the authors should demonstrate co-operativity between the subunits.

      Our molecular dynamic (MD) simulations span 20 µsec of SBPase in the dimeric state, starting from the experimental structures determined by XRC. In the considered time window, the only significant events that we observed are the local reorganization of the LBH motif that is a prerequisite for dimer rearrangement. We infer that local disorder contributes a separation of the pair of subunits in order to later allow for the building of the active homotetramer, at longer time scales that are outside the capacities used in this work. Moreover, demonstrating cooperativity with MD simulations would require more than a single event to ensure that results are significant, and performing series of 20µs-MD of SBPase is also outside the available capacities.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study provides a useful strategy for treating mouse cutaneous squamous cell carcinoma (mCSCC) with serum derived from mCSCC-exposed mice. The exploration of serum-derived antibodies as a potential therapy for curing cancer is particularly promising but the study provides inadequate evidence for specific effects of mCSCC-binding serum antibodies. This study will be of interest to scientists seeking a novel immunotherapic strategy in cancer therapy.

      Joint Public Review:

      Summary:

      This study presents an immunotherapeutic strategy for treating mouse cutaneous squamous cell carcinoma (mCSCC) using serum from mice inoculated with mCSCC. The author hypothesizes that antibodies in the generated serum could aid the immune system in tumor volume reduction. The study results showed a reduction in tumor volume and altered expression of several cancer markers (p53, Bcl-xL, NF-κB, Bax) suggesting the potential effectiveness of this approach.

      Strengths:

      The approach shows potential effect on preventing tumor progression, from both the tumor size and the cancer biomarker expression levels bringing attention to the potential role of antibodies and B cell responses in cancer therapy.

      We greatly appreciate your positive feedback on our study.

      Weaknesses:

      These are some of the specific things that the author could consider to strengthen the evidence supporting the claims in their study.

      (1) The study fails to provide evidence of the specific effect of mCSCC-antibodies on mCSCC. The study utilized serum which also contains many immune response factors like cytokines that could contribute to tumor reduction. There is no information on serum centrifugation conditions, which makes it unclear whether immune components like antigen-specific T cells, activated NK cells, or other immune cells were removed from the serum. The study does not provide evidence of neutralizing antibodies through isolation, analysis of B cell responses, or efficacy testing against specific cancer epitopes. To affirm the specific antibodies' role in the observed immune response, isolating antibodies rather than employing whole serum could provide more conclusive evidence. Purifying the serum to isolate mCSCC-binding antibodies, such as through protein A purification, and ELISA would have been more useful to quantify the immune response. It would be interesting to investigate the types of epitopes targeted following direct tumor cell injection. A more thorough characterization of the antibodies, including B cell isolation and/or hybridoma techniques, would strengthen the claim.

      I am deeply appreciative of the reviewer's highly professional comments. Tumor development involves the coexistence of cancer cells at different developmental stages, each harboring a variety of known and unknown mutated proteins. These mutated proteins expose multiple known and unknown epitopes, each capable of stimulating the production of corresponding antibodies in healthy mice. Identifying all these antibodies presents a significant challenge. Current research methodologies, such as ELISA, WB, and ChIP, can only identify known antibodies based on existing antigens. A prerequisite for using these techniques is that both antigens and antibodies are identified. At present, there is no technology available to identify antibodies produced by an unknown mutated protein and epitope. However, I find the reviewer's comments insightful. Perhaps we can initially identify some known mCSCC-antibodies on mCSCC. However, studying the specific effect of these known mCSCC-antibodies on mCSCC is uncertain because we believe that tumor shrinkage results from the combined action of both known and unknown antibodies.

      We concur with the reviewer's observations regarding the use of serum, which is rich in immune response factors such as cytokines that could potentially contribute to tumor reduction. In our future research, we plan to systematically analyze the individual roles of these antibodies and cytokines in tumor reduction. In 1973, Nature published a report indicating that serum demonstrated promising results in tumor treatment (Immunotherapy of Cancer with Antibody in Rats. Nature 243, 492 (1973). https://doi.org/10.1038/243492b0). Since then, there have been scarcely any reports on serum therapy for tumors. The primary focus of our study is to evaluate the efficacy of serum therapy in treating tumors. We hypothesize that antibodies and cytokines form a complex interactive network, working in synergy to reduce tumors. Consequently, we believe that studying these antibodies and cytokines in isolation may not yield effective results.

      In this study, the methodology section outlines the process of serum preparation. It is important to note that serum is devoid of blood cells. I hypothesized that whole blood might have superior therapeutic effects compared to serum. This is because antibodies could potentially synergize with immune cells (including T cells, B cells, and NK cells), thereby enhancing the effectiveness of the treatment. As previously discussed, these antibodies, cytokines, and immune cells form a complex interactive network aimed at tumor reduction. Consequently, there are numerous factors that could influence the experimental outcomes, which presents a challenge for analyzing the results. Furthermore, the implementation of whole blood transfusion therapy introduces additional considerations, such as potential side effects and reactions associated with blood transfusions.

      We thank the reviewers for their suggestion to purify the serum in order to isolate mCSCC-binding antibodies. As we previously mentioned, separating a large number of both known and unknown serum antibodies presents a significant technical challenge. We are eager to discuss and consider suggestions from the reviewers regarding methods to identify a large variety and number of unknown antibodies on cells. Perhaps, as the reviewer suggested, we could begin with known antibodies and employ Protein A purification technology to purify these antibodies and subsequently detect immune responses. We could also categorize the types of epitopes targeted, direct tumor cell injection, to study the epitopes of these types in further studies. The suggestion to study the response of B cells is valuable, and we plan to conduct comprehensive research on the response and status of B cells in our future studies.  

      The purification of antibodies to enhance the specificity of their effectiveness against tumors is a critical aspect of our study. However, we would like to address some concerns raised. (1) The separation of all antibodies and cytokines presents a significant technical challenge. Particularly, there is a risk of overlooking antibodies that are present in low concentrations but play crucial roles. (2) What concerns us is that studying the composition separately would lose the overall effectiveness of the study. Our primary concern is that studying these components in isolation could compromise the holistic understanding of the study. This is akin to current research on traditional medicine, where the separation and individual study of compounds often result in a loss of overall therapeutic efficacy. For instance, consider a scenario where 100 antibodies collectively work to shrink a tumor. These antibodies interact with 20 cytokines, forming a complex network that enhances the cytokines' activity against tumor cells. Furthermore, many important antibodies and cytokines are currently unknown. Studying these antibodies in isolation could potentially result in the loss of this therapeutic effect. Therefore, in the discussion section, we have emphasized that our study considers a tumor mass, including tumor cells at various stages of development, as a single entity. As a practicing clinician, my primary focus is on the therapeutic outcomes in tumor treatments, despite the mechanisms of serum therapy remaining largely elusive, liking a black box.

      (2) In the study design, the control group does not account for the potential immunostimulatory effects of serum injection itself. A better control would be tumor-bearing mice receiving serum from healthy non-mCSCC-exposed mice. Additionally, employing a completely random process for allocating the treatment groups would be preferable. Also, the study does not explain why intravenous injection of tumor cells would produce superior antibodies compared to those naturally generated in mCSCC-bearing mice.

      I concur with the reviewer's perspective that using serum from healthy, non-mCSCC exposed mice as a control could potentially improve our study. Initially, our primary concern was to minimize harm to the mice and avoid excessive blood reactions, which led us to exclude the use of serum from healthy, non-mCSCC exposed mice in our control group. The main objective of our study was to investigate tumor shrinkage through serum treatment, specifically serum-derived antibodies. We anticipated that tumor-bearing mice receiving serum from healthy, non-mCSCC exposed mice would exhibit a response to the injected serum, which would manifest as a blood reaction. However, we did not expect this to result in a tumor treatment effect. If it turns out that normal serum (from healthy, non-mCSCC-exposed mice) possesses tumor-reducing properties, it would indeed be a novel discovery. We appreciate the reviewer's insightful suggestion and will consider incorporating it into our future research.

      We concur with the reviewer's observations that the use of a completely random process for assigning treatment groups would be more desirable. Indeed, the complete randomization of the entire process further underscores the efficacy and universality of serum therapy. In this study, we utilized paired mice to mitigate the risk of cross-infection and adverse reactions associated with blood transfusions. We deeply value the reviewer's expert feedback.  

      Lastly, the reason why tumor cells, when intravenously injected, produce antibodies superior to those naturally generated in mCSCC-bearing mice, is due to the following reasons. As tumor cells grow, they produce a variety of mutated proteins to adapt to the immune microenvironment and evade the immune system of mCSCC-bearing mice. However, these tumor cells with mutated proteins are exceptionally sensitive and recognizable to healthy mice. This recognition triggers an immune response in healthy mice, leading to the production of specific therapeutic antibodies. This simultaneous production of diverse and abundant antibodies is only achievable by living organisms.

      (3) In Figure 2B, it would be more helpful if the author could provide raw data/figures of the tumor than just the bar graph. Similarly in Figure 3, the author should show individual data points in addition to the error bar to visualize the actual distribution.

      Raw data (numerical values) have been incorporated into Figures 2B and 3, but the data is placed in the table below the graph. If placed above the error bar, it requires a small font and may not be clear.

      (4) The author mentioned that different stages of tumor cells have different surface biomarkers. Therefore, experimenting with injecting tumor cells at various stages could reveal the most immunogenic stage. Such an approach would allow for a comparative analysis of immune responses elicited by tumor cells at different stages of development.

      Yes, throughout the course of tumor development, tumor cells at various stages will exhibit distinct markers or possess different mutated proteins. The concept of segregating tumor cells from different stages and independently comparing their immune responses is indeed commendable. Future research could involve isolating cells that express identical biomarkers at each stage for a comparative analysis of the immune responses triggered by the tumor cells. However, this approach diverges from the original intent of this study.

      Most tumor cells exist within the same developmental stage. However, this does not imply that all tumor cells within the tumor mass are at the same stage. For instance, a stage III liver cancer tumor may contain both stage I and stage IV tumor cells. Moreover, due to the complexity of tumor development, not all tumor cell surface markers are identical, even for tumors at the same stage. For instance, 20 major proteins and 100 minor proteins are implicated in tumor formation. In fact, random mutations in just 5 of these major proteins and 10 minor proteins can instigate the development of tumors. This implies that the protein pattern (tumor cell surface markers) associated with each individual's tumor is unique. While studying tumor cells at different stages separately allows for the observation of the immune response of tumor cells at each stage, it lacks a comprehensive research and treatment effect. For this reason, the design of this study treats a tumor mass as a whole, encompassing both the primary stage tumor cells and those not in that stage. These tumor cells are then injected to produce corresponding therapeutic antibodies. Furthermore, if tumor cells from only one stage are isolated and specific antibodies are produced against these cells, it could lead to immune escape of tumor cells at other stages, preventing the tumor from shrinking. Therefore, our approach aims to address this issue by considering the tumor mass as a whole.

      (5) In the abstract the author mentioned that using mCSCC is a proof-of-concept for this potential cancer treatment strategy. The discussion session should extend to how this strategy might apply to other cancer types beyond carcinoma.

      We have incorporated an additional paragraph in the discussion section where we delve into the concepts and experimental principles underpinning this study. This, we believe, addresses the reviewer's query regarding the applicability of our study's methodology to other types of tumors. The process for other tumors also involves isolating cells from the tumor, stimulating therapeutic antibody production in healthy mice using these cells, and ultimately reintroducing these antibodies into mice with tumors to facilitate tumor elimination

      Recommendations For The Authors:

      The author is encouraged to refine the study's design in future studies considering the weaknesses highlighted above, summarize the results more effectively, and seek opportunities to expand on this promising idea and enhance the research's impact and applicability.

      We greatly appreciate the valuable suggestions provided by the editor and reviewers. These insights will certainly be addressed in our future research endeavors.

      Suggestions for title modification:

      Following the scope of the study, the term 'specific homologous neutralizing-antibodies' may be misleading as neutralizing antibodies typically refer to antibodies preventing viral cell entry. In cancer therapy, 'neutralization' is not a relevant concept, as cancer cells do not infect host cells. Using whole tumor cells as immunogens diverges from the specificity of traditional vaccination approaches that utilize well-defined proteins or antigens. Furthermore, the term "homologous" suggests a precision in targeting that is not demonstrated by reintroducing serum without isolating its specific components. Therapeutic effects should not be attributed to "neutralizing antibodies" without isolating or characterizing the antibody response or verifying their efficacy against specific cancer epitopes. Additionally, it is suggested that you indicate the biological system that your study utilised in the title. More so, this approach is not entirely novel, as seen with the use of adjuvants in some flu vaccines, or in Moderna's cancer vaccine mRNA-4157, which encodes up to 34 patient-specific tumor neoantigens. You can consider the title below or a variant of the same.

      Suggested title: Generating serum-based antibodies from tumor-exposed mice: a potential strategy in cutaneous squamous cell carcinoma treatment

      I concur with your suggestion and have modified the title to " Generating serum-based antibodies from tumor-exposed mice: a new potential strategy for cutaneous squamous cell carcinoma treatment ". I believe this research remains some new, hence the addition of the word "new". Furthermore, the term "novel" in the paper has been either removed or substituted.

      Moreover, I propose that this study shares similarities with Moderna's cancer vaccine mRNA-415, albeit with certain differences. Moderna's cancer vaccine mRNA-415 encodes 34 recognized neoantigens to stimulate an immune response by eliciting specific T cell responses. This is similar to the strategy of some companies developing a protein set for diagnosing lung cancer, liver cancer, among others. Without a doubt, these methods have improved the effectiveness of tumor diagnosis and treatment. However, I think that these methods currently face challenges in completely eradicating tumors because they perceive tumors as a static process and cells that express certain mutated proteins in a fixed manner. I believe that small molecule antibodies, cytokines, and immune cells present in serum that are difficult to detect, have low concentrations, or are unknown are essential for maintaining the expression of important mutant proteins and the escape of tumor cells. This is also the primary reason why tumors are difficult to treat and prone to recurrence at present.

      From my perspective, different tumors, as well as different stages of the same tumor, express varying mutated proteins or surface markers. Targeting some may result in others escaping or even creating a more conducive growth environment for those that do escape. Our study adopts a comprehensive view of a tumor block, encompassing tumor cells at different stages and tumor cells at the same stage but expressing different biomarkers. This approach generates a multitude of known and unknown antibodies that work in concert with cytokines and immune cells. While our method may not be capable of generating all mutated proteins and epitope antibodies due to the weakness of some antigens (epitopes of mutated proteins), it can still be effective. As long as the number of tumor cells is reduced below a certain threshold following multiple rounds of treatment with various antibodies produced at different stages, these cancer cells can be eradicated by the body's immune system. This is a process that is real-time and dynamic. Undoubtedly, if it becomes evident that alterations in a set of proteins can bolster the immune system and eradicate tumor cells, then the implications are significant. The immunotherapy proteins, which have demonstrated positive therapeutic effects, developed by certain companies are also predicated on this very principle.

      Finally, I greatly appreciate your suggestions, which will be considered and gradually addressed in future research.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer #1 (Public Review): 

      In the manuscript "Mechanistic target of rapamycin (mTOR) pathway in Sertoli cells regulates age-dependent changes in sperm DNA methylation", the authors proposed to test if the balance of mTOR complexes in Sertoli cells may play a significant role in age-dependent changes in the sperm epigenome. The paper could be of interest and has a good scientific aim but there are too many drawbacks that hamper the initial enthusiasm. All sections need extensive revision. The paper is mostly descriptive without a mechanistic-orientated explanation for the observed results. 

      Comments on revised version: 

      I am not sure that the authors have made an attempt to clearly answer the reviewers comments that aimed to improve the quality of the manuscript. It stands as mostly descriptive and with limited interest as it is. 

      We are thankful to the reviewer for agreeing to review our revised manuscript. Unfortunately, we completely disagree with the evaluation provided by the reviewer. Research on sperm DNA methylation experienced a significant rise of interest in the current century and by now more than 2000 papers have been published. Although it was demonstrated that the sperm DNA methylome may be affected by almost every factor analyzed, no study was published to identify molecular mechanisms that may link these factors with the sperm epigenome. Our study is the FIRST to identify such a mechanism (mTOR complexes balance in Sewrtoli cells). More so, we demonstrated experimentally that manipulations of this mechanism allow regulation of the rates of epigenetic aging of sperm in both directions (accelerate aging or rejuvenate). Thus, our study provides a mechanistic background for the development of therapeutic interventions that may target sperm epigenome.

      We acknowledge that our study does not provide the full cascade of events linking the balance of mTOR complexes in Sertoli cells with the sperm DNA methylome. It suggests, however, the most plausible event next in a cascade (BTB permeability changes). Our group is working on this question now and we hope to provide the answer soon in a separate study. Even after that, we will be far from understanding the complete chain of molecular events that link mTOR and sperm methylome. It may take many years and significant effort of many research groups to dissect the whole cascade. It is worth mentioning that understanding of a complete cascade involved in pathology is not needed to develop efficient therapies if the critical nodes are known. For many common drugs (e.g. metformin) we do not know the full chain of molecular mechanisms but use them successfully.

      Thus, we believe that our study is mechanistic as it identified a critical mechanism manipulation of which allows experimental aging and rejuvenation of the sperm methylome. Additionally, it generates new mechanistic questions and hypotheses to be answered in the future.

      Reviewer #3 (Public Review): 

      Summary and Strength: 

      The manuscript by Amir et al. describes that Sertoli-specific inactivation of the mTORC1 and mTORC2 complex by KO of either Raptor or Rictor, respectively, resulted in progressive changes in blood-testis-barrier (BTB) function, testis weight, and sperm parameters, including counts, morphology, mtDNA content and sperm DNA methylation. 

      The described studies are based on the hypothesis that a decline of BTB function with increasing chronological age of a male contributes to the DNA methylation changes that are known to occur in sperm DNA of old males when compared to sperm DNA from isogenic young males. In order to demonstrate the relevance of a functioning BTB for the maintenance of sperm methylation patterns, the authors generated mice with genetically disrupted mTORC2 complex or mTORC1 complex in Sertoli cells and determined sperm methylation patterns in comparison to isogenic wild-type males. In line with previously published scientific literature (e.g. Mok et al., 2013; Dong et al, 2015; and others), the manuscript corroborates that a Sertoli-cell specific deletion of mTORC2 caused a loss of BTB function and a progressive spermatogenic defect. The authors further show that sperm DNA is differentially methylated (DMRs) as a consequence of either a mTORC2 disruption (associated with a loss of BTB function) or following a mTORC1 disruption (BTB function either increased or not leaky) when compared to their isogenic age-matched wt controls. Those DMRs overlap partially with changes in sperm DNA methylation that were found when comparing sperm from 8-week males with sperm isolated from 22-week-old male mice. 

      The authors interpret the observed changes as representative of the sperm DNA methylation changes that occur during normal chronological aging of the male. For an aged control group, the authors use sperm DNA of 22-week-old wild-type mates from the mTORC2 and mTORC2 KO breeding and compare the sperm methylation patterns found in sperm from those 22-week males to 8-week young males, that are intended to represent an old and a young cohort, respectively. DNA methylation analysis indicates that a disruption of mTORC2 (& decrease of BTB function) results in increased DNA methylation of sperm DNA, while a disruption of mTORC1 (and proposed increase of BTB tightness, not shown in the manuscript, though) resulted in increased hypomethylation. 

      Weaknesses: 

      While the hypothesis and experimental system are interesting and the data demonstrating the relevance of the mTORC2 complex for BTB function is convincing, several open questions limit the evidence that supports the hypothesis that the sperm DNA methylation changes seen in old males are caused by BTB failure following an imbalance of mTOR signaling complexes. The major critique points are the lack of a chronologically old group and the choice of 8 weeks & 22 weeks age of age: 

      - Data illustrating the degree of BTB decline and sperm DNA methylation changes from chronologically "old" male mice is missing. 22-week-old mice are not considered old but are of good and mature breeding age, equivalent to humans in their mid-late twenties. (In the manuscript, the 22-week-old wildtype mice show no evidence of BTB breakdown (Figure 3), so why are their sperm used to represent "aged" sperm? 

      - Adding a group of "old" wild-type mice of 12-14 months of age, which is closer to the end of effective reproduction in mice, more equivalent to 45-59 year-old humans) could be used to illustrate that (a) aging causes a marked decrease in BTB function at this time in mouse life, and that this BTB breakdown chronologically aligns with the age-associated DNA hypermethylation seen in old sperm. Age-matched "old" mTORC1 KO, with a (supposedly) tighter BTB barrier, could then be expected to have a sperm DMA methylation profile closer to that of younger wild-type animals. Such data are currently missing. While the progressive testicular decline observed in the mTORC1 KO (Fig.5) could make it difficult to obtain the appropriately aged mTORC1 KO tissues, it is completely feasible to obtain data from chronologically old wild-type males. (The progressive testicular decline further raises the question of what additional defects the KO causes, and how such additional defects would influence the sperm DNA methylation profile.) The addition of data from an old group to the currently included groups could strengthen the interpretation that the observations in the BTB-defective mTORC2 KO mice are modelling an age-related testicular decline, provided that the DMRs seen in the chronologically old group significantly overlap with the BTB-defective changes. 

      - In the current form, the described differences in sperm DNA methylation are based on comparisons between pubertal mice (8 weeks) and mature but not old adult males (22 weeks), while a chronologically "old" group is missing from the data sets and comparisons. Thus, it appears that the described sperm methylation changes reflect developmental changes associated with normal maturation and not necessarily declining sperm quality due to aging. (Sperm obtained from 8-week-old mice likely were generated, at least in part, during the 1st wave of spermatogenesis, which is known to differ from the continuously proceeding spermatogenesis during the remained of the mature life. During the 1st wave of spermatogenesis, Sertoli cells are known to undergo gene expression changes which could contribute to varying degrees of BTB function, and thus have effects on the sperm DNA methylation profiles of such 1st wave sperm.) 

      - It is unclear why the aging-related DMRs between the 8 and 22-week-old wild-type mice vary so dramatically between the two wild-type groups derived from the mTORC1 and the mTORC2 breeding (Fig. S4). If the main difference was due to mTORC1 or mTORC2 activity, both wildtype groups should behave very similarly. Changes seen in a truly "old" mouse (e.g. 20 weeks to 56 weeks), changes in "young mTORC1" and in "old mTORC2" are missing.

      How do those numbers and profiles compare to the shown samples? 

      Comments on latest version: 

      The rebuttal letter and public response indicate the authors' reluctance to consider the limitations of their study, i.e. having chosen chronologically young animals to demonstrate a sperm aging effect and indicate that they are not willing to include adequate controls. 

      Since there is no evidence that mice at this young age have a deteriorating blood-testis-barrier (indeed, normal intact BTB is clearly visible in the figures included in this study from animals of the relevant age group), the whole central hypothesis that the study is built upon (i.e. that increasing age causes deteriorating BTB integrity which in turn causes age-related changes in sperm DNA methylation), appears irrelevant or invalid. 

      The authors' claim that age-related DNA methylation changes in sperm occur in linear fashion and that the changes are somewhat proportional with chronological age is in stark contrast of the claim that a decline of the BTB in old animals is causative for age-related sperm epigenetic changes, putting the relevance of the whole study in question. 

      We are thankful to the reviewer for agreeing to review our revised manuscript. We disagree with the evaluation provided by the reviewer, however.

      First, the reviewer misinterpreted the hypothesis of the study, although it is formulated in the last sentence of the Introduction:  “ … we hypothesized that the balance of mTOR complexes in Sertoli cells may also play a significant role in age-dependent changes in the sperm epigenome.” Instead, the reviewer assigned a different hypothesis to our study (that BTB integrity changes are responsible for age-dependent changes in sperm DNA methylation) and criticized us for not providing clear testing of this hypothesis.

      To clarify, we believe that our study provides high-quality testing of OUR hypothesis as we demonstrated experimentally that manipulations of mTOR complexes balance in Sertoli allow acceleration and deceleration of epigenetic aging of sperm. Additionally, our study generated a hypothesis that BTB permeability may mediate the effects of the mTOR pathway on sperm methylome. This second hypothesis is to be tested in the future research.

      We also disagree with the reviewer's interpretation of the aging process as an abrupt transition from a young, healthy, and undamaged state to an old, moribund, and damaged state. The whole body of biogerontological knowledge suggests instead steady accumulation of damage over lasting periods of time. For example, this understanding of steady change at the molecular level allowed the development and successful use of epigenetic clock and other molecular clock models, including several variants of sperm epigenetic clocks. These models clearly demonstrate linear or semi-linear accumulation in DNA-methylation changes in various tissues and biological species across the whole lifespan. It is reasonable to assume that BTB permeability decreases with age steadily as well and that in younger animals this decrease may be not easily detected by the existing analytical methods. Experimental data showing the dynamics of the BTB deterioration over age do not exist to our knowledge although it was demonstrated that older animals have loose BTB as compared with young. We agree with the reviewer that future studies testing the role of BTB deterioration for sperm methylome aging will need to provide such evidence. It was not the subject of the current study, however.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In the manuscript "Mechanistic target of rapamycin (mTOR) pathway in Sertoli cells regulates age-dependent changes in sperm DNA methylation", the authors proposed to test if the balance of mTOR complexes in Sertoli cells may play a significant role in age-dependent changes in the sperm epigenome. The paper could be of interest and has a good scientific aim but there are too many drawbacks that hamper the initial enthusiasm. All sections need extensive revision. The paper is mostly descriptive without a mechanistic-orientated explanation for the observed results.

      Specific comments:

      (1) The abstract is poorly written. There is a lot of unnecessary introduction that does not provide a rationale for the work. It is not possible to understand the experimental approach or the major data just by reading the abstract. It does not clearly represent the work.

      - We have added details of experimental design and results to the abstract and reduced the introductory part of the abstract.

      (2) The introduction is somewhat vague and does not provide a clear rationale for the hypothesis. There should be more focus more on the role of mTOR in Sertoli cells that goes far beyond BTB. That will give more focus on mTOR. Then it is important to focus on BTB and mTOR: what is known? What is the gap and how can it be solved? Several relevant references are missed concerning mTOR and Sertoli cells.

      - The goal of this study was not to explore all potential roles of mTOR pathway in Sertoli cells, but to test if shifts in the balance of mTOR complexes regulate (accelerate/decelerate) epigenetic aging of sperm. As such, we disagree with the reviewer and consider that the current Introduction provides a focused rational for the study.

      (3) The Material and Methods section needs improvement. There is much important information missing. For instance: how many animals were used per group and how was the breeding done? At what age? Statistical analysis should be explained in detail.

      - The number of animals was clearly stated in the original manuscript. We have added details of breeding and statistical analysis. 

      (4) The results description could be improved. It is vague without highlighting how much difference was detected. The results should be numerically described when possible and the differences should be highlighted. A 10% difference may be significant but not biologically relevant. To correctly evaluate the differences it is important to describe them with some degree of detail.

      - For all DNA methylation experiments we provide numerical characteristics of methylation changes, including numbers of DMRs, % change, significance, correlation coefficients. We believe that only age- and genotype-associated changes in reproductive parameters were not characterized in our manuscript in detail. We have added Table 1 to provide these numbers.

      (5) There is no discussion of the data. The authors just summarize their findings without a comprehensive analysis of the literature and how the effects can be mediated. mTOR interacts with different pathways (mTORC1 and mTORC2 are even mediators of distinct pathways). This would be very relevant to discuss. In addition, there are many study limitations not discussed. There is no clear mechanistic explanation of the way by which the mTOR pathway in Sertoli cells regulates age-dependent changes in sperm DNA methylation. The paper seems preliminary.

      - We have added an additional paragraph to the discussion to highlight a potential molecular mechanism that links mTOR pathway with the sperm epigenome.

      (6) Figure 1 is too simple and does not provide any schematic support for the text.

      - We disagree with the reviewer and believe that the figure represents a good visualization of our hypothesis useful for the perception of the study.

      (7) Figure 2 lacks some detail. For instance, how many animals were used for each step?

      - Numbers of animals are provided in the text of the paper.

      (8) Taking into consideration the roles of mTOR on sperm, particularly mTORC1, it is not clear whether there were any differences in sperm motility.

      - We did not assess sperm motility in this study. 

      Reviewer #2 (Public Review):

      In this study, the authors hypothesized that the balance of mTOR complexes in Sertoli cells may also play a significant role in age-dependent changes in the sperm epigenome. To test this hypothesis, the authors use transgenic mice with manipulated activity of mTOR complexes in Sertoli cells. These results suggest that the mTOR pathway in Sertoli cells may be used as a novel target of therapeutic interventions to rejuvenate the sperm epigenome in advanced-age fathers.

      The authors attempt to demonstrate that the balance of mTOR complexes in Sertoli cells regulates the rate of sperm epigenetic aging. The authors have effectively met their research objectives, and their conclusions are supported by the data presented.

      - We are very thankful for the positive evaluation of our study.

      Reviewer #3 (Public Review):

      Summary and Strength:

      The manuscript by Amir et al. describes that Sertoli-specific inactivation of the mTORC1 and mTORC2 complex by KO of either Raptor or Rictor, respectively, resulted in progressive changes in blood-testis-barrier (BTB) function, testis weight, and sperm parameters, including counts, morphology, mtDNA content and sperm DNA methylation.

      The described studies are based on the hypothesis that a decline of BTB function with increasing chronological age of a male contributes to the DNA methylation changes that are known to occur in sperm DNA of old males when compared to sperm DNA from isogenic young males. In order to demonstrate the relevance of a functioning BTB for the maintenance of sperm methylation patterns, the authors generated mice with genetically disrupted mTORC2 complex or mTORC1 complex in Sertoli cells and determined sperm methylation patterns in comparison to isogenic wild-type males. In line with previously published scientific literature (e.g. Mok et al., 2013; Dong et al, 2015; and others), the manuscript corroborates that a Sertoli-cell specific deletion of mTORC2 caused a loss of BTB function and a progressive spermatogenic defect. The authors further show that sperm DNA is differentially methylated (DMRs) as a consequence of either a mTORC2 disruption (associated with a loss of BTB function) or following a mTORC1 disruption (BTB function either increased or not leaky) when compared to their isogenic age-matched wt controls. Those DMRs overlap partially with changes in sperm DNA methylation that were found when comparing sperm from 8-week males with sperm isolated from 22-week-old male mice.

      The authors interpret the observed changes as representative of the sperm DNA methylation changes that occur during normal chronological aging of the male. For an aged control group, the authors use sperm DNA of 22-week-old wild-type mates from the mTORC2 and mTORC2 KO breeding and compare the sperm methylation patterns found in sperm from those 22-week males to 8-week young males, that are intended to represent an old and a young cohort, respectively. DNA methylation analysis indicates that a disruption of mTORC2 (& decrease of BTB function) results in increased DNA methylation of sperm DNA, while a disruption of mTORC1 (and proposed increase of BTB tightness, not shown in the manuscript, though) resulted in increased hypomethylation.

      Weaknesses:

      While the hypothesis and experimental system are interesting and the data demonstrating the relevance of the mTORC2 complex for BTB function is convincing, several open questions limit the evidence that supports the hypothesis that the sperm DNA methylation changes seen in old males are caused by BTB failure following an imbalance of mTOR signaling complexes. The major critique points are the lack of a chronologically old group and the choice of 8 weeks & 22 weeks age of age:

      - Data illustrating the degree of BTB decline and sperm DNA methylation changes from chronologically "old" male mice is missing. 22-week-old mice are not considered old but are of good and mature breeding age, equivalent to humans in their mid-late twenties. (In the manuscript, the 22-week-old wildtype mice show no evidence of BTB breakdown (Figure 3), so why are their sperm used to represent "aged" sperm?

      - Adding a group of "old" wild-type mice of 12-14 months of age, which is closer to the end of effective reproduction in mice, more equivalent to 45-59 year-old humans) could be used to illustrate that (a) aging causes a marked decrease in BTB function at this time in mouse life, and that this BTB breakdown chronologically aligns with the age-associated

      DNA hypermethylation seen in old sperm. Age-matched "old" mTORC1 KO, with a (supposedly) tighter BTB barrier, could then be expected to have a sperm DMA methylation profile closer to that of younger wild-type animals. Such data are currently missing. While the progressive testicular decline observed in the mTORC1 KO (Fig.5) could make it difficult to obtain the appropriately aged mTORC1 KO tissues, it is completely feasible to obtain data from chronologically old wild-type males. (The progressive testicular decline further raises the question of what additional defects the KO causes, and how such additional defects would influence the sperm DNA methylation profile.) The addition of data from an old group to the currently included groups could strengthen the interpretation that the observations in the BTB-defective mTORC2 KO mice are modelling an age-related testicular decline, provided that the DMRs seen in the chronologically old group significantly overlap with the BTB-defective changes.

      - In the current form, the described differences in sperm DNA methylation are based on comparisons between pubertal mice (8 weeks) and mature but not old adult males (22 weeks), while a chronologically "old" group is missing from the data sets and comparisons. Thus, it appears that the described sperm methylation changes reflect developmental changes associated with normal maturation and not necessarily declining sperm quality due to aging. (Sperm obtained from 8-week-old mice likely were generated, at least in part, during the 1st wave of spermatogenesis, which is known to differ from the continuously proceeding spermatogenesis during the remained of the mature life. During the 1st wave of spermatogenesis, Sertoli cells are known to undergo gene expression changes which could contribute to varying degrees of BTB function, and thus have effects on the sperm DNA methylation profiles of such 1st wave sperm.)

      - It is unclear why the aging-related DMRs between the 8 and 22-week-old wild-type mice vary so dramatically between the two wild-type groups derived from the mTORC1 and the mTORC2 breeding (Fig. S4). If the main difference was due to mTORC1 or mTORC2 activity, both wildtype groups should behave very similarly. Changes seen in a truly "old" mouse (e.g. 20 weeks to 56 weeks), changes in "young mTORC1" and in "old mTORC2" are missing. How do those numbers and profiles compare to the shown samples?

      Some general comments regarding the chosen age of animals:

      - As mentioned, sperm from 8-week-old mice represent many sperm that were produced in the 1st wave of spermatogenesis; 22-week-old mice are not considered chronologically old mice, but mature and "relatively" young animals. 18-24 month-old mice are considered to be equivalent to 56-69 year-old humans, and might be more suitable to detect aging effects. "Old mice" for study purposes should be at least 12-14 months of age, ideally >18 months of age. 22 weeks (5 months of age) are mice at good breeding age, but still considered mature adults, not old males, and therefore are not expected to show typical aging health problems (like declining fertility).

      Even the cited reference (Flurkey et al. 2007) defines that "... mice used a reference group for "young mice" should be at least 3 months of age (~ 13 weeks), i.e. fully sexually mature. The authors specifically state: " The young adult group should be at least 3 months old because, although mice are sexually mature by 35 days, relatively rapid maturational growth continues for most biologic processes and structures until about 3 months. The upper age range for the young adult group is typically about 6 months. ... For the middleaged group, 10 months is typically the lower limit.... The upper age limit for the middleaged group is typically 14-15 months, because at this age, most biomarkers still have not changed to their full extent, and some have not yet started changing. For the old group, the lower age limit is 18 months because age-related change for almost all biomarkers of aging can be detected by then. The upper limit is 22-26 months, depending on the genotype." According to this reference, mice up to 6 months of age are generally considered "mature adults" (equivalent to humans 20-30 yrs), mice of 10-14 month are "middle-aged adults" (equivalent to ~38-47 human years) and 18-24 month mice are "old" (equivalent to human of 56-69 yrs.).

      Going on these commonly used age ranges, it is unclear why the authors used 8-week-old mice (generally considered pubertal to late adolescent age) as young mice and 5-month-old mice as "old mice".

      Differences seen between these cohorts most likely do not reflect aging, but more likely reflect changes associated with normal developmental maturation, since testis and epididymides continue to grow until about 10-11 weeks of age.

      - The DMRs identified between 8 and 22-week-old animals could represent DMRs that are dependent on developmental maturation more than being changed in an "age-dependent" manner (in the sense of increased chronological age). This interpretation is congruent with the fact that those DMRs are enriched for developmental categories.

      - We are thankful to the reviewer for a detailed explanation of their disagreement with the ages of mice used in this study. In short, the reviewer suggests that our older group (22 weeks) is not old enough to represent aged animals and our young group (8 weeks) may still have spermatozoa from the first wave of spermatogenesis, and as such the observed differences between the 2 ages cannot be considered as aging-related but rather may represent different stages of maturation of the reproductive system. At the first glance this criticism looks valid. 

      However, to design our experiments we used our data that was not included to this manuscript initially. These data demonstrated that age dependent changes in sperm DNA are linearly or semi linearly associated with age in the age range from 56 to 334 days. Thus, within this interval any 2 ages, distant enough to register the difference in DNA methylation, can be used to assess age dependent changes in DNA methylation and changes in the rates of epigenetic aging of sperm in response to genetic manipulations. We have added these results now, - see “Identification of agedependent patterns in sperm DNA methylation” section in Material and Methods and “Patterns of age-dependent changes in sperm DNA methylation” in Results. We also consider that the reviewer’s suggestion that sperm from 8-week-old mice represents the first wave of spermatogenesis does not have ground. Indeed, C57BL/6 mice first have fertile sperm in cauda epididymis at 37 days of age [1], 19 days earlier than the age of 56 days (8 weeks) at which sperm was collected in our study in the youngest group of mice. Given that young C57BL/6 mice ejaculate spontaneously around 3 times per 5 days [2], 8 weeks old mice have ejaculated > 10 times since the first wave of spermatogenesis before the sperm was collected for our study, making negligibly small the chances of survival of any first wave sperm in their cauda epididymides to the age of 8 weeks. We have added this information to the text.

      (1) Mochida, K.; Hasegawa, A.; Ogonuki, N.; Inoue, K.; Ogura, A. Early Production of Offspring by in Vitro Fertilization Using First-Wave Spermatozoa from Prepubertal Male Mice. J. Reprod. Dev. 2019, 65, 467–473, doi:10.1262/jrd.2019-042.

      (2) Huber, M.H.; Bronson, F.H.; Desjardins, C. Sexual Activity of Aged Male Mice: Correlation with Level of Arousal, Physical Endurance, Pathological Status, and Ejaculatory Capacity. Biol. Reprod. 1980, 23, 305–316, doi:10.1095/biolreprod23.2.305.

    1. Author response:

      We thank the editors and reviewers for their enthusiasm for this work and helpful suggestions. In summary, the reviewers provided suggestions for additional discussion items and clarifications for the text and figures, especially in relation to the cryo-EM structures and suppressor screen sections of the manuscript. We will consider each of these and make edits as needed. In particular, reviewers asked for further details about the structural model in addition to analysis of our new structure with respect to previously reported intron lariat spliceosome (ILS) complexes. For the latter point, we present additional evidence for the correct assignment of Yju2 in the S. cerevisiae ILS structure and note that docking of the 3’ splice site is not observed in any ILS structure from yeast, worms, or humans. This is consistent with our proposed mechanism. We will clarify these points in the text as well highlight some caveats of prior studies of the ILS complex. We feel that these changes will add additional nuance to the manuscript as well as clarify the findings and their context and significance for the reader.

    1. Author response:

      We would like to thank all reviewers for their valuable comments that help us to improve our manuscript. We will make the following modifications in the revised manuscript:

      (1) To reduce the complexity of the experiments we carried out, we will summarize trimeric G proteins in Ciona in the first paragraph of the Result section and explain how we focused on Gas and Gaq in the initial phase of this study.

      (2) As the reviewer 1 suggested, the polymodal roles of papilla neurons are interesting. We will add a discussion regarding this aspect. The sentences will be like the following:

      “The recent study (Hoyer et al., 2024) provided several lines of evidence suggesting that papilla neurons can serve as the sensors of several chemicals in addition to the mechanical stimuli. This finding and our model seem mutually related because these chemicals could modify Ca2+ and cAMP signaling. The use of G protein signaling may allow Ciona to reflect various environmental stimuli to initiate metamorphosis in the appropriate situation, both mechanically and chemically.”

      (3) As both reviewers suggested, imaging cAMP on the backgrounds of some G protein knockdowns and pharmacological treatments is important, and we will carry out some of these experiments.

      (4) According to reviewer 2's comment, we will carefully modify the text about interpreting the results so that the descriptions suitably reflect the results.

    1. Author response:

      Response to reviewers (Public review):

      We thank all the three reviewers for their opinion on our work on Candida albicans β-1,6-glucan, which highlights the importance of this cell wall component in the biology of fungi. Here are our responses to their comments for public reviews:

      (1) Indeed, the data presented for immunological studies is preliminary. It has been acknowledged by the reviewers that our analysis providing insights into the biosynthetic pathways involved in comprehensive in dealing with organization and dynamics of the β-1,6-glucan polymer in relation with other cell wall components and environmental conditions (temperature, stress, nutrient availability, etc.). However, we anticipated that there would be immediate curiosity as to what the immunological contribution of β-1,6 glucan and we therefore felt we needed to initiative these studies and include them. We therefore performed immunological studies to assess whether β-1,6-glucans act as a pathogen-associated molecular pattern (PAMP), and if so, what its immunostimulatory potential is. Our data clearly suggest that β-1,6-glucan is a PAMP, and consequently lead to several questions: (a) what are the host immune receptors involved in the recognition of this polysaccharide, and thereby the downstream signaling pathways, (b) how is β-1,6-glucan differentially recognized by the host when C. albicans switches from a commensal to an opportunistic pathogen, and (c) how does the host environment impact the exposure of this polysaccharide on the fungal surface. We believe addressing these questions is beyond the scope of the present manuscript and aim to present new data in future manuscript. Nonetheless, in the revised manuscript, suggest approaches that we can take to identify the receptor that could be involved in the recognition of β-1,6-glucan. Moreover, we have modified the discussion presenting it based on the data rather than being descriptive.    

      (2) It will be interesting to assess the organization of β-1,6-glucan and other cell wall components in the opaque cells. It is documented that the opaque cells are induced at acidic pH and in the presence of N-acetylglucosamine and CO2. Our data shows that pH has an impact on β-1,6-glucan, which suggests that there will be differential organization of this polysaccharide in the cell wall of opaque cells. As suggested by the reviewer, we will include analysis of opaque cells (and other C. albicans cell types) in future studies.

      With the exception of these major new avenues for this research, our revision can address each of the comments provided by the reviewers.

    1. Author response:

      Reviewer #1 (Public Review): 

      Summary: 

      In this study, Masroor Ahmad Paddar and his/her colleagues explore the noncanonical roles of ATG5 and membrane ATG8ylation in regulating retromer assembly and function. They begin by examining the interactomes of ATG5 and expand the scope of these effects to include homeostatic responses to membrane stress and damage. 

      Strengths: 

      This study provides novel insights into the noncanonical function of ATG8ylation in endosomal cargo sorting process. 

      Weaknesses: 

      The direct mechanism by which ATG8ylation regulates the retromer remains unsolved. 

      We agree with the reviewer.  We do however show how at least one aspect of ATG8ylation contributes to the proper retromer function, which occurs via lysosomal membrane maintenance and repair. Understanding the more direct effects on retromer will require a separate study. We will emphasize this in the revised manuscript and point out the limitations of the present work.

      Reviewer #2 (Public Review): 

      Summary:

      Padder et al. demonstrate that ATG5 mediates lysosomal repair via the recruitment of the retromer components during LLOMe-induced lysosomal damage and that mAtg8-ylation contributes to retromer-dependent cargo sorting of GLUT1. Although previous studies have suggested that during glucose withdrawal, classical autophagy contributes to retromer-dependent GLUT1 surface trafficking via interactions between LC3A and TBC1D5, the experiments here demonstrate that during basal conditions or lysosomal damage, ATGs that are not involved in mATG8ylation, such as FIP200, are not functionally required for retromer-dependent sorting of GLUT1. Overall, these studies suggest a unique role for ATG5 in the control of retromer function, and that conjugation of ATG8 to single membranes (CASM) is a partial contributor to these phenotypes. 

      Strengths: 

      (1) Overall, these studies suggest a unique non-autophagic role for ATG5 in the control of retromer function. They also demonstrate that conjugation of ATG8 to single membranes (CASM) is a partial contributor to these phenotypes. Overall, these data point to a new role for ATG5 and CASM-dependent mATG8ylation in lysosomal membrane repair and trafficking. 

      (2) Although the studies are overall supportive of the proposed model that the retromer is controlled by CASM-dependent mATG8-ylaytion, it is noteworthy that previous studies of GLUT1 trafficking during glucose withdrawal (Roy et al. Mol Cell, PMID: 28602638) were predominantly conducted in cells lacking ATG5 or ATG7, which would not be able to discriminate between a CASM-dependent vs. canonical autophagy-dependent pathway in the control of GLUT1 sorting. Is the lack of GLUT1 mis-sorting to lysosomes observed in FIP200 and ATG13KO cells also observed during glucose withdrawal? Notably, deficiencies in glycolysis and glucose-dependent growth have been reported in FIP200 deficient fibroblasts (Wei et al. G&D, PMID: 21764854) so there may be differences in regulation dependent on the stress imposed on a cell. 

      We thank the reviewer on the overall assessment of the strengths of the study.

      We have discussed in the manuscript the elegant study by Roy et al., PMID 28602683. To accommodate reviewer’s comment, we will additionally emphasize in the text that our study is focused on basal conditions and conditions that perturb endolysosomal compartments. We agree with the reviewer that under metabolic stress conditions (such as glucose limitation) more complex pathways may be engaged and will acknowledge that in the discussion.

      Weaknesses: 

      (1) Additional controls are needed to clarify the role of CASM in the control of retromer function. Because the manuscript proposes both CASM-dependent and independent pathways in the ATG5 mediated regulation of the retromer, it is important to provide robust evidence that CASM is required for retromer-dependent GLUT1 sorting to the plasma membrane vs. lysosome. The experiments with monsensin in Fig. 7C-E are consistent with but not unequivocally corroborative of a role for CASM.

      We fully agree with the reviewer. In fact, our data with bafilomycin A1 treatment causing GLUT1 miss-sorting (manuscript line 317) show that it is the perturbance of lysosomes  and not CASM per se that leads to mis-sorting of GLUT1 (Fig. 7D,E). Note that it has been shown (PMIDs: 28296541, 25484071 and 37796195) that although bafilomycin A1 deacidifies lysosomes it does not induce but instead inhibits CASM. This is because bafilomycin A1 cases dissociation of V1 and V0 sectors of V-ATPase, unlike other CASM-inducing agents which promote V1 V0 association. Complementing this, our data with ATG2AB DKO and ESCRT VPS37A KO (Fig. 8A-F) indicate that the repair of lysosomes is important to keep the retromer machinery functional (as illustrated in Fig. 8G). This may be one of the effector mechanisms downstream of membrane atg8ylation in general and hence also downstream of CASM. We will revise Fig. 7 title to read “Lysosomal damage causes GLUT1 mis-sorting” and will explain these relationships in the text.

      Based on the results shown with ATG16KO in Fig 4A-D, rescue experiments of these 16KO cells with WT vs. C-terminal WD40 mutant versions of ATG16 will specifically assess the requirement for CASM and potentially provide more rigorous support for the conclusions drawn. 

      We will carry out the experiment proposed by the reviewer for the planned revision.

      (2) Also, the role of TBC1D5 should be further clarified. In Fig S7, are there any changes in the interactions between TBC1D5 and VPS35 in response to LLOMe or other agents utilized to induce CASM?

      We thank the reviewer for pointing this out. We do have data with VPS35 in co-IPs shown in Fig. S7.  There is no change in the amounts of VPS35 or TBC1D5 in GFP-LC3A co-IPs. We will include a graph with quantification in the revised manuscript and emphasize this point.

      Does TBC1D5 loss-of-function modulate the numbers of GLUT1 and Gal3 puncta observed in ATG5 deficient cells in response to LLOMe? 

      We agree that TBC1D5 is an interesting aspect. However, because TBC1D5 does not change its interactions in the experiments in our study, we consider this topic (i.e. whether TBC1D5 phenocopies VPS35 and ATG5 KOs in its effects on Gal3) to be beyond the scope of the present work. We underscore that LLOMe (lysosomal damage) mis-sorts GLUT1 even without any genetic intervention (e.g., in WT cells in the absence of ATG5 KO; Fig. 7). Thus, in our opinion the effects of TBC1D5 inactivation may be a moot point.

      (3) Finally, the studies here are motivated by experiments in Fig. S1 (as well as other studies from the Deretic and Stallings labs) suggesting unique autophagy-independent functions for ATG5 in myeloid cells and neutrophils in susceptibility to Mycobacterium tuberculosis infection. However, it is curious that no attempt is made to relate the mechanistic data regarding the retromer or GLUT1 receptor mis-sorting back to the infectious models. Do myeloid cells or neutrophils lacking ATG5 have deficiencies in glucose uptake or GLUT1 cell surface levels? 

      Reviewer’s point is well taken. Glucose uptake, its metabolism, and diabetes underly resurgence in TB in certain populations and are important factors in a range of other diseases. This was alluded to in our discussion (lines 461-469). However, these are complex topics for future studies. We will expand this section of the discussion.

      Reviewer #3 (Public Review): 

      In this manuscript, Padder et al. used APEX2 proximity labeling to find an interaction between ATG5 and the core components of the Retromer complex, VPS26, VPS29, and VPS35. Further studies revealed that ATG5 KO inhibited the trafficking of GLUT1 to the plasma membrane. They also found that other autophagy genes involved in membrane atg8ylation affected GLUT1 sorting. However, knocking out other essential autophagy genes such as ATG13 and FIP200 did not affect GLUT1 sorting. These findings suggest that ATG5 participates in the function of the Retromer in a noncanonical autophagy manner. Overall, the methods and techniques employed by the authors largely support their conclusions. These findings are intriguing and significant, enriching our understanding of the non-autophagic functions of autophagy proteins and the sorting of GLUT1. Nevertheless, there are several issues that the authors need to address to further clarify their conclusions. 

      (1) The authors confirmed the interaction between Atg5 and the Retromer complex through Co-IP experiments. Is the interaction between Atg5 and the Retromer direct? If it is direct, which Retromer complex protein regulates the interaction with Atg5? Additionally, does ATG5 K130R mutant enhance its interaction with the Retromer? 

      AlphaFold modeling in the initial submission of our study to eLife (absent from the current version) suggested the possibility of a direct interaction between ATG5 and VPS35 with ATG12—ATG5 complex facing outwards, in which case K130R would not matter. However, mutational experiments in putative contact residues did not alter association in co-IPs. So either ATG5 interacts with other retromer subunits or more likely is in a larger protein complex containing retromer. It will take a separate study to dissect associations and find direct interaction partners. We can provide our data on the currently available modeling and mutational analyses in a full point-for-point rebuttal but believe that since they are inconclusive, they should not be included in the study.

      (2) To more directly elucidate how ATG5 regulates Retromer function by interacting with the Retromer and participates in the trafficking of GLUT1 to the plasma membrane, the authors should identify which region or crucial amino acid residues of ATG5 regulate its interaction with the Retromer. Additionally, they should test whether mutations in ATG5 that disrupt its interaction with the Retromer affect Retromer function (such as participating in the trafficking of GLUT1 to the plasma membrane) and whether they affect Atg8ylation. They also need to assess whether these mutations influence canonical autophagy and lysosomal sensitivity to damage. 

      Please see the response to point 1.

      We thank the editors and reviewers for their assessment, constructive criticisms and recommendations.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review): 

      By mapping H3K4me2 in mouse oocytes and pre-implantation embryos, the authors aim to elucidate how this histone modification is erased and re-established during the parental-to-zygotic transition, as well as how the reprogramming of H3K4me2 regulates gene expression and facilitates zygotic genome activation.

      Employing an improved CUT&RUN approach, the authors successfully generated H3K4me2 profiling data from a limited number of embryos. While the profiling experiments are very well executed, several weaknesses, particularly in data analysis, are apparent:

      (1) The study emphasizes H3K4me2, which often serves as a precursor to H3K4me3, a well-studied modification during early development. Analyzing the new H3K4me2 dataset alongside published H3K4me3 data is crucial for comprehensively understanding epigenetic reprogramming post-fertilization and the interplay between histone modifications. However, the current analysis is preliminary and lacks depth.

      Thank you very much for your valuable suggestions. The data of histone H3K4me3 in humans and mice has been published,and our previous data revealed the unique pattern of H3K4me3 during early human embryos and oocytes (Xia et al., 2019). So, this study mainly focuses on the localization of H3K4me2 in mouse oocytes and preimplantation embryos, how it is erased and re-established during mammalian parental-to-zygote transition, and its function. The combined analysis of H3K4me2 and H3K4me3 is not our main work, but it is not ruled out that there may be new discoveries between these two histones. Previously, our data tended to show that the H3K4me2 not only acts as a precursor of H3K4me3, but also plays its role independently.

      (2) Tranylcypromine (TCP) is known as an irreversible inhibitor of monoamine oxidase and LSD1. While the authors suggest TCP inhibits the expression of LSD2, this assertion is questionable. Given TCP's potential non-specific effects in cells, conclusions related to the experiments using TCP should be made with caution.

      Thank you for pointing this out, and we thank the reviewer again for the important suggestion. We found that the previous study indicated that TCP was a non-reversible inhibitor of LSD1 and LSD2, but according to our data, the content of LSD1 was very low in the early stages of mouse embryos, which mainly inhibited the function of LSD2. (Binda et al., 2010; Fang et al., 2010 )

      (3) Some batches of H3K4me2 antibody are known to cross-react with H3K4me3. Has the H3K4me2 antibody used in CUT&RUN been tested for such cross-reactivity? Heatmaps in the figures indeed show similar distribution for H3K4me2 and H3K4me3, further raising concerns about antibody specificity.

      We thank the reviewer for the insightful comments. The H3K4me2 antibody was purchased from Millipore (cat. 07030). Figure 2A shows the specific enrichment area of H3K4me2 in promoter and distal region. Some batches of H3K4me2 antibody are known to cross-react with H3K4me3, but the H3K4me2 antibody we used in our CUT&RUN seems to have Low cross-reactivity.

      (4) Certain statements lack supporting references or figures (examples on page 9 can be found on line 245, line 254, and line 258).

      Thank you for pointing this out, and we will add references to support the statement in the paper as suggested.

      (5) Extensive language editing is recommended to clarify ambiguous sentences. Additionally, caution should be taken to avoid overstatement - most analyses in this study only suggest correlation rather than causality.

      Thank you for your kind comments. We will revise the expression in the manuscript later.

      Reviewer #2 (Public Review):

      Chong Wang et al. investigated the role of H3K4me2 during the reprogramming processes in mouse preimplantation embryos. The authors show that H3K4me2 is erased from GV to MII oocytes and re-established in the late 2-cell stage by performing Cut & Run H3K4me2 and immunofluorescence staining. Erasure and re-establishment of H3K4me2 have not been studied well, and profiling of H3K4me2 in germ cells and preimplantation embryos is valuable to understanding the reprogramming process and epigenetic inheritance.

      (1) The authors claim that the Cut & Run worked for MII oocytes, zygotes, and the 2-cell embryos. However, it is unclear if H3K4me2 is erased during the stage or if the Cut & Run did not work for these samples. To support the hypothesis of the erasure of H3K4me2, the authors conducted immunofluorescence staining, and H3k4me2 was undetected in the MII oocyte, PN5, and 2-cell stage. However, the published papers showed strong staining of H3K4me2 at the zygote stage and 2-cell stage ((Ancelin et al., 2016; Shao et al., 2014)). The authors need to cite these papers and discuss the contradictory findings.

      The authors used 165 MII oocytes and 190 GV oocytes for the Cut & Run. The amount of DNA in MII oocytes is halved because of the emission of the first polar body. Would it be a reason that H3K4me2 has fewer H3K4me2 peaks in MII oocytes than GV oocytes?

      First of all, thank you for your valuable advice. The published papers showed strong staining of H3K4me2 at the zygote stage and 2-cell stage, which is interesting. I think we may have used different parameters in the confocal laser shooting process(Ancelin et al., 2016). We used the same parameter to continuously shoot the blastocyst stage from the GV stage. If we only shot the fertilized egg and the 2-cell stage, I think we may also see weak fluorescence at the 2-cell stage under different parameters. We will refer to this reference and discuss it in the resubmitted version.

      Moreover, you mentioned the H3K4me2 has fewer H3K4me2 peaks in MII oocytes than GV oocytes, because the MII expelled the polar body. There is no problem with this logic. However, the first polar body expelled from the MII stage is still in the zona pellucida, and we also collected the polar body in the CUT&RUN experiment; Therefore, compared to GV, the DNA content of MII samples is not halved. After further discussion, we believe that the reduction of H3K4me2 peaks in MII stage compared with GV stage may be closely related to oocyte maturation. It is the specific modification of histones in different forms at different times that affects the chromatin structure change appropriately with the different stages of meiosis. At present, it has been confirmed that H3K4me3 gradually decreases from GV to MII stage during the maturation of human oocytes. H3K27me3 did not change from GV to MII stage.

      In Figure 3C, 98% (13,183/13,428) of H3K4me2 marked genes in GV oocytes overlap with those in the 4-cell stage. Furthermore, 92% (14,049/15,112) of H3K4me2 marked genes in sperm overlap with those in the 4-cell stage. Therefore, most regions maintain germ line-derived H3K4me2 in the 4-cell stage. The authors need to clarify which regions of germ line-derived H3K4me2 are maintained or erased in preimplantation embryos. Additionally, it would be interesting to investigate which regions show the parental allele-specific H3K4me2 in preimplantation embryos since the authors used hybrid preimplantation embryos (B6 x DBA).

      Thank you very much for your suggestion. Further analysis of which regions show the parental allele-specific H3K4me2 in preimplantation embryos will make the study more interesting. We will discuss this in depth in resubmitted vision.

      (2) The authors claim that Kdm1a is rarely expressed during mouse embryonic development (Figure 4A). However, the published paper showed that KDM1a is present in the zygote and 2-cell stage using immunostaining and western blotting ((Ancelin et al., 2016)). Additionally, this paper showed that depletion of maternal KDM1A protein results in developmental arrest at the two-cell stage, and therefore, KDM1a is functionally important in early development. The authors should have cited the paper and described the role of KDM1a in early embryos.

      In the analysis of this experiment, we believe that in the early embryonic development of mice, the expression of KDM1A is lower than that of KDM1B, which is relative. Similarly, the transcriptome data we cite also show that KDM1A is expressed at elevated levels during oocyte maturation and fertilization compared to immature oocytes. In addition, the effects of loss of maternal KDM1a on embryonic development were not discussed. We believe that the absence of maternal KDM1b blocks embryonic development, and we will cite and discus the references later.

      (3) The authors used the published RNA data set and interpreted that KDM1B (LSD2) was highly expressed at the MII stage (Figure S3A). However, the heat map shows that KDM1B expression is high in growing oocytes but not at 8w_oocytes and MII oocytes. The authors need to interpret the data accurately.

      After re-checking the data, we found that there was a problem with the normalization method of our heat map, and we will re-make the heatmap and submit it in the modified version. With reference to Figure 4A, the content of Kdm1b is indeed higher than that of Kdm1a.

      (4) All embryos in the TCP group were arrested at the four-cell stage. Embryos generated from KDM1b KO females can survive until E10.5 (Ciccone et al., 2009); therefore, TCP-treated embryos show a more severe phenotype than oocyte-derived KDM1b deleted embryos. Depletion of maternal KDM1A protein results in developmental arrest at the two-cell stage ((Ancelin et al., 2016)). The authors need to examine whether TCP treatment affects KDM1a expression. Western blotting would be recommended to quantify the expression of KDM1A and KDM1B in the TCP-treated embryos.

      We will further dig the transcriptome data to confirm the specificity of TCP to KDM1b. In addition, the intervention of TCP on the whole fertilized egg in this study increased the H3K4me2 content, and the embryo development retarding effect was more significant than that obtained by crossing with normal paternal lines after knocking down KDM1B from the mother.

      (5) H3K4me2 is increased dramatically in the TCP-treated embryos in Figure 4 (the intensity is 1,000 times more than the control). However, the Cut & Run H3K4me2 shows that the H3K4me2 signal is increased in 251 genes and decreased in 194 genes in the TCP-treated embryos (Fold changes > 2, P < 0.01). The authors need to explain why the gain of H3K4me2 is less evident in the Cut & Run data set than in the immunofluorescence result.

      Thanks a lot for your question. In the experimental group, the fluorescence value of H3K4me2 in IF was increased by 1000 times (Figure 4E), and the expression of H3K4Me2-related genes in CR was up-regulated and down-regulated for a total of 445 changes (Figure 6A). In our opinion, as a semi-quantitative analysis, immunofluorescence cannot be compared with the quantitative analysis method of CR because of the different analysis models and threshold Settings.

      References

      Ancelin, K., ne Syx, L., Borensztein, M., mie Ranisavljevic, N., Vassilev, I., Briseñ o-Roa, L., Liu, T., Metzger, E., Servant, N., Barillot, E., Chen, C.-J., Schü le, R., & Heard, E. (2016). Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. https://doi.org/10.7554/eLife.08851.001

      Ciccone, D. N., Su, H., Hevi, S., Gay, F., Lei, H., Bajko, J., Xu, G., Li, E., & Chen, T. (2009). KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature, 461(7262), 415-418. https://doi.org/10.1038/nature08315

      Shao, G. B., Chen, J. C., Zhang, L. P., Huang, P., Lu, H. Y., Jin, J., Gong, A. H., & Sang, J. R. (2014). Dynamic patterns of histone H3 lysine 4 methyltransferases and demethylases during mouse preimplantation development. In Vitro Cellular and Developmental Biology - Animal, 50(7), 603-613. https://doi.org/10.1007/s11626-014-9741-6

      References

      Xia W, Xu J, Yu G, Yao G, Xu K, Ma X, Zhang N, Liu B, Li T, Lin Z, Chen X, Li L, Wang Q, Shi D, Shi S, Zhang Y, Song W, Jin H, Hu L, Bu Z, Wang Y, Na J, Xie W, Sun YP. Resetting histone modifications during human parental-to-zygotic transition. Science. 2019 Jul 26;365(6451):353-360. doi: 10.1126/science.aaw5118. Epub 2019 Jul 4. PMID: 31273069.

      Binda C, Valente S, Romanenghi M, Pilotto S, Cirilli R, Karytinos A, Ciossani G, Botrugno OA, Forneris F, Tardugno M, Edmondson DE, Minucci S, Mattevi A, Mai A. Biochemical, structural, and biological evaluation of tranylcypromine derivatives as inhibitors of histone demethylases LSD1 and LSD2. J Am Chem Soc. 2010 May 19;132(19):6827-33.

      Fang R, Barbera AJ, Xu Y, Rutenberg M, Leonor T, Bi Q, Lan F, Mei P, Yuan GC, Lian C, Peng J, Cheng D, Sui G, Kaiser UB, Shi Y, Shi YG. Human LSD2/KDM1b/AOF1 regulates gene transcription by modulating intragenic H3K4me2 methylation. Mol Cell. 2010 Jul 30;39(2):222-33. doi: 10.1016/j.molcel.2010.07.008. PMID: 20670891; PMCID: PMC3518444.

      Ancelin K, Syx L, Borensztein M, Ranisavljevic N, Vassilev I, Briseño-Roa L, Liu T, Metzger E, Servant N, Barillot E, Chen CJ, Schüle R, Heard E. Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. Elife. 2016 Feb 2;5:e08851. doi: 10.7554/eLife.08851. PMID: 26836306; PMCID: PMC4829419.

      Reviewer #3 (Public Review):

      Summary:

      This study explores the dynamic reprogramming of histone modification H3K4me2 during the early stages of mammalian embryogenesis. Utilizing the advanced CUT&RUN technique coupled with high-throughput sequencing, the authors investigate the erasure and re-establishment of H3K4me2 in mouse germinal vesicle (GV) oocytes, metaphase II (MII) oocytes, and early embryos.

      Strengths:

      The findings provide valuable insights into the temporal and spatial dynamics of H3K4me2 and its potential role in zygotic genome activation (ZGA).

      Weaknesses:

      The study primarily remains descriptive at this point. It would be advantageous to conduct further comprehensive functional validation and mechanistic exploration.

      Key areas for improvement include enhancing the innovation and novelty of the study, providing robust functional validation, establishing a clear model for H3K4me2's role, and addressing technical and presentation issues. The text would benefit from the introduction of a novel conceptual framework or model that provides a clear explanation of the functional consequences and molecular mechanisms underlying H3K4me2 reprogramming in the transition from parental to early embryonic development.

      While the findings are significant, the current manuscript falls short in several critical areas. Addressing major and minor issues will significantly strengthen the study's contribution to the field of epigenetic reprogramming and embryonic development.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer #1 (Public Review):

      We thank the reviewer for his careful reading, which enabled us to improve the quality of this manuscript. We have addressed some major criticisms, and in particular, we have now included the characterization of the impact of BMP2 on other lines as well as the study of the impact of reversion of the H3.3K27M mutation (Figure 3 - figure supplement 1C-D). This control, judiciously proposed by the reviewer, seems more relevant than using mutant H3.1K27M / ACVR1 lines, given the possibility of BMP2 action via other receptors.


      The following is the authors’ response to the original reviews.

      Reviewer #1

      Summary:

      Mutational analysis of diffuse midline glioma (DMG) found that ACVR1 mutations, which up-regulate the BMP signaling pathway are found in most H3.1K27M, but not H3.3K27M DMG cases. In this manuscript, Huchede et al attempted to determine whether the BMP signaling pathway has any role in H3.3K27M DMG tumors. They found that the BMP signaling is activated to a similar level in H3.3K27M DMG cells with wild-type ACVR1 compared to ACVR1 DMG cells, likely due to the expression of BMP7 or BMP2. They went on to test whether cells treated with BMP7 or BMP2 treatments affected the gene expression and cell fitness of tumor cells with H3.3K27M mutation. They concluded that BMP2/7 synergizes with H3.3K27M to induce a transcriptomic rewiring associated with a quiescent but invasive cell state. The major issue for this conclusion is that the authors did not use the right models/controls to obtain results to support this conclusion as detailed below. Therefore, in order to strengthen the conclusion, the authors need to address the major concerns below.

      Strength:

      This paper addresses an important question in the DMG field.

      Major concerns/weakness:

      (1) All the results in Fig. 2 utilized two glioma lines SF188 and Res259. The authors should repeat all these experiments in a couple of H3.3K27M DMG lines by deleting the H3.3K27M mutation first.

      We thank the referee for his/her comments that have helped us to strengthen our conclusions. Although we were rather interested in studying how the BMP pathway can participate in installing a particular cell state at the time of expression of the K27M mutation, we have now included the characterization of the native H3.3K27M BT245 and SU-DIPGXIII cell lines, and their counterparts in which the mutation was reverted by CRISPRCas9 (Harutyunyan et al., 2019). As shown in Figure 3-figure supplement D, the growth arrest induced by BMP2 seems indeed to be specific of the K27M epigenetic context, which could also be required to settle a positive regulation loop to activate the BMP pathway, as mentioned in the Discussion.

      (2) Fig. 3. The experiments of BMP2 treatment should be repeated in other H3.3K27M DMG lines using H3.1K27M ACVR1 mutant tumor lines as controls.

      The use of mutant ACVR1 lines is interesting, but their control status seems questionable, as the addition of BMPs could have a cumulative effect on the effect of the mutation, notably by activating other receptors in the pathway. But we have now included 3 different cell lines (HSJD-DIPG-014, BT245 and SU-DIPGXIII), and observed similar impact of BMP2 with growth arrest as a readout (Figure 3-figure supplement C-D)

      Minor concerns

      Fig.2A. BMP2 expression increased in H3.3K27M SF188 cells. Therefore, the statement "whereas BMP2 and BMP4 expressions are not significantly modified (Figure 2A and Figure 2-figure supplement A-B)" is not accurate.

      The referee is absolutely right, and we have corrected this statement.

      Reviewer #2 (Public Review):

      The manuscript by Huchede et al investigates the BMP pathway in H3K27M-mutant gliomas carrying or not activating mutations in ALK2 (ACVR1). Their results in cell lines and in datasets acquired from the literature on patient tumors indicate that the BMP signaling pathway is activated at similar levels between ACVR1 wild-type and mutant tumors. The group further identifies BMP2 and BMP7 as possibly the main activators of the pathway in cells. They then show that BMP2 and 7 crosstalk with the H3 mutation and synergize to induce transcriptomic rewiring leading to an invasive cell state.

      The paper is well-written and easy to follow with a robust experimental plan and datasets supporting the claims. While previous work (acknowledged by the authors) indicated activation of BMP in H3K27M tumors, wild type for the ACVR1 mutation this paper is a nice addition and provides further mechanistic cues as to the importance of the BMP pathway and specific members in these deadly brain cancers. The effect of these BMPs in quiescence and invasion is of particular interest.

      We thank the referee for his/her supportive comments.

      A few suggestions to clarify the message are provided below 1- In thalamic diffuse midline gliomas, the BMP pathway should not be activated as it is in the pons. The authors should identify thalamic tumors in the datasets they explored and patients-derived cell lines from thalamic tumors available to investigate whether this pathway is active across all H3.3K27M mutants in the brain midline or specifically in tumors from the pons.

      The inter-patient variability observed in the level of activation of the BMP pathway may indeed be due, at least in part, to different tumor locations. However, we failed to find this information in the publicly available datasets that we used. We however included this element in the Discussion part.

      (2) There are ~20% H3.3K27M tumors that carry an ACVR1 mutation and similar numbers of H3.1K27M that are wild type for this gene. Can the authors identify these outliers in their datasets and assess the activation of BMP2 and 7 or other BMP pathway members in this context?

      We have now included the outliers present in our datasets in the legends of Figure 1B and Figure 1-figure supplement B and F. From the few samples available to document these outliers in the cohorts that we used, we have not observed major differences regarding the expression levels of BMP2/7 or BMP pathway members and have discussed the fact that it may result from the establishment in all cases of a feedback loop of activation.

      In all this is an interesting paper that provides meaningful data to pursue clinical targeting of the BMP pathway, which would be a nice addition to the field.

      We thank the reviewer for his/her supportive comments.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The study by Vengayil et al. presented a role for Ubp3 for mediating inorganic phosphate (Pi) compartmentalization in cytosol and mitochondria, which regulates metabolic flux between cytosolic glycolysis and mitochondrial processes. Although the exact function of increased Pi in mitochondria is not investigated, findings have valuable implications for understanding the metabolic interplay between glycolysis and respiration under glucose-rich conditions. They showed that UBP3 KO cells regulated decreased glycolytic flux by reducing the key Pi-dependent-glycolytic enzyme abundances, consequently increasing Pi compartmentalization to mitochondria. Increased mitochondria Pi increases oxygen consumption and mitochondrial membrane potential, indicative of increased oxidative phosphorylation. In conclusion, the authors reported that the Pi utilization by cytosolic glycolytic enzymes is a key process for mitochondrial repression under glucose conditions.

      Comments on revised version:

      This reviewer appreciates the author's responses addressing some of the concerns.

      (1) However, the concern of reproducibility and experimental methods applied to the study is still valid, particularly considering that many conclusions were drawn from western blot analysis. The authors used separate gel loading controls for western blot analysis, which is not a valid method. Considering loading and other errors/discrepancies during the transfer phase of the assay, the direct control should be analyzing the membrane after transfer or using an internal control antibody on the same membrane. None of the western blots are indicated with marker sizes, and it isn't very clear how many repeats there are and whether those repeats are biological or technical repeats.

      We thank the reviewer for raising this concern. This point requires detailed clarification regarding two key points: the first one regarding the use of Coomassie stained gels over internal ‘housekeeping gene’ antibodies, and the second one regarding the challenges in performing controls for western blots In case of high abundance proteins such as glycolytic enzymes.

      (1) In our western blots, we have used Coomassie stained gel as a loading control for all our western blots. This is performed by cutting one half of the gel and using it for transfer followed by blotting and using the other half for Coomassie staining. I.e. This is not two separate gels that are loaded, but the same gel. Practically, this is no different from cutting a membrane to blot with different antibodies. This method is of course valid method for normalizing western blot data, and is used by multiple studies, for the reasons mentioned below. The historical use of a ‘house-keeping’ gene as a loading control for western blotting assumes that the protein levels of these does not change under different conditions. However, this approach has multiple, severe limitations (since a ‘housekeeping gene’ is entirely contextual, and indeed), and therefore it is correct to use total protein as a loading control. This is indeed recommended for use by multiple studies (Collins et al., 2015). Coomassie staining for total protein is far more reliable than using house-keeping genes as a loading control in western blots (Welinder and Ekblad, 2011). A notable example would be GAPDH itself, which is widely used as a loading control in many studies. As is clear from our data in this manuscript, GAPDH levels itself decrease in ubp3Δ cells. Had we used GAPDH as a loading control, we wouldn’t have identified the decrease in glycolytic enzymes in ubp3Δ cells, and this story would have met with a tragic fate very early on in its inception. We have in fact be very careful with these quantitations, and even before loading samples on gels, they are first normalized using a standard protein estimation assay (Bradford), followed by normalized loading, followed by cutting the gel into two parts - one for coomassie staining and protein normalization, and the other for the western blot for the respective proteins. However, in point (2) below, we clarify on why sometimes we have to load a separate gel with normalized protein, which should resolve this point.

      (2) Glycolytic enzymes are highly abundant proteins and to achieve a signal in the linear range of western blot, the protein extracts have to be diluted (up to 25 or 50 times). As discussed under point 1, an internal control ‘housekeeping gene’ antibody is not a reliable method to use as loading control. Even if we want to use an antibody for an internal protein as a control, there are not many proteins that are as abundant as metabolic enzymes and because of this simple reason, the sample dilution results in these proteins not getting detected in the western blot since the signal will be below the limit of detection. This leaves using a separate gel loading control as the only easy to perform, reliable option.

      We would like to further highlight the fact that the changes in metabolic enzymes and ETC proteins that we observe in the ubp3 mutant by western blot, were also independently observed by large scale untargeted quantitative proteomics study by  (Isasa et al., 2015), which we cite extensively in this manuscript. Since an entirelyindependent study, using a completely different (untargeted) method has also shown very similar  changes in proteins that we observe (mitochondrial, and glycolytic enzymes), there should be no room for doubt regarding the altered glycolytic enzyme and ETC protein  levels that we discover in this study.

      None of the western blots are indicated with marker sizes

      We have clearly indicated the marker sizes in all our western blots. Separately, raw images of the blots and Coomassie stained gels have been provided with the manuscript raw data, and is therefore easily available for any interested reader.

      It isn't very clear how many repeats there are and whether those repeats are biological or technical repeats.

      We have already clearly indicated the details of each blot in the figure legends. For example “A representative blot (out of three biological replicates, n=3) and their quantifications are shown. Data represent mean ± SD.” We kindly request the reviewer to thoroughly go through the figure legends for details regarding the western blots, or any other data. We hope this addresses all the reviewer concerns regarding the credibility of our western blot results and the method of using Coomassie stained gels as loading controls in this study.

      (2) Concern regarding citing the Ouyang et al. paper is still valid. This paper is an essential implication in phosphate metabolism and is directly related to some of the findings associated with mitochondrial function, along with conflicting results, which should be discussed in the discussion section. As a reviewer, I do not request citing any paper from the authors in general; however, considering some of the conflicting results here, citing and discussing paper from Ouyang et al. will improve the interoperation/value of their findings.

      As mentioned in detail in our previous response  letter, we do not believe that the study from Ouyang et al., present ‘conflicting results’ of any kind. Nevertheless, in response to the reviewer's suggestion, we have revised the discussion section of our manuscript and added a few points that  incorporate the insights from Ouyang et al. These are in the discussion section (“It is important to highlight that our experiments, whether involving Pi supplementation or Pi limitations, maintain the cellular Pi concentration within the millimolar range and are conducted within a short timeframe (~ 1 hour). This differs significantly from Pi starvation studies, where cells are subjected to prolonged and complete Pi deprivation, triggering extensive metabolic adjustments to sustain available Pi pools, such as an increase in mitochondrial membrane potential, independent of respiration”). We trust that this modification will enhance the interested readers' understanding of our study's overarching conclusions.

      Reviewer #2 (Public Review):

      Summary:

      Cells cultured in high glucose tend to repress mitochondrial biogenesis and activity, a prevailing phenotype type called Crabree effect that observed in different cell types and cancer. Many signaling pathways have been put forward to explain this effect. Vengayil et al proposed a new mechanism involved in Ubp3/Ubp10 and phosphate that controls the glucose repression of mitochondria. The central hypothesis is that ∆ubp3 shift the glycolysis to trehalose synthesis, therefore lead to the increase of Pi availability in the cytosol, then mitochondrial received more Pi and therefore the glucose repression is reduced.

      Strengths:

      The strength is that the authors used an array of different assays to test their hypothesis. Most assays were well designed and controlled.

      Weaknesses:

      I think the main conclusions are not strongly supported by the current dataset. Here are my comments on authors' response and model.

      (1) The authors addressed some of my concerns related to ∆ubp3. But based on the results they observed and discussed, the ∆ubp3 redirect some glycolytic flux to gluconeogenesis while the 0.1% glucose in WT does not. Similarly, the shift of glycolysis to trehalose synthesis is also not relevant to the WT cells cultured in low glucose situation. This should be discussed in the manuscript to make sure readers are not misled to think ∆ubp3 mimic low glucose. It is likely that ∆ubp3 induce proteostasis stress, which is known to activate respiration and trehalose synthesis.

      But based on the results they observed and discussed, the ∆ubp3 redirect some glycolytic flux to gluconeogenesis while the 0.1% glucose in WT does not. Similarly, the shift of glycolysis to trehalose synthesis is also not relevant to the WT cells cultured in low glucose situation.

      We would like to clarify that we do not observe a redirection of glycolytic flux to gluconeogenesis in ubp3 mutant. What we observe is a rewiring of glycolytic flux into increased trehalose synthesis and PPP, and decreased glycolysis. Also, the shift of glycolysis to trehalose synthesis is relevant to WT cells cultured in low glucose. It is a well-known fact that the trehalose synthesis increases with decrease in media glucose. In case of 0.1% glucose, this increase in trehalose is not due to an increase in gluconeogenesis (since the pathways utilizing alternate carbon sources still remain repressed  in 0.1% glucose (Yin et al., 2003)), but by the increase in glycolytic flux towards trehalose. This is also supported by increase in Tps2 protein levels upon decreasing glucose concentration (Shen et al., 2023). We will also note that there are very few studies that actually estimate gluconeogenic flux in cess (and they only rely on steady state measurements). Estimating gluconeogenic flux appropriately is challenging in itself (eg. see Niphadkar et al 2024). 

      In case of glucose concentrations lower than 0.1%, the shift to trehalose synthesis might not be as relevant. We observe that the glycolysis defective mutant tdh2tdh3 cells does not show an increase in trehalose synthesis (Figure 3-figure supplement 1E). However, in this context, the decrease in the rate of GAPDH catalyzed reaction alone appears to be sufficient to increase the Pi levels (Figure 3F) even without an increase in trehalose. Therefore, there might be differences in the relative contributions of these two arms towards Pi balance, based on whether it is low glucose in the environment, or a mutant such as ubp3Δ that modulates glycolytic flux. In ubp3Δ cells, the combination of low rate of GAPDH catalyzed reaction and high trehalose will happen (based on how glycolytic flux is modulated), vs only the low rate of the GAPDH catalyzed reaction in tdh2tdh3 cells. As an end point the increase in Pi happens in both cases, but this happens via slightly differing outcomes. Also note: in terms of free Pi sources a low-glucose condition (with low glycolytic rate) is very different from a no-glucose, respiratory condition (where cells perform very high gluconeogenesis, at a rate that is an order of magnitude higher than in low glucose). In respiration-reliant conditions such as in ethanol, cells switch to high gluconeogenesis, where there is a large increase in trehalose synthesis as a default (eg see Varahan et al 2019). In this condition, trehalose synthesis could become a major source for Pi (eg see Gupta 2021). This could also support the increased mitochondrial respiration. In an ethanol-only medium, the directionality of the GAPDH reaction is itself reversed (i.e. G-1,3-BP → G-3-P). Therefore, this reaction now becomes an added source of Pi, instead of a net consumer of Pi (see illustration in Figure 3G). Therefore, a very reasonable inference is that a combination of increased trehalose and increased 1,3 BPG to G3P conversion can become a Pi source, supporting increased mitochondrial respiration in a non-glucose, respiratory medium.

      We have now clarified these points in the discussion section in the updated version of our manuscript. Lines xxx. We hope that this updated discussion section satisfies the reviewer’s concern regarding how relevant the increase in trehalose synthesis is for altered Pi balance and increased mitochondrial respiration in WT cells.

      It is likely that ∆ubp3 induce proteostasis stress, which is known to activate respiration and trehalose synthesis.

      Apart from some general changes in metabolism, there are no reports whatsoever that suggest that general proteostasis stress can results in an extensive, precise metabolic rewiring - where there is an increased in respiration, mitochondrial de-repression, precise decrease in two limiting glycolytic enzyme levels, and a precise reduction in glycolytic flux, as observed in the ubp3 mutant. If this was the case, deletion of any deubiquitinase should result in an increase in trehalose and respiration which clearly does not happen (as is already clear from the large screen shown in Figure 1)

      However, in response to this query, we performed experiments to assess the extent of proteostasis stress in ubp3 mutants. For this, we have now estimated the changes in global ubiquitination in WT vs ubp3 mutant, and compared this with conditions of moderate proteostasis stress (mild heat shock at 42C/~1hr). These data are now included in the revised manuscript as Figure 1- figure supplement 1J. Notably, our analysis reveals only very minor  alteration in global ubiquitination levels in ubp3 mutants compared to WT cells. This is in very stark contrast to  limited heat stress, where a clear increase in global ubiquitination can be easily observed. Given these data, we can conclude that there is no significant general proteostatic stress in ubp3 mutants, that could induce substantial metabolic rewiring of such precise nature.

      (2) Pi flux: it is known that vacuole can compensate the reduction of Pi in the cytosol. The paper they cited in the response, especially the Van Heerden et al., 2014 showed that the pulse addition of glucose caused transient Pi reduction and then it came back to normal level after 10min or so. If the authors mean the transient change of glycolysis and respiration, they should point that out clearly in the abstract and introduction. If the authors are trying to put out a general model, then the model must be reconsidered.

      In Van Heerden et al., the pulse addition of glucose causes transient Pi reduction due to rapid Pi consumption in glycolysis. The phosphate levels came back to normal level because of the glucose flux into trehalose synthesis releasing free Pi. This is the entire crux of the study and this is the reason why tps2 mutants which cannot synthesize trehalose exhibit a growth defect and have decreased Pi levels. As explained in detail in our early response, the cellular Pi levels are maintained by a relative balance of reactions that consume and release Pi and therefore a change in this balance can change Pi as well. Indeed, if this were not the case, the tps2 mutants would simply maintain the Pi levels similar to WT cells by increasing Pi transport from the medium, which is clearly not the case (eg see Gupta 2021).

      The cytosol has ~50mM Pi (van Eunen et al., 2010 FEBSJ), while only 1-2mM of glycolysis metabolites, not sure why partial reduction of several glycolysis enzymes will cause significant changes in cytosolic Pi level and make Pi the limiting factor for mitochondrial respiration. In response to this comment, the authors explained the metabolic flux that the rapid, continuous glycolysis will drain the Pi pool even each glycolytic metabolite is only 1-2mM. However, the metabolic flux both consume and release Pi, that's why there is such measurement of overall free Pi concentration amid the active metabolism. One possibility is that the observed cytosolic Pi level changes was caused by the measurement fluctuation.

      The measurement fluctuations that we mentioned in our previous response letter was in case of cells grown in high and low glucose, where there are multiple factors such as mitochondrial amount which complicates the Pi measurements. In case of ubp3 mutants which have a similar amount of total mitochondria as that of WT cells, there is minimal fluctuation for Pi measurement. We have done extensive standardization of mitochondrial isolation and Pi measurement in the isolated mitochondria (as explained in detail in the manuscript) to minimize any such fluctuations. 

      However, the metabolic flux both consume and release Pi, that's why there is such measurement of overall free Pi concentration amid the active metabolism

      The reviewer is correct in pointing out that metabolic flux consume and release Pi. However, in glucose grown yeast cells, the rate of glycolysis which is a Pi consuming reaction is higher than any other metabolic pathway. In fact, the glycolytic rate in glucose-grown S. cerevisiae is one of the highest ever observed in any living system. A decrease in glycolysis and an increase in trehalose therefore shifts the balance in Pi utilization and results in increased free Pi in ubp3 cells. For a more detailed theoretical reasoning on the consumption and production of Pi, see Gupta 2021.

      Importantly, the authors measured Pi inside mito for ethanol and glucose, but not the cytosolic Pi, which is the key hypothesis in their model. The model here is that the glycolysis competes with mito for free cytosolic Pi, so it needs to inhibit glycolysis to free up cytosolic Pi for mitochondrial import to increase respiration. I don't see measurement of cytosolic Pi upon different conditions, only the total Pi or mito Pi. The fact is that in Fig.3C they saw WT+Pi in the medium increase total free Pi more than the ∆ubc3, while WT decrease mito Pi compared to WT control and ∆ubc3 and therefore decrease basal OCR upon Pi supplement. A simple math of Pitotal = Pi cyto + Pi mito tells us that if WT has more Pitotal (Fig.3C) but less Pi mito (fig.5 supp 1C), then it has higher Pi cyto. This is contradictory to what the authors tried to rationalize. Furthermore, as I pointed out previously, the isolated mitochondria can import more Pi when supplemented, so if there is indeed higher Picyto, then the mito in WT should import more Pi. So, to address these contradictory points, the authors must measure Pi in the cytosol, which is a critical experiment not done for their model. For example, they hypothesized that adding 2-DG, or ∆ubp3, suppress glycolysis and thus increase the supply of cytosolic Pi for mito to import, but no cytosolic Pi was measured (need absolute value, not the relative fold changes). It is also important to specific how the experiments are done, was the measurement done shortly after adding 2-DG. Given that the cells response to glucose changes/pulses differently in transient vs stable state, the authors are encouraged to specify that.

      (1) Importantly, the authors measured Pi inside mito for ethanol and glucose, but not the cytosolic Pi, which is the key hypothesis in their model. The model here is that the glycolysis competes with mito for free cytosolic Pi, so it needs to inhibit glycolysis to free up cytosolic Pi for mitochondrial import to increase respiration. I don't see measurement of cytosolic Pi upon different conditions, only the total Pi or mito Pi.

      As clearly described in the manuscript, the key hypothesis that emerges is the role of the availability/accessibility of Pi for the mitochondria, in the context of activity. As discussed in detail in the discussion section, this can come from a combination of available Pi pools in the cytosol and increased transport of this Pi to the mitochondria. While it is true that the decreased glycolysis in ubp3 mutants frees up available Pi pools in the cytosol, measurement of cytosolic Pi in these mutants growing in log phase might not necessarily show an increased cytosolic Pi, if the Pi is being actively transported the the mitochondria at a rate higher that the WT, as indicated by the ~6 fold increase in mitochondrial Pi in ubp3 cells. This would require tools such as intracellular fluorescence based-Pi sensors that could accurately capture temporal changes in cytosolic and mitochondrial Pi following glycolytic inhibition. However, these tools are not available till date for use in yeast and measuring cytosolic Pi following glycolytic inhibition over time using colorimetric Pi assays are extremely difficult.  

      However, the reviewer does correctly state that we had not included measurement of cytosolic Pi. Since the mitochondrial Pi estimate was itself a very challenging (and critical) experiment we had originally thought that data was sufficient. We have therefore now performed a series of new experiments, where we first enrich the cytosolic fraction (without mitochondrial contamination), and estimated cytosolic Pi amounts in WT and ubp3 cells. Our Pi measurements indicate a cytosolic Pi concentration in the range of ~35 mM, which is similar to the earlier reported values in yeast. We further observe that the cytosolic Pi is about ~25% lower in ubp3 mutants (~25-27 mM) compared to WT cells (Figure 4B). As mentioned earlier, this would be consistent with higher transport of Pi from the cytosol to the mitochondria in these cells. Effectively, ubp3 cells have a total increase in cellular Pi, and with a Pi pool distribution such that there is increased Pi availability in mitochondria (Figure 4B). This further substantiates this hypothesis of an increased Pi allocation to mitochondria in ubp3 mutants. The reason for increased rate of Pi transport to mitochondria is not immediately clear, but could also come from changes in cytosolic pH - a possibility that we suggest in our discussion, and is discussed in a later section of this response letter as well.   

      (2) The fact is that in Fig.3C they saw WT+Pi in the medium increase total free Pi more than the ∆ubc3, while WT decrease mito Pi compared to WT control and ∆ubc3 and therefore decrease basal OCR upon Pi supplement. A simple math of Pitotal = Pi cyto + Pi mito tells us that if WT has more Pitotal (Fig.3C) but less Pi mito (fig.5 supp 1C), then it has higher Pi cyto. This is contradictory to what the authors tried to rationalize. Furthermore, as I pointed out previously, the isolated mitochondria can import more Pi when supplemented, so if there is indeed higher Picyto, then the mito in WT should import more Pi.

      a) “The fact is that in Fig.3C they saw WT+Pi in the medium increase total free Pi more than the ∆ubc3, while WT decrease mito Pi compared to WT control and ∆ubc3 and therefore decrease basal OCR upon Pi supplement. A simple math of Pitotal = Pi cyto + Pi mito tells us that if WT has more Pitotal (Fig.3C) but less Pi mito (fig.5 supp 1C), then it has higher Pi cyto.”

      In WT cells supplemented with external Pi (WT+Pi), there is an increased total Pi, but a decreased mitochondrial Pi. As discussed in the discussion section in the manuscript, this could be due to the supplemented Pi not being transported to mitochondria. The reviewer is correct in pointing out that as per simple math this should mean that the cytosolic Pi in WT+Pi should be high. We have now assessed cytosolic Pi upon external Pi supplementation, and this is exactly what we observe in our cytosolic Pi measurements now included in the revised manuscript (Figure 5-figure supplement 5C). There is a higher cytosolic Pi in WT+Pi (~52 mM) compared to WT cells (~35 mM) and ubp3 cells (~27 mM). We have now pointed this out in the discussion section in the revised manuscript “Notably, this increased respiration does not happen upon direct Pi supplementation to highly glycolytic WT cells, where the Pi accumulates in cytosol, without increasing mitochondrial Pi (Figure 5-figure supplement 1C).” We hope that these new data completely addresses the reviewer’s concern regarding the Pi allocations in case of WT+Pi cells.

      b) This is contradictory to what the authors tried to rationalize. Furthermore, as I pointed out previously, the isolated mitochondria can import more Pi when supplemented, so if there is indeed higher Picyto, then the mito in WT should import more Pi.

      We would like to clarify that the Pi measurements in WT+Pi absolutely do not contradict our hypothesis. Furthermore, nowhere do we claim that an increase in cytosolic Pi will increase mitochondrial Pi!! On the contrary, we explain in detail that supplementing Pi to WT cells (which increases cytosolic Pi) will not increase respiration if the increased Pi is not being transported to mitochondria. This is exactly what happens in WT+Pi, where Pi accumulates in the cytosol but does not result in increased mitochondrial Pi. The reviewer argues that if there is higher cyto Pi, mitochondria should import more Pi. This is true in case of transport via diffusion where the external concentration dictates the direction of metabolite transport, but is fundamentally wrong in case of transport of metabolites where active transporters and additional regulators are involved. This is the entire basis of the idea of metabolic compartmentalisation where  cells maintain pools of metabolites in different organelles which regulate the cellular metabolic state. A well-studied example is pyruvate, whose cytosolic concentration is high in glycolytic cells, but it's transport to mitochondria is reduced in glycolysis to maintain cytosolic fermentation. As discussed in the manuscript, a logical explanation for Pi supplementation not increasing respiration and mitochondria Pi is that there might be mechanisms in highly glycolytic cells that restrict the transport of Pi to mitochondria, thereby compartmentalizing Pi in the cytosol. One such possible mechanism is pH (discussed in a later section) and it is possible that there are other mechanisms involved. 

      In case of isolated mitochondria, Pi supplementation results in an increased respiration simply because it is an in vitro set up where we supplement metabolites such as pyruvate, malate and ADP along with phosphate to ensure that mitochondria is actively respiring and in this case Pi will be consumed since it is being used for ATP synthesis. This is entirely different from an in vivo scenario where cells are glycolytic, and mechanisms to prevent mitochondrial transport of metabolites such as pyruvate and phosphate are active. 

      c) It is also important to specific how the experiments are done, was the measurement done shortly after adding 2-DG?

      Cells were treated with 2-DG for one hour and respiration was measured. We have mentioned these details clearly in the figure legends and methods.  

      d) The most likely model to me is that, which is also the consensus in the field, is that no matter 2-DG or ∆ubp3, the cells re-wiring metabolism in both cytosol and mitochondria, and it is the total network shift that cause the mitochondrial respiration increase, which requires the increase of mito import of Pi, ADP, O2, and substrates, but not caused/controlled by the Pi that singled out by the authors in their model.

      The aim of our study is only to highlight the importance of mitochondrial Pi availability as a critical factor in controlling mitochondrial respiration. Of course this would require sufficient other factors such as ADP, substrates and oxygen. It cannot be otherwise. However, as we point out in the discussion, a major limiting factor might be Pi availability. While the altered glycolysis in ubp3 mutants might control availability of other factors such as pyruvate and ADP, this is not the focus of our study. We would also like to point out that prior studies show that even though cytosolic ADP decreases in the presence of glucose, this does  not limit mitochondrial ADP uptake, or decrease respiration, due to the very high affinity of the mitochondrial ADP transporter. This is discussed in our discussion section as well. Further we show that the levels of ETC proteins can be altered by changing Pi levels, which places Pi as a major regulator of respiration. We would like to point out once again that studies in other systems have also highlighted a major role of mitochondrial Pi availability in controlling respiration. These references are included in our manuscript (Scheibye-Knudsen et al., 2009, Seifer et al., 2015). This includes a recent study in T cells that clearly shows increased mitochondrial respiration upon overexpressing mitochondrial Pi transporter SLC25A3 alone (Wu et al., 2023). Our manuscript now in fact provides a contextual explanation of these diverse observations from other cellular systems where mitochondrial Pi transport appears to regulate respiration.

      (3) The explanation that cytosolic pH reduction upon glucose depletion/2DG is a mistake. There are a lot of data in the literature showing the opposite. If the authors do think this is true, then need to show the data. Again, it is important to distinguish transient vs stable state for pH changes.

      We observe that directly supplementing Pi to WT cells growing in high glucose does not result in higher mitochondrial Pi or increased respiration. However, supplementing Pi to WT cells increases mitochondrial respiration in the presence of glycolytic inhibitor 2-DG. We therefore merely suggest that cytosolic pH could be an additional regulator of mitochondrial Pi transport, since this will be consistent with the differences in mitochondrial Pi transport in highly glycolytic cells, and cells with decreased glycolysis ( such as 2-DG addition and ubp3 mutant). This is because in mitochondria, Pi is co-transported along with protons. Therefore, changes in cytosolic pH (which changes the proton gradient) will control the mitochondrial Pi transport (Hamel et al., 2004).  The glycolytic rate is itself a major factor that controls cytosolic pH. The cytosolic pH in highly glycolytic cells is maintained ~7, and decreasing glycolysis results in cytosolic acidification (Orij et al., 2011). Therefore, under conditions of decreased glycolysis (such as loss of Ubp3), cytosolic pH becomes acidic. Since mitochondrial Pi transport depends on the proton gradient, a low cytosolic pH would favour mitochondrial Pi transport. Therefore, under conditions of decreased glycolysis (2DG treatment, or loss of Ubp3), where cytosolic pH would be acidic, increasing cytosolic Pi might indirectly increase mitochondria Pi transport, thereby leading to increased respiration. But we certainly do leave alternate interpretations to the imagination of any reader, and are indeed open to them. These are all exciting future directions this study will enable a contextual interpretation of.

      The explanation that cytosolic pH reduction upon glucose depletion/2DG is a mistake.

      We have cited two independent studies which suggest that cytosolic pH decreases upon a decrease in glycolysis (Orij et al.,2011 ,Dechant et al., 2010). This control of cytosolic pH by the glycolytic rate has been extensively shown using glycolytic mutants, cells in low glucose and cells grown in the presence of glycolytic inhibitors. According to the reviewer, this is a mistake and

      there are a lot of data in the literature showing the opposite.

      In our literature review we did not come across any relevant studies that actually show the opposite. If the  reviewer still thinks this is a mistake, the reviewer is welcome to include some of the relevant literature that clearly shows the opposite in the comments, with actual measurements of cytosolic pH. Additionally,  the possible role of cytosolic pH in this context does not affect the conclusions of our study, and we only include this as a possibility in the discussion. Therefore, this is obviously well beyond the scope of experiments in our current study, and considering the extensive data from multiple studies that shows that cytosolic pH decreases under low glycolysis, there is no relevance  to including experiments to address the same in this study. We leave this as a point for an interested reader to think about, and it certainly can nucleate new directions of future study.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Summary of the changes

      Changes in the manuscript were made to clarify some ambiguities raised by the reviewers and to improve the report following their recommendations. A summary of the main changes is listed below:

      - The title was changed to better reflect the results of this study - Re-training the model on log transformed FACS scores.

      - Testing the specificity of the FEPS to facial expression of pain within this experimental setup by comparing it to the activation maps obtained from the Warm stimulation condition.

      - Testing for sensitization/habituation of the behavioral measures (FACS scores and pain ratings).

      - Adding a section in the discussion to better address the limitations of this study and provide potential directions for future studies.

      Other changes target areas where the original manuscript may have been ambiguous or lacked precision. To address these concerns, additional details have been incorporated, and certain terms have been revised to ensure a more precise and transparent presentation of the information.

      Public Reviews:

      Reviewer #1 (Public Review):

      Picard et al. report a novel neural signature of facial expressions of pain. In other words, they provide evidence that a specific set of brain activations, as measured by means of functional magnetic resonance imaging (fMRI), can tell us when someone is expressing pain via a concerted activation of distinctive facial muscles. They demonstrate that this signature provides a better characterization of this pain behaviour when compared with other signatures of pain reported by past research. The Facial Expression of Pain Signature (FEPS) thus enriches this collection and, if further validated, may allow scientists to identify the neural structures subserving important non-verbal pain behaviour. I have, however, some reservations about the strength of the evidence, relating to insufficient characterization of the underlying processes involved.

      We are thankful for the summary of our work. We are hopeful that the modifications made in the latest version effectively address these concerns. The changes are outlined in the summary above, and detailed in the following point-by-point response.

      Strengths:

      The study relies on a robust machine-learning approach, able to capitalise on the multivariate nature of the fMRI data, an approach pioneered in the field of pain by one of the authors (Dr. Tor Wager). This paper extends Wager's and other colleagues' work attempting to identify specific combinations of brain structures subserving different aspects of the pain experience while examining the extent of similarity/dissimilarity with the other signatures. In doing so, the study provides further methodological insight into fine-grained network characterization that may inspire future work beyond this specific field.

      We are thankful for the positive comments.

      Weaknesses:

      The main weakness concerns the lack of a targeted experimental design aimed to dissect the shared variance explained by activations both specific to facial expressions and to pain reports. In particular, I believe that two elements would have significantly increased the robustness of the findings:

      (1) Control conditions for both the facial expressions and the sensory input. An efficient signature should not be predictive of neutral and emotional facial expressions (e.g., disgust) other than pain expressions, as well as it should not be predictive of sensations originating from innocuous warm stimulation or other unpleasant but non-painful stimulation.

      We do recognize the lack of specificity testing for the FEPS, especially towards negative emotional facial expressions. This would be relevant to test given the behavioural overlap between the facial expressions of pain and disgust, fear, anger, and sadness (Kunz et al., 2013; Williams, 2003). The experimental design used in this study did not include other negative states. However, we fully support the necessity of collecting data throughout those conditions, and we believe that the present study highlights the importance of such a demonstration. Future research should involve recording facial expressions while exposing participants to stimuli that elicit a range of negative emotions but, to our knowledge, such combination of fMRI and behavioural data is currently unavailable. As raised by the reviewer, this approach would allow us to assess the specificity of the FEPS to the facial expression evoked by pain compared to different affective states. We would like to emphasise that specificity and generalizability testing is a massive amount of work, requiring multiple studies to address comprehensively. A Limitations paragraph addressing this research direction has been added to the Discussion. A conclusion was added to the abstract as follows: “Future studies should explore other pain-relevant manifestations and assess the specificity of the FEPS against other types of aversive or emotional states.”

      (2) Graded intensity of the sensory stimulation: different intensities of the thermal stimulation would have caused a graded facial expression (from neutral to pain) and graded verbal reports (from no pain to strong pain), thus offering a sensitive characterisation of the signal associated with this condition (and the warm control condition).

      However, these conditions are missing from the current design, and therefore we cannot make a strong conclusion about the generalisability of the signature (regardless of whether it can predict better than other signatures - which may/may not suffer from similar or other methodological issues - another potential interesting scientific question!). The authors seem to work on the assumption that the trials where warm stimulation was delivered are of no use. I beg to disagree. As per my previous comment, warm trials (and associated neutral expressions) could be incorporated into the statistical model to increase the classification sensitivity and precision of the FEPS decoding.

      The experience of pain can fluctuate for a fixed intensity or after controlling statistically for the intensity of the stimulation (Woo et al., 2017). Consistent with this, the current study focused on spontaneous facial expression in response to noxious thermal stimuli delivered at a constant intensity that produced moderate to strong pain in every participant. As the reviewer points out, this does not allow us to characterise and compare the stimulus-response function of facial expression and pain ratings. The advantage of the approach adopted is to maximise the number of trials where facial expression is more likely to occur, while ensuring that changes in facial expression and pain ratings are not confounded with changes in stimulus intensity. The manuscript has been revised to clarify that point. However, we do agree that it would be interesting to conduct more studies focusing on facial expression in response to a range of stimulus intensities. This discussion has been added to the Limitations paragraph.

      Furthermore, following the reviewer’s suggestion, we performed complementary analyses on the warm trials in the proposed revisions. The dot product (FEPS scores) between the FEPS and the activation maps associated with the warm condition was computed. A linear mixed model was conducted to investigate the association between FEPS scores and the experimental condition (warm vs pain). The trials in the pain condition were divided into two conditions: null FACS scores (painful trials with no facial response; FACS scores = 0) and non-null FACS scores (painful trials with a facial response; FACS > 0). The details of this analysis have been added to the manuscript (see Response of the FEPS to pain and warm section in the Methods; lines 427 to 439) as well as the corresponding results (see Results and Discussion; lines 138 to 158). The FEPS scores were larger in the pain condition where a facial response was expressed, compared to both the pain condition without facial expression and the warm condition. These results confirmed the sensitivity of the FEPS to facial expression of pain.

      Reviewer #2 (Public Review):

      Summary:

      The objective of this study was to further our understanding of the brain mechanisms associated with facial expressions of pain. To achieve this, participants' facial expressions and brain activity were recorded while they received noxious heat stimulation. The authors then used a decoding approach to predict facial expressions from functional magnetic resonance imaging (fMRI) data. They found a distinctive brain signature for pain facial expressions. This signature had minimal overlap with brain signatures reflecting other components of pain phenomenology, such as signatures reflecting subjective pain intensity or negative effects.

      We appreciate this concise and accurate summary of our study.

      Strength:

      The manuscript is clearly written. The authors used a rigorous approach involving multivariate brain decoding to predict the occurrence and intensity of pain facial expressions during noxious heat stimulation. The analyses seem solid and well-conducted. I think that this is an important study of fundamental and clinical relevance.

      Weaknesses:

      Despite those major strengths, I felt that the authors did not suffciently explain their own interpretation of the significance of the findings. What does it mean, according to them, that the brain signature associated with facial expressions of pain shows a minimal overlap with other pain-related brain signatures?

      We express our sincere gratitude for the valuable insights and constructive comments on the strengths and weaknesses of the current study. We thank reviewer 2 for the encouragement to reinforce our interpretation of the significance of the findings, while acknowledging the limitations raised by the three reviewers.

      A few questions also arose during my reading.

      Question 1: Is the FEPS really specific to pain expressions? Is it possible that the signature includes a facial expression signal that would be shared with facial expressions of other emotions, especially since it involves socio-affective regulation processes? Perhaps this question should be discussed as a limit of the study?

      We acknowledge this limitation as outlined in response to Reviewer #1. We have incorporated a Limitations paragraph to provide a more in-depth discussion of this limitation and to explore potential future avenues (lines 225 to 268). Again, please note that the demonstration of specificity is an incremental process that requires a systematic comparison with other conditions where facial expressions are produced without pain. A concluding sentence was added to the abstract to encourage specificity testing in future studies. as indicated above.

      Question 2: All AUs are combined together in a composite score for the regression. Given that the authors have other work showing that different AUs may be associated with different components of pain (affective vs. sensory), is it possible that combining all AUs together has decreased the correlation with other pain signatures? Or that the FEPS actually reflects multiple independent signatures?

      The question raised is consistent with the work of Kunz, Lautenbacher, LeBlanc and Rainville (2012), and Kunz, Chen and Rainville (2020). In the current study, the pain-relevant action units were combined in order to increase the number of trials where a facial response to pain was expressed, thus enhancing the robustness of our analyses. Given the limited sample size, our current dataset is unfortunately insufficient to perform such analysis as there would not be enough trials to look at the action units separately or in subgroups. While the approach of combining the different AUs has proven to be valid and useful, we recognize the value of investigating potential independent signatures associated with the different AUs within the FEPS, and examining whether those signatures can lead to more similar patterns compared to previously developed pain signatures. This discussion has been included in the Limitations paragraph in the Discussion (lines 225 to 268).

      Question 3: Is facial expressivity constant throughout the experiment? Is it possible that the expressivity changes between the beginning and the end of the experiment? For instance, if there is a habituation, or if the participant is less surprised by the pain, or in contrast if they get tired by the end of the experiment and do not inhibit their expression as much as they did at the beginning. If facial expressivity changes, this could perhaps affect the correlation with the pain ratings and/or with the brain signatures; perhaps time (trial number) could be added as one of the variables in the model to address this question.

      The concern raised by the reviewer is legitimate. We conducted a mixed-effects model to assess the impact of successive trials and runs on facial expressivity. Results indicate that the FACS scores did not change significantly throughout the experiment, suggesting no notable effect of habituation or sensitization on the facial expressivity in our study. Details about the analysis and the results have been added to the Facial Expression section in the Methods (lines 335 to 346).

      Reviewer #3 (Public Review):

      In this manuscript, Picard et al. propose a Facial Expression Pain Signature (FEPS) as a distinctive marker of pain processing in the brain. Specifically, they attempt to use functional magnetic resonance imaging (fMRI) data to predict facial expressions associated with painful heat stimulation. The main strengths of the manuscript are that it is built on an extensive foundation of work from the research group, and that experience can be observed in the analysis of fMRI data and the development of the machine learning model. Additionally, it provides a comparative account of the similarities of the FEPS with other proposed pain signatures. The main weaknesses of the manuscript are the absence of a proper control condition to assess the specificity of the facial pain expressions, a few relevant omissions in the methodology regarding the original analysis of the data and its purpose, and a biased interpretation of the results.

      I believe that the authors partially succeed in their aims, as described in the introduction, which are to assess the association between pain facial expression and existing pain-relevant brain signatures, and to develop a predictive brain activation model of the facial responses to painful thermal stimulation. However, I believe that there is a clear difference between those aims and the claim of the title, and that the interpretation of the results needs to be more rigorous.

      We wish to express our appreciation for the insightful and constructive critique provided. The limitation pertaining to the absence of specificity testing had been addressed in response to Reviewer #1, and it has been incorporated into the manuscript (lines 251 to 258).

      The commentary made by Reviewer #3 has drawn our attention to a critical concern, namely the potential misalignment between the study findings and our original title. Consequently, we have changed the title to “A distributed brain response predicting the facial expression of acute nociceptive pain”. We also revised the interpretation of the results in the discussion section and we have added a section on limitations.

      Recommendations for the Authors:

      Reviewer #1 (Recommendations For The Authors):

      I hope the following comments will be useful to improve the manuscript.

      Abstract

      I felt the abstract could be more clear in terms of experimental or scientific questions, hypotheses/expectations, and findings. I also feel the abstract should briefly support the conclusive claim ("is better than...": how better? Or according to what criterion? This may be more relevant than the final conclusive general sentence that does not specifically address the significance of the findings).

      The abstract was revised to reinforce the functional perspective adopted to interpret brain activity produced by noxious stimuli and predicting various pain-relevant manifestations. We also mention explicitly the other pain-relevant signatures against which the FEPS is compared in this report, and we added a concluding sentence highlighting the importance of assessing the specificity of the FEPS in future studies.

      Introduction - background and rationale

      I would postpone the discussion around pain signature and anticipate the one about the brain mechanisms of facial expressions of pain. This will allow you to reinforce the logical flow of rationale, literature gap/question, why the problem is important, and study aims. Only then go for a review of relevant literature on signatures before providing a more specific final paragraph about the study-specific questions, expectations, and implementation. At the moment this is limited to a single very descriptive short paragraph at the end of the intro.

      The introduction was structured to guide the readers through a comprehensive understanding of different pain neurosignatures. The introduction aimed to establish a robust rationale for the subsequent analyses detailed in the results section. Indeed, the presentation of that literature ensured that the discussion around pain signatures is contextualised within a broader continuous framework. We acknowledge the reviewer’s comment on the limited description of the brain mechanisms of facial expression of pain. However, this was addressed in several previous reports of our laboratory (Kunz et al. 2011; Vachon-Presseau et al. 2016; Kunz, Chen, and Rainville 2020). We have added some more details about the brain mechanisms of facial expression, and highlighted those references in the first paragraph of the introduction.

      Methods and Results

      (1) Was there any indication of power based on the previous work or the other signature papers? If yes, how that would inform the present analysis?

      The NPS was trained on 20 participants that experienced 12 trials at each of four different intensities. The assessment of the effect sizes was performed on the Neurological Pain Signature in Han et al. (2022). That study revealed a moderate effect size for predicting between-subject pain reports, and a large one for predicting within-subject pain reports. We trained our model on 34 participants that underwent 16 trials. We expected our results to show a smaller effect size as the current experimental design only allowed us to examine spontaneous changes in the facial expression, as noted in the comments made by Reviewer #1. However, the best way to calculate the unbiased effect size of the results presented in the current study would be to test the unchanged model on new independent datasets (see Reddan, Lindquist, and Wager, 2017). Unfortunately, such datasets do not currently exist.

      (2) I would clarify to the reader what is meant by normal range of thermal pain and why is this relevant. Also, I did not find data about this assessment nor about the assessment of facial expressiveness (or reference to where it can be found).

      We changed this formulation to “All participants included in this study had normal thermal pain sensitivity” and we added a few references. By targeting a healthy population with normal thermal pain sensitivity, our study sought to identify a predictive brain pattern related to facial expression evoked by typical responses to pain that could eventually be generalised to other individuals from the same population. Details about the assessment of facial expressiveness have been added in the appropriate section in the Methods.

      (3) That pain ratings are only weakly associated with facial responses is, in its own right, an interesting finding, as a naïve reader would expect the two to be highly positively correlated. I'd suggest discussing this aspect (in reference to previous research) as it is interesting on both theoretical and empirical grounds.

      The likelihood and the strength of pain facial expression generally increase with pain ratings in response to acute noxious stimuli of increasing physical intensities, thereby leading to a positive association between the two responses that is driven by the stimulus. However, the poor correlation or the dissociation between facial pain expression and pain rating is a very well known phenomenon that can be demonstrated easily using experimental methods where the stimulus intensity is held constant and spontaneous fluctuations are observed in both facial expression and pain ratings. This result was not discussed in the current manuscript as it was already addressed in the work of Kunz et al. (2011) and Kunz, Karos and Vervoot (2018). We added the references to these studies in the revised manuscript (lines 330 to 334).

      (4) It may be worth having CIs throughout the whole set of analyses.

      Thanks for the suggestions, this was an oversight. The confidence intervals have been added in the manuscript where applicable.

      (5) I would clarify if there are two measures of the brain signature: dot-product and activation map. Relatedly, I cannot find where the authors explained what "FEPS pattern expression scores". Can the authors please clarify?

      The clarification has been added in the manuscript (lines 413 to 414).

      (6) There seems to be the assumption that the relationship between pain-relevant brain signatures and facial expressions of pain would be parametric and linear. However, this might not hold true. Did the authors test these assumptions?

      We indeed decided to use a linear regression technique (i.e. LASSO regression) to model the association between the brain activity and the facial expression of pain. The algorithm choice was mainly based on the simplicity and the interpretability of that approach, and our limited number of observations. The choice was also coherent with previous studies in the domain (e.g. Wager et al., 2011; Wager et al., 2013; Krishnan et al. 2016; Woo et al., 2017). Using a linear model, we were able to predict above chance level the facial expression evoked by pain using the fMRI activation. However, it is legitimate to think that more complex non linear models can better capture the brain patterns predictive of that behavioural manifestation of pain.

      (7) Did the authors assess whether the FACS were better to be transformed/normalised? More generally, I would report any data assessment/transformation that has not been reported.

      Thank you for this highly relevant suggestion. FACS scores were indeed not normally distributed and the analyses were conducted again to predict the log transformed FACS scores. This transformation was effective to normalize the distribution (skewness = 0.75, kurtosis = -0.84). The predictive model was confirmed on transformed data.

      (8) Page 12: I am not clear on whether all the signatures are included in the same model (like a multiple regression) or if separate regressions are calculated per signature. The authors seem to imply that several regressions have been computed (possibly one per comparison with each signature?).

      The correlation between the FACS scores and the pain-related signatures was computed separately for each signature. This information has been clarified.

      (9) MVPA: See my main comment about warm trials and experimental/statistical design. For example, the LASSO regression model for the pain trials could be compared with a model using warm trials besides (or instead of) the unfitted model. Otherwise, add the warm trials as another predictor or within the subject level in a dummy fixed factor comprising pain and warm trials.

      The inclusion of warm trials in the model training would be inconsistent with the goal of the main analysis to predict the facial expression of pain when a noxious pain stimulus is presented. Secondary analyses were conducted to compare the response of the FEPS to the warm trials compared to noxious pain trials. The dot product between the FEPS and the activation maps (FEPS scores) associated with the warm condition was computed. A linear mixed model was conducted to investigate the association between FEPS scores and the experimental condition (warm vs pain). Additional contrasts compared the warm trials with the pain trials with and without pain facial expression. The details of this analysis have been added to the manuscript (see Response of the FEPS to pain and warm in the Methods) as well as the corresponding results (see Results and Discussion).

      (10) I would clarify for the reader why the separate M1 analysis has been run. Although obvious, I feel the reader would benefit from the specific hypothesis about this control analysis being spelled out together with the other statistical hypotheses within the statistical design in a more streamlined manner.

      We extended the discussion on the rationale of that analysis and its interpretation taking into account the most recent results using the log transformed FACS scores (lines 125 to 133).

      (11) The mixed model aimed to assess the relationship between pain ratings FEPS scores and facial scores is a crucial finding. I believe it speaks to the importance of a more complete design, which I already highlighted. I have a couple of technical questions: did the authors assess random slopes too? And, what was the strategy used to determine the random effects structure?

      The linear mixed model considered the participants as a random effect, with random intercepts, considering the grouping structure in our data (i.e., each participant completed multiple trials). The reported results in the original manuscript were considering fixed slopes. However, following the reviewer’s comment, we re-computed the mixed linear models allowing the slopes to vary according to the intensity ratings. The results were changed in the manuscript to represent the output of those models.

      (12) The text from lines 63 to 67 could go in the methods.

      We decided to include those lines within the Result and Discussion section to give the reader more specification about the FACS scores, as this term is subsequently referenced in the following part of the Results and Discussion section. We are concerned that putting this information only in the Methods section would disrupt the reading.

      Reviewer #2 (Recommendations For The Authors):

      p. 4-5. When you report the positive weight clusters, you follow up with a sentence specifying which cognitive processes those brain regions are typically associated with. However, when you report the negative weight clusters, you do not specify the cognitive processes typically associated with those brain areas. I think that providing that information would be helpful to the readers.

      Thanks for noticing this omission. The information has been added in the most recent version of the manuscript (lines 119 to 121).

      p. 9. You specify that the degree of expressiveness of participants was evaluated. How did you evaluate expressiveness? Did you use this variable in your analyses? Were participants excluded based on their degree of expressiveness?

      Details about the assessment of facial expressiveness have been added in the appropriate section in the Methods (lines 285 to 289).

      p. 10. You explain that two certified FACS-coders evaluated the video recordings to rate the frequency of AUs. Could you please provide more details about the frequency measure? I think that there are different ways in which this could have been done. For instance, were the videos decomposed into frames, and then the frequency measured by summing the number of frames in which the AU occurred? Or was it "expression-based", so one occurrence of an AU (frequency of 1) would correspond to the whole period between its activation onset and offset? Both ways have pros and cons. For example, if the frequency represents the number of frames, then it controls for the total duration of the AU activation within a trial (pro); but if there were multiple activations/deactivations of the AU within one trial, this will not be controlled for (con). And vice-versa with the second way of calculating frequency.

      Details about the frequency scores have been added to the manuscript (lines 315 to 319).

      p. 11. When you explained how you calculated the association between the facial expression of pain and pain-related brain signatures, I felt that there was some information missing. Did you use the thresholded maps (available in the published articles), or did you somehow have access to the complete, voxel-by-voxel, raw regression coefficient maps?

      The unthresholded maps were used. The information has been clarified in the latest version of the manuscript, as well as the details about the availability of the maps (see Data Availability section at the end of the manuscript).

      Reviewer #3 (Recommendations For The Authors):

      Format

      The authors will notice that many observations about the manuscript are related to missing information and a lack of graphical representations. I believe the topic and the content of the manuscript are too complex to condense into a short report.

      Title

      The claim of the title is simply not substantiated by the content of the manuscript. Demonstrating that the FEPS is a distinctive (i.e., specific) marker of pain processing requires a substantially different experimental design, with more rigorous controls and a broader set of painful stimulations. The manuscript would benefit from a more accurate title.

      We agree that the title could better align with our findings. We modified the title accordingly : “A distributed brain response predicting the facial expression of acute nociceptive pain”.

      Abstract

      I find it puzzling that the authors claim that there is limited knowledge of the neural correlates of facial expression of pain given what they describe in the first paragraph of the introduction. Besides, they propose to reanalyze a dataset that has been extensively described in Kunz et al. (2011), which is unlikely to provide any new significant information.

      We respectfully disagree with that comment. We considered that three articles (i.e., Kunz et al., 2011; Vachon-presseau et al., 2016; Kunz, Chen and Rainville, 2020) on the topic do constitute limited knowledge, especially if we compare it to the very large body of literature on the neural correlates associated with pain ratings. Except for these three studies, all the other citations pertain to behavioral studies on facial expression of pain, and do not examine the brain activity related to it. Furthermore, we believe that the complementary nature of the analyses performed in Kunz et al. (2011) and in this manuscript offers new insights into our understanding of facial expression in the context of pain. Indeed, the multivariate approach used in this study addresses some limitations present in Kunz et al. (2011) univariate analyses, mainly that it provides a quantifiable way to compare the similarity between different predictive patterns (Reddan and Wager, 2017). We submit that the assessment of the FEPS against several other pain-relevant signatures provides new and important information.

      Furthermore, the abstract does not clearly state the aim, and the first line of the results does not match what the authors claim in the preceding line. The take-home message (last sentence) introduces the concept of a biomarker, which, as stated before, cannot be validated with the current data/experimental design. To put it in plain words, a given facial expression (or a composite score derived from a combination of expressions) cannot be a specific biomarker for pain, because a person can always mimic the same expression without feeling pain. Whether a given facial expression can be predicted from brain activity is a different issue, and whether that prediction can differentiate between painful and non-painful origins of the facial expression is another different issue. Unfortunately, neither of those issues can be tested with the current data/experimental design. The abstract would improve if the authors would circumscribe to what they actually tested, which is accurately described in the last sentence of the Introduction.

      The abstract was revised accordingly. The term ‘biomarker’ was used in accordance with preceding studies in the field (see Reddan and Wager, 2017; Lee et al., 2021). Please note that we applied the same reasoning to fluctuations in pain expression as previous studies have applied to pain ratings. Of course, we can not dismiss the possibility of someone mimicking facial expressions. Similar reasoning applies to subjective reports, as individuals can intentionally overestimate their pain experience conveyed through verbal reports. This is another case of specificity testing that cannot be addressed in the present study (see new conclusion of the abstract and discussion of limitations). The challenge of pain assessment is a classical problem within both the scientific and the clinical literature. Here, we suggest that the consideration of multiple manifestations of pain is necessary to address this challenge and will provide a more comprehensive portrait of pain-related brain function.

      Introduction

      I believe that the Introduction would benefit from a strict definition of what is a marker/biomarker/neuromarkers (all those terms are used in the manuscript) and what are its desirable features (validity, reliability, specificity, etc.). I also believe that the Introduction (and the rest of the text) would benefit from a critical assessment of the term "signature". The Introduction describes four existing "signatures", all of them differing in the experimental condition in which acute nociceptive pain is studied, and proposes a fifth one. Keeping with the analogy, I'm wondering whether they should be called (pain) "signatures" if there is a different one for each experimental acute pain condition, and they are so dissimilar between them when they are tested on the same condition (this dataset).

      The last part of that comment raises fundamental methodological potential limitations that should be addressed in more depth in another article. That point goes beyond the scope of a research article. Regarding the stability aspect of the signatures, most of the signatures have not been studied extensively. It is thus difficult to currently assess their reliability. However, Han et al. (2022) showed high within-individual test-retest reliability for the NPS across eight different studies. Given that pain is a multidimensional experience, it is not surprising to find different patterns of activation predictive of different aspects or dimensions of the pain experience (see Čeko et al., 2022 for a similar discussion applied to negative affect).

      The authors state that "As an automatic behavioral manifestation, pain facial expression might be an indicator of activity in nociceptive systems, perceptual and evaluative processes, or general negative affect." Doesn't it reflect all three of them? (and instead of or?) Why "might"?

      The original sentence has been modified as follows: “As an automatic behavioral manifestation, pain facial expression is considered to be an indicator of activity in nociceptive systems, and to reflect perceptual and affective-evaluative processes” (lines 65 to 67).

      Methods

      The pain scale should be described. Kunz et al. used a 0-100 scale, where 50 was the pain threshold. This is crucial to interpret the 75-80/100 score for the painful thermal intensity.

      The description of the pain scale has been added to the manuscript (lines 299 to 300).

      Ratings for warm and painful temperatures should be reported (ideally plotted with individual-trial/subject data). In the same line of reasoning, FACS scores should be reported as well (ideally plotted with individual-trial/subject data). It would be interesting to explore the across-trial variability of pain ratings and FACS scores. That is, do people keep giving the same ratings and making the same facial expression after 16 trials? How much variability is between trials and between subjects?

      The point raised in that comment was already addressed in response to a comment made by Reviewer #1 (also see the new Figures S2 and S4; see also lines 335 to 346).

      How come only painful trials are analyzed? What if the FEPS signature was the same for warm and painful stimulation, thus reflecting the settings (fMRI experiment, stimulation, etc.) rather than the brain response to the stimuli?

      The point raised in that comment was already addressed in response to a comment made by Reviewer #1. There was no pain expression in the warm trials and the FEPS shows no response to warm trials. This is now illustrated in the new Figure S4B (see also lines 138 to 158).

      The authors propose to predict the trial-by-trial FACS composite score from the pain ratings using a LMM. However, it is interesting that they aim for an almost constant within- and between-subject pain score (75-80/100) as stated in the Methods. This should theoretically render the linear model invalid since its first (and main) assumption would be that FACS should vary linearly with the pain score. Even if patients were not aware that the temperatures were constant across trials, the variation in pain scores should be explained by random noise for a constant stimulation intensity.

      Reviewer #3 raises an important point that we need to clarify. Contrary to the expectation that FACS responses should be strongly correlated to pain ratings, we posited that these response channels depend at least in part on separate brain networks that may be differentially sensitive to a variety of modulatory mechanisms (attention, emotion, expectancy, motor priming, social context, etc.). This implies that part of the variance in FACS is independent from pain ratings. We, therefore, consider what Reviewer #3 refers to as random noise to be relevant and meaningful fluctuations reflecting endogenous processes influencing one’s experience of pain and differentially affecting various output responses.

      I noticed that fMRI data was analyzed with SPM5 in the original paper (Kunz et al., 2011) and with SPM8 in this manuscript. Was fMRI data re-processed for this manuscript? Were there any differences between the original analysis and this one that might induce changes in the interpretation of results?

      The data were indeed re-processed using SPM8, which was the most recent version available when we started the analyses reported here. We used trial-by-trial activation maps for MVPA, which differs from what was used in the previous study (contrast maps at the level of the conditions, not the trials). We have no reason to believe that the different versions will change the message of this manuscript since those versions do not differ significantly in terms of the fMRI preprocessing pipeline (see SPM8 release notes; https://www.fil.ion.ucl.ac.uk/spm/software/spm8/). Furthermore, the aim of this present study is not to compare the different analysis parameters implemented in SPM5 vs SPM8.

      What is the rationale for including PVP in the comparison among signatures? The experimental settings in which it was devised are distant from those described here.

      The inclusion of the PVP was aimed at enhancing our comparative analysis with the FEPS, as we sought to investigate the potential functional meaning of the FEPS. The PVP was developed to capture the aversive value of pain, a dimension that is conceptually proximal to the interpretation of the facial expression as a manifestation of the affective response to nociceptive pain.

      The LASSO-PCR approach is, in my opinion, not a procedure for (brain) decoding in this context. It is accurately described in the section title as a method for multivariate pattern analysis, or as a variable selection and regularization method for a prediction model. Here, brain activity in specific areas related to pain processing can hardly be described as "encoded", and the method just helps select those activations relevant for explaining a certain outcome (in this case, facial expressions).

      We understand the point made by reviewer #3. The term brain decoding was changed for multivariate pattern analysis in the latest version of the manuscript.

      Details are missing with regards to the dataset split into training, validation, and testing.

      Details about the training and testing procedure were added in the manuscript (lines 383 to 385).

      This might just be ignorance from me, so I apologize in advance, but what are "contrast" fMRI images? They are mentioned three times in the text but not really described. Are they the "Pain > Warm" contrasts from the original paper?

      We apologize for any confusion caused by the use of the term “contrast images” which suggests a direct comparison between two experimental conditions. We have replaced “contrast images” with “activation maps” to provide a more accurate description of the nature of the data used in the multivariate pattern analysis (lines 388 to 389).

      In the "Facial expression" section, the authors run an LMM to test the association between pain ratings (response variable) and facial responses (explanatory variable). If I understand correctly, in the "Multivariate pattern analysis" section they test the association between facial composite scores (response variable) and pain ratings (explanatory variable), but they obtain different results.

      The analyses were recomputed on the log transformed data, as mentioned previously in the response to reviewers 1-2. The first model (in the “Facial expression” section) used the log transformed FACS scores as a dependent variable, the pain ratings as the fixed effect, and the participants as the random effect. The results of that analysis suggested that the transformed facial expression scores were not significantly associated with the pain ratings (p = .07). The second model uses both the FEPS pattern expression scores and pain ratings as fixed effects to predict facial responses. This analysis showed the significant contribution of the FEPS to the prediction of FACS scores (p < .001) and no significant effect of the pain ratings. However, a significant interaction was found (p = .03) suggesting that the prediction of the pain facial expression by the FEPS may vary with pain ratings (i.e. moderator effect). Those results have been clarified in the “Multivariate pattern analysis” section in the Methods (lines 416 to 426).

      In this same section, what are "FEPS pattern expression scores"? They are used three times in the text, but I could not find their description.

      The FEPS pattern expression scores correspond to the dot product between the trial-by-trial activation maps and the unthresholded FEPS signature. This information has been added to the manuscript (lines 413 to 414).

      It would not be far-fetched to hypothesize that FACS scores could be predicted using solely activity from the motor cortex. The authors attempted to do this, but only with information from M1. Why did they not use the entire motor cortex, or better, regions of the motor cortex directly linked with the AUs described in the manuscript?

      The selection of the primary motor area (M1) was based on the results found in Kunz et al. (2011). In this study, M1 showed the strongest correlation with facial expression of pain. There are numerous possibilities of combinations of multiple brain regions considering a variety of criteria based on distributed networks involved in motor, affective, or pain-related processes. We limited our exploration to the region with the strongest hypothesis due to practical feasibility concerns.

      Results and Discussion

      As a general recommendation, results should present individual data whenever possible. For example, the association between signatures and facial expression should be plotted using scatterplots.

      We have added figures showing individual data when it was applicable (Figure S2; Figure S4).

      The authors state that the LASSO-PCR model accounts for the facial responses to pain. I believe this is an overstatement, considering:

      - A Pearson's r of 0.49 is usually considered low/weak correlation (moderate at best). In the same line, an R2 of 0.17 means that only 17% of the variance is explained by the model.

      More nuanced interpretation of the results has been added to the discussion. A section has been added to highlight the limitations of the study.

      - Figure 1 needs to display individual subject data and the ideal regression line.

      The model was trained using a k-fold cross-validation procedure. The regression lines thus represent the model’s prediction for each one of the 10 folds (i.e. each fold is trained and tested on a different subset of the data). A scatter plot including the ideal regression line computed across all trials and subjects was added in supplementary material to illustrate the relation between the FACS scores and the FEPS pattern expression scores (Figure S4).

      - Looking at Figure 1, it is clear that the model has an intercept different from zero. This means that when the FACS score was zero (i.e., volunteers did not make any distinguishable facial expression), the model predicted a score larger than zero. This is not discussed in the manuscript, and in simple terms, it means that there are brain activation patterns when no discernible facial expression is being made by the volunteers. In the original paper by Kunz et al., two groups of subjects were categorized, and one of them was a facially low- or non-expressive group (n=13). This fact is not even mentioned in the manuscript.

      The categorization in the previous report (Kunz et al., 2012) was based on a pre-experimental session. All subjects were included in the current analysis. This is now indicated in the Methods (lines 287 to 289).

      - On the other end of the range in Figure 1, differences between the FACS scores near the maximum range (40) are underestimated by 23 to 33 points! I guess that the RMSE is smaller (6-7 points), because many FACS scores are concentrated on the low end of the scale.

      This is a very interesting comment. A section discussing the limits of the model to predict the lower and higher FACS scores has been added in the manuscript (lines 232 to 250).

      It is of course acceptable to interpret the low similarity between signatures as a sign that each signature describes a different mechanism related to pain processing. However, I believe that a complete discussion should contemplate other competing hypotheses. Considering that all signatures were developed using a similar painful thermal stimulation protocol, it is reasonable to expect larger similarities between signatures. The fact that they are so dissimilar could be a reflection of model overfit, i.e., all these signatures are just fitted to these particular experimental protocols and data, and do not generalize to brain mechanisms of pain processing.

      We appreciate the pertinent observation. We have included a limitations section in which we discussed, among other considerations, the possible overfitting of models and the necessity of pursuing generalizability studies (lines 225 to 268).

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This is an important study on the regulation of chlorophyll biosynthesis in rice embryos. It provides insights into the genetic and molecular interactions that underlie chlorophyll accumulation, highlighting the inhibition of OsGLK1 by OsNF-YB7 and the broader implications for understanding chloroplast development and seed maturation in angiosperms. The results presented, including mutation analysis, gene expression profiles, and protein interaction studies, provide convincing evidence for the function of OsNF-YB7 as a repressor in the chlorophyll biosynthesis pathway.

      Thank you very much for your positive assessment of our manuscript. We have carefully revised the manuscript according to the reviewers’ valuable suggestions and comments. For more details, please see the point-to-point response to the reviewers below.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This manuscript investigates the regulation of chlorophyll biosynthesis in rice embryos, focusing on the role of OsNF-YB7. The rigorous experimental approach, combining genetic, biochemical, and molecular analyses, provides a robust foundation for these findings. The research achieves its objectives, offering new insights into chlorophyll biosynthesis regulation, with the results convincingly supporting the authors' conclusions.

      Strengths:

      The major strengths include the detailed experimental design and the findings regarding OsNF-YB7's inhibitory role.

      Weaknesses:

      However, the manuscript's discussion on the practical implications for agriculture and the evolutionary analysis of regulatory mechanisms could be expanded.

      Thank you for your insightful comments and suggestions. In the revised manuscript, we discussed the potential application of the chlorophyllous embryo (please see line 270-274). The presence of chlorophyll in the embryo facilitates photosynthesis at early developmental stages, potentially leading to improved seedling growth and vigor (Smolikova and Medvedev, 2016). In crops such as soybean and canola, green embryo is considered as a valuable trait due to its association with enhanced photosynthetic capacity, which consequently promotes fatty acid biosynthesis (Ruuska et al., 2004). However, chlorophyll degradation must be carefully managed during seed maturation to avoid negative effects on seed viability and meal quality (Chung et al., 2006). Interestingly, the green embryo of lotus (Nelumbo nucifera) is widely used as a food ingredient in Asian, Australia, and North America. It is employed in herbal medicine to treat nervous disorders, insomnia, and other conditions (Zhu et al., 2017; Ha et al., 2022), highlighting the significant potential value of the green embryo.

      In many chloroembryophytes, such as Arabidopsis, the embryo occupies a large proportion of the seed. From an evolutionary perspective, the presence of chlorophyll in the embryo may promote adaptation in such chloroembryophytes because more reserves can be accumulated in the seed through active photosynthesis, better supporting the embryo development and subsequent seedling growth (Sela et al., 2020). On the other hand, some leucoembryophytes, such as rice, have persistent endosperm rich in storage reserves to nourish embryo development (Liu et al., 2022). Gaining the ability to accumulate chlorophyll in the embryo is unnecessary for such species. In agreement with this hypothesis, cholorophyllous embryos are more prevalent in non-endospermous seeds (Dahlgren, 1980). However, we would like to emphasize that the evolutionary force driving the divergence of chloroembryophytes and leucoembryophytes is currently almost completely unknown and deserves in-depth investigation in the future. We discussed the possible evolution of the ability to accumulate chlorophyll in the embryo, please find the details in Line 276-295.

      Reviewer #2 (Public Review):

      Summary:

      The authors set out to establish the role of the rice LEC1 homolog OsNF-YB7 in embryo development, especially as it pertains to the development of photosynthetic capacity, with chlorophyll production as a primary focus.

      Strengths:

      The results are well-supported and each approach used complements each other. There are no major questions left unanswered and the central hypothesis is addressed in every figure.

      Weaknesses:

      There are a handful of sections that could use clarifying for readers, but overall this is a solidly composed manuscript.

      The authors clearly achieved their aims; the results compellingly establish a disparity between how this system operates in rice and Arabidopsis. Conclusions are thoroughly supported by the provided data and interpretations. This work will force a reconsideration of the value of Arabidopsis as a model organism for embryo chlorophyll biosynthesis and possibly photosynthesis during embryo maturation more broadly, as rice is a major crop organism and it very clearly does not follow the Arabidopsis model. It will thus be useful to carry out similar tests in other organisms rather than relying on Arabidopsis and attempting to more fully establish the regulatory mechanism in rice.

      Thank you very much for your positive comments. We have carefully revised the manuscript according to your and the other reviewers’ comments and suggestions. Particularly, we emphasized the necessary to carry out similar tests in other organisms rather than relying on Arabidopsis to better understand the regulatory mechanism in rice.

      Reviewer #3 (Public Review):

      Summary:

      In this study, the authors set out to understand the mechanisms behind chlorophyll biosynthesis in rice, focusing in particular on the role of OsNF-YB7, an ortholog of Arabidopsis LEC1, which is a positive regulator of chlorophyll (Chl) biosynthesis in Arabidopsis. They showed that OsNF-YB7 loss-of-function mutants in rice have chlorophyll-rich embryos, in contrast to Arabidopsis LEC1 loss-of-function mutants. This contrasting phenotype led the authors to carry out extensive molecular studies on OsNF-YB7, including in vitro and in vivo protein interaction studies, gene expression profiling, and protein-DNA interaction assays. The evidence provided well supported the core arguments of the authors, emphasising that OsNF-YB7 is a negative regulator of Chl biosynthesis in rice embryos by mediating the expression of OsGLK1, a transcription factor that regulates downstream Chl biosynthesis genes. In addition, they showed that OsNF-YB7 interacts with OsGLK1 to negatively regulate the expression of OsGLK1, demonstrating the broad involvement of OsNF-YB7 in rice Chl biosynthetic pathways.

      Strengths:

      This study clearly demonstrated how OsNF-YB7 regulates its downstream pathways using several in vitro and in vivo approaches. For example, gene expression analysis of OsNF-YB7 loss-of-function and gain-of-function mutants revealed the expression of selected downstream chl biosynthetic genes. This was further validated by EMSA on the gel. The authors also confirmed this using luciferase assays in rice protoplasts. These approaches were used again to show how the interaction of OsNF-YB7 and OsGLK1 regulates downstream genes. The main idea of this study is very well supported by the results and data.

      Weaknesses:

      From an evolutionary perspective, it is interesting to see how two similar genes have come to play opposite roles in Arabidopsis and rice. It would have been more interesting if the authors had carried out a cross-species analysis of AtLEC1 and OsNF-YB7. For example, overexpressing AtLEC1 in an osnf-yb7 mutant to see if the phenotype is restored or enhanced. Such an approach would help us understand how two similar proteins can play opposite roles in the same mechanism within their respective plant species.

      We appreciate your insightful comments and suggestions. It is a very interesting question whether AtLEC1 can fully restore osnf-yb7, given the possible functional divergence between the genes in terms of regulation of chlorophyll biosynthesis in the embryo. We have previously expressed OsNF-YB7 in the lec1-1 background in Arabidopsis, driven by the native promoter of LEC1 (Niu et al., 2021). We found that OsNF-YB7 could almost completely rescue the embryo defects in Arabidopsis, indicating that OsNF-YB7 plays a resemble role in rice as the LEC1 does in Arabidopsis (Niu et al., 2021). We sought to determine whether AtLEC1 can complement the chlorophyll defect in osnf-yb7. However, given the fact that osnf-yb7 shows severe callus induction defect, which is not surprising, because many studies have shown that LEC1 is indispensable for somatic embryo development in various plant species, we are struggling to obtain the genetic materials for analysis. We have to transform OsNF-YB7pro::AtLEC1 into the WT background first, and then cross the transformant with the osnf-yb7 mutant. This is a time-consuming process in rice, but hopefully we will able to isolate a line expressing OsNF-YB7pro::AtLEC1 in the osnf-yb7 background from the resulting segregating population.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      A minor comment regarding the chlorophyll contents quantification in the study. Line 87: "The results showed that WT had an achlorophyllous embryo throughout embryonic development,...." In the TEM result, chloroplast was not observed in the WT embryo sections, indicating a lack of chlorophyll-containing structures, contrary to what was found in the osnf-yb7 embryos where chloroplasts were observed.

      The authors stated that the embryo morphologies and Chl autofluorescence data showed that WT had an achlorophyllous embryo throughout embryonic development. However, the quantification of Chl levels in Figure 1D and Figure 4C showed that WT does produce some chlorophylls, albeit at lower levels than osnf-yb7 or OSGLK-OX embryos (WT values in the two figures are slightly different). This discrepancy warrants clarification to ensure consistency and accuracy in the manuscript's findings.

      We re-evaluated the Chl content in the embryos of WT and OsGLK1-OX mature seeds. The result confirmed our previous finding that WT embryos produce a small amount of chlorophyll (please see the updated Fig. 4C). Notably, we observed that the dark-grown etiolated plants still have measurable chlorophyll content as reported in many studies (for example, Wang et al., 2017; Yoo et al., 2019), suggesting that there is potential bias in measuring chlorophyll content using an absorbance-based approach. We assume this possibly explains the concern you have raised.

      Reviewer #2 (Recommendations For The Authors):

      Mild editing for grammar is needed throughout, e.g. line 73, "It is still a mysterious why plant species".

      We have carefully edited the grammar.

      As a minor point, the placement of figure panels, such as in Figure 1, is not always intuitive.

      Thank you for your suggestion. This figure has been revised as suggested. Please see the updated Fig. 1.

      What is the significance of the two GFP mutants in Figures 2C and 2D? Is one of those the mislabeled Flag mutant?

      The lines showed in Fig. 2C and D were not mislabeled. They were two independent transgenic events, both of which showed that OsNF-YB7 inhibited the expression of OsPORA and OsLHCB4 in rice. The transgenic lines overexpressing OsNF-YB7 tagging with the 3× Flag (NF-YB7-Flag) were also used for this experiment. In agreement, OsPORA and OsLHCB4 were significantly downregulated in the three independent NF-YB7-Flag lines (Fig. S4C), confirming the results showed in Fig. 2C and D.

      In Figures 2G and 2H, what is that enormous band at the bottom of the gel?

      The bands at the bottom of the gel were free probes. We indicated this in the revised figure.

      Not until the Materials and Methods section did I realize that any of this study was being done in tobacco; the Introduction implies it's rice vs. Arabidopsis and it might be a good idea to mention the organism of study somewhere before Figure 6.

      We apologize for any confusion caused by our previous writing. While the majority of this study was performed with rice plants or protoplasts, the split complementary LUC assays and BiFC assays were performed with tobacco. We have specified these in the revised manuscript as suggested.

      Reviewer #3 (Recommendations For The Authors):

      It would be nice if the author could show what the phenotype is in AtLEC1 OX in osnf-yb7 and also OsNF-YB7 OX in atlec1 mutants.

      Thank you for your suggestion. We have previously expressed OsNF-YB7 in the lec1-1 background of Arabidopsis, driven by the native promoter of Arabidopsis LEC1 (Niu et al., 2021). Since OsNF-YB7 could rescue the embryo morphogenesis defects in Arabidopsis (Niu et al., 2021), we assumed that OsNF-YB7 plays a similar role in rice as the LEC1 does in Arabidopsis. However, it remains unknown whether expression of LEC1 in osnf-yb7 may restore the chlorophyllous embryo phenotype in rice. As the generation of genetic material is time-consuming, and especially given the fact that osnf-yb7 has a severe callus induction defect, we are struggling to obtain the complementary line for analysis. We have to transform OsNF-YB7pro::AtLEC1 in a WT background first, and then cross the transformant with the osnf-yb7 mutant. Hopefully, we will be able to isolate a line expressing OsNF-YB7pro::AtLEC1 in osnf-yb7 background, from the derived segregating population. We discussed the reviewer’s concern in the revised manuscript, please see Line 369-376.

      Line 46, I think it is vague to mention that 'Like most plant species'. Some species might have different copy numbers, for example, a single GLK in liverwort M. polymorpha.

      The statement has been revised. Please see Line 46.

      Figures 2F and 5B, why was only one promoter region used for OsLHCB4? It would be better to have more regions like OsPORA.

      Thank you for your comments. Here, we have examined more promoter regions (P1, P2 and P3) in the revised manuscript as suggested, among which, the previously selected promoter region (P3) contains both the G-box and CCAATC motifs that can be potentially recognized by GLK1. Consistent to our previous report, the results showed that OsNF-YB7 (left) and OsGLK1 (right) were associated with the P3 region, but showed no significant differences in the other probes. Please see the results in Fig. 2F and Fig. 5B of the revised manuscript.

      Legend of Figures 2G, H, OsPORA (I), and OsLHCB (J) should be (G) and (H) respectively.

      Corrected.

      References

      Chung, D.W., Pruzinska, A., Hortensteiner, S., and Ort, D.R. (2006). The role of pheophorbide a oxygenase expression and activity in the canola green seed problem. Plant Physiol 142, 88-97.

      Ha, T., Kim, M.S., Kang, B., Kim, K., Hong, S.S., Kang, T., Woo, J., Han, K., Oh, U., Choi, C.W., and Hong, G.S. (2022). Lotus Seed Green Embryo Extract and a Purified Glycosyloxyflavone Constituent, Narcissoside, Activate TRPV1 Channels in Dorsal Root Ganglion Sensory Neurons. J Agric Food Chem 70, 3969-3978.

      Liu, J., Wu, M.W., and Liu, C.M. (2022). Cereal Endosperms: Development and Storage Product Accumulation. Annu Rev Plant Biol 73, 255-291.

      Niu, B., Zhang, Z., Zhang, J., Zhou, Y., and Chen, C. (2021). The rice LEC1-like transcription factor OsNF-YB9 interacts with SPK, an endosperm-specific sucrose synthase protein kinase, and functions in seed development. Plant J 106, 1233-1246.

      Ruuska, S.A., Schwender, J., and Ohlrogge, J.B. (2004). The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol 136, 2700-2709.

      Sela, A., Piskurewicz, U., Megies, C., Mene-Saffrane, L., Finazzi, G., and Lopez-Molina, L. (2020). Embryonic Photosynthesis Affects Post-Germination Plant Growth. Plant Physiol 182, 2166-2181.

      Smolikova, G.N., and Medvedev, S.S. (2016). Photosynthesis in the seeds of chloroembryophytes. Russ J Plant Physl+ 63, 1-12.

      Wang, Z., Hong, X., Hu, K., Wang, Y., Wang, X., Du, S., Li, Y., Hu, D., Cheng, K., An, B., and Li, Y. (2017). Impaired Magnesium Protoporphyrin IX Methyltransferase (ChlM) Impedes Chlorophyll Synthesis and Plant Growth in Rice. Front Plant Sci 8, 1694.

      Yoo, C.Y., Pasoreck, E.K., Wang, H., Cao, J., Blaha, G.M., Weigel, D., and Chen, M. (2019). Phytochrome activates the plastid-encoded RNA polymerase for chloroplast biogenesis via nucleus-to-plastid signaling. Nat Commun 10, 2629.

      Zhu, M., Liu, T., Zhang, C., and Guo, M. (2017). Flavonoids of Lotus (Nelumbo nucifera) Seed Embryos and Their Antioxidant Potential. J Food Sci 82, 1834-1841.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      As a reviewer for this manuscript, I recognize its significant contribution to understanding the immune response to saprophytic Leptospira exposure and its implications for leptospirosis prevention strategies. The study is well-conceived, addressing an innovative hypothesis with potentially high impact. However, to fully realize its contribution to the field, the manuscript would benefit greatly from a more detailed elucidation of immune mechanisms at play, including specific cytokine profiles, antigen specificity of the antibody responses, and long-term immunity. Additionally, expanding on the methodological details, such as immunophenotyping panels, qPCR normalization methods, and the rationale behind animal model choice, would enhance the manuscript's clarity and reproducibility. Implementing functional assays to characterize effector T-cell responses and possibly investigating the microbiota's role could offer novel insights into the protective immunity mechanisms. These revisions would not only bolster the current findings but also provide a more comprehensive understanding of the potential for saprophytic Leptospira exposure in leptospirosis vaccine development. Given these considerations, I believe that after substantial revisions, this manuscript could represent a valuable addition to the literature and potentially inform future research and vaccine strategy development in the field of infectious diseases.

      Reviewer #2 (Public Review):

      Summary:

      The authors try to achieve a method of protection against pathogenic strains using saprophytic species. It is undeniable that the saprophytic species, despite not causing the disease, activates an immune response. However, based on these results, using the saprophytic species does not significantly impact the animal's infection by a virulent species.

      Strengths:

      Exposure to the saprophytic strain before the virulent strain reduces animal weight loss, reduces tissue kidney damage, and increases cellular response in mice.

      Weaknesses:

      Even after the challenge with the saprophyte strain, kidney colonization and the release of bacteria through urine continue. Moreover, the authors need to determine the impact on survival if the experiment ends on the 15th.

      Reviewer #3 (Public Review):

      Summary:

      Kundu et al. investigated the effects of pre-exposure to a non-pathogenic Leptospira strain in the prevention of severe disease following subsequent infection by a pathogenic strain. They utilized a single or double exposure method to the non-pathogen prior to challenge with a pathogenic strain. They found that prior exposure to a non-pathogen prevented many of the disease manifestations of the pathogen. Bacteria, however, were able to disseminate, colonize the kidneys, and be shed in the urine. This is an important foundational work to describe a novel method of vaccination against leptospirosis. Numerous studies have attempted to use recombinant proteins to vaccinate against leptospirosis, with limited success. The authors provide a new approach that takes advantage of the homology between a non-pathogen and a pathogen to provide heterologous protection. This will provide a new direction in which we can approach creating vaccines against this re-emerging disease.

      Strengths:

      The major strength of this paper is that it is one of the first studies utilizing a live non-pathogenic strain of Leptospira to immunize against severe disease associated with leptospirosis. They utilize two independent experiments (a single and double vaccination) to define this strategy. This represents a very interesting and novel approach to vaccine development. This is of clear importance to the field.

      The authors use a variety of experiments to show the protection imparted by pre-exposure to the non-pathogen. They look at disease manifestations such as death and weight loss. They define the ability of Leptospira to disseminate and colonize the kidney. They show the effects infection has on kidney architecture and a marker of fibrosis. They also begin to define the immune response in both of these exposure methods. This provides evidence of the numerous advantages this vaccination strategy may have. Thus, this study provides an important foundation for future studies utilizing this method to protect against leptospirosis.

      Weaknesses:

      Although they provide some evidence of the utility of pretreatment with a non-pathogen, there are some areas in which the paper needs to be clarified and expanded.

      The authors draw their conclusions based on the data presented. However, they state the graphs only represent one of two independent experiments. Each experiment utilized 3-4 mice per group. In order to be confident in the conclusions, a power analysis needs to be done to show that there is sufficient power with 3-4 mice per group. In addition, it would be important to show both experiments in one graph which would inherently increase the power by doubling the group size, while also providing evidence that this is a reproducible phenotype between experiments. Overall, this weakens the strength of the conclusions drawn and would require additional statistical analysis or additional replicates to provide confidence in these conclusions.

      A direct comparison between single and double exposure to the non-pathogen is not able to be determined. The ages of mice infected were different between the single (8 weeks) and double (10 weeks) exposure methods, thus the phenotypes associated with LIC infection are different at these two ages. The authors state that this is expected, but do not provide a reasoning for this drastic difference in phenotypes. It is therefore difficult to compare the two exposure methods, and thus determine if one approach provides advantages over the other. An experiment directly comparing the two exposure methods while infecting mice at the same age would be of great relevance to and strengthen this work.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Major Comments

      (1) Elucidation of Immune Mechanisms: The manuscript intriguingly suggests that exposure to saprophytic Leptospira primes the host for a Th1-biased immune response, contributing to survival and mitigation of disease severity upon subsequent pathogenic challenge. However, the underlying mechanisms remain broadly defined. A more detailed investigation into the cytokine profiles, particularly the levels of IFN-γ, IL-12, and other Th1-associated cytokines, could clarify the mechanism of Th1 bias. Moreover, exploring the role of antigen-presenting cells (APCs) in priming T cells towards a Th1 phenotype would add valuable insights.

      In this study we continue to elucidate the immune mechanisms engaged by pathogenic and non-pathogenic Leptospira as a follow up to our previous work (Shetty et al, 2021 PMID: 34249775, and Kundu et al 2022 PMID 35392072). We, and others, have shown that saprophytic L. biflexa and pathogenic L. interrogans induce major chemo-cytokines associated with Th1 biased immune responses (Shetty et al. 2021; Cagliero et al. 2022; Krangvichian et al. 2023) and engage myeloid immune cells such as macrophages and dendritic cells. The role of antigen presenting cells such as dendritic cells in priming T cells and activating adaptive response is a separate question and can be addressed in the future. To further address this question, a recent mechanistic study (Krangvichian et al. 2023) showed that non-pathogenic leptospires (L. biflexa) promote MoDC maturation and stimulate the proliferation of IFN-γ-producing CD4+ T cells and potentially elicit a Th1-type response in mice, which also supports our current claim and it is referenced in our manuscript.

      (2) Quantitative Analysis of Kidney Colonization: The manuscript reports that pre-exposure to L. biflexa did not prevent the colonization of kidneys by L. interrogans but led to a more regulated immune response and reduced fibrosis. A more nuanced quantification of bacterial loads in the kidneys, using techniques such as CFU counting or more sensitive qPCR methods, could provide a clearer picture of how saprophytic exposure affects the ability of pathogenic Leptospira to establish infection. Additionally, a time-course study showing the kinetics of bacterial colonization and clearance post-infection would be informative.

      We are currently validating digital PCR to use in the future and plan to do time course studies.

      (3) Characterization of B Cell and T Cell Responses: While the manuscript mentions increased B cell frequencies and effector T helper cell responses, specifics regarding the nature of these responses are lacking. For instance, detailing the isotype and specificity of antibodies produced, the proliferation rates of specific B and T cell subsets, and their functional capabilities (e.g., cytotoxicity, help for B cells) would significantly enrich the understanding of the immune response elicited by pre-exposure to saprophytic Leptospira.

      Indeed, additional experiments need to be conducted to flush out the immune responses engaged after pre-exposure to saprophytic Leptospira followed by LIC challenge.

      (4) Comparative Analysis with Other Models of Pre-exposure: The study primarily focuses on pre-exposure to a live saprophytic Leptospira. Including a comparison with pre-exposure to killed saprophytic bacteria, or even to other non-pathogenic microbes, could help discern whether the observed protective effect is unique to live saprophytic Leptospira exposure or if it represents a more general phenomenon of trained immunity.

      Regarding the use of other non-pathogenic microbes, our lab has shown in the past that oral use of probiotic strain Lactobacillus plantarum (Potula et al 2017) also reduces the severity of Leptospirosis by recruiting myeloid cells. Thus, there may be a general phenomenon of trained immunity involved. We added this to the discussion.

      (5) Assessment of Long-term Immunity: The study provides valuable insights into the short-term outcomes following saprophytic Leptospira exposure and subsequent pathogenic challenge. Extending these observations to assess long-term immunity, including memory B and T cell responses several months post-infection, would be crucial for understanding the potential of saprophytic Leptospira exposure in providing lasting protection against leptospirosis.

      Long term immunity is a complex and separate question that we plan to address later.

      Minor Comments

      (1) Technical Specifics of Flow Cytometry Analysis: The manuscript could benefit from including more details on the flow cytometry gating strategy and the specific markers used to identify different immune cell subsets. This addition would aid in the reproducibility of the results and allow for a clearer interpretation of the immune profiling data.

      We included the technical specifics of the flow-cytometry analysis in the materials and methods section. The gating strategy (Fig S1) and the specific markers (TableS1) used to identify different immune cell subsets were incorporated in the supplementary datasheet. The cell specific markers were incorporated in the figures (Fig 5 and 6) under each representative cell subset which facilitates clarity and reproducibility of immune profiling.

      (2) Statistical Methodology for IgG Subtyping: The analysis of IgG subtypes in response to Leptospira exposure is intriguing but would be strengthened by specifying the statistical tests used to compare IgG1, IgG2a, and IgG3 levels between groups. Additionally, discussing the biological significance of the observed differences in IgG subtype levels would provide a more comprehensive understanding of the immune response.

      We applied the ordinary One-way ANOVA test to compare the IgG subtypes between groups followed by a Tukey’s multiple comparison correction analysis (included in the figure legend of Fig 4). We addressed the biological relevance of the observed differences in IgG subtype levels in the discussion section.

      (3) Details on Animal Welfare and Ethical Approval: While the manuscript mentions compliance with institutional animal care and use committee protocols, providing the specific ethical guidelines followed, such as the 3Rs (Replacement, Reduction, Refinement), would reinforce the commitment to ethical research practices.

      This is addressed in our institutional IACUC which is approved and listed in Methods.

      (4) Clarification of Figure Legends: Some figure legends are brief and could be expanded to more thoroughly describe what the figures show, including details on what specific data points, error bars, and statistical symbols represent.

      We updated and expanded the figure legends (Fig 1-4).

      (5) Revision of Introduction and Background: The introduction provides a good overview of leptospirosis and the rationale behind the study. However, it could be further improved by briefly summarizing current challenges in vaccine development against leptospirosis and how understanding the immune response to saprophytic Leptospira could address these challenges.

      We revised the introduction keeping this comment in mind.

      Reviewer #2 (Recommendations For The Authors):

      - Perform the same challenge experiment with a hamster.

      We clarified throughout the manuscript that all the work was done using the C3H-HeJ mouse model which was developed in our lab for the purpose of measuring differences in sublethal and lethal LIC infections. We leave the experiments using hamster to the investigators that have thoroughly validated the hamster model of lethal Leptospira infection.

      - Review the written part where it is understood that the challenge with saprophyte strain before virulence prevents the disease.

      We reviewed the manuscript to be understood that inoculation of mice with a saprophyte Leptospira before pathogenic challenge prevents severe leptospirosis and promotes kidney homeostasis and increased shedding of Leptospira in urine which is interesting. The last 2 sentences of the abstract read: “Thus, mice exposed to live saprophytic Leptospira before facing a pathogenic serovar may withstand infection with far better outcomes. Furthermore, a status of homeostasis may have been reached after kidney colonization that helps LIC complete its enzootic cycle.”

      Reviewer #3 (Recommendations For The Authors):

      (1) Line 83: The authors refer to the classification of Leptospira by old nomenclature. The bacteria are now categorized into clades P1, P2, S1 and S2. See Vincent et al. Revisiting the taxonomy and evolution of pathogenicity of the genus Leptospira through the prism of genomics. PLoS Negl Trop Dis. 2019 May 23;13(5):e0007270. doi: 10.1371/journal.pntd.0007270. PMID: 31120895; PMCID: PMC6532842.

      We have included the categories (S1 for L. biflexa and P1+ for L. interrogans) in introduction and methods but we did not update the figures because we want to be specific about the species used in these experiments. We also include a few sentences on evolution of Leptospira species in discussion and reference Thibeaux 2018, Vincent 2019 and Giraud-Gatineau, 2024.

      (2) Line 133: Please remove the extra line to be consistent with the rest of the method section format.

      We addressed all formatting issues.

      (3) Line 137: Are these primers specific to pathogenic L. interrogans? Or do they cross react with L. biflexa? If not specific, how long does L. biflexa stick around after infection?

      The primers are specific to the genus Leptospira. Surdel et al. in 2022 used 16s rRNA target sequence to amplify L. biflexa Patoc in mice at 6 hours post infection. We did not detect any positive sample for L. biflexa with the 16s rRNA primer set because we do our analysis 30 days and 45 days post inoculation with L. biflexa. We clarified this issue in methods and results.

      (4) Statistical analysis:

      (a) Some of your graphs have more than 4 points on them (such as Figure 4), while the legend still reads "represents one of two independent experiments". Are these actually combined replicates in the same graph? Combining them would provide strength to your conclusions throughout your manuscript and may provide stronger power for comparisons. If they are not included, why are they not included together? Please clarify what is included in each graph, and why the two experiments were not included together.

      We updated the legends with the total number of mice used in the experiment represented in the figure. Figures 1, 2, 4 and S2 contain the combined results from two independent experiments. Figures 3, 5 and 6 represent data from one of two independent experiments. For Fig 3 it would be redundant to show HE images of two experiments. Regarding Figs 5 and 6, the flow-cytometry equipment acquires data at different voltage every single time and biological samples vary between experiments even if all the markers and procedures are the same. So, we reproduce the experiment and show results from one experiment after confirming that the trend between individual experiments are the same.

      (b) If ANOVA was used, were all columns compared to each other? Why in some graphs are "ns" labeled only for certain comparisons? I would suggest removing the "ns" comparisons and only highlighting the significant differences.

      We have incorporated the comparison analysis between control (PBS) versus the PBS-LIC, LB versus LB-LIC and PBS-LIC versus LB-LIC in both the studies although we have compared significance between all groups.

      (5) Line 165: Bacteria were not plated, extract was plated. Perhaps you mean "extract corresponding to 107-108 bacteria"?

      We addressed it as follows: “Nunc MaxiSorp flat-bottom 96 well plates (eBioscience, San Diego, CA) were coated with extracts prepared from 107-108 bacteria per well and incubated at 4℃ overnight” …

      (6) Line 260: The authors claim that "Exposure to non-pathogenic L. biflexa before pathogenic L. interrogans challenge provided a significant immune cell boost with an increase in overall B and helper T cell frequencies..." However, in Figure 5A, the number of B cells in both the PBS2LIC2 and the LB2LIC2 are not significantly different. Thus, the claim is not supported by the evidence provided. It appears that infection with LIC led to similar increases in B cells regardless of pretreatment.

      We rephrased that title to reflect the finding that increased differences were measured in effector Helper T cells between PBS2LIC2 and LB2LIC2 (Figs 5D and 6B, 6C) and we re-wrote this section for clarity.

      (7) Lines 314-315: The authors claim that it protected against kidney fibrosis, however, the data only supports that only a single exposure to LB reduced levels of a marker associated with kidney fibrosis. Fibrosis was never directly measured.

      Indeed, we didn’t do Mason’s Trichrome stain to get supporting data for kidney fibrosis and only measured a fibrosis marker ColA1. We toned down this section: “ …. it may confer protection against kidney fibrosis.”

      (8) Line 317: Authors state that pre-exposure induced higher antibodies in serum, however, this was never shown. Only an increase in IgG2a was shown. Please word this statement to make it clear total antibodies were never measured.

      We did measure total anti-Leptospira interrogans IgM and IgG antibodies. We added the following sentence to description of these results: “In both experiments, total IgM and IgG were significantly increased in PBS-LIC and LB-LIC when compared to the respective controls, but not between PBS-LIC and LB-LIC.  Regarding IgG isotypes, IgG1…”

      (9) Line 323: The authors state that the exposure "induced antibody responses that provided heterologous protection." There is no evidence that the protection is due to the antibody response in these experiments. In fact, they also showed that it induced increased T cell responses.

      We toned down this statement: “In our study, exposure to a saprophytic Leptospira induced antibody responses that may provide heterologous protection against the pathogenic strain of Leptospira.”

      (10) Line 328: The authors us the term "stark difference", however, only slight differences are seen.

      We toned down that statement as follows:  “Differences in antibody titer among the L. interrogans infected….”

      (11) Line 490: reword this sentence to provide clarity and easier to read: "inoculated once with 10^8 L. biflexa at 6 weeks and they were challenged with 10^8 L. interrogans SEROVAR Copenhageni FioCruz (LIC) at 8 weeks."

      We revised the sentence.

      (12) Figure 1 and 2: Quantifying bacteria in culture after infection is not meaningful, as there are numerous factors that can affect the replication in culture after infection, such as how the organ perhaps was cut before placing it in culture. The comparisons in Figure 2E and F therefore are not interpretable. I would suggest presenting this data as Culture Positive or Culture Negative.

      We added these data to the figure under DFM (dark field microscopy).

      (13) Figure 3A: H&E staining often leads to different qualities of stains. But is there a better image that can be chosen for the PBS1LIC1 that provides a better comparison with the other images chosen? This is not worth repeating the experiment to get one, just make the figure look better if you have one available.

      We screened the images again but the one incorporated in the figure3A for PBS1LIC1 is the best.

      (14) Figure 3D: I agree that the PBS-LIC treatment is significant, but please include P value, as it looks very similar to the LB-LIC group. The two LIC groups are not significantly different, so the conclusion would be pre-exposure does not mitigate renal fibrosis marker ColA in the double-exposure study.

      We included the p-values in this figure. The two LIC groups are significantly different (ColA1) in the single exposure experiment, and the in double exposure we don’t expect to be able to measure ColA1 differences because the mice are older (10 wk) when we do the LIC challenge.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews.

      Reviewer #1 (Public Reviews):

      Summary:

      The "optorepressilator", an optically controllable genetic oscillator based on the famous E. coli 3-repressor (LacI, TetR, CI) oscillator "repressilator", was developed. An individual repressilator shows a stable oscillation of the protein levels with a relatively long period that extends a few doubling times of E. coli, but when many cells oscillate, their phases tend to desynchronize. The authors introduced an additional optically controllable promoter through a conformal change of CcaS protein and let it control how much additional CI is produced. By tightly controlling the leak from the added promoter, the authors successfully kept the original repressilator oscillation when the added promoter was not activated. In contrast, the oscillation was stopped by expressing the additional CI. Using this system, the authors showed that it is possible to synchronise the phase of the oscillation, especially when the activation happens as a short pulse at the right phase of the repressilator oscillation. The authors further show that, by changing the frequency of the short pulses, the repressilator was entrained to various ratios to the pulse period, and the author could reconstruct the so-called "Arnold tongues", the signature of entrainment of the nonlinear oscillator to externally added periodic perturbation. The behaviour is consistent with the simplified mathematical model that simulates the protein concentration using ordinary differential equations.

      Strengths:

      Optical control of the oscillation of the protein clock is a powerful and clean tool for studying the synthetic oscillator's response to perturbation in a well-controlled and tunable manner. The article utilizes the plate reader setup for population average measurements and the mother machine setup for single-cell measurements, and they compensate nicely to acquire necessary information.

      Weakness:

      The current paper added the optogenetically controlled perturbation to control the phase of oscillation and entrainment, but there are a few other works that add external perturbation to a collection of cells that individually oscillate to study phase shift and/or entrainment. The current paper lacks discussion about the pros and cons of the current system compared to previously analyzed systems.

      Recommendations

      Even if the main purpose of the current paper is to develop a toolbox, it is beneficial to emphasize the pros and cons of the current system compared to the existing work. In addition to the ref [36] that authors cite but do not discuss concretely, example literature about entrainment includes:

      - Sanchez, P.G.L., Mochulska, V., Denis,  C.M., Mönke, G., Tomita, T., Tsuchida-Straeten, N., Petersen, Y., Sonnen, K., François, P. and Aulehla, A., 2022. Arnold tongue entrainment reveals dynamical principles of the embryonic segmentation clock. Elife, 11, p.e79575.

      - Heltberg M, Kellogg RA, Krishna S, Tay S, Jensen MH. Noise induces hopping between NF-κB entrainment modes. Cell systems. 2016 Dec 21;3(6):532-9.

      There is surely more literature. It is recommended that a solid discussion be added on the relation between existing works and current work.

      We thank the Reviewer for their positive comments on our manuscript. Their main recommendation is to expand literature and discuss how our method compares to previously reported entrainment of genetic oscillators. In summary, we believe that the main advantages of the optorepressilator are the simplicity of the transcriptional network combined with the flexibility of optical control. In the “Discussion” section of the revised manuscript, we now try to highlight this also in connection to the suggested literature.

      Reviewer #2 (Public Reviews):

      Summary

      In this manuscript by Cannarsa et. al., the authors describe the engineering of a light-entrainable synthetic biological oscillator in bacteria. It is based on an upgraded version of one of the first synthetic circuits to be constructed, the repressilator. The authors sought to make this oscillator entrainable by an external forcing signal, analogous to the way natural biological oscillators (like the circadian clock) are synchronized. They reasoned that an optogenetic system would provide a convenient and flexible means of manipulation. To this end, the authors exploited the CcaS-CcaA light-switchable system, which allows activation and deactivation of transcription by green and red light, respectively. They used this system to make the expression of one of the repressilator's transcription factors (lacI) light-controlled, from a construct separated from the main repressilator plasmid. This way, under red light the oscillator runs freely, but exposure to green light causes overexpression of the lacI, pushing the system into a specific state. Consequently, returning to red light will restore the oscillations from the same phase in all cells, effectively synchronizing the cell population.

      After demonstrating the functionality of the basic concept, the authors combined modeling and experiments to show how periodic exposure to green light enables efficient entrainment, and how the frequency of the forcing signal affects the oscillatory behavior (detuning).

      This work provides an important demonstration of engineering tunability into a foundational genetic circuit, expands the synthetic biology toolbox, and provides a platform to address critical questions about synchronization in biological oscillators. Due to the flexibility of the experimental system, it is also expected to provide a fertile ground for future testing of theoretical predictions regarding non-linear oscillators.

      Strengths:

      The study provides a simple and elegant mechanism for the entertainment of a synthetic oscillator. The design relies on optogenetic proteins, which enable efficient experimentation compared to alternative approaches (like using chemical inducers). This way, a static culture (without microfluidics or change of growth media) can be easily exposed to flexible temporal sequences of the zeitgeber, and continuously measured through time.

      The study makes use of both plate-reader-based population-level readout and mother-machine single-cell measurements. Synchronization through entrainment is a single cell level phenomenon, but with a clear population-level manifestation. Thus, this experimental approach combination provides a strong validation to their system. At the same time, differences between the readout from the two systems have emerged, and provided a further opportunity for model refinement and testing.

      The authors correctly identified the main optimization goal, namely the effective leakiness of their construct even under red light. Then, they successfully overcame this issue using synthetic biology approaches.

      The work is supported by a simplified model of the repressilator, which provides a convenient analytical and numerical means to draw testable predictions. The model predictions are well aligned with the experimental evidence.

      Weaknesses:

      Even after optimizing the expression level of the light-sensitive gene, the system is very sensitive, i.e., a very short exposure is sufficient to elicit the strongest entertainment. This limited dynamic range might hamper some model testing and future usage.

      As a result of the previous point, the system is entrained by transiently "breaking" the oscillator: each pulse of green light represents a Hopf bifurcation into a single attractor. it means that the system cannot oscillate in constant green light. In comparison, this is generally not the case for natural zeitgebers like light and temperature for the circadian rhythms. Extreme values might prevent oscillations (not necessarily due to breaking the core oscillator), but usually, free running is possible in a wide range of constant conditions. In some cases, the free-running period length will vary as a function of the constant value. While the approach presented in this manuscript is valid, a comprehensive analysis of more subtle modes of repressilator entrainment could also be of value.

      The entire work makes use of a single intensity and single duration of the green pulse to force entrainment. While the model has clear predictions for how those modalities should affect entrainment, none of the experiments attempted to validate those predictions.

      While we agree with the Reviewer that all reported experiments were performed with pulses of constant amplitude and duration, we do not see this as a necessary limitation for future studies on the optorepressilator. Using pulse-width modulation, green light intensity could be easily and continuously modulated from zero to a maximum value (as in Fig. 4), exploring a wide range of intermediate intensity levels and therefore of mean LacI production rates from the optogenetic promoter. We do not include additional experiments in the revised manuscript but we have greatly expanded the theoretical discussion on the low amplitude regime, both for a constant illumination (new Supplementary Materials Section 5) and the pulsed case (new Supplementary Fig. 8).

      Recommendations for the Authors:

      (1) The introduction emphasized the utility of entrainment as a means to achieve population-wide synchrony. It is worth mentioning also that it enables synchronization of the internal oscillator with an external zeitgeber, to achieve a specific phase-locking between them. Often, this is the main utility attributed to entrainment, e.g., in circadian clocks.

      Following Reviewer’s suggestion we now say in the introduction:

      These oscillations maintain a constant phase relation to the external light cue that can act as a zeitgeber.

      (2) It is sometimes unclear at first glance which of the figure panels show simulation data and which show experimental data (e.g., Figure 5a,b; Figure 6a,b). More explicitly labeling the panels could help.

      We thank the reviewer for pointing this out, we now explicitly label all the panels.

      (3) Figure 3b - please add a color bar to indicate the meaning of the red-green scale, and enlarge the markers so their color is more visible. Also, can add additional controls of (i) sfGFP expression without the ccaR, and (ii) the autofluorescent signal from wild type. Please also provide the raw data (not the time derivatives) in a supplementary figure.

      A colorbar has been added and markers enlarged.

      (i) Unfortunately we do not have a control for GFP expression without ccaR.

      (ii) autofluorescence signal from “a negative control consisting of DHL708 with plasmids pNO286-3 and pSR58-0 (optogenetic plasmids without sfGFP cassette)” has been added for comparison to Fig.3b. This modification was actually very helpful in understanding that the sensitivity threshold in our experiments is mainly determined by autofluorescence. OD600 and fluorescence raw data are now provided in Supplementary Fig. 6.

      (4) Figure 3d - the claim in the text is that the purple optorepressilator and the wildtype repressilator have identical periods and amplitude. However, it seems from the figure that there is a small difference in the period length. This deviation is not problematic in any way, but I wondered whether it might actually be explained by the model, assuming that there is still a very weak leak from the new construct. In other words, would the model predict a bifurcation diagram in which an increasing x' concentration causes a gradual decrease in amplitude and increase in period, before the loss of rhythmicity? If so, Figure 3d can serve not only as a technical optimization demonstration but also as a nice validation of the model.

      We thank the reviewer for raising this interesting point. We now report, in Supplementary Materials Section 5, a theoretical prediction of the period with respect to a constant concentration of x'. For our choice of parameters (adjusted to reproduce the main experimental quantitative features) we find a period that decreases with x'. Leakage would therefore lead to a shorter period, contrary to what is observed experimentally. To explain the longer period observed in the optorepressilator we went back to extract the average growth rates of bacteria in the purple optorepressilator and repressilator curves in Fig.3d. As we now discuss in the main text:

      “The slight difference in period can be explained by the presence of additional plasmids in the optorepressilator strain, which results in a lower growth rate (Supplementary Figures 4 and 5). As found in the digital approximation, the repressilator period is mainly controlled by the inverse growth rate (see Figure 1a and Supplementary Figure 9) meaning a lower growth rate results in a longer oscillation period. When we normalize the time with the growth rate the two oscillations overlap nicely (Supplementary Figure 4).”

      (5) Supplementary Figure 10 has no reference from the main text. it is unclear what's the difference from Figure 3. In general, many items in the supplementary materials are not referenced from the text. In addition, on many occasions, there is a reference to "supplementary information" without a specific address, which is not so useful to the reader. In any case possible, please be more specific. Also, note that there's inconsistency in referring to the supplemental section as "supplementary materials" vs "supplemental information".

      We now explicitly reference all Supplementary Figures in the main text and use consistent reference to Supplementary Materials.

      (6) The discussion at the bottom of p.7 ("Optogenetic entrainment") is missing a reference to the duration and intensity of the zeitgeber: In the example from human circadian rhythms it doesn't indicate light intensity; In the modeling of the PRC, both modalities are absent. it is important at least to indicate the parameters used for the simulation and experiments. It would be even better to explore in the model how these modalities affect the PRC and entrainment. And it would be incredible if the authors could show this also experimentally.

      We now report the light intensity values for:

      - our experiments:

      “We first demonstrate this by monitoring the population signal from CFP (reporting TetR or 𝑦 in the model) in multiwell cultures under constant red illumination (9.82 W/m^2) interrupted by green light pulses (5.64 W/m^2) with a duration of 2 h and period 𝑇 = 18 h.”

      For mother machine experiments “Green and red light stimuli were provided by the two LEDs (Thorlabs M530L4, Thorlabs M660L4) with respective intensities 6 W/m^2 and 26 W/m^2 for the synchronization experiments, and 1.1 W/m^2 and 4.5 W/m^2 for the entrainment experiments.”

      - and simulations:

      “In Fig. 5a we report the phase shift produced by a single pulse (with duration tau=2 h and intensity beta’=80 h-1 fixed for all the simulations) as a function of the pulse arrival phase ϕ.”

      We also added an additional supplementary figure (Supplementary Fig. 7) that explores how the duration and intensity of the light pulses affect the PRC in the model. An approximate analytic result is also derived for the PRC in the digital approximation that compares very well with simulation, providing physical insight into PRC shape (Supplementary Materials Section 7).

      (7) The experimental validation of the PRC can be much more thorough. Notably, an entrainment experiment with repeated pulses does not provide the same level of validation as a proper PRC experiment. This is because many differently shaped PRCs can give rise to the same entrainment pattern, as long as their fixed-point phases are the same.

      Luckily, there might already be a decent amount of data from the mother machine experiments to fit with the PRC prediction, given the authors have pulsed a non-synchronized population that spans the entire x-axis of the PRC. It is possible that a proper PRC experiment wouldn't be too difficult with the plate reader either, given the throughput of the author's system.

      This is a very interesting suggestion but unfortunately, in our mother machine data, the first pulse arrives before the cells have completed a full cycle, so although different cells receive the first pulse at a sufficiently randomized phase, we can’t extract their individual phases at the pulse arrival time.

      Indeed it would be possible to design a plate reader experiment for the specific purpose of directly measuring the PRC. However, our current protocol involves continuous manual dilutions, which makes it rather laborious. We are currently working on an automated procedure that will allow us to systematically address this and other interesting suggestions in the future.

      An indirect experimental validation of the PRC is however still possible using available data. See added red points in Fig.5a and reply to point 10 below.

      (8) The discrepancy between the mother machine and plate reader experiments in Figure 5 is explained by a difference in growth rate variability in the two systems. It is not readily obvious how a difference in variability rather than the mean value of the period length can cause a shifted mean phase. It is only hinted in the text that growth rate has two different effects - on the period as well as the amplitude. I hypothesize that because of this period and amplitude correlation, there is a bias contribution to the sum of trajectories that have resulted in a shifted mean phase. Maybe there is another contribution from the asymmetric waveform of the signal? or from the distribution the alpha is sampled from? A direct discussion on that point will make the results much clearer. If the period-amplitude speculation above is right, please add also a panel that shows it. It will also be helpful to show the predicted PRC for the two parameter regimens.

      We thank the reviewer for highlighting this point. In the previous version of the manuscript we omitted the fact that in order to better match experimental signals we chose slightly different values for T_L/T_0 for simulations in Fig. 5d and 5e. We now report the values of all simulation parameters in the revised manuscript. This difference could also contribute to the shift in the mean phase for the two cases. We added this information in the main text.

      “The bottom panel in Fig. 5d shows the result of a numerical simulation with the same parameters as in Fig. 1b and the addition of a periodic light stimulation, with period $T_L/T_0 = 1$} [...] For the simulations in the lower panel of Fig.5e, all parameters remained the same as in Fig.5d with the exception of the period of the light pulses (T_L/T_0 = 0.97) and the standard deviation of the growth rate distribution, which was increased from 0.034 h^-1 to 0.071 h^-1 to better reproduce the experimental observations in the mother machine.”

      Additionally, we added a supplementary figure (Supplementary Fig. 9) demonstrating the correlation between period and amplitude of the oscillations, for simulations with varying growth rate.

      (9) The results from the detuning experiments are really nice, especially the decomposition in high frequency shown in Figure 6c. However, the experiments explore only the very high forcing amplitude conditions. Is there any way to test the weaker forcing regimens, as these are expected to uncover the interesting areas in between the Arnold's tongues? If this is experimentally difficult, it would be interesting to include at least the model prediction.

      We thank the reviewer for stimulating us to go in this direction. We have performed simulations to explore model predictions for areas between the Arnold’s tongues. We find onset of entrainment as the amplitude increases and also the existence of intermediate plateaus at fractional frequency ratios. These results are now included in the Supplementary Fig. 8.

      (10) Another prediction from the Arnold's tongue would be the relative phase of entrainment in different f/v0 conditions. The text refers to it very briefly, but this is a quantitative prediction that can be demonstrated clearly in a figure - how well do they match? It can be shown, for example, by a plot with f/v0 on the x-axis, the phase difference between the pulse and peak expression on the y-axis, a curve representing the model prediction for that function, and dots (with error bars) representing the calculated values from the experimental data.

      Generally, when suitable, this kind of direct comparison is more useful to the reader than the way the authors chose to compare simulation and experiments throughout the manuscript.

      We thank the reviewer for this very interesting suggestion. We have completely rewritten the discussion on entrainment commenting on how the same PRC (phase shift vs pulse arrival phase) can be interpreted as a T_L/T_0-1 vs phase difference plot. Indeed in the new Fig.5a we plot over the theoretical PRC curve, the values of the relative phase of entrainment for three values of the period of the light pulses (from the data in Fig. 6b). The agreement is remarkably good, providing a further experimental validation of the predicted PRC.

      (11) The raw data can be valuable for the community for reanalysis and further hypothesis testing. Hence, it will be very useful to make all of the data (e.g., the fluorescence signal quantification tables from all the experiments) publicly available.

      We prepared files with all raw data, to be made available to the community.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Reviews):

      Summary: 

      The authors use a combination of biochemistry and cryo-EM studies to explore a complex between the cap-binding complex and an RNA binding protein, ALYREF, that coordinates mRNA processing and export.

      Strengths: 

      The biochemistry and structural biology are supported by mutagenesis which tests the model in vitro. The structure provides new insight into how key events in RNA processing and export are likely to be coordinated.

      Weaknesses: 

      The authors provide biochemical studies to confirm the interactions that they identify; however, they do not perform any studies to test these models in cells or explore the consequences of mRNA export from the nucleus. In fact, several of the amino acids that they identified in ALYREF that are critical for the interaction, as determined by their own biochemical studies, are conserved in budding yeast Yra1 (residues E124/E128 are E/Q in budding yeast and residues Y135/V138/P139 are F/S/P), where the impact on poly(A) RNA export from the nucleus could be readily evaluated. The authors could at least mention this point as part of the implications and the need for future studies. No one seems to have yet targeted any of these conserved residues, so this would be a logical extension of the current work.

      We thank the reviewer for the feedback on our work. ALYREF coordinates pre-mRNA processing and export through interactions with a plethora of mRNA biogenesis factors including the DDX39B subunit of the TREX complex, CBC, EJC, and 3’ processing factors. ALYREF mediates the recruitment of the TREX complex on nascent transcripts which depends on its interactions with both CBC and EJC. Our work and studies by others indicate that ALYREF uses overlapping interfaces including both the N-terminal WxHD motif and the RRM domain to bind CBC and EJC. Thus, ALYREF mutants deficient in CBC interaction will also disrupt the ALYREF-EJC interaction and are not ideal for functional studies. In addition, the CBC plays important roles in multiple steps of mRNA metabolism through interactions with a plethora of factors, which often interact competitively with CBC. Identification of separation-of-function mutations on CBC or ALYREF that specifically disrupt their interaction but not other cellular complexes containing CBC or ALYREF would be an important future area to test the model in cells. 

      We appreciate the reviewer’s insightful comments regarding yeast Yra1. Thus far, the physical and functional connection between Yra1 and CBC in yeast has not been demonstrated. There are major differences between yeast Yra1 and human ALYREF. Given the lack of an EJC in S. cerevisiae, it is unclear whether Yra1 acts in a similar manner as human ALYREF. In addition, Yra1 does not contain a WxHD motif in its N-terminal unstructured region, which is involved in CBC and EJC interactions in ALYREF. Characterization of the Yra1-CBC interaction will be an interesting future direction. We now include a discussion about yeast Yra1 in the newly added “Conclusion and perspectives” section. 

      Specific suggestions:

      The authors could put their work in context by speculating how some of the amino acids that they identify as being critical for the interactions they identify could contribute to cancer. For example, they mention mutations of interacting residues in NCBP2 are associated with human cancers, pointing out that NCBP2 R105C amino acid substitution has been reported in colorectal cancer and the NCBP2 I110M mutation has been found in head and neck cancer. Do the authors speculate that these changes would decrease the interaction between NCBP2 and ALYREF and, if so, how would this contribute to cancer? They also mention that a K330N mutation in NCBP1 in human uterine corpus endometrial carcinoma, where Y135 on the α2 helix of mALYREF2 makes a hydrogen bond with K330 of NCBP1. How do they speculate loss of this interaction would contribute to cancer?

      In the revised manuscript, we include a discussion about these CBC mutants found in human cancers in the “Conclusion and perspectives” section. We think some of these CBC mutants, such as NCBP-1 K330N, could reduce interaction with ALYREF. Compromised CBC-ALYREF interaction will affect the recruitment of the TREX complex on nascent transcripts and cause dysregulation of mRNA export. In addition, that could also change the partition of CBC and ALYREF in different cellular complexes and cause perturbation of various steps in mRNA biogenesis that are regulated by CBC and ALYREF. Thus far, it is unclear whether and how loss of the CBC-ALYREF interaction directly contributes to cancer. Our work and that of others provide molecular insights to test in future studies. 

      Reviewer #2 (Public Reviews):

      Summary: 

      In this manuscript, Bradley and his colleagues represented the cryo-EM structure of the nuclear cap-binding complex (CBC) in complex with an mRNA export factor, ALYREF, providing a structural basis for understanding CBC regulating gene expression.

      Strengths: 

      The authors successfully modeled the N-terminal region and the RRM domain of ALYREF (residues 1-183) within the CBC-ALYREF structure, which revealed that both the NCBP1 and NCBP2 subunits of the CBC interact with the RBM domain of ALYREF. Further mutagenesis and pull-down studies provided additional evidence to the observed CBC-ALYREF interface. Additionally, the authors engaged in a comprehensive discussion regarding other cellular complexes containing CBC and/or ALYREF components. They proposed potential models that elucidated coordinated events during mRNA maturation. This study provided good evidence to show how CBC effectively recruits mRNA export factor machinery, enhancing our understanding of CBC regulating gene expression during mRNA transcription, splicing, and export. 

      Weaknesses: 

      No in vivo or in vitro functional data to validate and support the structural observations and the proposed models in this study. Cryo-EM data processing and structural representation need to be strengthened. 

      We appreciate the reviewer’s comments and suggestions. The fact that ALYREF uses highly overlapped binding interfaces for CBC and EJC interactions prevents us from a clear functional dissection of the ALYREF-CBC interaction using in vitro assays or in cells at the current stage. Please also see our response to Reviewer 1. 

      In this revised manuscript, we have reprocessed the cryo-EM data using a different strategy which yields significantly improved maps. We have made improvements to the presentation of the structural work based on the reviewer’s specific comments. 

      Reviewer #3 (Public Reviews):

      Summary: 

      The authors carried out structural and biochemical studies to investigate the multiple functions of CBC and ALYREF in RNA metabolism.

      Strengths: 

      For the structural study part, the authors successfully revealed how NCBP1 and NCBP2 subunits interact with mALYREF (residues 1-155). Their binding interface was then confirmed by biochemical assays (mutagenesis and pull-down assays) presented in this study. 

      Weaknesses: 

      The authors did not provide functional data to support their proposed models. The authors should include more details regarding the workflow of their cryo-EM data processing in the figure. 

      We thank the reviewer for the comments. We completely agree that testing the proposed models in cells would be ideal. However, as we also respond to the other reviewers, functional studies are premature at the current stage because both ALYREF and CBC are components of many cellular complexes that regulate mRNA metabolism. Separation-of-function mutations on CBC or ALYREF first need to be identified in future studies for further investigation. Please also see our response to Reviewer 1. 

      As suggested by the reviewer, we have included more details of the cryo-EM workflow in this revised manuscript. We have also included various validation measures including 3DFSC analyses, map vs model FSC curves, and representative density maps at various protein-protein binding interfaces. 

      Recommendations for the Authors:

      Reviewer #1 (Recommendations for the Authors):

      Major points:

      The authors should take advantage of Figure 1, which shows the domain structures of NCBP1, NCBP2, and ALYREF to indicate for the reader specifically which protein domains are included in the biochemical and structural analyses. In the current version of the manuscript, there is plenty of space to indicate below each domain structure precisely what regions are included.

      In this revised manuscript, we have revised Figure 1A to indicate the protein constructs used in this work. 

      Although it is fine to combine the Results and Discussion, the authors should really offer a concluding paragraph to highlight the novel results from this study and put the results in context.

      We thank the reviewer for the recommendation. We now include a “Conclusion and perspectives” section in this revised manuscript.  

      Minor comments:

      Page 5, last sentence (and others) starts a sentence with the word "Since" when likely "As" which does not imply a time element to the phrase, is the correct word.

      "Since the ALYREF/mALYREF2 interaction with the CBC is conserved and mALYREF2 exhibits better solubility, we focused on mALYREF2 in the cryo-EM investigations."

      Would be more correct as: "As the ALYREF/mALYREF2 interaction with the CBC is conserved and mALYREF2 exhibits better solubility, we focused on mALYREF2 in the cryo-EM investigations."

      We thank the reviewer for the comments. We have made the corrections. 

      The word 'data' is plural so the sentence at the bottom of p.9 that includes the phrase "...in vivo data shows.." should read "..in vivo data show.." 

      Corrected in the revised manuscript.

      Reviewer #2 (Recommendations for the Authors):

      Major points:

      (1) The authors claimed the improved solubility of mouse ALYREF2 (mALYREF2, residues 1-155) compared to the previously employed ALYREF construct. However, human ALYREF has already been purified successfully for pull down assay, indicating soluble human ALYREF obtained, why not use human ALYREF directly? Please clarify. 

      Pull-down studies were performed with GST-tagged ALYREF. For cryo-EM studies, untagged ALYREF is preferred to avoid potential issues that may arise from the expression tag. However, untagged ALYREF is less soluble than GST-tagged ALYREF and is not amenable for structural studies. We have revised the text to clarify this point. 

      (2) The authors confirmed CBC-ALYREF interfaces through mutagenesis and pull-down assays in vitro. However, it would be more informative and interesting to include functional assays in vitro or/and in vivo with mutagenesis. 

      We completely concur with the reviewer that testing the proposed models in vitro and in vivo would be important. However, as we pointed out in our response to public reviews, the highly overlapped binding interfaces on ALYREF for CBC and EJC interactions pose a great challenge for functional studies. Furthermore, both ALYREF and CBC are multifunctional factors and interact with a number of partners. Ideally, separation-of-function mutants that specifically disrupt the CBC-ALYREF interaction but not others need to be identified in future studies in order to perform functional studies. 

      (3) About cryo-EM data processing and structural representation:

      (1) In the description of the cryo-EM data processing, the authors claimed they did heterogeneous refinement, homogenous refinement, and then local refinement. This reviewer is puzzled by this process because the normal procedure should be non-uniform refinement following homogenous refinement. If the authors did not perform non-uniform refinement, they should do it because it would significantly improve the quality and resolution of cryo-EM maps. In addition, the right local refinement should include mask files and only show the density/map of the local region. 

      We thank the reviewer for the suggestions. In response to the reviewer’s comment on the preferred orientation issue (point 5 below), we reprocessed the cryo-EM data and obtained significantly improved cryo-EM maps. In this revised manuscript, the CBC-mALYREF map was refined using homogeneous refinement; the CBC map was refined using homogenous refinement followed by non-uniform refinement. Refinement masks are included in Figure 2-figure supplement1. 

      (2) Further local refinements with signal subtraction should be performed to improve the density and resolution of mALYREF2. 

      We tested local refinement with or without signal subtraction using masks covering mALYREF2 and various regions of CBC. Unfortunately, this approach did not improve the density of mALYREF2. We suspect that the small size of mALYREF2 (77 residues for the RRM domain) and the intrinsic flexibility of CBC are the limiting factors in these attempts. 

      (3) Figures with cryoEM map showing the side chains of the residues on the CBC-mALYREF2 interface should be included to strengthen the claims. Authors could add the map to Figure 3b/c or present it as a supplementary figure.

      We include new supplementary figures (Figure 3-figure supplement 1) to show the electron densities corresponding to the views in Figure 3B and 3C. Residues labeled in Figure 3B and 3C are shown in sticks in these supplementary figures.

      (4) For cryo-EM date processing, the authors have omitted lots of important details. Could the authors elaborate on the data processing with more details in the corresponding Figure and Methods Sections? Only one abi-initial model from the picked good particles was displayed in the figure. Are there any other different conformations of 3D classes for the dataset? In addition, too few classes have been considered in 3D classification, more classes may give a class with better density and resolution.

      We thank the reviewer for the comments. We have reprocessed the cryo-EM data. A major change is to use Topaz for particle picking. We now include more details for data processing in Figure 2-figure supplement 1 and the method section. The cryo-EM sample is relatively uniform. Ab-initio reconstruction and heterogenous refinement yielded only one good class and the other classes are “junk” classes (omitted in the workflow figure). No major conformational changes were observed throughout the multiple rounds of heterogenous refinement for both CBC and CBCmALYREF2. In this revised manuscript, we have been able to obtain significantly improved maps through the new data processing strategy employing Topaz as illustrated in Figure 2-figure supplement 1 to 5.

      (5) Angular distribution plots should be included to show if there is a preferred orientation issue. Based on the presented maps in validation reports, there may exist a preferred orientation issue for the reported two cryo-EM maps. Detailed 3D-Histogram and directional FSC plots for all the cryo-EM maps using 3DFSC web server should be presented to show the overall qualities (https://www.nature.com/articles/nmeth.4347 and https://3dfsc.salk.edu/).

      We thank the reviewer for the recommendations. In response to the reviewer’s comment on the preferred orientation issue, we reprocessed the cryo-EM data. Topaz was used for particle picking instead of template picking. 3DFSC analyses indicate that the new CBC-mALREF2 map has a sphericity of 0.946, which is a significant improvement from the previous map which has a sphericity of 0.815. Consistently, the maps presented in this revised manuscript show significantly improved densities. We now include angular distribution and 3DFSC analyses of the EM maps (Figure 2-figure supplement 2 and 4). 

      (6) Figures of model-to-map FSCs need to be present to demonstrate the quality of the models and the corresponding ones (model resolution when FSC=0.5) should also be included in Table 1. The accuracy of the model is important for structural explanations and description.

      The model-to-map FSCs are now included in Figure 2-figure supplement 3A and 5A. The model resolutions of CBC-mALYREF2 and CBC are estimated to be 3.5 Å and 3.6 Å at an FSC of 0.5. These numbers are now included in Table 1. 

      (7) In addition, figures of local density maps with different regions of the models, showing side chains, are necessary and important to justify the claimed resolutions. 

      We now include density maps overlayed with residue side chains at various regions. For the CBCmALYREF2 map, density maps are shown at the mALYREF2-NCBP1 interfaces (Figure 3-figure supplement 1A and 1B), mALYREF2-NCBP2 interface (Figure 3-figure supplement 1C), NCBP1NCPB2 interface (Figure 2-figure supplement 5B), and the region near m7G (Figure 2-figure supplement 5C). For the CBC map, density maps are shown at the NCBP1-NCPB2 interface (Figure 2-figure supplement 3B) and the region near m7G (Figure 2-figure supplement 3C). 

      Minor points:

      (1) A figure superimposing the models from the CBC-mALYREF2 amp and mALYREF2 alone map is necessary to present that there are no other CBC binding-induced conformational changes in CBC except the claimed by the authors. In addition, a figure showing the density of m7GpppG should be included as well.  

      Overlay of CBC and CBC-mALYREF2 models is now presented in Figure 2-figure supplement 3D. Comparing CBC and CBC-mALYREF2, NCBP1 and NCBP2 have a RMSD of 0.32 Å and 0.30 Å, respectively. The density maps near the M7G cap analog are shown in Figure 2-figure supplement 3C for CBC and Figure 2-figure supplement 5C for CBC-mALYREF2. 

      (2) Authors obtained the two maps from one dataset, so "we first determined" and "we next determined" (page 6) should be replaced with something like "One class of 3D cryo-EM map revealed' and "Another class of 3D cryo-EM map defined". 

      We have revised the text as suggested by the reviewer.  

      (3) In 'Abstract', 'a mRNA export factor' should be 'an mRNA export factor'. 

      Corrected in the revised manuscript.

      (4) In 'Abstract', the final sentence 'Comparison of CBC- ALYREF to other CBC and ALYREF containing cellular complexes provides insights into the coordinated events during mRNA transcription, splicing, and export' doesn't read smoothly, I would suggest revising it to 'Comparing CBC-ALYREF with other cellular complexes containing CBC and/or ALYREF components provides insight into the coordinated events during mRNA transcription, splicing, and export.' 

      We thank the reviewer for the recommendation and have revised accordingly. 

      (5) In paragraph 'CBC-ALYREF and viral hijacking of host mRNA export pathway', line 6, the sentences preceding and following the term 'However' indicate a progressive or parallel relationship, rather than a transitional one. To enhance the coherence, I would suggest replacing 'However' with 'Furthermore' or 'In addition'. 

      Corrected in the revised manuscript.

      (6) In both Figure 5 and Figure 6, the depicted models are proposed and constructed exclusively through the comparison of the CBC-partial ALYREF with other cellular complexes containing components of CBC and/or ALYREF, which need to be confirmed by more studies. To prevent potential confusion and misunderstandings, it is recommended to replace the term 'model' with 'proposed model'. 

      Corrected in the revised manuscript.

      Reviewer #3 (Recommendations for the Authors):

      Major points:

      (1) In the Results and Discussion section, the authors mentioned "Recombinant human ALYREF protein was shown to interact with the CBC in RNase-treated nuclear extracts." However, they used mouse ALYREF for cryo-EM investigations. Can the authors include an explanation for this choice during the revision?  

      In our work, we used a mixture of glutamic acid and arginine to increase the solubility of GSTALYREF. For cryo-EM studies, we use untagged ALYREF to avoid potential issues that may arise from the expression tag. However, untagged ALYREF is less soluble than GST-tagged ALYREF and is not suitable for structural studies in standard buffers. We have made further clarification on this point in this revised manuscript. 

      (2) In the paragraph on "CBC-ALYREF interfaces", the authors stated "For example, E97 forms salt bridges with K330 and K381 of NCBP1. Y135 on the α2 helix of mALYREF2 makes a hydrogen bond with K330 of NCBP1. The importance of this interface between ALYREF and NCBP1 is highlighted by a K330N mutation found in human uterine corpus endometrial carcinoma." I fail to see a strong connection between their structural observations and previous findings regarding the role of a K330N mutation found in human uterine corpus endometrial carcinoma. The authors should add more words to thread these two parts.  

      In response to the reviewer’s comment, we now move the discussion of these CBC mutants to the newly added “Conclusion and perspectives” section. 

      (3) The authors should include side chains of the residues in their figure of Local resolution estimation and FSC curves, especially when they are presenting the binding interface between two components. 

      We have now included density maps that are overlayed with structural models showing side chains of critical residues. These maps include the NCBP1-mALYREF2 interfaces (Figure 3-figure supplement 1A and 1B), NCBP2-mALYREF2 interface (Figure 3-figure supplement 1C), NCBP1NCBP2 interface (Figure 2-figure supplement 3B and 5B), and the m7G cap region (Figure 2figure supplement 3C and 5C). 

      Minor points: 

      (1) Some grammatical mistakes need to be corrected. For example, it is "an mRNA" instead of "a mRNA".  

      Corrected in the revised manuscript.

      (2) The authors can provide more information for the audience to know better about ALYREF when it first appears in the 5th line in the Abstract section. For example, "It promotes mRNA export through direct interaction with ALYREF, a key mRNA export factor, ...". 

      We have revised the sentence based on the reviewer’s comment.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Some of the data is problematic and does not always support the authors' conclusions:

      (1) Fig. 1K and H are identical.

      Thank you for pointing out this problem in manuscript. We apologize for this unintentional mistake and have replaced Fig. 1K.

      (2) The graph in Figure 2B contradicts the text. It is not obvious how the image was quantified to produce the histological score graph..

      We thank the reviewer for pointing out this problem in manuscript, as the reviewer suggested, we have replaced the Figure 2B.

      (3) In Figures 2C and D, there is no clear pattern of changes in pro-inflammatory or anti-inflammatory cytokines, despite the authors' claims in the text.

      We appreciate the comment, we think the reason is that the level of cytokines in the tissue is low, so the pattern of changes is not obvious.

      (4) It is unclear why the anti-dsDNA antibody does not stain the nucleus in Figure 4B. The staining with anti-dsDNA and DAPI does not match well. Figure 5H shows there is still lots of cytosolic DNA in OGT-/- HCF-1-C, measured by DAPI. These data do not support the authors' conclusion that HCFC600 eliminates cytosolic DNA accumulation (line 229). There is no support for the authors' claim that HCF-1 restrains the cGAS-STING pathway (line 330).

      We thank these insightful comments, the most critical step in staining cytosolic DNA is to proceed to a low-permeabilization as to allow the antibody to cross the cellular membrane but not the nuclear membrane, that’s why the anti-dsDNA antibody does not stain the nucleus. In Figure 5H, we think we used a high concentrated DAPI to do the staining and nucleus DNA get stained, looks like it’s the cytosolic DNA. 

      (5) In Figure 5B, there is no increase in HCF-1 cleavage after OGT over-expression.

      We appreciate the reviewer for his/her comment, we think the reason is that we used the cell line to stably overexpress OGT-GFP and we may have missed the time point when the increase in HCF-1 cleavage occurred, so there is no big increase of it. However, there is a significant increase in Figure 5C.

      (6) In Figure 7, the TNF-a staining does not inspire confidence.

      We thank the reviewer for his/her comment, from both Figure 7K (MC38 tumor model) and Figure 7N (LLC tumor model), we observed a significant increase in TNF-α+ CD8+ T cells in the group treated with the combination of OSMI-1 and anti-PD-L1 compared to the control group, as evidenced by the clear clustering.

      The writing needs significant improvement:

      (1) There are multiple English grammar mistakes throughout the paper. It is recommended that the authors run the manuscript through an editing service.

      We thank the reviewer for his/her suggestion. We apologize for the poor language of our manuscript. We worked on the manuscript for a long time and the repeated addition and removal of sentences and sections obviously led to poor readability. We have now worked on both language and readability and have also involved native English speakers for language corrections. We really hope that the flow and language level have been substantially improved.

      (2) Some passages are misleading -- lines 161-162, line 217, lines 241-242, 263-264, 299-300. They need to be changed substantially.

      We apologize for these mistakes, we have changed them.

      (3) Figure legends should be rewritten. Currently, they are too abbreviated to be understood.

      We apologize for that, we have rewritten them.

      (4) Discussion should also be thoroughly reworked. Currently, it is merely restating the authors' findings. The authors should put their findings in the broader context of the field.

      We apologize for that. For a better understanding of our study, we have reworked the discussion.

      Reviewer #2 (Recommendations For The Authors):

      (1) Previous studies (DOI: 10.1093/nar/gkw663, 10.1016/j.jgg.2015.07.002, 10.1016/j.dnarep.2022.103394) have suggested that OGT deficiency triggers DNA damage, connecting it to DNA repair and maintenance through various mechanisms. This should be acknowledged in the manuscript. Conversely, the role of HCF1 and its cleaved products in maintaining genomic integrity hasn't been previously shown. The authors investigate HCF1's role solely in the context of OGT inhibition. It is unclear whether this is also true under other stimuli that trigger DNA damage, whether fragments of HCF1 specifically reduce DNA damage, or if HSF1 is involved in the basal machinery that would be defective only in the absence of OGT.

      We have acknowledged the manuscript mentioned above. In this paper we focused on the OGT function, which is related to HCF1. The role of HCF1 and its cleaved products in maintaining genomic integrity is an interesting topic, we may focus on it in next project.

      (2) In villin-CRE-deficient mice, the authors observe generic inflammation in the intestine unrelated to tumor development. It's unclear if this also occurs in the presence of OGT inhibitors in mice, whether these inhibitors induce a systemic inflammatory (Type I interferon) response, or if certain tissues like the intestine or proliferating tumor cells are more susceptible to such a response.

      We thank the comment, yes, investigating whether OGT inhibitors induce an inflammatory response, either systemically or tissue-specifically, is a very interesting project to focus on. However, in our current paper, we use a genetic method to identify the role of OGT deficiency in intestine inflammation-induced tumor development. This approach provides convincing evidence for our hypothesis. We may test the effect of OGT inhibitors on inflammation and tumor development in our next project.

      (3) Another critical observation is the magnitude of the interferon response triggered by DNA damage in the OGT-deficient models. While it's known that DNA damage can activate cGAS-STING, the response's extent in the absence of OGT prompts the question of whether additional OGT-specific features could explain this phenomenon. For example, Lamin A, essential for nuclear envelope integrity and shown to be O-glycosylated (DOI: 10.3390/cells7050044), and other components of the nuclear envelope or its repair might be affected by OGT. The impact of OGT inhibition on nuclear envelope integrity compared to other DNA-damaging agents could be explored.

      We appreciate the comment, in this project, we find an OGT binding protein, HCF1, though LC–MS/MS assay, it’s a top one candidate in binding profiles, so we focus on it. Like Lamin A and other components of the nuclear envelope still are good targets to check, we may explore these in our next project.

      (4) The authors also demonstrate a correlation between OGT expression in tumors compared to healthy tissues. However, the reason is unclear, raising questions about whether this is a consequence of proliferation or metabolic deregulation in the cancer. The authors should address this aspect.

      We appreciate the reviewer’s insightful point. It is very good questions and very interesting research. However, in this paper we focused on how OGT influence its downstream molecules to promote tumor, we didn’t check why OGT is increased in tumors, it is not the scope of this current work, we would love to investigate it in the future.

      Minor points

      Please add the legend to Figures S2, S3 and S5.

      We thank the comment, we have added the legend to Figures S2, S3 and S5.

      The sentence line 137 should be clarified as OGT deficiency seems more related to increased inflammation in this model.

      We thank the comment, we have corrected the sentence line 137.

      Line 732 has a ( typo before the number 34.

      We thank the comment, we have corrected the sentence line 732.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      In this important study, the authors manually assessed randomly selected images published in eLife between 2012 and 2020 to determine whether they were accessible for readers with deuteranopia, the most common form of color vision deficiency. They then developed an automated tool designed to classify figures and images as either "friendly" or "unfriendly" for people with deuteranopia. While such a tool could be used by publishers, editors or researchers to monitor accessibility in the research literature, the evidence supporting the tools' utility was incomplete. The tool would benefit from training on an expanded dataset that includes different image and figure types from many journals, and using more rigorous approaches when training the tool and assessing performance. The authors also provide code that readers can download and run to test their own images. This may be of most use for testing the tool, as there are already several free, user-friendly recoloring programs that allow users to see how images would look to a person with different forms of color vision deficiency. Automated classifications are of most use for assessing many images, when the user does not have the time or resources to assess each image individually.

      Thank you for this assessment. We have responded to the comments and suggestions in detail below. One minor correction to the above statement: the randomly selected images published in eLife were from articles published between 2012 and 2022 (not 2020).

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors of this study developed a software application, which aims to identify images as either "friendly" or "unfriendly" for readers with deuteranopia, the most common color-vision deficiency. Using previously published algorithms that recolor images to approximate how they would appear to a deuteranope (someone with deuteranopia), authors first manually assessed a set of images from biology-oriented research articles published in eLife between 2012 and 2022. The researchers identified 636 out of 4964 images as difficult to interpret ("unfriendly") for deuteranopes. They claim that there was a decrease in "unfriendly" images over time and that articles from cell-oriented research fields were most likely to contain "unfriendly" images. The researchers used the manually classified images to develop, train, and validate an automated screening tool. They also created a user-friendly web application of the tool, where users can upload images and be informed about the status of each image as "friendly" or "unfriendly" for deuteranopes.

      Strengths:

      The authors have identified an important accessibility issue in the scientific literature: the use of color combinations that make figures difficult to interpret for people with color-vision deficiency. The metrics proposed and evaluated in the study are a valuable theoretical contribution. The automated screening tool they provide is well-documented, open source, and relatively easy to install and use. It has the potential to provide a useful service to the scientists who want to make their figures more accessible. The data are open and freely accessible, well documented, and a valuable resource for further research. The manuscript is well written, logically structured, and easy to follow.

      We thank the reviewer for these comments.

      Weaknesses:

      (1) The authors themselves acknowledge the limitations that arise from the way they defined what constitutes an "unfriendly" image. There is a missed chance here to have engaged deuteranopes as stakeholders earlier in the experimental design. This would have allowed [them] to determine to what extent spatial separation and labelling of problematic color combinations responds to their needs and whether setting the bar at a simulated severity of 80% is inclusive enough. A slightly lowered barrier is still a barrier to accessibility.

      We agree with this point in principle. However, different people experience deuteranopia in different ways, so it would require a large effort to characterize these differences and provide empirical evidence about many individuals' interpretations of problematic images in the "real world." In this study, we aimed to establish a starting point that would emphasize the need for greater accessibility, and we have provided tools to begin accomplishing that. We erred on the side of simulating relatively high severity (but not complete deuteranopia). Thus, our findings and tools should be relevant to some (but not all) people with deuteranopia. Furthermore, as noted in the paper, an advantage of our approach is that "by using simulations, the reviewers were capable of seeing two versions of each image: the original and a simulated version." We believe this step is important in assessing the extent to which deuteranopia could confound image interpretations. Conceivably, this could be done with deuteranopes after recoloration, but it is difficult to know whether deuteranopes would see the recolored images in the same way that non-deuteranopes see the original images. It is also true that images simulating deuteranopia may not perfectly reflect how deuteranopes see those images. It is a tradeoff either way. We have added comments along these lines to the paper.

      (2) The use of images from a single journal strongly limits the generalizability of the empirical findings as well as of the automated screening tool itself. Machine-learning algorithms are highly configurable but also notorious for their lack of transparency and for being easily biased by the training data set. A quick and unsystematic test of the web application shows that the classifier works well for electron microscopy images but fails at recognizing red-green scatter plots and even the classical diagnostic images for color-vision deficiency (Ishihara test images) as "unfriendly". A future iteration of the tool should be trained on a wider variety of images from different journals.

      Thank you for these comments. We have reviewed an additional 2,000 images, which were randomly selected from PubMed Central. We used our original model to make predictions for those images. The corresponding results are now included in the paper.

      We agree that many of the images identified as being "unfriendly" are microscope images, which often use red and green dyes. However, many other image types were identified as unfriendly, including heat maps, line charts, maps, three-dimensional structural representations of proteins, photographs, network diagrams, etc. We have uploaded these figures to our Open Science Framework repository so it's easier for readers to review these examples. We have added a comment along these lines to the paper.

      The reviewer mentioned uploading red/green scatter plots and Ishihara test images to our Web application and that it reported they were friendly. Firstly, it depends on the scatter plot. Even though some such plots include green and red, the image's scientific meaning may be clear. Secondly, although the Ishihara images were created as informal tests for humans, these images (and ones similar to them) are not in eLife journal articles (to our knowledge) and thus are not included in our training set. Thus, it is unsurprising that our machine-learning models would not classify such images correctly as unfriendly.

      (3) Focusing the statistical analyses on individual images rather than articles (e.g. in figures 1 and 2) leads to pseudoreplication. Multiple images from the same article should not be treated as statistically independent measures, because they are produced by the same authors. A simple alternative is to instead use articles as the unit of analysis and score an article as "unfriendly" when it contains at least one "unfriendly" image. In addition, collapsing the counts of "unfriendly" images to proportions loses important information about the sample size. For example, the current analysis presented in Fig. 1 gives undue weight to the three images from 2012, two of which came from the same article. If we perform a logistic regression on articles coded as "friendly" and "unfriendly" (rather than the reported linear regression on the proportion of "unfriendly" images), there is still evidence for a decrease in the frequency of "unfriendly" eLife articles over time.

      Thank you for taking the time to provide these careful insights. We have adjusted these statistical analyses to focus on articles rather than individual images. For Figure 1, we treat an article as "Definitely problematic" if any image in the article was categorized as "Definitely problematic." Additionally, we no longer collapse the counts to proportions, and we use logistic regression to summarize the trend over time. The overall conclusions remain the same.

      Another issue concerns the large number of articles (>40%) that are classified as belonging to two subdisciplines, which further compounds the image pseudoreplication. Two alternatives are to either group articles with two subdisciplines into a "multidisciplinary" group or recode them to include both disciplines in the category name.

      Thank you for this insight. We have modified Figure 2 so that it puts all articles that have been assigned two subdisciplines into a "Multidisciplinary" category. The overall conclusions remain the same.

      (4) The low frequency of "unfriendly" images in the data (under 15%) calls for a different performance measure than the AUROC used by the authors. In such imbalanced classification cases the recommended performance measure is precision-recall area under the curve (PR AUC: https://doi.org/10.1371%2Fjournal.pone.0118432) that gives more weight to the classification of the rare class ("unfriendly" images).

      We now calculate the area under the precision-recall curve and provide these numbers (and figures) alongside the AUROC values (and figures). We agree that these numbers are informative; both metrics lead to the same overall conclusions.

      Reviewer #2 (Public Review):

      Summary:

      An analysis of images in the biology literature that are problematic for people with a color-vision deficiency (CVD) is presented, along with a machine learning-based model to identify such images and a web application that uses the model to flag problematic images. Their analysis reveals that about 13% of the images could be problematic for people with CVD and that the frequency of such images decreased over time. Their model yields 0.89 AUC score. It is proposed that their approach could help making biology literature accessible to diverse audiences.

      Strengths:

      The manuscript focuses on an important yet mostly overlooked problem, and makes contributions both in expanding our understanding of the extent of the problem and in developing solutions to mitigate the problem. The paper is generally well-written and clearly organized. Their CVD simulation combines five different metrics. The dataset has been assessed by two researchers and is likely to be of high-quality. Machine learning algorithm used (convolutional neural network, CNN) is an appropriate choice for the problem. The evaluation of various hyperparameters for the CNN model is extensive.

      We thank the reviewer for these comments.

      Weaknesses:

      The focus seems to be on one type of CVD (deuteranopia) and it is unclear whether this would generalize to other types.

      We agree that it would be interesting to perform similar analyses for protanopia and other color-vision deficiencies. But we leave that work for future studies.

      The dataset consists of images from eLife articles. While this is a reasonable starting point, whether this can generalize to other biology/biomedical articles is not assessed.

      This is an important point. We have reviewed an additional 2,000 images, which were randomly selected from PubMed Central, and used our original model to make predictions for those images. The corresponding results are now included in the paper.

      "Probably problematic" and "probably okay" classes are excluded from the analysis and classification, and the effect of this exclusion is not discussed.

      We now address this in the Discussion section.

      Machine learning aspects can be explained better, in a more standard way.

      Thank you. We address this comment in our responses to your comments below.

      The evaluation metrics used for validating the machine learning models seem lacking (e.g., precision, recall, F1 are not reported).

      We now provide these metrics (in a supplementary file).

      The web application is not discussed in any depth.

      The paper includes a paragraph about how the Web application works and which technologies we used to create it. We are unsure which additional aspects should be addressed.

      Reviewer #3 (Public Review):

      Summary:

      This work focuses on accessibility of scientific images for individuals with color vision deficiencies, particularly deuteranopia. The research involved an analysis of images from eLife published in 2012-2022. The authors manually reviewed nearly 5,000 images, comparing them with simulated versions representing the perspective of individuals with deuteranopia, and also evaluated several methods to automatically detect such images including training a machine-learning algorithm to do so, which performed the best. The authors found that nearly 13% of the images could be challenging for people with deuteranopia to interpret. There was a trend toward a decrease in problematic images over time, which is encouraging.

      Strengths:

      The manuscript is well organized and written. It addresses inclusivity and accessibility in scientific communication, and reinforces that there is a problem and that in part technological solutions have potential to assist with this problem.

      The number of manually assessed images for evaluation and training an algorithm is, to my knowledge, much larger than any existing survey. This is a valuable open source dataset beyond the work herein.

      The sequential steps used to classify articles follow best practices for evaluation and training sets.

      We thank the reviewer for these comments.

      Weaknesses:

      I do not see any major issues with the methods. The authors were transparent with the limitations (the need to rely on simulations instead of what deuteranopes see), only capturing a subset of issues related to color vision deficiency, and the focus on one journal that may not be representative of images in other journals and disciplines.

      We thank the reviewer for these comments. Regarding the last point, we have reviewed an additional 2,000 images, which were randomly selected from PubMed Central, and used our original model to make predictions for those images. The corresponding results are now included in the paper.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      N/A

      Thank you.

      Reviewer #2 (Recommendations For The Authors):

      - The web application link can be provided in the Abstract for more visibility.

      We have added the URL to the Abstract.

      - They focus on deuteranopia in this paper. It seems that protanopia is not considered. Why? What are the challenges in considered this type of CVD?

      We agree that it would be interesting to perform similar analyses for protanopia and other color-vision deficiencies. But we leave that work for future studies. Deuteranopia is the most common color-vision deficiency, so we focused on the needs of these individuals as a starting point.

      - The dataset is limited to eLife articles. More discussion of this limitation is needed. Couldn't one also include some papers from PMC open access dataset for comparison?

      We have reviewed an additional 2,000 images, which we randomly selected from PubMed Central, and used our original model to make predictions for those images. The corresponding results are now included in the paper.

      - An analysis of the effect of selecting a severity value of 0.8 can be included.

      We agree that this would be interesting, but we leave it for future work.

      - "Probably problematic" and "probably okay" classes are excluded from analysis, which may oversimplify the findings and bias the models. It would have been interesting to study these classes as well.

      We agree that this would be interesting, but we leave it for future work. However, we have added a comment to the Discussion on this point.

      - Some machine learning aspects are discussed in a non-standard way. Class weighting or transfer learning would not typically be considered hyperparameters."corpus" is not a model. Description of how fine-tuning was performed could be clearer.

      We have updated this wording to use more appropriate terminology to describe these different "configurations." Additionally, we expanded and clarified our description of fine tuning.

      - Reporting performance on the training set is not very meaningful. Although I understand this is cross-validated, it is unclear what is gained by reporting two results. Maybe there should be more discussion of the difference.

      We used cross validation to compare different machine-learning models and configurations. Providing performance metrics helps to illustrate how we arrived at the final configurations that we used. We have updated the manuscript to clarify this point.

      - True positives, false positives, etc. are described as evaluation metrics. Typically, one would think of these as numbers that are used to calculate evaluation metrics, like precision (PPV), recall (sensitivity), etc. Furthermore, they say they measure precision, recall, precision-recall curves, but I don't see these reported in the manuscript. They should be (especially precision, recall, F1).

      We have clarified this wording in the manuscript.

      - There are many figures in the supplementary material, but not much interpretation/insights provided. What should we learn from these figures?

      We have revised the captions and now provide more explanations about these figures in the manuscript.

      - CVD simulations are mentioned (line 312). It is unclear whether these methods could be used for this work and if so, why they were not used. How do the simulations in this work compare to other simulations?

      This part of the manuscript refers to recolorization techniques, which attempt to make images more friendly to people with color vision deficiencies. For our paper, we used a form of recolorization that simulates how a deuteranope would see a figure in its original form. Therefore, unless we misunderstand the reviewer's question, these two types of simulation have distinct purposes and thus are not comparable.

      - relu -> ReLU

      We have corrected this.

      Reviewer #3 (Recommendations For The Authors):

      The title can be more specific to denote that the survey was done in eLife papers in the years 2012-2022. Similarly, this should be clear in the abstract instead of only "images published in biology-oriented research articles".

      Thank you for this suggestion. Because we have expanded this work to include images from PubMed Central papers, we believe the title is acceptable as it stands. We updated the abstract to say, "images published in biology- and medicine-oriented research articles"

      Two mentions of existing work that I did not see are to Jambor and colleagues' assessment on color accessibility in several fields: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8041175/, and whether this work overlaps with the 'JetFighter' tool

      (https://elifesciences.org/labs/c2292989/jetfighter-towards-figure-accuracy-and-accessibility).

      Thank you for bringing these to our attention. We have added a citation to Jambor, et al.

      We also mention JetFighter and describe its uses.

      Similarly, on Line 301: Significant prior work has been done to address and improve accessibility for individuals with CVD. This work can be generally categorized into three types of studies: simulation methods, recolorization methods, and estimating the frequency of accessible images.

      - One might mention education as prior work as well, which might in part be contributing to a decrease in problematic images (e.g., https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8041175/)

      We now suggest that there are four categories and include education as one of these.

      Line 361, when discussing resources to make figures suitable, the authors may consider citing this paper about an R package for single-cell data: https://elifesciences.org/articles/82128

      Thank you. We now cite this paper.

      The web application is a good demonstration of how this can be applied, and all code is open so others can apply the CNN in their own uses cases. Still, by itself, it is tedious to upload individual image files to screen them. Future work can implement this into a workflow more typical to researchers, but I understand that this will take additional resources beyond the scope of this project. The demonstration that these algorithms can be run with minimal resources in the browser with tensorflow.js is novel.

      Thank you.

      General:

      It is encouraging that 'definitely problematic' images have been decreasing over time in eLife. Might this have to do with eLife policies? I could not quickly find if eLife has checks in place for this, but given that JetFighter was developed in association with eLife, I wonder if there is an enhanced awareness of this issue here vs. other journals.

      This is possible. We are not aware of a way to test this formally.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Tang et al present an important manuscript focused on endogenous virus-like particles (eVLP) for cancer vaccination with solid in vivo studies. The author designed eVLP with high protein loading and transfection efficiency by PEG10 self-assembling while packaging neoantigens inside for cancer immunotherapy. The eVLP was further modified with CpG-ODN for enhanced dendritic cell targeting. The final vaccine ePAC was proven to elicit strong immune stimulation with increased killing effect against tumor cells in 2 mouse models. Below are my specific comments:

      Thanks very much to comment our work as “important”. We sincerely appreciate the extremely helpful comments from the reviewer to significantly improve the quality of our manuscript.

      (1) The figures were well prepared with minor flaws, such as missed scale bars in Figures 4B, 4K, 5B, and 5C. The author should also add labels representing statistical analysis for Figures 3C, 3D, and 3E. In Figure 6G, the authors should label which cell type is the data for.

      Thanks very much for the very suggestive comments. The scale bars and statistical analysis have been added in Figures 4B, 4K, 5B, 5C, 3C, 3D, and 3E. For Figure 6G, we have added “CD44+ CD62L- in CD8+ T cells” to explain the cell type.

      (2) In Figure 3H, the antigen-presenting cells (APCs) increased significantly, but there was also a non-negligible 10% of APCs found in the control group, indicating some potential unwanted immune response; the authors need to explain this phenomenon or add a cytotoxic test on the normal liver or other cell lines for confirmation.

      Thanks very much for this extremely helpful suggestion. The antigen-presenting cells (APCs) in Figure 3H were isolated from mouse bone marrow and then cultured in vitro for about 5 days with cytokine stimulation (IL-4 and GM-CSF). Due to the stimulation effects of IL-4 and GM-CSF, a small proportion of the APCs (~10%) was tending to mature (co-expressing CD80 and CD86) in the control group, as pointing out by the reviewer. Similarly, in Figure 3I, these 10% activated APCs can activate T cells in vitro and exhibit certain cytotoxicity. Since APCs must be induced and cultured in vitro before using in this experiment, the background cytotoxicity induced by cytokines is unavoidable, and this has been well documented in literatures.

      (3) In Figure 3I, the ePAC seems to have a very similar effect on cytotoxic T-cell tumor killing compared to the peptides + CpG group. If the concentrations were also the same, based on that, questions will arise as to what is the benefit of using the compact vector other than just free peptide and CpG? Please explain and elaborate.

      Thanks very much for the comment. In vitro experiments indeed demonstrated that peptides + CpG had the same T cell activating ability as ePAC, as pointing out by the reviewer. However, due to the instability of peptides and the lack of targeting, the efficiency of activating the immune system for peptides + CpG after subcutaneous injection is significantly lower than that for ePAC in vivo, as shown in Figure 3D and Figure 2A. Then, as expected, the antitumor efficacy induced by peptides alone + CpG is significantly lower than that induced by ePAC in Figure 5. We have provided a detailed description in “Results” section of “Antitumor effect of ePAC in subcutaneous HCC model” as follows: Furthermore, ePAC with the ability to target DCs and increased stability by encapsulating peptides, exhibited significantly higher tumor growth inhibition efficiency (p=0.0002) comparing with the eVLP + CpG-ODN treated group similar to the simple mixture of neoantigen peptides and adjuvant (Figures 5B and 5C). Meanwhile, the Kaplan-Meier analysis of tumor progression free survival (PFS) also clearly demonstrated the therapeutic advantages of our ePAC (p=0.0194, Figure 5B).

      (4) In the animal experiment in Figures 4F to L, the activation effect of APCs was similar between ePAC and CpG-only groups with no significance, but when it comes to the HCC mouse model in Figure 5, the anti-tumor effect was significantly increased between ePAC and CpG-only group. The authors should explain the difference between these two results.

      Thanks very much for the comment. Since PEG10 protein does not have an adjuvant effect, the adjuvant effect of ePAC mainly comes from the modified CpG. Therefore, although ePAC can effectively deliver tumor neoantigens, it does not have a significant advantage over free CpG in activating APCs. However, CpG only possesses the adjuvant effect and does not carry neoantigens. While it can promote the maturation of APCs, it cannot generate neoantigen-specific T cells. Consequently, the antitumor effect of CpG-only is much lower than that of ePAC in Figure 5.

      Reviewer #2 (Public Review):

      Summary:

      The authors provided a novel antigen delivery system that showed remarkable efficacy in transporting antigens to develop cancer therapeutic vaccines.

      Strengths:

      This manuscript was innovative, meaningful, and had a rich amount of data.

      Weaknesses:

      There are still some issues that need to be addressed and clarified.

      Thanks very much to comment our work as “innovative”. We sincerely appreciate the extremely helpful comments from the reviewer to significantly improve the quality of our manuscript, and the listed weaknesses have been all carefully addressed.

      (1) The format of images and data should be unified. Specifically, as follows: a. The presentation of flow cytometry results; b, The color schemes for different groups of column diagrams.

      Thanks very much. Following the reviewer’s comment, we have unified the format of all images and data as suggested.

      (2) The P-value should be provided in Figures, including Figure 1F, 1H, 3C, 3D, and 3E.

      Thanks very much. We have provided the corresponding P-values in Figure 1F, 1H, 3C, 3D, and 3E.

      (3) The quality of Figure 1C was too low to support the conclusion. The author should provide higher-quality images with no obvious background fluorescent signal. Meanwhile, the fluorescent image results of "Egfp+VSVg" group were inconsistent with the flow cytometry data. Additionally, the reviewer recommends that the authors use a confocal microscope to repeat this experiment to obtain a more convincing result.

      Thanks very much for this comment. Following the reviewer’s suggestion, we uniformly adjusted the original images in Figure 1C to reduce background interference and increase its quality. After eliminating background interference, the fluorescence image of the "Egfp+VSVg" group was consistent with the flow cytometry result.

      (4) The survival situation of the mouse should be provided in Figure 5, Figure 6, and Figure 7 to support the superior tumor therapy effect of ePAC.

      Thanks very much for the extremely helpful comment. Following the reviewer’s suggestion, we have added the progression free survival (PFS) of mice in Figure 5 and described this result in the “Results” section of “Antitumor effect of ePAC in subcutaneous HCC model” as follows: Meanwhile, the Kaplan-Meier analysis of tumor progression free survival (PFS) also clearly demonstrated the therapeutic advantages of our ePAC (p=0.0194, Figure 5B). For Figure 6 and Figure 7, to promptly detect the immune changes in the tumor microenvironment after vaccination, we were unable to conduct long-term observations on tumor-bearing mice, and therefore, we did not provide the survival curve. However, we monitored the tumor volume changes in real-time, which also can serve as an important measure for evaluating antitumor efficacy.

      (5) To demonstrate that ePAC could trigger a strong immune response, the positive control group in Figure 4K should be added.

      Thanks very much for this very helpful comment. Following the reviewer’s suggestion, the mouse anti-CD3 antibody was used as the positive control in vitro to activate splenic T cells for ELISPOT assay, and the corresponding results have been added in revised Figure 4K. To address this, we have provided a detailed description in “Figure legends” section of “Figure 4. ePAC delivery and immune activation in vivo” as follows: The mouse anti-CD3 antibody was used to activate splenic T cells in vitro as the positive control for ELISPOT assay.

      (6) In Figure 6G-I and other figures, the author should indicate the time point of detection. Meanwhile, there was no explanation for the different numbers of mice in Figure 6G-I. If the mouse was absent due to death, it may be necessary to advance the detection time to obtain a more convincing result.

      Thanks very much for the comment. The samples for Figure 6 G-I data were collected and analyzed at the day 28 after the start of treatment. Following the reviewer’s suggestion, we have specifically marked the time point of “Sacrifice for sampling” in Figure 6A. And we have provided a detailed description in “Figure legends” section of “Figure 6. Evaluation ePAC antitumor efficacy in orthotopic HCC model by αTIM-3 combination” as follows: The mice were sacrificed and sampled for analysis on the day of 28 after initiating treatment. In addition, in Figure 6G-I we have clearly indicated the sample size for each group. Although three mice in the PBS group died, we still have obtained enough samples for statistical analysis (n>3).

      (7) In Figure 6B, the rainbow color bar with an accurate number of maximum and minimum fluorescence intensity should be provided. In addition, the corresponding fluorescence intensity in Figure 6B should be noted.

      Thanks very much for this very helpful comment. Following the reviewer’s suggestion, we have added the rainbow color bar with an accurate number of maximum and minimum fluorescence intensity, and the statistic results in revised Figure 6B.

      (8) The quality of images in Figure 1D and Figure S1B could not support the author's conclusion; please provide higher-quality images.

      Thanks very much. In Figure 1D and Figure S1B, to ensure the authenticity of the results, we tried our best to improve the quality of the pictures and provided the WB results with the full membrane scan. Although some non-specific bands appeared in the results, the target bands remained prominent. Additionally, we used two tags (HA and eGFP) for verification, which fully guarantees the reliability of our findings.

      (9) In Figure 2F, the bright field in the overlay photo may disturb the observation. Meanwhile, the scale bar should be provided in enlarged images.

      Thanks very much. Following the reviewer’s suggestion, we have deleted the bright field in revised Figure 2F and added the scale bar in the enlarged images.

      Reviewer #3 (Public Review):

      Summary:

      The authors harnessed the potential of mammalian endogenous virus-like proteins to encapsulate virus-like particles (VLPs), enabling the precise delivery of tumor neoantigens. Through meticulous optimization of the VLP component ratios, they achieved remarkable stability and efficiency in delivering these crucial payloads. Moreover, the incorporation of CpG-ODN further heightened the targeted delivery efficiency and immunogenicity of the VLPs, solidifying their role as a potent tumor vaccine. In a diverse array of tumor mouse models, this novel tumor vaccine, termed ePAC, exhibited profound efficacy in activating the murine immune system. This activation manifested through the stimulation of dendritic cells in lymph nodes, the generation of effector memory T cells within the spleen, and the infiltration of neoantigen-specific T cells into tumors, resulting in robust anti-tumor responses.

      Strengths:

      This study delivered tumor neoantigens using VLPs, pioneering a new method for neoantigen delivery. Additionally, the gag protein of VLP is derived from mammalian endogenous virus-like protein, which offers greater safety compared to virus-derived gag proteins, thereby presenting a strong potential for clinical translation. The study also utilized a humanized mouse model to further validate the vaccine's efficacy and safety. Therefore, the anti-tumor vaccine designed in this study possesses both innovation and practicality.

      Thanks very much to comment our work as “novel”, “innovation” and “practicality”. We sincerely appreciate the extremely helpful comments from the reviewer to significantly improve the quality of our manuscript.

      Weaknesses:

      (1) CpG-ODN is an FDA-approved adjuvant with various sequence structures. Why was CpG-ODN 1826 directly chosen in this study instead of other types of CpG-ODN? Additionally, how does DEC-205 recognize CpG-ODN 1826, and can DEC-205 recognize other types of CpG-ODN?

      Thanks very much for the comment. CpG-ODNs are classified into three main types based on their structural composition: A, B, and C. Among them, only the B-class CpG-ODNs 1668, 1826, and 2006 have been directly proven to effectively bind DEC-205 and activate DC cells [1]. Therefore, in this study, B-class CpG-ODN 1826 was chosen as the ligand targeting DEC-205 on the surface of DC cells. DEC-205 primarily binds sequences containing the CpG motif core in a pH-dependent manner, thus theoretically allowing DEC-205 to bind a wide range of CpG-ODNs.

      [1] Lahoud MH et al. DEC-205 is a cell surface receptor for CpG oligonucleotides. PNAS. 2012

      (2) Why was it necessary to treat DCs with virus-like particles three times during the in vitro activation of T cells? Can this in vitro activation method effectively obtain neoantigen-responsive T cells?

      Thanks very much for the comment. DCs need to be pre-stimulated before being used to activate T cells. Although Single DC stimulation can activate T cells, but the activation efficiency is insufficient. Current research suggests that three DC-T interactions can more effectively activate T cells [2]. Therefore, we prepared virus-like particle stimulated DCs for three times to fully activate T cells. Our results in Figures 3I and 7D also demonstrate that three-time stimulations effectively activated antigen-specific T cells, resulting in stronger tumor cell killing effects.

      [2] Ali M et al. Induction of neoantigen-reactive T cells from healthy donors. Nature protocol. 2019.

      (3) In the humanized mouse model, the authors used Hepa1-6 cells to construct the tumor model. To achieve the vaccine's anti-tumor function, these Hepa1-6 cells were additionally engineered to express HLA-A0201. However, in the in vitro experiments, the authors used the HepG2 cell line, which naturally expresses HLA-A0201. Why did the authors not continue to use HepG2 cells to construct the tumor model, instead of Hepa1-6 cells?

      Thanks very much for the comment. HepG2 cells are derived from human liver cancer. When directly implant into immunocompetent mice, they will be cleared by the mouse immune system and will not form tumors. Therefore, we have not continued to use HepG2 cells to construct the tumor model.

      (4) The advantages of low immunogenicity viruses as vaccines compared with conventional adenovirus and lentivirus, etc. should be discussed.

      Thanks very much for the very suggestive comment. In the introduction starting from line 76, we first described the structure and function of lentiviruses and discussed the design and application of virus-like particles (VLPs) based on lentiviruses. To provide a more comprehensive comparison, we included a discussion on VLPs, lentiviruses, and adenoviruses in the discuss section (from line 441 to line 447) as follows: “Furthermore, comparing to the virus-based delivery vectors, the lentiviruses although can stably integrate into the host genome but carry risks of insertional mutagenesis; adenoviruses although have high transduction efficiency but strong immunogenicity, which leads to fast clearance by the immune system of the host and affects the efficiency of the secondary injection. Instead, our VLPs offer low immunogenicity and superior safety, making them more suitable for repeated use and vaccine development.”

      (5) In Figure 6B, the authors should provide statistical results.

      Thanks very much. We have provided the statistical results in revised Figure 6B following the reviewer’s suggestion.

      (6) The entire article demonstrates a clear logical structure and substantial content in its writing. However, there are still some minor errors, such as the misspelling of "Spleenic" in Figure 3B, and the sentence from line 234 should be revised.

      Thanks very much. We have carefully checked and corrected the typos throughout the whole manuscript as much as possible.

      (7) The authors demonstrated the efficiency of CpG-ODN membrane modification by varying the concentration of DBCO, ultimately determining the optimal modification scheme for eVLP as 3.5 nmol of DBCO. However, in Figure 2B, the author did not provide the modification efficiency when the DBCO concentration is lower than 3.5 nmol. These results should be provided.

      Thanks very much for the suggestion. We have repeated the experiment and reduced the concentration of DBCO to 2.1 nmol and 0.7 nmol, respectively. The results showed that in a 200 µl eVLP reaction system, 3.5 nmol DBCO achieved the highest modification efficiency. We have provided a detailed description in “Results” section of “Envelope decoration of neoantigen-loaded eVLP” as follows: Furthermore, by varying the concentration of DBCO-C6-NHS Ester from 0 to 14 nmol, ePAC exhibited different CpG-ODN loading efficiency as evidenced by agarose gel electrophoresis (Figure 2B and Figure S3). And the results showed that in a 200 µl eVLP reaction system, 3.5 nmol DBCO achieved the highest modification efficiency.

      (8) In Figure 3, the authors presented a series of data demonstrating that ePAC can activate mouse DC2.4 cells and BMDCs in vitro. However, in Figure 7, there is no evidence showing whether human DC cells can be activated by ePAC in vitro. This data should be provided.

      Thanks very much for this very helpful suggestion. We used ePAC to activate human DCs and the results indicate that, compared to the blank control group, both eVLP and ePAC increased the co-expression of CD80 and CD86 in DCs, and ePAC was the most efficient. We have provided a detailed description in the “Results” section of “Antitumor effect by HLA-A*0201 restricted vaccine” as follows: After the stimulation, the DCs in ePAC treated group showed the highest level of maturation comparing to the eVLP treated group and control group (Figure S4), by using flow cytometry analysis.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      (1) Figure 2B and 2D: unlike what is written in the results part, the results are not consistent, but opposite: LSS has higher activity in 2B, less in 2D. 

      The activities in Figure 2B come from NMR kinetic experiments with pGly, whereas Figure 2D reports on activity towards whole S. aureus cells. The LytM and LSS activities in these two experiments are indeed not directly comparable, but served to highlight the fact that simple pentaglycine is a poor model substrate for M23 enzymes. We carried out a turbidity assay with pristine enzymatic preparation and indeed it is highly consistent both with the kinetic assay using pentaglycine (Fig. 2B) as well as with larger PG fragments (Fig. 2K) indicating that the catalytic domain of LSS is significantly more efficient than LytM in hydrolyzing cells from community acquired methicillin resistant S. aureus strain USA300 as well as synthetic PG fragments.  The corresponding paragraph in Results has now been updated and rephrased.

      (2) Figure 2, panel K missing statistical analysis, which makes it difficult to appreciate if the difference is significant. If it is a one-time experiment or a single value, the value should be presented as a table. The corresponding text in the results part is confusing. The fold change or drop in percentage is unclear in the figure. 

      We have added a table (panel L) to Figure 2, which shows absolute values of LSS and LytM hydrolysis rates. Indeed, most of the values are from single NMR kinetic measurements, however, PG fragment (2) for LSS and PG fragment (3) for LytM were measured as duplicates to verify the reproducibility of the data. This is now mentioned in Figure 3 legend and in the Materials and Methods. Also, the corresponding text in the Results has been updated and rephrased.

      (3) Figure 3H: the cleavage of D-ala-gly is unclear, the cleavage products need to be labeled and quantified. The experiment used purified PG treated with mutanolysin. Presumably, mixed monomers, dimers, trimers, and multimers are used. It would be helpful to show the HPLC profile of the purified muropeptide. It would be informative to analyze which fractions generate D-ala-gly. In addition, the intact murein sacculus should be included. 

      For the sake of clarity, we have moved the 13C-HMBC spectra presented in Figure 3H to Fig. S7 in the Supplementary Material. The full carbonyl carbon region of the reference (prior to addition of enzyme) 13C-HMBC spectrum together with larger expansions of spectra acquired from enzyme-treated muropeptides are now shown. Furthermore, graphical presentations of identified PG fragments due to LSS/LytM activity are included. No HPLC analysis of the muropeptides was performed at this stage. Being insoluble, the intact murein sacculus is not amenable to liquid-state NMR studies, but we envisage studies of this remarkably complex structure also with solid-state NMR.

      Reviewer #2 (Recommendations For The Authors): 

      Overall, the experiments address the question asked by the authors and no additional experiments are required to strengthen the conclusions drawn. 

      Abstract: 

      The abstract is not well written and more specific (and accurate) information should be provided by the authors. 

      We are grateful for the constructive and helpful comments to improve our manuscript. The abstract has now been modified by taking into account the Reviewer’s suggestions.

      Introduction 

      The intro is relatively long and wordy. It could most certainly be shortened and written in a more simple way to make it more impactful.

      The introduction has now been modified by taking into account the Reviewer’s suggestions.

      (2) One of the peptide stems in Figure 1 is missing a pentaglycine side chain; I would recommend increasing the font size; the peptide stem looks like it is attached to the carbon in position 2, it may be a good idea to move it to the left? 

      We thank the Reviewer for this comment. Figure 1 has been improved, the frameshift has been fixed and the non-cross-linked pGly bridge has been included to the lysine side-chain in tetraStem.

      Results 

      Figure 2 is a bit overwhelming and its description is sketchy. Fig 2B shows a much higher activity of LSS on pGly as compared to LytM whilst 2K shows a very similar rate. 

      We have rearranged Figures 1 and 2 by moving the original panel J in Figure 2 (structures of PG fragments) to Figure 1 panel C. The bar graph in Figure 2J now shows absolute rates of substrate hydrolysis for 2 mM LSS and LytM. These indicate that LSS is much more efficient against PG fragments in vitro in comparison to LytM. Rates normalized with respect to pGly are shown in Figure 2K. Also, a table showing absolute rates of hydrolysis for 2 mM LSS and 50 mM LytM has been included in Figure 2, panel L. In this Table, the values for PG fragments 2 and 3 were determined by two independent measurements to test and accredit the reproducibility of the method. This is also now elaborated further in the Materials and Methods.

      Figure 3 is impressive and very informative but again hard to follow. 

      - Panels 3A and 3B are nicely conceived but the resolution is rather poor and it is difficult to know exactly where the arrows point. 

      We very much value suggestions given by the Reviewer to improve readability of our manuscript. In the case of Figure 3, we have now greatly enhanced the resolution and readability of the figure by horizontal scaling of panels A and B.

      Figure 4 shows a comparative analysis of catalytic rate using various substrates, the authors may want to present graphs with the same y-axis to get the most out of the comparison between substrates. 

      The scaling of the y-axis is the same for all the substrates now. In addition, we have reorganized the panels in the figure to enhance readability.

      Figure 5: - The same remark as above, please cite all panels in alphabetical order. 

      Citing to Figure 5 has now been revised.

      Material and methods: 

      - How were the peptide concentrations determined? It may be useful to indicate if specific conditions were required to solubilize some peptides, pGly is particularly insoluble in aqueous solutions. 

      - Page 19, replace cpm by rpm; biological or technical replicates?

      These have now been added and edited accordingly.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1:

      After reviewing the authors' response letter and the revised manuscript, I believe they have done a commendable job in addressing my comments.

      Additionally, I concur with the concerns raised by Reviewer #2 regarding several potential confounding factors that require better control in their experimental design. These include the differences in physical properties between vocal and nonvocal stimuli, as well as the infant's exposure to the speech/auditory environment. These concerns should be thoroughly and explicitly discussed in the manuscript, ensuring a clearer understanding for the readers.

      Thank you for the suggestion. We have discussion these limitations in our revised manuscript. In this round of revision, we have tempered our conclusion due to these limitations.

      Reviewer #2:

      The revised manuscript does discuss the limitations of the control stimuli, as well as the limitations with regard to conclusions that can be drawn from this data set. I therefore expected the authors to temper a bit their recommendation that this could be a 'screening' signal for autism because these data are not sufficiently strong to make that recommendation. Also, in the same vein, perhaps the title might be adjusted somewhat to suggest less certainty, for example, by using the word "change" rather than "milestone"'? The data are of interest, but the limitations are genuine limitations.

      Thank you for your expert comments and considerations. We have moderated our recommendation for autism screening and softened the statement of “milestone” throughout the manuscript. Please see the updated article title, abstract, significance statement, and discussion.

    1. Author response:

      Reviewer #1 (Public Review):

      Summary:

      A nice study trying to identify the relationship between E. coli O157 from cattle and humans in Alberta, Canada.

      Strengths:

      (1) The combined human and animal sampling is a great foundation for this kind of study.

      (2) Phylogenetic analyses seem to have been carried out in a high-quality fashion.

      Weaknesses:

      I think there may be a problem with the selection of the isolates for the primary analysis. This is what I'm thinking:

      (1) Transmission analyses are strongly influenced by the sampling frame.

      (2) While the authors have randomly selected from their isolate collections, which is fine, the collections themselves are not random.

      (3) The animal isolates are likely to represent a broad swathe of diversity, because of the structured sampling of animal reservoirs undertaken (as I understand it).

      (4) The human isolates are all from clinical cases. Clinical cases of the disease are likely to be closely related to other clinical cases, because of outbreaks (either detected, or undetected), and the high ascertainment rate for serious infections.

      (5) Therefore, taking an equivalent number of animal and clinical isolates, will underestimate the total diversity in the clinical isolates because the sampling of the clinical isolates is less "independent" (in the statistical sense) than sampling from the animal isolates.

      (6) This could lead to over-estimating of transmission from cattle to humans.

      We appreciate the reviewer’s careful thoughts about our sampling strategy. We agree with points (1) and (2), and we will provide additional details on the animal collections as requested.

      We agree with point (3) in theory but not in fact. As shown in Figure 3a, the cattle isolates were very closely related, despite the temporal and geographic breadth of sampling within Alberta. The median SNP distance between cattle sequences was 45 (IQR 36-56), compared to 54 (IQR 43-229) SNPs between human sequences from cases in Alberta during the same years. Additionally, as shown in Figure 2, only clade A and B isolates – clades that diverge substantially from the rest of the tree – were dominated by human cases in Alberta. We will better highlight this evidence in the revision.

      We agree with the reviewer in point (4) that outbreaks can be an important confounder of phylogenetic inference. This is why we down-sampled outbreaks (based on genetic relatedness, not external designation) in our extended analyses (lines 192-194). We did not do this in the primary analysis, because there were no large clusters of identical isolates. Figure 3b shows a limited number of small clusters; however, clustered cattle isolates outnumbered clustered human isolates, suggesting that any bias would be in the opposite direction the reviewer suggests. Regarding severe cases being oversampled among the clinical isolates, this is absolutely true and a limitation of all studies utilizing public health reporting data. We will make this limitation to generalizability clearer in the discussion. However, as noted above, clinical isolates were more variable than cattle isolates, so it does not appear to have heavily biased the analysis.

      We disagree with the reviewer on point (5). While the bias toward severe cases could make the human isolates less independent, the relative sampling proportions are likely to induce greater distance between clinical isolates than cattle isolates, which is exactly what we observe (see response to point (3) above). Cattle are E. coli O157:H7’s primary reservoir, and humans are incidental hosts not able to sustain infection chains long-term. Not only is the bacteria prevalent among cattle, cattle are also highly prevalent in Alberta. Thus, even with 89 sampling points, we are still capturing a small proportion of the E. coli O157:H7 in the province. Being able to sample only a small proportion of cattle’s E. coli O157:H7 increases the likelihood of only sampling from the center of the distribution, making extreme cases such as that shown at the very bottom of the tree in Figure 3b, rare and important. In comparison, sampling from human cases constitutes a higher proportion of human infections relative to cattle, and is therefore more representative of the underlying distribution, including extremes. We will add this point to the limitations. As with the clustering above, if anything, this outcome would have biased the study away from identifying cattle as the primary reservoir. Additionally, the relatively small proportion of cattle sampled makes our finding that 15.7% of clinical isolates were within 5 SNPs of a cattle isolate, the distance most commonly used to indicate transmission for E. coli O157:H7, all the more remarkable.

      Because of the aforementioned points, we disagree with the reviewer’s conclusion in point (6). We believe transmission from cattle-to-humans is likely underestimated for the reasons given above. Not only do all prior studies indicate ruminants as the primary reservoirs of E. coli O157:H7, and humans as only incidental hosts, our specific data do not support the reviewer’s individual contentions. That said, we will conduct a sensitivity analysis as recommended to determine the impact of sampling and inclusion of the small clusters on our primary findings.

      (7) We hypothesize that the large proportion of disease associated with local transmission systems is a principal cause of Alberta's high E. coli O157:H7 incidence" - this seems a bit tautological. There is a lot of O157 because there's a lot of transmission. What part of the fact it is local means that it is a principal cause of high incidence? It seems that they've observed a high rate of local transmission, but the reasons for this are not apparent, and hence the cause of Alberta's incidence is not apparent. Would a better conclusion not be that "X% of STEC in Alberta is the result of transmission of local variants"? And then, this poses a question for future epi studies of what the transmission pathway is.

      The reviewer is correct, and the suggestion for the direction of future studies was our intent with this statement. We will revise it.

      Reviewer #2 (Public Review):

      This study identified multiple locally evolving lineages transmitted between cattle and humans persistently associated with E. coli O157:H7 illnesses for up to 13 years. Furthermore, this study mentions a dramatic shift in the local persistent lineages toward strains with the more virulent stx2a-only profile. The authors hypothesized that this phenomenon is the large proportion of disease associated with local transmission systems is a principal cause of Alberta's high E. coli O157:H7 incidence. These opinions more effectively explain the role of the cattle reservoir in the dynamics of E. coli O157:H7 human infections.

      (1) The authors acknowledge the possibility of intermediate hosts or environmental reservoirs playing a role in transmission. Further discussion on the potential roles of other animal species commonly found in Alberta (e.g., sheep, goats, swine) could enhance the understanding of the transmission dynamics. Were isolates from these species available for analysis? If not, the authors should clearly state this limitation.

      We will expand the discussion of other species in Alberta, as suggested, including other livestock, wildlife, and the potential role of birds and flies. Unfortunately, we did not have sequences available from other species, and we will add this to the limitations. Sequences from other species may be available from sequences collected by others, which as we note in the limitations do not have sufficient metadata to assign them to Alberta vs. the rest of Canada. While we have requested this data, we have been unsuccessful in obtaining it. We will continue to pursue it.

      (2) The focus on E. coli O157:H7 is understandable given its prominence in Alberta and the availability of historical data. However, a brief discussion on the potential applicability of the findings to non-O157 STEC serogroups, and the limitations therein, would be beneficial. Are there reasons to believe the transmission dynamics would be similar or different for other serogroups?

      We appreciate this comment and will expand our discussion of relevance to non-O157 STEC. Other authors have proposed that transmission dynamics differ, and studies of STEC risk factors, including our own, support this. However, there has been very little direct study of non-O157 transmission dynamics and there is even less cross-species genomic and metadata available for non-O157 isolates of concern.

      (3) The authors briefly mention the need for elucidating local transmission systems to inform management strategies. A more detailed discussion on specific public health interventions that could be targeted at the identified LPLs and their potential reservoirs would strengthen the paper's impact.

      We agree with the reviewer that this would be a good addition to the manuscript. The public health implications for control are several and extend to non-STEC reportable zoonotic enteric infections, such as Campylobacter and Salmonella. We will add a discussion of these.

      (4) Understanding the relationship between specific risk factors and E. coli O157:H7 infections is essential for developing effective prevention strategies. Have case-control or cohort studies been conducted to assess the correlation between identified risk factors and the incidence of E. coli O157:H7 infections? What methodologies were employed to control for potential confounders in these studies?

      Yes, there have been several case-control studies of reported cases. Many of these are referenced in the discussion in terms of the contribution of different sources to infection. However, we will add a more explicit discussion of risk factors.

      (5) The study's findings are noteworthy, particularly in the context of E. coli O157:H7 epidemiology. However, the extent to which these results can be replicated across different temporal and geographical settings remains an open question. It would be constructive for the authors to provide additional data that demonstrate the replication of their sampling and sequencing experiments under varied conditions. This would address concerns regarding the specificity of the observed patterns to the initial study's parameters.

      We appreciate the reviewer’s comment, as we are currently building on this analysis with an American dataset with different types of data available than were used in this study. We will add a discussion of this. We will also be adding a sensitivity analysis to the manuscript simulating a different sampling approach, which should also be informative to this question.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Weaknesses:

      The authors need to discuss their study in the context of previous papers that have shown an important role for E. tarda flagellin in inflammasome activation and test whether flagellin and/or E. tarda T3SSs needle or rod can activate NLRC4.

      We will add discussions on E. tarda flagellin and examine whether E. tarda flagellin or T3SS needle/rod can activate NLRC4.

      The authors show that eseB and its homologs can activate NLRC4, but there are also other translocon proteins that are very different such as YopB or PopB. and share little homology with eseB. It would be nice to include a section comparing the different type 3 secretion systems. are there 2 different families of T3SSs, those that feature translocon components that are recognized by NAIP-NLRC4 and those that cannot be recognized?

      The reviewer raises an interesting question. We will explore this question and provide relevant discussions/hypothesis in the revised manuscript.

      Reviewer #2 (Public Review):

      Weaknesses:

      The functional assessment of EseB homologues is limited to inflammasome activation at the protein level but does not include the effects on cell viability as shown for E. tarda EseB. Confirmation that EseB homologues have similar effects on cell death would strengthen this portion of the manuscript.

      According to the reviewer’s suggestion, we plan to examine the effects of representative EseB homologs on cell death.

    1. Author response:

      The following is the authors’ response to the current reviews.

      The concerns raised during the review have been incorporated into the discussion of the results, and the need for further research is acknowledged in the paper. This is not possible in the present study, as the clinical project has been completed and further patients cannot be enrolled without starting a new project. We are confident that the results are scientifically valid and that the methodology was scientifically sound and up to date. They were obtained on a dataset that was obviously large enough to allow 20% of it to be set aside and a machine-learned classifier to be trained on the remaining 80%, which then assigned samples to neuropathy with an accuracy better than guessing.

      Furthermore, our results are at least tentatively replicated in a completely independent data set from another patient cohort. The strengths and limitations of the study design, in particular the latter, are discussed in the necessary depth. In summary, the machine-learned results provided major hits on one side and probably unimportant lipids on the other side of the variable importance scale. Both could be verified in vitro. We are therefore confident that we have contributed to the advancement of knowledge about cancer therapy-associated neuropathy and look forward to further developments in this area.


      The following is the authors’ response to the original reviews.

      Weaknesses Reviewer 1: 

      There are a number of weaknesses in the study. The small sample size is a significant limitation of the study. Out of 31 patients, only 17 patients were reported to develop neuropathy, with significant neuropathy (grade 2/3) in only 5 patients. The authors acknowledge this limitation in the results and discussion sections of the manuscript, but it limits the interpretation of the results. Also acknowledged is the limited method used to assess neuropathy. 

      We agree with the reviewer that the cohort size and assessment of neuropathy are limitations of our study as we already described in the corresponding section of the manuscript. However, occurrence and grade of the neuropathy are in line with results reported from previous studies. From these studies, the expected occurrence of neuropathy with our therapeutic regimen is around 50-70% (54.9% in our cohort), and most patients (80-90%) are expected to experience Grade 1 neuropathy after 12 weeks (13). In these studies, neuropathy is assessed by using questionnaires or by grading via NCTCTCAE as in our study. In summary, assessment and occurrence of neuropathy of our reported cohort are in line with previous reports.

      Potentially due to this small number of patients with neuropathy, the machine learning algorithms could not distinguish between samples with and without neuropathy. Only selected univariate analyses identified differences in lipid profiles potentially related to neuropathy.  

      The data analysis consistently followed a "mixture of experts" approach, as this seems to be the most successful way to deal with omics data. We have elaborated on this in the Methods section, including several supporting references. Regarding the quoted sentence from the results section, after rereading it, we realized that it was somewhat awkwardly worded. What we mean is now better worded in the results section, namely “Although the three algorithms detected neuropathy in new cases, unseen during training, at balanced accuracy of up to 0.75, while only the guess level of 0.5 was achieved when using permuted data for training, the 95% CI of the performance measures was not separated from guess level”. Therefore, multivariate feature selection was not considered a valid approach, since it requires that the algorithms from which the feature importance is read can successfully perform their task of class assignment (4). Therefore, univariate methods (Cohen's d, FPR, FWE) were preferred, as well as a direct hypothesis transfer of the top hits from the abovementioned day1/2 assessments to neuropathy. Classical statistics consisting of direct group comparisons using Kruskal-Wallis tests (5) were performed.” 

      It was our approach to investigate the data set in an unbiased manner by different machine learning algorithms and select those lipids that the majority of the algorithms considered important for distinguishing the patient groups (majority voting). This way, the inconsistencies and limitations of a single evaluation method, such as regression analysis, that occur in some datasets, can be mitigated. 

      Three sphingolipid mediators including SA1P differed between patients with and without neuropathy at the end of treatment. These sphingolipids were elevated at the end of treatment in the cohort with neuropathy, relative to those without neuropathy. However, across all samples from pre to post-paclitaxel treatment, there was a significant reduction in SA1P levels. It is unclear from the data presented what the underlying mechanism for this result would be. 

      We agree with the reviewer that our study does not identify the mechanism by which paclitaxel treatment alters sphingolipid concentrations in the plasma of patients. It has been reported before that paclitaxel may increase expression and activity of serine palmitoyltransferase (SPT) which is the crucial enzyme and rate-limiting step in the denovo synthesis of sphingolipids. This may be associated with a shift towards increased synthesis of 1-deoxysphingolipids and a decrease of “classical” sphingolipids (6) and may explain the general reduction of SA1P and other sphingolipid levels after paclitaxel treatment in our study. 

      It is also conceivable that paclitaxel reduces the release of sphingolipids into the plasma. Paclitaxel is a microtubule stabilizing agent (7) that may interfere with intracellular transport processes and release of paracrine mediators. 

      The mechanistic details of paclitaxel involvement in sphingolipid metabolism or transport are highly interesting but identifying them is beyond the scope of our manuscript.

      If elevated SA1P is associated with neuropathy development, it would be expected to increase in those who develop neuropathy from pre to post-treatment time points. 

      There is a general trend of reduced plasma SA1P concentrations following paclitaxel treatment. Nevertheless, patients experiencing neuropathy exhibit significantly elevated SA1P levels post-treatment. 

      It has been shown before that paclitaxel-induced neuropathic pain requires activation of the S1P1 receptor in a preclinical study (8). Moreover, a meta-analysis of genome-wide association studies (GWAS) from two clinical cohorts identified multiple regulatory elements and increased activity of S1PR1 associated with paclitaxel-induced neuropathy (9). These data imply that enhanced S1P receptor activity and signaling are key drivers of paclitaxel-induced neuropathy. It seems that both, increased levels of the sphingolipid ligands in combination with enhanced expression and activity of S1P receptors can potentiate paclitaxel-induced neuropathy in patients. This explains why also decreased SA1P concentrations after paclitaxel treatment can still enhance neuropathy via the S1PRTRPV1 axis in sensory neurons.

      We added this paragraph to the discussions section of our manuscript.

      Primary sensory neuron cultures were used to examine the effects of SA1P application.

      SA1P application produced calcium transients in a small proportion of sensory neurons. It is not clear how this experimental model assists in validating the role of SA1P in neuropathy development as there is no assessment of sensory neuron damage or other hallmarks of peripheral neuropathy. These results demonstrate that some sensory neurons respond to SA1P and that this activity is linked to TRPV1 receptors. However, further studies will be required to determine if this is mechanistically related to neuropathy.

      As we detected elevated levels of SA1P in the plasma of PIPN patients, we can assume higher concentrations in the vicinity of sensory neurons. These neurons are the main drivers for neuropathy and neuropathic pain and are strongly affected by paclitaxel in their activity (10-15). Also, TRPV1 shows altered activity patterns in response to paclitaxel treatment (16). Because of its relevance for nociception and pathological pain, TRPV1 activity is a suitable and representative readout for pathological pain states in peripheral sensory neurons (17, 18), which is why we investigated them.

      We would like to point out the potency of SA1P to increase capsaicin-induced calciumtransients in sensory neurons at submicromolar concentrations. 

      We also agree with the reviewer that further studies need to investigate the underlying mechanisms in more detail. We added this sentence to the final paragraph in the discussion section of our manuscript.

      Weaknesses Reviewer 2: 

      The article is poorly written, hindering a clear understanding of core results. While the study's goals are apparent, the interpretation of sphingolipids, particularly SA1P, as key mediators of paclitaxel-induced neuropathy lacks robust evidence. 

      We agree that the relevance of SA1P as key mediator of paclitaxel-induced neuropathy might be overstated and changed the wording throughout the manuscript accordingly. However, we would like to point out the potency of this lipid to increase capsaicin-induced calcium-transients in sensory neurons at submicromolar concentrations. 

      Also, the lipid signature in the plasma of PIPN patients shows a unique pattern and sphingolipids are the group that showed the strongest alterations when comparing the patient groups. We also measured eicosanoids, such as prostaglandins, linoleic acid metabolites, endocannabinoids and other lipid groups that have previously been associated with influences on pain perception or nociceptor sensitization. However, none of these lipids showed significant differences in their concentrations in patient plasma. This is why we consider sphingolipids as contributors to or markers of paclitaxel-induced neuropathy in patients.

      We also revised the entire article to improve its clarity.

      The introduction fails to establish the significance of general neuropathy or peripheral neuropathy in anticancer drug-treated patients, and crucial details, such as the percentage of patients developing general neuropathy or peripheral neuropathy, are omitted. This omission is particularly relevant given that only around 50% of patients developed neuropathy in this study, primarily of mild Grade 1 severity with negligible symptoms, contradicting the study's assertion of CIPN as a significant side effect. 

      As we already described in the introduction, CIPN is a serious dose- and therapy-limiting side effect, which affects up to 80% of treated patients. This depends on dose and combination of chemotherapeutic agents. For paclitaxel, therapeutic doses range from 80 – 225 mg/m². As CIPN symptoms are dose-dependent, the number of PIPN patients that receive a high paclitaxel dose is higher than the number of PIPN patient receiving a low dose.

      In our study, we mainly used a low dose paclitaxel, because this therapeutic regimen is the most widely used paclitaxel monotherapy. From previous studies, the expected occurrence of neuropathy with this therapeutic regimen is around 50-70%, and most patients (8090%) are expected to experience Grade 1 neuropathy after 12 weeks (1-3).

      Our results are within the range reported by these studies (54.9% patients with neuropathy). Also, as we highlight in Table S1, the neuropathy symptoms persist in most cases for several years after chemotherapy, affecting quality of life of these patients which makes it far from being a negligible symptom.

      We added some more information concerning PIPN in the introduction section in which we emphasize the clinical problem.

      The lack of clarity in distinguishing results obtained by lipidomics using machine learning methods and conventional methods adds to the confusion. The poorly written results section fails to specify SA1P's downregulation or upregulation, and the process of narrowing down to sphingolipids and SA1P is inadequately explained. 

      We have tried to keep the machine learning part in the main manuscript short and moved major parts of it to a supplement. However, as this has been claimed to have led to a lack of clarity, we have expanded the description of the data analysis and added extensive explanations and supporting references for the mixed expert approach that was used throughout the analysis. We hope this is now clear.

      Integrating a significant portion of the discussion section into the results section could enhance clarity. An explanation of the utility of machine learning in classifying patient groups over conventional methods and the citation of original research articles, rather than relying on review articles, may also add clarity to the usefulness of the study. 

      As suggested by the reviewer, we moved the relevant parts from the discussion to the results section in the revised version of our manuscript.

      Reviewer #1 (Recommendations For The Authors): 

      Figure 2 should be better explained or removed. In its current form, it does not add to the interpretation of the manuscript.  

      As mentioned above, we have expanded the description of the ESOM/U-matrix method in the Methods section and rewritten the figure legend. In addition, we have annotated the U-matrix in the figure. The method has been reported extensively in the computer science and biomedical literature, and a more detailed description in the referenced papers would go beyond the current focus on lipidomics. However, we believe that this discussion is sufficiently detailed for the readers of this report: "… a second unsupervised approach was used to verify the agreement between the lipidomics data structure and the prior classification, implemented as self-organizing maps (SOM) of artificial neurons (19). In the special form of an “emergent” SOM (ESOM (20)), the present map consisted of 4,000 neurons arranged on a two-dimensional toroidal grid with 50 rows and 80 columns (21, 22). ESOM was used because it has been repeatedly shown to correctly detect subgroup structures in biomedical data sets comparable to the present one (20, 22, 23). The core principle of SOM learning is to adjust the weights of neurons based on their proximity to input data points. In this process, the best matching unit (BMU) is identified as the neuron closest to a given data point. The adaptation of the weights is determined by a learning rate (η) and a neighborhood function (h), both of which gradually decrease during the learning process. Finally, the groups are projected onto separate regions of the map. On top of the trained ESOM, the distance structure in the high-dimensional feature space was visualized in the form of a so-called U-matrix (24) which is the canonical tool for displaying the distance structures of input data on ESOM (21). 

      The visual presentation facilitates data group separation by displaying the distances between BMUs in high-dimensional space in a color-coding that uses a geographical map analogy, where large "heights" represent large distances in feature space, while low "valleys" represent data subsets that are similar. "Mountain ranges" with "snow-covered" heights visually separate the clusters in the data. Further details about ESOM can be found in (24)."

      The second patient cohort is only included in the discussion - with cohort details in the supplementary material and figures included in the main text. Perhaps these data should be removed entirely. The findings are described as trends and not statistically significant and multiple issues with this second cohort are mentioned in the discussion. 

      We agree with the reviewer that including the second patient cohort in the discussion is inadequate. Of course, there are differences between the patient cohorts that do not allow direct comparison and that are highlighted in the section on limitations of the study. However, we still think it is interesting and relevant to show these data, because we used our algorithms trained on the first patient cohort to analyze the second cohort. And these data support the main results. 

      We therefore moved the entire paragraph to the results section of to improve coherence of our manuscript. The passage was introduced with the subheading:  “Support of the main results in an independent second patient cohort”.

      The title does not reflect the content of the paper and should be changed to better reflect the content and its significance. 

      We change the title to “Machine learning and biological validation identify sphingolipids as potential mediators of paclitaxel-induced neuropathy in cancer patients” to avoid overstating the results as suggested by the Reviewer.

      Further, the discussion should be modified to avoid overstating the results. 

      As the reviewer suggests, we changed the wording to avoid overstating the results. 

      Reviewer #2 (Recommendations For The Authors): 

      Please address the absence of clear neuropathy in the majority of patients after treatment with paclitaxel in your discussion. 

      As stated above, occurrence and grade of the neuropathy are in line with the results from previous studies. From these studies, the expected occurrence of neuropathy with our therapeutic regimen is around 50-70%, (the variability is due to differences in the assessment methods) and most patients (80-90%) are expected to experience Grade 1 neuropathy after 12 weeks (1-3). 

      We added this information in the discussion section of the revised manuscript.

      Line 65: Kindly replace review articles with original research articles for proper citation. 

      We replaced the review articles with original publications, focusing on clinical observations. We added the following publications: Jensen et al., Front Neurosci 2020; Chen et al., Neurobiol Aging 2018; Igarashi et al., J Alzheimers Dis. 2011; Kim et al., Oncotarget 2017 as references 17-20 in the revised version of our manuscript.

      Line 260: The mention of SA1P is introduced here without prior reference (do not use words like "again", or "see above", if it is not previously mentioned). Adjust the text for coherence.

      We agree with the reviewer that the introduction of SA1P in this passage in incoherent. We replaced the sentence in line 260 with: 

      The small set of lipid mediators emerging from all three methods as informative for neuropathy included the sphingolipid sphinganine-1-phosphate (SA1P), also known as dihydrosphingosine-1-phosphate (DH-S1P)…”

      Lines 301-315: Consider relocating several lines from this section to the results section for improved clarity. 

      We moved the lines 309-312 explaining the algorithm selection and their validation success in the corresponding results section (Lipid mediators informative for assigning postpaclitaxel therapy samples to neuropathy).

      Lines 382-396: Move this content to the results section to enhance the organization and coherence of the manuscript. 

      We moved the entire paragraph to the results section of our manuscript to improve coherence. The passage was introduced with the subheading:  “Support of the main results in an independent second patient cohort”.

      References

      (1) Barginear M, Dueck AC, Allred JB, Bunnell C, Cohen HJ, Freedman RA, et al. Age and the Risk of Paclitaxel-Induced Neuropathy in Women with Early-Stage Breast Cancer (Alliance A151411): Results from 1,881 Patients from Cancer and Leukemia Group B (CALGB) 40101. Oncologist. 2019;24(5):617-23.

      (2) Mauri D, Kamposioras K, Tsali L, Bristianou M, Valachis A, Karathanasi I, et al. Overall survival benefit for weekly vs. three-weekly taxanes regimens in advanced breast cancer: A metaanalysis. Cancer Treat Rev. 2010;36(1):69-74.

      (3) Budd GT, Barlow WE, Moore HC, Hobday TJ, Stewart JA, Isaacs C, et al. SWOG S0221: a phase III trial comparing chemotherapy schedules in high-risk early-stage breast cancer. J Clin Oncol. 2015;33(1):58-64.

      (4) Lötsch J, and Ultsch A. Pitfalls of Using Multinomial Regression Analysis to Identify ClassStructure-Relevant Variables in Biomedical Data Sets: Why a Mixture of Experts (MOE) Approach Is Better. BioMedInformatics. 2023;3(4):869-84.

      (5) Kruskal WH, and Wallis WA. Use of Ranks in One-Criterion Variance Analysis. J Am Stat Assoc. 1952;47(260):583-621.

      (6) Kramer R, Bielawski J, Kistner-Griffin E, Othman A, Alecu I, Ernst D, et al. Neurotoxic 1deoxysphingolipids and paclitaxel-induced peripheral neuropathy. FASEB J. 2015;29(11):4461-72.

      (7) Field JJ, Diaz JF, and Miller JH. The binding sites of microtubule-stabilizing agents. Chem Biol. 2013;20(3):301-15.

      (8) Janes K, Little JW, Li C, Bryant L, Chen C, Chen Z, et al. The development and maintenance of paclitaxel-induced neuropathic pain require activation of the sphingosine 1-phosphate receptor subtype 1. J Biol Chem. 2014;289(30):21082-97.

      (9) Chua KC, Xiong C, Ho C, Mushiroda T, Jiang C, Mulkey F, et al. Genomewide Meta-Analysis Validates a Role for S1PR1 in Microtubule Targeting Agent-Induced Sensory Peripheral Neuropathy. Clin Pharmacol Ther. 2020;108(3):625-34.

      (10) Kawakami K, Chiba T, Katagiri N, Saduka M, Abe K, Utsunomiya I, et al. Paclitaxel increases high voltage-dependent calcium channel current in dorsal root ganglion neurons of the rat. J Pharmacol Sci. 2012;120(3):187-95.

      (11) Pittman SK, Gracias NG, Vasko MR, and Fehrenbacher JC. Paclitaxel alters the evoked release of calcitonin gene-related peptide from rat sensory neurons in culture. Exp Neurol. 2013.

      (12) Luo H, Liu HZ, Zhang WW, Matsuda M, Lv N, Chen G, et al. Interleukin-17 Regulates NeuronGlial Communications, Synaptic Transmission, and Neuropathic Pain after Chemotherapy.

      Cell reports. 2019;29(8):2384-97 e5.

      (13) Pease-Raissi SE, Pazyra-Murphy MF, Li Y, Wachter F, Fukuda Y, Fenstermacher SJ, et al. Paclitaxel Reduces Axonal Bclw to Initiate IP3R1-Dependent Axon Degeneration. Neuron. 2017;96(2):373-86 e6.

      (14) Duggett NA, Griffiths LA, and Flatters SJL. Paclitaxel-induced painful neuropathy is associated with changes in mitochondrial bioenergetics, glycolysis, and an energy deficit in dorsal root ganglia neurons. Pain. 2017.

      (15) Li Y, Adamek P, Zhang H, Tatsui CE, Rhines LD, Mrozkova P, et al. The Cancer Chemotherapeutic Paclitaxel Increases Human and Rodent Sensory Neuron Responses to TRPV1 by Activation of TLR4. J Neurosci. 2015;35(39):13487-500.

      (16) Hara T, Chiba T, Abe K, Makabe A, Ikeno S, Kawakami K, et al. Effect of paclitaxel on transient receptor potential vanilloid 1 in rat dorsal root ganglion. Pain. 2013;154(6):882-9.

      (17) Jardin I, Lopez JJ, Diez R, Sanchez-Collado J, Cantonero C, Albarran L, et al. TRPs in Pain Sensation. Front Physiol. 2017;8:392.

      (18) Julius D. TRP Channels and Pain. Annual review of cell and developmental biology.

      2013;29:355-84.

      (19) Kohonen T. Self-Organized Formation of Topologically Correct Feature Maps. Biol Cybern. 1982;43(1):59-69.

      (20) Lötsch J, Lerch F, Djaldetti R, Tegder I, and Ultsch A. Identification of disease-distinct complex biomarker patterns by means of unsupervised machine-learning using an interactive R toolbox (Umatrix). Big Data Analytics. 2018;3(1):5.

      (21) Ultsch A. 2003.

      (22) Lotsch J, Geisslinger G, Heinemann S, Lerch F, Oertel BG, and Ultsch A. Quantitative sensory testing response patterns to capsaicin- and ultraviolet-B-induced local skin hypersensitization in healthy subjects: a machine-learned analysis. Pain. 2018;159(1):11-24.

      (23) Lötsch J, Thrun M, Lerch F, Brunkhorst R, Schiffmann S, Thomas D, et al. Machine-Learned Data Structures of Lipid Marker Serum Concentrations in Multiple Sclerosis Patients Differ from Those in Healthy Subjects. Int J Mol Sci. 2017;18(6).

      (24) Lötsch J, and Ultsch A. Cham: Springer International Publishing; 2014:249-57.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Wu et al. introduce a novel approach to reactivate the Muller glia cell cycle in the mouse retina by simultaneously reducing p27Kip1 and increasing cyclin D1 using a single AAV vector. The approach effectively promotes Muller glia proliferation and reprograming without disrupting retinal structure or function. Interestingly, reactivation of the Muller glia cell cycle downregulates IFN pathway, which may contribute to the induced retinal regeneration. The results presented in this manuscript may offer a promising approach for developing Müller glia cell-mediated regenerative therapies for retinal diseases.

      Strengths:

      The data are convincing and supported by appropriate, validated methodology. These results are both technically and scientifically exciting and are likely to appeal to retinal specialists and neuroscientists in general.

      Weaknesses:

      There are some data gaps that need to be addressed.

      (1) Please label the time points of AAV injection, EdU labeling, and harvest in Figure 1B.

      We thank the reviewer for highlighting the lack of clarity in our experimental design. We will label all experiment timelines in the figures where appropriate in the revised version.

      (2) What fraction of Müller cells were transduced by AAV under the experimental conditions?

      We apologize for not clearly conveying the transduction efficiency. The retinal region adjacent to the injection site, typically near the central retina, exhibits a transduction efficiency of nearly 100%. In contrast, the peripheral retina shows a lower transduction efficiency compared to the central region. We will include the quantification of AAV transduction efficiency in the revised manuscript.

      The quantification of Edu+ MG or other markers was conducted in the area with the highest efficiency. 

      (3) It seems unusually rapid for MG proliferation to begin as early as the third day after CCA injection. Can the authors provide evidence for cyclin D1 overexpression and p27 Kip1 knockdown three days after CCA injection?

      In our pilot study, we tested the onset time of GFP expression from AAV-GFAP-GFP following intravitreal injection. We observed GFP expression in MG as early as two days post-infection. These findings will be included in the revised manuscript. Additionally, we plan to perform qPCR or Western blot analysis to confirm cyclin D1 overexpression and p27kip1 knockdown at the onset of Müller glia proliferation, which will also be included in the revised manuscript.

      (4) The authors reported that MG proliferation largely ceased two weeks after CCA treatment. While this is an interesting finding, the explanation that it might be due to the dilution of AAV episomal genome copies in the dividing cells seems far-fetched.

      We believe that the lack of durability in high Cyclin D1 and low p27kip1 levels in MG contributes to the cessation of their proliferation. A potential reason for the loss of high Cyclin D1 overexpression and p27kip1 knockdown during MG proliferation could be the dilution of the AAV episomal genome. However, testing this hypothesis is challenging. Instead, we plan to provide direct evidence in the revised manuscript by examining the levels of Cyclin D1 and p27kip1 in the retina treated with CCA before and after the peak of MG proliferation.

      Reviewer #2 (Public Review):

      This manuscript by Wu, Liao et al. reports that simultaneous knockdown of P27Kip1 with overexpression of Cyclin D can stimulate Muller glia to re-enter the cell cycle in the mouse retina. There is intense interest in reprogramming mammalian muller glia into a source for neurogenic progenitors, in the hopes that these cells could be a source for neuronal replacement in neurodegenerative diseases. Previous work in the field has shown ways in which mouse Muller glia can be neurogenically reprogrammed and these studies have shown cell cycle re-entry prior to neurogenesis. In other works, typically, the extent of glial proliferation is limited, and the authors of this study highlight the importance of stimulating large numbers of Muller glia to re-enter the cell cycle with the hopes they will differentiate into neurons. While the evidence for stimulating proliferation in this study is convincing, the evidence for neurogenesis in this study is not convincing or robust, suggesting that stimulating cell cycle-reentry may not be associated with increasing regeneration without another proneural stimulus.

      Below are concerns and suggestions.

      Intro:

      (1) The authors cite past studies showing "direct conversion" of MG into neurons. However, these studies (PMID: 34686336; 36417510) show EdU+ MG-derived neurons suggesting cell cycle re-entry does occur in these strategies of proneural TF overexpression.

      We thank the reviewer for pointing this out. We will revise the statement to "MG neurogenesis," which encompasses both direct conversion and Müller glia proliferation followed by neuronal differentiation.

      (2) Multiple citations are incorrectly listed, using the authors first name only (i.e. Yumi, et al; Levi, et al;). Studies are also incompletely referenced in the references.

      We apologize for the mistake with the reference. We will fix these mistakes in the revised version.

      Figure 1:

      (3) When are these experiments ending? On Figure 1B it says "analysis" on the end of the paradigm without an actual day associated with this. This is the case for many later figures too. The authors should update the paradigms to accurately reflect experimental end points.

      We thank the reviewer for highlighting the lack of clarity in our experimental design. We will label all experiment timelines in the figures where appropriate in the revised version.

      (4) Are there better representative pictures between P27kd and CyclinD OE, the EdU+ counts say there is a 3 fold increase between Figure 1D&E, however the pictures do not reflect this. In fact, most of the Edu+ cells in Figure 1E don't seem to be Sox9+ MG but rather horizontally oriented nuclei in the OPL that are likely microglia.

      Thanks to the reviewer for pointing this out. We will replace the image of Cyclin D1 which a better representative image.

      (5) Is the infection efficacy of these viruses different between different combinations (i.e. CyclinD OE vs. P27kd vs. control vs. CCA combo)? As the counts are shown in Figure 1G only Sox9+/Edu+ cells are shown not divided by virus efficacy. If these are absolute counts blind to where the virus is and how many cells the virus hits, if the virus efficacy varies in efficiency this could drive absolute differences that aren't actually biological.

      Because the AAV-GFAP-Cyclin D1 and AAV-GFAP-Cyclin D1-p27kip1 shRNA viruses do not carry a fluorescent reporter gene, we cannot easily measure viral efficacy in the same experiment. We believe that variations in viral efficacy cannot account for the significant differences in MG proliferation for two reasons: 1) We injected the same titer for all three viruses, and 2) Viral infection efficacy is very high, approaching 100% in the central retina. Nonetheless, to rule out the possibility that the differences in MG proliferation among the Cyclin D overexpression, p27kip1 knockdown, and CCA groups are due to variations in viral efficacy, we will include the p27kip1 knockdown and Cyclin D1 overexpression efficiencies for all four groups using qPCR and/or Western blot analysis in the revised manuscript.

      (6) According to the Jax laboratories, mice aren't considered aged until they are over 18months old. While it is interesting that CCA treatment does not seem to lose efficacy over maturation I would rephrase the findings as the experiment does not test this virus in aged retinas.

      Thank you to the reviewer for bringing this to our attention. We will void using “aged mice” in our revised manuscript.

      (7) Supplemental Figure 2c-d. These viruses do not hit 100% of MG, however 100% of the P27Kip staining is gone in the P27sh1 treatment, even the P27+ cell in the GCL that is likely an astrocyte has no staining in the shRNA 1 picture. Why is this?

      For Supplementary Figure 2c-d, we focused on the central area where knockdown efficiency was high, approaching 100%. We will replace this image with one that includes both high and low Müller glia transduction efficiency regions, clearly demonstrating the complete loss of p27kip1 staining in the area of high transduction efficiency.

      Figure 2

      (8) Would you expect cells to go through two rounds of cell cycle in such a short time? The treatment of giving Edu then BrdU 24 hours later would have to catch a cell going through two rounds of division in a very short amount of time. Again the end point should be added graphically to this figure.

      We thank the reviewer for raising this important point. While the typical cell cycle time for human cells is approximately 24 hours, we hypothesized that 24 hours would be the most likely timepoint to capture cells continuously progressing through the cell cycle. However, we acknowledge that we cannot exclude the possibility of some cells entering a second cell cycle at much later timepoints.

      In the revised manuscript, we will carefully qualify our conclusion to state that the majority of MG do not immediately undergo another cell division, rather than making a definitive statement. This more cautious phrasing will better reflect the limitations of the 24-hour timepoint and allow for the potential of a small subset of cells proceeding through additional rounds of division at later stages.

      Figure 3

      (9) I am confused by the mixing of ratios of viruses to indicate infection success. I know mixtures of viruses containing CCA or control GFP or a control LacZ was injected. Was the idea to probe for GFP or LacZ in the single cell data to see which cells were infected but not treated? This is not shown anywhere?

      The virus infection was not uniform across the entire retina. To mark the infection hotspots, we added 10% GFP virus to the mixture. Regions of the retina with low infection efficiency were removed by dissection and excluded from the scRNA-seq analysis. We apologize for not clearly explaining this methodological detail in the original text, and will update the Methods section accordingly.

      (10) The majority of glia sorted from TdTomato are probably not infected with virus. Can you subset cells that were infected only for analysis? Otherwise it makes it very hard to make population judgements like Figure 3E-H if a large portion are basically WT glia.

      This question is related to the last one. Since the regions with high virus infection efficiency were selectively dissected and isolated for analysis, the percentage of CCA-infected MG should constitute the majority in the scRNA-seq data.

      (11) Figure 3C you can see Rho is expressed everywhere which is common in studies like this because the ambient RNA is so high. This makes it very hard to talk about "Rod-like" MG as this is probably an artifact from the technique. Most all scRNA-seq studies from MG-reprogramming have shown clusters of "rods" with MG hybrid gene expression and these had in the past just been considered an artifact.

      We agree that the low levels of Rho in other MG clusters (such as quiescent, reactivated, and proliferating MG) are likely due to RNA contamination. However, the level of Rho in the rod-like MG is significantly higher than in the other clusters, indicating that this is unlikely to be solely due to contamination.

      As shown in Supplementary Figure 7A-C, a cluster of MG-rod hybrid cells (cluster C4) was present in all three experimental groups at similar ratios, and this hybrid cluster was excluded from further analysis. In contrast, the rod-like Müller glia (cluster C3) were predominantly found in the CCA and CCANT groups, suggesting a genuine response to CCA treatment.

      Furthermore, we will conduct Rho and Gnat1 RNA in situ hybridization on the dissociated retinal cells to further support the conclusion that rod-specific genes are upregulated in a subset of MG in the revised manuscript.

      (12) It is mentioned the "glial" signature is downregulated in response to CCA treatment. Where is this shown convincingly? Figure H has a feature plot of Glul , which is not clear it is changed between treatments. Otherwise MG genes are shown as a function of cluster not treatment.

      We will add box plots of several MG-specific genes to better illustrate the downregulation of the glial signature in the relevant cell cluster in the revised manuscript.

      Figure 4

      (13) The authors should be commended for being very careful in their interpretations. They employ the proper controls (Er-Cre lineage tracing/EdU-pulse chasing/scRNA-seq omics) and were very careful to attempt to see MG-derived rods. This makes the conclusion from the FISH perplexing. The few puncta dots of Rho and GNAT in MG are not convincing to this reviewer, Rho and GNAT dots are dense everywhere throughout the ONL and if you drew any random circle in the ONL it would be full of dots. The rigor of these counts also comes into question because some dots are picked up in MG in the INL even in the control case. This is confusing because baseline healthy MG do not express RNA-transcripts of these Rod genes so what is this picking up? Taken together, the conclusion that there are Rod-like MG are based off scRNA-seq data (which is likely ambient contamination) and these FISH images. I don't think this data warrants the conclusion that MG upregulate Rod genes in response to CCA.

      We performed RNA in situ hybridization on retinal sections because we aimed to correlate cell localization with rod gene expression. We understand the reviewer’s concern that the punctate signals of Rho and GNAT1 in the ONL MG may actually originate from neighboring rods. In the revised manuscript, we will conduct RNAscope on dissociated retinal cells to avoid this issue.

      Figure 5

      (14) Similar point to above but this Glul probe seems odd, why is it throughout the ONL but completely dark through the IPL, this should also be in astrocytes can you see it in the GCL? These retinas look cropped at the INL where below is completely black. The whole retinal section should be shown. Antibodies exist to GS that work in mouse along with many other MG genes, IHC or western blots could be done to better serve this point.

      Indeed, the GCL was cropped out in Figure 5 A-B. We have other images with all retinal layers, which we will use in the revised manuscript. Additionally, we will perform the GS antibody staining to demonstrate partial MG dedifferentiation following CCA treatment.

      Figure 6

      (15) Figure 6D is not a co-labeled OTX2+/ TdTomato+ cell, Otx2 will fill out the whole nucleus as can be seen with examples from other MG-reprogramming papers in the field (Hoang, et al. 2020; Todd, et al. 2020; Palazzo, et al. 2022). You can clearly see in the example in Figure 6D the nucleus extending way beyond Otx2 expression as it is probably overlapping in space. Other examples should be shown, however, considering less than 1% of cells were putatively Otx2+, the safer interpretation is that these cells are not differentiating into neurons. At least 99.5% are not.

      We have additional examples of Otx2+ Tdt+ Edu+ cells, which suggest that MG neurogenesis to Otx2+ cells does occur, despite the low efficiency. We will include these images in the revised manuscript.

      (16) Same as above Figure 6I is not convincingly co-labeled HuC/D is an RNA-binding protein and unfortunately is not always the clearest stain but this looks like background haze in the INL overlapping. Other amacrine markers could be tested, but again due to the very low numbers, I think no neurogenesis is occurring.

      We have additional examples of HuC/D+ Tdt+ Edu+ cells, which we will show in the revised manuscript.

      (17) In the text the authors are accidently referring to Figure 6 as Figure 7.

      We thank the reviewer for pointing out the mistake. We will correct the mistake in the revised manuscript.

      Figure 7

      (18) I like this figure and the concept that you can have additional MG proliferating without destroying the retina or compromising vision. This is reminiscent of the chick MG reprogramming studies in which MG proliferate in large numbers and often do not differentiate into neurons yet still persist de-laminated for long time points.

      General:

      (19) The title should be changed, as I don't believe there is any convincing evidence of regeneration of neurons. Understanding the barriers to MG cell-cycle re-entry are important and I believe the authors did a good job in that respect, however it is an oversell to report regeneration of neurons from this data.

      We thank the reviewer for the suggestion. We will consider changing the title in the revised manuscript.

      (20) This paper uses multiple mouse lines and it is often confusing when the text and figures switch between models. I think it would be helpful to readers if the mouse strain was added to graphical paradigms in each figure when a different mouse line is employed.

      We will label the mouse lines used in each experiment in the figures where appropriate.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife assessment

      Shore et al. report important effects of a heterozygous mutation in the KCNT1 potassium channel on ion currents and firing behavior of excitatory and inhibitory neurons in the cortex of KCNT1-Y777H mice. The authors provide solid evidence of physiological differences between this heterozygous mutation and their previous work with homozygotes. The reviewers appreciated the inclusion of recordings in ex vivo slices and dissociated cortical neurons, as well as the additional evidence showing an increase in persistent sodium currents (INaP) in parvalbumin-positive interneurons in heterozygotes. However, they were unclear regarding the likelihood of the increased sodium influx through INaP channels increasing sodium-activated potassium currents in these neurons.

      Regarding the last sentence of the eLife assessment, we’ve added a new paragraph to the Discussion section of the paper to address this concern. Please see the response to comment 1B of Reviewer #1 below for more details. We feel that the question of whether an increase in INaP would further increase KCNT1 activity is a valid discussion point but not a limitation of the importance or rigor of the work itself.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This manuscript reports the effects of a heterozygous mutation in the KCNT1 potassium channels on the properties of ion currents and firing behavior of excitatory and inhibitory neurons in the cortex of mice expressing KCNT1-Y777H. In humans, this mutation as well as multiple other heterozygotic mutations produce very severe early-onset seizures and produce a major disruption of all intellectual function. In contrast, in mice, this heterozygous mutation appears to have no behavioral phenotype or any increased propensity to seizures. A relevant phenotype is, however, evident in mice with the homozygous mutation, and the authors have previously published the results of similar experiments with the homozygotes. As perhaps expected, the neuronal effects of the heterozygous mutation presented in this manuscript are generally similar but markedly smaller than the previously published findings on homozygotes. There are, however, some interesting differences, particularly on PV+ interneurons, which appear to be more excitable than wild type in the heterozygotes but more excitable in the heterozygotes. This raises the interesting question, which has been explicitly discussed by the authors in the revised manuscript, as to whether the reported changes represent homeostatic events that suppress the seizure phenotype in the mouse heterozygotes or simply changes in excitability that do not reach the threshold for behavioral outcomes.

      Strengths and Weaknesses:

      (1) The authors find that the heterozygous mutation in PV+ interneurons increases their excitability, a result that is opposite from their previous observation in neurons with the corresponding homozygous mutation. They propose that this results from the selective upregulation of a persistent sodium current INaP in the PV+ interneurons. These observations are very interesting ones, and they raised some issues in the original submission:

      A) The protocol for measuring the INaP current could potentially lead to results that could be (mis)interpreted in different ways in different cells. First, neither K currents nor Ca currents are blocked in these experiments. Instead, TTX is applied to the cells relatively rapidly (within 1 second) and the ramp protocol is applied immediately thereafter. It is stated that, at this time, Na currents and INaP are fully blocked but that any effects on Na-activated K currents are minimal. In theory this would allow the pre- to post- difference current to represent a relatively uncontaminated INaP. This would, however, only work if activation of KNa currents following Na entry is very slow, taking many seconds. A good deal of literature has suggested that the kinetics of activation of KNa currents by Na influx vary substantially between cell types, such that single action potentials and single excitatory synaptic events rapidly evoke KNa currents in some cell types. This is, of course, much faster than the time of TTX application. Most importantly, the kinetics of KNa activation may be different in different neuronal types, which would lead to errors that could produce different estimates of INaP in PV+ interneurons vs other cell types.

      In their revised manuscript, the authors have provided good data demonstrating that, at least for the PV and SST neurons, loss of KNa currents after TTX application is slow relative to the time course of loss of INaP, justifying the use of this protocol for these neuronal types.

      B) As the authors recognize, INaP current provides a major source of cytoplasmic sodium ions for the activation. An expected outcome of increased INaP is, therefore, further activation of KNa currents, rather than a compensatory increase in an inward current that counteracts the increase in KNa currents, as is suggested in the discussion.

      The authors comment in the rebuttal that, despite the fact that sodium entry through INaP is known to activate KNa channels, an increase in INaP does not necessarily imply increased KNa current. This issue should be addressed directly somewhere in the text, perhaps most appropriately in the discussion.

      We’ve added the following new paragraph to the Discussion section of the manuscript to address this concern:

      “As the persistent sodium current has been shown to act as a source of cytoplasmic sodium ions for KCNT1 channel activation in some neuron types (Hage & Salkoff, 2012), one might expect that the compensatory increase in INaP in YH-HET PV neurons would further increase, rather than counteract, KNa currents. Unfortunately, there is insufficient information on the relative locations of the INaP and KCNT1 channels, as well as the kinetics of sodium transfer to KCNT1 channels, among cortical neuron subtypes, and even less is known in the context of KCNT1 GOF neurons; thus, it is difficult to predict how alterations in one of these currents may affect the other. One plausible reason that increased INaP would not alter KNa currents in YH-HET PV neurons is that the particular sodium channels that are responsible for the increased INaP are not located within close proximity to the KCNT1 channels. Moreover, homeostatic mechanisms that modify the length and/or location of the sodium channel-enriched axon initial segment (AIS) in neurons in response to altered excitability are well described (Grubb & Burrone, 2010; Kuba et al., 2010); thus, it is possible that in YH-HET PV neurons, the length or location of the AIS is altered, leading to uncoupling of the sodium channels that are responsible for the increased INaP to the KCNT1 channels. Future studies will aim to further investigate potential mechanisms of neuron-type-specific alterations in NaP and KNa currents downstream of KCNT1 GOF.”  

      C) The numerical simulations, in general, provide a very useful way to evaluate the significance of experimental findings. Nevertheless, while the in-silico modeling suggests that increases in INaP can increase firing rate in models of PV+ neurons, there is as yet insufficient information on the relative locations of the INaP channels and the kinetics of sodium transfer to KNa channels to evaluate the validity of this specific model.

      The authors have now put in all of the appropriate caveats on this very nicely in the revised manuscript.

      (2) The effects of the KCNT1 channel blocker VU170 on potassium currents are somewhat larger and different from those of TTX, suggesting that additional sources of sodium may contribute to activating KCNT1, as suggested by the authors. Because VU170 is, however, a novel pharmacological agent, it may be appropriate to make more careful statements on this. While the original published description of this compound reported no effect on a variety of other channels, there are many that were not tested, including Na and cation channels that are known to activate KCNT1, raising the possibility of off-target effects.

      In the revised version, the authors have added more to the manuscript on this issue and have added a very clear discussion of this to the text (in the discussion section).

      This is a very clear and thorough piece of work, and the authors are to be congratulated on this. My one remaining suggestion would be to make an explicit statement about whether increased sodium influx through INaP channels, which is thought to activate KNa channels, would be likely to increase KNa current in these neurons (see comment 1B).

      Please see response to comment 1B.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Shore et al. investigate the consequent changes in excitability and synaptic efficacy of diverse neuronal populations in an animal model of juvenile epilepsy. Using electrophysiological patch-clamp recordings from dissociated neuronal cultures, the authors find diverging changes in two major populations of inhibitory cell types, namely somatostatin (SST)- and parvalbumin (PV)-positive interneurons, in mice expressing a variant of the KCNT1 potassium channel. They further suggest that the differential effects are due to a compensatory increase in the persistent sodium current in PV interneurons in pharmacological and in silico experiments. It remains unclear why this current is selectively enhanced in PV-interneurons.

      Strengths:

      (1) Heterozygous KCNT1 gain of function variant was used which more accurately models the human disorder.

      (2) The manuscript is clearly written, and the flow is easy to follow. The authors explicitly state the similarities and differences between the current findings and the previously published results in the homozygous KCNT1 gain of function variant.

      (3) This study uses a variety of approaches including patch clamp recording, in silico modeling and pharmacology that together make the claims stronger.

      (4) Pharmacological experiments are fraught with off-target effects and thus it bolsters the authors' claims when multiple channel blockers (TTX and VU170) are used to reconstruct the sodium-activated potassium current.

      Weaknesses:

      (1) This study mostly relies on recordings in dissociated cortical neurons. Although specific WT interneurons showed intrinsic membrane properties like those reported for acute brain slices, it is unclear whether the same will be true for those cells expressing KCNT1 variants, especially when the excitability changes are thought to arise from homeostatic compensatory mechanisms. The authors do confirm that mutant SST-interneurons are hypoexcitable using an ex vivo slice preparation which is consistent with work for other KCTN1 gain of function variants (e.g. Gertler et al., 2022). However, the key missing evidence is the excitability state of mutant PV-interneurons, given the discrepant result of reduced excitability of PV cells reported by Gertler et al in acute hippocampal slices.

      Reviewer #3 (Public Review):

      Summary:

      The present manuscript by Shore et al. entitled Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy" describes in vitro and in silico results obtained in cortical neurons from mice carrying the KCNT1-Y777H gain-of-function (GOF) variant in the KCNT1 gene encoding for a subunit of the Na+-activated K+ (KNa) channel. This variant corresponds to the human Y796H variant found in a family with Autosomal Dominant Nocturnal Frontal lobe epilepsy. The occurrence of GOF variants in potassium channel encoding genes is well known, and among potential pathophysiological mechanisms, impaired inhibition has been documented as responsible for KCNT1-related DEEs. Therefore, building on a previous study by the same group performed in homozygous KI animals, and considering that the largest majority of pathogenic KCNT1 variants in humans occur in heterozygosis, the Authors have investigated the effects of heterozygous Kcnt1-Y777H expression on KNa currents and neuronal physiology among cortical glutamatergic and the 3 main classes of GABAergic neurons, namely those expressing vasoactive intestinal polypeptide (VIP), somatostatin (SST), and parvalbumin (PV), crossing KCNT1-Y777H mice with PV-, SST- and PV-cre mouse lines, and recording from GABAergic neurons identified by their expression of mCherry (but negative for GFP used to mark excitatory neurons).

      The results obtained revealed heterogeneous effects of the variant on KNa and action potential firing rates in distinct neuronal subpopulations, ranging from no change (glutamatergic and VIP GABAergic) to decreased excitability (SST GABAergic) to increased excitability (PV GABAergic). In particular, modelling and in vitro data revealed that an increase in persistent Na current occurring in PV neurons was sufficient to overcome the effects of KCNT1 GOF and cause an overall increase in AP generation.

      Strengths:

      The paper is very well written, the results clearly presented and interpreted, and the discussion focuses on the most relevant points.

      The recordings performed in distinct neuronal subpopulations (both in primary neuronal cultures and, for some subpopulations, in cortical slices, are a clear strength of the paper. The finding that the same variant can cause opposite effects and trigger specific homeostatic mechanisms in distinct neuronal populations is very relevant for the field, as it narrows the existing gap between experimental models and clinical evidence.

      Weaknesses:

      My main concern regarding the epileptic phenotype of the heterozygous mice investigated has been clarified in the revision, where the infrequent occurrence of seizures is more clearly stated. Also, a more detailed statistical analysis of the modeled neurons has been added in the revision.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      This is a very clear and thorough piece of work, and the authors are to be congratulated on this. My one remaining suggestion would be to make an explicit statement about whether increased sodium influx through INaP channels, which is thought to activate KNa channels, would be likely to increase KNa current in these neurons (see comment 1B).

      Please see response to comment 1B.

      Reviewer #2 (Recommendations For The Authors):

      This revised manuscript is significantly improved and addresses most of my concerns. However, I would still recommend including the ex vivo slice recordings in mutant PV-interneurons as the authors proposed in their rebuttal. The I-V recordings using sequential TTX and VU170 blockade in WT SST and PV-interneurons that are provided in the rebuttal are interesting and may point to a preferential expression of persistent sodium currents in PV-interneurons normally. It would be helpful to readers as a supplemental figure.

      As proposed in the rebuttal, we are currently recording PV neurons using ex vivo slice preparations from WT and Kcnt1-YH Het mice. We look forward to including those data in a future manuscript.

      We agree with the reviewer that the differences in INaP between WT PV and SST neurons are notable. The data provided in the rebuttal were only from 5 neurons/group, and they were meant to illustrate a side-by-side comparison of TTX and VU170 subtraction methods to assess KNa currents. However, in Figure 7 of the manuscript, we performed more robust measurements of INaP and observed differences in the current between WT PV and SST neurons. Thus, we’ve added the following sentence to the Results section:

      “Interestingly, the mean peak amplitude of INaP in WT PV neurons was 70% larger than that in WT SST neurons (-1.42 ± 0.16 vs. -0.85 ± 0.07 pA/pF; Fig. 7B and 7D), suggesting there may be differences in sodium channel expression, localization, or regulation inherent to each neuron type that confer their differential response to KCNT1 GOF.”

      References

      Grubb, M. S., & Burrone, J. (2010). Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature, 465(7301), 1070-1074. https://doi.org/10.1038/nature09160

      Hage, T. A., & Salkoff, L. (2012). Sodium-activated potassium channels are functionally coupled to persistent sodium currents. J Neurosci, 32(8), 2714-2721. https://doi.org/10.1523/JNEUROSCI.5088-11.2012

      Kuba, H., Oichi, Y., & Ohmori, H. (2010). Presynaptic activity regulates Na(+) channel distribution at the axon initial segment. Nature, 465(7301), 1075-1078. https://doi.org/10.1038/nature09087

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors show for the first time that deleting GLS from rod photoreceptors results in the rapid death of these cells. The death of photoreceptor cells could result from loss of synaptic activity because of a decrease in glutamate, as has been shown in neurons, changes in redox balance, or nutrient deprivation. 

      Strengths: 

      The strength of this manuscript is that the author shows a similar phenotype in the mice when Gls was knocked out early in rod development or the adult rod. They showed that rapid cell death is through apoptosis, and there is an increase in the expression of genes responsive to oxidative stress. 

      We thank the reviewer for their time reviewing the manuscript and their comments regarding the potential mechanism(s) by which rod photoreceptors rapidly degenerate upon knockout of GLS.

      Weaknesses: 

      In this manuscript, the authors show a "metabolic dependency of photoreceptors on glutamine catabolism in vivo". However, there is a potential bias in their thinking that glutamine metabolism in rods is similar to cancer cells where it feeds into the TCA cycle. They should consider that as in neurons, GLS1 activity provides glutamate for synaptic transmission. The modest rescue shown by providing α-ketoglutarate in the drinking water suggests that glutamine isn't a key metabolic substrate for rods when glucose is plentiful. The ERG studies performed on the iCre-Glsflox/flox mice showed a large decrease in the scotopic b wave at saturating flashes which could indicate a decrease in glutamate at the rod synapse as stated by the authors. While EM micrographs of wt and iCre-Glsflox/flox mice were shown for the outer retina at p14, the synapse of the rods needs to be examined by EM. 

      We agree with the reviewer that in the presence of sufficient glucose, it appears a lack of GLS-driven glutamine (Gln) catabolism does not drastically alter the levels of TCA cycle metabolites or mitochondrial function as we demonstrated in Figure 4, and supplementation with alpha-ketoglutarate improved outer nuclear layer thickness by only a small amount as observed in Figure 5e. Hence, as we stated in the Results and Discussion, at least in the mouse where Gls is selectively deleted from rod photoreceptors by crossing Glsfl/fl mice with Rho-Cre mice (Glsfl/fl; Rho-Cre+, cKO), Gln’s role in supporting the TCA cycle is not the major mechanism by which rod photoreceptors utilize Gln to suppress apoptosis.

      With regards to GLS-driven Gln catabolism providing glutamate (Glu) for synaptic transmission, we again agree with the reviewer that Glu is an important excitatory neurotransmitter, but it is also a key metabolite necessary for the synthesis of glutathione, amino acids, and proteins. As noted and discussed at length in the manuscript, a lack of GLS-driven Gln catabolism in rod photoreceptors leads to reduced levels of oxidized glutathione (Figure 4D) possibly signaling an overall reduction in the biosynthesis of glutathione as Glu is directly and indirectly responsible for its synthesis. Furthermore, Gln and GLS-derived Glu play a central role in the biosynthesis of several nonessential amino acids and proteins. To this end, we see a reduction in the level of Glu, which is the product of the GLS reaction and further confirms the loss of GLS function. We also noted a significant decrease in aspartate (Asp), which can be constructed from the carbons and nitrogens of Gln as discussed at length in the manuscript (Figure 6A). Finally, we noted a significant decrease in global protein synthesis in the cKO retina as compared to the wild-type animal as well (Figure 6E). Therefore, the data suggest that GLS-driven Gln catabolism is critical for amino acid metabolism and protein synthesis and to some degree redox balance; although, the small but statistically significant changes in oxidized glutathione, NADP/NADPH, and redox gene expression may not fully account for the rapid and complete photoreceptor degeneration observed. Future studies are necessary to shed light on the role of redox imbalance in this novel transgenic mouse model.

      Glu also plays a role in synaptic transmission, and we considered this scenario as described in Figure 1 – figure supplement 5. Here, the synaptic connectivity between photoreceptors and the inner retina did not demonstrate significant differences in the labeling of photoreceptor synaptic membranes in the outer plexiform layer nor alterations in the labeling of a key protein (Bassoon) in ribbon synapses. These data suggest that the synaptic connectivity between photoreceptors and second-order neurons was unaltered at P14 in the cKO retina, which is the time just prior to rapid photoreceptor degeneration. We agree, though, that to obtain greater insight into the alterations in the ribbon synapse, EM images can be examined. The EM images shown in Figure 1 – figure supplement 4 are from P21 and will be utilized to assess the ribbon synapse for the revised version of the article.

      With regards to the ERG changes noted in Figure 2, we agree with the reviewer that a large decrease was noted in the scotopic b-wave at P21 and P42 in the cKO. However, an even larger reduction in the scotopic a-wave was noted at these ages as well. In animal models that disrupt photoreceptor synaptic function (Dick et al. Neuron. 2003; Johnson et al. J Neuroscience. 2007; Haeseleer et al. Nature Neuroscience. 2004; Chang et al. Vis Neurosci. 2006), a more negative ERG pattern is typically observed with the b-wave altered to a much larger degree than the a-wave. Additionally, in these models that disrupt photoreceptor synaptic transmission, the overall structure of the retina with respect to thickness is maintained (Dick et al. Neuron. 2003) or noted to have modest changes in the outer plexiform layer within the first two months of age with the outer nuclear layer not significantly altered until 8-10 months of age (Haeseleer et al. Nature Neuroscience. 2004). In contrast, a rapid decline in the outer nuclear layer thickness was observed in the cKO retina after P14 likely contributing to the ERG changes noted in Figure 2.  Also, Gln is catabolized to Glu primarily by GLS as suggested by the approximately 50% reduction in Glu levels in the cKO retina (Figure 6A), but other enzymes are also capable of catabolizing Gln to Glu, so Glu levels in the rod photoreceptors are unlikely to be zero. Coupling this with the fact that rods are equipped with a self-sufficient Glu recollecting system at their synaptic terminals (Hasegawa et al. Neuron. 2006; Winkler et al. Vis Neurosci. 1999) and that GLS activity is at least two-fold higher in the photoreceptor inner segments, which support energy production and metabolism, than any other layer in the retina (Ross et al. Brain Res. 1987) suggests that altered synaptic transmission secondary to reduced levels of Glu likely does not account in full for the rapid and robust photoreceptor degeneration observed in the cKO retina.

      The authors note that the outer segments are shorter but they do not address whether there is a decrease in the number of cones. 

      The number of cones will be assessed and provided in the revised version of the article.

      Rod-specific Gls ko mice with an inducible promoter were generated by crossing the Pde6g-CreERT2 and homozygous for either the WT or floxed Gls allele (IND-cKO). In Figure 3 the authors document that by western blots and antibody labeling the GLS1 expression is lost in the IND-cKO 10 days post tamoxifen. OCT images show a decrease in the thickness of the outer nuclear layer between 17 and 38 days post-TAM. Ergs should be performed on the animals at 10 and 30 days post TAM, before and after major structural changes in rod photoreceptor cells, to determine if changes in light-stimulated responses are observed. These studies could help to parse out the cause of photoreceptor cell death. 

      We agree with the reviewer that the IND-cKO is a useful tool to help parse out the cause of photoreceptor cell death in this model as well as shed light on the role of GLS-driven Gln catabolism in photoreceptor synaptic transmission as discussed at length above. Hence, ERG analyses will be provided for these animals in the revised version of the article.

      The studies in Figure 4 were all performed on iCre-Glsflox/flox and control mice at p14, why weren't the IND-cKO mice used for these studies since the findings would not be confounded by development? 

      To gain further insight into the role of GLS-driven Gln catabolism in the maintenance of rod photoreceptors as compared to their development/maturation, we will provide ERG and targeted metabolomic analyses of the IND-cKO retina in the revised version of the article.

      In all rescue studies, the endpoint was an ONL thickness, which only addressed rod cell death. The authors should also determine whether there are small improvements in the ERG, which would distinguish the role of GLS in preventing oxidative stress. 

      Optical coherence tomography (OCT) provides a sensitive in vivo method to detect small changes in retinal thickness without potential artifacts incurred through histological processing. Considering the Gls cKO retina demonstrates significant and rapid photoreceptor degeneration, we wanted to assess pathways that may be critical to photoreceptor survival downstream of GLS-driven Gln catabolism using rescue experiments with pharmacologic treatment or metabolite supplementation. That said, disruption of GLS-driven Gln catabolism may also significantly alter rod photoreceptor function beyond that which is secondary to photoreceptor cell death. As such, changes in ERG will be examined and provided in the revised version of the article for certain rescue experiments that demonstrated a robust change in ONL thickness.

      Reviewer #2 (Public Review): 

      Summary: 

      Photoreceptor neurons are crucial for vision, and discovering pathways necessary for photoreceptor health and survival can open new avenues for therapeutics. Studies have shown that metabolic dysfunction can cause photoreceptor degeneration and vision loss, but the metabolic pathways maintaining photoreceptor health are not well understood. This is a fundamental study that shows that glutamine catabolism is critical for photoreceptor cell health using in vivo model systems. 

      Strengths: 

      The data are compelling, and the consideration of potential confounding factors (such as glutaminase 2 expression) and additional experiments to examine the synaptic connectivity and inner retina added strength to this work. The authors were also careful not to overstate their claims, but to provide solid conclusions that fit the results and data provided in their study. The findings linking asparagine supplementation and the inhibition of the integrated stress response to glutamine catabolism within the rod photoreceptor cell are intriguing and innovative. Overall, the authors provide convincing data to highlight that photoreceptors utilize various fuel sources to meet their metabolic needs, and that glutamine is critical to these cells for their biomass, redox balance, function, and survival. 

      We greatly appreciate the reviewer’s thoughtful comments and time spent reviewing this manuscript.

      Weaknesses: 

      Recent studies have explored the metabolic "crosstalk" that exists within the mammalian retina, where metabolites are transferred between the various retinal cells and the retinal pigment epithelium. It would be of interest to test whether the conditional knockout mice have changes in metabolism (via qPCR such as shown in Figure 4 - Supplemental Figure 1) within the retinal pigment epithelium that may be contributing to the authors' findings in the neural retina. Additionally, the authors have very compelling data to show that inhibition of eIF2a or supplementation with asparagine can delay photoreceptor death via OCT measurements in their conditional knockout mouse model (Figure 6G, H). However, does inhibition of eIF2a or asparagine adversely impact the WT retina? It would also be impactful to know whether this has a prolonged effect, or if it is short-term, as this would provide strength to potential therapeutic targeting of these pathways to maintain photoreceptor health. 

      We agree with the reviewer that metabolic communication in the outer retina is crucial to the function and survival of both photoreceptors and RPE. We will perform qRT-PCR on the eyecups of these mice to assess any changes in the expression of metabolic genes. This data will be provided in the revised manuscript.

      We have data demonstrating systemic treatment with ISRIB does not adversely impact the anatomy of the wild-type retina; this data will be included in the revised manuscript as a supplement to Figure 6. Additionally, we have recent data to suggest that the effect of ISRIB extends beyond P21 in the cKO mouse. This data will be included in the revised manuscript.

      Reviewer #3 (Public Review): 

      Summary: 

      The authors explored the role of GLS, a glutaminase, which is an enzyme that catalyzes the conversion of glutamine to glutamate, in rod photoreceptor function and survival. The loss of GLS was found to cause rapid autonomous death of rod photoreceptors. 

      Strengths: 

      Interesting and novel phenotype. Two types of cre-lines were rigorously used to knockout the Gls gene in rods. Both of the conditional knockouts led to a similar phenotype, i.e. rod death. Histology and ERG were carefully done to characterize the loss of rods over specific ages. A necessary metabolomic study was performed and appreciated. Some rescue experiments were performed and revealed possible mechanisms. 

      We thank the reviewer for their comments and appreciation of the methods utilized herein to address the role of GLS-driven Gln catabolism in rod photoreceptors.

      Weaknesses: 

      No major weaknesses were identified. The mechanism of GLS-loss-induced rod death seems not fully elucidated by this study but could be followed up in the future, and the same for GLS's role in cones.

      We agree with the reviewer that the downstream metabolic and molecular mechanisms by which Gln catabolism impacts rod photoreceptor health are not fully elucidated. Defining these mechanisms will advance our understanding of photoreceptor metabolism and identify therapeutic targets promoting photoreceptor resistance to stress. Future studies are underway to uncover these mechanisms. Additionally, while outside the scope of the current manuscript, we have generated mice lacking GLS in cone photoreceptors specifically and are currently elucidating the role of GLS in cone photoreceptor metabolism, function, and survival. These results will be published in a separate manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Response to reviewers

      A general comment was that this study left several key questions unanswered, in particular the causal mechanism for the reported ribosomal distributions.  We have been interested in the evolution of asymmetric bacterial growth and aging for many years. However, a motivational difference is that we are more interested in the evolutionary process, and evolution by natural selection works on the phenotype.  Thus, we wanted to start with the phenotype closest to fitness, appropriately defined for the conditions, work downwards.  We examined first the asymmetry of elongation rates in single cells, then gene products, and now ribosomes.  As we have pointed out, our demonstration of ribosomal asymmetry shows that the phenomenon was not peculiar and unique to the gene products we examined.  Rather, the asymmetry is acting higher up in the metabolic network and likely affecting all genes.  We find such conceptual guidance to be important.  In the ideal world, of course we would have liked to have worked out the causal mechanisms in one swoop.  In a less than ideal situation, it is a subjective decision as where to stop.  We believe that the publication of this manuscript is more than appropriate at this juncture.  We work at the interface of evolutionary theory and microbiology.  Our results could appeal to both fields.  If we attract new researchers, progress could be accelerated.  Could the delay caused by publishing only completed stories slow the rate of discovery?  These questions are likely as old as science (e.g., https://telliamedrevisited.wordpress.com/2021/01/28/how-not-to-write-a-response-to-reviewers/).

      We present below our response to specific comments by reviewers.  We have not added a new discussion of papers suggested by Reviewer #1 because we feel that the speculations would have been too unfocused.  We were already criticized for speculation in the Discussion about a link between aggregate size and ribosomal density.

      Respond to Major comments by Reviewer #1.

      a) Fig. 1 only shows 2 divisions (rather than 3 as per Rev1) to avoid an overly elaborate figure.  We have added text to the figure legend that the old and new poles and daughters in the subsequent 3, 4, 5, 6, and 7 generations can be determined by following the same notations and tracking we presented for generations 1 and 2 in Fig. 1.  For example, if we know the old and new poles of any of the four daughters after 2 divisions (as in Fig. 1), and allow that daughter to elongate, become a mother, and divide to produce 2 “grand-daughters”, the polarity of the grand-daughters can also be determined.

      b) Because division times were normalized and analyzed as quartiles, the raw values were never used.  Rather than annotating unused values, we have provided the mean division times in the Material and Methods section on normalization to provide representative values.

      c) We did not quantify in our study the changes over generations for three reasons.  First, the sample sizes for the first generations (cohorts of 1, 2, 4, and 8 cells) are statistically small.  Second, and most importantly, cells on an agar pad in a microscope slide, despite being inoculated as fresh exponentially growing cells, experience a growth lag, as all cells transferred to a new physiological condition.  Thus, to be safe, we do not collect data from cohorts 1, 2, 4, and 8 to ensure that our cells are as much as possible physiologically uniform.  Lastly, as we noted in the Material and Methods they also slow down after 7 generations (128 cells).  Thus, we have collected ribosome and length measurements primarily from cohorts 16, 32, 64, and 128.  Measurable cells from the 128 cohort are actually rare because a colony with that many cells often starts to form double layers, which are not measurable.  Most of our measurements came from the 16, 32, and 64 cohorts, in which case a time series would not be meaningful.  Some of these details were not included in our manuscript but have been added to the Material and Methods (Microscopy and time-lapse movies).  For these reasons we have not added a time series as requested by the reviewer.

      d) We have added the additional figure as requested, but as a supplement rather than in the main article (Supplemental Materials Fig. S1).  This figure showed the normalized density of ribosomes along the normalized length of old and new daughters.  The density was continuous rather than quartiles.  This figure was included in the original manuscript, but readers recommended that it be removed because the all the analyzed data had been done with quartiles.  Readers felt mislead and confused.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This study presents careful biochemical experiments to understand the relationship between LRRK2 GTP hydrolysis parameters and LRRK2 kinase activity. The authors report that incubation of LRRK2 with ATP increases the KM for GTP and decreases the kcat. From this they suppose an autophosphorylation process is responsible for enzyme inhibition. LRRK2 T1343A showed no change, consistent with it needing to be phosphorylated to explain the changes in G-domain properties. The authors propose that phosphorylation of T1343 inhibits kinase activity and influences monomer-dimer transitions.

      Strengths:

      Strengths of the work are the very careful biochemical analyses and interesting result for wild type LRRK2.

      Weaknesses:

      The conclusions related to involvement of a monomer-dimer transition are to this reviewer, premature and an independent method needs to be utilized to bolster this aspect of the story.

      The monomer-dimer transition has been described in detail in our recent preprint Guaitoli et al., 2023 (doi: 10.1101/2023.08.11.549911). Where we in addition to mass-photometry have used blue-native page. Furthermore, to better elucidate the mechanistic impact of the phosphorylation, we have provided AlphaFold3 models. As the new AlphaFold version allows to consider PTMs as well as small molecules, we compared the models of the GDP vs the GTP-state of pT1343 LRRK2. Interestingly, the AF3 model suggests, that the phosphate of the pT1343 is orientated inwards thereby substituting the gamma phosphate (see Supplementary Figure 5). This finding is in well agreement with MD simulations published recently (Stormer et al., 2023, doi: 10.1042/BCJ20230126). As we are determining GTP hydrolysis in a multi turnover situation, the pT1343 might hamper the hydrolysis by competing with GTP re-binding. Final models have been deposited on Zenodo (https://doi.org/10.5281/zenodo.11242230).

      Reviewer #2 (Public Review):

      As discussed in the original review, this manuscript is an important contribution to a mechanistic understanding of LRRK2 kinase. Kinetic parameters for the GTPase activity of the ROC domain have been determined in the absence/presence of kinase activity. A feedback mechanism from the kinase domain to GTP/GDP hydrolysis by the ROC domain is convincingly demonstrated through these kinetic analyses. However, a regulatory mechanism directly linking the T1343 phosphosite and a monomer/dimer equilibrium is not fully supported. The T1343A mutant has reduced catalytic activity and can form similar levels of dimer as WT. The revised manuscript does point out that other regulatory mechanisms can also play a role in kinase activity and GTP/GDP hydrolysis (Discussion section). The environmental context in cells cannot be captured from the kinetic assays performed in this manuscript, and the introduction contains some citations regarding these regulatory factors. This is not a criticism, the detailed kinetics here are rigorous, but it is simply a limitation of the approach. Caveats concerning effects of membrane localization, Rab/14-3-3 proteins, WD40 domain oligomers, etc... should be given more prominence than a brief (and vague) allusion to 'allosteric targeting' near the end of the Discussion.

      We thank the reviewer for the evaluation of the manuscript and suggestions made. With respect to the mentioned caveats regarding the complex regulation of LRRK2 in its native cellular environment by effectors, localization and effector binding, we have revised the discussion, accordingly. We nevertheless, want to emphasize that the phospho-null mutant T1343A leads to an increase in Rab10 phosphorylation in cells, demonstrating a relevance of this regulatory mechanism under near physiological conditions (shown in Figure 6). In addition, to further elucidate the molecular mechanisms of the p-loop phosphorylation at T1343, we have performed AlphaFold3 modelling allowing to include phosphoresidues (see comment above, Supplemental Figure 5).

      Specific comments

      (1) The revised version is better organized with respect to the significance of monomer/dimer equilibrium and the relevance of the GTP-binding region of ROC domain that encompasses the T1343 phospho-site. The relevance of monomers/dimers of LRRK2 from previous studies is better articulated and readers are able to follow the reasoning for the various mutations.

      We thank the reviewer for the positive feedback. 

      (2) As a suggestion I would change the following on page 6 to clarify for readers: "...would show no change in kcat and KM values upon in vitro ATP treatment" to:

      "...would show no change in kcat and KM values for GTP hydrolysis upon in vitro

      ATP treatment"

      (3) The levels of dimer in WT (+ATP) and T1343A (+/- ATP) are the same, about 40-45%. These data are cited when the authors state that ATP-induced monomerization is 'abolished' (page 6). My suggestion is to re-phrase this conclusion for consistency with data (Fig 5). For example, one can state that 'ATP incubation does not affect the percentage of dimer for the T1343A variant of LRRK2'. This would be similar to the authors' description of these data on page 8 - 'no difference in dimer formation upon ATP treatment'.

      We thank the reviewer for the suggestions. We revised the manuscript accordingly. Changes have been highlighted in the version provided for reviewing purposes.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      Minor revisions

      -change 'Although functional work on LRRK2 has been made significant progress...' to 'Although there is significant progress toward functional characterization of LRRK2...'

      -change 'exact mechanisms' to 'precise mechanisms', and similarly 'exact interplay' to 'precise interplay'

      -change 'On a contrary' to 'On the contrary' in Discussion

      -change remained to be unchanged' to 'remains unchanged', page 8

      We thank the reviewer for having noticed this. We have revised the manuscript accordingly.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this paper, the researchers aimed to address whether bees causally understand string-pulling through a series of experiments. I first briefly summarize what they did:

      - In experiment 1, the researchers trained bees without string and then presented them with flowers in the test phase that either had connected or disconnected strings, to determine what their preference was without any training. Bees did not show any preference.

      - In experiment 2, bees were trained to have experience with string and then tested on their choice between connected vs. disconnected string.

      - experiment 3 was similar except that instead of having one option which was an attached string broken in the middle, the string was completely disconnected from the flower.

      - In experiment 4, bees were trained on green strings and tested on white strings to determine if they generalize across color.

      - In experiment 5, bees were trained on blue strings and tested on white strings.

      - In experiment 6, bees were trained where black tape covered the area between the string and the flower (i.e. so they would not be able to see/ learn whether it was connected or disconnected).

      - In experiments 2-6, bees chose the connected string in the test phase.

      - In experiment 7, bees were trained as in experiment 3 and then tested where the string was either disconnected or coiled i.e. still being 'functional' but appearing different.

      - In experiment 8, bees were trained as before and then tested on a string that was in a different coiled orientation, either connected or disconnected.

      - In experiments 7 and 8 the bees showed no preference.

      Strengths:

      I appreciate the amount of work that has gone into this study and think it contains a nice, thorough set of experiments. I enjoyed reading the paper and felt that overall it was well-written and clear. I think experiment 1 shows that bees do not have an untrained understanding of the function of the string in this context. The rest of the experiments indicate that with training, bees have a preference for unbroken over broken string and likely use visual cues learned during training to make this choice. They also show that as in other contexts, bees readily generalize across different colors.

      Weaknesses:

      (1) I think there are 2 key pieces of information that can be taken from the test phase - the bees' first choice and then their behavior across the whole test. I think the first choice is critical in terms of what the bee has learned from the training phase - then their behavior from this point is informed by the feedback they obtain during the test phase. I think both pieces of information are worth considering, but their behavior across the entire test phase is giving different information than their first choice, and this distinction could be made more explicit. In addition, while the bees' first choice is reported, no statistics are presented for their preferences.

      We agree with the reviewer that the first choice is critical in terms of what the bumblebees have learned from the training phase. We analyzed the bees’ first choice in Table 1, and we added the tested videos. The entire connected and disconnected strings were glued to the floor, the bees were unable to move either the connected or disconnected strings, and avoid learning behavior during the tests. We added the data of bee's each choice in the Supplementary table.

      (2) It seemed to me that the bees might not only be using visual feedback but also motor feedback. This would not explain their behavior in the first test choice, but could explain some of their subsequent behavior. For example, bees might learn during training that there is some friction/weight associated with pulling the string, but in cases where the string is separated from the flower, this would presumably feel different to the bee in terms of the physical feedback it is receiving. I'd be interested to see some of these test videos (perhaps these could be shared as supplementary material, in addition to the training videos already uploaded), to see what the bees' behavior looks like after they attempt to pull a disconnected string.

      We added supplementary videos of testing phase. As noted in General Methods, both connected and disconnected strings were glued to the floor to prevent the air flow generated by flying bumblebees’ wings from changing the position of the string during the testing phase. The bees were unable to move either the connected or disconnected strings during the tests, and only attempted to pull them. Therefore, the difference in the friction/weight of pulling the both strings cannot be a factor in the test.

      (3) I think the statistics section needs to be made clearer (more in private comments).

      We changed the statistical analysis section as suggested by the reviewer.

      (4) I think the paper would be made stronger by considering the natural context in which the bee performs this behavior. Bees manipulate flowers in all kinds of contexts and scrabble with their legs to achieve nectar rewards. Rather than thinking that it is pulling a string, my guess would be that the bee learns that a particular motor pattern within their usual foraging repertoire (scrabbling with legs), leads to a reward. I don't think this makes the behavior any less interesting - in fact, I think considering the behavior through an ecological lens can help make better sense of it.

      Here we respectfully disagree. The solving of Rubik’s cube by humans could be said to be version of finger-movements naturally required to open nuts or remove ticks from fur, but this is somewhat beside the point: it’s not the motor sequences that are of interest, but the cognition involved. A general approach in work on animal intelligence and cognition is to deliberately choose paradigms that are outside the animals’ daily routines-this is what we have done here, in asking whether there is means-end comprehension in bee problem solving. Like comparable studies on this question in other animals, the experiments are designed to probe this question, not one of ecological validity.

      Reviewer #2 (Public Review):

      Summary:

      The authors wanted to see if bumblebees could succeed in the string-pulling paradigm with broken strings. They found that bumblebees can learn to pull strings and that they have a preference to pull on intact strings vs broken ones. The authors conclude that bumblebees use image matching to complete the string-pulling task.

      Strengths:

      The study has an excellent experimental design and contributes to our understanding of what information bumblebees use to solve a string-pulling task.

      Weaknesses:

      Overall, I think the manuscript is good, but it is missing some context. Why do bumblebees rely on image matching rather than causal reasoning? Could it have something to do with their ecology? And how is the task relevant for bumblebees in the wild? Does the test translate to any real-life situations? Is pulling a natural behaviour that bees do? Does image matching have adaptive significance?

      We appreciate the valuable comment from the reviewer. Our explanation, which we have now added to the manuscript, is as follows:

      “Different flower species offer varying profitability in terms of nectar and pollen to bumblebees; they need to make careful choices and learn to use floral cues to predict rewards (Chittka, 2017). Bumblebees can easily learn visual patterns and shapes of flower (Meyer-Rochow, 2019); they can detect stimuli and discriminate between differently coloured stimuli when presented as briefly as 25 ms (Nityananda et al., 2014). In contrast, causal reasoning involves understanding and responding to causal relationships. Bumblebees might favor, or be limited to, a visual approach, likely due to the efficiency and simplicity of processing visual cues to solve the string-pulling task. ”

      As above, it worth noting that our work is not designed as an ecological study, but one about the question of whether causal reasoning can explain how bees solve a string-pulling puzzle. We have a cognitive focus, in line with comparable studies on other animals. We deliberately chose a paradigm that is to some extent outside of the daily challenges of the animal.

      Reviewer #3 (Public Review):

      Summary:

      This paper presents bees with varying levels of experience with a choice task where bees have to choose to pull either a connected or unconnected string, each attached to a yellow flower containing sugar water. Bees without experience of string pulling did not choose the connected string above chance (experiment 1), but with experience of horizontal string pulling (as in the right-hand panel of Figure 4) bees did choose the connected string above chance (experiments 2-3), even when the string colour changed between training and test (experiments 4-5). Bees that were not provided with perceptual-motor feedback (i.e they could not observe that each pull of the string moved the flower) during training still learned to string pull and then chose the connected string option above chance (experiment 6). Bees with normal experience of string pulling then failed to discriminate between connected and unconnected strings when the strings were coiled or looped, rather than presented straight (experiments 7-8).

      Weaknesses:

      The authors have only provided video of some of the conditions where the bees succeeded. In general, I think a video explaining each condition and then showing a clip of a typical performance would make it much easier to follow the study designs for scholars. Videos of the conditions bees failed at would be highly useful in order to compare different hypotheses for how the bees are solving this problem. I also think it is highly important to code the videos for switching behaviours. When solving the connected vs unconnected string tasks, when bees were observed pulling the unconnected string, did they quickly switch to the other string? Or did they continue to pull the wrong string? This would help discriminate the use of perceptual-motor feedback from other hypotheses.

      We added the test videos as suggested by the reviewer, and we added the data for each bee's choice. However, both connected and disconnected strings were glued to the floor, and therefore perceptual-motor feedback was equal and irrelevant between the choices during the test.

      The experiments are also not described well, for my below comments I have assumed that different groups of bees were tested for experiments 1-8, and that experiment 6 was run as described in line 331, where bees were given string-pulling training without perceptual feedback rather than how it is described in Figure 4B, which describes bees as receiving string pulling training with feedback.

      We now added figures of Experiment 6 and 7 in the Figure 1B, and we mentioned that different groups of bees were tested for Experiments 1-9.

      The authors suggest the bees' performance is best explained by what they term 'image matching'. However, experiment 6 does not seem to support this without assuming retroactive image matching after the problem is solved. The logic of experiment 6 is described as "This was to ensure that the bees could not see the familiar "lollipop shape" while pulling strings....If the bees prefer to pull the connected strings, this would indicate that bees memorize the arrangement of strings-connected flowers in this task." I disagree with this second sentence, removing perceptual feedback during training would prevent bees memorising the lollipop shape, because, while solving the task, they don't actually see a string connected to a yellow flower, due to the black barrier. At the end of the task, the string is now behind the bee, so unless the bee is turning around and encoding this object retrospectively as the image to match, it seems hard to imagine how the bee learns the lollipop shape.

      We agree with the reviewer that while solving the task in the last step during training, the bees don't actually see a string connected to a yellow flower, due to the black barrier. Since the full shape is only visible after the pulling is completed and this requires the bee to “check back” on the entire display after feeding, to basically conclude “ this is the shape that I need to be looking for later”.

      Another possibility is that bumblebees might remember the image of the “lollipop shape” while training the bees in the first step, in which the “lollipop shape” was directly presented to the bumblebee in the early step of the training.

      We added the experiment suggested by the reviewer, and the result showed that when a green table was placed behind the string to obscure the “lollipop shape” at any point during the training phase, the bees were unable to identify the connected string. The result further supports that bumblebees learn to choose the connected string through image matching.

      Despite this, the authors go on to describe image matching as one of their main findings. For this claim, I would suggest the authors run another experiment, identical to experiment 6 but with a black panel behind the bee, such that the string the bee pulls behind itself disappears from view. There is now no image to match at any point from the bee's perspective so it should now fail the connectivity task.

      Strengths:

      Despite these issues, this is a fascinating dataset. Experiments 1 and 2 show that the bees are not learning to discriminate between connected and unconnected stimuli rapidly in the first trials of the test. Instead, it is clear that experience in string pulling is needed to discriminate between connected and unconnected strings. What aspect of this experience is important? Experiment 6 suggests it is not image matching (when no image is provided during problem-solving, but only afterward, bees still attend to string connectivity) and casts doubt on perceptual-motor feedback (unless from the bee's perspective, they do actually get feedback that pulling the string moves the flower, video is needed here). Experiments 7 and 8 rule out means-end understanding because if the bees are capable of imagining the effect of their actions on the string and then planning out their actions (as hypotheses such as insight, means-end understanding and string connectivity suggest), they should solve these tasks. If the authors can compare the bees' performance in a more detailed way to other species, and run the experiment suggested, this will be a highly exciting paper

      We appreciate the valuable comment from the reviewer. We compared the bees' performance to other species, and conducted the experiment as suggested by the reviewer.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Smaller comments:

      Line 64: is the word 'simple' needed here? It could also be explained by more complex forms of associative learning, no?

      We deleted “simple”.

      Methods:

      Line 230: was it checked that this was high-contrast for the bees?

      We added the relevant reference in the revised manuscript.

      Line 240: how much sucrose solution was present in the flowers?

      We added 25 microliters sucrose solution in the flowers. We added the information in the revised manuscript.

      Line 266: check grammar.

      We checked the grammar as follows: “During tests, both strings were glued to the floor of the arena to prevent the air flow generated by flying bumblebees’ wings from changing the position of the string.”

      Statistical analysis:

      - What does it mean that "Bees identity and colony were analyzed with likelihood ratio tests"?

      Bees identity and colony was set as a random variable. We changed the analysis methods in the revised manuscript, and results of the all the experiments did not changed.

      - Line 359: do you mean proportion rather than percentage?

      We mean the percentage.

      - "the number of total choices as weights" - this should be explained further. This is the number of choices that each bee made? What was the variation and mean of this number? If bees varied a lot in this metric, it might make more sense to analyze their first choice (as I see you've done) and their first 10 choices or something like that - for consistency.

      This refers to the total number of choices made by each bumblebee. We added the mean and standard error of each bee’s number of choices in Table 1. Some bees pulled the string fewer than 10 times; we chose to include all choices made by each bee.

      - More generally I think the first test is more informative than the subsequent choices, since every choice after their first could be affected by feedback they are getting in that test phase. Or rather, they are telling you different things.

      All the bees were tested only once, however, you might be referring to the first choice. We used Chi-square test to analyze the bumblebees’ first choices in the test. It is worth noting that both connected and disconnected strings were glued to the floor. The bees were unable to move either the connected or disconnected strings during the tests, and only attempted to pull them. Therefore,the feedback from pulling either the connected or disconnected strings is the same.

      - Line 362: I think I know what you mean, but this should be re-phrased because the "number of" sounds more appropriate for a Poisson distribution. I think what you are testing is whether each individual bee chose the connected or the disconnected string - i.e. a 0 or 1 response for each bee?

      We agree with the reviewer that each bee chose the connected or the disconnected string - i.e. a 0 or 1 response for each bee, but not the number. We clarify this as: “The total number of the choices made by each bee was set as weights.” 

      - Line 364-365: here and elsewhere, every time you mention a model, make it clear what the dependent and independent variables are. i.e. for the mixed model, the 'bee' is the random factor? Or also the colony that the bee came from? Were these nested etc?

      We clarify this in the revised manuscript. The bee identity and colony is the random factor in the mixed model.

      - Line 368: "Latency to the first choice of each bee was recorded" - why? What were the hypotheses/ predictions here?

      The latency to the first choice was intended to see if the bumblebees were familiarizing with the testing pattern. A shorter delay time might indicate that the bumblebees were more familiar with the pattern.

      - Line 371: "Multiple comparisons among experiments were.." - do you mean 'within' experiments? It seems that treatments should not be compared between different experiments.

      We mean multiple comparisons among different experiments; we clarify this in the revised manuscript.

      Results

      Experiment 1: From the methods, it sounded like you both analyzed the bees' first choice and their total no. of choices, but in the results section (and Figure 1) I only see the data for all choices combined here.

      In table 1 and in the text you report the number of bees that chose each option on their first choice, but there are no statistical results associated with these results. At the very least, a chi square or binomial test could be run.

      Line 138: "Interestingly, ten out of fifteen bees pulled the connected string in their first choice" - this is presented like it is a significant majority of bees, but a chi-square test of 10 vs 5 has a p-value = 0.1967

      We used the Chi square test to analyzed of the bees’ first choice. We also added the analyzed data in the Table 1.

      Line 143: "It makes sense because the bees could see the "lollipop shape" once they pulled it out from the table." - this feels more like interpretation (i.e. Discussion) rather than results.

      We moved the sentence to the discussion.

      Line 162: again this feels more like interpretation/ conjecture than results.

      We removed the sentence in the results.

      Line 184: check grammar.

      We checked the grammar. We changed “task” to “tasks”.

      Figures

      I really appreciated the overview in Figure 5 - though I think this should be Figure 1? Even if the methods come later in eLife, I think it would be nice to have that cited earlier on (e.g. at the start of the results) to draw the reader's attention to it quickly, since it's so helpful. It also then makes the images at the bottom of what is currently Figure 1 make more sense. I also think that the authors could make it clearer in Figure 5 which strings are connected vs disconnected in the figure (even if it means exaggerating the distance more than it was in real life). I had to zoom in quite a bit to see which were connected vs. not. Alternatively, you could have an arrow to the string with the words "connected" "disconnected" the first time you draw it - and similar labels for the other string conditions.

      We appreciate the valuable comment from the reviewer. We changed Figure 5 to Figure 2, and Figure 4 to Figure 1. We cited the Figures at the start of the results. We also changed the gap distance between the disconnected strings. Additionally, we added arrows to indicate “connected” and “disconnected” strings in the Figure.

      Figure 1 - I think you could make it clearer that the bars refer to experiments (e.g. have an x-axis with this as a label). Also, check the grammar of the y-axis.

      We added the experiments number in the Figures. Additionally, we checked the grammar of the y-axis. We changed “percentages” to “parentage”. 

      I also think it's really helpful to see the supplementary videos but I think it would be nice to see some examples of the test phase, and not just the training examples.

      We added Supplementary videos of the testing phase.

      Reviewer #2 (Recommendations For The Authors):

      Below are also some minor comments:

      L40: "approaches".

      We changed “approach” to “approaches”.

      L42: but likely mainly due to sampling bias of mammals and birds.

      We changed the sentence as follows: String pulling is one of the most extensively used approaches in comparative psychology to evaluate the understanding of causal relationships (Jacobs & Osvath, 2015), with most research focused on mammals and birds, where a food item is visible to the animal but accessible only by pulling on a string attached to the reward (Taylor, 2010; Range et al., 2012; Jacobs & Osvath, 2015; Wakonig et al., 2021).

      L64: remove "in this study"

      We removed “in this study”.

      L64: simple associative learning of what? Isn't your image matching associative too?

      We removed “ simple”.

      L97: remove "a" before "connected".

      We removed “a” before “connected”.

      L136-138: but maybe they could still feel the weight of the flower when pulling?

      Because both strings were glued to the floor in the test phase, the feedback was the same and therefore irrelevant. This information is noted in the General Methods.

      L161: what are these numbers?

      We removed the latency in the revised manuscript.

      L167/ Table 1: I realise that the authors never tried slanted strings to check if bumblebees used proximity as a cue. Why?

      This was simply because we wanted to focus on whether bumblebees could recognize the connectivity of the string.

      Discussion: Why did you only control for colour of the string? What if you had used strings with different textures or smells? Unclear if the authors controlled for "bumblebee smell" on the strings, i.e., after a bee had used the string, was the string replaced by a new one or was the same one used multiple times?

      We used different colors to investigate featural generalization of the visual display of the string connected to the flower in this task. We controlled for color because it is a feature that bumblebees can easily distinguish.

      Both the flowers and the strings were used only once, to prevent the use of chemosensory cues. We clarify this in the revised manuscript.

      L182: since what?

      We deleted “since” in the revised manuscript.

      L182-188: might be worth mentioning that some crows and parrots known for complex cognition perform poorly on broken strings (e.g., https://doi.org/10.1098/rspb.2012.1998 ; https://doi.org/10.1163/1568539X-00003511 ; https://doi.org/10.1038/s41598-021-94879-x ) and Australian magpies use trial and error (https://doi.org/10.1007/s00265-023-03326-6).

      We added the following sentences as suggested by the reviewer: “It is worth noting that some crows and parrots known for complex cognition perform poorly on the broken string task without perceptual feedback or learning. For example, New Caledonian crows use perceptual feedback strategies to solve the broken string-pulling task, and no individual showed a significant preference for the connected string when perceptual feedback was restricted (Taylor et al., 2012). Some Australian magpies and African grey parrots can solve the broken string task, but they required a high number of trials, indicating that learning plays a crucial role in solving this task (Molina et al., 2019; Johnsson et al., 2023).”

      L193: maybe expand on this to put the task into a natural context?

      We added the following sentences as suggested by the reviewer:

      “Different flower species offer varying profitability in terms of nectar and pollen to bumblebees; they need to make careful choices and learn to use floral cues to predict rewards (Chittka, 2017). Bumblebees can easily learn visual patterns and shapes of flower (Meyer-Rochow, 2019); they can detect stimuli and discriminate between differently coloured stimuli when presented as briefly as 25 ms (Nityananda et al., 2014). In contrast, causal reasoning involves understanding and responding to causal relationships. Bumblebees might favor, or be limited to, a visual approach, likely due to the efficiency and simplicity of processing visual cues to solve the string-pulling task. ”

      L204: is causal understanding the same as means-end understanding?

      Means-end understanding is expressed as goal-directed behavior, which involves the deliberate and planned execution of a sequence of steps to achieve a goal. Includes some understanding of the causal relationship (Jacobs & Osvath, 2015; Ortiz et al., 2019). .

      L235: this is a very big span of time. Why not control for motivation? Cognitive performance can vary significantly across the day (at least in humans).

      Bumblebee motivation is understood to be rather consistent, as those that were trained and tested came to the flight arena of their own volition and were foragers looking to fill their crop load each time to return it to the colony.

      L232: what is "(w/w)" ? This occurs throughout the manuscript.

      “w/w” represents the weight-to-weight percentage of sugar.

      L250: this sentence sounds odd. "containing in the central well.." ?? Perhaps rephrase? Unclear what central well refers to? Did the flowers have multiple wells?

      We rephrased the sentence as follows: For each experiment, bumblebees were trained to retrieve a flower with an inverted Eppendorf cap at the center, containing 25 microliters of 50% sucrose solution, from underneath a transparent acrylic table

      L268: why euthanise?

      The reason for euthanizing the bees is that new foragers will typically only become active after the current ones were removed from the hive.

      L270: chemosensory cues answer my concern above. Maybe make it clear earlier.

      We moved this sentence earlier in the result.

      L273: did different individuals use different pulling strategies? Do you have the data to analyse this? This has been done on birds and would offer a nice comparison.

      We analyzed the string-pulling strategies among different individuals, and provided Supplementary Table 1 to display the performances of each individual in different string-pulling experiments.

      L365: unclear why both models. Would be nice to see a GLM output table.

      The duration of pulling different kinds of strings were first tested with the Shapiro-Wilk test to assess data normality. The duration data that conforms to a normal distribution was compared using linear mixed-effects models (LMM), while the data that deviates from normality were examined with a generalized linear-mixed model (GLMM). We added a GLM and GLMM output table in the revised manuscript.

      L377: should be a space between the "." and "This".

      We added a space between the “.” and “This”.

      L383-390: some commas and semicolons are in the wrong places.

      We carefully checked the commas and semicolons in this sentence.

      Reviewer #3 (Recommendations For The Authors):

      Minor comments

      Line 32: seems to be missing a word, suggest "the bumblebees' ability to distinguish".

      we added “the” in the revised manuscript.

      Line 47: it would be good to reference other scholars here, this is the central focus of all work in comparative psychology.

      We added the reference in the revised manuscript.

      Line 50-61: I think the string-pulling literature could be described in more detail here, with mention of perceptual-motor feedback loops as a competing hypothesis to means-end understanding (see Taylor et al 2010, 2012). It seems a stretch to suggest that "String-pulling studies have directly tested means-end comprehension in various species", when perceptual-motor feedback is a competing hypothesis that we have positive evidence for in several species.

      We mentioned the perceptual-motor feedback in the introduction as follow:

      “Multiple mechanisms can be involved in the string-pulling task, including the proximity principle, perceptual feedback and means-end understanding (Taylor et al., 2012; Wasserman et al., 2013; Jacobs & Osvath, 2015; Wang et al., 2020). The principle of proximity refers to animals preferring to pull the reward that is closest to them (Jacobs & Osvath, 2015). Taylor et al. (2012) proposed that the success of New Caledonian crows in string-pulling tasks is based on a perceptual-motor feedback loop, where the reward gradually moves closer to the animal as they pull the strings. If the visual signal of the reward approaching is restricted, crows with no prior string-pulling experience are unable to solve the broken string task (Taylor et al., 2012).

      However, when a green table was placed behind the string to obscure the “lollipop” structure during the training, the bees could not see the “lollipop” during the initial training stage or after pulling the string from under the table. In this situation, the bees were unable to identify the connected string, further proving that bumblebees chose the connected string based on image matching.

      Line 68: suggest remove 'meticulously'.

      We removed “meticulously”.

      Line 99: This is an exciting finding, can the authors please provide a video of a bee solving this task on its first trial?

      We added videos in the supplementary materials.

      Line 133: perceptual-motor feedback loops should be introduced in the introduction.

      We introduced perceptual-motor feedback loops in the revised manuscript.

      Line 136: please clarify the prior experience of these bees, it is not clear from the text.

      We clarified the prior experience of these bees as follow: Bumblebees were initially attracted to feed on yellow artificial flowers, and then trained with transparent tables covered by black tape (S7 video) through a four-step process.

      Line 138: from the video it is not possible to see the bee's perspective of this occlusion. Do the authors have a video or image showing the feedback the bees received? I think this is highly important if they wish to argue that this condition prevents the use of both image matching and a perceptual-motor feedback loop.

      We prevented the use of image matching: the bees were unable to see the flower moving towards them above the table during the training phase in this condition. But the bees may receive visual image both after pulling the string out from the table and in the initial stages of training in this condition.

      Line 147: please clarify what experience these bees had before this test.

      We added the prior experience of bumblebees before training as follow: We therefore designed further experiments based on Taylor et al. (2012) to test this hypothesis. Bumblebees were first trained to feed on yellow artificial, and then trained with the same procedure as Experiment 2, but the connected strings were coiled in the test.

      Line 155: This is a highly similar test to that used in Taylor et al 2012, have the authors seen this study?

      We mentioned the reference in the revised manuscript as follows: We therefore designed further experiments based on Taylor et al. (2012) to test this hypothesis.

      Line 183: This sentence needs rewriting "Since the vast majority of animals, including dogs 183 (Osthaus et al., 2005), cats (Whitt et al., 2009), western scrub-jays (Hofmann et al.,2016) and azure-winged magpies (Wang et al., 2019) are failing in such tasks spontaneously".

      We changed the sentence as suggested by the reviewer as follow:  Some animals, including dogs (Osthaus et al., 2005), cats (Whitt et al., 2009), western scrub-jays (Hofmann et al., 2016) and azure-winged magpies (Wang et al., 2019) fail in such task spontaneously.

      Line 186: "complete comprehension of the functionality of strings is rare" I am not sure the evidence in the current literature supports any animal showing full understanding, can the authors explain how they reach this conclusion?

      We wished to say that few animal species could distinguish between connected and disconnected strings without trial and error learning. We revised the sentence as follows:

      It is worth noting that some crows and parrots known for complex cognition perform poorly on broken string task without perceptual feedback or learning. For example, New Caledonian crows use perceptual feedback strategies to solve broken string-pulling task, and no individual showed a significant preference for the connected string when perceptual feedback is restricted (Taylor et al., 2012). Some Australian magpies and African grey parrots can solve the broken string task, but it required a high number of trials, indicating that learning plays a crucial role in solving this task (Molina et al., 2019; Johnsson et al., 2023).

      Line 190: the authors need to clarify which part of their study provides positive evidence for this conclusion.

      We added the evidence for this conclusion as follows: Our findings suggest that bumblebees with experience of string pulling prefer the connected strings, but they failed to identify the interrupted strings when the string was coiled in the test.

      Line 265: was the far end of the string glued only?

      The entire string was glued to the floor, not just the far ends of the string.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review):

      Summary: 

      In this paper, the authors used target agnostic MBC sorting and activation methods to identify B cells and antibodies against sexual stages of Plasmodium falciparum. While they isolated some Mabs against PFs48/45 and PFs230, two well-known candidates for "transmission blocking" vaccines, these antibodies' efficacies, as measured by TRA, did not perform as well as other known antibodies. They also isolated one cross-reactive mAb to proteins containing glutamic acid-rich repetitive elements, that express at different stages of the parasite life cycle. They then determined the structure of the Fab with the highest protein binder they could determine through protein microarray, RESA, and observed homotypic interactions. 

      Strengths: 

      -  Target agnostic B cell isolation (although not a novel methodology). 

      -  New cross-reactive antibody with some "efficacy" (TRA) and mechanism (homotypic interactions) as demonstrated by structural data and other biophysical data. 

      Weaknesses: 

      The paper lacks clarity at times and could benefit from more transparency (showing all the data) and explanations. 

      We have added the oocyst count data from the SMFA experiments as Supplementary Table 2, and ELISA binding curves underlying Figure 4B as Supplementary Figure 5.

      In particular: 

      - define SIFA 

      - define TRAbs 

      We have carefully gone through the manuscript and have introduced abbreviations at first use, removed unnecessary abbreviations and removed unnecessary jargon to increase readability.

      - it is not possible to read the Figure 6B and C panels. 

      We regret that the labels in Supplementary Figures 6 and 7 were of poor quality and have now included higher resolution images to solve this issue.

      Reviewer #2 (Public Review): 

      This manuscript by Amen, Yoo, Fabra-Garcia et al describes a human monoclonal antibody B1E11K, targeting EENV repeats which are present in parasite antigens such as Pfs230, RESAs, and 11.1. The authors isolated B1E11K using an initial target agnostic approach for antibodies that would bind gamete/gametocyte lysate which they made 14 mAbs. Following a suite of highly appropriate characterization methods from Western blotting of recombinant proteins to native parasite material, use of knockout lines to validate specificity, ITC, peptide mapping, SEC-MALS, negative stain EM, and crystallography, the authors have built a compelling case that B1E11K does indeed bind EENV repeats. In addition, using X-ray crystallography they show that two B1E11K Fabs bind to a 16 aa RESA repeat in a head-to-head conformation using homotypic interactions and provide a separate example from CSP, of affinity-matured homotypic interactions. 

      There are some minor comments and considerations identified by this reviewer, These include that one of the main conclusions in the paper is the binding of B1E11K to RESAs which are blood stage antigens that are exported to the infected parasite surface. It would have been interesting if immunofluorescence assays with B1E11K mAb were performed with blood-stage parasites to understand its cellular localization in those stages. 

      In the current manuscript, we provide multiple lines of evidence that B1E11K binds (with high affinity) to repeats that are present in RESAs, i.e. through micro-array studies, in vitro binding experiments such as Western blot, ELISA and BLI, and through X-ray crystallography studies on B1E11k – repeat peptide complexes. Taken together, we think we provide compelling evidence that B1E11k binds to repeats present in RESA proteins. We do agree that studies on the function of this mAb against other stages of the parasite could be of interest, but as our manuscript focuses on the sexual stage of the parasite, we feel that this is beyond scope of the current work. However, this line of inquiry will be strongly considered in follow up studies.   

      Reviewer #3 (Public Review): 

      The manuscript from Amen et al reports the isolation and characterization of human antibodies that recognize proteins expressed at different sexual stages of Plasmodium falciparum. The isolation approach was antigen agnostic and based on the sorting, activation, and screening of memory B cells from a donor whose serum displays high transmission-reducing activity. From this effort, 14 antibodies were produced and further characterized. The antibodies displayed a range of transmission-reducing activities and recognized different Pf sexual stage proteins. However, none of these antibodies had substantially lower TRA than previously described antibodies. 

      The authors then performed further characterization of antibody B1E11K, which was unique in that it recognized multiple proteins expressed during sexual and asexual stages. Using protein microarrays, B1E11K was shown to recognize glutamate-rich repeats, following an EE-XX-EE pattern. An impressive set of biophysical experiments was performed to extensively characterize the interactions of B1E11K with various repeat motifs and lengths. Ultimately, the authors succeeded in determining a 2.6 A resolution crystal structure of B1E11K bound to a 16AA repeat-containing peptide. Excitingly, the structure revealed that two Fabs bound simultaneously to the peptide and made homotypic antibody-antibody contacts. This had only previously been observed with antibodies directed against CSP repeats. 

      Overall I found the manuscript to be very well written, although there are some sections that are heavy on field-specific jargon and abbreviations that make reading unnecessarily difficult. For instance, 'SIFA' is never defined. 

      We have carefully gone through the manuscript and have introduced abbreviations at first use, removed unnecessary abbreviations and removed unnecessary jargon to increase readability.

      Strengths of the manuscript include the target-agnostic screening approach and the thorough characterization of antibodies. The demonstration that B1E11K is cross-reactive to multiple proteins containing glutamate-rich repeats, and that the antibody recognizes the repeats via homotypic interactions, similar to what has been observed for CSP repeat-directed antibodies, should be of interest to many in the field. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      Figure 1 - why only gametes ELISA and Spz or others?  

      The volumes of the single B cell supernatants were too small to screen against multiple antigens/parasite stages. As we aimed to isolate antibodies against the sexual stages of the parasite, our assay focused on this stage and supernatants were not tested against other stages. Furthermore, we screened for reactivity against gametes as TRA mAbs likely target gametes rather than other forms of sexual stage parasites.

      Figure 2 A 

      (a) Wild type (WT) and Pfs48/45 knock-out (KO) gametes.

      (b) I am a bit confused about what GMT is vs Pfs48/45 

      We have changed the column titles in Figure 2A to “wild-type gametes” and “Pfs48/45 knockout gametes” to improve clarity.  

      (c) Binding is high % why is it red? 

      We chose to present the results in a heatmap format with a graded color scale, from strong binders in red to weak binders in green. It has now been clarified in the legend of the figure. 

      Please state acronyms clearly 

      TRA - transmission reducing activity 

      SMFA - standard membrane feeding assay 

      We have added the full terms to clarify the acronyms.

      1123- VRC01 (not O1)

      We have corrected this.

      Figure 2 C bottom panels, clarify which ones are TRAbs (Assuming the Mabs with over 80% TRA at 500 ug/ml) (right gel) and the ones that are not (left gel)? 

      In the Western blot in Figure 2c, we have marked the antibodies with >80% TRA with an asterisk.

      Furthermore, we have replaced ‘TRAbs’ by ‘mAbs with >80% TRA at 500 µg/mL’ in the figure legend.

      ITC show the same affinity of the Fab to the 2 peptides but not the ELISA, not the BLI/SPR would be more appropriate. Any potential explanation?  

      The way binding affinity is determined across various techniques can result in slight differences in determined values. For instance, ELISAs utilize long incubation times with extensive washing steps and involve a spectroscopic signal, isothermal titration calorimetry (ITC) uses calorimetric signal at different concentration equilibriums to extract a KD, and BLI determines kinetic parameters for KD determination. Discrepancies in binding affinities between orthologous techniques have indeed been observed previously in the context of peptide-antibody binding (e.g. PMID: 34788599).

      Despite this, regardless of technique, the relative relationships in all three sets of data is the same - higher binding affinity is observed to the longer P2 peptide. This is the main takeaway of the section. As the reviewer suggests, BLI is likely the most appropriate readout here and is the only value explicitly mentioned in the main text. We primarily use ITC to support our proposed binding stoichiometry which is important to substantiate the SEC-MALS and nsEM data in Figure 4H-I. We added the following sentences to help reinforce these points: “The determined binding affinity from our ITC experiments (Table 1) differed from our BLI experiments (Fig. 4D and 4E), which can occur when measuring antibody-peptide interactions. Regardless, our data across techniques all trend toward the same finding in which a stronger binding affinity is observed toward the longer RESA P2 (16AA) peptide.”

      Figure 5C - would be helpful to have the peptide sequence above referring to what is E1, E2 etc... 

      We added two panels (Figure 5C-D) showcasing the binding interface that shows the peptide numbering in the context of the overall complex. We hope that this will help better orient the reader. 

      Figure S4 - maybe highlight in different colors the EENVV, EEIEE, Etc, etc 

      Repeats found in the sequence of the various proteins in Figure S4 have now been highlighted with different colors.

      Line 163 - why 14 mabs if 11 wells? Isn't it 1 B cell per well? The authors should explain right away that some wells have more than 1 B cell and some have 1 HC, 1LC, and 1 KC. 

      We agree that this was somewhat confusing and have modified the text which now reads: “We obtained and cloned heavy and light chain sequences for 11 out of 84 wells. For three wells we obtained a kappa light chain sequence and for five wells a lambda light chain sequence. For three wells we obtained both a lambda and kappa light chain sequence suggesting that either both chains were present in a single B cell or that two B cells were present in the well. For all 14 wells we retrieved a single heavy chain sequence. Following amplification and cloning, 14 mAbs, from 11 wells, were expressed as full human IgG1s (Table S1) (Dataset S1).”

      Line 166-167 - were they multiple HC (different ones) as well when Lambda and kappa were present?

      This is not clear at first. 

      We clarified this point in the text, see also comment above.

      Line 177 - expressed Pfs48/45 and Pfs230, is it lacking both or just Pfs48/45 (as stated on line 172)? 

      Pfs48/45 binds to the gamete surface via a GPI anchor, while Pfs230 is retained to the surface through binding to Pfs48/45. Hence, the Pfs48/45 knockout parasite will therefore also lack surfacebound Pfs230. We have added a sentence to the Results clarifying this: “The mAbs were also tested for binding to Pfs48/45 knock-out female gametes, which lack surface-bound Pfs48/45 and Pfs230”.

      Show the ELISA data used to calculate EC50 in Figure 3. 

      ELISA binding curves are now shown as Figure S5.

      Line 313-315 - what if you reverse, capture the Fab (peptide too small even if biotinylated?) 

      As anticipated by the Reviewer, immobilizing the Fab and dipping into peptide did not yield appreciable signal for kinetic analysis and thus the experiment from this setup is not reported. 

      Line 341 - add crystal structure 

      This has now been added.

      There is a bit too much speculation in the discussion. For e.g. "The B1C5L and B1C5K mAbs were shown to recognize Domain 2 of Pfs48/45 and exhibited moderate potency, as previously described for Abs with such specificity (27). These 2 mAbs were isolated from the same well and shared the same heavy chain; their three similar characteristics thus suggest that their binding is primarily mediated by the heavy chain". Actual data will reinforce this statement. 

      As B1C5L and B1C5K recognized domain 2 of Pfs48/45 with similar affinity, this strongly suggests that binding is mediated though the heavy chain. Structural analysis could confirm this statement, but this is out of the scope of this study.  

      Reviewer #2 (Recommendations For The Authors): 

      Figure 1: This figure provides a description of the workflow. To make it more relevant for the paper, the authors could add relevant numbers as the workflow proceeds. 

      (a) For example, how many memory B cells were sorted, how many supernatants were positive, and then how many mAbs were produced? These numbers can be attached to the relevant images in the workflow. 

      We modified the figure to include the numbers. 

      (b) For the "Supernatant screening via gamete extract ELISA", please change to "Supernatant screening via gamete/gametocyte extract ELISA". 

      We modified the statement as suggested. 

      Line 155: The manuscript states that 84 wells reacted with gamete/gametocyte lysate. The following sentence states that "Out of the 21 supernatants that were positive...". Can the authors provide the summary of data for all 84 wells or why focus on only 21 supernatants? 

      We screened all supernatants against gamete lysate, and only a subset against gametocyte lysate. In total, we found 84 positive supernatants that were reactive to at least one of the two lysates. 21 of those 84 positive were screened against both lysates. We have modified the text to clarify the numbers:

      “After activation, single cell culture supernatants potentially containing secreted IgGs were screened in a high-throughput 384-well ELISA for their reactivity against a crude Pf gamete lysate (Fig. S1B). A subset of supernatants was also screened against gametocyte lysate (S1C). In total, supernatants from 84 wells reacted with gamete and/or gametocyte lysate proteins, representing 5.6% of the total memory B cells. Of the 21 supernatants that were screened against both gamete and gametocyte lysates, six recognized both, while nine appeared to recognize exclusively gamete proteins, and six exclusively gametocyte proteins.”

      Please note that all 84 positive wells were taken forward for B cell sequencing and cloning. 

      Line 171: SIFA is introduced for the first time and should be completely spelled out.

      We have corrected this. 

      Figure 2: 

      (a) In Figure 2A, can you change the column title from "% pos KO GMT" to "% pos Pfs48/45 KO GMT"?

      We have changed the column titles.  

      (b) In Figure 2B, the SMFA results have been converted to %TRA. Can the authors please provide the raw data for the oocyst counts and number of mosquitoes infected in Supplementary Materials? 

      We have added oocyst count data in Table S2, to which we refer in the figure legend. 

      (c) For Figure 2F, the authors do have other domains to Pfs230 as described in Inklaar et al, NPJ Vaccines 2023. An ELISA/Western to the other domains could identify the binding site for B2C10L, though we appreciate this is not the central result of this manuscript. 

      We thank the reviewer for this suggestion. We are indeed planning to identify the target domain of B2C10L using the previously described fragments, but agree with the reviewer that this not the focus of the current manuscript and decided to therefore not include it in the current report.

      Line 116: The word sporozoites appears in subscript and should be corrected to be normal text. 

      We have corrected this.

      Line 216: Typo "B1E11K" 

      We have corrected this.

      Materials and Methods: 

      (a) PBMC sampling: Please add the ethics approval codes in this section. 

      Donor A visited the hospital with a clinical malaria infection and provided informed consent for collection of PBMCs. We have modified the method section to clarify this. 

      “Donor A had lived in Central Africa for approximately 30 years and reported multiple malaria infections during that period. At the time of sampling PBMCs, Donor A had recently returned to the Netherlands and visited the hospital with a clinical malaria infection. After providing informed consent, PBMCs were collected, but gametocyte prevalence and density were not recorded.”

      (b) Gamete/Gametocyte extract ELISA: Can the authors please provide the concentration of antibodies used for the positive and negative controls (TB31F, 2544, and 399) 

      We have added the concentrations for these mAbs in the methods section.

      Recombinant Pfs48/45 and Pfs230 ELISA: Please state the concentration or molarity used for the coating of recombinant Pfs48/45 and Pfs230CMB. 

      We have added the concentrations, i.e. 0.5 µg/mL, to the methods section.

      Western Blotting: The protocol states that DTT was added to gametocyte extracts (Line 594), but Western Blots in Figures 2 and 3 were performed in non-reducing conditions. Please confirm whether DTT was added or not. 

      Thank you for noting this. We did not use DTT for the western blots and have removed this line from the methods section.

      Reviewer #3 (Recommendations For The Authors): 

      Below are a few minor comments to help improve the manuscript. 

      (1) In Figure 4E, are the BLI data fit to a 1:1 binding model? The fits seem a bit off, and from ITC and X-ray studies it is known that 2 Fabs bind 1 peptide. The second Fab should presumably have higher affinity than the first Fab since the second Fab will make interactions with both the peptide and the first Fab. It may be better to fit the BLI data to a 2:1 binding model. 

      The 2:1 (heterogeneous ligand) model assumes that there are two different independent binding sites. However, the second binding event described is dependent on the first binding event and thus this model also does not accurately reflect the system. Given that there is not an ideal model to fit, we instead are careful about the language used in the main text to describe these results. Additionally, we also include a sentence to the results section to ensure that the proper findings/interpretations are highlighted: “…our data all trend toward the same finding in which a stronger binding affinity is observed toward the longer RESA P2 (16AA) peptide.”

      (2) The sidechain interactions shown in Figures 5C and D could probably be improved. The individual residues are just 'floating' in space, causing them to lack context and orientation. 

      We added two panels (Fig. 5C-D) showcasing the binding interface that shows the peptide numbering in the context of the overall complex. We hope that this will help orient the reader.  

      (3) The percentage of Ramachandran outliers should be listed in Table 2. Presumably, the value is 0.2%, but this is omitted in the current table. 

      Table 2 has been modified to include the requested information explicitly.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      The work is well performed and thoroughly convincing. 

      However, a few points could be improved, by adjusting the manuscript: 

      (1) The wording of the abstract is confusing for the casual reader. The initial impression is that the 2-copy complexes contain the majority of the PSD95 copies. This is not the case, as shown in panel cii. It would be important for the authors to explain in the abstract the exact percentage of molecules found within 2-copy complexes. 

      We have now amended the abstract, making it clear that it’s not most of the complexes.  

      (2) Did the authors find a sizeable population of 2-copy complexes by investigating wild-type proteins, using nanobody labeling (Figure S2)? It would be important to quantify and discuss these data. 

      It was not possible to perform this analysis on the wild-type proteins. The quantification would rely on all the PSD95 molecules being bound by the antibody, which we cannot guarantee. Furthermore, the nanobody labeling would need to be stoichiometric. 

      (3) The authors quote the separation value of 12.7 nm throughout their text, including the abstract. This may be somewhat misleading since the authors investigate the PSD95-GFP molecules, labeled using anti-GFP nanobodies. The large size of the two GFP molecules (~3 nm), and that of the nanobodies, will influence the readout. Two groups have already reported a separation of ~7-8 nm between neighboring PSD95 molecules in synapses, using PSD95 nanobodies, to minimize the linkage

      error: https://doi.org/10.1101/2022.08.03.502284 and https://doi.org/10.1101/2023.10.18.562 700  

      The difference observed here is consistent with an effect of the additional GFP moieties; the authors should cite these works (albeit they are now only provided as biorXiv pre-prints) and should mention this discrepancy, and its potential tagging-related explanation. 

      We have now referenced the work and referred to this in the discussion.

      (4) The authors may want to re-check the manuscript; some minor problems should be corrected, such as the mislabeling of Figure 2 and "Figure 5". 

      This has now been corrected.  

      Reviewer #2 (Recommendations For The Authors): 

      The authors suggest that the stability of the PSD95 dimeric complex correlates with memory formation. However, the turnover experiments were conducted only on three-month-old animals, which can be considered to be at a stage of lower synaptic functionality turnover. It would be appropriate to study dimer turnover during the memory formation period at three to four weeks of age, for example in comparison to the oldest mice. 

      Alternatively, it might be interesting to study the turnover in the hippocampus following exposure to a memory test. 

      Whilst potentially useful, these experiments are outside of the scope of this manuscript.   

      It is not clear whether the different turnover identified in various brain areas is statistically significant, as apparently no statistical analysis has been conducted. 

      The findings were significant, and the SI table containing the p-values has been emphasized further in the manuscript.  

      Reviewer #3 (Recommendations For The Authors): 

      (1) In the last paragraph of the Results section, it could be made clearer what the nature is of the correlation between PSD95 half-life and mixed supercomplexes to understand how to interpret this correlation. In the discussion, it is concluded that stable synapses have long protein lifetimes and slow replacement of scaffolding proteins. However, this is based on the correlation of protein lifetime and mixed supercomplexes in the cortex, which does not provide any evidence that this relation is true in single synapses or is specific for stable synapses. To make this statement, the authors could for instance directly correlate the stoichiometry of supercomplexes with the protein lifetime and size of individual synapses. 

      Unfortunately, we can’t directly measure the lifetime of each complex, and so it’s only possible to compare region-to-region. In doing so, we found that there was a correlation between the protein lifetime and the “mixed” population.  

      (2) Some essential parts seem missing: the materials and methods and Figure 2 are not included. Also, the numbering of figures is incorrect. Both in the figure legends and the text. 

      This has been added. 

      (3) Figure 1a could contain more details of the experimental procedures. For example, it could be made clearer how PSD95 supercomplexes are isolated from brain homogenate. 

      This is now presents in the methods. 

      (4) In Figure 1c, single molecules of PSD95 are identified using PALM with a resolution of 30 nm. However, in Figure 1d it is shown that PSD95 molecules reside on average 13 nm apart, indicating that a resolution of 30 nm is not sufficient to resolve single PSD95 molecules. In addition, it would be of interest to show the distribution of fluorophore separation (assessed with MINFLUX) of only the supercomplexes with two PSD95 molecules, since only these were used to calculate the average distance. 

      The 13 nm distance was measured using MINFLUX, as stated in the text. The fluorophore separation distances are shown in Figure 1dii.

      (5) In the introduction, the authors could be more explicit in their explanation of memory formation and storage and how the presented study contributes to that field. 

      We thank the reviewer for the suggestion, but feel that such a discussion in the introduction would detract from the main points of the manuscript.  

      (6) Throughout the manuscript the authors prominently cite their own work, but relevant literature on synaptic plasticity and synapse nanostructure (EM and super-resolution studies) is lacking. 

      Further references have now been added.  

      (7) The results depicted in Figure 4b would be easier to interpret if a stacked histogram (including error bars) was used. 

      We agree that the data could be presented in such a way, but that would prevent the results from the biological repeats, along with the variation, being presented.